+

US20140199818A1 - Method for fabricating an esd protection device - Google Patents

Method for fabricating an esd protection device Download PDF

Info

Publication number
US20140199818A1
US20140199818A1 US14/218,991 US201414218991A US2014199818A1 US 20140199818 A1 US20140199818 A1 US 20140199818A1 US 201414218991 A US201414218991 A US 201414218991A US 2014199818 A1 US2014199818 A1 US 2014199818A1
Authority
US
United States
Prior art keywords
region
esd protection
substrate
gate electrode
photoresist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/218,991
Inventor
Ming-Tzong Yang
Ming-Cheng Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Priority to US14/218,991 priority Critical patent/US20140199818A1/en
Assigned to MEDIATEK INC. reassignment MEDIATEK INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, MING-CHENG, YANG, MING-TZONG
Publication of US20140199818A1 publication Critical patent/US20140199818A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H01L29/66477
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • H10D30/603Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs  having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6708Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device for preventing the kink effect or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/351Substrate regions of field-effect devices
    • H10D62/357Substrate regions of field-effect devices of FETs
    • H10D62/364Substrate regions of field-effect devices of FETs of IGFETs
    • H10D62/371Inactive supplementary semiconductor regions, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/013Manufacturing their source or drain regions, e.g. silicided source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/017Manufacturing their source or drain regions, e.g. silicided source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • H10D89/601Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
    • H10D89/811Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using FETs as protective elements
    • H10D89/813Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using FETs as protective elements specially adapted to provide an electrical current path other than the field-effect induced current path
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • H10D62/116Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 

Definitions

  • the present invention relates generally to an electrostatic discharge (ESD) protection device. More particularly, the present invention relates to a method for fabricating the ESD protection device.
  • ESD electrostatic discharge
  • ESD electrostatic discharge
  • FIG. 1 is a schematic, cross-sectional diagram showing a conventional ESD protection device.
  • the ESD protection device 1 is fabricated in an I/O region and may be in the form of an input/output (I/O) NMOS transistor device that receives a relatively higher voltage power ranging between, for example, 3V and 5V.
  • the core device 2 which receives a relatively lower voltage power ranging between, for example, 0.8V and 1.5V, is fabricated within the or core region.
  • the core device 2 includes a source region 23 a and a drain region 23 b in a well 22 .
  • a gate electrode 28 overlies the substrate 10 between the source region 23 a and the drain region 23 b.
  • An LDD region 24 a is provided between the gate electrode 28 and the source region 23 a and an LDD region 24 b is provided between the gate electrode 28 and the drain region 23 b.
  • a gate dielectric layer 26 is interposed between the gate electrode 28 and the substrate 10 .
  • the ESD protection device 1 includes an N + source region 13 a and an N + drain region 13 b in a P-type well 12 .
  • a gate electrode 18 overlies the substrate 10 between the N + source region 13 a and the N + drain region 13 b.
  • a gate dielectric layer 16 is interposed between the gate electrode 18 and the substrate 10 .
  • an NLDD region 14 a is provided between the gate electrode 18 and the N + source region 13 a and an NLDD region 14 b is provided between the gate electrode 18 and the drain region 13 b.
  • the conventional ESD implantation process requires an extra mask (ESD implant mask) to define the opening 20 a in the photoresist implant mask 20 and an additional ion implantation step, which increase the manufacture cost and complicate the fabricating process.
  • the present invention provides a method for fabricating an ESD protection device includes providing a substrate with an input/output (I/O) region and a non I/O region; forming a gate electrode of a core device overlying the substrate in the non I/O region and a gate electrode of an ESD protection device overlying the substrate in the I/O region; forming a first photoresist film on the substrate; and using the first photoresist film as an implant mask, performing a core pocket implantation process to form a core pocket doping region in the I/O region.
  • I/O input/output
  • the first photoresist film masks the I/O region while reveals the non I/O region
  • the first photoresist film comprises at least an opening positioned adjacent to, immediately or not, the gate electrode of the ESD protection device in the I/O region.
  • the core pocket implantation process implants dopants of a second conductivity type into the I/O region through the opening and into the non I/O region.
  • FIG. 1 is a schematic, cross-sectional diagram showing a conventional ESD protection device
  • FIG. 2A to FIG. 2F are schematic, cross-sectional diagrams showing an exemplary method for fabricating an ESD protection device in accordance with one embodiment of this invention
  • FIG. 3A is a schematic layout diagram showing an ESD protection HVMOS device in accordance with another embodiment of the invention.
  • FIG. 3B is a schematic, cross-sectional diagram taken along line I-I′ of FIG. 3A ;
  • FIG. 4 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with still another embodiment of the invention.
  • FIG. 5 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with yet another embodiment of the invention.
  • wafer and substrate used herein include any structure having an exposed surface onto which a layer is deposited according to the present invention, for example, to form the integrated circuit (IC) structure.
  • IC integrated circuit
  • substrate is understood to include semiconductor wafers.
  • substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art.
  • the term “horizontal” as used herein is defined as a plane parallel to the conventional major plane or surface of the semiconductor chip or die substrate, regardless of its orientation.
  • vertical refers to a direction perpendicular to the horizontal as just defined. Terms, such as “on”, “above”, “below”, “bottom”, “top”, “side”(as in “sidewall”), “higher”, “lower”, “over”, and “under”, are defined with respect to the horizontal plane.
  • FIG. 2A to FIG. 2F are schematic, cross-sectional diagrams showing an exemplary method for fabricating an electrostatic discharge (ESD) protection device in accordance with one embodiment of this invention.
  • a substrate 100 is provided.
  • the substrate 100 may be a semiconductor substrate such as silicon substrate, epitaxial substrate, silicon-on-insulator (SOI) substrate, SiGe substrate or the like.
  • the substrate 100 includes at least an input/output (I/O) region such as a high-voltage (HV) region and a non I/O region such as a low-voltage (LV) region.
  • I/O input/output
  • HV high-voltage
  • LV low-voltage
  • An input/output region of a circuit or a semiconductor chip can mean, but is not limited to, a region capable of transferring signal between the circuit or the semiconductor chip and the circuit or the semiconductor chip outside it.
  • a signal from another circuit or semiconductor chip can be input into this circuit or semiconductor chip, and a signal generated by this circuit or semiconductor chip can be output from this circuit or semiconductor chip to another circuit or semiconductor chip.
  • Non I/O region can mean, but is not limited to, a region of the circuit or semiconductor chip that is not the I/O region. In some embodiments, the non I/O region includes the core region.
  • a gate electrode 118 and a gate electrode 228 can be formed overlying the substrate 100 within the I/O region and the non I/O region respectively.
  • a gate dielectric layer 116 can be provided between the gate electrode 118 and the substrate 100 .
  • Agate dielectric layer 226 can be provided between the gate electrode 228 and the substrate 100 .
  • the gate electrode 118 and the gate electrode 228 may be composed of polysilicon, doped polysilicon, metal or a combination thereof.
  • the gate dielectric layer 116 and the gate dielectric layer 226 may be formed by oxidation or deposition methods.
  • the gate dielectric layer 116 and the gate dielectric layer 226 may be composed of thermal silicon oxide.
  • an non I/O LDD or core LDD implantation process can be carried out to implant dopants such as N-type dopant arsenic at a doping concentration between, for example, 1 ⁇ 10 15 ⁇ 3 ⁇ 10 15 atoms/cm 2 into the well 112 through the opening 300 a and into the well 222 , thereby forming core LDD regions 224 a and 224 b in the well 222 and a lightly doped region 350 a in the well 112 .
  • the depth of the core LDD regions 224 a and 224 b and the depth of the lightly doped region 350 a may be between, for example, 5,000 ⁇ 7,000 angstroms below the main surface of the substrate 100 .
  • other depth and doping concentration may be applicable depending on the design requirements or the generation of the device.
  • a core pocket implantation process 330 can then be carried out to implant dopants such as P-type dopant BF 2 at a doping concentration substantially between, for example, 4 ⁇ 10 13 and 8 ⁇ 10 13 atoms/cm 2 , into the well 112 through the opening 300 a and into the well 222 , thereby forming core pocket doping regions 250 a and 250 b in the well 222 and a core pocket doping region 350 in the well 112 .
  • the core pocket doping region 250 a in this embodiment is located under the core LDD region 224 a.
  • the core pocket doping region 250 b in this embodiment is located under the core LDD region 224 b.
  • the core pocket doping region 350 in this embodiment is located under the lightly doped region 350 a .
  • the depth of the core pocket doping regions 250 a and 250 b and the depth of the core pocket doping region 350 may be substantially between, for example, 10,000 and 50,000 angstroms, below the main surface of the substrate 100 .
  • the core pocket doping regions 250 a and 250 b and the core pocket doping region 350 have substantially the same depth and substantially the same doping concentration since they are all formed by using the same core pocket implantation process 330 .
  • the photoresist film 300 can be stripped.
  • a photoresist film 400 can then be formed on the substrate 100 .
  • the photoresist film 400 masks the non I/O region while reveals the I/O region.
  • an I/O LDD implantation process 430 can be carried out to implant dopants such as N-type dopants arsenic into the well 112 , thereby forming LDD regions 114 a and 114 b in the well 112 .
  • the implantation steps shown in FIG. 2C and FIG. 2D are interchangeable.
  • the LDD regions 114 a and 114 b may be formed prior to the formation of the core LDD regions 224 a and 224 b.
  • the photoresist film 400 can be stripped.
  • a pair of sidewall spacers 132 can be formed on the sidewalls of the gate electrode 118 and a pair of sidewall spacers 232 can be formed on the sidewalls of the gate electrode 228 .
  • a photoresist film 500 can then be formed on the substrate 100 . The photoresist film 500 masks the I/O region while reveals the non I/O region.
  • the photoresist film 500 can be stripped.
  • a photoresist film 600 can then be formed on the substrate 100 .
  • the photoresist film 600 masks the non I/O region while reveals the I/O region.
  • An I/O source/drain implantation process 630 can be carried out to implant dopants such as N-type dopant phosphorus into the well 112 , thereby forming source region 113 a and drain region 113 b.
  • the photoresist film 600 can then be stripped.
  • the source region 113 a and drain region 113 b are both heavily doped and have a doping concentration that is greater than that of the LDD regions 114 a and 114 b.
  • FIGS. 2A-2F The present invention has been particularly shown and described with respect to certain embodiment and specific features thereof.
  • the embodiment set forth herein as set forth through FIGS. 2A-2F is to be taken as illustrative rather than limiting. It should be readily apparent to those of ordinary skill in the art that various changes and modifications in form and detail may be made without departing from the spirit and scope of the invention. For example, the process sequence in FIGS. 2A-2F may be changed or some process steps may be omitted in other embodiments.
  • the ESD protection device 101 is compatible with current processes such as CMOS processes and can spare an extra mask for ESD implant. That is, the conventional ESD implantation process and the related mask for defining ESD implant opening can be omitted according to this invention. Instead, the core pocket implantation process, which is used to form core pocket regions in the core device, is introduced. Therefore, the manufacture cost can be reduced without affecting the HVMOS performance.
  • the core pocket doping region 350 does not overlap with an edge of the drain region 113 b, for example, the edge 1131 of the drain region 113 b that is near the gate electrode 118 .
  • the core pocket doping region 350 can be formed concurrently with the core pocket doping regions 250 a and 250 b of the core device 102 in the non I/O region. Therefore, the core pocket doping regions 250 a and 250 b and the core pocket doping region 350 can have substantially the same depth and doping concentration.
  • FIG. 3A is a schematic layout diagram showing an ESD protection HVMOS device in accordance with another embodiment of the invention.
  • FIG. 3B is a schematic, cross- sectional diagram taken along line I-I′ of FIG. 3A .
  • the ESD protection HVMOS device 301 can be fabricated in a substrate 100 such as a P-type silicon substrate. More specifically, the ESD protection HVMOS device 301 can be fabricated in an oxide define (OD) area that is surrounded by an isolation region, such as shallow trench isolation (STI) region, 380 .
  • OD oxide define
  • STI shallow trench isolation
  • the ESD protection HVMOS device 301 includes a source region 313 a such as an N + source region in a well 312 such as a P-type well, an LDD region 314 a merged with the source region 313 a, a drain region 313 b such as an N + drain region that is positioned apart from the source region 313 a, a gate electrode 318 between the source region 313 a and the drain region 313 b, a gate dielectric layer 316 between the gate electrode 318 and the substrate 100 , a pair of spacers 332 on the sidewalls of the gate electrode 318 , a well 352 such as an N-type well positioned between the gate electrode 318 and the drain region 313 b and may partially overlap with the drain region 313 b and may extend to an area directly underneath the gate electrode 318 , a well portion 312 a of the well 312 situated between the well 352 and the edge of the isolation region 380 , and a channel region 370 between the LDD region 314
  • the well 352 acting an extended drain region which increases sustained voltage of the ESD protection HVMOS device 301 , does not completely encompass the drain region 313 b so as to reveal the well portion 312 a of the well 312 underneath the drain region 313 b. It is advantageous to use the ESD protection HVMOS device 301 as an embedded ESD protection device in the integrated circuits because the revealed well portion 312 a of the well 312 is capable of reducing junction breakdown voltage of the ESD protection HVMOS device 301 by way of the three regions: A, B and C in FIG. 3B , which are indicated by dashed lines respectively.
  • the region A encompasses an NP junction between the N + drain region 313 b plus N-type well 352 and the well portion 312 a of the P-type well 312 (N + +NW/PW junction).
  • the region B encompasses an NP junction between the N+ drain region 313 b and the well portion 312 a of the P-type well 312 (N + /PW junction).
  • the region C encompasses an NP junction between the N + drain region 313 b and the well portion 312 a of the P-type well 312 at the edge of the isolation region 380 .
  • the proposed ESD protection HVMOS device can have reduced breakdown voltage and thus increased ESD performance.
  • FIG. 4 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with still another embodiment of the invention, wherein like numeral numbers designate like regions, layers or elements.
  • the ESD protection HVMOS device 301 a can be fabricated in a substrate 100 such as a P-type silicon substrate.
  • the ESD protection HVMOS device 301 a includes a core pocket doping region 350 that is located within the region A as set forth in FIG. 3B .
  • the core pocket doping region 350 is a P-type doping region and can be implanted into the N + drain region 313 b using the steps similar to that as set forth through FIGS. 2C-2F . That is, the core pocket doping region 350 can be formed concurrently with the core pocket doping regions of the core devices. Therefore, the core pocket doping regions 350 may have substantially the same depth and doping concentration as that of the core devices in the non I/O region.
  • the core pocket doping region 350 can further reduce the breakdown voltage and increase ESD performance.
  • FIG. 5 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with yet another embodiment of the invention.
  • the ESD protection HVMOS device 301 b in FIG. 5 can sustain higher voltage, for example, 8-10V.
  • the ESD protection HVMOS device 301 b can be fabricated in a substrate 100 such as a P-type silicon substrate.
  • the ESD protection HVMOS device 301 b includes a source region 313 a such as an N + source region in a well 312 such as a P-type well, an LDD region 314 a merged with the source region 313 a, a drain region 313 b such as an N + drain region that is positioned apart from the source region 313 a, a gate electrode 318 between the source region 313 a and the drain region 313 b, a gate dielectric layer 316 between the gate electrode 318 and the substrate 100 , a pair of spacers 332 on the sidewalls of the gate electrode 318 , a well 352 such as an N-type well positioned between the gate electrode 318 and the drain region 313 b and may partially overlap with the drain region 313 b and may extend to an area directly underneath the gate electrode 318 , an isolation structure, such as STI structure, 580 in the well 352 between the gate electrode 318 and the drain region 313 b, a well portion 312 a of
  • the N-type well 352 acting an extended drain region which increases sustained voltage of the ESD protection HVMOS device 301 b, does not completely encompass the drain region 313 b so as to reveal the well portion 312 a of the well 312 underneath the drain region 313 b .
  • the isolation structure 580 help the ESD protection HVMOS device 301 b sustain higher voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A method for fabricating an ESD protection device . Agate electrode of a core device is formed in a non I/O region and a gate electrode of an ESD protection device is formed in a I/O region. A first photoresist film masks the I/O region and reveals the non I/O region. The first photoresist film includes at least an opening adjacent to the gate electrode of the ESD protection device in the I/O region. A core pocket implantation process using the first photoresist film as an implant mask is performed to implant dopants of a second conductivity type into the I/O region through the opening and into the non I/O region, thereby forming a core pocket doping region in the I/O region and core pocket doping regions in the non I/O region.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. application Ser. No. 13/103,112, filed 9 May 2011, which claims the benefit of U.S. provisional application No. 61/371,001 filed on 5 Aug. 2010, wherein the contents of which are all incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to an electrostatic discharge (ESD) protection device. More particularly, the present invention relates to a method for fabricating the ESD protection device.
  • 2. Description of the Prior Art
  • With the continued miniaturization of integrated circuit (IC) devices, the current trend in the sub-micron CMOS technology is to produce integrated circuits with shallower junction depths, thinner gate oxides, lightly-doped drain (LDD) structures, shallow trench isolation structures, and salicide processes. However, the advanced IC devices also become more susceptible to electrostatic discharge (ESD) damage. ESD phenomenon occurs when excess charges are transmitted from the input/output (I/O) pin to the integrated circuit too quickly, which damages the internal circuit. Therefore, ESD protection circuits are built onto the chip to protect the devices and circuits of the IC against ESD damage.
  • FIG. 1 is a schematic, cross-sectional diagram showing a conventional ESD protection device. As shown in FIG. 1, the ESD protection device 1 is fabricated in an I/O region and may be in the form of an input/output (I/O) NMOS transistor device that receives a relatively higher voltage power ranging between, for example, 3V and 5V. The core device 2, which receives a relatively lower voltage power ranging between, for example, 0.8V and 1.5V, is fabricated within the or core region. The core device 2 includes a source region 23 a and a drain region 23 b in a well 22. A gate electrode 28 overlies the substrate 10 between the source region 23 a and the drain region 23 b. An LDD region 24 a is provided between the gate electrode 28 and the source region 23 a and an LDD region 24 b is provided between the gate electrode 28 and the drain region 23 b. A gate dielectric layer 26 is interposed between the gate electrode 28 and the substrate 10.
  • The ESD protection device 1 includes an N+ source region 13 a and an N+ drain region 13 b in a P-type well 12. A gate electrode 18 overlies the substrate 10 between the N+ source region 13 a and the N+ drain region 13 b. A gate dielectric layer 16 is interposed between the gate electrode 18 and the substrate 10. Typically, an NLDD region 14 a is provided between the gate electrode 18 and the N+ source region 13 a and an NLDD region 14 b is provided between the gate electrode 18 and the drain region 13 b.
  • Typically, in order to reduce the drain breakdown voltage (Vbd) of the ESD protection device 1, a P-type ESD implantation process 30 is carried out. During the ESD implantation process, P-type dopants such as boron are implanted into the N+ drain region 13 b at a doping concentration of, for example, about 5×1013 atoms/cm2 through the opening 20 a in the photoresist implant mask 20, thereby forming a P-type ESD doping region 15 with a depth of, for example, approximately 50,000 angstroms. The P-type ESD doping region 15 is located substantially underneath the N+ drain region 13 b with a junction depth of about, for example, 30,000 angstroms.
  • However, the conventional ESD implantation process requires an extra mask (ESD implant mask) to define the opening 20 a in the photoresist implant mask 20 and an additional ion implantation step, which increase the manufacture cost and complicate the fabricating process.
  • SUMMARY OF THE INVENTION
  • It is one objective of the invention to provide a method for fabricating an ESD protection device without the need of implementing the conventional ESD implantation process. The invention method is compatible with the standard CMOS process and arises no impact on other device's performance such as I/O device or core devices.
  • To address these and other objects and in view of its purposes, the present invention provides a method for fabricating an ESD protection device includes providing a substrate with an input/output (I/O) region and a non I/O region; forming a gate electrode of a core device overlying the substrate in the non I/O region and a gate electrode of an ESD protection device overlying the substrate in the I/O region; forming a first photoresist film on the substrate; and using the first photoresist film as an implant mask, performing a core pocket implantation process to form a core pocket doping region in the I/O region. Wherein the first photoresist film masks the I/O region while reveals the non I/O region, and wherein the first photoresist film comprises at least an opening positioned adjacent to, immediately or not, the gate electrode of the ESD protection device in the I/O region. And implant dopants of a second conductivity type into the I/O region through the opening and into the non I/O region. And the core pocket implantation process implants dopants of a second conductivity type into the I/O region through the opening and into the non I/O region.
  • In one embodiment, the method further comprises forming spacers on sidewalls of the gate electrodes. In another embodiment, the method further comprises forming a second photoresist film on the substrate and performing a first source/drain implantation process to form a source region and a drain region of the core device. In yet another embodiment, the method further comprises forming a third photoresist film on the substrate and performing a second source/drain implantation process to form a source region and a drain region of the ESD protection device.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings:
  • FIG. 1 is a schematic, cross-sectional diagram showing a conventional ESD protection device;
  • FIG. 2A to FIG. 2F are schematic, cross-sectional diagrams showing an exemplary method for fabricating an ESD protection device in accordance with one embodiment of this invention;
  • FIG. 3A is a schematic layout diagram showing an ESD protection HVMOS device in accordance with another embodiment of the invention;
  • FIG. 3B is a schematic, cross-sectional diagram taken along line I-I′ of FIG. 3A;
  • FIG. 4 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with still another embodiment of the invention; and
  • FIG. 5 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with yet another embodiment of the invention.
  • It should be noted that all the figures are diagrammatic. Relative dimensions and proportions of parts of the drawings have been shown exaggerated or reduced in size, for the sake of clarity and convenience in the drawings. The same reference signs are generally used to refer to corresponding or similar features in modified and different embodiments.
  • DETAILED DESCRIPTION
  • In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The terms wafer and substrate used herein include any structure having an exposed surface onto which a layer is deposited according to the present invention, for example, to form the integrated circuit (IC) structure.
  • The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term “horizontal” as used herein is defined as a plane parallel to the conventional major plane or surface of the semiconductor chip or die substrate, regardless of its orientation. The term “vertical” refers to a direction perpendicular to the horizontal as just defined. Terms, such as “on”, “above”, “below”, “bottom”, “top”, “side”(as in “sidewall”), “higher”, “lower”, “over”, and “under”, are defined with respect to the horizontal plane.
  • FIG. 2A to FIG. 2F are schematic, cross-sectional diagrams showing an exemplary method for fabricating an electrostatic discharge (ESD) protection device in accordance with one embodiment of this invention. First, as shown in FIG. 2A, a substrate 100 is provided. The substrate 100 may be a semiconductor substrate such as silicon substrate, epitaxial substrate, silicon-on-insulator (SOI) substrate, SiGe substrate or the like. The substrate 100 includes at least an input/output (I/O) region such as a high-voltage (HV) region and a non I/O region such as a low-voltage (LV) region. An input/output region of a circuit or a semiconductor chip can mean, but is not limited to, a region capable of transferring signal between the circuit or the semiconductor chip and the circuit or the semiconductor chip outside it. For example, a signal from another circuit or semiconductor chip can be input into this circuit or semiconductor chip, and a signal generated by this circuit or semiconductor chip can be output from this circuit or semiconductor chip to another circuit or semiconductor chip. Non I/O region can mean, but is not limited to, a region of the circuit or semiconductor chip that is not the I/O region. In some embodiments, the non I/O region includes the core region. A well 112, such as a P-type well, is formed in the substrate 100 within the I/O region and a well 222, such as a P type well, is formed in the substrate 100 within the non I/O region. The ESD protection device can be formed within the I/O region. The core device can be formed within the non I/O region. However, it is to be understood that the ESD protection device is not necessary to operate with high voltage. In some embodiments, the ESD protection device may operate with low voltage. It is understood that the HV and LV regions are for illustration purposes only. The isolation region, such as shallow trench isolation (STI), is not shown in the figures for the sake of simplicity.
  • According to the embodiment of this invention, the ESD protection device may be in the form of an input/output (I/O) NMOS transistor device that may receive a relatively higher voltage power ranging between 3V and 5V, while the core device may receive a relatively lower voltage power ranging between 0.8V and 1.5V. It is to be understood that the ESD protection device may be a PMOS device in another embodiment of the invention. It should be recognized that although the present invention has been illustrated schematically with the use of certain conductivity types, the opposite conductive types can also be implemented in order to form PMOS or HVPMOS.
  • As shown in FIG. 2B, a gate electrode 118 and a gate electrode 228 can be formed overlying the substrate 100 within the I/O region and the non I/O region respectively. A gate dielectric layer 116 can be provided between the gate electrode 118 and the substrate 100. Agate dielectric layer 226 can be provided between the gate electrode 228 and the substrate 100. According to the embodiment of the invention, the gate electrode 118 and the gate electrode 228 may be composed of polysilicon, doped polysilicon, metal or a combination thereof. According to the embodiment of the invention, the gate dielectric layer 116 and the gate dielectric layer 226 may be formed by oxidation or deposition methods. For example, the gate dielectric layer 116 and the gate dielectric layer 226 may be composed of thermal silicon oxide.
  • As shown in FIG. 2C, a photoresist film 300 can be formed on the substrate 100. The photoresist film 300 masks the I/O region while reveals the non I/O region. An opening 300 a can be provided in the photoresist film 300 within the I/O region. The opening 300 a can be adjacent to the gate electrode 118 and is within a drain region to be formed next to the gate electrode 118. Though the opening 300 a is not immediately adjacent to the gate electrode 118 in this embodiment, the opening can also be immediately adjacent to the gate electrode. Subsequently, an non I/O LDD or core LDD implantation process can be carried out to implant dopants such as N-type dopant arsenic at a doping concentration between, for example, 1×1015˜3×1015 atoms/cm2 into the well 112 through the opening 300 a and into the well 222, thereby forming core LDD regions 224 a and 224 b in the well 222 and a lightly doped region 350 a in the well 112. According to the embodiment of the invention, the depth of the core LDD regions 224 a and 224 b and the depth of the lightly doped region 350 a may be between, for example, 5,000˜7,000 angstroms below the main surface of the substrate 100. However, it is understood that other depth and doping concentration may be applicable depending on the design requirements or the generation of the device.
  • Using the same photoresist film 300 as an implant mask, a core pocket implantation process 330 can then be carried out to implant dopants such as P-type dopant BF2 at a doping concentration substantially between, for example, 4×1013 and 8×1013 atoms/cm2, into the well 112 through the opening 300 a and into the well 222, thereby forming core pocket doping regions 250 a and 250 b in the well 222 and a core pocket doping region 350 in the well 112. The core pocket doping region 250 a in this embodiment is located under the core LDD region 224 a. The core pocket doping region 250 b in this embodiment is located under the core LDD region 224 b. The core pocket doping region 350 in this embodiment is located under the lightly doped region 350 a. According to the embodiment of the invention, the depth of the core pocket doping regions 250 a and 250 b and the depth of the core pocket doping region 350 may be substantially between, for example, 10,000 and 50,000 angstroms, below the main surface of the substrate 100. According to the embodiment of the invention, the core pocket doping regions 250 a and 250 b and the core pocket doping region 350 have substantially the same depth and substantially the same doping concentration since they are all formed by using the same core pocket implantation process 330.
  • As shown in FIG. 2D, after the core pocket implantation process 330 is performed, the photoresist film 300 can be stripped. A photoresist film 400 can then be formed on the substrate 100. The photoresist film 400 masks the non I/O region while reveals the I/O region. Thereafter, an I/O LDD implantation process 430 can be carried out to implant dopants such as N-type dopants arsenic into the well 112, thereby forming LDD regions 114 a and 114 b in the well 112. It is to be understood that the implantation steps shown in FIG. 2C and FIG. 2D are interchangeable. For example, the LDD regions 114 a and 114 b may be formed prior to the formation of the core LDD regions 224 a and 224 b.
  • As shown in FIG. 2E, after the I/O LDD implantation process 430 is performed, the photoresist film 400 can be stripped. A pair of sidewall spacers 132 can be formed on the sidewalls of the gate electrode 118 and a pair of sidewall spacers 232 can be formed on the sidewalls of the gate electrode 228. After the formation of the sidewall spacers, a photoresist film 500 can then be formed on the substrate 100. The photoresist film 500 masks the I/O region while reveals the non I/O region. A non I/O source/drain implantation process 530 can be carried out to implant dopants such as N-type dopant phosphorus into the well 222, thereby forming source region 223 a and drain region 223 b. According to this embodiment, the source region 223 a and drain region 223 b are both heavily doped and have a doping concentration that is greater than that of the core LDD regions 224 a and 224 b.
  • As shown in FIG. 2F, after the non I/O source/drain implantation process 530 is performed, the photoresist film 500 can be stripped. A photoresist film 600 can then be formed on the substrate 100. The photoresist film 600 masks the non I/O region while reveals the I/O region. An I/O source/drain implantation process 630 can be carried out to implant dopants such as N-type dopant phosphorus into the well 112, thereby forming source region 113 a and drain region 113 b. The photoresist film 600 can then be stripped. According to this embodiment, the source region 113 a and drain region 113 b are both heavily doped and have a doping concentration that is greater than that of the LDD regions 114 a and 114 b.
  • The present invention has been particularly shown and described with respect to certain embodiment and specific features thereof. The embodiment set forth herein as set forth through FIGS. 2A-2F is to be taken as illustrative rather than limiting. It should be readily apparent to those of ordinary skill in the art that various changes and modifications in form and detail may be made without departing from the spirit and scope of the invention. For example, the process sequence in FIGS. 2A-2F may be changed or some process steps may be omitted in other embodiments.
  • One feature of the invention method described above is that the ESD protection device 101 is compatible with current processes such as CMOS processes and can spare an extra mask for ESD implant. That is, the conventional ESD implantation process and the related mask for defining ESD implant opening can be omitted according to this invention. Instead, the core pocket implantation process, which is used to form core pocket regions in the core device, is introduced. Therefore, the manufacture cost can be reduced without affecting the HVMOS performance.
  • Structurally, referring to FIG. 2F, the ESD protection device 101 in the I/O region includes a source region 113 a such as an N+ source region in a well 112 such as a P-type well, a drain region 113 b such as an N+ drain region in the well 112, an LDD region (source LDD) 114 a merged with the source region 113 a, an LDD region (drain LDD) 114 b merged with the drain region 113 b, a gate electrode 118 overlying the substrate 100 between the LDD regions 114 a and 114 b, a gate dielectric layer 116 between the gate electrode 118 and the substrate 100, a pair of sidewall spacers 132 on the sidewalls of the gate electrode 118, and a core pocket doping region 350 overlapping with the drain region 113 b. According to the embodiment, the core pocket doping region 350 does not overlap with an edge of the drain region 113 b, for example, the edge 1131 of the drain region 113 b that is near the gate electrode 118. The core pocket doping region 350 can be formed concurrently with the core pocket doping regions 250 a and 250 b of the core device 102 in the non I/O region. Therefore, the core pocket doping regions 250 a and 250 b and the core pocket doping region 350 can have substantially the same depth and doping concentration. In this embodiment, the core pocket doping regions 250 a and 250 b of the core device 102 may be located at the edges of the source region 223 a and drain region 223 b that are near the gate electrode 228, while the core pocket doping region 350 for the ESD protection device 101 may be located at the bulk of the drain region 113 b and does not overlap with the edge 1131 of the drain region 113 b that is near the gate electrode 118. The core pocket doping region 350 can help reduce the breakdown voltage, thereby improving the ESD protection performance.
  • Please refer to FIG. 3A and FIG. 3B. FIG. 3A is a schematic layout diagram showing an ESD protection HVMOS device in accordance with another embodiment of the invention. FIG. 3B is a schematic, cross- sectional diagram taken along line I-I′ of FIG. 3A. As shown in FIG. 3A and FIG. 3B, the ESD protection HVMOS device 301 can be fabricated in a substrate 100 such as a P-type silicon substrate. More specifically, the ESD protection HVMOS device 301 can be fabricated in an oxide define (OD) area that is surrounded by an isolation region, such as shallow trench isolation (STI) region, 380. The ESD protection HVMOS device 301 includes a source region 313 a such as an N+ source region in a well 312 such as a P-type well, an LDD region 314 a merged with the source region 313 a, a drain region 313 b such as an N+ drain region that is positioned apart from the source region 313 a, a gate electrode 318 between the source region 313 a and the drain region 313 b, a gate dielectric layer 316 between the gate electrode 318 and the substrate 100, a pair of spacers 332 on the sidewalls of the gate electrode 318, a well 352 such as an N-type well positioned between the gate electrode 318 and the drain region 313 b and may partially overlap with the drain region 313 b and may extend to an area directly underneath the gate electrode 318, a well portion 312 a of the well 312 situated between the well 352 and the edge of the isolation region 380, and a channel region 370 between the LDD region 314 a and the well 352.
  • According to the embodiment of the invention, the well 352 acting an extended drain region, which increases sustained voltage of the ESD protection HVMOS device 301, does not completely encompass the drain region 313 b so as to reveal the well portion 312 a of the well 312 underneath the drain region 313 b. It is advantageous to use the ESD protection HVMOS device 301 as an embedded ESD protection device in the integrated circuits because the revealed well portion 312 a of the well 312 is capable of reducing junction breakdown voltage of the ESD protection HVMOS device 301 by way of the three regions: A, B and C in FIG. 3B, which are indicated by dashed lines respectively. The region A encompasses an NP junction between the N+ drain region 313 b plus N-type well 352 and the well portion 312 a of the P-type well 312 (N+ +NW/PW junction). The region B encompasses an NP junction between the N+ drain region 313 b and the well portion 312 a of the P-type well 312 (N+/PW junction). The region C encompasses an NP junction between the N+ drain region 313 b and the well portion 312 a of the P-type well 312 at the edge of the isolation region 380. The proposed ESD protection HVMOS device can have reduced breakdown voltage and thus increased ESD performance.
  • FIG. 4 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with still another embodiment of the invention, wherein like numeral numbers designate like regions, layers or elements. As shown in FIG. 4, the ESD protection HVMOS device 301 a can be fabricated in a substrate 100 such as a P-type silicon substrate. Likewise, the ESD protection HVMOS device 301 a includes a source region 313 a such as an N+ source region in a well 312 such as a P-type well, an LDD region 314 a merged with the source region 313 a, a drain region 313 b such as an N+ drain region that is positioned apart from the source region 313 a, a gate electrode 318 between the source region 313 a and the drain region 313 b, a gate dielectric layer 316 between the gate electrode 318 and the substrate 100, a pair of spacers 332 on the sidewalls of the gate electrode 318, a well 352 such as an N-type well positioned between the gate electrode 318 and the drain region 313 b and may partially overlap with the drain region 313 b and may extend to an area directly underneath the gate electrode 318, a well portion 312 a of the well 312 situated between the well 352 and the edge of the isolation region 380, and a channel region 370 between the LDD region 314 a and the well 352. The well 352 acting an extended drain region, which increases sustained voltage of the ESD protection HVMOS device 301 a, does not completely encompass the drain region 313 b so as to reveal the well portion 312 a of the well 312 underneath the drain region 313 b.
  • The difference between the ESD protection HVMOS device 301 in FIG. 3B and the ESD protection HVMOS device 301 a in FIG. 4 is that the ESD protection HVMOS device 301 a includes a core pocket doping region 350 that is located within the region A as set forth in FIG. 3B. According to the embodiment of the invention, the core pocket doping region 350 is a P-type doping region and can be implanted into the N+ drain region 313 b using the steps similar to that as set forth through FIGS. 2C-2F. That is, the core pocket doping region 350 can be formed concurrently with the core pocket doping regions of the core devices. Therefore, the core pocket doping regions 350 may have substantially the same depth and doping concentration as that of the core devices in the non I/O region. The core pocket doping region 350 can further reduce the breakdown voltage and increase ESD performance.
  • FIG. 5 is a schematic, cross-sectional diagram showing an ESD protection HVMOS device in accordance with yet another embodiment of the invention. With the incorporation of the isolation structure, such as STI, at the drain side, the ESD protection HVMOS device 301 b in FIG. 5 can sustain higher voltage, for example, 8-10V. As shown in FIG. 5, the ESD protection HVMOS device 301 b can be fabricated in a substrate 100 such as a P-type silicon substrate. Likewise, the ESD protection HVMOS device 301 b includes a source region 313 a such as an N+ source region in a well 312 such as a P-type well, an LDD region 314 a merged with the source region 313 a, a drain region 313 b such as an N+ drain region that is positioned apart from the source region 313 a, a gate electrode 318 between the source region 313 a and the drain region 313 b, a gate dielectric layer 316 between the gate electrode 318 and the substrate 100, a pair of spacers 332 on the sidewalls of the gate electrode 318, a well 352 such as an N-type well positioned between the gate electrode 318 and the drain region 313 b and may partially overlap with the drain region 313 b and may extend to an area directly underneath the gate electrode 318, an isolation structure, such as STI structure, 580 in the well 352 between the gate electrode 318 and the drain region 313 b, a well portion 312 a of the well 312 situated between well 352 and the edge of a isolation region 380, and a channel region 370 between the LDD region 314 a and the well 352. The N-type well 352 acting an extended drain region, which increases sustained voltage of the ESD protection HVMOS device 301 b, does not completely encompass the drain region 313 b so as to reveal the well portion 312 a of the well 312 underneath the drain region 313 b. The isolation structure 580 help the ESD protection HVMOS device 301 b sustain higher voltage.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (4)

What is claimed is:
1. A method for fabricating an ESD protection device, comprising:
providing a substrate with an input/output (I/O) region and a non I/O region;
forming a gate electrode of a core device overlying the substrate in the non I/O region and a gate electrode of an ESD protection device overlying the substrate in the I/O region;
forming a first photoresist film on the substrate, wherein the first photoresist film masks the I/O region while reveals the non I/O region, and wherein the first photoresist film comprises at least an opening positioned adjacent to, immediately or not, the gate electrode of the ESD protection device in the I/O region; and
using the first photoresist film as an implant mask, performing a core pocket implantation process to implant dopants of a second conductivity type into the I/O region through the opening and into the non I/O region, thereby forming a core pocket doping region in the I/O region, and core pocket doping regions in the non I/O region.
2. The method for fabricating an ESD protection device according to claim 1, further comprising:
forming spacers on sidewalls of the gate electrodes.
3. The method for fabricating an ESD protection device according to claim 1, further comprising:
forming a second photoresist film on the substrate, wherein the second photoresist film masks the I/O region while reveals the non I/O region; and
performing a first source/drain implantation process to implant dopants of the first conductivity type into the non I/O region, thereby forming a source region and a drain region of the core device.
4. The method for fabricating an ESD protection device according to claim 1, further comprising:
forming a third photoresist film on the substrate, wherein the third photoresist film masks the non I/O region while reveals the I/O region; and
performing a second source/drain implantation process to implant dopants of the first conductivity type into the I/O region, thereby forming a source region and a drain region of the ESD protection device.
US14/218,991 2010-08-05 2014-03-19 Method for fabricating an esd protection device Abandoned US20140199818A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/218,991 US20140199818A1 (en) 2010-08-05 2014-03-19 Method for fabricating an esd protection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37100110P 2010-08-05 2010-08-05
US13/103,112 US8921941B2 (en) 2010-08-05 2011-05-09 ESD protection device and method for fabricating the same
US14/218,991 US20140199818A1 (en) 2010-08-05 2014-03-19 Method for fabricating an esd protection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/103,112 Division US8921941B2 (en) 2010-08-05 2011-05-09 ESD protection device and method for fabricating the same

Publications (1)

Publication Number Publication Date
US20140199818A1 true US20140199818A1 (en) 2014-07-17

Family

ID=45555497

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/103,112 Active 2032-09-23 US8921941B2 (en) 2010-08-05 2011-05-09 ESD protection device and method for fabricating the same
US14/218,991 Abandoned US20140199818A1 (en) 2010-08-05 2014-03-19 Method for fabricating an esd protection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/103,112 Active 2032-09-23 US8921941B2 (en) 2010-08-05 2011-05-09 ESD protection device and method for fabricating the same

Country Status (3)

Country Link
US (2) US8921941B2 (en)
CN (1) CN102376705B (en)
TW (1) TWI438886B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513738B2 (en) * 2011-07-21 2013-08-20 International Business Machines Corporation ESD field-effect transistor and integrated diffusion resistor
US9000526B2 (en) * 2011-11-03 2015-04-07 Taiwan Semiconductor Manufacturing Co., Ltd. MOSFET structure with T-shaped epitaxial silicon channel
US8610169B2 (en) 2012-05-21 2013-12-17 Nanya Technology Corporation Electrostatic discharge protection circuit
WO2014074353A1 (en) * 2012-11-08 2014-05-15 Gamblit Gaming, Llc Systems and methods to use an intermediate value holder in a gambling hybrid game
US20150054070A1 (en) * 2013-08-23 2015-02-26 Richtek Technology Corporation Electrostatic Discharge Protection Device and Manufacturing Method Thereof
TWI646653B (en) * 2017-12-28 2019-01-01 新唐科技股份有限公司 Laterally diffused metal oxide semiconductor field effect transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067599A1 (en) * 2005-05-23 2008-03-20 Fujitsu Limited Semiconductor device and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153290C (en) 2001-03-23 2004-06-09 矽统科技股份有限公司 Electrostatic discharge protection arrangement method with current uniform distribution characteristic
TW498532B (en) * 2001-08-08 2002-08-11 Taiwan Semiconductor Mfg Manufacturing method for electrostatic discharge protection structure
US7092227B2 (en) * 2002-08-29 2006-08-15 Industrial Technology Research Institute Electrostatic discharge protection circuit with active device
CN1278417C (en) 2002-09-06 2006-10-04 中芯国际集成电路制造(上海)有限公司 Electrostatic discharge protecter and its producing method
US7326998B1 (en) 2002-11-14 2008-02-05 Altera Corporation Effective I/O ESD protection device for high performance circuits
WO2004112139A1 (en) * 2003-06-10 2004-12-23 Fujitsu Limited Semiconductor device and its manufacturing method
US7977743B2 (en) * 2009-02-25 2011-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Alternating-doping profile for source/drain of a FET

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067599A1 (en) * 2005-05-23 2008-03-20 Fujitsu Limited Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201208034A (en) 2012-02-16
US20120032254A1 (en) 2012-02-09
TWI438886B (en) 2014-05-21
CN102376705B (en) 2013-12-04
CN102376705A (en) 2012-03-14
US8921941B2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
US9093565B2 (en) Fin diode structure
US8236624B2 (en) Method for producing a thyristor
TWI407544B (en) Input/output electrostatic discharge components and cascaded input/output electrostatic discharge components
US8048753B2 (en) Charging protection device
US20080067615A1 (en) Semiconductor device and method for fabricating thereof
US10971595B2 (en) MOFSET and method of fabricating same
US20140199818A1 (en) Method for fabricating an esd protection device
US11374124B2 (en) Protection of drain extended transistor field oxide
US20140021545A1 (en) Pocket counterdoping for gate-edge diode leakage reduction
SG185185A1 (en) Mos semiconductor device and methods for its fabrication
US9219057B2 (en) Electrostatic discharge protection device and method for manufacturing the same
US7485925B2 (en) High voltage metal oxide semiconductor transistor and fabricating method thereof
US10141398B1 (en) High voltage MOS structure and its manufacturing method
US7723777B2 (en) Semiconductor device and method for making same
US11114486B2 (en) Implant isolated devices and method for forming the same
US9281304B2 (en) Transistor assisted ESD diode
US20110215403A1 (en) High Voltage Metal Oxide Semiconductor Device and Method for Making Same
US20090166764A1 (en) Transistor and fabricating method thereof
CN108470680B (en) Method of making a semiconductor structure
US9543303B1 (en) Complementary metal oxide semiconductor device with dual-well and manufacturing method thereof
US20120161236A1 (en) Electrostatic discharge protection device and manufacturing method thereof
US20190057909A1 (en) Semiconductor structure and method for forming the same
US20150054070A1 (en) Electrostatic Discharge Protection Device and Manufacturing Method Thereof
US20140239385A1 (en) Field effect transistor and method of manufacturing the same
KR20110079061A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDIATEK INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANG, MING-TZONG;LEE, MING-CHENG;REEL/FRAME:032469/0224

Effective date: 20110508

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载