US20130315893A1 - Humanized anti-il-20 antibody and uses thereof - Google Patents
Humanized anti-il-20 antibody and uses thereof Download PDFInfo
- Publication number
- US20130315893A1 US20130315893A1 US13/477,476 US201213477476A US2013315893A1 US 20130315893 A1 US20130315893 A1 US 20130315893A1 US 201213477476 A US201213477476 A US 201213477476A US 2013315893 A1 US2013315893 A1 US 2013315893A1
- Authority
- US
- United States
- Prior art keywords
- seq
- antibody
- amino acid
- acid sequence
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 39
- 201000010099 disease Diseases 0.000 claims abstract description 31
- 102000004114 interleukin 20 Human genes 0.000 claims abstract description 28
- 108090000681 interleukin 20 Proteins 0.000 claims abstract description 28
- 208000001132 Osteoporosis Diseases 0.000 claims abstract description 15
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 13
- 201000011510 cancer Diseases 0.000 claims abstract description 13
- 206010039073 rheumatoid arthritis Diseases 0.000 claims abstract description 12
- 230000019491 signal transduction Effects 0.000 claims abstract description 12
- 208000027866 inflammatory disease Diseases 0.000 claims abstract description 6
- 208000001647 Renal Insufficiency Diseases 0.000 claims abstract description 5
- 208000006011 Stroke Diseases 0.000 claims abstract description 5
- 201000006370 kidney failure Diseases 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 19
- 230000027455 binding Effects 0.000 claims description 14
- 239000000427 antigen Substances 0.000 claims description 13
- 102000036639 antigens Human genes 0.000 claims description 13
- 108091007433 antigens Proteins 0.000 claims description 13
- 230000001404 mediated effect Effects 0.000 claims description 13
- 239000012634 fragment Substances 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 230000035772 mutation Effects 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 6
- 208000003076 Osteolysis Diseases 0.000 claims description 5
- 125000000539 amino acid group Chemical group 0.000 claims description 5
- 208000029791 lytic metastatic bone lesion Diseases 0.000 claims description 5
- 206010006187 Breast cancer Diseases 0.000 claims description 4
- 208000026310 Breast neoplasm Diseases 0.000 claims description 4
- 206010009944 Colon cancer Diseases 0.000 claims description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 4
- 208000034578 Multiple myelomas Diseases 0.000 claims description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 4
- 206010060862 Prostate cancer Diseases 0.000 claims description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 4
- 208000029742 colonic neoplasm Diseases 0.000 claims description 4
- 201000005202 lung cancer Diseases 0.000 claims description 4
- 208000020816 lung neoplasm Diseases 0.000 claims description 4
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 3
- 208000002966 Giant Cell Tumor of Bone Diseases 0.000 claims description 3
- 208000003445 Mouth Neoplasms Diseases 0.000 claims description 3
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 3
- 201000011143 bone giant cell tumor Diseases 0.000 claims description 3
- 201000004101 esophageal cancer Diseases 0.000 claims description 3
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 claims description 3
- 206010002261 Androgen deficiency Diseases 0.000 claims description 2
- 206010030247 Oestrogen deficiency Diseases 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 8
- 150000001413 amino acids Chemical group 0.000 description 36
- 241000282414 Homo sapiens Species 0.000 description 31
- 239000003795 chemical substances by application Substances 0.000 description 22
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 19
- 108020004707 nucleic acids Proteins 0.000 description 16
- 150000007523 nucleic acids Chemical class 0.000 description 16
- 102000039446 nucleic acids Human genes 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 14
- 239000003814 drug Substances 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 11
- 125000003729 nucleotide group Chemical group 0.000 description 11
- 108010076504 Protein Sorting Signals Proteins 0.000 description 10
- 239000002243 precursor Substances 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- 208000035475 disorder Diseases 0.000 description 8
- 210000002997 osteoclast Anatomy 0.000 description 8
- 229940124597 therapeutic agent Drugs 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 230000004069 differentiation Effects 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 206010065687 Bone loss Diseases 0.000 description 5
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 5
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 230000000799 fusogenic effect Effects 0.000 description 5
- 210000004602 germ cell Anatomy 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- HLXHCNWEVQNNKA-UHFFFAOYSA-N 5-methoxy-2,3-dihydro-1h-inden-2-amine Chemical compound COC1=CC=C2CC(N)CC2=C1 HLXHCNWEVQNNKA-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 238000011287 therapeutic dose Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 229920000858 Cyclodextrin Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 108010039918 Polylysine Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000008827 biological function Effects 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 210000002798 bone marrow cell Anatomy 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 238000000302 molecular modelling Methods 0.000 description 3
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 3
- 229920000656 polylysine Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101001010591 Homo sapiens Interleukin-20 Proteins 0.000 description 2
- 101001044895 Homo sapiens Interleukin-20 receptor subunit beta Proteins 0.000 description 2
- 102100022705 Interleukin-20 receptor subunit beta Human genes 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 2
- 101710127797 Macrophage colony-stimulating factor 1 Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 208000035896 Twin-reversed arterial perfusion sequence Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- -1 cationic lipid Chemical class 0.000 description 2
- 230000005754 cellular signaling Effects 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 229940097362 cyclodextrins Drugs 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000009245 menopause Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 206010051728 Bone erosion Diseases 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 102100022706 Interleukin-20 receptor subunit alpha Human genes 0.000 description 1
- 101710174006 Interleukin-20 receptor subunit alpha Proteins 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- 108010007622 LDL Lipoproteins Proteins 0.000 description 1
- 102000007330 LDL Lipoproteins Human genes 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 102000014128 RANK Ligand Human genes 0.000 description 1
- 108010025832 RANK Ligand Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229940087410 dexasone Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 108010027445 interleukin-22 receptor Proteins 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000005088 multinucleated cell Anatomy 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 230000020395 negative regulation of osteoclast differentiation Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 235000021163 supper Nutrition 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- Interleukin 20 a pleiotropic inflammatory cytokine
- IL-20 is a member of the IL-10 family, which includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26.
- IL-20 is expressed in monocytes, epithelial cells, and endothelial cells. It acts on multiple types of cells via activating a heterodimer receptor complex of either IL-20R1/IL-20R2 or IL-22R1/IL-20R2.
- IL-20 has been found to be involved in various diseases, such as psoriasis, rheumatoid arthritis, atherosclerosis, ischemic stroke, osteoporosis, and renal failure.
- Certain anti-IL-20 antibodies have been reported to possess therapeutic effects in treating IL-20 associated diseases, e.g., osteoporosis and rheumatoid arthritis.
- Monoclonal antibodies derived from non-human species are routinely used in biochemistry, molecular biology, and medical research. In addition, they are attractive therapeutic agents because of their high target specificity and effector functionality.
- one problem associated with the use of non-human antibodies as therapeutic agents is their immunogenicity, which substantially reduces the in vivo effectiveness of such antibodies.
- One approach to reduce immunogenicity is humanization, i.e., modifying non-human antibodies to increase their similarity to naturally-occurring human antibodies.
- the present disclosure is based on the development of two humanized anti-IL-20 antibodies, which exhibited unexpectedly high affinity to IL-20 (i.e., K d ⁇ 3.6 ⁇ 10 ⁇ 9 ) and therapeutic effects in treating IL-20-associated diseases, e.g., osteoporosis. Accordingly, one 2 5 aspect of the present disclosure features a humanized antibody that binds IL-20, particularly human IL-20.
- This antibody comprises a heavy chain variable region (V H ), which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:1 or SEQ ID NO:3, and a light chain variable region (V L ), which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:5 or SEQ ID NO:7.
- the humanized anti-IL-20 antibody comprises a V H chain that comprises SEQ ID NO:1 or SEQ ID NO:3 and a V L chain that comprises SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:15.
- the humanized anti-IL-20 antibody described above can be a full-length antibody (e.g., an IgG molecule), an antigen-binding fragment thereof (e.g., Fab), or a single-chain antibody.
- the present disclosure provides an isolated nucleic acid comprising a nucleotide sequence encoding (i) a V H chain, which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:1 or SEQ ID NO:3, (ii) a V L chain, which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:5 or SEQ ID NO:7, or (iii) both.
- the nucleic acid comprises (i) a nucleotide sequence of SEQ ID NO:2 or SEQ ID NO:4, (ii) a nucleotide sequence of SEQ ID NO:6 or SEQ ID NO:8, or (iii) both.
- vectors which comprise the just-described nucleic acids, and host cells which comprise such vectors.
- the vectors are expression vectors and the nucleic acids coding for the V H and/or V L chains are in operable linkage to a suitable promoter.
- Each of the V H and V L coding sequences can be in operably linkage with an individual promoter.
- both of the V H and V L genes can be under the control of a common promoter.
- the present disclosure provides methods for treating diseases associated with an IL-20-mediated signaling pathway, comprising administering to a patient in need thereof an effective amount of the humanized anti-IL-20 antibody described herein, either the antibody per se, or a plasmid(s) for expressing such.
- Diseases associated with the IL-20 mediated signaling pathway include, but are not limited to osteoporosis, rheumatoid arthritis, cancer, stroke, or renal failure.
- the disease is osteoporosis, which can be caused by an inflammatory disease (e.g., rheumatoid arthritis), estrogen deficiency (e.g., menopause), androgen deficiency (e.g., andropause), or cancer-induced osteolysis.
- the disease is cancer, such as breast cancer, prostate cancer, colon cancer, lung cancer, renal cell carcinoma, giant cell tumor of bone, oral cancer, esophagus cancer, or multiple myeloma.
- a pharmaceutical composition comprising the humanized anti-IL-20 antibody described herein or a nucleic acid encoding the V H chain of the antibody, the V L chain of the antibody, or both, and a pharmaceutically acceptable carrier; (ii) the just-noted pharmaceutical composition for use in treating a disease associated with an IL-20-mediated signaling pathway, such as those described above, and (iii) the use of the humanized anti-IL-20 antibody or its encoding nucleic acid(s)/vectors in the manufacture of a medicament for the treatment of any of the above described diseases.
- FIG. 1 is a chart showing the inhibitory effects of a humanized anti-IL-20 antibody on osteoclast differentiation, as compared with the effects of the parent mouse monoclonal antibody mAb 7E and a chimeric antibody derived therefrom.
- Bone marrow-derived hematopoetic stem cells were cultured with MCSF and RANKL to drive osteoclast differentiation.
- SEQ ID NO:1 is the amino acid sequence of the precursor V H chain variable region of exemplary humanized anti-IL-20 antibodies HL1 and HL2.
- SEQ ID NO:2 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:1.
- SEQ ID NO:3 is the amino acid sequence of the mature V H chain variable region (which lacks the signal peptide) of the exemplary humanized anti-IL-20 antibodies HL1 and HL2.
- SEQ ID NO:4 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:3.
- SEQ ID NO:5 is the amino acid sequence of the precursor V L chain variable region of exemplary humanized anti-IL-20 antibody HL2.
- SEQ ID NO:6 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:5.
- SEQ ID NO:7 is the amino acid sequence of the mature V L chain variable region (which lacks the signal peptide) of exemplary humanized anti-IL-20 antibody HL2.
- SEQ ID NO:8 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:7.
- SEQ ID NO:9 is the amino acid sequence of the precursor V H chain variable region of monoclonal antibody 7E.
- SEQ ID NO:10 is the amino acid sequence of the precursor V L chain variable region of monoclonal antibody 7E.
- SEQ ID NO:11 is the amino acid sequence of the mature V H chain variable region (which lacks the signal peptide) of monoclonal antibody 7E.
- SEQ ID NO:12 is the amino acid sequence of human germline antibody V H segment J606.4.82.
- SEQ ID NO:13 is the amino acid sequence of the framework regions in human antibody L06102 V H chain (mature form).
- SEQ ID NO:14 is the amino acid sequence of the mature V L chain variable region (which lacks the signal peptide) of monoclonal antibody 7E.
- SEQ ID NO:15 is the amino acid sequence of the mature V L chain variable region (which lacks the signal peptide) of exemplary humanized anti-IL-20 antibody HL1.
- SEQ ID NO:16 is the amino acid sequence of human germline antibody bd2 V L segment.
- SEQ ID NO:17 is the amino acid sequence of the framework regions in human antibody BG758592 V L chain (mature form).
- Described herein are humanized anti-IL-20 antibodies and their uses in treating diseases associated with an IL-20-mediated signaling pathway.
- humanized anti-IL-20 antibodies described herein were designed based on a parent mouse monoclonal antibody 7E, which is described in U.S. Pat. Nos. 7,435,800 and 7,786,274, and also in Example 1 below.
- a “humanized antibody” can be an antibody derived from modifying a non-human antibody to replace certain antibody fragments (e.g., framework regions) with those from a human antibody so as to reduce immunogenicity in humans.
- the humanized antibody described herein can be in any antibody form. In some embodiments, they are intact immunoglobulin molecules (full-length antibodies), including IgG, IgA, IgD, IgE, and IgM. In other embodiments, the humanized antibodies are antigen binding fragments thereof, e.g., Fab, F(ab′) 2 , and Fv. In some instances, they also can be single-chain antibodies or bi-specific antibodies.
- Humanized antibodies can be designed as follows. First, the variable regions of V H and V L of a parent non-human antibody are subjected to three-dimensional molecular modeling analysis following methods known in the art. See, e.g., Queen et al., Proc. Natl. Acad. Sci. USA, 86:10029-10033 (1989). Next, framework amino acid residues predicted to be important for the formation of the correct CDR structures are identified using the same molecular modeling analysis. In parallel, human V H and V L chains having amino acid sequences that are homologous to those of the parent non-human antibody are identified from any antibody gene database using the parent V H and V L sequences as search queries. Human V H and V L acceptor genes are then selected.
- the CDR regions within the selected human acceptor genes can be replaced with the CDR regions from the parent non-human antibody or functional variants thereof.
- residues within the framework regions of the parent chain that are predicted to be important in interacting with the CDR regions can be used to substitute for the corresponding residues in the human acceptor genes.
- the underlined region refers to the signal peptide and the boldfaced/italic regions are the CDRs.
- SEQ ID NOs: 3 and 4 represent the mature V H amino acid sequence (lacking the signal peptide) and its encoding nucleotide sequence, respectively.
- SEQ ID NOs: 7 and 8 represent the mature V L amino acid sequence (lacking the signal peptide) and its encoding nucleotide sequence, respectively.
- variants are capable of binding to an IL-20 molecule, particularly a human IL-20 molecule.
- the variants possess similar antigen-binding affinity relative to the exemplary humanized antibody described above (e.g., having a K d ⁇ 4 ⁇ 10 ⁇ 9 ).
- Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res. 25(17):3389-3402, 1997.
- the default parameters of the respective programs e.g., XBLAST and NBLAST.
- the functional variants described above contains one or more mutations (e.g., conservative substitutions) in the FRs of either the V H or the V L as compared to those in SEQ ID NO:3 or SEQ ID NO:7.
- mutations do not occur at residues which are predicted to interact with one or more of the CDRs (see Example 1 below).
- mutations within the FR regions are unlikely to affect the antigen-binding activity of the antibody.
- the functional variants described herein contain one or more mutations (e.g., 1, 2, or 3) within one or more of the CDR regions.
- such functional variants retain the same regions/residues responsible for antigen-binding as the parent, such as the same specificity-determining residues inside the CDRs.
- any of the humanized anti-IL-20 antibodies can be prepared via conventional methodology, e.g., recombination technology. See, e.g., Green et al. (1994) Nature Genetics 7, 13; and U.S. Pat. Nos. 5,545,806 and 5,569,825.
- coding sequences of any of the humanized V H and V L chains described herein can be linked to the coding sequences of the Fc region of a human immunoglobulin and the resultant gene encoding a full-length antibody heavy and light chains can be expressed and assembled in a suitable host cell, e.g., a plant cell, a mammalian cell, a yeast cell, or an insect cell.
- a suitable host cell e.g., a plant cell, a mammalian cell, a yeast cell, or an insect cell.
- Antigen-binding fragments can be prepared via routine methods.
- F(ab′) 2 fragments can be produced by pepsin digestion of an full-length antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F(ab′) 2 fragments.
- Fab fragments that can be generated by reducing the disulfide bridges of F(ab′) 2 fragments.
- fragments can be prepared via recombinant technology by expressing the heavy and light chain fragments in suitable host cells (e.g., E. coli, yeast, mammalian, plant, or insect cells) and have them assembled to form the desired antigen-binding fragments either in vivo or in vitro.
- a single-chain antibody can be prepared via recombinant technology by linking a nucleotide sequence coding for a heavy chain variable region and a nucleotide sequence coding for a light chain variable region.
- a flexible linker is incorporated between the two variable regions.
- a humanized anti-IL-20 antibody produced as described above can be examined to determine their properties, such as antigen-binding activity and biological function, following routine methods, e.g., those described in Example 2 below.
- nucleic acids encoding any of the humanized anti-IL-20 antibodies described herein, vectors such as expression vectors comprising these nucleic acids, and host cells comprising the vectors.
- both the heavy and light chain coding sequences are included in one expression vector.
- each of the heavy and light chains of the antibody is cloned in to an individual vector.
- the expression vectors encoding the heavy and light chains can be co-transfected into one host cell for expression of both chains, which can be assembled to form intact antibodies either in vivo or in vitro.
- the expression vector encoding the heavy chain and that encoding the light chain can be introduced into different host cells for expression each of the heavy and light chains, which can then be purified and assembled to form intact antibodies in vitro.
- humanized anti-IL-20 antibodies described herein can be used as therapeutic agents and diagnostic agents, as well as research tools in biochemistry, molecular biology, and medical researches.
- a disease associated with the IL-20-mediated cell signaling e.g., an inflammatory disease such as rheumatoid arthritis, osteoporosis, cancer, stroke, and renal failure
- administering comprising administering to a subject in need of the treatment an effective amount of any of the humanized anti-IL-20 antibody described herein.
- the humanized anti-IL-20 antibodies described herein can be used for treating diseases associated with an IL-20-mediated signaling pathway, such as an inflammatory disease (e.g., rheumatoid arthritis), stroke, osteoporosis, and cancer (e.g., breast cancer, prostate cancer, colon cancer, lung cancer, renal cell carcinoma, giant cell tumor of bone, oral cancer, esophagus cancer, or multiple myeloma).
- an inflammatory disease e.g., rheumatoid arthritis
- stroke e.g., osteoporosis
- cancer e.g., breast cancer, prostate cancer, colon cancer, lung cancer, renal cell carcinoma, giant cell tumor of bone, oral cancer, esophagus cancer, or multiple myeloma.
- the method described herein aims at treating osteoporosis and alleviating bone loss.
- a human subject who needs this treatment can be a patient suffering from or is suspected of having osteoporosis, which is a disease characterized by low bone mass and loss of bone tissue, resulting in weak and fragile bones.
- Osteoporosis to be treated by the method described herein can be induced by various factors, e.g., low levels of estrogen (e.g., caused by menopause), inadequate up take of calcium and vitamin D, inflammation (e.g., rheumatoid arthritis), cancer-induced osteolysis, and low levels of androgen (e.g., caused by andropause).
- a subject e.g., a human patient who needs the just-noted treatment is a post-menopausal woman or a post-andropausal man.
- the patient is a rheumatoid arthritis patient who suppers from or is suspected of having bone erosion.
- the patient suffers from or is suspected of having osteolysis induced by cancer, such as breast cancer, prostate cancer, liver cancer, colon cancer, multiple myeloma, or lung cancer.
- treating refers to the application or administration of a composition including one or more active agents to a subject, who has a disorder/disease associated with the signaling pathway mediated by IL-20 (e.g., those described herein), a symptom of the disease/disorder, or a predisposition toward the disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease/disorder, the symptom of the disease/disorder, or the predisposition toward the disease/disorder.
- IL-20 e.g., those described herein
- an effective amount refers to the amount of each active agent required to confer therapeutic effect on the subject, either alone or in combination with one or more other active agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual patient parameters including age, physical condition, size, gender and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a patient may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons.
- the amount of the humanized anti-IL-20 antibody described herein is effective in suppressing inflammation (e.g., reducing the level of inflammation by at least 20%, 30%, 50%, 80%, 100%, 200%, 400%, or 500% as compared to a blank control). In other embodiments, the amount of the humanized anti-IL-20 antibody described herein is effective in inhibiting bone loss (e.g., reducing the level of bone loss by at least 20%, 30%, 50%, 80%, 100%, 200%, 400%, or 500% as compared to a blank control).
- any of the humanized anti-IL-20 antibody or the encoding nucleic acid can be mixed with a pharmaceutically acceptable carrier to form a pharmaceutical composition for administration to a subject in need of the treatment.
- a pharmaceutically acceptable carrier is compatible with the active ingredient(s) in the composition (and preferably, capable of stabilizing it) and not deleterious to the subject to be treated.
- solubilizing agents such as cyclodextrins, which form more soluble complexes with a humanized anti-IL-20 antibody as described herein, or a nucleic acid encoding such, or more solubilizing agents, can be utilized as pharmaceutical carriers for delivery of the agonist/antagonist.
- Examples of other carriers include colloidal silicon dioxide, magnesium stearate, sodium lauryl sulfate, and D&C Yellow # 10. See, e.g., Remington's Pharmaceutical Sciences, Edition 16, Mack Publishing Co., Easton, Pa. (1980); and Goodman and Gilman's “The Pharmacological Basis of Therapeutics”, Tenth Edition, Gilman, J. Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001.
- compositions formulated for therapeutic uses, may be prepared for storage by mixing an agent having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride;
- phenol, butyl or benzyl alcohol alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEENTM
- an effective amount of the pharmaceutical composition noted above can be administered to a subject (e.g., a human) in need of the treatment via a suitable route.
- a subject e.g., a human
- a human subject who needs the treatment may be a human patient having, at risk for, or suspected of having a disorder associated with the signaling pathway mediated by IL-20. Such a patient can be identified by routine medical examination.
- the pharmaceutical composition described herein, containing a humanized anti-IL-20 antibody or its encoding nucleic acid(s), can be co-administered with a second therapeutic agent.
- the selection of the second therapeutic agent depends on the type of the disease to be treated.
- the target disease is an inflammatory disease such as rheumatoid arthritis
- the second agent can be a TNF ⁇ antagonist, which can be an etanercept polypeptide, infliximab, or adalimumab.
- the second agent can be an anti-cancer agent (e.g., Tamoxifen, Taxol, Erlotinib, Dexasone, and Herceptin).
- a sub-therapeutic dosage of either the composition or of the second agent, or a sub-therapeutic dosage of both can be used in the treatment of a subject having, or at risk of developing a disease or disorder associated with the cell signaling mediated by IL-20.
- a “sub-therapeutic dose” as used herein refers to a dosage, which is less than that dosage which would produce a therapeutic result in the subject if administered in the absence of the other agent or agents.
- the sub-therapeutic dose of an agent is one which would not produce the desired therapeutic result in the subject in the absence of the administration of the agents of the invention.
- Therapeutic doses of many agents that are in clinical use are well known in the field of medicine, and additional therapeutic doses can be determined by those of skill without undue experimentation. Therapeutic dosages have been extensively described in references such as Remington's Pharmaceutical Sciences, 18th ed., 1990; as well as many other medical references relied upon by the medical profession as guidance for the treatment of diseases and disorders.
- compositions can also be administered via other conventional routes, e.g., administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
- parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, and intracranial injection or infusion techniques.
- injectable depot routes of administration such as using 1-, 3-, or 6-month depot injectable or biodegradable materials and methods.
- Injectable compositions may contain various carriers such as vegetable oils, dimethylactamide, dimethyformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, and polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like).
- water soluble antibodies can be administered by the drip method, whereby a pharmaceutical formulation containing the antibody and a physiologically acceptable excipients is infused.
- Physiologically acceptable excipients may include, for example, 5% dextrose, 0.9% saline, Ringer's solution or other suitable excipients.
- Intramuscular preparations e.g., a sterile formulation of a suitable soluble salt form of the antibody
- a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution.
- the nucleic acid(s) or a vector(s) expressing the antibody can be delivered to a subject by methods, such as that described in Akhtar et al., 1992, Trends Cell Bio. 2, 139.
- it can be introduced into cells using liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, or bioadhesive microspheres.
- the nucleic acid or vector can be locally delivered by direct injection or by use of an infusion pump.
- Other approaches include employing various transport and carrier systems, for example through the use of conjugates and biodegradable polymers.
- any of the humanized anti-IL-20 antibody or its encoding nucleic acids can be conjugated with a chaperon agent.
- conjugated means two entities are associated, preferably with sufficient affinity that the therapeutic benefit of the association between the two entities is realized. Conjugated includes covalent or noncovalent bonding as well as other forms of association, such as entrapment of one entity on or within the other, or of either or both entities on or within a third entity (e.g., a micelle).
- the chaperon agent can be a naturally occurring substance, such as a protein (e.g., human serum albumin, low-density lipoprotein, or globulin), carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid), or lipid. It can also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid.
- a protein e.g., human serum albumin, low-density lipoprotein, or globulin
- carbohydrate e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid
- lipid e.g., a recombinant or synthetic molecule, such as a synthetic polymer, e.g.,
- polyamino acids examples include polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, and polyphosphazine.
- PLL polylysine
- poly L-aspartic acid poly L-glutamic acid
- styrene-maleic acid anhydride copolymer examples include poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacryl
- the chaperon agent is a micelle, liposome, nanoparticle, or microsphere, in which the oligonucleotide/interfering RNA is encapsulated.
- Methods for preparing such a micelle, liposome, nanoparticle, or microsphere are well known in the art. See, e.g., U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; and 5,527,5285.
- the chaperon agent serves as a substrate for attachment of one or more of a fusogenic or condensing agent.
- a fusogenic agent is responsive to the local pH. For instance, upon encountering the pH within an endosome, it can cause a physical change in its immediate environment, e.g., a change in osmotic properties which disrupts or increases the permeability of the endosome membrane, thereby facilitating release of the antisense oligonucleotide into host cell's cytoplasm.
- a preferred fusogenic agent changes charge, e.g., becomes protonated at a pH lower than a physiological range (e.g., at pH 4.5-6.5). Fusogenic agents can be molecules containing an amino group capable of undergoing a change of charge (e.g., protonation) when exposed to a specific pH range.
- Such fusogenic agents include polymers having polyamino chains (e.g., polyethyleneimine) and membrane disruptive agents (e.g., mellittin).
- polymers having polyamino chains e.g., polyethyleneimine
- membrane disruptive agents e.g., mellittin
- Other examples include polyhistidine, polyimidazole, polypyridine, polypropyleneimine, and a polyacetal substance (e.g., a cationic polyacetal).
- a condensing agent interacts with the antisense oligonucleotide, causing it to condense (e.g., reduce the size of the oligonucleotide), thus protecting it against degradation.
- the condensing agent includes a moiety (e.g., a charged moiety) that interacts with the oligonucleotide via, e.g., ionic interactions.
- condensing agents include polylysine, spermine, spermidine, polyamine or quarternary salt thereof, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, and alpha helical peptide.
- Exemplary humanized anti-IL-20 antibodies HL1 and HL2 were prepared as follows, using mouse monoclonal antibody 7E (mAb 7E) as the parent antibody.
- mAb 7E mouse monoclonal antibody 7E
- mAb 7E was described in U.S. Pat. Nos. 7,435,800 and 7,786,274, both of which are incorporated by reference herein.
- the amino acid sequences of the V H and V L chains of mAb 7E are shown below:
- Amino acid sequence of mAb 7E V H (SEQ ID NO: 9) M Y L G L N Y V F I V F L L N G V Q S E L K L E E S G G G L V Q P G G S M K L S C A A S G F T F S D A W M D W V R Q S P E K G L E W I A E I R S K A N N Y A T Y F A E S V K G R F T I S R D D S K S G V Y L Q M N N L R A E D T G I Y F C T K L S L R Y W F F D V W G A G T T V T V S S S Amino acid sequence of mAb 7E V L : (SEQ ID NO: 10) M M S P A Q F L F L L V L W I R E T N G D F V M T Q T P L T L S V T I G Q P A S I S C K S Q S Q S L L D G K T Y L N W L
- Human L06102 V H chain (Shaw et al. 1995, Ann. N. Y. Acad. Sci. 764:370-373) was chosen as an acceptor for humanization of the heavy chain.
- the CDR sequences of 7E V H were first transferred to the corresponding positions of L06102 V H .
- residues within the FRs of 7E V H at positions 48, 49, and 94 were retained in the humanized V H . These residues were predicted to interact with the CDRs as determined by three-dimensional modeling analysis.
- the amino acid sequence of the resultant humanized V H , Hu7E V H , aligned with the sequences of 7E V H and L06102 V H is shown in below:
- positions of the residues in the V H chain are determined following Kabat et al. and the CDR regions are underlined.
- the CDRs in the L06102 V H which were replaced with those of the 7E V H , are not shown in the alignment above.
- the FR residues noted above are also underlined.
- the CDR sequences of 7E V L were transferred to the corresponding positions of the BG758592 V L chain. Further, positions 2, 36 and 46 in the framework regions of 7E V L were retained in the humanized V L . These positions were predicted to interact with CDRs as determined by the three-dimensional modeling analysis disclosed above.
- the amino acid sequence of the resultant humanized V L , Hu7E V L 1, aligned with those of the 7E V L and BG758592 V L is shown below:
- a phenylalanine residue (F) at position 2 in mouse 7E V L is located at a framework position that was predicted to be important for the formation of the proper CDR structures
- detailed molecular modeling analysis of the 7E variable regions suggested that an amino acid residue at position 2 in Hu7E VL1 could be replaced with the corresponding residue, isoleucine (I), in the human BG758592 V L without losing the antigen-binding affinity.
- a second humanized V L (Hu7E V L 2) was designed, in which a phenylalanine residue at position 2 in Hu7E V L 1 was replaced with an isoleucine residue.
- the amino acid sequence of Hu7E V L 2 is also shown in the alignment above.
- Nucleotide sequences encoding the humanized Hu7E V H and Hu7E V L 1 and V L 2 were each cloned into an expression vector from Invivogen via the EcoRI and NheI cloning sites (for the V H gene) or the NcoI and BsiWI cloning sites (for the V L 1 and V L 2 genes).
- the resultant expression vectors were co-transfected into CHO cells following routine methods.
- the transfected CHO cells were cultured under suitable conditions allowing the expression of the Hu7E V H and Hu7E V L 1 chains (form humanized antibody HL1) or Hu7E V H and V L 2 chains (form humanized antibody HL2).
- the culture medium was then collected and the humanized anti-IL-20 antibodies contained therein were isolated by a protein A column.
- Humanized antibody HL2 1.2 ⁇ 10 ⁇ 9
- both humanized antibodies HL1 and HL2 showed antigen-binding affinities similar to that of the parent antibody.
- humanized antibody HL2 showed an antigen-binding affinity higher than the chimeric antibody.
- the biological function of the humanized anti-IL-20 antibody noted above was analyzed via an inhibition of osteoclast differentiation assay.
- the parent mouse 7E antibody and a chimeric antibody derived therefrom were used as controls.
- the chimeric antibody was constructed by ligating the mAb 7E variable regions with the Fc region of a human IgG.
- the osteoclast differentiation assay was performed as described in Hsu et al., J Exp Med. 2011, 208(9):1849-61. Briefly, bone marrow cells (BMCs) from the tibias of C57BL6 mice were incubated for 12 h (37° C/5% CO 2 ). Non-adherent cells were collected and seeded in 24-well plates (2 ⁇ 10 6 cells per well) and cultured in the same medium supplemented with 30 ng/ml of recombinant murine macrophage colony-stimulating factor (M-CSF) (PeproTech). After 48 hours, M-CSF-derived osteoclast precursor cells were cultured with murine M-CSF (40 ng/ml) and sRANKL (100 ng/ml) (PeproTech) until the end of the experiment.
- M-CSF murine macrophage colony-stimulating factor
- BMCs were cultured for 12 h.
- Non-adherent cells were cultured in ⁇ -MEM containing MCSF to drive to OC precursors for 48 hours.
- One of the three anti-IL-20 antibodies, the 7E antibody, chimeric antibody, and humanized antibody (0.5 ⁇ g/ml) or a control hIgG (0.5 ⁇ g/ml) was added to the OC precursors.
- the cells were incubated with M-CSF (40 ng/ml) and sRANKL (100 ng/ml) for 6-8 days.
- the cells were fixed in acetone and stained for TRAP using an acid phosphatase kit (Sigma-Aldrich).
- TRAP-positive multinucleated cells containing three or more nuclei were considered as osteoclasts.
- the humanized antibody Hu HL2 (7E HL-2) unexpectedly exhibited the same effect as the parent mAb 7E in inhibiting OC differentiation.
- the humanized antibody inhibited 50% of OC differentiation at the concentration of 0.5 ug/ml.
- the humanized anti-IL-20 antibody can be used as a therapeutic agent in alleviating bone loss, e.g., bone loss associated with post-menopause osteoporosis, rheumatoid arthritis, cancer-induced osteolysis.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Rheumatology (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Endocrinology (AREA)
- Microbiology (AREA)
- Pain & Pain Management (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- Interleukin 20 (IL-20), a pleiotropic inflammatory cytokine, is a member of the IL-10 family, which includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26. IL-20 is expressed in monocytes, epithelial cells, and endothelial cells. It acts on multiple types of cells via activating a heterodimer receptor complex of either IL-20R1/IL-20R2 or IL-22R1/IL-20R2. IL-20 has been found to be involved in various diseases, such as psoriasis, rheumatoid arthritis, atherosclerosis, ischemic stroke, osteoporosis, and renal failure. Certain anti-IL-20 antibodies have been reported to possess therapeutic effects in treating IL-20 associated diseases, e.g., osteoporosis and rheumatoid arthritis. U.S. Pat. Nos. 7,435,800, 7,611,705, 7,786,274, 7,837,994, 8,012,478; and US Patent Publications 20110305699 and 20090048432.
- Monoclonal antibodies derived from non-human species are routinely used in biochemistry, molecular biology, and medical research. In addition, they are attractive therapeutic agents because of their high target specificity and effector functionality. However, one problem associated with the use of non-human antibodies as therapeutic agents is their immunogenicity, which substantially reduces the in vivo effectiveness of such antibodies. One approach to reduce immunogenicity is humanization, i.e., modifying non-human antibodies to increase their similarity to naturally-occurring human antibodies.
- The present disclosure is based on the development of two humanized anti-IL-20 antibodies, which exhibited unexpectedly high affinity to IL-20 (i.e., Kd<3.6×10−9) and therapeutic effects in treating IL-20-associated diseases, e.g., osteoporosis. Accordingly, one 2 5 aspect of the present disclosure features a humanized antibody that binds IL-20, particularly human IL-20. This antibody comprises a heavy chain variable region (VH), which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:1 or SEQ ID NO:3, and a light chain variable region (VL), which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:5 or SEQ ID NO:7. In one example, the humanized anti-IL-20 antibody comprises a VH chain that comprises SEQ ID NO:1 or SEQ ID NO:3 and a VL chain that comprises SEQ ID NO:5, SEQ ID NO:7, or SEQ ID NO:15.
- The humanized anti-IL-20 antibody described above can be a full-length antibody (e.g., an IgG molecule), an antigen-binding fragment thereof (e.g., Fab), or a single-chain antibody.
- In another aspect, the present disclosure provides an isolated nucleic acid comprising a nucleotide sequence encoding (i) a VH chain, which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:1 or SEQ ID NO:3, (ii) a VL chain, which comprises an amino acid sequence at least 90% (e.g., 95%, 96%, 97%, 98%, or 99%) identical to SEQ ID NO:5 or SEQ ID NO:7, or (iii) both. In one example, the nucleic acid comprises (i) a nucleotide sequence of SEQ ID NO:2 or SEQ ID NO:4, (ii) a nucleotide sequence of SEQ ID NO:6 or SEQ ID NO:8, or (iii) both. Also described herein are vectors, which comprise the just-described nucleic acids, and host cells which comprise such vectors. In one example, the vectors are expression vectors and the nucleic acids coding for the VH and/or VL chains are in operable linkage to a suitable promoter. Each of the VH and VL coding sequences can be in operably linkage with an individual promoter. Alternatively, both of the VH and VL genes can be under the control of a common promoter.
- In yet another aspect, the present disclosure provides methods for treating diseases associated with an IL-20-mediated signaling pathway, comprising administering to a patient in need thereof an effective amount of the humanized anti-IL-20 antibody described herein, either the antibody per se, or a plasmid(s) for expressing such. Diseases associated with the IL-20 mediated signaling pathway include, but are not limited to osteoporosis, rheumatoid arthritis, cancer, stroke, or renal failure. In one example, the disease is osteoporosis, which can be caused by an inflammatory disease (e.g., rheumatoid arthritis), estrogen deficiency (e.g., menopause), androgen deficiency (e.g., andropause), or cancer-induced osteolysis. In another example, the disease is cancer, such as breast cancer, prostate cancer, colon cancer, lung cancer, renal cell carcinoma, giant cell tumor of bone, oral cancer, esophagus cancer, or multiple myeloma.
- Also within the scope of this disclosure are (i) a pharmaceutical composition comprising the humanized anti-IL-20 antibody described herein or a nucleic acid encoding the VH chain of the antibody, the VL chain of the antibody, or both, and a pharmaceutically acceptable carrier; (ii) the just-noted pharmaceutical composition for use in treating a disease associated with an IL-20-mediated signaling pathway, such as those described above, and (iii) the use of the humanized anti-IL-20 antibody or its encoding nucleic acid(s)/vectors in the manufacture of a medicament for the treatment of any of the above described diseases.
- The details of one or more embodiments of the invention are set forth in the description below. Other features or advantages of the present invention will be apparent from the following drawings and detailed description of several embodiments, and also from the appended claims.
- The drawings are first described.
-
FIG. 1 is a chart showing the inhibitory effects of a humanized anti-IL-20 antibody on osteoclast differentiation, as compared with the effects of the parent mousemonoclonal antibody mAb 7E and a chimeric antibody derived therefrom. Bone marrow-derived hematopoetic stem cells were cultured with MCSF and RANKL to drive osteoclast differentiation. Addition of an anti-IL-20 antibody as noted above to the culture at a concentration of 500 ng/ml inhibited 50% of osteoclast differentiation. - SEQ ID NO:2 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:1.
- SEQ ID NO:3 is the amino acid sequence of the mature VH chain variable region (which lacks the signal peptide) of the exemplary humanized anti-IL-20 antibodies HL1 and HL2.
- SEQ ID NO:4 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:3.
- SEQ ID NO:5 is the amino acid sequence of the precursor VL chain variable region of exemplary humanized anti-IL-20 antibody HL2.
- SEQ ID NO:6 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:5.
- SEQ ID NO:7 is the amino acid sequence of the mature VL chain variable region (which lacks the signal peptide) of exemplary humanized anti-IL-20 antibody HL2.
- SEQ ID NO:8 is the nucleotide sequence encoding the amino acid sequence of SEQ ID NO:7.
- SEQ ID NO:9 is the amino acid sequence of the precursor VH chain variable region of
monoclonal antibody 7E. - SEQ ID NO:10 is the amino acid sequence of the precursor VL chain variable region of
monoclonal antibody 7E. - SEQ ID NO:11 is the amino acid sequence of the mature VH chain variable region (which lacks the signal peptide) of
monoclonal antibody 7E. - SEQ ID NO:12 is the amino acid sequence of human germline antibody VH segment J606.4.82.
- SEQ ID NO:13 is the amino acid sequence of the framework regions in human antibody L06102 VH chain (mature form).
- SEQ ID NO:14 is the amino acid sequence of the mature VL chain variable region (which lacks the signal peptide) of
monoclonal antibody 7E. - SEQ ID NO:15 is the amino acid sequence of the mature VL chain variable region (which lacks the signal peptide) of exemplary humanized anti-IL-20 antibody HL1.
- SEQ ID NO:16 is the amino acid sequence of human germline antibody bd2 VL segment.
- SEQ ID NO:17 is the amino acid sequence of the framework regions in human antibody BG758592 VL chain (mature form).
- Described herein are humanized anti-IL-20 antibodies and their uses in treating diseases associated with an IL-20-mediated signaling pathway.
- The humanized anti-IL-20 antibodies described herein were designed based on a parent mouse
monoclonal antibody 7E, which is described in U.S. Pat. Nos. 7,435,800 and 7,786,274, and also in Example 1 below. - A “humanized antibody” can be an antibody derived from modifying a non-human antibody to replace certain antibody fragments (e.g., framework regions) with those from a human antibody so as to reduce immunogenicity in humans. The humanized antibody described herein can be in any antibody form. In some embodiments, they are intact immunoglobulin molecules (full-length antibodies), including IgG, IgA, IgD, IgE, and IgM. In other embodiments, the humanized antibodies are antigen binding fragments thereof, e.g., Fab, F(ab′)2, and Fv. In some instances, they also can be single-chain antibodies or bi-specific antibodies.
- Humanized antibodies can be designed as follows. First, the variable regions of VH and VL of a parent non-human antibody are subjected to three-dimensional molecular modeling analysis following methods known in the art. See, e.g., Queen et al., Proc. Natl. Acad. Sci. USA, 86:10029-10033 (1989). Next, framework amino acid residues predicted to be important for the formation of the correct CDR structures are identified using the same molecular modeling analysis. In parallel, human VH and VL chains having amino acid sequences that are homologous to those of the parent non-human antibody are identified from any antibody gene database using the parent VH and VL sequences as search queries. Human VH and VL acceptor genes are then selected.
- The CDR regions within the selected human acceptor genes can be replaced with the CDR regions from the parent non-human antibody or functional variants thereof. When necessary, residues within the framework regions of the parent chain that are predicted to be important in interacting with the CDR regions (see above description) can be used to substitute for the corresponding residues in the human acceptor genes.
- Provided below is an example of the humanized anti-IL-20 antibodies described herein:
- The underlined region refers to the signal peptide and the boldfaced/italic regions are the CDRs. SEQ ID NOs: 3 and 4 represent the mature VH amino acid sequence (lacking the signal peptide) and its encoding nucleotide sequence, respectively.
- The underlined region refers to the signal peptide and the boldfaced/italic regions are the CDRs. SEQ ID NOs: 7 and 8 represent the mature VL amino acid sequence (lacking the signal peptide) and its encoding nucleotide sequence, respectively.
- Also described herein are functional variants of the above disclosed exemplary humanized anti-IL-20 antibodies HL1 and HL2. Such functional variants can comprise a VH chain that comprises an amino acid sequence at least 85% (e.g., 90%, 92%, 94%, 95%, 96%, 97%, 98%, or 99%) identical to that of the VH of HL1 and HL2 (precursor or mature form; SEQ
- ID NO:1 and SEQ ID NO:3, respectively) and a VL chain that has an amino acid sequence at least 85% (e.g., 90%, 92%, 94%, 95%, 96%, 97%, 98%, or 99%) identical to that of the VL of HL2 (precursor or mature form; SEQ ID NO:5 and SEQ ID NO:7, respectively). These variants are capable of binding to an IL-20 molecule, particularly a human IL-20 molecule. In some examples, the variants possess similar antigen-binding affinity relative to the exemplary humanized antibody described above (e.g., having a Kd<4×10−9).
- The “percent identity” of two amino acid sequences is determined using the algorithm of Karlin and Altschul Proc. Natl. Acad. Sci. USA 87:2264-68, 1990, modified as in Karlin and Altschul Proc. Natl. Acad. Sci. USA 90:5873-77, 1993. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. J. Mol. Biol. 215:403-10, 1990. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the protein molecules of interest. Where gaps exist between two sequences, Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res. 25(17):3389-3402, 1997. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.
- In some embodiments, the functional variants described above contains one or more mutations (e.g., conservative substitutions) in the FRs of either the VH or the VL as compared to those in SEQ ID NO:3 or SEQ ID NO:7. Preferably, such mutations do not occur at residues which are predicted to interact with one or more of the CDRs (see Example 1 below). As known in the art, mutations within the FR regions are unlikely to affect the antigen-binding activity of the antibody. In other embodiments, the functional variants described herein contain one or more mutations (e.g., 1, 2, or 3) within one or more of the CDR regions. Preferably, such functional variants retain the same regions/residues responsible for antigen-binding as the parent, such as the same specificity-determining residues inside the CDRs.
- Any of the humanized anti-IL-20 antibodies can be prepared via conventional methodology, e.g., recombination technology. See, e.g., Green et al. (1994) Nature Genetics 7, 13; and U.S. Pat. Nos. 5,545,806 and 5,569,825.
- When a full-length antibody is desired, coding sequences of any of the humanized VH and VL chains described herein can be linked to the coding sequences of the Fc region of a human immunoglobulin and the resultant gene encoding a full-length antibody heavy and light chains can be expressed and assembled in a suitable host cell, e.g., a plant cell, a mammalian cell, a yeast cell, or an insect cell.
- Antigen-binding fragments can be prepared via routine methods. For example, F(ab′)2 fragments can be produced by pepsin digestion of an full-length antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F(ab′)2 fragments. Alternatively, such fragments can be prepared via recombinant technology by expressing the heavy and light chain fragments in suitable host cells (e.g., E. coli, yeast, mammalian, plant, or insect cells) and have them assembled to form the desired antigen-binding fragments either in vivo or in vitro.
- A single-chain antibody can be prepared via recombinant technology by linking a nucleotide sequence coding for a heavy chain variable region and a nucleotide sequence coding for a light chain variable region. Preferably, a flexible linker is incorporated between the two variable regions.
- A humanized anti-IL-20 antibody produced as described above can be examined to determine their properties, such as antigen-binding activity and biological function, following routine methods, e.g., those described in Example 2 below.
- Also disclosed herein are nucleic acids encoding any of the humanized anti-IL-20 antibodies described herein, vectors such as expression vectors comprising these nucleic acids, and host cells comprising the vectors. In one example, both the heavy and light chain coding sequences are included in one expression vector. In another example, each of the heavy and light chains of the antibody is cloned in to an individual vector. In the latter case, the expression vectors encoding the heavy and light chains can be co-transfected into one host cell for expression of both chains, which can be assembled to form intact antibodies either in vivo or in vitro. Alternatively, the expression vector encoding the heavy chain and that encoding the light chain can be introduced into different host cells for expression each of the heavy and light chains, which can then be purified and assembled to form intact antibodies in vitro.
- The humanized anti-IL-20 antibodies described herein can be used as therapeutic agents and diagnostic agents, as well as research tools in biochemistry, molecular biology, and medical researches.
- Accordingly, disclosed herein are methods for treating a disease associated with the IL-20-mediated cell signaling (e.g., an inflammatory disease such as rheumatoid arthritis, osteoporosis, cancer, stroke, and renal failure) comprising administering to a subject in need of the treatment an effective amount of any of the humanized anti-IL-20 antibody described herein.
- The humanized anti-IL-20 antibodies described herein can be used for treating diseases associated with an IL-20-mediated signaling pathway, such as an inflammatory disease (e.g., rheumatoid arthritis), stroke, osteoporosis, and cancer (e.g., breast cancer, prostate cancer, colon cancer, lung cancer, renal cell carcinoma, giant cell tumor of bone, oral cancer, esophagus cancer, or multiple myeloma).
- In some embodiments, the method described herein aims at treating osteoporosis and alleviating bone loss. A human subject who needs this treatment can be a patient suffering from or is suspected of having osteoporosis, which is a disease characterized by low bone mass and loss of bone tissue, resulting in weak and fragile bones. Osteoporosis to be treated by the method described herein can be induced by various factors, e.g., low levels of estrogen (e.g., caused by menopause), inadequate up take of calcium and vitamin D, inflammation (e.g., rheumatoid arthritis), cancer-induced osteolysis, and low levels of androgen (e.g., caused by andropause).
- In one example, a subject (e.g., a human patient) who needs the just-noted treatment is a post-menopausal woman or a post-andropausal man. In another example, the patient is a rheumatoid arthritis patient who suppers from or is suspected of having bone erosion. In yet another example, the patient suffers from or is suspected of having osteolysis induced by cancer, such as breast cancer, prostate cancer, liver cancer, colon cancer, multiple myeloma, or lung cancer.
- As used herein, the term “treating” refers to the application or administration of a composition including one or more active agents to a subject, who has a disorder/disease associated with the signaling pathway mediated by IL-20 (e.g., those described herein), a symptom of the disease/disorder, or a predisposition toward the disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease/disorder, the symptom of the disease/disorder, or the predisposition toward the disease/disorder.
- “An effective amount” as used herein refers to the amount of each active agent required to confer therapeutic effect on the subject, either alone or in combination with one or more other active agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual patient parameters including age, physical condition, size, gender and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a patient may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons.
- In some embodiments, the amount of the humanized anti-IL-20 antibody described herein is effective in suppressing inflammation (e.g., reducing the level of inflammation by at least 20%, 30%, 50%, 80%, 100%, 200%, 400%, or 500% as compared to a blank control). In other embodiments, the amount of the humanized anti-IL-20 antibody described herein is effective in inhibiting bone loss (e.g., reducing the level of bone loss by at least 20%, 30%, 50%, 80%, 100%, 200%, 400%, or 500% as compared to a blank control).
- To practice a treatment disclosed herein, any of the humanized anti-IL-20 antibody or the encoding nucleic acid can be mixed with a pharmaceutically acceptable carrier to form a pharmaceutical composition for administration to a subject in need of the treatment. A pharmaceutically acceptable carrier is compatible with the active ingredient(s) in the composition (and preferably, capable of stabilizing it) and not deleterious to the subject to be treated. For example, solubilizing agents such as cyclodextrins, which form more soluble complexes with a humanized anti-IL-20 antibody as described herein, or a nucleic acid encoding such, or more solubilizing agents, can be utilized as pharmaceutical carriers for delivery of the agonist/antagonist. Examples of other carriers include colloidal silicon dioxide, magnesium stearate, sodium lauryl sulfate, and D&C Yellow # 10. See, e.g., Remington's Pharmaceutical Sciences, Edition 16, Mack Publishing Co., Easton, Pa. (1980); and Goodman and Gilman's “The Pharmacological Basis of Therapeutics”, Tenth Edition, Gilman, J. Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001.
- The pharmaceutical compositions, formulated for therapeutic uses, may be prepared for storage by mixing an agent having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride;
- phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).
- To treating a target disease, an effective amount of the pharmaceutical composition noted above can be administered to a subject (e.g., a human) in need of the treatment via a suitable route. A human subject who needs the treatment may be a human patient having, at risk for, or suspected of having a disorder associated with the signaling pathway mediated by IL-20. Such a patient can be identified by routine medical examination.
- If necessary, the pharmaceutical composition described herein, containing a humanized anti-IL-20 antibody or its encoding nucleic acid(s), can be co-administered with a second therapeutic agent. The selection of the second therapeutic agent depends on the type of the disease to be treated. For example, if the target disease is an inflammatory disease such as rheumatoid arthritis, the second agent can be a TNFα antagonist, which can be an etanercept polypeptide, infliximab, or adalimumab. In another example, if the target disease is a cancer, the second agent can be an anti-cancer agent (e.g., Tamoxifen, Taxol, Erlotinib, Dexasone, and Herceptin).
- When the pharmaceutical composition described here is co-used with a second therapeutic agent, a sub-therapeutic dosage of either the composition or of the second agent, or a sub-therapeutic dosage of both, can be used in the treatment of a subject having, or at risk of developing a disease or disorder associated with the cell signaling mediated by IL-20. A “sub-therapeutic dose” as used herein refers to a dosage, which is less than that dosage which would produce a therapeutic result in the subject if administered in the absence of the other agent or agents. Thus, the sub-therapeutic dose of an agent is one which would not produce the desired therapeutic result in the subject in the absence of the administration of the agents of the invention. Therapeutic doses of many agents that are in clinical use are well known in the field of medicine, and additional therapeutic doses can be determined by those of skill without undue experimentation. Therapeutic dosages have been extensively described in references such as Remington's Pharmaceutical Sciences, 18th ed., 1990; as well as many other medical references relied upon by the medical profession as guidance for the treatment of diseases and disorders.
- Conventional methods, known to those of ordinary skill in the art of medicine, can be used to administer the pharmaceutical composition to the subject, depending upon the type of diseases to be treated or the site of the disease. This composition can also be administered via other conventional routes, e.g., administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term “parenteral” as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, and intracranial injection or infusion techniques. In addition, it can be administered to the subject via injectable depot routes of administration such as using 1-, 3-, or 6-month depot injectable or biodegradable materials and methods.
- Injectable compositions may contain various carriers such as vegetable oils, dimethylactamide, dimethyformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, and polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like). For intravenous injection, water soluble antibodies can be administered by the drip method, whereby a pharmaceutical formulation containing the antibody and a physiologically acceptable excipients is infused. Physiologically acceptable excipients may include, for example, 5% dextrose, 0.9% saline, Ringer's solution or other suitable excipients. Intramuscular preparations, e.g., a sterile formulation of a suitable soluble salt form of the antibody, can be dissolved and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution.
- When a nucleic acid(s) encoding a humanized anti-IL-20 antibody as described herein is used as the therapeutic agent, the nucleic acid(s) or a vector(s) expressing the antibody can be delivered to a subject by methods, such as that described in Akhtar et al., 1992, Trends Cell Bio. 2, 139. For example, it can be introduced into cells using liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, or bioadhesive microspheres. Alternatively, the nucleic acid or vector can be locally delivered by direct injection or by use of an infusion pump. Other approaches include employing various transport and carrier systems, for example through the use of conjugates and biodegradable polymers.
- To facilitate delivery, any of the humanized anti-IL-20 antibody or its encoding nucleic acids can be conjugated with a chaperon agent. As used herein, “conjugated” means two entities are associated, preferably with sufficient affinity that the therapeutic benefit of the association between the two entities is realized. Conjugated includes covalent or noncovalent bonding as well as other forms of association, such as entrapment of one entity on or within the other, or of either or both entities on or within a third entity (e.g., a micelle).
- The chaperon agent can be a naturally occurring substance, such as a protein (e.g., human serum albumin, low-density lipoprotein, or globulin), carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid), or lipid. It can also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid. Examples of polyamino acids include polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, and polyphosphazine.
- In one example, the chaperon agent is a micelle, liposome, nanoparticle, or microsphere, in which the oligonucleotide/interfering RNA is encapsulated. Methods for preparing such a micelle, liposome, nanoparticle, or microsphere are well known in the art. See, e.g., U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; and 5,527,5285.
- In another example, the chaperon agent serves as a substrate for attachment of one or more of a fusogenic or condensing agent.
- A fusogenic agent is responsive to the local pH. For instance, upon encountering the pH within an endosome, it can cause a physical change in its immediate environment, e.g., a change in osmotic properties which disrupts or increases the permeability of the endosome membrane, thereby facilitating release of the antisense oligonucleotide into host cell's cytoplasm. A preferred fusogenic agent changes charge, e.g., becomes protonated at a pH lower than a physiological range (e.g., at pH 4.5-6.5). Fusogenic agents can be molecules containing an amino group capable of undergoing a change of charge (e.g., protonation) when exposed to a specific pH range. Such fusogenic agents include polymers having polyamino chains (e.g., polyethyleneimine) and membrane disruptive agents (e.g., mellittin). Other examples include polyhistidine, polyimidazole, polypyridine, polypropyleneimine, and a polyacetal substance (e.g., a cationic polyacetal).
- A condensing agent interacts with the antisense oligonucleotide, causing it to condense (e.g., reduce the size of the oligonucleotide), thus protecting it against degradation. Preferably, the condensing agent includes a moiety (e.g., a charged moiety) that interacts with the oligonucleotide via, e.g., ionic interactions. Examples of condensing agents include polylysine, spermine, spermidine, polyamine or quarternary salt thereof, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, and alpha helical peptide.
- Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present invention to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications cited herein are incorporated by reference for the purposes or subject matter referenced herein.
- Exemplary humanized anti-IL-20 antibodies HL1 and HL2 were prepared as follows, using mouse
monoclonal antibody 7E (mAb 7E) as the parent antibody.mAb 7E was described in U.S. Pat. Nos. 7,435,800 and 7,786,274, both of which are incorporated by reference herein. The amino acid sequences of the VH and VL chains ofmAb 7E are shown below: -
Amino acid sequence of mAb 7E VH: (SEQ ID NO: 9) M Y L G L N Y V F I V F L L N G V Q S E L K L E E S G G G L V Q P G G S M K L S C A A S G F T F S D A W M D W V R Q S P E K G L E W I A E I R S K A N N Y A T Y F A E S V K G R F T I S R D D S K S G V Y L Q M N N L R A E D T G I Y F C T K L S L R Y W F F D V W G A G T T V T V S S Amino acid sequence of mAb 7E VL: (SEQ ID NO: 10) M M S P A Q F L F L L V L W I R E T N G D F V M T Q T P L T L S V T I G Q P A S I S C K S S Q S L L D S D G K T Y L N W L L Q R P G Q S P K H L I Y L V S K L D S G V P D R F T G S G S G T D F T L R I S R V E A E D L G V Y Y C W Q S T H F P W T F G G G T K L E I K
The italic regions refer to the signal peptides in 7E VH and VL. - Human VH sequences having framework regions (FRs) homologous to those of the
mAb 7E VH chain were identified by searching the GenBank database using FRs of 7E VH as search queries. A sequence alignment between 7E VH and its predicted parental germline VH segment J606.4.82 (Johnston et al. 2006,J. Immunol. 176:4221-4234) is shown below: -
1 2 3 123456789 0123456789 0123456789 0123456789 7E VH ELKLEESGG GLVQPGGSMK LSCAASGFTF SDAWMDWVRQ J606.4.82 EVKLEESGG GLVQPGGSMK LSCAASGFTF SDAWMDWVRQ * 4 5 6 7 0123456789 0122223456789 0123456789 0123456789 abc 7E VH SPEKGLEWIA EIRSKANNYATYF AESVKGRFTI SRDDSKSGVY J606.4.82 SPEKGLEWVA EIRNKANNHATYY AESVKGRFTI SRDDSKSSVY * * * * * 1 1 8 9 0 1 0122223456789 0123456789 000123456789 0123 abc ab 7E VH LQMNNLRAEDTGI YFCTKLSLRY WFFDVWGAGTTV TVSS (SEQ ID NO: 11) J606.4.82 LQMNSLRAEDTGI YYCTR (SEQ ID NO: 12) * * * - Positions of the residues indicated above were determined according to Kabat et al., 1991, “Sequences of Proteins of Immunological Interests,” Fifth edition, NIH Publication No. 91-3242, U.S. Department of Health and Human Services. The CDR regions are underlined and numbered following Kabat et al. Asterisks indicate the differences between the 7E VH and the human parental germline VH.
- Human L06102 VH chain (Shaw et al. 1995, Ann. N. Y. Acad. Sci. 764:370-373) was chosen as an acceptor for humanization of the heavy chain. The CDR sequences of 7E VH were first transferred to the corresponding positions of L06102 VH. Next, residues within the FRs of 7E VH at positions 48, 49, and 94 were retained in the humanized VH. These residues were predicted to interact with the CDRs as determined by three-dimensional modeling analysis. The amino acid sequence of the resultant humanized VH, Hu7E VH, aligned with the sequences of 7E VH and L06102 VH, is shown in below:
-
1 2 3 123456789 0123456789 0123456789 0123456789 7E VH ELKLEESGG GLVQPGGSMK LSCAASGFTF SDAWMDWVRQ Hu7E VH EVQLVESGG GLVQPGGSLK LSCAASGFTF SDAWMDWVRQ L06102 VH EVQLVESGG GLVQPGGSLK LSCAASGFTF S-----WVRQ 4 5 6 7 0123456789 0122223456789 0123456789 0123456789 abc 7E VH SPEKGLEWIA EIRSKANNYATYF AESVKGRFTI SRDDSKSGVY Hu7E VH ASGKGLEWIA EIRSKANNYATYF AESVKGRFTI SRDDSKNTAY L06102 VH ASGKGLEWVG ------------- ------RFTI SRDDSKNTAY 1 1 8 9 0 1 0122223456789 0123456789 000123456789 0123 abc ab 7E VH LQMNNLRAEDTGI YFCTKLSLRY WFFDVWGAGTTV TVSS (SEQ ID NO: 11) Hu7E VH LQMNSLKTEDTAV YYCTKLSLRY WFFDVWGQGTLV TVSS (SEQ ID NO: 3) L06102 VH LQMNSLKTEDTAV YYCTG----- -----WGQGTLV TVSS (SEQ ID NO: 13) - Again, positions of the residues in the VH chain are determined following Kabat et al. and the CDR regions are underlined. The CDRs in the L06102 VH, which were replaced with those of the 7E VH, are not shown in the alignment above. The FR residues noted above are also underlined.
- Shown below is a sequence alignment between
mAb 7E VL and its predicted parental germline V segment, bd2 (Schable et al. 1999, Eur. J. Immunol. 29: 2082-2086). Positions of the residues are determined following Kabat et al. The asterisks indicate differences between 7E VL and bd2 amino acid sequences. -
1 2 3 123456789 0123456789 012345677777789 0123456789 abcde 7E VL DFVMTQTPL TLSVTIGQPA SISCKSSQSLLDSDG KTYLNWLLQR bd2 DVVMTQTPL TLSVTIGQPA SISCKSSQSLLDSDG KTYLNWLLQR * 4 5 6 7 0123456789 0123456789 0123456789 0123456789 7E VL PGQSPKHLIY LVSKLDSGVP DRFTGSGSGT DFTLRISRVE bd2 PGQSPKRLIY LVSKLDSGVP DRFTGSGSGT DFTLKISRVE * * 1 8 9 0 0123456789 0123456789 01234567 7E VL AEDLGVYYCW QSTHFPWTFG GGTKLEIK (SEQ ID NO: 14) bd2 AEDLGVYYCW QGTHFP (SEQ ID NO: 16) * - Based on the homology search using the 7E VL framework sequences as search queries, a human Vκ chain described in GenBank Accession Number BG758592 was chosen as an acceptor for humanization of the VL chain.
- The CDR sequences of 7E VL were transferred to the corresponding positions of the BG758592 VL chain. Further,
positions 2, 36 and 46 in the framework regions of 7E VL were retained in the humanized VL. These positions were predicted to interact with CDRs as determined by the three-dimensional modeling analysis disclosed above. The amino acid sequence of the resultant humanized VL, Hu7E VL1, aligned with those of the 7E VL and BG758592 VL, is shown below: -
1 2 3 123456789 0123456789 012345677777789 0123456789 abcde 7E VL DFVMTQTPL TLSVTIGQPA SISCKSSQSLLDSDG KTYLNWLLQR Hu7E VL1 DFVMTQTPL SLSVTPGQPA SISCKSSQSLLDSDG KTYLNWLLQK Hu7E VL2 DIVMTQTPL SLSVTPGQPA SISCKSSQSLLDSDG KTYLNWLLQK BG758592 VL DIVMTQTPL SLSVTPGQPA SISC----------- -----WYLQK 4 5 6 7 0123456789 0123456789 0123456789 0123456789 7E VL PGQSPKHLIY LVSKLDSGVP DRFTGSGSGT DFTLRISRVE Hu7E VL1 PGQSPQHLIY LVSKLDSGVP DRFSGSGSGT DFTLKISRVE Hu7E VL2 PGQSPQHLIY LVSKLDSGVP DRFSGSGSGT DFTLKISRVE BG758592 VL PGQSPQLLIY -------GVP DRFSGSGSGT DFTLKISRVE 1 8 9 0 0123456789 0123456789 01234567 7E VL AEDLGVYYCW QSTHFPWTFG GGTKLEIK (SEQ ID NO: 14) Hu7E VL1 AEDVGVYYCW QSTHFPWTFG GGTKVEIK (SEQ ID NO: 15) Hu7E VL2 AEDVGVYYCW QSTHFPWTFG GGTKVEIK (SEQ ID NO: 7) BG758592 VL AEDVGVYYC- --------FG GGTKVEIK (SEQ ID NO: 17) - Numbers above the sequences indicate amino acid residue positions in VL as determined following Kabat et al. The CDR sequences and the residues within the FRs noted above are underlined in the 7E VL. The CDR regions in BG758592 VL are omitted.
- While a phenylalanine residue (F) at
position 2 inmouse 7E VL is located at a framework position that was predicted to be important for the formation of the proper CDR structures, detailed molecular modeling analysis of the 7E variable regions suggested that an amino acid residue atposition 2 in Hu7E VL1 could be replaced with the corresponding residue, isoleucine (I), in the human BG758592 VL without losing the antigen-binding affinity. In order to further reduce potential immunogenicity of humanized 7E antibody, a second humanized VL (Hu7E VL2) was designed, in which a phenylalanine residue atposition 2 in Hu7E VL1 was replaced with an isoleucine residue. The amino acid sequence ofHu7E V L2 is also shown in the alignment above. - Nucleotide sequences encoding the humanized Hu7E VH and Hu7E VL1 and
V L2 were each cloned into an expression vector from Invivogen via the EcoRI and NheI cloning sites (for the VH gene) or the NcoI and BsiWI cloning sites (for the VL1 andV L2 genes). The resultant expression vectors were co-transfected into CHO cells following routine methods. The transfected CHO cells were cultured under suitable conditions allowing the expression of the Hu7E VH and Hu7E VL1 chains (form humanized antibody HL1) or Hu7E VH andV L2 chains (form humanized antibody HL2). The culture medium was then collected and the humanized anti-IL-20 antibodies contained therein were isolated by a protein A column. - The antigen binding affinity of the humanized anti-IL-20 antibodies prepared in Example 1 above, as well as those of the parent antibody and a chimeric antibody derived therefrom, was examined via the standard BIOCORE technology following the manufacturer's protocol. The results are shown below:
-
Parent antibody 7E: 6.8×10−10 - Humanized antibody HL1: 3.6×10−9
- Humanized antibody HL2: 1.2×10−9
- Chimeric antibody: 4.2×10−9
- Unexpected, both humanized antibodies HL1 and HL2 showed antigen-binding affinities similar to that of the parent antibody. In particular, humanized antibody HL2 showed an antigen-binding affinity higher than the chimeric antibody.
- The biological function of the humanized anti-IL-20 antibody noted above was analyzed via an inhibition of osteoclast differentiation assay. The
parent mouse 7E antibody and a chimeric antibody derived therefrom were used as controls. The chimeric antibody was constructed by ligating themAb 7E variable regions with the Fc region of a human IgG. - The osteoclast differentiation assay was performed as described in Hsu et al., J Exp Med. 2011, 208(9):1849-61. Briefly, bone marrow cells (BMCs) from the tibias of C57BL6 mice were incubated for 12 h (37° C/5% CO2). Non-adherent cells were collected and seeded in 24-well plates (2×106 cells per well) and cultured in the same medium supplemented with 30 ng/ml of recombinant murine macrophage colony-stimulating factor (M-CSF) (PeproTech). After 48 hours, M-CSF-derived osteoclast precursor cells were cultured with murine M-CSF (40 ng/ml) and sRANKL (100 ng/ml) (PeproTech) until the end of the experiment.
- To analyze the effect of the 7E, chimeric, and humanized antibodies on osteoclast differentiation, BMCs were cultured for 12 h. Non-adherent cells were cultured in α-MEM containing MCSF to drive to OC precursors for 48 hours. One of the three anti-IL-20 antibodies, the 7E antibody, chimeric antibody, and humanized antibody (0.5 μg/ml) or a control hIgG (0.5 μg/ml) was added to the OC precursors. The cells were incubated with M-CSF (40 ng/ml) and sRANKL (100 ng/ml) for 6-8 days. To calculate the number of osteoclasts, the cells were fixed in acetone and stained for TRAP using an acid phosphatase kit (Sigma-Aldrich). TRAP-positive multinucleated cells containing three or more nuclei were considered as osteoclasts. As shown in the
FIG. 1 , the humanized antibody Hu HL2 (7E HL-2) unexpectedly exhibited the same effect as theparent mAb 7E in inhibiting OC differentiation. The humanized antibody inhibited 50% of OC differentiation at the concentration of 0.5 ug/ml. These results demonstrate that, like the parent mouse antibody, the humanized anti-IL-20 antibody can be used as a therapeutic agent in alleviating bone loss, e.g., bone loss associated with post-menopause osteoporosis, rheumatoid arthritis, cancer-induced osteolysis. - All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.
- From the above description, one skilled in the art can easily ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.
Claims (17)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/477,476 US8597647B1 (en) | 2012-05-22 | 2012-05-22 | Humanized anti-IL-20 antibody and uses thereof |
PCT/US2013/042012 WO2013177157A1 (en) | 2012-05-22 | 2013-05-21 | Humanized anti-il-20 antibody and uses thereof |
US14/066,018 US9217031B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
US14/065,950 US9683036B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/477,476 US8597647B1 (en) | 2012-05-22 | 2012-05-22 | Humanized anti-IL-20 antibody and uses thereof |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/066,018 Division US9217031B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
US14/065,950 Division US9683036B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130315893A1 true US20130315893A1 (en) | 2013-11-28 |
US8597647B1 US8597647B1 (en) | 2013-12-03 |
Family
ID=49621781
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/477,476 Active US8597647B1 (en) | 2012-05-22 | 2012-05-22 | Humanized anti-IL-20 antibody and uses thereof |
US14/065,950 Active 2032-08-21 US9683036B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
US14/066,018 Active US9217031B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/065,950 Active 2032-08-21 US9683036B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
US14/066,018 Active US9217031B2 (en) | 2012-05-22 | 2013-10-29 | Humanized anti-IL-20 antibody and uses thereof |
Country Status (2)
Country | Link |
---|---|
US (3) | US8597647B1 (en) |
WO (1) | WO2013177157A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014204898A1 (en) * | 2013-06-17 | 2014-12-24 | National Cheng Kung University | Use of il-20 antagonists for alleviating obesity |
WO2015153582A1 (en) * | 2014-04-01 | 2015-10-08 | National Cheng Kung University | Treatment of inflammatory pain using il-20 antagonists |
US9221904B2 (en) | 2012-07-19 | 2015-12-29 | National Cheng Kung University | Treatment of osteoarthritis using IL-20 antagonists |
US20160068595A1 (en) * | 2013-04-18 | 2016-03-10 | Development Center For Biotechnology | Humanized antibody against interleukin-20 and treatment for inflammatory diseases |
WO2017210588A1 (en) * | 2016-06-03 | 2017-12-07 | National Cheng Kung University | Use of il-20 antagonists for treating pancreatic cancer |
WO2018200620A1 (en) * | 2017-04-25 | 2018-11-01 | National Cheng Kung University | Use of il-20 antagonists for treating eye diseases |
WO2021216418A1 (en) * | 2020-04-22 | 2021-10-28 | LBL Biotechnology Inc. | Combination therapy using an il-20 antagonist and an immune checkpoint inhibitor |
EP4051313A4 (en) * | 2019-10-28 | 2024-04-24 | LBL Biotechnology Inc. | TREATMENT OF TISSUE FIBROSIS AND/OR ORGAN INJURY AND/OR FAILURE WITH INTERLEUKIN 24 OR AN INTERLEUKIN 20 ANTAGONIST |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8597647B1 (en) | 2012-05-22 | 2013-12-03 | National Cheng Kung University | Humanized anti-IL-20 antibody and uses thereof |
US9512218B2 (en) * | 2013-06-17 | 2016-12-06 | National Cheng Kung University | Use of IL-20 antagonists for alleviating spinal cord injury |
US20170189524A1 (en) * | 2014-07-03 | 2017-07-06 | Immunoqure Ag | Human-derived anti-human il-20 antibodies and assay for the identification of anti-cytokine antibodies |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7179892B2 (en) * | 2000-12-06 | 2007-02-20 | Neuralab Limited | Humanized antibodies that recognize beta amyloid peptide |
US7700751B2 (en) * | 2000-12-06 | 2010-04-20 | Janssen Alzheimer Immunotherapy | Humanized antibodies that recognize β-amyloid peptide |
US7318923B2 (en) * | 2001-04-30 | 2008-01-15 | Eli Lilly And Company | Humanized anti-βantibodies |
EA009124B1 (en) | 2003-03-24 | 2007-10-26 | Займоджинетикс, Инк. | Anti-il-20 antibodies and binding partners and methods of using in inflammation |
US7435800B2 (en) | 2003-05-23 | 2008-10-14 | Chi-Mei Medical Center | Antibodies to interleukin-20 and method for inhibiting interleukin-20 induced cell proliferation |
US7611705B2 (en) | 2007-06-15 | 2009-11-03 | National Cheng Kung University | Anti-IL-20 antibody and its use in treating IL-20 associated inflammatory diseases |
US7837994B2 (en) | 2008-10-07 | 2010-11-23 | National Cheng Kung University | Use of anti-IL-20 antibody for treating osteoporosis |
US8012478B2 (en) | 2008-10-07 | 2011-09-06 | National Cheng Kung University | Use of anti-IL-20 antibody for treating stroke |
US8535674B2 (en) | 2010-06-15 | 2013-09-17 | National Cheng Kung University | Treating breast cancer and inhibiting cancer-associated bone loss with anti-IL-20 antibody |
US20110305699A1 (en) | 2010-06-15 | 2011-12-15 | National Cheng Kung University | Treating Oral Cancer with Anti-IL-20 Antibody |
US8597647B1 (en) | 2012-05-22 | 2013-12-03 | National Cheng Kung University | Humanized anti-IL-20 antibody and uses thereof |
US9221904B2 (en) | 2012-07-19 | 2015-12-29 | National Cheng Kung University | Treatment of osteoarthritis using IL-20 antagonists |
US8852588B2 (en) | 2012-08-07 | 2014-10-07 | National Cheng Kung University | Treating allergic airway disorders using anti-IL-20 receptor antibodies |
US8603470B1 (en) | 2012-08-07 | 2013-12-10 | National Cheng Kung University | Use of IL-20 antagonists for treating liver diseases |
US20140065144A1 (en) | 2012-08-30 | 2014-03-06 | National Cheng Kung University | Use of il-20 antagonists for promoting bone fracture healing |
US20140314741A1 (en) | 2013-04-18 | 2014-10-23 | Developmen Center For Biotechnology | Human Antibody against Interleukin-20 and Treatment for Inflammatory Diseases |
-
2012
- 2012-05-22 US US13/477,476 patent/US8597647B1/en active Active
-
2013
- 2013-05-21 WO PCT/US2013/042012 patent/WO2013177157A1/en active Application Filing
- 2013-10-29 US US14/065,950 patent/US9683036B2/en active Active
- 2013-10-29 US US14/066,018 patent/US9217031B2/en active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9221904B2 (en) | 2012-07-19 | 2015-12-29 | National Cheng Kung University | Treatment of osteoarthritis using IL-20 antagonists |
US20160068595A1 (en) * | 2013-04-18 | 2016-03-10 | Development Center For Biotechnology | Humanized antibody against interleukin-20 and treatment for inflammatory diseases |
WO2014204898A1 (en) * | 2013-06-17 | 2014-12-24 | National Cheng Kung University | Use of il-20 antagonists for alleviating obesity |
US9751949B2 (en) | 2013-06-17 | 2017-09-05 | National Cheng Kung University | Method of inhibiting adipogenesis with an IL-20 antibody |
WO2015153582A1 (en) * | 2014-04-01 | 2015-10-08 | National Cheng Kung University | Treatment of inflammatory pain using il-20 antagonists |
US9376490B2 (en) | 2014-04-01 | 2016-06-28 | National Cheng Kung University | Treatment of inflammatory pain using IL-20 antagonists |
WO2017210588A1 (en) * | 2016-06-03 | 2017-12-07 | National Cheng Kung University | Use of il-20 antagonists for treating pancreatic cancer |
WO2018200620A1 (en) * | 2017-04-25 | 2018-11-01 | National Cheng Kung University | Use of il-20 antagonists for treating eye diseases |
CN111108121A (en) * | 2017-04-25 | 2020-05-05 | 永福生物科技股份有限公司 | Use of IL-20 antagonists for treating ocular diseases |
EP4051313A4 (en) * | 2019-10-28 | 2024-04-24 | LBL Biotechnology Inc. | TREATMENT OF TISSUE FIBROSIS AND/OR ORGAN INJURY AND/OR FAILURE WITH INTERLEUKIN 24 OR AN INTERLEUKIN 20 ANTAGONIST |
WO2021216418A1 (en) * | 2020-04-22 | 2021-10-28 | LBL Biotechnology Inc. | Combination therapy using an il-20 antagonist and an immune checkpoint inhibitor |
CN115515637A (en) * | 2020-04-22 | 2022-12-23 | 永福生物科技股份有限公司 | Hybrid therapy with IL-20 antagonists and immune checkpoint inhibitors |
US11661450B2 (en) | 2020-04-22 | 2023-05-30 | LBL Biotechnology Inc. | Combination therapy using an IL-20 antagonist and an immune checkpoint inhibitor |
Also Published As
Publication number | Publication date |
---|---|
US9217031B2 (en) | 2015-12-22 |
WO2013177157A1 (en) | 2013-11-28 |
US8597647B1 (en) | 2013-12-03 |
US20140056886A1 (en) | 2014-02-27 |
US20150118711A1 (en) | 2015-04-30 |
US9683036B2 (en) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8597647B1 (en) | Humanized anti-IL-20 antibody and uses thereof | |
US10899841B2 (en) | Anti-BAFFR antibody formulations and methods of use thereof | |
KR101782203B1 (en) | Lyophilised and aqueous anti-cd40 antibody formulations | |
US20210130451A1 (en) | Treatment for rheumatoid arthritis | |
KR20120100914A (en) | Treatment of autoimmune and inflammatory diseases with epratuzumab | |
TW200539891A (en) | Methods of modulating cytokine activity; related reagents | |
TW201201837A (en) | Treating disorders associated with IL-20 receptor-mediated signaling pathway by blocking IL-20 receptor activity | |
WO2022184148A1 (en) | Il-21-anti-albumin single-domain antibody fusion protein pharmaceutical composition and use thereof | |
WO2021068971A1 (en) | Anti-cd20 antibody formulation and use of anti-cd20 antibody for treatment of cd20 positive diseases | |
JP2020150947A (en) | Anti-podopranine antibody | |
WO2023006055A1 (en) | Anti-pd-1 antibody pharmaceutical composition and use thereof | |
CN107880129B (en) | Recombinant antibody and preparation method thereof | |
US20220378875A1 (en) | Treating tissue fibrosis and/or injury and/or organ failure with interleukin 24 or interleukin 20 antagonist | |
WO2023168401A1 (en) | Compositions and methods for treating disease | |
CN118475369A (en) | Methods of using inhibitors of activin receptor type II signaling | |
TW202241505A (en) | Method for treating autoimmune diseases and inflammation with an anti-il-17 antibody | |
NZ744721A (en) | Treatment for rheumatoid arthritis | |
EA040788B1 (en) | LIQUID COMPOSITION CONTAINING GM-CSF NEUTRALIZING COMPOUND |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL CHENG KUNG UNIVERSITY, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHANG, MING-SHI;REEL/FRAME:028967/0295 Effective date: 20120909 Owner name: NATIONAL CHENG KUNG UNIVERSITY, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JN BIOSCIENCES LLC;REEL/FRAME:028967/0317 Effective date: 20120615 Owner name: JN BIOSCIENCES LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSURUSHITA, NAOYA;KUMAR, SHANKAR;REEL/FRAME:028967/0303 Effective date: 20120615 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: LBL BIOTECHNOLOGY INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NATIONAL CHENG KUNG UNIVERSITY;REEL/FRAME:052477/0811 Effective date: 20200109 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |