US20140061664A1 - Light emitting device using gan led chip - Google Patents
Light emitting device using gan led chip Download PDFInfo
- Publication number
- US20140061664A1 US20140061664A1 US13/888,751 US201313888751A US2014061664A1 US 20140061664 A1 US20140061664 A1 US 20140061664A1 US 201313888751 A US201313888751 A US 201313888751A US 2014061664 A1 US2014061664 A1 US 2014061664A1
- Authority
- US
- United States
- Prior art keywords
- light
- gan
- electrode
- led chip
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 118
- 239000000758 substrate Substances 0.000 claims abstract description 114
- 239000010410 layer Substances 0.000 description 231
- 239000010408 film Substances 0.000 description 63
- 239000002151 riboflavin Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 23
- 230000001681 protective effect Effects 0.000 description 21
- 229910002704 AlGaN Inorganic materials 0.000 description 18
- 238000005498 polishing Methods 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000008393 encapsulating agent Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910000679 solder Inorganic materials 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 239000010948 rhodium Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000004283 Sodium sorbate Substances 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004149 tartrazine Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 230000001902 propagating effect Effects 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- 229910015363 Au—Sn Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000007767 bonding agent Substances 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000005360 phosphosilicate glass Substances 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000004302 potassium sorbate Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- POFFJVRXOKDESI-UHFFFAOYSA-N 1,3,5,7-tetraoxa-4-silaspiro[3.3]heptane-2,6-dione Chemical compound O1C(=O)O[Si]21OC(=O)O2 POFFJVRXOKDESI-UHFFFAOYSA-N 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910016420 Ala Inb Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002244 LaAlO3 Inorganic materials 0.000 description 1
- 229910010936 LiGaO2 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910003200 NdGaO3 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000007735 ion beam assisted deposition Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H01L33/32—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/3201—Structure
- H01L2224/32012—Structure relative to the bonding area, e.g. bond pad
- H01L2224/32014—Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
Definitions
- the present invention has been made in view of the above-mentioned problems of the Prior Art, and mainly aims to improve an output power of a light emitting device comprising a flip-chip mounted GaN-based LED chip, and provide a light emitting device superior in light emission power which can be preferably used as an excitation light source of a white light emitting device for illumination.
- a positive electrode is formed on the p-type layer, said electrode comprising
- the positive contact electrode E 101 b is preferably a single layer film or multi-layer film having, at least on the side being in contact with the light-transmissive electrode E 101 a , a layer made from a simple substance of Al, Ag, Rh or Pt or an alloy mainly made from these, so as to have a good reflectivity.
- a structure having an Al layer or Al alloy layer at least on the side being in contact with the light-transmissive electrode E 101 a is particularly preferred.
- Preferable Al alloy mainly comprises Al and additionally comprises Ti, Nd (neodymium), Cu and the like.
- the p-type layer and light emitting layer were removed to expose the GaN contact layer also in a region between elements adjacent to each other on the wafer, whereby the area of the upper surface of AlGaN contact layer of each element was set to a given value (65300 ⁇ m 2 ).
- the upper surface of the AlGaN contact layer after the RIE step was almost entirely covered with the light-transmissive electrode.
- a positive electrode is formed on the p-type layer, the electrode comprising a light-transmissive electrode composed of an oxide semiconductor and having a surface planarized by polishing and a positive contact electrode electrically connected to the light-transmissive electrode and having an area smaller than that of the light-transmissive electrode.
- the GaN-based LED chip of Embodiment S5 wherein the area of the positive contact electrode is less than 1 ⁇ 2 of the area of the upper surface of the p-type layer.
- the GaN-based LED chip of Embodiment S7 comprising a light-transmissive substrate joined to a surface of the GaN-based semiconductor layer opposite said surface on which the electrode is formed.
- a method of producing a GaN-based LED chip comprising a conductive light-transmissive substrate, a GaN-based semiconductor layer having a laminate structure comprising at least an n-type layer and a p-type layer and formed on the light-transmissive substrate, and a contact electrode formed on the backside of the light-transmissive substrate via a light-transmissive ohmic electrode composed of an oxide semiconductor,
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
A light emitting device is constituted by flip-chip mounting a GaN-based LED chip. The GaN-based LED chip includes a light-transmissive substrate and a GaN-based semiconductor layer formed on the light-transmissive substrate, wherein the GaN-based semiconductor layer has a laminate structure containing an n-type layer, a light emitting layer and a p-type layer in this order from the light-transmissive substrate side, wherein a positive electrode is formed on the p-type layer, the electrode containing a light-transmissive electrode of an oxide semiconductor and a positive contact electrode electrically connected to the light-transmissive electrode, and the area of the positive contact electrode is half or less of the area of the upper surface of the p-type layer.
Description
- This application is a divisional of U.S. Application No. 13/418,827, filed Mar. 13, 2013, which is a divisional of U.S. Pat. No. 8,158,990, issued Apr. 17, 2012, which is a national stage application of PCT/JP2007/069612, filed Oct. 5, 2007, the entireties of which are incorporated herein by reference.
- I. Technical Field
- The present invention mainly relates to a light emitting device comprising a flip-chip mounted GaN-based LED chip with a light emitting element structure consisting of a GaN-based semiconductor formed on a light-transmissive substrate.
- II. Description of the Related Art
- The GaN-based semiconductor is a compound semiconductor represented by a chemical formula:
-
AlaInbGa1-a-bN(0≦a≦1, 0≦b≦1, 0≦a+b≦1), - which is also called a III group nitride semiconductor, a nitride-based semiconductor and the like. A compound semiconductor of the above-mentioned chemical formula wherein a part of the III group element is substituted by B (boron), Tl (thallium) and the like and one wherein a part of N (nitrogen) is substituted by P (phosphorus), As (arsenic), Sb (antimony), Bi (bismuth) and the like are also encompassed in the GaN-based semiconductor. A GaN-based LED wherein a light emitting element structure such as a pn junction structure, a double heterostructure and a quantum well structure is constituted of a GaN-based semiconductor can emit green to near ultraviolet light, and has been put to a practical use for signal, display apparatus and the like.
- A GaN-based LED chip comprising a GaN-based semiconductor layer with a light emitting element structure formed on a light-transmissive substrate can be fixed on a base such as a substrate of an SMD (Surface Mount Device)-type LED package and a lead frame, directly or via a submount, with the GaN-based semiconductor layer side facing the base. In other words, the LED chip can be fixed on a base with the light-transmissive substrate side facing upward. This type of chip bonding form is called flip-chip mounting. The flip-chip mounting is also sometimes called facedown mounting, upside-down mounting, junction-down mounting and the like. Conventional GaN-based LED chips for flip-chip mounting have, on a surface of a GaN-based semiconductor layer and the like, a metal reflection film also acting as an electrode, so as to reflect light generated inside the GaN-based semiconductor layer to the light-transmissive substrate side. To improve the emission power when mounted, it is considered desirable to form this reflection film using a metal having a high light-reflection coefficient such as Ag (silver), Al (aluminum) and Rh (rhodium) as a material (JP-A-2000-183400, JP-A-2004-179347). See also, JP-A-2002-280611 and JP-A-2003-318441.
- However, the present inventors have investigated and found that when a GaN-based LED chip to be flip-chip mounted has a reflection structure mainly constituted of a metal reflection film, improving an emission power of the light emitting device is limited. Particularly, when a white light emitting device that emits light from a phosphor is configured using, as an excitation light source, a GaN-based LED chip provided with a reflection structure mainly constituted with a metal reflection film directly formed on a surface of a GaN-based semiconductor layer, it is difficult to produce one having a sufficient output power for illumination purposes.
- The present invention has been made in view of the above-mentioned problems of the Prior Art, and mainly aims to improve an output power of a light emitting device comprising a flip-chip mounted GaN-based LED chip, and provide a light emitting device superior in light emission power which can be preferably used as an excitation light source of a white light emitting device for illumination.
- The present inventors have completed the present invention by escaping from an idea of constituting a reflection structure of a GaN-based LED chip to be flip-chip mounted mainly with a metal reflection film.
- Therefore, in one embodiment of the present invention, a light emitting device wherein a GaN-based LED chip of the following (a) is flip-chip mounted is provided to solve the above-mentioned problems:
- (a) a GaN-based LED chip comprising a light-transmissive substrate and a GaN-based semiconductor layer formed on the light-transmissive substrate, the GaN-based semiconductor layer having a laminate structure comprising an n-type layer, a light emitting layer and a p-type layer in this order from the light-transmissive substrate side,
- wherein a positive electrode is formed on the p-type layer, said electrode comprising
-
- a light-transmissive electrode made of an oxide semiconductor, and
- a positive contact electrode electrically connected to the light-transmissive electrode, and
- the area of the positive contact electrode is less that ½ of the area of the upper surface of the p-type layer.
- In a preferred embodiment of the light emitting device, the area of the positive contact electrode is less than ⅓ of the area of the upper surface of the p-type layer.
- In a more preferred embodiment of the light emitting device, the area of the positive contact electrode is less than ¼ of the area of the upper surface of the p-type layer.
- In this light emitting device, the flip-chip mounted GaN-based LED chip may be encapsulated with a resin.
- In this light emitting device, the surface of the light-transmissive electrode may be planarized by polishing.
- The following explains the reason why the above-mentioned light emitting device provided by the present invention is superior in light emission power.
- The main characteristic of the light emitting device is that a GaN-based LED chip intentionally utilizing a reflection caused by a difference in refractive indices between light-transmissive substances is flip-chip mounted. There has not conventionally existed an idea of taking note of such reflection due to difference in refractive indices for LED chips to be flip-chip mounted. Light-transmissive substances relating to the reflection include a GaN-based semiconductor layer, a light-transmissive electrode made of an oxide semiconductor, and a light-transmissive encapsulant or gas (in case of airtight seal) which is a medium surrounding the LED chip.
- In one embodiment, a light-transmissive insulating protective film is also involved in the reflection. In a GaN-based LED chip comprising a GaN-based semiconductor layer formed by laminating an n-type layer, a light emitting layer and a p-type layer on a light-transmissive substrate in this order, at least a positive contact electrode (bonding pad) needs to be formed as a metal film on the GaN-based semiconductor layer side face. In the GaN-based LED chip of the above-mentioned (a) constituting the light emitting device, the positive contact electrode is not made too large in area. It is known that light generated in a light emitting layer of an LED chip is repeatedly reflected inside the chip before going out of it. Thus, a slight difference in the loss in one reflection greatly influences the power of light extracted from the chip. Because of the smaller loss accompanied by a reflection due to a difference in refractive indices between light-transmissive substances than a reflection loss at a metal surface, the light emitting device is superior in light emission power.
- Since the light emitting device of the present invention is superior in light emission power, it can be preferably used for applications requiring high power including illumination purposes.
-
FIG. 1 is a sectional view showing a structure of a light emitting device according to an embodiment of the present invention. -
FIG. 2 shows a structure of a GaN-based LED chip contained in the light emitting device ofFIG. 1 , whereinFIG. 2( a) is a top view andFIG. 2( b) is a sectional view along the line X1-Y1 inFIG. 2( a). -
FIG. 3 is a sectional view showing a structure of a light emitting device according to an embodiment of the present invention. -
FIG. 4 shows a structure of a GaN-based LED chip contained in the light emitting device ofFIG. 3 , whereinFIG. 4( a) is a top view andFIG. 4( b) is a sectional view along the line X2-Y2 inFIG. 4( a). -
FIG. 5 presents an explanation of a mechanism of reduced light confinement within a GaN-based semiconductor layer for a GaN-based LED chip according to an embodiment of the present invention. -
FIG. 6 is a sectional view of a GaN-based LED chip usable in a light emitting device according to an embodiment of the present invention, whereinFIG. 6( a) shows an example of a GaN-based LED chip having a horizontal-type element structure andFIG. 6( b) shows an example of a GaN-based LED chip having a vertical-type element structure. -
FIG. 7 is a top view of a GaN-based LED chip usable in a light emitting device according to an embodiment of the present invention. -
FIG. 8 is a top view of a GaN-based LED chip usable in a light emitting device according to an embodiment of the present invention. -
FIG. 9 shows a structure of the submount used in Experimental Example 1, whereinFIG. 9( a) is a top view andFIG. 9( b) is a sectional view along the line P-Q inFIG. 9( a). -
FIG. 10 is a sectional view of the submount and the GaN-based LED chip mounted thereon in Experimental Example 1 after completion of the mounting. -
FIG. 11 shows the relationship between the ratio of the area of positive contact electrode to the area of upper surface of p-type layer and the output power for the GaN-based LED chip samples obtained in Experimental Example 1. -
FIG. 12 shows the relationship between the ratio of the area of positive contact electrode to the area of upper surface of p-type layer and the output power for the GaN-based LED chip samples obtained in Experimental Example 2. -
FIG. 13 shows the relationship between the ratio of the area of positive contact electrode to the area of upper surface of p-type layer and the output power for the GaN-based LED chip samples obtained in Experimental Example 3. -
FIG. 1 is a sectional view of a light emitting device according to an embodiment of the present invention. Thelight emitting device 1 shown in this Figure exhibits a form of SMD (Surface Mount Device)-type LED package, and a GaN-basedLED chip 100 of the above-mentioned (a) is flip-chip mounted on asubstrate 111 made of ceramic, resin and the like. The GaN-basedLED chip 100 is fixed by bonding each of the positive electrode and negative electrode formed on the same side of theLED chip 100 toelectrodes substrate 111. As a bonding agent (not shown), one having electrical conductivity, for example, a solder such as Au—Sn solder, a conductive paste such as silver paste and the like, is used. Areflector 114 is, in this embodiment, an independent part from thesubstrate 111, though it can also be integrally formed with the substrate. A light-transmissive encapsulant 120 such as an epoxy resin and a silicone resin fills a cavity (cup-shaped part) constituted with thesubstrate 111 andreflector 114. To provide a white light emitting device, a phosphor is dispersed in the light-transmissive encapsulant 120. It is also possible to seal the cavity airtightly with a light-transmissive cap made of glass and the like instead of filling it with resin and the like. - The structure of GaN-based
LED chip 100 contained in thelight emitting device 1 is shown inFIG. 2 .FIG. 2( a) is a top view andFIG. 2( b) is a sectional view along the line X1-Y1 inFIG. 2( a). The GaN-basedLED chip 100 has a structure wherein a GaN-based semiconductor layer L is laminated on a light-transmissive substrate 101. The GaN-based semiconductor layer L has a laminate structure sequentially comprising an n-type layer 102, a light emitting layer 103 and a p-type layer 104 from the light-transmissive substrate 101 side. - A single crystal substrate made of sapphire, spinel, silicon carbide, zinc oxide, magnesium oxide, GaN, AlGaN, AlN, NGO (NdGaO3), LGO (LiGaO2), LAO (LaAlO3) and the like can be preferably used as the light-
transmissive substrate 101. In this embodiment, the surface of the light-transmissive substrate 101 is processed to form a concave-convex surface so that a bended interface is formed between the light-transmissive substrate 101 and the GaN-based semiconductor layer L. When a bended interface is present between the light-transmissive substrate 101 and the GaN-based semiconductor layer L, confinement within the GaN-based semiconductor layer L of the light generated in the light emitting layer 103 becomes weaker due to light-scattering action of the interface, even when the refractive index of the light-transmissive substrate 101 is lower than that of the GaN-based semiconductor layer L. When the confinement becomes weaker, the frequency of internal reflection experienced by the light generated in the light emitting layer 103 becomes lower before it goes out of the GaN-based semiconductor layer L and consequently the light passes the light emitting layer 103, which strongly absorbs the light, less frequently, resulting in an increase in the power of the light extracted from the LED chip. - While the concave-convex pattern on the surface of the light-
transmissive substrate 101 can be an optional pattern, it is preferably a pattern having periodicity, so that a GaN-based semiconductor crystal uniformly grows on the concave-convex surface. Examples of the periodic pattern include a pattern wherein a stripe-shaped concave part (groove) and a stripe-shaped convex part (ridge) are alternately arranged, and a pattern wherein a dot-like concave part (recess) having a bottom surface with a circular shape or regular polygon shape or a dot-like convex part (protrusion) having an upper surface with a circular shape or regular polygon shape is regularly configured. Concave and convex can be formed by forming an etching mask patterned to have an opening on a surface of a light-transmissive substrate 101, and then forming a concave part at the position of the opening by etching over the mask. The depth of the concave part when seen from the top of the convex part may be, for example, 0.2 μm-5 μm. This depth is preferably 0.5 μm-3 μm, more preferably 1 μm-2 μm. The width of the stripe when the concave part and convex part are stripe-like or the width of the dot (width where it is maximum) when they are dot-like may be, for example, 0.2 μm-10 μm. The width is preferably 0.5 μm-5 μm, more preferably 1 μm-3 μm. As for the pattern, cross sectional shape, size and the like of the concaves and convexes, patent document 3 and patent document 4 can be referred to. - The GaN-based semiconductor layer L can be formed on the light-
transmissive substrate 101 by a vapor phase epitaxy method such as MOVPE (metalorganic vapor phase epitaxy), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE) and the like. When the light-transmissive substrate 101 is made from a material that does not lattice-match with a GaN-based semiconductor, a buffer layer (not shown) is interposed between the light-transmissive substrate 101 and the GaN-based semiconductor layer L. A preferable buffer layer is a low-temperature buffer layer made from GaN, AlGaN and the like. - The n-
type layer 102 is doped with Si (silicon), Ge (germanium), Se (selenium), Te (tellurium), C (carbon) and the like, as n-type impurity. In the n-type layer 102, a part being in contact with a negative electrode E102 is preferably doped with an n-type impurity at a particularly high concentration to have a high carrier concentration. In addition, it is preferable for a part of the n-type layer being in contact with the light-transmissive substrate 101 directly or via a buffer layer to have a lowered n-type impurity concentration or to be undoped for improving the crystallinity of the GaN-based semiconductor layer grown thereon. When the surface of light-transmissive substrate 101 is a concave-convex surface, as for the method of growing a GaN-based semiconductor crystal to fill the concave part of the concave-convex surface, patent document 3 and the like can be referred to. - The light emitting layer 103 can be optionally doped with an impurity. The p-
type layer 104 is doped with Mg (magnesium), Zn (zinc) and the like as p-type impurity. An annealing treatment or electron beam irradiation treatment to activate the p-type dopant impurity can be performed if necessary after formation of the p-type layer 104. In the p-type layer 104, a part being in contact with a light-transmissive electrode E101 a is preferably doped with a p-type impurity at a high concentration of not less than 5×1019 cm−3. - Each layer constituting the GaN-based semiconductor layer L can be formed with a GaN-based semiconductor having any crystal composition such as GaN, AlGaN, InGaN and AlInGaN, and each layer can have a multi-layer structure wherein layers having different crystal compositions or impurity concentrations are laminated. To improve light emitting efficiency, it is preferable to form a double heterostructure wherein the light emitting layer 103 is sandwiched between clad layers having higher band gaps than that of the light emitting layer 103, and it is preferable that the light emitting layer 103 has a quantum well structure (single quantum well structure or multiple quantum well structure). The GaN-based semiconductor layer L may optionally have additional layers besides the n-
type layer 102, light emitting layer 103 and p-type layer 104. - After forming the p-
type layer 104, a negative electrode E102 acting as both ohmic electrode and contact electrode (bonding pad) is formed on the surface of the n-type layer 102 exposed by partly removing the p-type layer 104 and the light emitting layer 103 by etching. In a negative electrode E102, at least a part being in contact with the n-type layer 104 is formed with a material that forms an ohmic contact with an n-type GaN-based semiconductor. Such material is known and, for example, a simple substance of Al (aluminum), Ti (titanium), W (tungsten), Ni (nickel), Cr (chrome) or V (vanadium) or an alloy comprising one or more kinds of metals selected therefrom can be mentioned. It is known that conductive oxides such as ITO (indium tin oxide), indium oxide, tin oxide, IZO (indium zinc oxide), AZO (aluminum zinc oxide) and zinc oxide also form a good ohmic contact with an n-type GaN-based semiconductor. The surface layer of negative electrode E102 is made from a metallic material. When the negative electrode E102 and theelectrode 113 are bonded together with a solder, the surface layer of negative electrode E102 is preferably made from Au (gold), Sn (tin) or other metallic material having a good solder wettability, according to the kind of the solder to be used. - In this embodiment, at the time of etching to expose the negative electrode forming surface, the p-
type layer 104 and light emitting layer 103 are also removed from a region between adjacent elements on the wafer, i.e., a region where a dicing line or scribing line passes when cutting the wafer into chips in a later step, to expose the n-type layer 102 in this region. In this way, vibration and impact transmitted to the light emitting part during wafer cutting can be minimized. - A positive electrode E101 is formed on the p-
type layer 104. The positive electrode E101 consists of a light-transmissive electrode E101 a composed of an oxide semiconductor, and a positive contact electrode E101 b formed thereon and electrically connected to the light-transmissive electrode E101 a. In this embodiment, the entire positive contact electrode E101 b is formed on the light-transmissive electrode E101 a. However, it is not essential and only a part of the positive contact electrode may overlap the light-transmissive electrode. - Examples of oxide semiconductors usable for the light-transmissive electrode E101 a include ITO (indium tin oxide), indium oxide, tin oxide, IZO (indium zinc oxide), AZO (aluminum zinc oxide), zinc oxide, and FTO (fluorine-doped tin oxide). The light-transmissive electrode E101 a may have a multi-layer structure wherein different oxide semiconductor films are laminated. A method of forming the light-transmissive electrode E101 a is not limited, and conventionally known methods such as sputtering, reactive sputtering, vacuum evaporation, ion beam assisted deposition, ion plating, laser ablation, CVD, spraying method, spin coating method, and dipping method can be appropriately used according to the kind of the oxide semiconductor. The light-transmissive electrode E101 a made from an oxide semiconductor can be patterned by a lift-off method. As a different way, a patterning method comprising forming an oxide semiconductor film over the entire surface of p-
type layer 104 before being ethed for the negative electrode formation, and then removing unnecessary parts by etching (wet or dry) may be used. - The surface planarity of the light-transmissive electrode E101 a is desirably as high as possible. For example, an ITO thin film tends to be polycrystalline, and the surface of an ITO thin film formed by a usual method is a surface having fine protrusions and depressions with a roughness of about 30 nm-50 nm. When the surface of the light-transmissive electrode E101 a has a roughness of this level, light generated in the light emitting layer 103 easily escapes from the chip through the surface of light-transmissive electrode E101 a and the amount of light being reflected on the interface between the light-transmissive electrode E101 a and light-transmissive encapsulant 120 (gas in the case of airtight seal) toward the light-
transmissive substrate 101 side is decreased, which in turn reduces the output power of thelight emitting device 1. Preferably, therefore, the light-transmissive electrode E101 a is formed from an amorphous oxide semiconductor which gives a plane surface in an as-grown state. An oxide semiconductor can be made amorphous by lowering the film formation temperature, and in the case of ITO, the temperature is lowered to room temperature or below. IZO is known as an oxide semiconductor whose amorphous state is stable, and permitting amorphous film formation in a wide temperature range from room temperature to 350° C. Using IZO, a light-transmissive electrode can be easily formed with an amorphous film having high surface planarity. In a different way of improving the surface planarity of light-transmissive electrode E101 a, the surface of the oxide semiconductor film may be polished after the film formation. This method is preferable when using an oxide semiconductor easily becoming polycrystalline such as ITO. When using this method, an oxide semiconductor film is formed on the entire upper surface of p-type layer 104, and after the surface is polished, the film is patterned into a predetermined electrode shape by etching. The surface planarity of the light-transmissive electrode E101 a is preferably as high as the roughness is less than 20 nm, more preferably less than 10 nm, as measured by a stylus-type surface profiler, in all roughness indices of arithmetic mean roughness (Ra), maximum height (Rmax), ten points average height (Rz) and the like. It is obvious that by improving the planarity of the surface of light-transmissive electrode E101 a the backside surface of the positive contact electrode E101 b formed on the light-transmissive electrode E101 a (the surface being in contact with the surface of light-transmissive electrode E101 a) becomes smooth, causing an effect of increasing light reflectivity at the backside of the positive contact electrode. This effect also contributes to improve an output power of thelight emitting device 1. - The light-transmissive electrode E101 a is formed on almost entire surface of the p-
type layer 104, whereas the positive contact electrode E101 b is formed so as not to occupy too large area on the p-type layer 104. The area of positive contact electrode E101 b is preferably less than ½, more preferably less than ⅓, particularly preferably less than ¼, of the area of the upper surface of p-type layer 104. In the most preferable embodiment, the area ratio ([the area of positive contact electrode]/[the area of upper surface of p-type layer]) is less than 1/10. When the area ratio is too small, the heat generated in theLED chip 100 does not escape to thesubstrate 111 side through positive contact electrode E101 b. Therefore, the area of positive contact electrode E101 b is desirably not lower than 3% of the area of the upper surface of the p-type layer 104. - Here, when a plurality of positive contact electrodes are formed, the area of positive contact electrode is the total area calculated by summing up the areas of plural electrodes. In this embodiment, the upper surface of the positive contact electrode E101 b has a circular shape. However, the shape is not limited, and a regular polygon such as a square, a regular pentagon and a regular hexagon, a rectangle and the like may be employed. When positive contact electrode E101 b is too small, mounting workability becomes worse and the bonding agent easily sticks out. Thus, a reasonable size is necessary. Nonlimitatively, when employing a circular shape, the diameter may be 60 mm-90 mm, and when employing a quadrate shape, the side length may be 60 mm-90 mm.
- The material of positive contact electrode E101 b is not limited, and metallic materials generally used for electrodes for an oxide semiconductor can be employed. Specifically, a simple substance of Zn (zinc), Ni (nickel), Pt (platinum), Pd (palladium), Rh (rhodium), Ru (ruthenium), Ir (iridium), Ti (titanium), Zr (zirconium), Mo (molybdenum), V, Nb (niobium), Ta (tantalum), Co (cobalt), W (tungsten), Cu (copper), Ag (silver), Al (aluminum) and the like or an alloy comprising one or more kinds of metals selected therefrom can be mentioned. The positive contact electrode E101 b may have a laminate structure. The positive contact electrode E101 b is preferably a single layer film or multi-layer film having, at least on the side being in contact with the light-transmissive electrode E101 a, a layer made from a simple substance of Al, Ag, Rh or Pt or an alloy mainly made from these, so as to have a good reflectivity. Particularly preferred is a structure having an Al layer or Al alloy layer at least on the side being in contact with the light-transmissive electrode E101 a. Preferable Al alloy mainly comprises Al and additionally comprises Ti, Nd (neodymium), Cu and the like.
-
FIG. 3 is a sectional view of a light emitting device according to another embodiment of the present invention. Thelight emitting device 2 shown in this Figure is a bullet type LED package, wherein a GaN-basedLED chip 200 is flip-chip mounted in a cup-shaped part formed in alead frame 211 and molded with a light-transmissive encapsulant 220 having a bullet shape. The light-transmissive encapsulant 220 is, for example, an epoxy resin. The GaN-basedLED chip 200 is fixed by bonding a positive electrode formed on one side of theLED chip 200 to thelead frame 211. In this embodiment, the GaN-basedLED chip 200 has a vertical-type element structure, and a negative electrode is formed on a chip surface opposite the positive electrode. This negative electrode is connected to thelead frame 212 by abonding wire 213. When a white light emitting device is produced, a phosphor is dispersed in the light-transmissive encapsulant 220. It will be understood from the inclusion of this example in the embodiment of the present invention that the “flip-chip mounting” is not limited to wireless mounting in the present invention. -
FIG. 4 shows a structure of the GaN-basedLED chip 200 contained in thelight emitting device 2, whereinFIG. 4( a) is a top view andFIG. 4( b) is a sectional view along the line X2-Y2 inFIG. 4( a). The GaN-basedLED chip 100 in theaforementioned embodiment 1 has a horizontal-type element structure, whereas the GaN-basedLED chip 200 has a vertical-type element structure. Except the part relating to the difference in element structures, preferable embodiment of each part of the GaN-basedLED chip 200 is the same as that in GaN-basedLED chip 100. - In the GaN-based
LED chip 200, to realize a vertical-type element structure, a conductive substrate is used as a light-transmissive substrate 201. Preferably, an n-type conductive semiconductor single crystal substrate made of silicon carbonate, zinc oxide, GaN, AlGaN and the like is used. A GaN-based semiconductor layer L is formed on the light-transmissive substrate 201, and the GaN-based semiconductor layer L has a laminate structure comprising an n-type layer 202, alight emitting layer 203 and a p-type layer 204 in this order from the light-transmissive substrate 201 side. The n-type layer 202 is directly or via a thin buffer layer (not shown) formed on the light-transmissive substrate 201 to be electrically connected to the light-transmissive substrate 201. The buffer layer may be made conductive by doping. - A negative electrode E202 is formed on the backside of light-
transmissive substrate 201. In this embodiment, nonlimitatively, the negative electrode E202 acts as both an ohmic electrode and a contact electrode, though the negative electrode may consist of a light-transmissive ohmic electrode and a metallic contact electrode partially formed on the surface thereof. - A positive electrode E201 is formed on the p-
type layer 204. The positive electrode E201 consists of a light-transmissive electrode E201 a made from an oxide semiconductor and a positive contact electrode E201 b formed on and electrically connected to the light-transmissive electrode E201 a. The positive contact electrode E201 b is formed not so as to occupy too large area on the p-type layer 204. To stabilize the flip-chip mounting posture of LED chip, the number of positive contact electrode E201 b is set to three and they are positioned to form a triangle. The number may be four or above, but three is most preferable because the area of one positive contact electrode being necessary when considering chip mounting workability and the like is ensured, and at the same time the total area can be made small, as well as the mounting posture of LED chip is most stable due to three-point support. - In the above, as
Embodiment 1, an example wherein a GaN-based LED chip having a horizontal-type element structure is applied to an SMD type LED package is shown and, asEmbodiment 2, an example wherein a GaN-based LED chip having a vertical-type element structure is applied to a bullet type LED package is shown. However, the combination of element structure of LED chip and package type is not limited to them. That is, a GaN-based LED chip having a horizontal-type element structure may be applied to a bullet type LED package, or a GaN-based LED chip having a vertical-type element structure may be applied to an SMD-type LED package. In the above-mentioned embodiments, moreover, a GaN-based LED chip is directly fixed on a substrate of a SMD-type package or a lead frame. However, the GaN-based LED chip may be fixed on these bases via a submount. - In a GaN-based LED chip usable for the light emitting device of the present invention, when the surface of a light-transmissive substrate is a concave-convex surface, one of a preferable concave-convex pattern is a pattern wherein a stripe-like concave part (groove) and a convex part (ridge) are alternately arranged. When such a concave-convex pattern is employed, anisotropy occurs in the light scattering action at the bended interface formed between a light-transmissive substrate and a GaN-based semiconductor layer. That is, among the components of light propagating in the layer direction (direction perpendicular to film thickness direction of layers) in the GaN-based semiconductor layer, the component propagateing in the direction orthogonal to the longitudinal direction of the stripe-like concave part and convex part of the substrate surface is strongly scattered. On the other hand, the component propagating in the direction parallel to the longitudinal direction is hardly scattered. Therefore, when such a concave-convex pattern is employed for an LED chip wherein the shape of an upper surface of a GaN-based semiconductor layer is quadrate (square or rectangle), the direction of the concave-convex pattern is preferably determined such that the longitudinal direction of the stripe-like concave part and convex part forms an angle of about 45 degrees (40 degrees-50 degrees) with the four sides constituting the quadrate. When the direction of the concave-convex pattern is determined in this manner, the component propagating in the direction parallel to the longitudinal direction of the stripe-like concave part and convex part are reflected on the end surface of the GaN-based semiconductor layer, whereby the propagation direction is changed to that orthogonal to the longitudinal direction (
FIG. 5 ). That is, the propagation direction of the light component propagating in the direction hardly accompanying scattering changes to the direction accompanying strong scattering due to the reflection. As a result, the light confinement within the GaN-based semiconductor layer becomes weakened. - In a GaN-based LED chip usable for the light emitting device of the present invention, at least the surface of the LED chip on the GaN-based semiconductor layer side (including the surface of light-transmissive electrode but excluding the surface of contact electrode) is preferably coated with a light-transmissive insulating protective film, so that a short-circuit due to a conductive bonding agent will not occur in a flip-chip mounting process. To promote light reflection on the interface between a light-transmissive insulating protective film and a light-transmissive encapsulant (gas in the case of airtight seal), the planarity of the surface of the insulating protective film is made as high as possible. Particularly, when the surface of the light-transmissive electrode has fine protrusions and depressions, the light easily passes the interface between the light-transmissive electrode and the insulating protective film and enters the insulating protective film. To prevent the light from going out of the LED chip through the surface of the insulating protective film, the surface of the insulating protective film should have higher planarity than the surface of the light-transmissive electrode. For this end, the insulating protective film is preferably an amorphous film. Specifically, a silicon oxide film and a silicon nitride film formed by plasma CVD method, a PSG (Phospho-Silicate-Glass) film and a BPSG (Boro-Phospho-Silicate-Glass) film formed by CVD method, a polyimide film formed by a coating method and the like can be exemplified. When a silicon oxide film or a silicon nitride film is formed by a plasma CVD method on an ITO film having fine protrusions and depressions on the surface, the surface of the silicon oxide or silicon nitride film has higher planarity than that of the ITO film by setting the film thickness to not less than 0.3 μm. A PSG film and a BPSG film can have still higher surface planarity by reflow after film formation. An insulating protective film formed by spin-on-glass can also have high surface planarity. In one embodiment, the surface planarity of light-transmissive electrode may be increased by polishing. In this case, the surface planarity of the insulating protective film formed on the light-transmissive electrode becomes naturally higher. As a result, light reflection on the interface between the insulating protective film and the light-transmissive encapsulant (gas in case of airtight seal) is also promoted.
- When the light-transmissive electrode is formed of ITO, by setting the refractive index of the insulating protective film to the same level as or higher than that of ITO (not less than 1.7), light reflection on the interface between the insulating protective film and the light-transmissive encapsulant (gas in the case of airtight seal) can be promoted. In this case, the refractive index of an insulating protective film is preferably smaller than that of a GaN-based semiconductor (not more than 2.5) to prevent strong light confinement within the insulating protective film. Preferable examples of the material for the insulating protective film having such refractive index include aluminum oxide, spinel, silicon nitride, zirconium oxide, tantalum oxide and niobium oxide. A film of a mixture of plural oxides can also be used. In this embodiment, when the insulating protective film is a polycrystalline film, the surface planarity is preferably improved by a polishing treatment. Specifically, the surface roughness is preferably less than 20 nm, more preferably less than 10 nm, as measured by a stylus-type surface profiler, in all roughness indices of arithmetic mean roughness (Ra), maximum height (Rmax), ten points average height (Rz) and the like.
- In an embodiment where the surface planarity of the light-transmissive electrode is improved by forming the light-transmissive electrode from amorphous conductive oxide, surface polishing and the like, the insulating protective film may be formed from a material having a low refractive index so that reflection on the interface between the light-transmissive electrode and the insulating protective film can be promoted. In this case, examples of a particularly preferable material for the insulating protective film include low refractive index materials having a refractive index of 1.4 or below such as metal fluorides (e.g., magnesium fluoride, lithium fluoride and the like) and fluororesin.
- In GaN-based LED chips, a double heterostructure wherein an InGaN light emitting layer is sandwiched between clad layers composed of GaN or AlGaN is often employed. In such a case, the light tends to be strongly confined in an InGaN light emitting layer having a high refractive index. Thus, a GaN-based LED chip usable for the light emitting device of the present invention preferably has a slope in a part of an end surface of a GaN-based semiconductor layer, so that the cross-sectional area decreases with the distance from the light-transmissive substrate, wherein the cross-sectional area being an area obtainable by cutting a part of the GaN-based semiconductor layer including the light emitting layer and the p-type layer formed thereon with a plane perpendicular to the thickness direction. In this way, the light propagating in the layer direction in the InGaN light emitting layer can be reflected on the sloping end surface of the GaN-based semiconductor layer to advance toward the light-transmissive substrate side.
FIG. 6 is a sectional view of a GaN-based LED chip constituted in this manner. The GaN-basedLED chip 300 shown inFIG. 6( a) has a horizontal-type element structure and the GaN-basedLED chip 400 shown inFIG. 6( b) has a vertical-type element structure. In both chips, the part from light emittinglayers 303, 403 to p-type layers transmissive substrates - A GaN-based LED chip usable for the light emitting device of the present invention has a positive contact electrode optionally constituted of a major part mainly used for bonding to a base in a mounting process, and a long-shape current diffusion part extending from the major part on the light-transmissive electrode. A top view of a GaN-based LED chip having a positive contact electrode constituted in this manner is shown in
FIG. 7 . In a GaN-basedLED chip 500 shown in this Figure, the positive contact electrode E501 b is constituted of a circular major part E501 b-1, and two current diffusion parts E501 b-2 extending in an elongated manner therefrom in a curve. The current diffusion part helps current diffusion in the layer direction in the light-transmissive electrode made of an oxide semiconductor. Moreover, since the thermal conductivity of the entire positive electrode becomes higher and heat dissipation performance of the LED chip is improved, an increase in current tolerance value of the LED chip is expected to result. - When a GaN-based LED chip usable for the light emitting device of the present invention has a horizontal-type element structure, two or more positive contact electrodes may be formed on a p-type layer.
FIG. 8 is a top view of a GaN-based LED chip having a horizontal-type element structure, wherein the number of the negative contact electrode (the negative electrode acting as both a contact electrode and an ohmic electrode) is one, and the number of the positive contact electrode is two. In a flip-chip mounting process the GaN-basedLED chip 600 shown in this Figure is bonded to a base by three contact electrodes including one negative electrode E602 and two positive contact electrodes E601 b. Since the three contact electrodes are positioned to form a triangle, the stability of mounting posture becomes extremely high. The number of the positive contact electrodes here means the number of the major parts mainly used for bonding to a base. In the example of GaN-basedLED 600, two positive contact electrodes E601 b can be connected with a long-shape current diffusion part. Also in this case, the number of the positive contact electrodes is two. To stabilize the mounting posture of an LED chip, two negative contact electrodes and one positive contact electrode may be positioned to form a triangle. - In the present invention, it is not essential to leave, in a GaN-based LED chip equipped in the light emitting device, a substrate used for epitaxial growth (“growth substrate”) of GaN-based semiconductor crystal constituting the light emitting element structure. In other words, in one embodiment, a GaN-based LED chip mounted on a light emitting device may have a light-transmissive supporting substrate, which substrate has been substituted with a growth substrate after formation of the GaN-based semiconductor layer. In another embodiment, a GaN-based LED chip equipped in the light emitting device may be produced by a production method including the following two steps, i.e., a step of joining, by a wafer bonding technique, a light-transmissive supporting substrate to the surface of a GaN-based semiconductor layer formed on a growth substrate, and a step of separating the growth substrate from the GaN-based semiconductor layer by a laser lift-off technique.
- According to an embodiment of the present invention, a GaN-based LED chip equipped in the light emitting device may be free of a substrate joined to a GaN-based semiconductor layer. Such light emitting device can be produced by, for example, flip-chip mounting the GaN-based LED chip shown in
FIG. 2 , and then separating the light-transmissive substrate from the GaN-based semiconductor layer by a laser lift-off technique. - Furthermore, the scope of the present invention encompasses not only a light emitting device comprising a flip-chip mounted GaN-based LED chip comprising a light-transmissive substrate and having a vertical-type element structure, but also a light emitting device comprising the same LED chip fixed with the surface on the light-transmissive substrate side facing a mounting base direction (direction opposite light extraction direction). That is, in such a light emitting device, the light emission power can be improved by preventing the area of the contact electrode (total sum of plural electrode areas when forming plural electrodes) formed on the backside of a light-transmissive substrate directly or via a light-transmissive ohmic electrode from being too large. The ratio of the area of the contact electrode to the area of the backside of the light-transmissive substrate is preferably less than ½, more preferably less than ¼, still more preferably less than 1/10. The area of the contact electrode is desirably not less than 3% of the area of the backside of light-transmissive substrate, thereby ensuring bonding strength between the LED chip and a base, and allowing the heat generated in the LED chip to escape to the base side through the contact electrode.
- Also in this light emitting device, the backside of light-transmissive substrate is preferably polished to have high planarity before formation of a contact electrode. When a light-transmissive ohmic electrode composed of an oxide semiconductor is interposed between the backside of light-transmissive substrate and the contact electrode, the surface of the oxide semiconductor is preferably polished to have high planarity, before forming the contact electrode. When the backside of a light-transmissive substrate and the surface of a light-transmissive ohmic electrode are planarized by polishing, the roughness of the surface after polishing is preferably less than 20 nm, more preferably less than 10 nm, as measured by a stylus-type surface profiler, in all roughness indices of arithmetic mean roughness (Ra), maximum height (Rmax), ten points average height (Rz) and the like.
- The experiments performed by the present inventors are described in the following.
- As a substrate for crystal growth, a c-plane sapphire substrate (
diameter 2 inch) processed to have a stripe-like concave-convex pattern (groove width and ridge width: about 3 μm, groove depth: about 1 μm) on the surface was prepared. Using a usual MOVPE apparatus, an LED wafer was produced by successively laminating, on the surface with the above-mentioned concave-convex pattern of the sapphire substrate, an AlGaN low-temperature buffer layer, a non-doped GaN layer, a Si-doped GaN contact layer, an InGaN/GaN multiple quantum well active layer (light emitting layer), a Mg-doped AlGaN clad layer and a Mg-doped AlGaN contact layer. Here, the crystal composition of the InGaN quantum well layer contained in the active layer was adjusted to have an emission wavelength of about 405 nm. Mg added as p-type impurity to the AlGaN clad layer and AlGaN contact layer was activated after formation of the AlGaN contact layer by first introducing a small amount of ammonia and a nitrogen gas into the growth furnace of MOCVD apparatus and changing the gas to a nitrogen gas alone on the way in the process of lowering the temperature of the substrate placed in the furnace from the growth temperature of the layer to room temperature. - Using an electron beam evaporation method, a light-transmissive electrode made of ITO (indium tin oxide) and having a film thickness of about 210 nm and sheet resistance of about 10Ω/□ was formed on the surface of the thus-obtained LED wafer (upper surface of AlGaN contact layer). After patterning the light-transmissive electrode into a predetermined shape, the p-type layer (AlGaN contact layer and AlGaN clad layer) and active layer were partially removed by reactive ion etching (RIE) to expose a part of the GaN contact layer. In the RIE step, the p-type layer and light emitting layer were removed to expose the GaN contact layer also in a region between elements adjacent to each other on the wafer, whereby the area of the upper surface of AlGaN contact layer of each element was set to a given value (65300 μm2). The upper surface of the AlGaN contact layer after the RIE step was almost entirely covered with the light-transmissive electrode.
- Then, formation of a negative electrode onto the surface of the GaN contact layer exposed in the above-mentioned RIE step and formation of a positive contact electrode onto the surface of the light-transmissive electrode were simultaneously performed using a sputtering method. The negative electrode and positive contact electrode were formed into a two-layer structure by forming a TiW layer having a film thickness of 100 nm, and laminating an Au layer having a film thickness of 500 nm thereon. The TiW layer was formed using a Ti—W target with a Ti content of 10 wt %. The negative electrode and positive contact electrode were patterned by a lift-off method using a photolithography technique. The photo-mask used for the patterning was provided with seven patterns of positive contact electrode having different areas, whereby seven kinds of LED elements having different areas of the positive contact electrode were produced on one piece of wafer.
- Lastly, the elements formed on the wafer were cut by an ordinary scribing method into square-shape GaN-based LED chips with a side length of about 350 μm.
- The area of the positive contact electrode (A1), and the ratios of said area of the positive contact electrode to the area of the upper surface of the p-type layer (A2: 65300 μm2), for the seven kinds of GaN-based LED chip samples (
sample 1 to sample 7) with different positive contact electrode areas produced according to the above-mentioned steps are shown in Table 1. -
TABLE 1 area of positive area of upper outoput contact electrode surface of p-type A1/A2 power (A1) [μm2] layer (A2) [μm2] [%] [mW] sample 16360 65300 10 16.5 sample 29900 65300 15 16.4 sample 3 13050 65300 20 16.0 sample 4 16200 65300 25 16.0 sample 519800 65300 30 15.3 sample 6 23100 65300 35 15.4 sample 7 29700 65300 45 15.1 - A submount shown in
FIG. 9 was prepared.FIG. 9( a) is a plane view of the submount seen from the LED chip mounting face side, andFIG. 9( b) is a sectional view along the line P-Q inFIG. 9( a). The submount has an AlN substrate (thickness 0.2 mm, width 0.4 mm and length 0.6 mm), a positive side lead electrode, and a negative side lead electrode. Both the positive side lead electrode and negative side lead electrode have a multi-layer structure having a Ti layer, a Pt layer and a Au layer in this order from the side in contact with the AlN substrate toward the surface side. A solder layer composed of an Au—Sn alloy solder containing Au at a ratio of 70 wt % is partially formed on the positive side lead electrode and negative side lead electrode. - The submount was adhered to TO-18 stem with a silver paste with the LED chip mounting face upward.
- The GaN-based LED chip produced above was mounted on the above-mentioned submount adhered onto the TO-18 stem with the sapphire substrate side facing upward. To be specific, flux was applied in advance to the LED chip mounting face of the submount, and the GaN-based LED chip was placed thereon. The TO-18 stem was contacted with a heated heater to indirectly heat the submount to evaporate a part of the flux and melt the solder layer, whereby the contact electrode of the LED chip side and the lead electrode of the submount side were connected. In other words, the positive contact electrode of the LED chip and the positive side lead electrode of the submount, and the negative electrode of the LED chip and the negative side lead electrode of the submount were respectively bonded together with Au—Sn alloy solder. Thereafter, the negative side lead electrode of the submount and one electrode of the TO-18 stem were connected with a bonding wire, and the residual flux was removed by washing to complete the mounting.
FIG. 10 shows a cross-section of the submount and the GaN-based LED chip mounted thereon after completion of the mounting. As shown in the Figure, a gap was formed between the surface of the GaN-based LED chip on the GaN-based semiconductor layer side and the submount, except the parts joined via the solder layer. - The emission power at 20 mA forward current of the GaN-based LED chip mounted by the above-mentioned procedure was measured using an integrating sphere. The results are shown in Table 1. In addition,
FIG. 11 shows the relationship between the ratio (A1/A2) of the area of the positive contact electrode (A1) to the area of the upper surface of the p-type layer (A2), and the output power, for the GaN-based LED chip samples obtained in Experimental Example 1. It is understood from the Figure that a sample having a smaller area of the positive contact electrode tended to show a higher output power. - In the same manner as in the above-mentioned
samples 1 to 7 except that the positive electrode was a metal film in contact with the AlGaN contact layer at a Rh layer having a film thickness of 50 nm (a laminate of a Rh film and a Au/Pt alternately laminated film stacked thereon), a GaN-based LED chip sample for comparison was produced. In the comparative sample, the area of the upper surface of the AlGaN contact layer was the same as that of the above-mentionedsamples 1 to 7, and the area of the positive electrode (area of the Rh reflection layer) was the same as that of the light-transmissive electrode in the above-mentionedsamples 1 to 7. In the same manner as in the above-mentionedsamples 1 to 7, the comparative sample was flip-chip mounted and the output power at 20 mA was measured to obtain 12 mW. - In the Experimental Example 2, a submount having a white alumina substrate and a lead electrode with an Au layer as a surface layer formed on the substrate surface was used. A GaN-based LED chip sample was produced in the same manner as in Experimental Example 1. The GaN-based LED chip was flip-chip mounted on the submount by bonding a contact electrode on the LED chip side and a lead electrode on the submount side with a silver paste. A gap was formed between the surface of the mounted LED chip on the GaN-based semiconductor layer side (excluding the surface of the positive and negative contact electrode) and the submount. The emission power at 20 mA forward current of the thus-mounted GaN-based LED chip was measured using an integrating sphere.
FIG. 12 shows the relationship between the ratio (A1/A2) of the area of the positive contact electrode (A1) to the area of the upper surface of the p-type layer (A2), and the output power, for the GaN-based LED chip samples obtained in Experimental Example 2. - In Experimental Example 3, the surface of a GaN-based LED chip flip-chip mounted on a submount was coated with an optical-grade silicone resin (thermosetting type). A GaN-based LED chip sample was produced in the same manner as in Experimental Example 1. The submount used was the same as that used in the above-mentioned Experimental Example 2, and the LED chip and the submount were bonded in the same manner as in the above-mentioned Experimental Example 2. After fixing the GaN-based LED chip on the submount, a resin before curing was dropped with a syringe on the LED chip, whereby the surface of the LED chip was coated with the resin. At this time, it was observed that a part of the resin spontaneously entered into the gap between the LED chip and the submount. As the result, the gap was filled with the transparent silicone resin. After curing the silicone resin, the emission power at 20 mA forward current of the GaN-based LED chip was measured using an integrating sphere.
FIG. 13 shows the relationship between the ratio (A1/A2) of the area of the positive contact electrode (A1) to the area of the upper surface of the p-type layer (A2), and the output power, for the GaN-based LED chip samples obtained in Experimental Example 3. - The present invention is not limited to the embodiments explicitly described in the above, and can be modified variously without impairing the gist of the invention. Such further embodiments of the light emitting device and the embodiments of the GaN-based LED chip usable therefor are shown in the following as examples.
- A light emitting device wherein a GaN-based LED chip of the following (a1) is flip-chip mounted:
- (a1) a GaN-based LED chip comprising a light-transmissive substrate and a GaN-based semiconductor layer formed on the light-transmissive substrate, the GaN-based semiconductor layer having a laminate structure comprising an n-type layer, a light emitting layer and an p-type layer in this order from the light-transmissive substrate side,
- wherein a positive electrode is formed on the p-type layer, said electrode comprising
-
- a light-transmissive electrode composed of an oxide semiconductor and having a surface planarized by polishing, and
- a positive contact electrode electrically connected to the light-transmissive electrode, and
- the area of the positive contact electrode is less than half of the area of the upper surface of the p-type layer.
- A light emitting device comprising a flip-chip mounted GaN-based LED chip which comprises a light-transmissive substrate, a GaN-based semiconductor layer formed on the light-transmissive substrate, the layer having a laminate structure comprising an n-type layer, a light emitting layer and a p-type layer in this order from the light-transmissive substrate side, and a positive electrode formed on the p-type layer,
- wherein the positive electrode comprises a light-transmissive electrode composed of an oxide semiconductor and having a surface planarized by polishing, and a positive contact electrode electrically connected to the light-transmissive electrode and having an area smaller than that of the light-transmissive electrode.
- A light emitting device comprising a GaN-based LED chip and a package having a cavity, wherein
- the GaN-based LED chip comprises a GaN-based semiconductor layer having a laminate structure comprising at least an n-type layer and a p-type layer, and an electrode formed on one surface of the GaN-based semiconductor layer, the electrode comprising a light-transmissive electrode composed of an oxide semiconductor and having a surface planarized by polishing, and a contact electrode electrically connected to the light-transmissive electrode and having an area smaller than that of the light-transmissive electrode, and
- the GaN-based LED chip is fixed in the cavity with a surface of the chip opposite said surface on which the electrode is formed facing an opening of the cavity.
- The light emitting device of Embodiment S3, comprising a light-transmissive substrate joined to a surface of the GaN-based semiconductor layer opposite said surface on which the electrode is formed.
- A GaN-based LED chip comprising a light-transmissive substrate and a GaN-based semiconductor layer formed on the light-transmissive substrate, the GaN-based semiconductor layer having a laminate structure comprising an n-type layer, a light emitting layer and a p-type layer in this order from the light-transmissive substrate side,
- wherein a positive electrode is formed on the p-type layer, the electrode comprising a light-transmissive electrode composed of an oxide semiconductor and having a surface planarized by polishing and a positive contact electrode electrically connected to the light-transmissive electrode and having an area smaller than that of the light-transmissive electrode.
- The GaN-based LED chip of Embodiment S5, wherein the area of the positive contact electrode is less than ½ of the area of the upper surface of the p-type layer.
- A GaN-based LED chip comprising
- a GaN-based semiconductor layer having a laminate structure comprising at least an n-type layer and a p-type layer, and
- an electrode formed on one surface of the GaN-based semiconductor layers, the electrode comprising a light-transmissive electrode composed of an oxide semiconductor having a surface planarized by polishing and a contact electrode electrically connected to the light-transmissive electrode and having an area smaller than that of the light-transmissive electrode.
- The GaN-based LED chip of Embodiment S7, comprising a light-transmissive substrate joined to a surface of the GaN-based semiconductor layer opposite said surface on which the electrode is formed.
- A light emitting device wherein a GaN-based LED chip having a vertical-type element structure of the following (a2) is flip-chip mounted:
- (a2) a GaN-based LED chip comprising a light-transmissive substrate and a GaN-based semiconductor layer formed on the light-transmissive substrate, the GaN-based semiconductor layer having a laminate structure comprising an n-type layer, a light emitting layer and a p-type layer in this order from the light-transmissive substrate side,
- wherein a positive electrode is formed on the p-type layer, said electrode comprising
-
- a light-transmissive electrode composed of an oxide semiconductor, and
- a positive contact electrode electrically connected to the light-transmissive electrode, and
- the area of the positive contact electrode is less than half of the area of the upper surface of the p-type layer.
- A light emitting device comprising a flip-chip mounted GaN-based LED chip which comprises a conductive light-transmissive substrate, a GaN-based semiconductor layer formed on the light-transmissive substrate, and an electrode formed on the GaN-based semiconductor layer, the GaN-based semiconductor layer having a laminate structure comprising at least an n-type layer and a p-type layer,
- wherein the GaN-based LED chip has a vertical-type element structure and the electrode comprises a light-transmissive electrode composed of an oxide semiconductor and a positive contact electrode electrically connected to the light-transmissive electrode and having an area smaller than that of the light-transmissive electrode.
- A light emitting device comprising a package having a cavity and a GaN-based LED chip fixed inside the cavity, the GaN-based LED chip comprising a conductive light-transmissive substrate, a GaN-based semiconductor layer formed on said light-transmissive substrate, the layer having a laminate structure comprising at least an n-type layer and a p-type layer, and an electrode formed on the backside of said light-transmissive substrate, wherein
- the electrode has a contact electrode formed on the backside of said light-transmissive substrate directly or via a light-transmissive ohmic electrode,
- the area of said contact electrode is less than ½ of the area of the backside of said light-transmissive substrate, and
- the GaN-based LED chip is fixed with a surface on the GaN-based semiconductor layer side facing an opening of the cavity.
- A GaN-based LED chip comprising a conductive light-transmissive substrate, a GaN-based semiconductor layer having a laminate structure comprising at least an n-type layer and a p-type layer and formed on the light-transmissive substrate, and a contact electrode composed of an oxide semiconductor and formed on the backside of the light-transmissive substrate via a light-transmissive ohmic electrode, wherein the surface of the ohmic electrode is planarized by polishing.
- The GaN-based LED chip of Embodiment S12, wherein the contact electrode has an area smaller than that of the ohmic electrode.
- The GaN-based LED chip of Embodiment S12 or S13, wherein the area of the contact electrode is less than ½ of the area of the backside of the light-transmissive substrate.
- A light emitting device comprising the GaN-based LED chip of any of Embodiments S12 to S14 and a package having a cavity, wherein the GaN-based LED chip is fixed in the cavity with a surface of the chip on the GaN-based semiconductor layer side facing an opening of the cavity.
- A method of producing a GaN-based LED chip comprising a conductive light-transmissive substrate, a GaN-based semiconductor layer having a laminate structure comprising at least an n-type layer and a p-type layer and formed on the light-transmissive substrate, and a contact electrode formed on the backside of the light-transmissive substrate via a light-transmissive ohmic electrode composed of an oxide semiconductor,
- wherein after the surface of the ohmic electrode is planarized by polishing, the contact electrode is formed on said surface.
- The production method of Embodiment S16, wherein the contact electrode has an area smaller than that of the ohmic electrode.
- The production method of Embodiment S16 or S17, wherein the area of the contact electrode is less than ½ of the area of the backside of the light-transmissive substrate.
- A light emitting device, comprising the GaN-based LED chip in the above-mentioned (a) which is flip-chip mounted and encapsulated with a resin.
- A light emitting device, comprising the GaN-based LED chip in the above-mentioned (a) which is flip-chip mounted and airtightly sealed.
- The light emitting device of Embodiment S19 or S20, wherein the light-transmissive electrode has a surface planarized by polishing.
- The light emitting device of any of Embodiments S19 to S21, wherein the GaN-based LED chip has a negative contact electrode electrically connected to the n-type layer and the positive contact electrode on the same side of the LED chip, the number of contact electrodes including the negative contact electrode and the positive contact electrode is three, and the three contact electrodes are positioned to form a triangle.
- The light emitting device of any of Embodiments S19 to S21, wherein the GaN-based LED chip has a vertical-type element structure, the number of the positive contact electrodes is three and the three positive contact electrodes are positioned to form a triangle.
- According to the present invention, a light emitting device comprising a flip-chip mounted GaN-based LED chip is improved in output power, whereby a light emitting device being superior in output power and usable preferably as an excitation light source of a white light emitting device for illumination use is provided.
- This application is based on patent application Nos. 2006-274510, 2007-242170, 2007-242171, 2007-242172 and 2007-246410 filed in Japan, the contents of which are incorporated in full herein by this reference.
Claims (6)
1. A light emitting device comprising a GaN-based LED chip fixed on a base,
the GaN-based LED chip comprising
a conductive light-transmissive substrate,
a GaN-based semiconductor layer formed on said light-transmissive substrate, the layer having a laminate structure comprising at least an n-type layer and a p-type layer, and an electrode formed on the backside of said light-transmissive substrate,
wherein
the electrode has a contact electrode formed on the backside of said light-transmissive substrate via a light-transmissive ohmic electrode, and
the GaN-based LED chip is fixed with a surface on the GaN-based semiconductor layer side facing upward.
2. A GaN-based LED chip comprising
a conductive light-transmissive substrate,
a GaN-based semiconductor layer formed on said light-transmissive substrate, the layer having a laminate structure comprising at least an n-type layer and a p-type layer, and an electrode formed on the backside of said light-transmissive substrate,
wherein
the electrode has a contact electrode formed on the backside of said light-transmissive substrate via a light-transmissive ohmic electrode composed of an oxide semiconductor.
3. The GaN-based LED chip of claim 2 , wherein
the roughness of the surface of the light-transmissive ohmic electrode is less than 10 nm.
4. The GaN-based LED chip of claim 2 , wherein
an area of said contact electrode is smaller than an area of the light-transmissive ohmic electrode.
5. The GaN-based LED chip of claim 2 , wherein
an area of said contact electrode is less than ½ of an area of the backside of said light-transmissive substrate.
6. A light emitting device comprising a GaN-based LED chip of claim 2 fixed on a base,
wherein
the GaN-based LED chip is fixed with a surface on the GaN-based semiconductor layer side facing upward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/888,751 US20140061664A1 (en) | 2006-10-05 | 2013-05-07 | Light emitting device using gan led chip |
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-274510 | 2006-10-05 | ||
JP2006274510 | 2006-10-05 | ||
JP2007242171A JP2008112978A (en) | 2006-10-05 | 2007-09-19 | GaN-BASED LED CHIP AND LIGHTING DEVICE |
JP2007242172A JP2008112979A (en) | 2006-10-05 | 2007-09-19 | GaN-based LED chip and light emitting device |
JP2007-242171 | 2007-09-19 | ||
JP2007242170 | 2007-09-19 | ||
JP2007-242172 | 2007-09-19 | ||
JP2007-242170 | 2007-09-19 | ||
JP2007246410A JP5251050B2 (en) | 2006-10-05 | 2007-09-25 | GaN-based LED chip and light emitting device |
JP2007-246410 | 2007-09-25 | ||
PCT/JP2007/069612 WO2008041770A1 (en) | 2006-10-05 | 2007-10-05 | LIGHT EMITTING DEVICE USING GaN LED CHIP |
US31154809A | 2009-08-18 | 2009-08-18 | |
US13/418,827 US8455886B2 (en) | 2006-10-05 | 2012-03-13 | Light emitting device using GaN LED chip |
US13/888,751 US20140061664A1 (en) | 2006-10-05 | 2013-05-07 | Light emitting device using gan led chip |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/418,827 Division US8455886B2 (en) | 2006-10-05 | 2012-03-13 | Light emitting device using GaN LED chip |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140061664A1 true US20140061664A1 (en) | 2014-03-06 |
Family
ID=41205535
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/311,548 Expired - Fee Related US8158990B2 (en) | 2006-10-05 | 2007-10-05 | Light emitting device using GaN LED chip |
US13/418,827 Expired - Fee Related US8455886B2 (en) | 2006-10-05 | 2012-03-13 | Light emitting device using GaN LED chip |
US13/888,751 Abandoned US20140061664A1 (en) | 2006-10-05 | 2013-05-07 | Light emitting device using gan led chip |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/311,548 Expired - Fee Related US8158990B2 (en) | 2006-10-05 | 2007-10-05 | Light emitting device using GaN LED chip |
US13/418,827 Expired - Fee Related US8455886B2 (en) | 2006-10-05 | 2012-03-13 | Light emitting device using GaN LED chip |
Country Status (3)
Country | Link |
---|---|
US (3) | US8158990B2 (en) |
KR (1) | KR20090085594A (en) |
CN (2) | CN101606246B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130146896A1 (en) * | 2011-12-09 | 2013-06-13 | National Chiao Tung University | Semiconductor optical device having an air media layer and the method for forming the air media layer thereof |
WO2019240894A1 (en) * | 2018-06-14 | 2019-12-19 | Glo Ab | Epitaxial gallium nitride based light emitting diode and method of making thereof |
US20220140216A1 (en) * | 2019-03-14 | 2022-05-05 | Osram Opto Semiconductors Gmbh | Method for Producing Optoelectronic Semiconductor Devices and Optoelectronic Semiconductor Device |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101611412B1 (en) * | 2009-10-28 | 2016-04-11 | 삼성전자주식회사 | Light emitting device |
JP5713650B2 (en) | 2009-12-08 | 2015-05-07 | Dowaエレクトロニクス株式会社 | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
KR101258586B1 (en) * | 2009-12-21 | 2013-05-02 | 엘지디스플레이 주식회사 | Light emitting diode package and method of fabricating the same |
KR101039880B1 (en) * | 2010-04-28 | 2011-06-09 | 엘지이노텍 주식회사 | Light emitting device and light emitting device package |
US8455882B2 (en) * | 2010-10-15 | 2013-06-04 | Cree, Inc. | High efficiency LEDs |
CN102456801A (en) * | 2010-10-20 | 2012-05-16 | 展晶科技(深圳)有限公司 | Light emitting diode packaging structure |
CN102044608A (en) * | 2010-11-17 | 2011-05-04 | 重庆大学 | Flip-chip LED chip structure and manufacturing method thereof |
KR20120082715A (en) * | 2011-01-14 | 2012-07-24 | 삼성엘이디 주식회사 | Semiconductor light emitting device and manufacturing method thereof |
CN102738182A (en) * | 2011-03-31 | 2012-10-17 | 宏碁股份有限公司 | A photosensor device of an amorphous oxide semiconductor and its manufacturing method |
CN102820384B (en) * | 2011-06-08 | 2015-10-07 | 展晶科技(深圳)有限公司 | The manufacture method of package structure for LED |
US8785952B2 (en) * | 2011-10-10 | 2014-07-22 | Lg Innotek Co., Ltd. | Light emitting device and light emitting device package including the same |
TWI584499B (en) * | 2011-10-27 | 2017-05-21 | 晶元光電股份有限公司 | Semiconductor light emitting device |
TWI449214B (en) * | 2011-10-27 | 2014-08-11 | Huga Optotech Inc | Semiconductor light emitting diode structure |
KR20130079873A (en) * | 2012-01-03 | 2013-07-11 | 엘지이노텍 주식회사 | Light emitting device and lighting system including the same |
JP5796181B2 (en) * | 2012-05-22 | 2015-10-21 | パナソニックIpマネジメント株式会社 | Nitride semiconductor light emitting device |
TWI466328B (en) * | 2012-06-11 | 2014-12-21 | Ritedia Corp | Flip-chip luminescent diode and its preparation method and application |
KR101382363B1 (en) * | 2012-08-28 | 2014-04-08 | 주식회사 아모센스 | Method for manufacturing led package having varistor substrate and led package having varistor substrate thereby |
DE102013100121A1 (en) * | 2013-01-08 | 2014-07-10 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor device |
JP6751562B2 (en) * | 2013-01-10 | 2020-09-09 | ルミレッズ ホールディング ベーフェー | LED with growth substrate molded for lateral radiation |
US9748164B2 (en) * | 2013-03-05 | 2017-08-29 | Nichia Corporation | Semiconductor device |
KR102031967B1 (en) * | 2013-05-07 | 2019-10-14 | 엘지이노텍 주식회사 | Light emitting device package |
KR102160068B1 (en) * | 2013-05-22 | 2020-09-25 | 서울바이오시스 주식회사 | Method of fabricating light emitting diode |
TWI632692B (en) * | 2013-11-18 | 2018-08-11 | 晶元光電股份有限公司 | Semiconductor light-emitting device |
JP6191453B2 (en) * | 2013-12-27 | 2017-09-06 | 日亜化学工業株式会社 | Light emitting device |
US10663142B2 (en) * | 2014-03-31 | 2020-05-26 | Bridgelux Inc. | Light-emitting device with reflective ceramic substrate |
US9257622B2 (en) * | 2014-04-14 | 2016-02-09 | Jin-Ywan Lin | Light-emitting structure |
CN106463572B (en) | 2014-05-15 | 2019-06-04 | 香港科技大学 | Gallium nitride flip chip light emitting diode |
US20150349221A1 (en) * | 2014-05-30 | 2015-12-03 | Bridgelux, Inc. | Light-emitting device package |
EP2988341B1 (en) * | 2014-08-22 | 2017-04-05 | LG Innotek Co., Ltd. | Light emitting device package |
KR102279212B1 (en) * | 2014-11-13 | 2021-07-20 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | A light emitting device package |
TWI583019B (en) * | 2015-02-17 | 2017-05-11 | 新世紀光電股份有限公司 | Light emitting diode and manufacturing method thereof |
US10170455B2 (en) | 2015-09-04 | 2019-01-01 | PlayNitride Inc. | Light emitting device with buffer pads |
TWI552385B (en) * | 2015-09-04 | 2016-10-01 | 錼創科技股份有限公司 | Light-emitting element |
US10622270B2 (en) * | 2017-08-31 | 2020-04-14 | Texas Instruments Incorporated | Integrated circuit package with stress directing material |
US10553573B2 (en) | 2017-09-01 | 2020-02-04 | Texas Instruments Incorporated | Self-assembly of semiconductor die onto a leadframe using magnetic fields |
US10833648B2 (en) | 2017-10-24 | 2020-11-10 | Texas Instruments Incorporated | Acoustic management in integrated circuit using phononic bandgap structure |
US10886187B2 (en) | 2017-10-24 | 2021-01-05 | Texas Instruments Incorporated | Thermal management in integrated circuit using phononic bandgap structure |
US10557754B2 (en) | 2017-10-31 | 2020-02-11 | Texas Instruments Incorporated | Spectrometry in integrated circuit using a photonic bandgap structure |
US10497651B2 (en) | 2017-10-31 | 2019-12-03 | Texas Instruments Incorporated | Electromagnetic interference shield within integrated circuit encapsulation using photonic bandgap structure |
US10444432B2 (en) | 2017-10-31 | 2019-10-15 | Texas Instruments Incorporated | Galvanic signal path isolation in an encapsulated package using a photonic structure |
CN108447404B (en) * | 2018-04-04 | 2021-10-26 | 京东方科技集团股份有限公司 | Flexible array substrate, display device and manufacturing method of flexible array substrate |
CN109473866B (en) * | 2018-11-23 | 2020-11-24 | 武汉电信器件有限公司 | TO-CAN transmitting assembly with heating function |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0786640A (en) | 1993-06-17 | 1995-03-31 | Nichia Chem Ind Ltd | Light emitting device |
DE19536438A1 (en) | 1995-09-29 | 1997-04-03 | Siemens Ag | Semiconductor device and manufacturing process |
JP3403027B2 (en) * | 1996-10-18 | 2003-05-06 | キヤノン株式会社 | Video horizontal circuit |
CN1194424A (en) | 1997-03-26 | 1998-09-30 | 李华永 | Glass mirror with advertisement content |
JPH11233816A (en) * | 1998-02-13 | 1999-08-27 | Oki Electric Ind Co Ltd | Semiconductor light emitting device and method of manufacturing the same |
JP3847477B2 (en) | 1998-12-17 | 2006-11-22 | 豊田合成株式会社 | Group III nitride compound semiconductor light emitting device |
JP2002016311A (en) * | 2000-06-27 | 2002-01-18 | Sharp Corp | Gallium nitride based light emitting device |
US6791119B2 (en) * | 2001-02-01 | 2004-09-14 | Cree, Inc. | Light emitting diodes including modifications for light extraction |
JP3595277B2 (en) | 2001-03-21 | 2004-12-02 | 三菱電線工業株式会社 | GaN based semiconductor light emitting diode |
JP4055503B2 (en) | 2001-07-24 | 2008-03-05 | 日亜化学工業株式会社 | Semiconductor light emitting device |
US6903446B2 (en) | 2001-10-23 | 2005-06-07 | Cree, Inc. | Pattern for improved visual inspection of semiconductor devices |
CN1194424C (en) * | 2001-11-28 | 2005-03-23 | 国联光电科技股份有限公司 | High-brightness light-emitting diodes with transparent substrate flip-chip light-emitting diode chips |
KR100543696B1 (en) | 2002-09-09 | 2006-01-20 | 삼성전기주식회사 | High efficiency light emitting diode |
JP4620340B2 (en) | 2002-10-23 | 2011-01-26 | 信越半導体株式会社 | Light emitting device and manufacturing method thereof |
JP2004179347A (en) | 2002-11-26 | 2004-06-24 | Matsushita Electric Works Ltd | Semiconductor light emitting element |
JP3720341B2 (en) | 2003-02-12 | 2005-11-24 | ローム株式会社 | Semiconductor light emitting device |
JP2005019919A (en) | 2003-06-30 | 2005-01-20 | Toyoda Gosei Co Ltd | Light emitting device |
JP2005117035A (en) | 2003-09-19 | 2005-04-28 | Showa Denko Kk | Flip-chip gallium-nitride-based semiconductor light-emitting element and method of fabricating same |
KR100799857B1 (en) * | 2003-10-27 | 2008-01-31 | 삼성전기주식회사 | Electrode structure and semiconductor light emitting device having same |
JP4438422B2 (en) | 2004-01-20 | 2010-03-24 | 日亜化学工業株式会社 | Semiconductor light emitting device |
JP2006066868A (en) | 2004-03-23 | 2006-03-09 | Toyoda Gosei Co Ltd | Solid element and solid element device |
KR101131259B1 (en) | 2004-03-24 | 2012-03-30 | 스탄레 덴끼 가부시키가이샤 | Light-emitting device manufacturing method and light-emitting device |
US7534633B2 (en) | 2004-07-02 | 2009-05-19 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
JP4418375B2 (en) * | 2005-01-25 | 2010-02-17 | アルプス電気株式会社 | Antenna device |
JP4967243B2 (en) | 2005-03-08 | 2012-07-04 | 三菱化学株式会社 | GaN-based light emitting diode and light emitting device |
JP4956902B2 (en) | 2005-03-18 | 2012-06-20 | 三菱化学株式会社 | GaN-based light emitting diode and light emitting device using the same |
US20070077349A1 (en) * | 2005-09-30 | 2007-04-05 | Eastman Kodak Company | Patterning OLED device electrodes and optical material |
US8193559B2 (en) * | 2009-01-27 | 2012-06-05 | Infineon Technologies Austria Ag | Monolithic semiconductor switches and method for manufacturing |
US8502357B2 (en) * | 2009-10-01 | 2013-08-06 | Stats Chippac Ltd. | Integrated circuit packaging system with shaped lead and method of manufacture thereof |
US8357564B2 (en) * | 2010-05-17 | 2013-01-22 | Stats Chippac, Ltd. | Semiconductor device and method of forming prefabricated multi-die leadframe for electrical interconnect of stacked semiconductor die |
-
2007
- 2007-10-05 CN CN2007800443845A patent/CN101606246B/en not_active Expired - Fee Related
- 2007-10-05 US US12/311,548 patent/US8158990B2/en not_active Expired - Fee Related
- 2007-10-05 CN CN2012101625171A patent/CN102683565A/en active Pending
- 2007-10-05 KR KR1020097008914A patent/KR20090085594A/en not_active Withdrawn
-
2012
- 2012-03-13 US US13/418,827 patent/US8455886B2/en not_active Expired - Fee Related
-
2013
- 2013-05-07 US US13/888,751 patent/US20140061664A1/en not_active Abandoned
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130146896A1 (en) * | 2011-12-09 | 2013-06-13 | National Chiao Tung University | Semiconductor optical device having an air media layer and the method for forming the air media layer thereof |
US8993409B2 (en) * | 2011-12-09 | 2015-03-31 | National Chiao Tung University | Semiconductor optical device having an air media layer and the method for forming the air media layer thereof |
WO2019240894A1 (en) * | 2018-06-14 | 2019-12-19 | Glo Ab | Epitaxial gallium nitride based light emitting diode and method of making thereof |
US10770620B2 (en) | 2018-06-14 | 2020-09-08 | Glo Ab | Epitaxial gallium nitride based light emitting diode and method of making thereof |
US11264537B2 (en) | 2018-06-14 | 2022-03-01 | Nanosys, Inc. | Epitaxial gallium nitride based light emitting diode and method of making thereof |
US20220140216A1 (en) * | 2019-03-14 | 2022-05-05 | Osram Opto Semiconductors Gmbh | Method for Producing Optoelectronic Semiconductor Devices and Optoelectronic Semiconductor Device |
US12206058B2 (en) * | 2019-03-14 | 2025-01-21 | Osram Opto Semiconductors Gmbh | Method for producing optoelectronic semiconductor devices and optoelectronic semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN102683565A (en) | 2012-09-19 |
CN101606246A (en) | 2009-12-16 |
US8158990B2 (en) | 2012-04-17 |
US8455886B2 (en) | 2013-06-04 |
KR20090085594A (en) | 2009-08-07 |
US20120175669A1 (en) | 2012-07-12 |
CN101606246B (en) | 2012-07-04 |
US20100019247A1 (en) | 2010-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8455886B2 (en) | Light emitting device using GaN LED chip | |
US7154123B2 (en) | Nitride-based semiconductor light-emitting device | |
US11489087B2 (en) | Light emitting device | |
JP5251050B2 (en) | GaN-based LED chip and light emitting device | |
JP2002368263A (en) | Group III nitride compound semiconductor light emitting device | |
KR20090032207A (en) | Gallium nitride based light emitting diode device | |
JPWO2006082687A1 (en) | GaN-based light emitting diode and light emitting device | |
JP2011119519A (en) | Semiconductor light emitting element and semiconductor light emitting device | |
JP2008227109A (en) | GaN-based LED element and light emitting device | |
US20050017253A1 (en) | Nitride-based compound semiconductor light-emitting device and method of fabricating the same | |
KR100631967B1 (en) | Nitride semiconductor light emitting device for flip chip | |
US12183848B2 (en) | Light emitting device | |
US20090001402A1 (en) | Semiconductor element and method of making the same | |
JP5353809B2 (en) | Semiconductor light emitting element and light emitting device | |
JP2012178453A (en) | GaN-BASED LED ELEMENT | |
KR20090111889A (en) | Group III-nitride semiconductor light emitting diode device of vertical structure and manufacturing method | |
JP2012064759A (en) | Semiconductor light-emitting device and manufacturing method of semiconductor light-emitting device | |
JP2008112978A (en) | GaN-BASED LED CHIP AND LIGHTING DEVICE | |
JP2008112979A (en) | GaN-based LED chip and light emitting device | |
KR20090109598A (en) | Group III-nitride semiconductor light emitting diode device of vertical structure and manufacturing method | |
KR20090115631A (en) | Group III-nitride semiconductor light emitting diode device of vertical structure and manufacturing method | |
WO2008041770A1 (en) | LIGHT EMITTING DEVICE USING GaN LED CHIP | |
KR101333332B1 (en) | Light emitting diode and method of manufacturing the same | |
TW202427826A (en) | Light-emitting device | |
JP2013145928A (en) | GaN-BASED LED CHIP AND LIGHT-EMITTING DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |