US20130311115A1 - Battery System and Method with Parameter Estimator - Google Patents
Battery System and Method with Parameter Estimator Download PDFInfo
- Publication number
- US20130311115A1 US20130311115A1 US13/895,096 US201313895096A US2013311115A1 US 20130311115 A1 US20130311115 A1 US 20130311115A1 US 201313895096 A US201313895096 A US 201313895096A US 2013311115 A1 US2013311115 A1 US 2013311115A1
- Authority
- US
- United States
- Prior art keywords
- electrochemical cell
- kinetic parameters
- soc
- cell
- nom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 16
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 21
- 238000013459 approach Methods 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 239000011149 active material Substances 0.000 description 7
- 230000010354 integration Effects 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000010200 validation analysis Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010068065 Burning mouth syndrome Diseases 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910013856 LiPb Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940006487 lithium cation Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G01R31/3606—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
- G01R31/388—Determining ampere-hour charge capacity or SoC involving voltage measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This disclosure relates to batteries and more particularly to electrochemical batteries.
- Batteries are a useful source of stored energy that can be incorporated into a number of systems.
- Rechargeable lithium-ion (Li-ion) batteries are attractive energy storage systems for portable electronics and electric and hybrid-electric vehicles because of their high specific energy compared to other electrochemical energy storage devices.
- batteries with a form of lithium metal incorporated into the negative electrode afford exceptionally high specific energy (in Wh/kg) and energy density (in Wh/L) compared to batteries with conventional carbonaceous negative electrodes.
- Li-ion batteries also exhibit lack of hysteresis and low self-discharge currents. Accordingly, lithium-ion batteries are a promising option for incorporation into electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV).
- EV electric vehicles
- HEV hybrid electric vehicles
- PHEV plug-in hybrid electric vehicles
- SOC state of charge
- SOH state of health
- SOH is a general term which encompasses a variety of quantities and is in the form of a percentage which reflects the presently available energy and power in a cell assuming the cell to be fully charged compared to the available energy and power of the cell when fully charged at beginning of cell life. SOH is thus akin to the size of the fuel tank provided on fossil fuel based vehicles and the health of the engine to provide the power. Unlike the volume of a fuel tank and the power output of an engine, the SOH of a cell decreases over cell life as discussed more fully below.
- BMS battery management system
- Kalman filter such as those reported by H. Dai, Z. Sun, and X. Wei, “Online SOC Estimation of High-power Lithium-ion Batteries used on HEV's,” Vehicular Electronics and Safety , ICVES, 2006, and J. Lee, O. Nam, and B. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman Filtering,” Journal of Power Sources, 174, pp. 9-15, 2007.
- BMSs incorporating Kalman filters are based upon an assumption of known and time-invariant parameters incorporated into a battery model. In a real battery system the various parameters vary on both a long-term and short-term basis.
- An electrochemical battery system in one embodiment includes at least one electrochemical cell, a first sensor configured to generate a current signal indicative of an amplitude of a current passing into or out of the at least one electrochemical cell, a second sensor configured to generate a voltage signal indicative of a voltage across the at least one electrochemical cell, a memory in which command instructions are stored, and a processor configured to execute the command instructions to obtain the current signal and the voltage signal, and to generate kinetic parameters for an equivalent circuit model of the at least one electrochemical cell by obtaining a derivative of an open cell voltage (U ocv ) with respect to SOC, obtaining an estimated nominal capacity (C nom ) of the at least one electrochemical cell, and estimating the kinetic parameters using a modified least-square algorithm with forgetting factor.
- U ocv open cell voltage
- C nom estimated nominal capacity
- a method of determining kinetic parameters for an equivalent circuit model of at least one electrochemical cell includes obtaining a derivative of an open cell voltage (U ocv ) with respect to SOC, obtaining an estimated nominal capacity (C nom ) of the at least one electrochemical cell, and estimating the kinetic parameters using a modified least-square algorithm with forgetting factor.
- FIG. 1 depicts a schematic of a battery system including a lithium-ion cell, a processor, and a memory with command instructions which, when executed by the processor, run a parameter estimator which generates kinetic parameters of a model of the battery system;
- FIG. 2 depicts a schematic of an equivalent circuit of the battery system of FIG. 1 including static parameters (open cell voltage) and kinetic parameters, wherein the kinetic parameters include an effective resistance, and a parallel circuit in series with the effective resistance, the parallel circuit including a resistance in parallel with a capacitance;
- FIG. 3 depicts a schematic of a model executed by the processor of FIG. 1 including an estimator which generates the kinetic parameters of FIG. 2 based upon a sensed voltage and sensed current of the battery system of FIG. 1 , and based upon a received SOC estimate from an observer; and
- FIG. 4 depicts the results of a validation process in which a lithium-ion cell is discharged and the model of FIG. 3 is used to generate kinetic parameters.
- FIG. 1 depicts an electrochemical battery system 100 including an electrochemical cell in the form of Li-ion cell 102 , a memory 104 , and a processor 106 .
- Various command instructions discussed in further detail below, are programmed into the memory 104 .
- the processor 106 is operable to execute the command instructions programmed into the memory 104 .
- the Li-ion cell 102 includes a negative electrode 108 , a positive electrode 110 , and a separator region 112 between the negative electrode 108 and the positive electrode 110 .
- the negative electrode 108 includes active materials 116 into which lithium can be inserted, inert materials 118 , electrolyte 120 and a current collector 122 .
- the negative electrode 108 may be provided in various alternative forms.
- the negative electrode 108 may incorporate dense Li metal or a conventional porous composite electrode (e.g., graphite particles mixed with binder). Incorporation of Li metal is desired since the Li metal affords a higher specific energy than graphite.
- the separator region 112 includes an electrolyte with a lithium cation and serves as a physical and electrical barrier between the negative electrode 108 and the positive electrode 110 so that the electrodes are not electronically connected within the cell 102 while allowing transfer of lithium ions between the negative electrode 108 and the positive electrode 110 .
- the positive electrode 110 includes active material 126 into which lithium can be inserted, a conducting material 128 , fluid 130 , and a current collector 132 .
- the active material 126 includes a form of sulfur and may be entirely sulfur.
- the conducting material 128 conducts both electrons and lithium ions and is well connected to the separator 112 , the active material 126 , and the collector 132 . In alternative embodiments, separate material may be provided to provide the electrical and lithium ion conduction.
- the fluid 130 which may be a liquid or a gas, is relatively inert with respect to the other components of the positive electrode 110 . Gas which may be used includes argon or nitrogen. The fluid 130 fills the interstitial spaces between the active material 126 and the conducting material 128 .
- the lithium-ion cell 102 operates in a manner similar to the lithium-ion battery cell disclosed in U.S. Pat. No. 7,726,975, which issued Jun. 1, 2010, the contents of which are herein incorporated in their entirety by reference. In other embodiments, other battery chemistries are used in the cell 102 . In general, electrons are generated at the negative electrode 108 during discharging and an equal amount of electrons are consumed at the positive electrode 110 as lithium and electrons move in the direction of the arrow 134 of FIG. 1 .
- the electrons are generated at the negative electrode 108 because there is extraction via oxidation of lithium ions from the active material 116 of the negative electrode 108 , and the electrons are consumed at the positive electrode 110 because there is reduction of lithium ions into the active material 126 of the positive electrode 110 .
- the reactions are reversed, with lithium and electrons moving in the direction of the arrow 136 . While only one cell 102 is shown in the system 100 , the system 100 may include more than one cell 102 .
- cell voltage is monitored using a voltage meter 138 and an amp meter 140 monitors current flow into and out of the cell 102 .
- Signals from the voltage meter 138 and the amp meter 140 are provided to the processor 106 which uses the signals to estimate the SOH and, in this embodiment, SOC of the cell 102 .
- the processor 106 uses a state space equation which models the cell 102 to estimate SOH and SOC.
- FIG. 2 a simple equivalent circuit for a known cell is depicted in FIG. 2 .
- open cell voltage (OCV), nominal capacity (C nom ), rest voltage, etc. are modeled as static parameters 150 .
- the internal resistance (R e ) 152 and a parallel circuit 154 including a resistor (R 1 ) 156 and a capacitor (C 1 ) 158 represent kinetic parameters.
- U OCV is the open circuit voltage of the cell
- C nom is the nominal capacity of the cell associated with the U OCV .
- the SOH battery parameters R e , R 1 , and C 1 in general terms, are functions of the cell SOC, cell current, and cell temperature. Thus, the values for those parameters can vary over time (kinetic parameters). Consequently, the foregoing state equations are nonlinear. Moreover, since the second state space equation above incorporates the term “U OCV (•)” as a function of x 1 , it is inherently nonlinear, even in situations with otherwise constant parameters. Additionally, the first state space equation above reveals that the system dynamics are Lyapunov stable, not asymptotically stable. Accordingly, approaches which attempt to predict SOH or SOC using linear systems are inherently inaccurate.
- the system 100 has a model 160 stored within the memory 104 which is executed by the processor 106 (see FIG. 1 ).
- the model 160 is schematically depicted in FIG. 3 .
- the model 160 running within the processor 106 receives input from the voltage meter 138 and the amp meter 140 .
- Signals indicative of the voltage of the cell 102 are provided to a parameter estimator 162 and, in this embodiment, a reduced modified observer 164 .
- the parameters ( ⁇ ) estimated by the parameter estimator 162 are also provided as an input to the reduced modified observer 164 while the output (SOC) of the reduced modified observer 164 is provided as an input to the parameter estimator 162 .
- the output parameters in this embodiment represent the values for the kinetic parameters R e 152 , R 1 156 , and C 1 158 of FIG. 2 .
- the parameter estimator 162 estimates the kinetic parameters based upon voltage and current measurements of the cell 102 while applying a modified least squares algorithm with forgetting factor to data used in forming the estimation. In other words, while historical data are used in estimating present parameters, the older data are given exponentially less weight in the estimation.
- the parameter estimator 162 uses a form of a derivative with respect to SOC of the OCV signal. Using a derivative of the OCV reduces the impact of an inaccurate SOC input since the OCV for the cell 102 exhibits a nearly constant slope over a wide range of SOC. Therefore, the impact of initial SOC errors on the accuracy of the estimation is reduced.
- the algorithm for the parameter estimator 162 in one embodiment is derived from the above described state equations by defining a parametric form “ ” in the following manner:
- “ ” represents a higher order filter with a cut-off frequency that depends upon the expected drive cycle (about 0.1 Hz in one embodiment), such as a 4 th order Butterworth filter with a cut-off frequency of 0.1 rad/s, and
- ⁇ circumflex over (x) ⁇ 1 is an estimate of the SOC from the observer 164 .
- ⁇ + ⁇ is a class function
- ⁇ ( t ) z ( t ) ⁇ T ( t ) ⁇ circumflex over ( ⁇ ) ⁇ ( t )
- the matrix P ⁇ 3 ⁇ 3 is initialized as a positive definitive matrix P o .
- values for C nom and an estimate for the SOC are needed.
- the SOC estimate can be provided in various embodiments by any desired SOC estimator.
- the value of C nom may be provided in any desired manner as well, although the model 160 in this embodiment includes an algorithm that provides a C nom without the need for SOC or SOH inputs as described more fully below.
- the system 100 includes a reduced observer 164 which uses input from the parameter estimator 162 to generate an estimated SOC.
- the SOC for the cell 102 is defined by the following equation in the reduced observer 164 :
- x 1 ⁇ . - u C nom + L ⁇ ( y ⁇ - U O ⁇ ⁇ C ⁇ ⁇ V ⁇ ( x ⁇ 1 ) ⁇ + u ⁇ ⁇ R e ⁇ + sy ⁇ ⁇ R 1 ⁇ C 1 + u ⁇ ⁇ R 1 ⁇ + su ⁇ ⁇ R e ⁇ R 1 ⁇ C 1 + U O ⁇ ⁇ C ⁇ ⁇ V ′ ⁇ ( x 1 ⁇ ) ⁇ u ⁇ ⁇ ⁇ R 1 ⁇ C 1 C nom )
- L is the gain of the reduced observer 164 .
- the reduced observer 164 thus converges to a residual set, i.e., a compact neighborhood of the desired values, for a bounded error estimate of SOH.
- the SOC estimate is fed into the SOH estimator 162 and modified parameters are generated by the estimator 162 and fed back to the reduced observer 164 . Accordingly, the loop of FIG. 3 is closed.
- the SOC for the cell 102 is defined by the following equation in the reduced observer 164 :
- “ ” represents a higher order filter with a cut-off frequency that depends upon the expected drive cycle (about 0.1 Hz in one embodiment), such as a 4 th order Butterworth filter with a cut-off frequency of 0.1 rad/s, and
- the model 160 was validated using a commercial 18650 Li-ion cell while estimating all parameters in real time. Actual values for U ocv and nominal capacity C nom were obtained using open cell voltage experiments prior to validation testing. During validation testing, three consecutive drive cycles were applied to the cell with intermediate rests. The results are shown in FIG. 4 which includes a chart 200 of the actual SOC of the cell versus time. The three drive cycles resulted in voltage drop regions 202 , 204 , and 206 resulting in an ending SOC of 20%. The cell voltages corresponding to 100% and 0% SOC were 4.1V and 2.8V, respectively.
- Chart 210 depicts the estimated value generated by the parameter estimator 162 for the R e .
- the estimated R e initially exhibits a large drop at 218 during the initial voltage drop region 202 primarily because of the introduced 20% error in the initial SOC estimate.
- the estimated R e quickly stabilizes thereafter for the remainder of the voltage drop region 202 .
- smaller perturbations at 220 and 222 are exhibited because of changing current, temperature, and SOC values.
- the estimated value of R e is otherwise stable in the voltage drop regions 204 and 206 .
- Chart 212 depicts the estimated value generated by the parameter estimator 162 for the resistor (R 1 ) 156 .
- the estimated R 1 is initially zero at 224 as the estimated R e drops at 218 because of the large initial SOC error.
- the estimated R e begins to increase during the initial voltage drop region 202 , the estimated R 1 increases at 226 and then settles to a stable value for the remainder of the voltage drop region 202 .
- smaller perturbations at 228 and 230 are exhibited because of changing current, temperature, and SOC values.
- the estimated value of R 1 is otherwise stable in the voltage drop regions 204 and 206 .
- Chart 214 depicts the estimated value generated by the parameter estimator 162 for the capacitor (C 1 ) 158 .
- the estimated C 1 initially exhibits a large perturbation at 232 .
- the estimated C 1 stabilizes at 234 for the remainder of the voltage drop region 202 .
- smaller perturbations at 236 and 238 are exhibited because of changing current, temperature, and SOC values.
- the estimated value of C 1 is otherwise stable in the voltage drop regions 204 and 206 .
- Chart 216 depicts the estimated SOC value 240 generated by the reduced modified observer 164 along with the estimated SOC 242 based upon coulomb counting.
- the estimated SOH initialized with a 20% error, rapidly converges to the SOC 242 .
- the actual SOC error of the estimated SOC value 240 is depicted in chart 250 .
- Chart 250 reveals the actual SOC error decreases to less than 2% (line 252 ).
- the variation in the SOC error during the rest periods of chart 200 result from changing temperature of the cell.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Operations Research (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Secondary Cells (AREA)
Abstract
An electrochemical battery system in one embodiment includes at least one electrochemical cell, a first sensor configured to generate a current signal indicative of an amplitude of a current passing into or out of the at least one electrochemical cell, a second sensor configured to generate a voltage signal indicative of a voltage across the at least one electrochemical cell, a memory in which command instructions are stored, and a processor configured to execute the command instructions to obtain the current signal and the voltage signal, and to generate kinetic parameters for an equivalent circuit model of the at least one electrochemical cell by obtaining a derivative of an open cell voltage (Uocv), obtaining an estimated nominal capacity (Cnom) of the at least one electrochemical cell, and estimating the kinetic parameters using a modified least-square algorithm with forgetting factor.
Description
- This application claims the benefit of U.S. Provisional Application No. 61/647,904 filed May 16, 2012, U.S. Provisional Application No. 61/647,926 filed May 16, 2012, and U.S. Provisional Application No. 61/647,948 filed May 16, 2012, the entirety of each of which is incorporated herein by reference. The principles of the present invention may be combined with features disclosed in those patent applications.
- This disclosure relates to batteries and more particularly to electrochemical batteries.
- Batteries are a useful source of stored energy that can be incorporated into a number of systems. Rechargeable lithium-ion (Li-ion) batteries are attractive energy storage systems for portable electronics and electric and hybrid-electric vehicles because of their high specific energy compared to other electrochemical energy storage devices. In particular, batteries with a form of lithium metal incorporated into the negative electrode afford exceptionally high specific energy (in Wh/kg) and energy density (in Wh/L) compared to batteries with conventional carbonaceous negative electrodes. Li-ion batteries also exhibit lack of hysteresis and low self-discharge currents. Accordingly, lithium-ion batteries are a promising option for incorporation into electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV).
- One requirement for incorporation of batteries including Li-ion batteries into EV/HEV/PHEV systems is the ability to accurately compute the state of charge (SOC) and state of health (SOH) of the batteries in real time. SOC is a percentage which reflects the available energy in a cell compared to the available energy of the cell when fully charged. SOC is thus akin to the fuel gauge provided on fossil fuel based vehicles.
- SOH is a general term which encompasses a variety of quantities and is in the form of a percentage which reflects the presently available energy and power in a cell assuming the cell to be fully charged compared to the available energy and power of the cell when fully charged at beginning of cell life. SOH is thus akin to the size of the fuel tank provided on fossil fuel based vehicles and the health of the engine to provide the power. Unlike the volume of a fuel tank and the power output of an engine, the SOH of a cell decreases over cell life as discussed more fully below.
- Both SOC and SOH are needed to understand, for example, the available range of a vehicle using the cell and the available power. In order to provide SOH/SOC data, a battery management system (BMS) is incorporated into a vehicle to monitor battery parameters and predict SOH/SOC.
- Various algorithms have been proposed for use in a BMS to maintain the battery system within safe operating parameters as well as to predict the actual available power in the battery system. One such approach based on an electrochemical paradigm is described by N. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, “Algorithms for advanced battery-management systems,” IEEE Control Systems Magazine, 30(3), pp. 49-68, 2010. Generally, in order to accurately estimate the SOH of a system, the SOC of the system must be accurately known. Conversely, in order to accurately estimate the SOC of a system, the SOH of the system must be accurately known.
- SOC estimation, even when an accurate SOH is available, is challenging since simple methods of predicting SOC, such as Coulomb Integration, suffer from increased errors over increased integration time. The increased errors result from biased current measurements or discretization errors as reported by S. Piller, M Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of Power Sources, 96, pp. 113-120, 2001. Nonetheless, some approaches such as the approach described by U.S. Pat. No. 7,684,942 of Yun et al. use pure current integration to determine SOC and then derive SOH from the determined SOC.
- Other approaches avoid exclusive reliance upon current integration by combining current integration with a form of SOC estimation to obtain an SOC as a weighted sum of both methods as disclosed in U.S. Pat. No. 7,352,156 of Ashizawa et al. In another approach reported by K. Ng, C. Moo, Y. Chen, and Y. Hsieh, “Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries,” Journal of Applied Energy, 86, pp. 1506-1511, 2009, the result obtained from current integration is reset in accordance with an OCV/SOC look-up table.
- All of the foregoing approaches, however, rely upon obtaining a dependable initial value for the cell SOC. If a dependable initial value for cell SOC is not available, the described methods fail. Unreliable SOC values are commonly encountered during drive cycles or when switching off current. For example, during driving cycles or when switching off current, the dynamics of the battery may not decay to zero or settle at a steady-state level at the precise moment that a measurement is obtained. Thus a calculation depending upon an observed voltage may be biased if the voltage is obtained during a transient.
- Other approaches such as those described in U.S. Patent Publication No. 2010/0076705 of Liu et al., U.S. Pat. No. 7,615,967 of Cho et al., and U.S. Patent Publication No. 2005/0231166 of Melichar work only in discrete special cases and are not guaranteed to work robustly during normal operation of a battery. These approaches may further incur increased errors as a battery ages with use.
- Many advanced BMSs incorporate various forms of a Kalman filter such as those reported by H. Dai, Z. Sun, and X. Wei, “Online SOC Estimation of High-power Lithium-ion Batteries used on HEV's,” Vehicular Electronics and Safety, ICVES, 2006, and J. Lee, O. Nam, and B. Cho, “Li-ion battery SOC estimation method based on the reduced order extended Kalman Filtering,” Journal of Power Sources, 174, pp. 9-15, 2007. BMSs incorporating Kalman filters, however, are based upon an assumption of known and time-invariant parameters incorporated into a battery model. In a real battery system the various parameters vary on both a long-term and short-term basis. For example, battery aging alters the capacity and internal resistance of the battery over the long term. Thus, the SOH of the battery changes over cell lifetime introducing errors into SOC calculations. Moreover, temperature and rate of current draw vary over the short term and both temperature and rate of current draw affect the SOC determination. Accordingly, while accurate knowledge of the present SOH of the battery is a prerequisite for accurate SOC determination in approaches incorporating Kalman filters, such information may not be readily available.
- Accurate estimation of SOH is likewise challenging. A good estimator has to be able to track battery model parameters on a short time scale to account for the parameters' dependence or rate of current draw, SOC, and temperature, and also on a long time scale to account for changing health of the battery. Estimators which operate when the battery is placed off-line have been proposed. Placing a battery offline in order to determine remaining driving range, however, is typically not possible. Moreover, this approach is not recursive resulting in increased computational expense. Thus, such off-line approaches are of limited value in providing near real-time estimation which is needed during operation of a vehicle.
- Additionally, approaches which require stable input parameters, which may be available when a system is offline, cannot provide accurate estimates when presented with disturbances in the measured battery parameter signals like voltage and current noise, gain errors and/or measurement bias. Moreover, since the open circuit voltage (OCV) of most batteries is nonlinear, a direct application of standard parameter estimation theory which is directed to estimating a constant value is not possible. Accordingly, accurate knowledge of the present SOC of the battery is a prerequisite for accurate SOH determination. U.S. Pat. No. 7,352,156 of Ashizawa et al. addresses this issue by assuming a linearized model with an initially known OCV. As the actual SOC diverges from the assumed linear model, however, estimation errors are incurred and can eventually result in divergence of the estimator. Thus, known systems rely on the actual SOC or incorporate excess robustness into the SOH estimation to allow for SOC errors.
- Accordingly, accurately estimating SOH and SOC presents a circular problem in known systems with accurate estimation of one parameter depending upon accurate foreknowledge of the other of the two parameters. Some attempts have been made to solve the circular problem by performing a combined estimation of both parameters. Such approaches have been reported by G. Plett, “Extended Kalman Filtering for battery management systems of LiPB-based HEV battery packs Part3. State and parameter estimation,” Journal of Power Sources, 134, pp. 277-292, 2004, and M. Roscher and D. Sauer, “Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries,” Journal of Power Sources, 196, pp. 331-336, 2011. These approaches, however, are computationally expensive.
- An alternative approach to solving the circular SOH/SOC problem is to incorporate extended or unscented Kalman filters as reported by G. Plett, “Sigma-point Kalman Filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Simultaneous state and parameter estimation,” Journal of Power sources, 161, pp. 1369-1384, 2006. This approach, however, is also computationally expensive.
- What is needed therefore is a battery system incorporating a BMS with SOH estimation which converges even for initially inaccurate SOC parameters. A system which is much more robust than known approaches given initial inaccuracies would be beneficial. A system which accurately estimates SOH without relying upon initial system assumptions regarding model noise would be further advantageous.
- An electrochemical battery system in one embodiment includes at least one electrochemical cell, a first sensor configured to generate a current signal indicative of an amplitude of a current passing into or out of the at least one electrochemical cell, a second sensor configured to generate a voltage signal indicative of a voltage across the at least one electrochemical cell, a memory in which command instructions are stored, and a processor configured to execute the command instructions to obtain the current signal and the voltage signal, and to generate kinetic parameters for an equivalent circuit model of the at least one electrochemical cell by obtaining a derivative of an open cell voltage (Uocv) with respect to SOC, obtaining an estimated nominal capacity (Cnom) of the at least one electrochemical cell, and estimating the kinetic parameters using a modified least-square algorithm with forgetting factor.
- In accordance with another embodiment, a method of determining kinetic parameters for an equivalent circuit model of at least one electrochemical cell includes obtaining a derivative of an open cell voltage (Uocv) with respect to SOC, obtaining an estimated nominal capacity (Cnom) of the at least one electrochemical cell, and estimating the kinetic parameters using a modified least-square algorithm with forgetting factor.
-
FIG. 1 depicts a schematic of a battery system including a lithium-ion cell, a processor, and a memory with command instructions which, when executed by the processor, run a parameter estimator which generates kinetic parameters of a model of the battery system; -
FIG. 2 depicts a schematic of an equivalent circuit of the battery system ofFIG. 1 including static parameters (open cell voltage) and kinetic parameters, wherein the kinetic parameters include an effective resistance, and a parallel circuit in series with the effective resistance, the parallel circuit including a resistance in parallel with a capacitance; -
FIG. 3 depicts a schematic of a model executed by the processor ofFIG. 1 including an estimator which generates the kinetic parameters ofFIG. 2 based upon a sensed voltage and sensed current of the battery system ofFIG. 1 , and based upon a received SOC estimate from an observer; and -
FIG. 4 depicts the results of a validation process in which a lithium-ion cell is discharged and the model ofFIG. 3 is used to generate kinetic parameters. - For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiments illustrated in the drawings and described in the following written specification. It is understood that no limitation to the scope of the disclosure is thereby intended. It is further understood that the present disclosure includes any alterations and modifications to the illustrated embodiments and includes further applications of the principles of the disclosure as would normally occur to one skilled in the art to which this disclosure pertains.
-
FIG. 1 depicts anelectrochemical battery system 100 including an electrochemical cell in the form of Li-ion cell 102, amemory 104, and aprocessor 106. Various command instructions, discussed in further detail below, are programmed into thememory 104. Theprocessor 106 is operable to execute the command instructions programmed into thememory 104. - The Li-
ion cell 102 includes anegative electrode 108, apositive electrode 110, and aseparator region 112 between thenegative electrode 108 and thepositive electrode 110. Thenegative electrode 108 includesactive materials 116 into which lithium can be inserted,inert materials 118,electrolyte 120 and acurrent collector 122. - The
negative electrode 108 may be provided in various alternative forms. Thenegative electrode 108 may incorporate dense Li metal or a conventional porous composite electrode (e.g., graphite particles mixed with binder). Incorporation of Li metal is desired since the Li metal affords a higher specific energy than graphite. - The
separator region 112 includes an electrolyte with a lithium cation and serves as a physical and electrical barrier between thenegative electrode 108 and thepositive electrode 110 so that the electrodes are not electronically connected within thecell 102 while allowing transfer of lithium ions between thenegative electrode 108 and thepositive electrode 110. - The
positive electrode 110 includesactive material 126 into which lithium can be inserted, a conductingmaterial 128,fluid 130, and acurrent collector 132. Theactive material 126 includes a form of sulfur and may be entirely sulfur. The conductingmaterial 128 conducts both electrons and lithium ions and is well connected to theseparator 112, theactive material 126, and thecollector 132. In alternative embodiments, separate material may be provided to provide the electrical and lithium ion conduction. The fluid 130, which may be a liquid or a gas, is relatively inert with respect to the other components of thepositive electrode 110. Gas which may be used includes argon or nitrogen. The fluid 130 fills the interstitial spaces between theactive material 126 and the conductingmaterial 128. - The lithium-
ion cell 102 operates in a manner similar to the lithium-ion battery cell disclosed in U.S. Pat. No. 7,726,975, which issued Jun. 1, 2010, the contents of which are herein incorporated in their entirety by reference. In other embodiments, other battery chemistries are used in thecell 102. In general, electrons are generated at thenegative electrode 108 during discharging and an equal amount of electrons are consumed at thepositive electrode 110 as lithium and electrons move in the direction of thearrow 134 ofFIG. 1 . - In the ideal discharging of the
cell 102, the electrons are generated at thenegative electrode 108 because there is extraction via oxidation of lithium ions from theactive material 116 of thenegative electrode 108, and the electrons are consumed at thepositive electrode 110 because there is reduction of lithium ions into theactive material 126 of thepositive electrode 110. During discharging, the reactions are reversed, with lithium and electrons moving in the direction of thearrow 136. While only onecell 102 is shown in thesystem 100, thesystem 100 may include more than onecell 102. - During operation of the
cell 102, cell voltage is monitored using avoltage meter 138 and anamp meter 140 monitors current flow into and out of thecell 102. Signals from thevoltage meter 138 and theamp meter 140 are provided to theprocessor 106 which uses the signals to estimate the SOH and, in this embodiment, SOC of thecell 102. In general, theprocessor 106 uses a state space equation which models thecell 102 to estimate SOH and SOC. By way of background, a simple equivalent circuit for a known cell is depicted inFIG. 2 . InFIG. 2 , open cell voltage (OCV), nominal capacity (Cnom), rest voltage, etc., are modeled asstatic parameters 150. The internal resistance (Re) 152 and aparallel circuit 154 including a resistor (R1) 156 and a capacitor (C1) 158 represent kinetic parameters. - State space equations for the equivalent circuit of
FIG. 2 can be written, in continuous time, as the following: -
- wherein
- “u” is the current applied to the battery,
- “y” is the measured cell voltage,
- “x1” is the cell SOC,
- “x2” is the current (i1) through the impedance (R1) 156,
- “UOCV” is the open circuit voltage of the cell, and
- “Cnom” is the nominal capacity of the cell associated with the UOCV.
- In the foregoing state equations, the SOH battery parameters Re, R1, and C1, in general terms, are functions of the cell SOC, cell current, and cell temperature. Thus, the values for those parameters can vary over time (kinetic parameters). Consequently, the foregoing state equations are nonlinear. Moreover, since the second state space equation above incorporates the term “UOCV(•)” as a function of x1, it is inherently nonlinear, even in situations with otherwise constant parameters. Additionally, the first state space equation above reveals that the system dynamics are Lyapunov stable, not asymptotically stable. Accordingly, approaches which attempt to predict SOH or SOC using linear systems are inherently inaccurate.
- In contrast with prior systems, the
system 100 has amodel 160 stored within thememory 104 which is executed by the processor 106 (seeFIG. 1 ). Themodel 160 is schematically depicted inFIG. 3 . Themodel 160 running within theprocessor 106 receives input from thevoltage meter 138 and theamp meter 140. Signals indicative of the voltage of thecell 102 are provided to aparameter estimator 162 and, in this embodiment, a reduced modifiedobserver 164. The parameters (θ) estimated by theparameter estimator 162 are also provided as an input to the reduced modifiedobserver 164 while the output (SOC) of the reduced modifiedobserver 164 is provided as an input to theparameter estimator 162. The output parameters in this embodiment represent the values for thekinetic parameters R e 152,R 1 156, andC 1 158 ofFIG. 2 . - Simply incorporating an adaptive observer does not necessarily result in an algorithm which converges, however, because small initial errors in the SOC estimate provided to the parameter estimator can result in increasingly large SOH estimations. This problem may be exacerbated by unknown offsets in current and noise in current and voltage measurements.
- In order to ensure convergence, the
parameter estimator 162 estimates the kinetic parameters based upon voltage and current measurements of thecell 102 while applying a modified least squares algorithm with forgetting factor to data used in forming the estimation. In other words, while historical data are used in estimating present parameters, the older data are given exponentially less weight in the estimation. - Additionally, rather than directly using an OCV reading as an indication of SOC, the
parameter estimator 162 uses a form of a derivative with respect to SOC of the OCV signal. Using a derivative of the OCV reduces the impact of an inaccurate SOC input since the OCV for thecell 102 exhibits a nearly constant slope over a wide range of SOC. Therefore, the impact of initial SOC errors on the accuracy of the estimation is reduced. -
-
- wherein
-
- “s” represents a complex number with real numbers σ and ω,
-
- “{circumflex over (x)}1” is an estimate of the SOC from the
observer 164. - Next, a vector (Φ) is defined in the following manner:
-
- Converting the foregoing into parametric form results in the following:
- wherein
- “ΦT” is a transpose of the matrixΦ,
-
-
-
- In the equation above for the parametric form of “”, the last term accounts for effects resulting from an unknown state of charge. For an asymptotically stable filter design, however, the last two terms in the equation for the parametric form of “” vanish asymptotically. Accordingly, by defining {circumflex over (Θ)}(t) to be an estimate of the parameters at time “t”, the parameter estimator law is given by:
-
{circumflex over ({dot over (Θ)}(t)=ε(t)P(t)Φ(t) -
ε(t)=z(t)−ΦT(t){circumflex over (Θ)}(t) -
{dot over (P)}(t)=βP(t)−P(t)Φ(t)Φ(t)T P(t) - wherein
- “ε” is the output error,
- “P” is a covariance matrix,
-
- the initial parameters estimate {circumflex over (Θ)}(0)=Θ0 is used as an initial value for the parameters (Θ).
- In the foregoing parameter algorithm, values for Cnom and an estimate for the SOC ({circumflex over (x)}{circumflex over (x1)}) are needed. The SOC estimate can be provided in various embodiments by any desired SOC estimator. The value of Cnom may be provided in any desired manner as well, although the
model 160 in this embodiment includes an algorithm that provides a Cnom without the need for SOC or SOH inputs as described more fully below. - In this embodiment, the
system 100 includes a reducedobserver 164 which uses input from theparameter estimator 162 to generate an estimated SOC. Given the foregoing parameter estimator equations, the SOC for thecell 102 is defined by the following equation in the reduced observer 164: -
- wherein “L” is the gain of the reduced
observer 164. - The reduced
observer 164 thus converges to a residual set, i.e., a compact neighborhood of the desired values, for a bounded error estimate of SOH. The SOC estimate is fed into theSOH estimator 162 and modified parameters are generated by theestimator 162 and fed back to the reducedobserver 164. Accordingly, the loop ofFIG. 3 is closed. - In other embodiments, other observers are incorporated. By way of example, in one embodiment the SOC for the
cell 102 is defined by the following equation in the reduced observer 164: -
- wherein
- “u” is the current applied to the battery,
- “Cnom” is the nominal capacity of the cell,
- “L” is the gain of the reduced
observer 164 - “y” is the measured cell voltage,
-
- “ŷ” is the estimate of the output voltage.
- The
model 160 was validated using a commercial 18650 Li-ion cell while estimating all parameters in real time. Actual values for Uocv and nominal capacity Cnom were obtained using open cell voltage experiments prior to validation testing. During validation testing, three consecutive drive cycles were applied to the cell with intermediate rests. The results are shown inFIG. 4 which includes achart 200 of the actual SOC of the cell versus time. The three drive cycles resulted involtage drop regions - In running the
model 160, a noise of 20 mV was introduced into the voltage signal. A noise of C/50 A and an additional error in the form of an offset of C/10 A was introduced on the current signal. Additionally, the initial value for each of the kinetic parameters was established at between 2 and 10 times the actual value with an initial error of 20% for the SOC. The values for the kinetic parameters and the SOC generated by themodel 160 during the validation testing are shown inFIG. 4 bycharts -
Chart 210 depicts the estimated value generated by theparameter estimator 162 for the Re. The estimated Re initially exhibits a large drop at 218 during the initialvoltage drop region 202 primarily because of the introduced 20% error in the initial SOC estimate. The estimated Re quickly stabilizes thereafter for the remainder of thevoltage drop region 202. At the initialization of thevoltage drop regions voltage drop regions -
Chart 212 depicts the estimated value generated by theparameter estimator 162 for the resistor (R1) 156. The estimated R1 is initially zero at 224 as the estimated Re drops at 218 because of the large initial SOC error. As the estimated Re begins to increase during the initialvoltage drop region 202, the estimated R1 increases at 226 and then settles to a stable value for the remainder of thevoltage drop region 202. At the initialization of thevoltage drop regions voltage drop regions -
Chart 214 depicts the estimated value generated by theparameter estimator 162 for the capacitor (C1) 158. The estimated C1 initially exhibits a large perturbation at 232. As the other estimated parameters and SOC stabilize during the initialvoltage drop region 202, the estimated C1 stabilizes at 234 for the remainder of thevoltage drop region 202. At the initialization of thevoltage drop regions voltage drop regions -
Chart 216 depicts the estimatedSOC value 240 generated by the reduced modifiedobserver 164 along with the estimatedSOC 242 based upon coulomb counting. The estimated SOH, initialized with a 20% error, rapidly converges to theSOC 242. The actual SOC error of the estimatedSOC value 240 is depicted inchart 250.Chart 250 reveals the actual SOC error decreases to less than 2% (line 252). The variation in the SOC error during the rest periods ofchart 200 result from changing temperature of the cell. - While the disclosure has been illustrated and described in detail in the drawings and foregoing description, the same should be considered as illustrative and not restrictive in character. It is understood that only the preferred embodiments have been presented and that all changes, modifications and further applications that come within the spirit of the disclosure are desired to be protected.
Claims (16)
1. An electrochemical battery system, comprising:
at least one electrochemical cell;
a first sensor configured to generate a current signal indicative of an amplitude of a current passing into or out of the at least one electrochemical cell;
a second sensor configured to generate a voltage signal indicative of a voltage across the at least one electrochemical cell;
a memory in which command instructions are stored; and
a processor configured to execute the command instructions to obtain the current signal and the voltage signal, and to generate kinetic parameters for an equivalent circuit model of the at least one electrochemical cell by
obtaining a derivative of an open cell voltage (Uocv) with respect to a state of charge (SOC),
obtaining an estimated nominal capacity (Cnom) of the at least one electrochemical cell, and
estimating the kinetic parameters using a modified least-square algorithm with forgetting factor.
2. The system of claim 1 , wherein the equivalent circuit model comprises:
an equivalent resistance (Re); and
a parallel circuit in series with the Re, the parallel circuit including a parallel circuit resistance (R1) and a parallel circuit capacitance (C1), with the kinetic parameters including Re, R1, and C1.
3. The system of claim 2 , wherein the equivalent circuit model in continuous time is written as:
wherein
“u” is a current applied to the at least one electrochemical cell,
“y” is a measured voltage across the at least one electrochemical cell,
“x1” is a SOC of the at least one electrochemical cell, and
“x2” is the current (i1) through the R1.
4. The system of claim 2 , wherein generating the kinetic parameters is based upon defining a parametric form “” as:
wherein
“u” is a current applied to the at least one electrochemical cell,
“y” is a measured voltage across the at least one electrochemical cell,
“s” represents a complex number with real numbers σ and ω,
“” represents a higher order filter with a cut-off frequency that depends upon an expected drive cycle, and
“{circumflex over (x)}1” is an estimate of a SOC of the at least one electrochemical cell.
5. The system of claim 4 , wherein the higher order filter is a 4th order Butterworth filter.
6. The system of claim 4 , wherein generating the kinetic parameters is further based upon defining a vector (Φ) as:
7. The system of claim 6 , wherein generating the kinetic parameters comprises converting the vector (Φ) into the following parametric form:
is a non-linear transformation of the physical parameters (Re, R1, C1)∈ 3, and
the inverse transform is defined as:
8. The system of claim 7 , wherein generating the kinetic parameters comprises executing the following parameter law:
{circumflex over ({dot over (Θ)}(t)=ε(t)P(t)Φ(t)
ε(t)=z(t)−ΦT(t){circumflex over (Θ)}(t)
{dot over (P)}(t)=βP(t)−P(t)Φ(t)Φ(t)T P(t)
{circumflex over ({dot over (Θ)}(t)=ε(t)P(t)Φ(t)
ε(t)=z(t)−ΦT(t){circumflex over (Θ)}(t)
{dot over (P)}(t)=βP(t)−P(t)Φ(t)Φ(t)T P(t)
9. A method of determining kinetic parameters for an equivalent circuit model of at least one electrochemical cell, comprising:
obtaining a derivative of an open cell voltage (Uocv) with respect to a state of charge (SOC);
obtaining an estimated nominal capacity (Cnom) of the at least one electrochemical cell; and
estimating the kinetic parameters using a modified least-square algorithm with forgetting factor.
10. The method of claim 9 , wherein the equivalent circuit model comprises:
an equivalent resistance (Re); and
a parallel circuit in series with the Re, the parallel circuit including a parallel circuit resistance (R1) and a parallel circuit capacitance (C1), with the kinetic parameters including Re, R1, and C1.
11. The method of claim 10 , wherein the equivalent circuit model in continuous time is written as:
wherein
“u” is a current applied to the at least one electrochemical cell,
“y” is a measured voltage across the at least one electrochemical cell,
“x1” is a SOC of the at least one electrochemical cell, and
“x2” is the current (i1) through the R1.
12. The method of claim 10 , wherein estimating the kinetic parameters comprises:
wherein
“u” is a current applied to the at least one electrochemical cell,
“y” is a measured voltage across the at least one electrochemical cell,
“s” represents a complex number with real numbers σ and ω,
“” represents a higher order filter with a cut-off frequency that depends upon an expected drive cycle, and
“{circumflex over (x)}1” is an estimate of a SOC of the at least one electrochemical cell.
13. The method of claim 12 , wherein the higher order filter is a 4th order Butterworth filter.
14. The method of claim 12 , wherein estimating the kinetic parameters comprises:
defining a vector (Φ) as:
15. The method of claim 14 , wherein estimating the kinetic parameters comprises:
is a non-linear transformation of the physical parameters (Re, R1, C1)∈ 3, and
the inverse transform is defined as:
16. The method of claim 15 , wherein estimating the kinetic parameters comprises:
executing the following parameter law:
{circumflex over ({dot over (Θ)}(t)=ε(t)P(t)Φ(t)
ε(t)=z(t)−ΦT(t){circumflex over (Θ)}(t)
{dot over (P)}(t)=βP(t)−P(t)Φ(t)Φ(t)T P(t)
{circumflex over ({dot over (Θ)}(t)=ε(t)P(t)Φ(t)
ε(t)=z(t)−ΦT(t){circumflex over (Θ)}(t)
{dot over (P)}(t)=βP(t)−P(t)Φ(t)Φ(t)T P(t)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/895,096 US20130311115A1 (en) | 2012-05-16 | 2013-05-15 | Battery System and Method with Parameter Estimator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261647948P | 2012-05-16 | 2012-05-16 | |
US201261647904P | 2012-05-16 | 2012-05-16 | |
US201261647926P | 2012-05-16 | 2012-05-16 | |
US13/895,096 US20130311115A1 (en) | 2012-05-16 | 2013-05-15 | Battery System and Method with Parameter Estimator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130311115A1 true US20130311115A1 (en) | 2013-11-21 |
Family
ID=48483241
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/895,096 Abandoned US20130311115A1 (en) | 2012-05-16 | 2013-05-15 | Battery System and Method with Parameter Estimator |
US13/895,126 Abandoned US20130311116A1 (en) | 2012-05-16 | 2013-05-15 | Battery System and Method with SOC/SOH Observer |
US13/895,148 Active 2035-10-02 US9869725B2 (en) | 2012-05-16 | 2013-05-15 | Battery system and method with capacity estimator |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/895,126 Abandoned US20130311116A1 (en) | 2012-05-16 | 2013-05-15 | Battery System and Method with SOC/SOH Observer |
US13/895,148 Active 2035-10-02 US9869725B2 (en) | 2012-05-16 | 2013-05-15 | Battery system and method with capacity estimator |
Country Status (3)
Country | Link |
---|---|
US (3) | US20130311115A1 (en) |
EP (3) | EP2850444B1 (en) |
WO (3) | WO2013173589A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150301121A1 (en) * | 2014-04-21 | 2015-10-22 | Samsung Electronics Co., Ltd. | Method and apparatus for estimating battery life during driving of electrical vehicle (ev) |
DE102014223278A1 (en) | 2014-11-14 | 2016-05-19 | Robert Bosch Gmbh | Device and method for monitoring battery cells and battery module, battery, battery system, vehicle, computer program and computer program product |
CN106291393A (en) * | 2016-11-18 | 2017-01-04 | 成都雅骏新能源汽车科技股份有限公司 | A kind of method for ONLINE RECOGNITION battery model parameter |
JP2017062191A (en) * | 2015-09-25 | 2017-03-30 | 三菱自動車工業株式会社 | Battery simulation device |
KR20170138488A (en) * | 2015-04-16 | 2017-12-15 | 옥시스 에너지 리미티드 | METHOD AND APPARATUS FOR DETERMINING CHARGE AND HEALTH CONDITION OF LITHIUM SULFIDE |
US10312699B2 (en) | 2017-07-31 | 2019-06-04 | Robert Bosch Gmbh | Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery |
US20210382115A1 (en) * | 2020-06-03 | 2021-12-09 | Robert Bosch Gmbh | Cost-effective yet still precise ascertainment of the degradation state of a rechargeable battery |
US11201489B2 (en) | 2019-08-21 | 2021-12-14 | Robert Bosch Gmbh | System and method for fast charging of lithium-ion batteries |
US11243258B2 (en) | 2018-11-13 | 2022-02-08 | Robert Bosch Gmbh | Method for approximating algorithms for fast charging li-ion batteries based on electrochemical battery models |
US20220187375A1 (en) * | 2020-12-14 | 2022-06-16 | University Of South Carolina | Lithium-ion battery health management based on single particle model |
CN114935722A (en) * | 2022-05-30 | 2022-08-23 | 武汉理工大学 | Lithium battery edge and end cooperative management method based on digital twinning |
US11448709B1 (en) | 2021-03-03 | 2022-09-20 | Semiconductor Components Industries, Llc | Battery system for battery degradation estimation |
CN119636511A (en) * | 2025-02-14 | 2025-03-18 | 深圳市钜力能科技有限公司 | Sightseeing car battery status monitoring method, device, equipment and storage medium |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105612651B (en) * | 2013-02-21 | 2018-04-10 | 罗伯特·博世有限公司 | For estimating the method and system of the capacity of single electrode and the total capacity of lithium-ion battery systems |
US10664562B2 (en) * | 2013-02-24 | 2020-05-26 | Fairchild Semiconductor Corporation and University of Connecticut | Battery state of charge tracking, equivalent circuit selection and benchmarking |
CN103698713B (en) * | 2013-12-30 | 2016-08-17 | 长城汽车股份有限公司 | A kind of health state of lithium ion battery appraisal procedure |
DE102014205913A1 (en) * | 2014-03-31 | 2015-10-01 | Robert Bosch Gmbh | Electrochemical energy store and method for switching cells of an electrochemical energy store |
GB201407805D0 (en) | 2014-05-02 | 2014-06-18 | Dukosi Ltd | Battery condition determination |
DK3045925T3 (en) | 2015-01-14 | 2023-06-06 | Corvus Energy Ltd | Method and system for iteratively determining the state of charge of a battery cell |
CN105652207A (en) * | 2015-12-31 | 2016-06-08 | 浙江华丰电动工具有限公司 | Electric quantity monitoring device and method for power type lithium battery |
US10204511B2 (en) * | 2016-04-01 | 2019-02-12 | Caavo Inc | Remote control device usage detection based on power consumption |
KR101835376B1 (en) | 2016-08-30 | 2018-03-08 | 조선대학교산학협력단 | Apparatus for estimating state-of-health of battery and method thereof |
CN107066722B (en) * | 2017-04-06 | 2020-07-07 | 北京理工大学 | Electrochemical model-based combined estimation method for state of charge and state of health of power battery system |
US11728668B2 (en) * | 2017-06-02 | 2023-08-15 | Apple Inc. | Electronic device with battery capability modeling |
WO2019231663A1 (en) | 2018-05-29 | 2019-12-05 | NDSL, Inc. | Methods, systems, and devices for monitoring state-of-health of a battery system operating over an extended temperature range |
CN108845270B (en) * | 2018-07-11 | 2021-01-05 | 国网江西省电力有限公司电力科学研究院 | Estimation method of life cycle cost of lithium iron phosphate power battery cascade utilization |
US11899069B2 (en) | 2018-12-21 | 2024-02-13 | Cummins Inc. | SOC and SOH co-estimation systems and methods for electric vehicles |
KR102465373B1 (en) * | 2019-01-23 | 2022-11-08 | 주식회사 엘지에너지솔루션 | Battery management appratus, battery management method and battery pack |
KR102722271B1 (en) * | 2019-02-07 | 2024-10-24 | 주식회사 엘지에너지솔루션 | Battery management appratus, battery management method and battery pack |
EP3751299B1 (en) | 2019-06-11 | 2023-08-09 | Volvo Car Corporation | Detecting latent faults within a cell of an energy storage system |
CN110308396B (en) * | 2019-07-03 | 2020-09-25 | 华人运通(江苏)技术有限公司 | Battery state monitoring method, edge processor, system and storage medium |
CN110488203A (en) * | 2019-07-12 | 2019-11-22 | 武汉大学 | A kind of aging lithium battery group SOC On-line Estimation method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040143364A1 (en) * | 2002-09-30 | 2004-07-22 | The Stanley Works | Methods and apparatus for eliminating instability in intelligent assist devices |
US20040162683A1 (en) * | 2003-02-18 | 2004-08-19 | Verbrugge Mark W. | Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health |
US20070299620A1 (en) * | 2006-06-26 | 2007-12-27 | Han-Seok Yun | Method for estimating state of charge of battery, battery management system using same, and driving method thereof |
US20100121591A1 (en) * | 2008-11-13 | 2010-05-13 | Lockheed Martin Corporation | Method and apparatus that detects state of charge (soc) of a battery |
US20100283471A1 (en) * | 2008-01-11 | 2010-11-11 | Sk Energy Co., Ltd. | Method for Measuring SOC of a Battery Management System and the Apparatus Thereof |
US20130006454A1 (en) * | 2011-06-28 | 2013-01-03 | Ford Global Technologies, Llc | Nonlinear Adaptive Observation Approach to Battery State of Charge Estimation |
US20130006455A1 (en) * | 2011-06-28 | 2013-01-03 | Ford Global Technologies, Llc | Nonlinear observer for battery state of charge estimation |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7453238B2 (en) | 2004-04-06 | 2008-11-18 | Cobasys, Llc | State of charge tracking system for battery systems based on relaxation voltage |
US7612532B2 (en) * | 2005-06-21 | 2009-11-03 | Gm Global Technology Operations, Inc. | Method for controlling and monitoring using a state estimator having variable forgetting factors |
KR100756837B1 (en) | 2005-06-30 | 2007-09-07 | 주식회사 엘지화학 | Method and apparatus of estimating state of health of battery |
JP4830382B2 (en) | 2005-07-19 | 2011-12-07 | 日産自動車株式会社 | Secondary battery charge rate estimation device |
US7726975B2 (en) | 2006-06-28 | 2010-06-01 | Robert Bosch Gmbh | Lithium reservoir system and method for rechargeable lithium ion batteries |
KR100839385B1 (en) | 2006-11-01 | 2008-06-19 | 삼성에스디아이 주식회사 | Battery Management System and Its Driving Method |
JP4703593B2 (en) * | 2007-03-23 | 2011-06-15 | 株式会社豊田中央研究所 | Secondary battery state estimation device |
US8321164B2 (en) | 2008-09-25 | 2012-11-27 | GM Global Technology Operations LLC | Method and system for determining a state of charge of a battery based on a transient response |
JP4744622B2 (en) * | 2009-07-01 | 2011-08-10 | トヨタ自動車株式会社 | Vehicle control device |
US9726732B2 (en) * | 2010-06-22 | 2017-08-08 | GM Global Technology Operations LLC | Adaptive battery parameter extraction and SOC estimation for lithium-ion battery |
TWI536702B (en) | 2010-07-15 | 2016-06-01 | Z動力能源有限責任公司 | Method and apparatus for recharging a battery |
US9091735B2 (en) * | 2010-10-26 | 2015-07-28 | GM Global Technology Operations LLC | Method for determining a state of a rechargeable battery device in real time |
US8680815B2 (en) * | 2010-11-01 | 2014-03-25 | GM Global Technology Operations LLC | Method and apparatus for assessing battery state of health |
KR101288122B1 (en) * | 2011-01-03 | 2013-07-18 | 삼성에스디아이 주식회사 | Battery charging method, and battery pack being applied the method |
US8922217B2 (en) * | 2012-05-08 | 2014-12-30 | GM Global Technology Operations LLC | Battery state-of-charge observer |
US20140350877A1 (en) * | 2013-05-25 | 2014-11-27 | North Carolina State University | Battery parameters, state of charge (soc), and state of health (soh) co-estimation |
-
2013
- 2013-05-15 US US13/895,096 patent/US20130311115A1/en not_active Abandoned
- 2013-05-15 US US13/895,126 patent/US20130311116A1/en not_active Abandoned
- 2013-05-15 US US13/895,148 patent/US9869725B2/en active Active
- 2013-05-16 WO PCT/US2013/041362 patent/WO2013173589A1/en active Application Filing
- 2013-05-16 EP EP13726348.9A patent/EP2850444B1/en active Active
- 2013-05-16 WO PCT/US2013/041396 patent/WO2013173610A1/en active Application Filing
- 2013-05-16 EP EP13724701.1A patent/EP2852848B1/en active Active
- 2013-05-16 EP EP13724702.9A patent/EP2850443B1/en active Active
- 2013-05-16 WO PCT/US2013/041388 patent/WO2013173604A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040143364A1 (en) * | 2002-09-30 | 2004-07-22 | The Stanley Works | Methods and apparatus for eliminating instability in intelligent assist devices |
US20040162683A1 (en) * | 2003-02-18 | 2004-08-19 | Verbrugge Mark W. | Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health |
US20070299620A1 (en) * | 2006-06-26 | 2007-12-27 | Han-Seok Yun | Method for estimating state of charge of battery, battery management system using same, and driving method thereof |
US20100283471A1 (en) * | 2008-01-11 | 2010-11-11 | Sk Energy Co., Ltd. | Method for Measuring SOC of a Battery Management System and the Apparatus Thereof |
US20100121591A1 (en) * | 2008-11-13 | 2010-05-13 | Lockheed Martin Corporation | Method and apparatus that detects state of charge (soc) of a battery |
US20130006454A1 (en) * | 2011-06-28 | 2013-01-03 | Ford Global Technologies, Llc | Nonlinear Adaptive Observation Approach to Battery State of Charge Estimation |
US20130006455A1 (en) * | 2011-06-28 | 2013-01-03 | Ford Global Technologies, Llc | Nonlinear observer for battery state of charge estimation |
Non-Patent Citations (1)
Title |
---|
XX. Hu, F. Sun, Y. Zou and H. Peng, "Online estimation of an electric vehicle Lithium-Ion battery using recursive least squares with forgetting," Proceedings of the 2011 American Control Conference, San Francisco, CA, 2011, pp. 935-940. * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9588187B2 (en) * | 2014-04-21 | 2017-03-07 | Samsung Electronics Co., Ltd. | Method and apparatus for estimating battery life during driving of electrical vehicle (EV) |
US20150301121A1 (en) * | 2014-04-21 | 2015-10-22 | Samsung Electronics Co., Ltd. | Method and apparatus for estimating battery life during driving of electrical vehicle (ev) |
DE102014223278A1 (en) | 2014-11-14 | 2016-05-19 | Robert Bosch Gmbh | Device and method for monitoring battery cells and battery module, battery, battery system, vehicle, computer program and computer program product |
KR20170138488A (en) * | 2015-04-16 | 2017-12-15 | 옥시스 에너지 리미티드 | METHOD AND APPARATUS FOR DETERMINING CHARGE AND HEALTH CONDITION OF LITHIUM SULFIDE |
KR102652848B1 (en) * | 2015-04-16 | 2024-04-01 | 겔리온 테크놀로지스 피티와이 리미티드 | Method and device for determining the state of charge and health of lithium sulfur batteries |
JP2017062191A (en) * | 2015-09-25 | 2017-03-30 | 三菱自動車工業株式会社 | Battery simulation device |
CN106291393A (en) * | 2016-11-18 | 2017-01-04 | 成都雅骏新能源汽车科技股份有限公司 | A kind of method for ONLINE RECOGNITION battery model parameter |
US10312699B2 (en) | 2017-07-31 | 2019-06-04 | Robert Bosch Gmbh | Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery |
US11243258B2 (en) | 2018-11-13 | 2022-02-08 | Robert Bosch Gmbh | Method for approximating algorithms for fast charging li-ion batteries based on electrochemical battery models |
US11201489B2 (en) | 2019-08-21 | 2021-12-14 | Robert Bosch Gmbh | System and method for fast charging of lithium-ion batteries |
US20210382115A1 (en) * | 2020-06-03 | 2021-12-09 | Robert Bosch Gmbh | Cost-effective yet still precise ascertainment of the degradation state of a rechargeable battery |
US12222394B2 (en) * | 2020-06-03 | 2025-02-11 | Robert Bosch Gmbh | Cost-effective yet still precise ascertainment of the degradation state of a rechargeable battery |
US20220187375A1 (en) * | 2020-12-14 | 2022-06-16 | University Of South Carolina | Lithium-ion battery health management based on single particle model |
US11448709B1 (en) | 2021-03-03 | 2022-09-20 | Semiconductor Components Industries, Llc | Battery system for battery degradation estimation |
CN114935722A (en) * | 2022-05-30 | 2022-08-23 | 武汉理工大学 | Lithium battery edge and end cooperative management method based on digital twinning |
CN119636511A (en) * | 2025-02-14 | 2025-03-18 | 深圳市钜力能科技有限公司 | Sightseeing car battery status monitoring method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
EP2850444A1 (en) | 2015-03-25 |
WO2013173610A1 (en) | 2013-11-21 |
US9869725B2 (en) | 2018-01-16 |
EP2852848B1 (en) | 2018-10-03 |
EP2852848A1 (en) | 2015-04-01 |
US20130311116A1 (en) | 2013-11-21 |
EP2850443A1 (en) | 2015-03-25 |
EP2850443B1 (en) | 2016-03-23 |
WO2013173604A1 (en) | 2013-11-21 |
EP2850444B1 (en) | 2016-07-13 |
WO2013173589A1 (en) | 2013-11-21 |
US20130311117A1 (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2852848B1 (en) | Battery system and method with parameter estimator | |
Smith | Electrochemical control of lithium-ion batteries [applications of control] | |
Li et al. | A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles | |
US8890484B2 (en) | Battery state-of-charge estimator using robust H∞ observer | |
EP3273523B1 (en) | Apparatus and method for estimating degree of aging of secondary battery | |
Waag et al. | Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles | |
TWI708068B (en) | Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries | |
Xiong et al. | Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach | |
EP2700966B1 (en) | Apparatus and method for estimating battery state | |
Farag | Lithium-ion batteries: Modelling and state of charge estimation | |
US20160023566A1 (en) | Reduced order electrochemical battery model for vehicle control | |
US20160023567A1 (en) | Temperature dependent electrochemical battery model for vehicle control | |
Taborelli et al. | State of charge estimation using extended Kalman filters for battery management system | |
US20110054816A1 (en) | Method of estimating the non-measurable characteristics of an electrochemical system | |
KR100901252B1 (en) | Secondary Battery SOC Prediction Method and Apparatus Using Sliding Mode Observer | |
JP2023541417A (en) | How to estimate battery state of charge | |
US9834112B2 (en) | Battery state of charge estimation based on reduced order electrochemical models | |
US20160023568A1 (en) | Interpolation of metal-ion concentrations in a battery model for vehicle control | |
CN110462412B (en) | Apparatus and method for estimating SOC of battery | |
US20160023569A1 (en) | Battery power capability estimation based on reduced order electrochemical models | |
Liu et al. | A high-order state-of-charge estimation model by cubature particle filter | |
Parhizi et al. | Analytical model based prediction of state-of-charge (SoC) of a Lithium-ion cell under time-varying charge/discharge currents | |
Park et al. | Nonlinear observer and simplified equivalent circuit model-based EKF-SoC estimator of a rechargeable LiFePo 4 cell | |
Balasingam et al. | Robust battery fuel gauge algorithm development, part 3: State of charge tracking | |
JP7375473B2 (en) | Energy storage amount estimating device, energy storage amount estimation method, and computer program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |