US20130307404A1 - Vacuum tube and vacuum tube manufacturing apparatus and method - Google Patents
Vacuum tube and vacuum tube manufacturing apparatus and method Download PDFInfo
- Publication number
- US20130307404A1 US20130307404A1 US13/934,488 US201313934488A US2013307404A1 US 20130307404 A1 US20130307404 A1 US 20130307404A1 US 201313934488 A US201313934488 A US 201313934488A US 2013307404 A1 US2013307404 A1 US 2013307404A1
- Authority
- US
- United States
- Prior art keywords
- vacuum tube
- pressure vessel
- reduced
- manufacturing apparatus
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 63
- 238000000034 method Methods 0.000 title description 36
- 239000007789 gas Substances 0.000 claims abstract description 90
- 229910052805 deuterium Inorganic materials 0.000 claims description 13
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 11
- 239000011261 inert gas Substances 0.000 claims description 9
- 238000009792 diffusion process Methods 0.000 claims description 8
- 230000002265 prevention Effects 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 2
- 230000009545 invasion Effects 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 230000002411 adverse Effects 0.000 abstract 2
- 239000011368 organic material Substances 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 29
- 238000010586 diagram Methods 0.000 description 25
- 239000012535 impurity Substances 0.000 description 9
- 239000005416 organic matter Substances 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 3
- 229910052754 neon Inorganic materials 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 150000001975 deuterium Chemical class 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- -1 moisture Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/38—Exhausting, degassing, filling, or cleaning vessels
- H01J9/395—Filling vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/02—Details
- H01J17/20—Selection of substances for gas fillings; Specified operating pressures or temperatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J21/00—Vacuum tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/18—Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
- H01J61/18—Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
- H01J61/20—Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/24—Means for obtaining or maintaining the desired pressure within the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J7/00—Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
- H01J7/02—Selection of substances for gas fillings; Specified operating pressure or temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/38—Exhausting, degassing, filling, or cleaning vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/38—Exhausting, degassing, filling, or cleaning vessels
- H01J9/385—Exhausting vessels
Definitions
- This invention relates to a vacuum tube, such as a fluorescent tube, a cold cathode tube, or an electron beam tube, that has been widely used.
- Such a vacuum tube is put into an active state by filling a discharge gas for electric discharge into a reduced-pressure vessel and by causing the electric discharge to occur by applying the electric power from internal or external electrodes.
- electric discharges there are various types such as arc discharge, glow discharge, and electron beam emission, but they are the same in that the operation is carried out by supplying the electric power to the reduced-pressure vessel.
- methods for applying the electric power various electrode layouts, and so on depending on uses.
- electrons are emitted from a hot cathode, electrons are extracted by applying an electric field to an electron emitting electrode, and so on.
- Dc power or ac power is given as the electric power and selection is made according to the combination of electrodes with the electric power together with uses.
- Patent Document 1
- the reduction in discharge efficiency causes a problem of a reduction in light emission luminance or the like in a fluorescent lamp or a cold cathode tube.
- a deuterium discharge tube there arises a problem that filled hydrogen, moisture, oxygen, and an organic gas react together to reduce the amount of hydrogen and hence the light emission luminance is lowered or a problem that the lifetime of an electron emitting electrode is reduced.
- an electron beam tube such as an X-ray generating tube or the like, there arises a problem that the lifetime of an electron emitting electrode is reduced.
- This invention has been made in view of the foregoing problems and provides a vacuum tube with a small amount of a remnants, such as an organic gas, moisture, and oxygen that cause a reduction in performance of the vacuum tube, and a method and apparatus for manufacturing such a vacuum tube.
- a vacuum tube of this invention is a vacuum tube having a reduced-pressure vessel containing at least a discharge gas sealed therein for use in performing electric discharge and is characterized in that the sum total of the number of organic gas molecules, the number of water molecules, and the number of oxygen molecules remaining inside the reduced-pressure vessel is smaller than the number of molecules of the discharge gas.
- the ratio of the number of molecules of the discharge gas to the sum total of the number of organic gas molecules and the number of water molecules is preferably as large as possible and is preferably not smaller than ten times. It is more preferable that the number of water molecules adsorbed on the inner wall of the reduced-pressure vessel is not greater than 1 ⁇ 10 16 molecules/cm2.
- the discharge gas is not particularly limited, it is preferable to use a gas that is used as a discharge gas and it is more preferable that a gas/gases selected from the group consisting of He, Ne, Ar, Kr, Xe, H2, and D2 be used alone or mixed together.
- the material of the reduced-pressure vessel is not particularly limited as long as it is a transparent material, but it is preferable to use silicon oxide as a main component in terms of its emitting moisture amount and workability.
- a vacuum tube manufacturing apparatus of this invention can obtain a vacuum tube with no reduction of lifetime because it is possible to suppress the amount of impurities such as moisture and organic matter remaining in the manufactured vacuum tube.
- FIG. 1 is a block diagram showing a schematic structure of a vacuum tube manufacturing apparatus according to this invention.
- FIG. 2 is a block diagram showing a pressure-reducing exhaust mechanism and a filling exhaust mechanism that form a gas exhaust mechanism shown in FIG. 1 .
- FIG. 3 is a block diagram showing the structure of the pressure-reducing exhaust mechanism more specifically.
- FIG. 4 is a block diagram showing the structure of the filling exhaust mechanism having an illustrated back diffusion prevention mechanism.
- FIG. 5 is a block diagram showing a vacuum tube manufacturing apparatus having a first gas flow control mechanism.
- FIG. 6 is a block diagram showing another example of a vacuum tube manufacturing apparatus according to this invention.
- FIG. 7 is a graph showing the moisture concentration in a vacuum tube and the lifetime characteristics until an electrode is disconnected when a filament is energized.
- FIG. 8 is a graph showing the relationship between the moisture concentration contained in an argon gas atmosphere at atmospheric pressure and the moisture amount adsorbed on the inner wall of a vessel.
- FIG. 9 is a diagram showing a vacuum tube manufacturing process in Example 1 of this invention, wherein there is shown the state at a time of attaching a glass tube.
- FIG. 10 is a diagram showing the state at a time of oxygen gas baking in the manufacturing process.
- FIG. 11 is a diagram showing the state at a time of vacuum batch O2 baking in the manufacturing process.
- FIG. 12 is a diagram showing the state where an Ar gas having passed through the glass tube is analyzed by the use of an atmospheric pressure ionization mass spectrometer (APIMS) connected to the downstream of the glass tube.
- APIMS atmospheric pressure ionization mass spectrometer
- FIG. 13 is a diagram showing the state when the supply of Ar is switched to that of He.
- FIG. 14 is a diagram showing the state where the glass tube is sealed and cut on its counter electrode side.
- FIG. 15 is a diagram showing the state in a He exhaust process.
- FIG. 16 is a diagram showing the state in a He filling process.
- FIG. 17 is a diagram showing a process after the state shown in FIG. 16 .
- FIG. 18 is a diagram showing a process of filling He until the value of a pressure gauge 2 becomes 54 Torr at a final stage.
- FIG. 19 is a diagram showing a He exhaust process after filling He in FIG. 18 .
- FIG. 20 is a diagram showing a Ne filling process for completely substituting Ne for remaining He.
- FIG. 21 is a diagram showing a Ne exhaust process after the filling of Ne.
- FIG. 22 is a diagram showing a process of filling Ne up to a predetermined pressure.
- FIG. 23 is a diagram showing the state where He and Ne are sealed in.
- FIG. 24 is a diagram showing the state where the glass tube is sealed.
- FIG. 25 is a diagram showing the state where the glass tube is detached.
- FIG. 26 is an exemplary diagram showing the structure of a deuterium discharge tube manufactured by this invention.
- a vacuum tube manufacturing apparatus comprises a reduced-pressure vessel connecting portion, a gas exhaust mechanism connected to the reduced-pressure vessel connecting portion, and a gas supply mechanism connected to the reduced-pressure vessel connecting portion and is characterized in that an inert gas supply mechanism is disposed on the reduced-pressure vessel side of the gas exhaust mechanism and further characterized in that the gas exhaust mechanism is an exhaust pump and the inert gas supply mechanism is disposed on the exhaust side of the exhaust pump.
- the gas exhaust mechanism is characterized by comprising a pressure-reducing exhaust mechanism and a filling exhaust mechanism.
- the pressure-reducing exhaust mechanism comprises an exhaust pump and an inert gas supply mechanism disposed on the exhaust side of the exhaust pump.
- the filling exhaust mechanism preferably comprises a back diffusion prevention mechanism. With this configuration, it is possible to suppress a mix of impurities from the exhaust side.
- the vacuum tube manufacturing apparatus is characterized by having a first gas flow control mechanism on the gas supply mechanism side of the reduced-pressure vessel connecting portion and a filling exhaust mechanism comprising a second gas flow control mechanism, and is further characterized in that the first gas flow control mechanism includes at least an orifice. Further, it is preferable that the second gas flow control mechanism includes at least an orifice and the diameter of the second orifice be larger than that of the first orifice.
- the gas supply mechanism preferably has at least a pressure control mechanism adapted to control the pressure inside the reduced-pressure vessel and the gas supply mechanism preferably has at least a flow rate control mechanism adapted to control the flow rate of gas flowing in the reduced-pressure vessel connecting portion.
- the vacuum tube manufacturing apparatus may have a second reduced-pressure vessel connecting portion different from the foregoing reduced-pressure vessel connecting portion, an inert gas supply mechanism connected to the second reduced-pressure vessel connecting portion, and a back diffusion prevention mechanism connected to the second reduced-pressure vessel connecting portion and is characterized in that the back diffusion prevention mechanism is a pipe or an orifice.
- the flow rate of gas flowing in the pipe is preferably a flow rate that can suppress the invasion of moisture into the gas supply mechanism from the foregoing reduced-pressure vessel connecting portion and is preferably in the range of 1 SCCM to 1000 SCCM when the reduced-pressure vessel is not connected.
- the moisture concentration measured at the first reduced-pressure vessel connecting portion be 1 ppm or less.
- the surface adapted to contact the gas contains a metal oxide having chromium oxide or aluminum oxide as a main component.
- the vacuum tube manufacturing apparatus configured as described above can be suitably used for a fluorescent tube, a cold cathode tube, a deuterium discharge tube, an electron beam tube, an X-ray generating tube, an ultraviolet generator, a static electricity neutralizer using a deuterium discharge tube, an X-ray generating tube, or an ultraviolet generating tube, or the like.
- a vacuum tube manufacturing method comprises a process of attaching a reduced-pressure vessel to a vacuum tube manufacturing apparatus, a process of exhausting a gas in the reduced-pressure vessel, a process of filling at least a discharge gas into the reduced-pressure vessel, and a process of separating the reduced-pressure vessel filled with the discharge gas from the vacuum tube manufacturing apparatus and is characterized in that a dry inert gas is caused to flow in a reduced-pressure vessel connecting portion of the vacuum tube manufacturing apparatus before the reduced-pressure vessel is attached thereto.
- a vacuum tube manufacturing method comprises a process of attaching a reduced-pressure vessel to a vacuum tube manufacturing apparatus, a process of exhausting a gas in the reduced-pressure vessel, a process of filling at least a discharge gas into the reduced-pressure vessel, and a process of separating the reduced-pressure vessel filled with the discharge gas from the vacuum tube manufacturing apparatus and is characterized in that the process of exhausting the gas in the reduced-pressure vessel performs combination of filling and exhaust of a dry gas a plurality of times and the process of exhausting the gas in the reduced-pressure vessel is carried out by raising the reduced-pressure vessel to a temperature higher than a room temperature.
- FIG. 7 shows the lifetime characteristics until an electrode is disconnected or broken when an electric current is caused to flow through a tungsten filament sealed in a vacuum tube with the moisture concentration controlled in the vacuum tube, while the internal pressure in the tube is being kept at 10 Torr.
- the moisture concentration at atmospheric pressure in an argon gas sealed in the vacuum tube is plotted along the axis of abscissas in FIG. 7 . It is understood that the characteristics are significantly degraded when the moisture concentration becomes 100 ppm or more as compared with the lifetime in the case of mixing no moisture. Further, it has been ascertained through experiments by the inventors that this phenomenon is similarly applied to a cold cathode tube and other vacuum tubes.
- FIG. 8 shows the relationship between the moisture concentration contained in an argon gas atmosphere at atmospheric pressure and the moisture amount adsorbed on the inner wall of a vessel, wherein when the moisture concentration is 100 ppm or less, the adsorbed moisture amount becomes approximately 1 ⁇ 10 16 molecules/cm 2 . Therefore, the moisture amount remaining in a gas filled in a vacuum tube is desirably as small as possible, preferably 100 ppm or less and more preferably 10 ppm or less. In addition, it has been found by experiments that unless the moisture amount adsorbed on the glass tube wall is set to 1 ⁇ 10 16 molecules/cm 2 or less in advance, the moisture concentration in the vacuum tube resultantly increases due to desorption, thereby reducing the electrode lifetime.
- Example 1 of this invention A vacuum tube in Example 1 of this invention will be described with reference to FIGS. 9 to 25 , by exemplifying a cold cathode tube.
- cold cathode tube manufacturing processes are shown which comprises a process of carrying out positive pressure baking by the use of a high-purity oxygen gas and a 100 Torr vacuum batch purge process to thereby completely remove water molecules and organic molecules remaining in a cold cathode tube, thereafter, a process of filling Ne and He into the cold cathode tube in a ratio of 9:1, and a process of setting a degree of the sealed vacuum to 60 Torr.
- FIG. 9 shows the state appearing on mounting a glass tube, wherein a valve indicated in black is in a closed state while a valve indicated in white is in an opened state.
- the glass tube On mounting the glass tube in FIG. 9 , the glass tube is connected in the state where, in order to prevent a mix of atmospheric components into a gas supply line in a vacuum tube manufacturing apparatus, V 8 , V 15 , V 14 , V 11 , V 12 , and counter-electrode-side V 16 are set to the opened states to allow a predetermined amount of high-purity N 2 to be ejected according to diameters of an orifice 1 and an orifice 2 .
- an orifice diameter 1 is set to ⁇ 0.1 mm, an orifice diameter 2 to ⁇ 0.2 mm, and an orifice diameter 3 to ⁇ 0.3 mm.
- the pressure is adjusted so that a pressure gauge 1 indicates 0.3 MPa, the flow rates that flow through the orifices become approximately 0.5 L/min, 1 L/min, and 2 L/min, respectively, in the case of N 2 .
- V 1 , V 12 , and V 16 are opened to remove moisture from the glass tube and further to burn organic matter with high-purity oxygen to convert it into low molecular organic matter having a high vapor pressure, thereby efficiently removing it. Further, when also purging an oxygen line, V 14 and V 13 may be opened to achieve a sufficient purge flow rate.
- the baking temperature is set to 400° C. which is an upper limit temperature at which no oxidation degradation of a phosphor occurs due to oxygen gas. On the other hand, when final baking is carried out with Ar, the temperature may be raised to 600° C. at which the glass tube is not degraded.
- V 12 and V 16 are closed and V 17 is opened from the state of FIG. 10 , and oxygen is exhausted until a pressure gauge 2 indicates 100 Torr.
- This is a process for expelling moisture and organic matter remaining in gaps among phosphor particle groups.
- V 1 was closed and V 5 was opened to thereby switch to Ar and the Ar gas having passed through the glass tube was analyzed by the use of an atmospheric pressure ionization mass spectrometer (APIMS) connected to the downstream of the glass tube ( FIG. 12 ). Then, it was confirmed that the concentration of moisture and organic matter was 1 ppb or less.
- APIMS atmospheric pressure ionization mass spectrometer
- the moisture and organic matter remaining in the tube can be more sufficiently expelled as the repetition number of times of the processes of FIGS. 10 and 11 increases, but it is preferably as small as possible in terms of productivity.
- a repetition time may be about 2 to 20 times and more preferably be 5 to 10 times.
- V 5 is closed and V 3 is opened for switching from the supply of Ar to that of He, thereby substituting He in the glass tube, and then the glass tube is completely sealed on its counter electrode side in a process of FIG. 14 . Thereafter, filling/exhaust of He is repeated for removing gas components generated from a sealing portion of the glass tube during the sealing.
- Ne filling and Ne exhausting processes are repeated five times or more for completely substituting Ne for He remaining in the gas supply system.
- V 11 is opened to fill Ne until the pressure gauge 2 indicates 60 Torr from 54 Torr ( FIG. 22 ).
- V 11 is closed at a time instant when 60 Torr is indicated.
- the glass tube is completely sealed in a process of FIG. 24 and the glass tube is detached ( FIG. 25 ).
- the glass tube is detached in the state where no atmospheric components leak into the gas supply line in the vacuum tube manufacturing apparatus.
- V 8 , V 15 , V 14 , V 11 , V 12 , and counter-electrode-side V 16 are set to the opened states to allow a predetermined amount of high-purity N 2 to be ejected according to the diameters of the orifice 1 and the orifice 2 .
- the luminance half-decay lifetime of the cold cathode tube manufactured by this system was measured and had a lifetime which was 1.6 times as compared with a conventional tube manufactured by a conventional fluorescent tube manufacturing apparatus.
- FIG. 26 is an exemplary diagram showing the structure of a deuterium discharge tube manufactured by this invention.
- the deuterium discharge tube comprises a glass tube being a reduced-pressure vessel, a tungsten cathode and an anode disposed in the glass tube, an aperture provided between the cathode and the anode, and an ultraviolet transmission window provided at an ultraviolet extracting portion of the glass tube.
- the ultraviolet transmission window is made of MgF2. According to the same method as that described in Example 1, deuterium is filled while being controlled at a pressure of 5 Torr.
- the impurity concentrations of moisture/organic matter remaining in the deuterium discharge tube manufactured by a vacuum tube manufacturing apparatus of this invention and in a deuterium discharge tube manufactured by a conventional vacuum tube manufacturing apparatus were measured by the use of an APIMS and it was confirmed that the former was 1 ppb or less and the latter was 200 ppm.
- the luminance half-decay lifetimes were respectively measured and, as a result, it was confirmed that the former was 600 hours and the latter was 300 hours.
- the vacuum tube manufacturing apparatus of this invention it is possible to obtain the deuterium discharge tube with less degradation of lifetime because the impurity amount remaining in the tube can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Abstract
With respect to a vacuum tube having a reduced pressure vessel containing an electric discharge gas sealed therein, problems such as the lowering of discharge efficiency owing to an organic material, moisture or oxygen remaining in the reduced pressure vessel have taken place conventionally. It has been now found that the selection of the number of water molecules, the number of molecules of an organic gas and the number of oxygen molecules remaining in the reduced pressure vessel, in a relation with the number of molecules of a gas contributing the electric discharge allows the reduction of the adverse effect by the above-mentioned remaining gas. Specifically, the selection of the number of molecules of the above electric discharge gas being about ten times that of the above-mentioned remaining gas or more can reduce the adverse effect by the above-mentioned remaining gas.
Description
- Japan Priority Application 2004-102364, filed Mar. 31, 2004 including the specification, drawings, claims and abstract, is incorporated herein by reference in its entirety. This application is a Divisional of U.S. application Ser. No. 10/594,896 (National Stage of PCT/JP2005/006258), filed Sep. 29, 2006, incorporated herein by reference in its entirety.
- 1. Technical Field
- This invention relates to a vacuum tube, such as a fluorescent tube, a cold cathode tube, or an electron beam tube, that has been widely used.
- 2. Background Art
- Such a vacuum tube is put into an active state by filling a discharge gas for electric discharge into a reduced-pressure vessel and by causing the electric discharge to occur by applying the electric power from internal or external electrodes. As the kinds of electric discharges, there are various types such as arc discharge, glow discharge, and electron beam emission, but they are the same in that the operation is carried out by supplying the electric power to the reduced-pressure vessel. There are various methods for applying the electric power, various electrode layouts, and so on depending on uses. Generally, there are also various types such that electrons are emitted from a hot cathode, electrons are extracted by applying an electric field to an electron emitting electrode, and so on. Dc power or ac power is given as the electric power and selection is made according to the combination of electrodes with the electric power together with uses.
-
- Japanese Unexamined Patent Application Publication (JP-A) No. 11-500859
- A problem arises with respect to a vacuum tube such that the electrode lifetime is reduced or the discharge efficiency is lowered due to the influence of moisture or an organic gas remaining in a reduced-pressure vessel. The reduction in discharge efficiency causes a problem of a reduction in light emission luminance or the like in a fluorescent lamp or a cold cathode tube. With respect to a deuterium discharge tube, there arises a problem that filled hydrogen, moisture, oxygen, and an organic gas react together to reduce the amount of hydrogen and hence the light emission luminance is lowered or a problem that the lifetime of an electron emitting electrode is reduced. Further, with respect to an electron beam tube, such as an X-ray generating tube or the like, there arises a problem that the lifetime of an electron emitting electrode is reduced. With respect to an ultraviolet generator, a static electricity neutralizer, or the like using a deuterium discharge tube or an X-ray generating tube, there arises a problem such that the static electricity neutralizing performance is lowered due to a reduction in lifetime of a vacuum tube or a reduction in light emission luminance/dose, thus leading to a reduction in product quality due to the static electricity.
- With respect to the foregoing problems, there is known a method of introducing an adsorbent (getter) or the like into a vacuum tube, thereby adsorbing the foregoing impurities. However, there arises a problem, such as, an increase in production cost, an increase in the number of processes with an activation process or the like, or a reduction in getter lifetime.
- As the vacuum tube using the getter, there is a vacuum tube described in
Patent Document 1 or the like. - This invention has been made in view of the foregoing problems and provides a vacuum tube with a small amount of a remnants, such as an organic gas, moisture, and oxygen that cause a reduction in performance of the vacuum tube, and a method and apparatus for manufacturing such a vacuum tube.
- A vacuum tube of this invention is a vacuum tube having a reduced-pressure vessel containing at least a discharge gas sealed therein for use in performing electric discharge and is characterized in that the sum total of the number of organic gas molecules, the number of water molecules, and the number of oxygen molecules remaining inside the reduced-pressure vessel is smaller than the number of molecules of the discharge gas. The ratio of the number of molecules of the discharge gas to the sum total of the number of organic gas molecules and the number of water molecules is preferably as large as possible and is preferably not smaller than ten times. It is more preferable that the number of water molecules adsorbed on the inner wall of the reduced-pressure vessel is not greater than 1×1016 molecules/cm2.
- Further, in the vacuum tube of this invention, although the discharge gas is not particularly limited, it is preferable to use a gas that is used as a discharge gas and it is more preferable that a gas/gases selected from the group consisting of He, Ne, Ar, Kr, Xe, H2, and D2 be used alone or mixed together. The material of the reduced-pressure vessel is not particularly limited as long as it is a transparent material, but it is preferable to use silicon oxide as a main component in terms of its emitting moisture amount and workability.
- A vacuum tube manufacturing apparatus of this invention can obtain a vacuum tube with no reduction of lifetime because it is possible to suppress the amount of impurities such as moisture and organic matter remaining in the manufactured vacuum tube.
-
FIG. 1 is a block diagram showing a schematic structure of a vacuum tube manufacturing apparatus according to this invention. -
FIG. 2 is a block diagram showing a pressure-reducing exhaust mechanism and a filling exhaust mechanism that form a gas exhaust mechanism shown inFIG. 1 . -
FIG. 3 is a block diagram showing the structure of the pressure-reducing exhaust mechanism more specifically. -
FIG. 4 is a block diagram showing the structure of the filling exhaust mechanism having an illustrated back diffusion prevention mechanism. -
FIG. 5 is a block diagram showing a vacuum tube manufacturing apparatus having a first gas flow control mechanism. -
FIG. 6 is a block diagram showing another example of a vacuum tube manufacturing apparatus according to this invention. -
FIG. 7 is a graph showing the moisture concentration in a vacuum tube and the lifetime characteristics until an electrode is disconnected when a filament is energized. -
FIG. 8 is a graph showing the relationship between the moisture concentration contained in an argon gas atmosphere at atmospheric pressure and the moisture amount adsorbed on the inner wall of a vessel. -
FIG. 9 is a diagram showing a vacuum tube manufacturing process in Example 1 of this invention, wherein there is shown the state at a time of attaching a glass tube. -
FIG. 10 is a diagram showing the state at a time of oxygen gas baking in the manufacturing process. -
FIG. 11 is a diagram showing the state at a time of vacuum batch O2 baking in the manufacturing process. -
FIG. 12 is a diagram showing the state where an Ar gas having passed through the glass tube is analyzed by the use of an atmospheric pressure ionization mass spectrometer (APIMS) connected to the downstream of the glass tube. -
FIG. 13 is a diagram showing the state when the supply of Ar is switched to that of He. -
FIG. 14 is a diagram showing the state where the glass tube is sealed and cut on its counter electrode side. -
FIG. 15 is a diagram showing the state in a He exhaust process. -
FIG. 16 is a diagram showing the state in a He filling process. -
FIG. 17 is a diagram showing a process after the state shown inFIG. 16 . -
FIG. 18 is a diagram showing a process of filling He until the value of apressure gauge 2 becomes 54 Torr at a final stage. -
FIG. 19 is a diagram showing a He exhaust process after filling He inFIG. 18 . -
FIG. 20 is a diagram showing a Ne filling process for completely substituting Ne for remaining He. -
FIG. 21 is a diagram showing a Ne exhaust process after the filling of Ne. -
FIG. 22 is a diagram showing a process of filling Ne up to a predetermined pressure. -
FIG. 23 is a diagram showing the state where He and Ne are sealed in. -
FIG. 24 is a diagram showing the state where the glass tube is sealed. -
FIG. 25 is a diagram showing the state where the glass tube is detached. -
FIG. 26 is an exemplary diagram showing the structure of a deuterium discharge tube manufactured by this invention. - As shown in
FIG. 1 , a vacuum tube manufacturing apparatus according to this invention comprises a reduced-pressure vessel connecting portion, a gas exhaust mechanism connected to the reduced-pressure vessel connecting portion, and a gas supply mechanism connected to the reduced-pressure vessel connecting portion and is characterized in that an inert gas supply mechanism is disposed on the reduced-pressure vessel side of the gas exhaust mechanism and further characterized in that the gas exhaust mechanism is an exhaust pump and the inert gas supply mechanism is disposed on the exhaust side of the exhaust pump. With this configuration, it is possible to suppress back diffusion of impurity components (moisture/organic matter) from the exhaust side of the pump. - Further, in the vacuum tube manufacturing apparatus of this invention, as shown in
FIG. 2 , the gas exhaust mechanism is characterized by comprising a pressure-reducing exhaust mechanism and a filling exhaust mechanism. By separating the exhaust mechanism for evacuating the inside of the tube from the exhaust mechanism for use in filling or supplying a discharge gas, it is possible to prevent impurities from being mixed with a quite few amount of the filling gas. As shown inFIG. 3 , the pressure-reducing exhaust mechanism comprises an exhaust pump and an inert gas supply mechanism disposed on the exhaust side of the exhaust pump. With this configuration, it is also possible to suppress back diffusion of impurity components from the exhaust side of the pump. Further, as shown inFIG. 4 , the filling exhaust mechanism preferably comprises a back diffusion prevention mechanism. With this configuration, it is possible to suppress a mix of impurities from the exhaust side. - As shown in
FIG. 5 , the vacuum tube manufacturing apparatus according to this invention is characterized by having a first gas flow control mechanism on the gas supply mechanism side of the reduced-pressure vessel connecting portion and a filling exhaust mechanism comprising a second gas flow control mechanism, and is further characterized in that the first gas flow control mechanism includes at least an orifice. Further, it is preferable that the second gas flow control mechanism includes at least an orifice and the diameter of the second orifice be larger than that of the first orifice. With this configuration, a small amount of high-purity gas can be filled into the reduced-pressure vessel while suppressing a mix of impurities into a pipe. Further, the gas supply mechanism preferably has at least a pressure control mechanism adapted to control the pressure inside the reduced-pressure vessel and the gas supply mechanism preferably has at least a flow rate control mechanism adapted to control the flow rate of gas flowing in the reduced-pressure vessel connecting portion. With this configuration, it is possible to fill the discharge gas with the purity/flow rate of a very small amount of the discharge gas being controlled. - Further, as shown in
FIG. 6 , the vacuum tube manufacturing apparatus according to this invention may have a second reduced-pressure vessel connecting portion different from the foregoing reduced-pressure vessel connecting portion, an inert gas supply mechanism connected to the second reduced-pressure vessel connecting portion, and a back diffusion prevention mechanism connected to the second reduced-pressure vessel connecting portion and is characterized in that the back diffusion prevention mechanism is a pipe or an orifice. - The flow rate of gas flowing in the pipe is preferably a flow rate that can suppress the invasion of moisture into the gas supply mechanism from the foregoing reduced-pressure vessel connecting portion and is preferably in the range of 1 SCCM to 1000 SCCM when the reduced-pressure vessel is not connected.
- In order to suppress a mix of moisture into the vacuum tube vessel, it is preferable that the moisture concentration measured at the first reduced-pressure vessel connecting portion be 1 ppm or less. Further, in order to remove adsorbed moisture inside the pipe in a short time, it is preferable in the vacuum tube manufacturing apparatus of this invention that the surface adapted to contact the gas contains a metal oxide having chromium oxide or aluminum oxide as a main component.
- The vacuum tube manufacturing apparatus configured as described above can be suitably used for a fluorescent tube, a cold cathode tube, a deuterium discharge tube, an electron beam tube, an X-ray generating tube, an ultraviolet generator, a static electricity neutralizer using a deuterium discharge tube, an X-ray generating tube, or an ultraviolet generating tube, or the like.
- A vacuum tube manufacturing method according to this invention comprises a process of attaching a reduced-pressure vessel to a vacuum tube manufacturing apparatus, a process of exhausting a gas in the reduced-pressure vessel, a process of filling at least a discharge gas into the reduced-pressure vessel, and a process of separating the reduced-pressure vessel filled with the discharge gas from the vacuum tube manufacturing apparatus and is characterized in that a dry inert gas is caused to flow in a reduced-pressure vessel connecting portion of the vacuum tube manufacturing apparatus before the reduced-pressure vessel is attached thereto. Further, a vacuum tube manufacturing method according to this invention comprises a process of attaching a reduced-pressure vessel to a vacuum tube manufacturing apparatus, a process of exhausting a gas in the reduced-pressure vessel, a process of filling at least a discharge gas into the reduced-pressure vessel, and a process of separating the reduced-pressure vessel filled with the discharge gas from the vacuum tube manufacturing apparatus and is characterized in that the process of exhausting the gas in the reduced-pressure vessel performs combination of filling and exhaust of a dry gas a plurality of times and the process of exhausting the gas in the reduced-pressure vessel is carried out by raising the reduced-pressure vessel to a temperature higher than a room temperature. With this configuration, it is possible to efficiently remove moisture in the reduced-pressure vessel such as a glass tube or a quartz tube forming a vacuum tube. Description will be made about the above with reference to the drawings.
-
FIG. 7 shows the lifetime characteristics until an electrode is disconnected or broken when an electric current is caused to flow through a tungsten filament sealed in a vacuum tube with the moisture concentration controlled in the vacuum tube, while the internal pressure in the tube is being kept at 10 Torr. The moisture concentration at atmospheric pressure in an argon gas sealed in the vacuum tube is plotted along the axis of abscissas inFIG. 7 . It is understood that the characteristics are significantly degraded when the moisture concentration becomes 100 ppm or more as compared with the lifetime in the case of mixing no moisture. Further, it has been ascertained through experiments by the inventors that this phenomenon is similarly applied to a cold cathode tube and other vacuum tubes. Further, according to experiments by the inventors, it has been ascertained that moisture is adsorbed, depending on the moisture concentration in the reduced-pressure vessel, on the inner wall of a reduced-pressure vessel such as a glass tube, that forms a vacuum tube. Unless this moisture is removed on manufacturing the vacuum tube, the moisture stays inside the reduced-pressure vessel due to desorption, thereby degrading the electrode properties. -
FIG. 8 shows the relationship between the moisture concentration contained in an argon gas atmosphere at atmospheric pressure and the moisture amount adsorbed on the inner wall of a vessel, wherein when the moisture concentration is 100 ppm or less, the adsorbed moisture amount becomes approximately 1×1016 molecules/cm2. Therefore, the moisture amount remaining in a gas filled in a vacuum tube is desirably as small as possible, preferably 100 ppm or less and more preferably 10 ppm or less. In addition, it has been found by experiments that unless the moisture amount adsorbed on the glass tube wall is set to 1×1016 molecules/cm2 or less in advance, the moisture concentration in the vacuum tube resultantly increases due to desorption, thereby reducing the electrode lifetime. - A vacuum tube in Example 1 of this invention will be described with reference to
FIGS. 9 to 25 , by exemplifying a cold cathode tube. Herein, cold cathode tube manufacturing processes are shown which comprises a process of carrying out positive pressure baking by the use of a high-purity oxygen gas and a 100 Torr vacuum batch purge process to thereby completely remove water molecules and organic molecules remaining in a cold cathode tube, thereafter, a process of filling Ne and He into the cold cathode tube in a ratio of 9:1, and a process of setting a degree of the sealed vacuum to 60 Torr. -
FIG. 9 shows the state appearing on mounting a glass tube, wherein a valve indicated in black is in a closed state while a valve indicated in white is in an opened state. On mounting the glass tube inFIG. 9 , the glass tube is connected in the state where, in order to prevent a mix of atmospheric components into a gas supply line in a vacuum tube manufacturing apparatus, V8, V15, V14, V11, V12, and counter-electrode-side V16 are set to the opened states to allow a predetermined amount of high-purity N2 to be ejected according to diameters of anorifice 1 and anorifice 2. Herein, anorifice diameter 1 is set to φ0.1 mm, anorifice diameter 2 to φ0.2 mm, and anorifice diameter 3 to φ0.3 mm. When the pressure is adjusted so that apressure gauge 1 indicates 0.3 MPa, the flow rates that flow through the orifices become approximately 0.5 L/min, 1 L/min, and 2 L/min, respectively, in the case of N2. - Then, at a time of oxygen gas baking in
FIG. 10 , V1, V12, and V16 are opened to remove moisture from the glass tube and further to burn organic matter with high-purity oxygen to convert it into low molecular organic matter having a high vapor pressure, thereby efficiently removing it. Further, when also purging an oxygen line, V14 and V13 may be opened to achieve a sufficient purge flow rate. The baking temperature is set to 400° C. which is an upper limit temperature at which no oxidation degradation of a phosphor occurs due to oxygen gas. On the other hand, when final baking is carried out with Ar, the temperature may be raised to 600° C. at which the glass tube is not degraded. - At a time of vacuum batching in
FIG. 11 , V12 and V16 are closed and V17 is opened from the state ofFIG. 10 , and oxygen is exhausted until apressure gauge 2 indicates 100 Torr. This is a process for expelling moisture and organic matter remaining in gaps among phosphor particle groups. After repeating the processes ofFIGS. 10 and 11 ten times or more, V1 was closed and V5 was opened to thereby switch to Ar and the Ar gas having passed through the glass tube was analyzed by the use of an atmospheric pressure ionization mass spectrometer (APIMS) connected to the downstream of the glass tube (FIG. 12 ). Then, it was confirmed that the concentration of moisture and organic matter was 1 ppb or less. The moisture and organic matter remaining in the tube can be more sufficiently expelled as the repetition number of times of the processes ofFIGS. 10 and 11 increases, but it is preferably as small as possible in terms of productivity. According to a study by the inventors, although the repetition number depends on the shape and size of a glass tube, a repetition time may be about 2 to 20 times and more preferably be 5 to 10 times. - In a process of
FIG. 13 , V5 is closed and V3 is opened for switching from the supply of Ar to that of He, thereby substituting He in the glass tube, and then the glass tube is completely sealed on its counter electrode side in a process ofFIG. 14 . Thereafter, filling/exhaust of He is repeated for removing gas components generated from a sealing portion of the glass tube during the sealing. - After repeating the processes of
FIGS. 15 and 16 five times or more and completely substituting He in the glass tube, He is exhausted as shown inFIG. 17 and then He is filled until the value of thepressure gauge 2 becomes 54 Torr at a final stage of a process ofFIG. 18 . V11 is closed at a time instant when 54 Torr is indicated (FIG. 19 ). - In processes of
FIGS. 20 and 21 , Ne filling and Ne exhausting processes are repeated five times or more for completely substituting Ne for He remaining in the gas supply system. After completely substituting Ne, V11 is opened to fill Ne until thepressure gauge 2 indicates 60 Torr from 54 Torr (FIG. 22 ). V11 is closed at a time instant when 60 Torr is indicated. At this time instant, the glass tube is in the state where a gas with a ratio of He:Ne=9:1 is sealed in at 60 Torr (FIG. 23 ). Finally, the glass tube is completely sealed in a process ofFIG. 24 and the glass tube is detached (FIG. 25 ). When detaching the glass tube, the glass tube is detached in the state where no atmospheric components leak into the gas supply line in the vacuum tube manufacturing apparatus. To this end, V8, V15, V14, V11, V12, and counter-electrode-side V16 are set to the opened states to allow a predetermined amount of high-purity N2 to be ejected according to the diameters of theorifice 1 and theorifice 2. - The luminance half-decay lifetime of the cold cathode tube manufactured by this system was measured and had a lifetime which was 1.6 times as compared with a conventional tube manufactured by a conventional fluorescent tube manufacturing apparatus.
- Description will be made about Example 2 in which this invention is applied to a deuterium discharge tube.
FIG. 26 is an exemplary diagram showing the structure of a deuterium discharge tube manufactured by this invention. As shown inFIG. 26 , the deuterium discharge tube comprises a glass tube being a reduced-pressure vessel, a tungsten cathode and an anode disposed in the glass tube, an aperture provided between the cathode and the anode, and an ultraviolet transmission window provided at an ultraviolet extracting portion of the glass tube. The ultraviolet transmission window is made of MgF2. According to the same method as that described in Example 1, deuterium is filled while being controlled at a pressure of 5 Torr. The impurity concentrations of moisture/organic matter remaining in the deuterium discharge tube manufactured by a vacuum tube manufacturing apparatus of this invention and in a deuterium discharge tube manufactured by a conventional vacuum tube manufacturing apparatus were measured by the use of an APIMS and it was confirmed that the former was 1 ppb or less and the latter was 200 ppm. The luminance half-decay lifetimes were respectively measured and, as a result, it was confirmed that the former was 600 hours and the latter was 300 hours. - According to the vacuum tube manufacturing apparatus of this invention, it is possible to obtain the deuterium discharge tube with less degradation of lifetime because the impurity amount remaining in the tube can be suppressed.
Claims (24)
1. A vacuum tube manufacturing apparatus comprising a reduced-pressure vessel connecting portion, a gas exhaust mechanism connected to said reduced-pressure vessel connecting portion, and a gas supply mechanism connected to said reduced-pressure vessel connecting portion, said vacuum tube manufacturing apparatus characterized in that an inert gas supply mechanism is disposed on a reduced-pressure vessel side of said gas exhaust mechanism.
2. A vacuum tube manufacturing apparatus according to claim 1 , characterized in that said gas exhaust mechanism is an exhaust pump and an inert gas supply mechanism is disposed on an exhaust side of said exhaust pump.
3. A vacuum tube manufacturing apparatus according to claim 1 , characterized in that said gas exhaust mechanism comprises a pressure-reducing exhaust mechanism and a filling exhaust mechanism.
4. A vacuum tube manufacturing apparatus according to claim 3 , characterized by having a first gas flow control mechanism on a gas supply mechanism side of said reduced-pressure vessel connecting portion, wherein said filling exhaust mechanism comprises a second gas flow control mechanism.
5. A vacuum tube manufacturing apparatus according to claim 4 , characterized in that said first gas flow control mechanism includes at least an orifice.
6. A vacuum tube manufacturing apparatus according to claim 4 , characterized in that said second gas flow control mechanism includes at least an orifice.
7. A vacuum tube manufacturing apparatus according to claim 1 , characterized in that said gas supply mechanism has at least a pressure control mechanism adapted to control a pressure inside the reduced-pressure vessel.
8. A vacuum tube manufacturing apparatus according to claim 1 , characterized in that said gas supply mechanism has at least a flow rate control mechanism adapted to control a flow rate of a gas flowing in said reduced-pressure vessel connecting portion.
9. A vacuum tube manufacturing apparatus according to claim 1 , characterized by comprising a second reduced-pressure vessel connecting portion different from said reduced-pressure vessel connecting portion, an inert gas supply mechanism connected to said second reduced-pressure vessel connecting portion, and a back diffusion prevention mechanism connected to said second reduced-pressure vessel connecting portion.
10. A vacuum tube manufacturing apparatus according to claim 1 , characterized in that said back diffusion prevention mechanism is a pipe or an orifice.
11. A vacuum tube manufacturing apparatus according to claim 10 , characterized in that a gas flow rate flowing in said pipe is a flow rate for suppressing invasion of moisture into said gas supply mechanism from said reduced-pressure vessel connecting portion.
12. A vacuum tube manufacturing apparatus according to claim 10 , characterized in that the gas flow rate flowing in said pipe falls within the range of 1 SCCM to 1000 SCCM when the reduced-pressure vessel is not connected.
13. A vacuum tube manufacturing apparatus according to claim 1 , characterized in that a moisture concentration measured at the first reduced-pressure vessel connecting portion is 1 ppm or less.
14. A vacuum tube manufacturing apparatus according to claim 1 , characterized in that a surface adapted to contact the gas contains a metal oxide having chromium oxide or aluminum oxide as a main component.
15. A fluorescent tube manufactured by using the vacuum tube manufacturing apparatus according to claim 1 .
16. A cold cathode tube manufactured by using the vacuum tube manufacturing apparatus according to claim 1 .
17. A deuterium discharge tube manufactured by using the vacuum tube manufacturing apparatus according to claim 1 .
18. An electron beam tube manufactured by using the vacuum tube manufacturing apparatus according to claim 1 .
19. An X-ray generating tube manufactured by using the vacuum tube manufacturing apparatus according to claim 1 .
20. An ultraviolet generator manufactured by using the vacuum tube manufacturing apparatus according to claim 1 .
21. A static electricity neutralizer manufactured by using the vacuum tube manufacturing apparatus according to claim 1 .
22. A vacuum tube manufacturing method comprising a step of attaching a reduced-pressure vessel to a vacuum tube manufacturing apparatus, a step of exhausting a gas in said reduced-pressure vessel, a step of filling at least a discharge gas into said reduced-pressure vessel, and a step of separating said reduced-pressure vessel filled with the discharge gas from said vacuum tube manufacturing apparatus, said vacuum tube manufacturing method characterized in that a dry inert gas is caused to flow in a reduced-pressure vessel connecting portion of said vacuum tube manufacturing apparatus before said reduced-pressure vessel is attached thereto.
23. A vacuum tube manufacturing method comprising a step of attaching a reduced-pressure vessel to a vacuum tube manufacturing apparatus, a step of exhausting a gas in said reduced-pressure vessel, a step of filling at least a discharge gas into said reduced-pressure vessel, and a step of separating said reduced-pressure vessel filled with the discharge gas from said vacuum tube manufacturing apparatus, said vacuum tube manufacturing method characterized in that the step of exhausting the gas in said reduced-pressure vessel is specified by carrying out combination of filling and exhaust of a dry gas a plurality of times.
24. A vacuum tube manufacturing method according to claim 23 , characterized in that the step of exhausting the gas in said reduced-pressure vessel is carried out by raising said reduced-pressure vessel to a temperature higher than a room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/934,488 US20130307404A1 (en) | 2004-03-31 | 2013-07-03 | Vacuum tube and vacuum tube manufacturing apparatus and method |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-102364 | 2004-03-31 | ||
JP2004102364A JP4596805B2 (en) | 2004-03-31 | 2004-03-31 | Vacuum tube manufacturing equipment |
US10/594,896 US8502450B2 (en) | 2004-03-31 | 2005-03-31 | Vacuum tube and vacuum tube manufacturing apparatus and method |
PCT/JP2005/006258 WO2005096336A1 (en) | 2004-03-31 | 2005-03-31 | Vacuum tube and apparatus and method for manufacturing vacuum tube |
US13/934,488 US20130307404A1 (en) | 2004-03-31 | 2013-07-03 | Vacuum tube and vacuum tube manufacturing apparatus and method |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/006258 Division WO2005096336A1 (en) | 2004-03-31 | 2005-03-31 | Vacuum tube and apparatus and method for manufacturing vacuum tube |
US11/594,896 Division US7485509B2 (en) | 2003-02-13 | 2006-11-09 | Semiconductor device provided by silicon carbide substrate and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130307404A1 true US20130307404A1 (en) | 2013-11-21 |
Family
ID=35064056
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/594,896 Expired - Fee Related US8502450B2 (en) | 2004-03-31 | 2005-03-31 | Vacuum tube and vacuum tube manufacturing apparatus and method |
US13/934,488 Abandoned US20130307404A1 (en) | 2004-03-31 | 2013-07-03 | Vacuum tube and vacuum tube manufacturing apparatus and method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/594,896 Expired - Fee Related US8502450B2 (en) | 2004-03-31 | 2005-03-31 | Vacuum tube and vacuum tube manufacturing apparatus and method |
Country Status (4)
Country | Link |
---|---|
US (2) | US8502450B2 (en) |
JP (1) | JP4596805B2 (en) |
TW (1) | TWI368253B (en) |
WO (1) | WO2005096336A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070092784A (en) * | 2006-03-09 | 2007-09-14 | 삼성코닝 주식회사 | Surface light source device |
JP4973441B2 (en) * | 2007-10-19 | 2012-07-11 | 富士通株式会社 | Atmosphere analyzer and atmosphere analysis method |
CN107633989B (en) * | 2017-09-14 | 2019-07-12 | 中山大学 | A kind of exhaust method for improving the high-voltage working stability of cold cathode packaged devices |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010041489A1 (en) * | 2000-03-10 | 2001-11-15 | Ngk Insulators, Ltd. | Method for producing display apparatus |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3475072A (en) * | 1967-05-19 | 1969-10-28 | Gen Electric | Getter for incandescent lamps and similar devices |
NL7105839A (en) * | 1971-04-29 | 1972-10-31 | ||
JPS5342477A (en) * | 1976-09-28 | 1978-04-17 | Toshiba Corp | Process for treating electrode component of bulb |
JPS586255B2 (en) * | 1976-12-24 | 1983-02-03 | 株式会社東芝 | Tube inner surface treatment method |
JPH0381744U (en) * | 1989-12-08 | 1991-08-21 | ||
JP2813050B2 (en) * | 1990-09-21 | 1998-10-22 | ウシオ電機株式会社 | Short arc xenon discharge lamp |
JPH0562598A (en) * | 1991-08-30 | 1993-03-12 | Toshiba Lighting & Technol Corp | Gas filling device for tube |
JPH0589783A (en) * | 1991-09-27 | 1993-04-09 | Toshiba Lighting & Technol Corp | Fluorescent lamp manufacturing method |
JPH05283001A (en) * | 1992-03-31 | 1993-10-29 | Miyagawa Boeki Kk | Gas substitution cleaning method |
JP3240190B2 (en) * | 1992-10-19 | 2001-12-17 | 山口ネオン有限会社 | Gas filling method for neon glass tube |
IT1257919B (en) | 1992-11-27 | 1996-02-19 | Iveco Fiat | ELECTRONIC CONTROL SYSTEM OF A VARIABLE GEOMETRY TURBOCHARGER FOR AN ENGINE EQUIPPED WITH A CONTINUOUS BRAKING DEVICE. |
JP3170932B2 (en) * | 1993-01-29 | 2001-05-28 | ウシオ電機株式会社 | Dielectric barrier discharge lamp |
JP3401815B2 (en) * | 1993-02-09 | 2003-04-28 | 東芝ライテック株式会社 | Low pressure mercury lamp and ultraviolet irradiation device using the same |
JPH11500859A (en) | 1995-11-08 | 1999-01-19 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Vacuum tube with linear getter |
JP3127817B2 (en) * | 1996-01-12 | 2001-01-29 | ウシオ電機株式会社 | Method of manufacturing dielectric barrier discharge lamp |
KR100318724B1 (en) | 1996-04-18 | 2002-04-22 | 니시무로 타이죠 | Method for manufacturing cathode ray tube and its device |
JPH10214593A (en) * | 1997-01-31 | 1998-08-11 | Toshiba Lighting & Technol Corp | Low pressure mercury vapor discharge lamp and lighting equipment |
JP3866369B2 (en) * | 1997-05-27 | 2007-01-10 | ハリソン東芝ライティング株式会社 | Multi-tube fluorescent lamp and lighting device |
JPH11204034A (en) * | 1998-01-20 | 1999-07-30 | Ckd Corp | Manufacture of compact fluorescent lamp |
JP3411810B2 (en) * | 1998-01-28 | 2003-06-03 | ウシオ電機株式会社 | Ceramic discharge lamp |
JPH11317154A (en) * | 1998-04-30 | 1999-11-16 | Canon Inc | Image display device, its manufacture, and its manufacturing device |
TW398003B (en) | 1998-06-25 | 2000-07-11 | Koninkl Philips Electronics Nv | Electron tube comprising a semiconductor cathode |
TW442827B (en) | 1998-09-14 | 2001-06-23 | Matsushita Electric Ind Co Ltd | Sealing method and apparatus for manufacturing high-performance gas discharge panel |
JP3201472B2 (en) * | 1998-10-21 | 2001-08-20 | 松下電器産業株式会社 | Electrodeless discharge lamp |
JP2000340115A (en) * | 1999-05-26 | 2000-12-08 | Canon Inc | Manufacture of image display device, and manufacturing device for executing the method |
JP4476392B2 (en) * | 1999-09-16 | 2010-06-09 | パナソニック フォト・ライティング 株式会社 | Incandescent bulb manufacturing method and manufacturing apparatus thereof |
KR100723751B1 (en) | 2000-01-26 | 2007-05-30 | 마츠시타 덴끼 산교 가부시키가이샤 | Gas discharge light emitting device and its manufacturing method |
JP2001349870A (en) * | 2000-06-07 | 2001-12-21 | Matsushita Electric Ind Co Ltd | Method and apparatus for analyzing pdp panel sealed gas |
JP2002075239A (en) | 2000-08-25 | 2002-03-15 | Toshiba Corp | Color cathode-ray tube and its manufacturing method and deposition compound material |
CN1398422A (en) | 2000-12-08 | 2003-02-19 | 松下电器产业株式会社 | Flurorescent lamp, its mfg. method, and information display using same |
JP2004537844A (en) | 2001-01-09 | 2004-12-16 | アプライド マテリアルズ インコーポレイテッド | Equipment for removing white powder exhaust in substrate processing |
JP5005133B2 (en) * | 2001-04-26 | 2012-08-22 | 中外炉工業株式会社 | Defective panel detection method in exhaust cart type continuous exhaust processing |
WO2004075242A1 (en) * | 2003-02-18 | 2004-09-02 | Tadahiro Ohmi | Fluorescent lamp and its manufacturing method |
US7116050B2 (en) * | 2003-11-03 | 2006-10-03 | Harison Toshiba Lighting Corp. | Metal halide lamp, headlight apparatus for vehicle using the same, and method of manufacturing metal halide lamp |
JP3972126B2 (en) * | 2004-05-28 | 2007-09-05 | 独立行政法人産業技術総合研究所 | Ultraviolet generation source, ultraviolet irradiation processing apparatus and semiconductor manufacturing apparatus |
-
2004
- 2004-03-31 JP JP2004102364A patent/JP4596805B2/en not_active Expired - Fee Related
-
2005
- 2005-03-31 TW TW094110234A patent/TWI368253B/en not_active IP Right Cessation
- 2005-03-31 US US10/594,896 patent/US8502450B2/en not_active Expired - Fee Related
- 2005-03-31 WO PCT/JP2005/006258 patent/WO2005096336A1/en active Application Filing
-
2013
- 2013-07-03 US US13/934,488 patent/US20130307404A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010041489A1 (en) * | 2000-03-10 | 2001-11-15 | Ngk Insulators, Ltd. | Method for producing display apparatus |
Also Published As
Publication number | Publication date |
---|---|
TWI368253B (en) | 2012-07-11 |
US8502450B2 (en) | 2013-08-06 |
WO2005096336A1 (en) | 2005-10-13 |
TW200539232A (en) | 2005-12-01 |
US20070210715A1 (en) | 2007-09-13 |
JP2005285721A (en) | 2005-10-13 |
JP4596805B2 (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100188071B1 (en) | Method for manufacturing display device | |
JP3394645B2 (en) | Arc tube and manufacturing method thereof | |
US20130307404A1 (en) | Vacuum tube and vacuum tube manufacturing apparatus and method | |
US5342233A (en) | Methods for removing contaminants from arc discharge lamps | |
US6517404B1 (en) | High intensity discharge lamps, arc tubes and methods of manufacture | |
JP3425929B2 (en) | High pressure discharge lamp and manufacturing method thereof | |
JP3219084B2 (en) | High pressure discharge lamp and method of manufacturing the same | |
US5327042A (en) | Metal halide lamp | |
US20100003885A1 (en) | High intensity discharge lamps, arc tubes, and methods of manufacture | |
JP2001243886A (en) | Member for plasma display, plasma display and manufacturing method therefor | |
KR19980080595A (en) | Apparatus having field emission cold cathode and vacuum tank exhaust method and system in same apparatus | |
JP3039278B2 (en) | Method for manufacturing arc tube for discharge bulb | |
JP2003045373A (en) | High pressure discharge lamp | |
US4929868A (en) | Glow discharge lamp containing nitrogen | |
US7140939B2 (en) | Method of manufacturing display panel | |
EP1684329B1 (en) | Ultrahigh pressure mercury lamp | |
JP2004103594A (en) | High pressure discharge lamp and its manufacturing method | |
Della Porta et al. | Mercury dispensing and gettering in fluorescent lamps | |
US5022880A (en) | Method of constructing an electric lamp using carbon monoxide as a forming gas | |
JPH03230448A (en) | Manufacturing method of plasma display panel | |
US3576671A (en) | Method of making a cathode fluorescent lamp | |
JP5124082B2 (en) | PDP manufacturing equipment | |
EP1442469A1 (en) | A method of making an electric lamp having a gas filled outer jacket | |
JPH03257739A (en) | Manufacture of gas discharge panel | |
JP2002134021A (en) | Method for manufacturing plasma display panel and plasma display panel manufactured by the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |