US20130327316A1 - Swimming pool solar heating system - Google Patents
Swimming pool solar heating system Download PDFInfo
- Publication number
- US20130327316A1 US20130327316A1 US13/600,919 US201213600919A US2013327316A1 US 20130327316 A1 US20130327316 A1 US 20130327316A1 US 201213600919 A US201213600919 A US 201213600919A US 2013327316 A1 US2013327316 A1 US 2013327316A1
- Authority
- US
- United States
- Prior art keywords
- swimming pool
- ledge
- solar
- water
- heating system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H4/00—Swimming or splash baths or pools
- E04H4/12—Devices or arrangements for circulating water, i.e. devices for removal of polluted water, cleaning baths or for water treatment
- E04H4/129—Systems for heating the water content of swimming pools
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H4/00—Swimming or splash baths or pools
- E04H4/14—Parts, details or accessories not otherwise provided for
- E04H4/141—Coping elements for swimming pools
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
- F24S10/72—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/02—Solar heat collectors specially adapted for particular uses or environments for swimming pools
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S25/00—Arrangement of stationary mountings or supports for solar heat collector modules
- F24S25/60—Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
- F24S25/61—Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
- F24S25/615—Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures for fixing to protruding parts of buildings, e.g. to corrugations or to standing seams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S80/00—Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
- F24S80/30—Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
- F24S10/73—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being of plastic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S80/00—Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
- F24S80/50—Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
- F24S2080/501—Special shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/30—Arrangements for concentrating solar-rays for solar heat collectors with lenses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Definitions
- the present invention relates to swimming pool solar heating systems and more specifically to swimming pool solar heating system integrated into the framework of the swimming pool.
- One solar heating system that has been very successful in capturing solar heat and converting that heat into warmed water comprises an array of heat exchange tubes made of a dark, thermoplastic or aluminum material.
- the array is typically mounted on the roof of a building near the swimming pool, and pool water is circulated through the array using the centrifugal pump that also pumps water through the swimming pool filter.
- the array of heat exchange tubes is usually wide and long, stretching in some instances from the bottom of the roof on which it is mounted to the top of the roof, and the array usually has hundreds of small diameter tubes arranged in parallel and through which the pool water flows.
- the large number of tubes provides a large surface area that absorbs solar energy.
- This type of solar heating system for swimming pool works reasonably well but is complex to install, problematic to maintain, requires a powerful pump to overcome the gravity of pushing water up 20 or 30 feet high and is also very unsightly as a portion of the roof is covered with an array of heat exchange tubes made of a dark, thermoplastic or aluminum material.
- a solar pool heater is positioned directly on the water's surface, thus eliminating the need for roof-mounted reflectors and conduits.
- a flexible solar quilt collects and absorbs solar energy, and then transfers heat to the underlying water. It may include gas tight compartments which are positioned between an upper film and a lower film.
- the solar pool heater is designed to float on the surface of a pool and captures a substantial quantity of heat, with the cooler pool water then absorbing the heat.
- This type of solar heating system for swimming pool has the disadvantage that is must be removed if one wishes to use the pool and must be repositioned when the pool is not used.
- It is also an object of the present invention to provide a swimming pool comprising a wall, a ledge positioned on top of the wall and a solar water heating system integrated into the ledge, the ledge comprising a series of ledge sections, a plurality of the series of ledge sections including a solar collector having at least one water channel, the solar collector connected to an adjacent solar collector of an adjacent ledge section or to a conduit to form the solar water heating system through which water is circulated and heated by sun rays.
- the invention provides that the solar collector comprises a central wide section including the at least one water channel, an inlet port and an outlet port, the inlet port and the outlet port being connected to the at least one water channel through a manifold.
- the plurality of the series of ledge sections each includes a cover positioned over the solar collector.
- the ledge sections can be mounted onto a series of posts at varying angles relative to an adjacent ledge section.
- Embodiments of the present invention each have at least one of the above-mentioned objects and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present invention that have resulted from attempting to attain the above-mentioned objects may not satisfy these objects and/or may satisfy other objects not specifically recited herein.
- FIG. 1 is a perspective view of an above ground swimming pool having a solar heating system in accordance with one embodiment of the invention
- FIG. 2 is a schematic illustration of the path of water when the solar heating system shown in FIG. 1 is bypassed;
- FIG. 3 is a schematic illustration of the path of water when the solar heating system shown in FIG. 1 is in use;
- FIG. 4 is an exploded perspective view of a first embodiment of a section of the ledge of the above ground swimming pool shown in FIG. 1 ;
- FIG. 4 a is an exploded perspective view of a second embodiment of a section of the ledge of the above ground swimming pool shown in FIG. 1 ;
- FIG. 5 is a cross sectional view of the first embodiment of the assembled section of the ledge shown in FIG. 4 ;
- FIG. 5 a is a cross sectional view of the second embodiment of the assembled section of the ledge shown in FIG. 4 a.
- FIG. 6 a - e are schematic cross sectional views of variations in the design of the water channels shown in FIGS. 5 and 5 a;
- FIG. 7 is an exploded perspective view of one embodiment of a connection between two adjacent sections of the section of ledge shown in FIG. 4 ;
- FIG. 8 is an exploded perspective view of a third embodiment of a section of the ledge of the above ground swimming pool shown in FIG. 1 ;
- FIG. 8 a is an exploded perspective view of a further embodiment of the section of ledge of the above ground swimming pool shown in FIG. 1 ;
- FIG. 9 is a cross sectional view of the embodiment of the assembled section of the ledge shown in FIG. 8 a;
- FIG. 10 is a schematic diagram illustrating the variations of angle of the assembly of sections of ledges as a function of the diameter of the above ground swimming pool;
- FIG. 11 is a schematic top plan view of a second embodiment of the solar heating system having a series of parallel water channels extending the entire circumference of the swimming pool top rail;
- FIG. 12 is an exploded perspective view of one embodiment of the connection of the parallel water channels shown in FIG. 11 to the water filtering system of the swimming pool;
- FIG. 13 is a schematic top plan view of a third embodiment of the solar heating system having a single water channel spiralling over the entire circumference of the swimming pool top rail;
- FIG. 14 is an exploded perspective view of one embodiment of the connection of the spiralling water channel shown in FIG. 13 to the water filtering system of the swimming pool;
- FIG. 15 is a cross sectional view of the water channel(s) shown in FIGS. 11 and 12 installed on the swimming pool top rail including a cover;
- FIG. 16 is a cross sectional view of the water channel(s) shown in FIGS. 11 and 12 installed on the swimming pool top rail without a cover;
- FIG. 17 is a cross sectional view of an add-on solar water heating system in accordance with another embodiment of the invention.
- FIG. 17 a is a partial cross sectional view of the add-on solar water heating system shown in FIG. 17 without a cover;
- FIG. 17 b is a partial cross sectional view of an add-on solar water heating system in accordance with another embodiment of the invention.
- the aboveground swimming pool 10 is preferably round but may be oval or any other shape, and includes a series of posts 12 anchored to a bottom ring 14 also called a rail which defines the perimeter of the bottom of the swimming pool 10 .
- the posts 12 are supporting a ledge 18 and partially supporting a wall 16 .
- the wall 16 is typically made of a steel or aluminum sheet strong enough to resist the weight and pressure of the water contained therein.
- the top portion of the swimming pool 10 consists of the ledge 18 which comprises a series of ledge sections 20 mounted between two posts 12 and anchored onto to the upper portion of each posts 12 .
- the ledge 18 also called top seat or top rail in the industry defines the perimeter of the swimming pool 10 and extends the entire length of the perimeter of the swimming pool 10 .
- the ledge sections 20 may be arc-shaped or straight depending on the design of the swimming pool 10 .
- the assembly of the ledge sections 20 onto the upper portions of the posts 12 are preferably hidden with post caps 22 .
- the aboveground swimming pool 10 is equipped with a water filtering system to ensure that the water contained therein is salubrious and clean.
- the filtering system includes a pump 26 and filter 24 which collects pool water through a drain 28 located at the bottom of the swimming pool 10 or through a skimmer 29 located on the wall 16 at water level. The collected water is pumped and passed through the filtering system and either returned directly into the swimming pool 10 through conduit 30 or is returned to the swimming pool 10 through a conduit 32 leading to a solar heating system 34 integrated into the ledge 18 of the swimming pool 10 .
- the solar heating system 34 consists of one or more water channels integrated into the ledge 18 of the swimming pool 10 into which water from the swimming pool 10 is circulated along the perimeter of the swimming pool 10 as indicated by the arrows illustrating the path of the water through the solar heating system 34 , heated by the sun rays as it travels through the one or more water channels and returned back to the swimming pool 10 .
- the ledge sections 20 each including one or water-circulating channels, define the solar water heating system 34 wherein water is circulated along the perimeter of the swimming pool 10 and in the process is heated by the sun rays before being returned to the bottom portion of the pool 10 through conduit 36 .
- a three-way valve 38 is provided to direct water from the pump 26 to either the solar water heating system 34 ( FIG. 3 ) or directly back to the pool 10 through conduit 30 ( FIG. 2 ). It is preferable to avoid circulating water through the solar water heating system 34 when sun exposure is insufficient to cause an increase of the water temperature circulating therein such as during night hours or during the day when atmospheric conditions are overcast. In those conditions the three-way valve 38 directs the water from the pump 26 directly back into the pool 10 after filtering as shown in FIG. 2 . When there is sufficient sun exposure to cause an increase of the water temperature circulating through the solar water heating system 34 , the three-way valve 38 directs the water from the pump 26 into the solar water heating system 34 through conduit 32 as shown in FIG. 3 .
- the three-way valve 38 may also be in an intermediate position where a portion of the water from the pump 26 is returned directly back to the pool 10 through conduit 30 and another portion of the water from the pump 26 is directed into the solar water heating system 34 through conduit 32 .
- the three-way valve 38 can therefore adjust the volume of water going through solar water heating system 34 to optimize the heat gain through the solar water heating system 34 .
- the three-way valve 38 may be operated manually in which case the user must manually change the setting of the three-way valve 38 according to the conditions (night, day, overcast).
- the three-way valve 38 may be operated by an electro-mechanical system controlled by a timer which directs water from the pump 26 into the solar water heating system 34 during day time and directly back into the pool 10 during night time.
- the three-way valve 38 is electronically controlled in response to a temperature sensor and/or a light sensor (not shown) signalling when there is sufficient sun exposure to cause an increase of the water temperature.
- a temperature range can be defined in which the three-way valve 38 is set to the intermediate position to optimize the heat gain through the solar water heating system 34 when the temperature reading is only slightly above the threshold between sufficient sun exposure and insufficient sun exposure.
- each ledge section 20 includes an arc-shaped or straight structural beam 40 , a solar collector 50 , and a transparent or semi transparent cover 60 .
- the structural beam 40 has a first end 42 and a second end 44 which are anchored to two consecutive posts 12 of the swimming pool 10 , a central main portion 45 , an inner sidewall 46 and an outer sidewall 48 , all extending from the first end 42 to the second end 44 .
- the solar collector 50 is supported by the central main section of the structural beam 40 , flanked by the inner and outer sidewalls 46 and 48 and closed inside the structural beam 40 by the transparent or semi transparent cover 60 .
- the cover 60 is arc-shaped to conform to the shape of the structural beam 40 and designed to sit on top of the inner and outer sidewalls 46 and 48 of the structural beam 40 . Obviously, if the structural beam 40 is straight, the cover 60 will also be straight in order to conform to the shape of the structural beam. Together, the structural beam 40 and the cover 60 define a heating chamber 70 into which the solar collector 50 is positioned and housed.
- Each solar collector 50 includes an inlet port 52 and an outlet port 54 and a central section 56 preferably comprising a series of parallel water channels 58 connected to the inlet and outlet ports 52 and 54 through manifold sections 57 and 59 .
- the solar collector 50 are connected together through the respective inlet and outlet ports 52 and 54 via flexible connector 62 positioned above the posts 12 that allow water to circulate from one ledge section 20 to an adjacent ledge section 20 and define the flow path of the water through the solar heating system 34 .
- the water channels 58 , the manifold sections 57 and 59 and the inlet and outlet ports 52 and 54 are designed to minimise restriction to water flow in order to minimise the power output required from the pump 26 to circulate water through the solar water heating system 34 .
- the central section 56 of the solar collector 50 is wide to maximise exposure to the sun and provide optimum heat transfer.
- the solar collector 50 is preferably of dark color to maximise heat absorption.
- the structural beams 40 as well as the solar collectors 50 are preferably made from injection-moulded thermoplastics. However, the structural beams 40 and/or the solar collectors 50 can also be made from rolled or extruded aluminum.
- FIG. 4 a illustrates a second embodiment of the ledge 18 of the swimming pool 10 in which the ledge sections 20 are not equipped with covers 60 .
- the construction and assembly of the ledge sections 20 is similar to the one described with reference to FIG. 4 with the exception that the solar collectors 50 are directly exposed to the sun and the water circulated therein is heated by convection through the exposed surfaces of the water channels 58 .
- the heating chamber 70 is the inner space defined by the central flat portion 45 , inner and outer sidewalls 46 and 48 of the structural beam 40 and the transparent or semi-transparent cover 60 .
- the inner surfaces of the central flat portion 45 , inner and outer sidewalls 46 and 48 of the structural beam 40 defining the lower portion of the heating chamber 70 may be coated with reflective layers to increase heat generation inside the heating chamber 70 .
- Sun rays 72 passed through the transparent or semi-transparent cover 60 and heat the dark material of the water channels 58 of the solar collector 50 . Heat builds up inside the heating chamber 70 as heat is prevented from escaping thereby generating a greenhouse effect. The heat is transferred to the water circulating through the water channels 58 .
- the large surface area of water in contact with the inner walls of the water channels 58 provides optimal heat transfer efficiency.
- FIG. 5 a is a cross sectional view of a variation of the second embodiment of the ledge 18 shown in FIG. 4 a .
- the central main portion 45 of the structural beam 40 is shaped to form a cavity 41 into which the solar collector 50 is inserted such that the upper surface of the solar collector 50 is levelled with the upper portions of the inner and outer sidewalls 46 and 48 .
- the solar collector 50 is directly exposed to the sunrays 72 absorbing heat which is transferred by convection to the water circulated inside the water channels 58 .
- the surface of the transparent or semi transparent cover 60 is shown as a smooth surface however the surfaces of the cover 60 could be designed with corrugated lines that would act as lens and increase the concentration of sunrays onto the water channels 58 of the solar collector 50 .
- An opaque cover 60 may also be used instead of a transparent or semi-transparent cover 60 . With an opaque cover 60 , heat is transferred by convection to the solar collector 50 instead of the greenhouse effect previously described.
- the cross section of water channels 58 may be a series of circular tubes as represented in FIG. 6 a ); a series of trapezoid tubes as represented in FIG. 6 b ); a series of ovoid tubes as represented in FIG. 6 c ); a series of rectangular tubes as represented in FIG. 6 d ); or a wide and shallow single channel as represented in FIG. 6 e ).
- first end 42 a of a first structural beam 40 a and the second end 44 b of a second structural beam 40 b of two adjacent ledge sections 20 a and 20 b are anchored onto a post 12 via fasteners 74 inserted into apertures 76 located on the inner side of the structural beams 40 a and 40 b and oblong apertures 78 located on the outer side of the structural beams 40 a and 40 b such that the oblong apertures 78 can accommodate variations of the angle between the two ledge sections 20 a and 20 b .
- Multiple apertures strategically positioned may be used instead to accommodate the variations of the angle between the two ledge sections 20 a and 20 b .
- the inlet port 52 a of a first solar collector 50 a the outlet port 54 b of a second solar collector 50 b are both connected to opposing ends of a flexible connector 62 via threaded annular caps 80 and 82 that press the ends of the flexible connector 62 against the inlet port 52 a and outlet port 54 b to provide a watertight connection between the first and second solar collectors 50 a and 50 b .
- Any means that provides a watertight connection between the solar collectors 50 a and 50 b and the ends of the connector 60 such as bushings or clamps can also be used instead of threaded annular caps 80 and 82 .
- the flexibility of the connector 62 also provides accommodation for variations of the angle between the two ledge sections 20 a and 20 b however a rigid connector can also be used.
- a post cap 22 is positioned over the assembled ledge sections 20 a and 20 b to provide an aesthetically pleasing pool ledge and also serve to partially isolate the joining portions of the two solar collectors 50 a and 50 b to retain as much heat as possible between adjacent heating chambers 70 .
- Post caps 22 may also be positioned over the connecting portions of the ledge sections 20 shown in FIG. 4 a to hide the various connecting parts in order to provide an aesthetically pleasing pool ledge.
- the structural beam and the solar collector are formed into a one-piece moulded structural collector 85 .
- the structural collector 85 has a first end 86 and a second end 87 which are anchored to two consecutive posts 12 of the swimming pool 10 .
- the structural collector 85 includes a central flat portion 88 which includes a series of water channels 58 as previously described, an inner sidewall 90 and an outer sidewall 91 , all extending from the first end 86 to the second end 87 .
- the transparent or semi transparent cover 60 is identical to the one shown in FIG. 4 and is designed to sit on top of the inner and outer sidewalls 90 and 91 .
- the structural collector 85 and the cover 60 define a heating chamber 92 .
- the structural collector 85 are connected together through the respective inlet and outlet ports 93 and 94 via flexible connector 62 positioned above the posts 12 that allow water to circulate from one ledge section 20 to an adjacent ledge section 20 and define the flow path of the water through the solar heating system 34 .
- FIG. 8 a which illustrates a fourth embodiment of the swimming pool 10 in which the ledge sections 20 are not equipped with covers 60 .
- the construction and assembly of the ledge sections 20 is similar to the one described with reference to FIG. 8 with the exception that the structural collectors 85 are directly exposed to the sun and the water circulated therein is heated by convection through the exposed surfaces of the water channels 58 .
- FIG. 9 which is a cross-sectional view of a variation of the structural collector 85 shown in FIG. 8 a , the inner and outer sidewalls 90 and 91 are integrated into the structural collector 85 to form a one piece unit.
- the upper surface of the structural collector 85 is directly exposed to the sunrays 72 absorbing heat which is transferred by convection to the water circulated inside the water channels 58 .
- the most common diameters of aboveground pools are 15 ft, 18 ft, 21 ft, 24 ft, and 27 ft
- the number of ledge sections 20 required to assemble the circumference defined by the typical diameters of aboveground pools are respectively 10, 12, 14, 16 and 18 with ledge sections averaging 56 inches in length.
- a single ledge section 20 having a fixed radius of curvature and a fixed length can be used to accommodate all the common diameters of aboveground pools and therefore reduces the inventory requirement to satisfy customer needs and reduce overall tooling cost.
- the single ledge section 20 has to be assembled with varying angles. As previously described with reference to FIG.
- each ledge section 20 is provided with oblong apertures 78 or multiple apertures located on the outer side of the structural beam 40 or structural collector 85 such that the apertures can accommodate variations of the angle between the two ledge sections 20 .
- the angles between the two ledge sections 20 varies from 216° for a 15 ft diameter pool to 200° for a 27 ft diameter pool.
- the variations of length between the anchoring points of the ledge sections 20 to accommodate the diameters of aboveground pools ranging from 15 ft to 27 ft is approximately +/ ⁇ 5/16 of an inch. This slight variation is accommodated either by the position of the pre-taped anchoring holes on the top portion of the posts 12 or by providing that the anchoring holes on the top portion of the posts 12 are drilled during assembly.
- FIG. 11 there is shown a second embodiment of the solar heating system 34 in which a series of parallel water channels 100 acting as solar collector are embedded into the ledge or top rail 18 of the swimming pool 10 and extend the entire perimeter of the swimming pool 10 .
- the parallel water channels 100 are connected together via an inlet manifold 102 and an outlet manifold 104 .
- Water from the pump 26 enters through the inlet manifold 102 where it is distributed into each of the parallel water channels 100 . Water then circulates around the entire length of the perimeter of the swimming pool 10 in each individual water channels 100 where it is heated by the sunrays and returned back into the swimming pool 10 through the outlet manifold 104 .
- first end 123 of a first ledge section 120 a and the second end 124 of a second ledge section 120 b are anchored onto a post 12 via fasteners 74 inserted into apertures 76 located on the inner side of the ledge section 120 a and 120 b and oblong apertures 78 located on the outer side of the ledge section 120 a and 120 b such that the oblong apertures 78 can accommodate variations of the angle between the two ledge sections 120 a and 120 b .
- Multiple apertures strategically positioned may be used instead to accommodate the variations of the angle between the two ledge sections 20 a and 20 b.
- the ledge sections 120 a and 120 b include a central main portion 122 shaped to form a cavity 121 into which the series of parallel water channels 100 are embedded.
- the ledge sections 120 a and 120 b may include, as illustrated, a cover 60 as previously described.
- the inlet manifold 102 connects the inlet side of the parallel water channels 100 together and the outlet manifold 104 connects the outlet side of the parallel water channels 100 together.
- the inlet port 103 of the inlet manifold 102 is connected through an elbow (not shown) via an annular collar 106 to a conduit 32 ( FIG.
- the inlet port 105 of the outlet manifold 104 is connected through an elbow (not shown) via an annular collar 106 to a conduit 36 ( FIG. 1 ) located inside the post 12 which returns heated water from the solar heating system 34 back into the swimming pool 10 as depicted by arrow B.
- a post cap 22 is positioned over the assembled ledge sections 120 a and 120 b to hide the various connecting parts in order to provide an aesthetically pleasing pool ledge.
- FIG. 13 there is shown a third embodiment of the solar heating system in which a single water channel 110 acting as solar collector is embedded into the ledge or top rail 18 of the swimming pool 10 spiralling many folds over the entire length of the perimeter of the swimming pool 10 .
- Water from the pump 26 enters through an inlet port 112 and circulates around the perimeter of the swimming pool 10 in the spiralling water channel 110 where it is heated by the sunrays and returned back into the swimming pool 10 through an outlet port 114 .
- the assembly and features of the first and second ledge section 120 a and 120 b are identical to those described with reference to FIG. 12 .
- the ledge sections 120 a and 120 b include a central main portion 122 shaped to form a cavity 121 into which the spiralling water channel 110 is embedded.
- the ledge sections 120 a and 120 b may include, as illustrated, a cover 60 as previously described.
- the inlet port 112 connects the inlet side of the spiralling water channel 110 through an elbow (not shown) via an annular collar 106 to a conduit 32 ( FIG.
- the outlet port 114 connects the outlet side of the spiralling water channel 110 to a conduit 36 ( FIG. 1 ) located inside the post 12 through an elbow (not shown) secured with an annular collar 106 which returns heated water from the solar heating system 34 back into the swimming pool 10 as depicted by arrow B.
- a post cap 22 is positioned over the assembled ledge sections 120 a and 120 b to hide the various connecting parts in order to provide an aesthetically pleasing pool ledge.
- the water channels 100 or the spiralling water channel 110 are embedded into the ledge or top rail 18 in the ledge section 120 of similar design to the structural beam 40 shown in FIG. 5 .
- the ledge section 120 includes a central main portion 122 shaped to form a cavity 121 into which the water channels 100 or the spiralling water channel 110 are embedded.
- the ledge section 120 includes a cover 60 which may be transparent, semi-transparent or opaque.
- the cavity 121 and the cover 60 together form a heating chamber 70 .
- the sunrays 72 passed through the cover 60 and heat the water channels 100 or the spiralling water channel 110 and heat builds up inside the heating chamber 70 as heat is prevented from escaping thereby generating a greenhouse effect. The heat is transferred to the water circulating through the water channels 100 or the spiralling water channel 110 .
- the water channels 100 or the spiralling water channel 110 are embedded into the top of the ledge or top rail 18 in a ledge section 120 of similar design to the structural beam 40 shown in FIG. 5 a .
- the ledge section 120 includes a central main portion 122 shaped to form a cavity 121 into which the water channels 100 or the spiralling water channel 110 are embedded and are directly exposed to the sunrays 72 absorbing heat which is transferred by convection to the water circulated inside the water channel(s) 100 or 110 .
- each ledge section 130 includes a frame 132 housing a series of water channels 135 .
- the bottom part of the frame 132 is connected to a clamping device 136 comprising a first clamp 137 connected to a second clamp 138 via a sliding mechanism 139 adapted to adjust the clamping device 136 to the width of the existing ledge 18 of the standard swimming pool.
- the ledge sections 130 may therefore be solidly clamped on to the existing ledge 18 of the standard swimming pool and the solar water heating system of the present invention installed onto a standard swimming pool as an add-on.
- the clamping device 136 is one example of a fastening device for securing the ledge sections 130 to an existing ledge 18 however other fastening device may be used fasteners (screws, nuts and bolts, adhesive, straps, etc.).
- the frame 132 includes a cover 60 as previously described relative to other embodiments of the invention.
- FIG. 17 a illustrates an embodiment of the ledge sections 130 which does not include a cover 60 .
- the clamping device 136 is omitted but is part of the ledge sections 130 .
- FIG. 17 b illustrates another embodiment of an add-on ledge section 140 in which the water channels 142 are molded together to form a structural ledge section 140 which also comprises a clamping device 136 (not shown) to secure the ledge section 140 to the ledge of an existing swimming pool.
- the ledge sections 130 or 140 may be arc-shaped or straight depending on the design of the existing swimming pool on which the ledge sections 130 or 140 will be installed.
- the water channels 135 as shown in FIGS. 17 and 17 a may be configured as solar collectors 50 as described relative to FIGS. 4-7 and connected together via flexible connectors 62 or they may be configured as the continuous water channels 100 or the spiralling water channel 110 described relative to FIGS. 11 and 13 and housed into the frame 132 .
- the solar water heating system described herein may be integrated into any swimming pool that consists of modular sections assembled together to form a swimming pool such as semi in ground swimming pools and in ground swimming pool in which the wall of the pool consists of modular sections assembled together.
Landscapes
- Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Water Supply & Treatment (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
A solar water heating system for a swimming pool is disclosed; the solar water heating system is either integrated to the ledge of a swimming pool or installed as an add-on onto the ledge of an existing swimming pool. The solar water heating system comprises at least one water channel extending along the perimeter of the ledge of the swimming pool through which water is circulated and heated by sun rays.
Description
- The present invention relates to swimming pool solar heating systems and more specifically to swimming pool solar heating system integrated into the framework of the swimming pool.
- The use of solar pool heaters is well known in the prior art. One solar heating system that has been very successful in capturing solar heat and converting that heat into warmed water comprises an array of heat exchange tubes made of a dark, thermoplastic or aluminum material. The array is typically mounted on the roof of a building near the swimming pool, and pool water is circulated through the array using the centrifugal pump that also pumps water through the swimming pool filter.
- The array of heat exchange tubes is usually wide and long, stretching in some instances from the bottom of the roof on which it is mounted to the top of the roof, and the array usually has hundreds of small diameter tubes arranged in parallel and through which the pool water flows. The large number of tubes provides a large surface area that absorbs solar energy. This type of solar heating system for swimming pool works reasonably well but is complex to install, problematic to maintain, requires a powerful pump to overcome the gravity of pushing water up 20 or 30 feet high and is also very unsightly as a portion of the roof is covered with an array of heat exchange tubes made of a dark, thermoplastic or aluminum material.
- Another example of a solar pool heater is positioned directly on the water's surface, thus eliminating the need for roof-mounted reflectors and conduits. A flexible solar quilt collects and absorbs solar energy, and then transfers heat to the underlying water. It may include gas tight compartments which are positioned between an upper film and a lower film. The solar pool heater is designed to float on the surface of a pool and captures a substantial quantity of heat, with the cooler pool water then absorbing the heat. This type of solar heating system for swimming pool has the disadvantage that is must be removed if one wishes to use the pool and must be repositioned when the pool is not used.
- Numerous variations of solar heating system for swimming pool based on the two types outlined above have been devised. For instance, self-standing solar panels mounted on tubular structures instead of a roof or dome shaped serpentine tubes through which water flows and is heated have been introduced on the market. Again, these solar heating systems must be positioned near the swimming pool and are usually unsightly.
- Therefore, there is a need for a solar heating system for swimming pools that is efficient, discrete and visually pleasing.
- It is an object of the present invention to ameliorate at least some of the inconveniences present in the prior art.
- It is also an object of the present invention to provide a swimming pool comprising a wall, a ledge positioned on top of the wall and a solar water heating system integrated into the ledge, the ledge comprising a series of ledge sections, a plurality of the series of ledge sections including a solar collector having at least one water channel, the solar collector connected to an adjacent solar collector of an adjacent ledge section or to a conduit to form the solar water heating system through which water is circulated and heated by sun rays.
- In one aspect, the invention provides that the solar collector comprises a central wide section including the at least one water channel, an inlet port and an outlet port, the inlet port and the outlet port being connected to the at least one water channel through a manifold.
- In a further aspect the plurality of the series of ledge sections each includes a cover positioned over the solar collector.
- In an additional aspect, the ledge sections can be mounted onto a series of posts at varying angles relative to an adjacent ledge section.
- It is also an object of the present invention to provide a solar water heating system for a swimming pool having a wall and a top ledge including a series of ledge sections; the solar water heating system comprising a series of solar collectors integrated into a plurality of the series of ledge sections, each solar collector having at least one water channel through which water is circulated and heated by sun rays; the series of solar collectors being in fluid communication to form the solar water heating system.
- Embodiments of the present invention each have at least one of the above-mentioned objects and/or aspects, but do not necessarily have all of them. It should be understood that some aspects of the present invention that have resulted from attempting to attain the above-mentioned objects may not satisfy these objects and/or may satisfy other objects not specifically recited herein.
- Additional and/or alternative features, aspects, and advantages of embodiments of the present invention will become apparent from the following description, the accompanying drawings, and the appended claims.
- For a better understanding of the present invention, as well as other aspects and further features thereof, reference is made to the following description which is to be used in conjunction with the accompanying drawings, where:
-
FIG. 1 is a perspective view of an above ground swimming pool having a solar heating system in accordance with one embodiment of the invention; -
FIG. 2 is a schematic illustration of the path of water when the solar heating system shown inFIG. 1 is bypassed; -
FIG. 3 is a schematic illustration of the path of water when the solar heating system shown inFIG. 1 is in use; -
FIG. 4 is an exploded perspective view of a first embodiment of a section of the ledge of the above ground swimming pool shown inFIG. 1 ; -
FIG. 4 a is an exploded perspective view of a second embodiment of a section of the ledge of the above ground swimming pool shown inFIG. 1 ; -
FIG. 5 is a cross sectional view of the first embodiment of the assembled section of the ledge shown inFIG. 4 ; -
FIG. 5 a is a cross sectional view of the second embodiment of the assembled section of the ledge shown inFIG. 4 a. -
FIG. 6 a-e are schematic cross sectional views of variations in the design of the water channels shown inFIGS. 5 and 5 a; -
FIG. 7 is an exploded perspective view of one embodiment of a connection between two adjacent sections of the section of ledge shown inFIG. 4 ; -
FIG. 8 is an exploded perspective view of a third embodiment of a section of the ledge of the above ground swimming pool shown inFIG. 1 ; -
FIG. 8 a is an exploded perspective view of a further embodiment of the section of ledge of the above ground swimming pool shown inFIG. 1 ; -
FIG. 9 is a cross sectional view of the embodiment of the assembled section of the ledge shown inFIG. 8 a; -
FIG. 10 is a schematic diagram illustrating the variations of angle of the assembly of sections of ledges as a function of the diameter of the above ground swimming pool; -
FIG. 11 is a schematic top plan view of a second embodiment of the solar heating system having a series of parallel water channels extending the entire circumference of the swimming pool top rail; -
FIG. 12 is an exploded perspective view of one embodiment of the connection of the parallel water channels shown inFIG. 11 to the water filtering system of the swimming pool; -
FIG. 13 is a schematic top plan view of a third embodiment of the solar heating system having a single water channel spiralling over the entire circumference of the swimming pool top rail; -
FIG. 14 is an exploded perspective view of one embodiment of the connection of the spiralling water channel shown inFIG. 13 to the water filtering system of the swimming pool; -
FIG. 15 is a cross sectional view of the water channel(s) shown inFIGS. 11 and 12 installed on the swimming pool top rail including a cover; -
FIG. 16 is a cross sectional view of the water channel(s) shown inFIGS. 11 and 12 installed on the swimming pool top rail without a cover; -
FIG. 17 is a cross sectional view of an add-on solar water heating system in accordance with another embodiment of the invention; -
FIG. 17 a is a partial cross sectional view of the add-on solar water heating system shown inFIG. 17 without a cover; and -
FIG. 17 b is a partial cross sectional view of an add-on solar water heating system in accordance with another embodiment of the invention. - With reference to
FIG. 1 , there is shown anaboveground swimming pool 10 in accordance with one embodiment of the invention. Theaboveground swimming pool 10 is preferably round but may be oval or any other shape, and includes a series ofposts 12 anchored to abottom ring 14 also called a rail which defines the perimeter of the bottom of theswimming pool 10. Theposts 12 are supporting a ledge 18 and partially supporting awall 16. Thewall 16 is typically made of a steel or aluminum sheet strong enough to resist the weight and pressure of the water contained therein. The top portion of theswimming pool 10 consists of theledge 18 which comprises a series ofledge sections 20 mounted between twoposts 12 and anchored onto to the upper portion of eachposts 12. Theledge 18 also called top seat or top rail in the industry defines the perimeter of theswimming pool 10 and extends the entire length of the perimeter of theswimming pool 10. Theledge sections 20 may be arc-shaped or straight depending on the design of theswimming pool 10. The assembly of theledge sections 20 onto the upper portions of theposts 12 are preferably hidden withpost caps 22. - The
aboveground swimming pool 10 is equipped with a water filtering system to ensure that the water contained therein is salubrious and clean. The filtering system includes apump 26 andfilter 24 which collects pool water through adrain 28 located at the bottom of theswimming pool 10 or through askimmer 29 located on thewall 16 at water level. The collected water is pumped and passed through the filtering system and either returned directly into theswimming pool 10 throughconduit 30 or is returned to theswimming pool 10 through aconduit 32 leading to asolar heating system 34 integrated into theledge 18 of theswimming pool 10. - The
solar heating system 34 consists of one or more water channels integrated into theledge 18 of theswimming pool 10 into which water from theswimming pool 10 is circulated along the perimeter of theswimming pool 10 as indicated by the arrows illustrating the path of the water through thesolar heating system 34, heated by the sun rays as it travels through the one or more water channels and returned back to theswimming pool 10. Connected together, theledge sections 20, each including one or water-circulating channels, define the solarwater heating system 34 wherein water is circulated along the perimeter of theswimming pool 10 and in the process is heated by the sun rays before being returned to the bottom portion of thepool 10 throughconduit 36. - With reference to
FIGS. 2 and 3 , a three-way valve 38 is provided to direct water from thepump 26 to either the solar water heating system 34 (FIG. 3 ) or directly back to thepool 10 through conduit 30 (FIG. 2 ). It is preferable to avoid circulating water through the solarwater heating system 34 when sun exposure is insufficient to cause an increase of the water temperature circulating therein such as during night hours or during the day when atmospheric conditions are overcast. In those conditions the three-way valve 38 directs the water from thepump 26 directly back into thepool 10 after filtering as shown inFIG. 2 . When there is sufficient sun exposure to cause an increase of the water temperature circulating through the solarwater heating system 34, the three-way valve 38 directs the water from thepump 26 into the solarwater heating system 34 throughconduit 32 as shown inFIG. 3 . - The three-
way valve 38 may also be in an intermediate position where a portion of the water from thepump 26 is returned directly back to thepool 10 throughconduit 30 and another portion of the water from thepump 26 is directed into the solarwater heating system 34 throughconduit 32. The three-way valve 38 can therefore adjust the volume of water going through solarwater heating system 34 to optimize the heat gain through the solarwater heating system 34. - The three-
way valve 38 may be operated manually in which case the user must manually change the setting of the three-way valve 38 according to the conditions (night, day, overcast). The three-way valve 38 may be operated by an electro-mechanical system controlled by a timer which directs water from thepump 26 into the solarwater heating system 34 during day time and directly back into thepool 10 during night time. Preferably, the three-way valve 38 is electronically controlled in response to a temperature sensor and/or a light sensor (not shown) signalling when there is sufficient sun exposure to cause an increase of the water temperature. With the temperature sensor, a temperature range can be defined in which the three-way valve 38 is set to the intermediate position to optimize the heat gain through the solarwater heating system 34 when the temperature reading is only slightly above the threshold between sufficient sun exposure and insufficient sun exposure. - Referring now to
FIG. 4 which illustrates a first embodiment of aledge section 20, eachledge section 20 includes an arc-shaped or straightstructural beam 40, asolar collector 50, and a transparent or semitransparent cover 60. Thestructural beam 40 has afirst end 42 and asecond end 44 which are anchored to twoconsecutive posts 12 of theswimming pool 10, a centralmain portion 45, aninner sidewall 46 and anouter sidewall 48, all extending from thefirst end 42 to thesecond end 44. Thesolar collector 50 is supported by the central main section of thestructural beam 40, flanked by the inner andouter sidewalls structural beam 40 by the transparent or semitransparent cover 60. In the embodiment shown, thecover 60 is arc-shaped to conform to the shape of thestructural beam 40 and designed to sit on top of the inner andouter sidewalls structural beam 40. Obviously, if thestructural beam 40 is straight, thecover 60 will also be straight in order to conform to the shape of the structural beam. Together, thestructural beam 40 and thecover 60 define aheating chamber 70 into which thesolar collector 50 is positioned and housed. - Each
solar collector 50 includes aninlet port 52 and anoutlet port 54 and acentral section 56 preferably comprising a series ofparallel water channels 58 connected to the inlet andoutlet ports manifold sections solar collector 50 are connected together through the respective inlet andoutlet ports flexible connector 62 positioned above theposts 12 that allow water to circulate from oneledge section 20 to anadjacent ledge section 20 and define the flow path of the water through thesolar heating system 34. Thewater channels 58, themanifold sections outlet ports pump 26 to circulate water through the solarwater heating system 34. - The
central section 56 of thesolar collector 50 is wide to maximise exposure to the sun and provide optimum heat transfer. Thesolar collector 50 is preferably of dark color to maximise heat absorption. - The
structural beams 40 as well as thesolar collectors 50 are preferably made from injection-moulded thermoplastics. However, thestructural beams 40 and/or thesolar collectors 50 can also be made from rolled or extruded aluminum. - Referring now to
FIG. 4 a which illustrates a second embodiment of theledge 18 of theswimming pool 10 in which theledge sections 20 are not equipped with covers 60. The construction and assembly of theledge sections 20 is similar to the one described with reference toFIG. 4 with the exception that thesolar collectors 50 are directly exposed to the sun and the water circulated therein is heated by convection through the exposed surfaces of thewater channels 58. - With reference to
FIG. 5 which is a cross sectional view of the first embodiment of theledge 18 shown inFIG. 4 , theheating chamber 70 is the inner space defined by the centralflat portion 45, inner andouter sidewalls structural beam 40 and the transparent orsemi-transparent cover 60. The inner surfaces of the centralflat portion 45, inner andouter sidewalls structural beam 40 defining the lower portion of theheating chamber 70 may be coated with reflective layers to increase heat generation inside theheating chamber 70. Sun rays 72 passed through the transparent orsemi-transparent cover 60 and heat the dark material of thewater channels 58 of thesolar collector 50. Heat builds up inside theheating chamber 70 as heat is prevented from escaping thereby generating a greenhouse effect. The heat is transferred to the water circulating through thewater channels 58. The large surface area of water in contact with the inner walls of thewater channels 58 provides optimal heat transfer efficiency. - With reference to
FIG. 5 a which is a cross sectional view of a variation of the second embodiment of theledge 18 shown inFIG. 4 a. The centralmain portion 45 of thestructural beam 40 is shaped to form acavity 41 into which thesolar collector 50 is inserted such that the upper surface of thesolar collector 50 is levelled with the upper portions of the inner andouter sidewalls solar collector 50 is directly exposed to thesunrays 72 absorbing heat which is transferred by convection to the water circulated inside thewater channels 58. - Referring back to
FIGS. 4 and 5 , the surface of the transparent or semitransparent cover 60 is shown as a smooth surface however the surfaces of thecover 60 could be designed with corrugated lines that would act as lens and increase the concentration of sunrays onto thewater channels 58 of thesolar collector 50. - An opaque cover 60 (not shown) may also be used instead of a transparent or
semi-transparent cover 60. With anopaque cover 60, heat is transferred by convection to thesolar collector 50 instead of the greenhouse effect previously described. - With reference to
FIG. 6 , there is shown variations in the design of the cross section ofwater channels 58. The cross section ofwater channels 58 may be a series of circular tubes as represented inFIG. 6 a); a series of trapezoid tubes as represented inFIG. 6 b); a series of ovoid tubes as represented inFIG. 6 c); a series of rectangular tubes as represented inFIG. 6 d); or a wide and shallow single channel as represented inFIG. 6 e). - Referring now to
FIG. 7 , thefirst end 42 a of a firststructural beam 40 a and thesecond end 44 b of a secondstructural beam 40 b of twoadjacent ledge sections post 12 viafasteners 74 inserted intoapertures 76 located on the inner side of thestructural beams oblong apertures 78 located on the outer side of thestructural beams oblong apertures 78 can accommodate variations of the angle between the twoledge sections ledge sections inlet port 52 a of a firstsolar collector 50 a the outlet port 54 b of a secondsolar collector 50 b are both connected to opposing ends of aflexible connector 62 via threadedannular caps flexible connector 62 against theinlet port 52 a and outlet port 54 b to provide a watertight connection between the first and secondsolar collectors solar collectors connector 60 such as bushings or clamps can also be used instead of threadedannular caps connector 62 also provides accommodation for variations of the angle between the twoledge sections - A
post cap 22 is positioned over the assembledledge sections solar collectors adjacent heating chambers 70. Post caps 22 may also be positioned over the connecting portions of theledge sections 20 shown inFIG. 4 a to hide the various connecting parts in order to provide an aesthetically pleasing pool ledge. - Referring now to
FIG. 8 , there is illustrated a third embodiment of aledge section 20. In this particular embodiment, the structural beam and the solar collector are formed into a one-piece mouldedstructural collector 85. Thestructural collector 85 has afirst end 86 and asecond end 87 which are anchored to twoconsecutive posts 12 of theswimming pool 10. Thestructural collector 85 includes a centralflat portion 88 which includes a series ofwater channels 58 as previously described, aninner sidewall 90 and anouter sidewall 91, all extending from thefirst end 86 to thesecond end 87. The transparent or semitransparent cover 60 is identical to the one shown inFIG. 4 and is designed to sit on top of the inner andouter sidewalls structural collector 85 and thecover 60 define aheating chamber 92. Thestructural collector 85 are connected together through the respective inlet andoutlet ports flexible connector 62 positioned above theposts 12 that allow water to circulate from oneledge section 20 to anadjacent ledge section 20 and define the flow path of the water through thesolar heating system 34. - Referring to
FIG. 8 a which illustrates a fourth embodiment of theswimming pool 10 in which theledge sections 20 are not equipped with covers 60. The construction and assembly of theledge sections 20 is similar to the one described with reference toFIG. 8 with the exception that thestructural collectors 85 are directly exposed to the sun and the water circulated therein is heated by convection through the exposed surfaces of thewater channels 58. - Referring to
FIG. 9 , which is a cross-sectional view of a variation of thestructural collector 85 shown inFIG. 8 a, the inner andouter sidewalls structural collector 85 to form a one piece unit. The upper surface of thestructural collector 85 is directly exposed to thesunrays 72 absorbing heat which is transferred by convection to the water circulated inside thewater channels 58. - Referring now to
FIG. 10 , the most common diameters of aboveground pools are 15 ft, 18 ft, 21 ft, 24 ft, and 27 ft, and the number ofledge sections 20 required to assemble the circumference defined by the typical diameters of aboveground pools are respectively 10, 12, 14, 16 and 18 with ledge sections averaging 56 inches in length. Asingle ledge section 20 having a fixed radius of curvature and a fixed length can be used to accommodate all the common diameters of aboveground pools and therefore reduces the inventory requirement to satisfy customer needs and reduce overall tooling cost. To accommodate various pool diameters, thesingle ledge section 20 has to be assembled with varying angles. As previously described with reference toFIG. 7 , thestructural beams 40 orstructural collector 85 of eachledge section 20 is provided withoblong apertures 78 or multiple apertures located on the outer side of thestructural beam 40 orstructural collector 85 such that the apertures can accommodate variations of the angle between the twoledge sections 20. As shown inFIG. 9 the angles between the twoledge sections 20 varies from 216° for a 15 ft diameter pool to 200° for a 27 ft diameter pool. - The variations of length between the anchoring points of the
ledge sections 20 to accommodate the diameters of aboveground pools ranging from 15 ft to 27 ft is approximately +/− 5/16 of an inch. This slight variation is accommodated either by the position of the pre-taped anchoring holes on the top portion of theposts 12 or by providing that the anchoring holes on the top portion of theposts 12 are drilled during assembly. - Obviously, one may choose to manufacture
specific ledge sections 20 for each of the common diameters of aboveground pools. - With reference to
FIG. 11 , there is shown a second embodiment of thesolar heating system 34 in which a series ofparallel water channels 100 acting as solar collector are embedded into the ledge ortop rail 18 of theswimming pool 10 and extend the entire perimeter of theswimming pool 10. Theparallel water channels 100 are connected together via aninlet manifold 102 and anoutlet manifold 104. Water from the pump 26 (FIG. 3 ) enters through theinlet manifold 102 where it is distributed into each of theparallel water channels 100. Water then circulates around the entire length of the perimeter of theswimming pool 10 in eachindividual water channels 100 where it is heated by the sunrays and returned back into theswimming pool 10 through theoutlet manifold 104. - With reference to
FIG. 12 , thefirst end 123 of afirst ledge section 120 a and thesecond end 124 of asecond ledge section 120 b are anchored onto apost 12 viafasteners 74 inserted intoapertures 76 located on the inner side of theledge section oblong apertures 78 located on the outer side of theledge section oblong apertures 78 can accommodate variations of the angle between the twoledge sections ledge sections - The
ledge sections main portion 122 shaped to form acavity 121 into which the series ofparallel water channels 100 are embedded. Theledge sections cover 60 as previously described. Theinlet manifold 102 connects the inlet side of theparallel water channels 100 together and theoutlet manifold 104 connects the outlet side of theparallel water channels 100 together. Theinlet port 103 of theinlet manifold 102 is connected through an elbow (not shown) via anannular collar 106 to a conduit 32 (FIG. 1 ) located inside thepost 12 connected to the water filtering system of the swimming pool allowing water from the filtering system to enter into thesolar heating system 34 integrated into theledge 18 as depicted by arrow A. Theinlet port 105 of theoutlet manifold 104 is connected through an elbow (not shown) via anannular collar 106 to a conduit 36 (FIG. 1 ) located inside thepost 12 which returns heated water from thesolar heating system 34 back into theswimming pool 10 as depicted by arrow B. - A
post cap 22 is positioned over the assembledledge sections - With reference to
FIG. 13 , there is shown a third embodiment of the solar heating system in which asingle water channel 110 acting as solar collector is embedded into the ledge ortop rail 18 of theswimming pool 10 spiralling many folds over the entire length of the perimeter of theswimming pool 10. Water from the pump 26 (FIG. 3 ) enters through aninlet port 112 and circulates around the perimeter of theswimming pool 10 in the spirallingwater channel 110 where it is heated by the sunrays and returned back into theswimming pool 10 through anoutlet port 114. - With reference to
FIG. 14 , the assembly and features of the first andsecond ledge section FIG. 12 . Theledge sections main portion 122 shaped to form acavity 121 into which the spirallingwater channel 110 is embedded. Theledge sections cover 60 as previously described. Theinlet port 112 connects the inlet side of the spirallingwater channel 110 through an elbow (not shown) via anannular collar 106 to a conduit 32 (FIG. 1 ) located inside thepost 12 connected to the water filtering system of the swimming pool allowing water from the filtering system to enter into thesolar heating system 34 integrated into theledge 18 as depicted by arrow A. Theoutlet port 114 connects the outlet side of the spirallingwater channel 110 to a conduit 36 (FIG. 1 ) located inside thepost 12 through an elbow (not shown) secured with anannular collar 106 which returns heated water from thesolar heating system 34 back into theswimming pool 10 as depicted by arrow B. - A
post cap 22 is positioned over the assembledledge sections - With reference to
FIG. 15 , thewater channels 100 or the spirallingwater channel 110 are embedded into the ledge ortop rail 18 in theledge section 120 of similar design to thestructural beam 40 shown inFIG. 5 . As previously described, theledge section 120 includes a centralmain portion 122 shaped to form acavity 121 into which thewater channels 100 or the spirallingwater channel 110 are embedded. Theledge section 120 includes acover 60 which may be transparent, semi-transparent or opaque. Thecavity 121 and thecover 60 together form aheating chamber 70. Thesunrays 72 passed through thecover 60 and heat thewater channels 100 or the spirallingwater channel 110 and heat builds up inside theheating chamber 70 as heat is prevented from escaping thereby generating a greenhouse effect. The heat is transferred to the water circulating through thewater channels 100 or the spirallingwater channel 110. - With reference to
FIG. 16 , thewater channels 100 or the spirallingwater channel 110 are embedded into the top of the ledge ortop rail 18 in aledge section 120 of similar design to thestructural beam 40 shown inFIG. 5 a. Theledge section 120 includes a centralmain portion 122 shaped to form acavity 121 into which thewater channels 100 or the spirallingwater channel 110 are embedded and are directly exposed to thesunrays 72 absorbing heat which is transferred by convection to the water circulated inside the water channel(s) 100 or 110. - With reference to
FIG. 17 , there is shown another embodiment of the solar water heating system which consists ofledge sections 130 mounted onto the ledge ortop rail 18 of a standard swimming pool. Eachledge section 130 includes aframe 132 housing a series ofwater channels 135. The bottom part of theframe 132 is connected to aclamping device 136 comprising afirst clamp 137 connected to asecond clamp 138 via a slidingmechanism 139 adapted to adjust theclamping device 136 to the width of the existingledge 18 of the standard swimming pool. Theledge sections 130 may therefore be solidly clamped on to the existingledge 18 of the standard swimming pool and the solar water heating system of the present invention installed onto a standard swimming pool as an add-on. Theclamping device 136 is one example of a fastening device for securing theledge sections 130 to an existingledge 18 however other fastening device may be used fasteners (screws, nuts and bolts, adhesive, straps, etc.). As shown inFIG. 17 , theframe 132 includes acover 60 as previously described relative to other embodiments of the invention. -
FIG. 17 a illustrates an embodiment of theledge sections 130 which does not include acover 60. Theclamping device 136 is omitted but is part of theledge sections 130. -
FIG. 17 b illustrates another embodiment of an add-onledge section 140 in which thewater channels 142 are molded together to form astructural ledge section 140 which also comprises a clamping device 136 (not shown) to secure theledge section 140 to the ledge of an existing swimming pool. - The
ledge sections ledge sections water channels 135 as shown inFIGS. 17 and 17 a may be configured assolar collectors 50 as described relative toFIGS. 4-7 and connected together viaflexible connectors 62 or they may be configured as thecontinuous water channels 100 or the spirallingwater channel 110 described relative toFIGS. 11 and 13 and housed into theframe 132. - The present invention has been described with reference to an aboveground swimming pool. However, the solar water heating system described herein may be integrated into any swimming pool that consists of modular sections assembled together to form a swimming pool such as semi in ground swimming pools and in ground swimming pool in which the wall of the pool consists of modular sections assembled together.
- Modifications and improvements to the above-described embodiments of the present invention may become apparent to those skilled in the art. The foregoing description is intended to be exemplary rather than limiting. The scope of the present invention is therefore intended to be limited solely by the scope of the appended claims.
Claims (21)
1. A swimming pool comprising a wall, a ledge positioned on top of the wall and defining a perimeter of the swimming pool, and a solar water heating system integrated to the ledge, the ledge comprising a series of ledge sections, the solar water heating system extending along the perimeter of the swimming pool and comprising at least one water channel extending through the ledge sections wherein water from the swimming pool is circulated into the at least one water channel along the perimeter of the swimming pool, heated by sun rays and returned back to the swimming pool.
2. A swimming pool as defined in claim 1 wherein the least one water channel includes a single spiralling water channel extending along the entire perimeter of the swimming pool.
3. A swimming pool as defined in claim 1 wherein the least one water channel includes a plurality of parallel water channels extending along the perimeter of the swimming pool.
4. A swimming pool as defined in claim 3 further comprising an inlet manifold and an outlet manifold.
5. A swimming pool as defined in claim 1 wherein a plurality of the series of ledge sections include a solar collector having at least one water channel, a first solar collector connected to an adjacent solar collector of an adjacent ledge section or to a conduit to form the solar water heating system.
6. A swimming pool as defined in claim 5 wherein the solar collector comprises a central wide section including the at least one water channel, an inlet port and an outlet port, the inlet port and the outlet port being connected to the at least one water channel through a manifold.
7. A swimming pool as defined in claim 6 further comprising a flexible connector connecting the outlet port of a first solar collector to the inlet port of a second solar collector.
8. A swimming pool as defined in claim 1 wherein the plurality of the series of ledge sections each includes a cover, the ledge section and the cover together defining a heating chamber in which the at least one water channel is housed.
9. A swimming pool as defined in claim 1 wherein a plurality of the series of ledge sections include a structural beam.
10. A swimming pool as defined in claim 9 wherein the structural beam includes a first end and a second end, a central main portion, an inner sidewall and an outer sidewall; the central main portion, the inner wall and the outer wall extending from the first end to the second end; the at least one water channel being supported by the central main portion of the structural beam.
11. A swimming pool as defined in claim 10 wherein the first end and the second end of the structural beam include apertures adapted for mounting a first ledge section onto a post at varying angles relative to an adjacent ledge section.
12. A swimming pool as defined in claim 9 wherein the structural beam includes a solar collector having at least one water channel, the structural beam and the solar collector together forming a one-piece structural collector having a first end and a second end, a first one-piece structural collector connected to an adjacent one-piece structural collector of an adjacent ledge section or to a conduit to form the solar water heating system.
13. A swimming pool as defined in claim 12 wherein the first end and the second end of the one-piece structural collector include apertures adapted for mounting a first ledge section onto a post at varying angles relative to the adjacent ledge section.
14. A swimming pool as defined in claim 12 wherein the one-piece structural collector further comprises a central main portion including the solar collector, an inner sidewall and an outer sidewall; the central main portion, the inner sidewall and the outer sidewall extending from the first end to the second end.
15. A swimming pool as defined in claim 8 wherein the cover is transparent or semi-transparent.
16. A swimming pool as defined in claim 8 wherein the cover is opaque.
17. A swimming pool as defined in claim 5 wherein the central wide section of the solar collector comprises a series of parallel water channels.
18. A solar water heating system for a swimming pool having a wall and a ledge; the solar water heating system comprising a plurality of ledge sections each including a fastening device for securing each ledge section to the ledge of an existing swimming pool, and at least one water channel extending along a perimeter of the ledge of the swimming pool through which water is circulated and heated by sun rays.
19. A solar water heating system as defined in claim 18 wherein the fastening device includes a clamping device.
20. A solar water heating system as defined in claim 18 comprising a plurality of parallel water channels configured as solar collectors each comprising an inlet port and an outlet port connected to the parallel water channel through a manifold; a flexible connector connecting the outlet port of a first solar collector to the inlet port of a second solar collector.
21. A solar water heating system as defined in claim 18 wherein the least one water channel includes a single spiralling water channel extending along the entire perimeter of the swimming pool.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/600,919 US20130327316A1 (en) | 2012-06-08 | 2012-08-31 | Swimming pool solar heating system |
CA 2824023 CA2824023A1 (en) | 2012-08-31 | 2013-08-15 | Swimming pool solar heating system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261657222P | 2012-06-08 | 2012-06-08 | |
US13/600,919 US20130327316A1 (en) | 2012-06-08 | 2012-08-31 | Swimming pool solar heating system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130327316A1 true US20130327316A1 (en) | 2013-12-12 |
Family
ID=49714304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/600,919 Abandoned US20130327316A1 (en) | 2012-06-08 | 2012-08-31 | Swimming pool solar heating system |
Country Status (1)
Country | Link |
---|---|
US (1) | US20130327316A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140305425A1 (en) * | 2013-04-12 | 2014-10-16 | Jeffrey D. Prutsman | Solar collector comprising an opaque cover |
FR3016205A1 (en) * | 2014-01-09 | 2015-07-10 | Bernard Soulagnet | DEVICE FOR HEATING THE WATER OF A SWIMMING POOL, BY TERRACE EXPOSED TO SOLAR RADIATION |
US9366046B1 (en) | 2014-12-19 | 2016-06-14 | Robert M. Rodrick | Apparatus and method for cooling swimming pool water |
WO2017005988A1 (en) * | 2015-07-07 | 2017-01-12 | Soulagnet Bernard | Device for heating the water of a swimming pool, by a decking exposed to solar radiation |
US9551535B2 (en) | 2014-12-19 | 2017-01-24 | Robert M. Rodrick | Apparatus and method for cooling selected portions of swimming pool water |
FR3065976A1 (en) * | 2016-05-05 | 2018-11-09 | Serge Wrobleski | ABOVE GROUND POOL |
US10935281B1 (en) * | 2013-11-08 | 2021-03-02 | National Technology & Engineering Solutions Of Sandia, Llc | Solar thermal receivers with multi-scale light trapping geometry and features |
US11319937B2 (en) * | 2019-10-16 | 2022-05-03 | Hpm Holding B.V. | Heat receiver for urban concentrated solar power |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874132A (en) * | 1973-10-01 | 1975-04-01 | Ideal Recreational Products In | Swimming pool ledge structure |
US3945059A (en) * | 1974-08-09 | 1976-03-23 | Lawrence Peska Associates, Inc. | Swimming pool water heating system |
US4178910A (en) * | 1976-06-25 | 1979-12-18 | Gramer Eben J | Solar collector and system for mounting a plurality of solar collectors on a surface |
US4312323A (en) * | 1978-11-23 | 1982-01-26 | Michel Domenech | Solar swimming-pool water heater |
US4932085A (en) * | 1984-07-09 | 1990-06-12 | Allmark Industries, Inc. | Above ground swimming pool with improved rib structure and modular deck panels for solar heating of pool water |
US20100132107A1 (en) * | 2007-05-09 | 2010-06-03 | Jose Antonio Aguilera Galeote | Border for swimming pools |
-
2012
- 2012-08-31 US US13/600,919 patent/US20130327316A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3874132A (en) * | 1973-10-01 | 1975-04-01 | Ideal Recreational Products In | Swimming pool ledge structure |
US3945059A (en) * | 1974-08-09 | 1976-03-23 | Lawrence Peska Associates, Inc. | Swimming pool water heating system |
US4178910A (en) * | 1976-06-25 | 1979-12-18 | Gramer Eben J | Solar collector and system for mounting a plurality of solar collectors on a surface |
US4312323A (en) * | 1978-11-23 | 1982-01-26 | Michel Domenech | Solar swimming-pool water heater |
US4932085A (en) * | 1984-07-09 | 1990-06-12 | Allmark Industries, Inc. | Above ground swimming pool with improved rib structure and modular deck panels for solar heating of pool water |
US20100132107A1 (en) * | 2007-05-09 | 2010-06-03 | Jose Antonio Aguilera Galeote | Border for swimming pools |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140305425A1 (en) * | 2013-04-12 | 2014-10-16 | Jeffrey D. Prutsman | Solar collector comprising an opaque cover |
US9829216B2 (en) * | 2013-04-12 | 2017-11-28 | Jeffrey D. Prutsman | Solar collector comprising an opaque cover |
US10935281B1 (en) * | 2013-11-08 | 2021-03-02 | National Technology & Engineering Solutions Of Sandia, Llc | Solar thermal receivers with multi-scale light trapping geometry and features |
US20210254861A1 (en) * | 2013-11-08 | 2021-08-19 | National Technology & Engineering Solutions Of Sandia, Llc | Solar thermal receivers with multi-scale light trapping geometry and features |
FR3016205A1 (en) * | 2014-01-09 | 2015-07-10 | Bernard Soulagnet | DEVICE FOR HEATING THE WATER OF A SWIMMING POOL, BY TERRACE EXPOSED TO SOLAR RADIATION |
US9366046B1 (en) | 2014-12-19 | 2016-06-14 | Robert M. Rodrick | Apparatus and method for cooling swimming pool water |
US9551535B2 (en) | 2014-12-19 | 2017-01-24 | Robert M. Rodrick | Apparatus and method for cooling selected portions of swimming pool water |
WO2017005988A1 (en) * | 2015-07-07 | 2017-01-12 | Soulagnet Bernard | Device for heating the water of a swimming pool, by a decking exposed to solar radiation |
FR3065976A1 (en) * | 2016-05-05 | 2018-11-09 | Serge Wrobleski | ABOVE GROUND POOL |
US11319937B2 (en) * | 2019-10-16 | 2022-05-03 | Hpm Holding B.V. | Heat receiver for urban concentrated solar power |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130327316A1 (en) | Swimming pool solar heating system | |
US4114597A (en) | Unitary solar collector | |
US4038967A (en) | Solar heating system and components thereof | |
CN100430670C (en) | Solar energy collecting pipe | |
US20080236572A1 (en) | Solar heating panel fabricated from multi-wall plastic sheets | |
US9267710B2 (en) | Solar thermal collectors and thin plate heat exchangers for solar applications | |
US6508247B1 (en) | Solar swimming pool heater panels | |
GB2462174A (en) | Solar collector comprising means for fluid conduit location and support | |
US20120279493A1 (en) | Solar water heater | |
US6604521B2 (en) | Solar collector pipe | |
US5601074A (en) | Automatic solar heating system | |
US20100282240A1 (en) | Multi-mode, eco-friendly swimming pool heater system | |
US4122829A (en) | Solar energy collector | |
US4082081A (en) | Portable light-weight solar heater | |
CA2824023A1 (en) | Swimming pool solar heating system | |
WO2018122870A1 (en) | Curved surface absorber type solar fluid heater | |
GB1594511A (en) | Solar heat collectors | |
US6105570A (en) | Solar power heating system | |
NL2004553C2 (en) | MULTIFUNCTIONAL BUILDING AND SOLAR COLLECTOR SYSTEM. | |
EP0012028B1 (en) | Solar energy collector assembly | |
US20150241090A1 (en) | Array of solar collectors also functioning as a fence | |
US20050103325A1 (en) | Thermal water heating module with enlarged energy absorbing surface and insulation against heat loss | |
GB2377011A (en) | A solar heating panel | |
NL2003418C2 (en) | HEATING ELEMENT AND HEATING SYSTEM FOR POOL WATER AND POOL. | |
KR101187867B1 (en) | Solar heat boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BRIO INNOVATION INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOURGEOIS, LUC;GIBEAULT, MARC;REEL/FRAME:028882/0861 Effective date: 20120605 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |