US20130305435A1 - Helmet - Google Patents
Helmet Download PDFInfo
- Publication number
- US20130305435A1 US20130305435A1 US13/700,045 US201113700045A US2013305435A1 US 20130305435 A1 US20130305435 A1 US 20130305435A1 US 201113700045 A US201113700045 A US 201113700045A US 2013305435 A1 US2013305435 A1 US 2013305435A1
- Authority
- US
- United States
- Prior art keywords
- helmet
- cavity
- ribs
- crushable
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 claims abstract description 40
- 230000035939 shock Effects 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 19
- 238000004078 waterproofing Methods 0.000 claims description 8
- 238000009423 ventilation Methods 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims 2
- 239000002250 absorbent Substances 0.000 claims 2
- 210000004027 cell Anatomy 0.000 description 14
- 239000000835 fiber Substances 0.000 description 13
- 230000001351 cycling effect Effects 0.000 description 9
- 239000011111 cardboard Substances 0.000 description 8
- 239000011087 paperboard Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000004794 expanded polystyrene Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000009194 climbing Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 206010040560 shock Diseases 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/06—Impact-absorbing shells, e.g. of crash helmets
- A42B3/062—Impact-absorbing shells, e.g. of crash helmets with reinforcing means
- A42B3/065—Corrugated or ribbed shells
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/06—Impact-absorbing shells, e.g. of crash helmets
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/06—Impact-absorbing shells, e.g. of crash helmets
- A42B3/062—Impact-absorbing shells, e.g. of crash helmets with reinforcing means
- A42B3/063—Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/06—Impact-absorbing shells, e.g. of crash helmets
- A42B3/067—Impact-absorbing shells, e.g. of crash helmets with damage indication means
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/10—Linings
- A42B3/12—Cushioning devices
- A42B3/124—Cushioning devices with at least one corrugated or ribbed layer
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/32—Collapsible helmets; Helmets made of separable parts ; Helmets with movable parts, e.g. adjustable
- A42B3/322—Collapsible helmets
Definitions
- the present invention relates to a helmet.
- the helmet is primarily intended as a cycling helmet to provide head protection in the event of a cycling accident. However, it also finds application at any time when head protection is needed, for example ice skating, roller skating, skateboarding, caving, climbing, e.g. indoor climbing or mountain climbing, skiing, baseball, American football, ice hockey and head protection at work or when working at heights, e.g. in the construction industry.
- a thin outer layer which may be made, for example, out of polypropylene that is able to absorb initial peak impact forces
- padding within the expanded polystyrene shell both to provide comfort to the user and to adjust the shape of the internal cavity within the shell for different shaped and sized heads.
- a cycling helmet should fit closely over the cyclist's head so that any impact force is spread over as wide an area of the head as possible.
- the impact forces are absorbed by the thin polypropylene layer and the expanded polystyrene shell.
- some helmets fracture under impact, which also absorbs energy and reduces the energy transferred to the head.
- Cycling helmets are often treated roughly and such rough treatment can impair the effectiveness of the helmet. However, there is often no outward visible sign of such impairment.
- cycling helmets and helmets for other uses are generally made of synthetic plastics. Although it would be desirable to make the helmets at least partly out of natural material that could be recycled, it is counter-intuitive to use such materials in applications requiring the resistance of such strong forces.
- Sports protective helmets should generally be light to be acceptable to wearers. Sports protective helmets should also be well ventilated so that sweat does not accumulate around the user's head and so that body heat generated due to the exertion of cycling or other sport can be displaced through the head.
- the present invention uses the strength of flutes or hollow tubes, e.g. hollow cylinders, hollow cells and hollow frusto-cones, in a helmet to resist impact and also to crumple on impact, such crumpling absorbing significant energy which is thereby not transferred to the user's head.
- flutes or hollow tubes e.g. hollow cylinders, hollow cells and hollow frusto-cones
- the flutes may be those present in corrugated material, e.g. corrugated fibre board can be used to absorb impact energy.
- an impact resistant shell of the helmet of the present invention can be made of such corrugated material, which may be in the form of intersecting arc shaped ribs overlying a head cavity of the helmet and extending outwards, optionally radially outwards, from the cavity.
- the arc-shaped ribs may be arranged to extend generally axially (front to back) and laterally (side to side).
- the arrangement of the flutes may be such that at the front, top and sides of the helmet, at least some of the flutes extend radially outwards from the cavity (e.g. forwardly and optionally also upwardly at the front and sideways and optionally also upwardly at the respective sides).
- the positioning of the flutes can be brought about by suitably locating the arc-shaped ribs and by selecting the direction of the flutes within those ribs.
- the arc-shaped ribs may each be made of one or more sheets. When two or more such sheets are present in a single rib, they will generally lie parallel to each other and may be joined together in a spaced apart relationship. When each rib has three or more sheets, each spaced may be apart from, and connected to, its neighbouring sheet.
- the material joining the sheets together and maintaining the sheets in a parallel spaced-apart configuration may be composed of cells. Such cells may be formed by a corrugated sheet, as discussed above, or by cells having walls and or axes that extend generally orthogonal to the planes of the sheets.
- the sheets may be connected by an array of honeycomb cells where the individual cells are hexagonal, square or rectangle in cross-section.
- honeycomb cells which are connected to the sheets overlying them, increase the resistance to flexing of the ribs and thereby make them stiffer. They also maintain the sheets in a parallel spaced-apart configuration, which means that the sheets themselves can absorb greater impact forces than if the sheets were connected together by flutes that have lower ability to maintain the sheets in parallel.
- the sheets are preferably semi-rigid, where the term “semi-rigid” material is used in the present specification in relation to a sheet to denote a material that will remain in a planar configuration but can be crumpled by a substantial force applied within the plane of the sheet. The force it can withstand before crumpling will depend on the nature of the ribs, and the arrangement of the sheets within each rib and the number and arrangement of the ribs within a helmet.
- the semi-rigid material should be such that the helmet overall can withstand the force required for the application concerned and the various standard that apply to these helmets. Typical materials include cardboard and stiff but flexible plastics.
- the arc-shaped ribs may together form an intersecting array or lattice, with ribs extending axially between the front and the back of the head cavity and laterally between the two opposed sides of the head cavity; they can also extend diagonally.
- the ribs will intersect in such an arrangement and, at the intersection point, the ribs preferably form crossed halved joints, which are made by forming a groove in the lower part of one rib and another groove in the upper part of the other rib so that the two ribs can be slotted into each other without severing either rib completely.
- the joint can be an interference fit between the two ribs or adhesive can be used to cement the two ribs at the joint.
- some of the grooves in the ribs may be larger than is necessary to accommodate the intersecting ribs, partly to make manufacture easier and partly to allow a limited amount of movement or play between the ribs, which helps absorb energy in a crash.
- the corrugations provide the impact strength along the direction of the flutes. Therefore, at the centre of each arc-shaped rib, it is preferred that the flutes extend either parallel to the edge of the rib or at right angles to the edge of the ribs.
- the latter arrangement absorbs impact forces exerted on the centre of the rib at a right angle to the edge.
- the former arrangement provides strength at the ends of the rib rather than in the centre and can absorb impact forces exerted at right angles of the ends of the ribs.
- the flutes in adjacent ribs need not be parallel to each other and indeed it may be advantageous if that is not the case so that adjacent ribs can absorb impact forces applied from different directions.
- the flutes of one arc-shaped rib can extend at right angles to the flutes on the adjacent rib.
- the helmet may include a rim encircling the head cavity that may also be made of the same material as the ribs; if made of corrugated material containing flutes, the flutes preferably extend from the front to the back of the head cavity so as to absorb front impact forces.
- corrugated material may be made of plastic, it is preferred to use fibre board (e.g. corrugated cardboard) since the materials for making fibre board are natural and the helmet can be recycled after use.
- Corrugated fibreboard can be obtained commercially in a large number of different qualities but all qualities are relatively cheap.
- Honeycombed fibreboard can be made by forming a layer of honeycomb cells and adhering to this layer to the face sheets.
- the strength of the impact resisting shell may be provided by an array of hollow tubes, e.g. cylinders or frusto-cones, typically made from sheet material, especially paper and cardboard.
- the ends of the cones or cylinders should point outwardly from the head cavity so that they are able to absorb impact and also crumple under that impact, thereby absorbing energy and reducing the force that is transmitted to the user's head in the event of an accident.
- Cylinders when packed together in a dome-shaped array, may not present a smooth external surface or a smooth inner surface that outlines the head cavity. In order to address this, it is possible to machine the external or internal surfaces to provide such a smooth domed shape. However, it is not necessary to produce a smooth dome shape to the outside surface.
- an uneven dome shape within the cavity of the impact resistant shell can be tolerated if an inner shell is provided that has a matching outer surface; the inner shell may then provide a smooth domed inner surface.
- the role of the inner shell will be discussed below.
- a domed shape can be achieved more easily by using hollow frusto-cones instead of cylinders with the larger end face of the cones pointing outwardly while the smaller faces point inwardly.
- the tubes can be held in a bundle or array with each tube being in contact with a neighbouring tube.
- a mixture of cones and cylinders can be used.
- the tubes can be held in position by a matrix material in which they are captured within the matrix material.
- Hollow cylinders can be made by winding strips of flexible sheet material into a closed shape and retaining the closed shape, for example, by adhesive.
- the strips used to form such tubes will generally extend helically around the axis of the tube.
- the manufacture of hollow cylinders is widely practiced in the manufacture of the cores of paper rolls.
- Frusto-conical shapes can also be made by a similar winding technique.
- the outside diameter of the cylinders or frusto-cones will generally not exceed 4 cm and, for example, will generally not exceed 3 cm.
- a greater number of tubes will increase the complexity of manufacturing the shell and accordingly the outside diameter of the cylinder should preferably be at least 0.5 cm, e.g. 1 cm.
- the mean diameter of the cones should generally lie in the above ranges.
- the tubes should crumple on impact.
- a line of weakness may be provided in the walls of the hollow tubes along which they can collapse.
- the lines of weakness are preferably helical in shape so that the crumpling will occur within the boundary of the tubes and the lines of weakness may be provided in the form of holes or openings spaced along the line of weakness.
- cheap material used to make the tubes which material may be plastic but preferably is paper or cardboard. Cork could also be used.
- first embodiments differ from the second embodiment since the above-described arrangement of intersecting ribs can also be seen as falling within the scope of the second embodiment since the intersecting ribs form an array of cells that are tubes having a 4-sided cross-section.
- the outside edge regions of the crushable bodies may be covered with a waterproofing material, although optionally an outer shell may be provided that will provide such waterproofing, in which case it is preferred that ventilation openings are provided in the outer shell.
- the waterproofing material/outer shell is preferably made of a material having a stiffness coefficient higher than that of the material used for forming the crushable bodies so that it is less elastic. In this way, it can assist in resisting the peak force exerted on impact.
- the preferred materials are polypropylene, acrylic or ABS.
- the helmet may include an inner shell, which may perform a number of functions. Firstly, it can add extra impact resistance to the impact resistant shell of the present invention, for example it could be made of moulded expanded polystyrene. Secondly, it can be used to tailor the helmets to the size of a particular user's head. This can be achieved by making the cavity within the impact resistant shell of the present invention in one standard size and providing an inner shell with an outside that matches the size of the impact resistant shell cavity and an inside that has a head cavity that is matched to the size of a user's head; thus a number of inner shells could be manufactured having variously sized internal cavities to fit various head sizes and shapes.
- Padding may also be provided for additional comfort and/or ensuring that a tight or snug fit is maintained between the user's head and the helmet, e.g. using insertable padding that can be adhered to the inside surface of the inner shell cavity, as is widely practiced with cycling helmets currently available.
- a further use of the inner shell is to dissipate the impact forces that are transmitted to the inner ends of the crushable bodies, i.e. the ends lying in the head cavity, so they are not transmitted directly on the user's head.
- the shape of the cavity within the impact resistant shell may not be uniformly smooth and the outer surface of the inner shell can, as discussed above, be shaped to match the uneven surface of the cavity in the impact resistant shell. This avoids having to shape the head cavity of the impact resistant shell in an expensive manner.
- the inner shell may be permanently attached to the impact resistant shell of the present invention or may be releasable attached, e.g. using loop-and-hook fastenings, e.g. Velcro®, so that the impact resistant shell of the present invention is replaceable if dented.
- a series of pads may be used that lie between the array of crushable bodies and the user's head.
- Such pads may be made of relatively rigid foam material to provide a cushion between the crushable bodies and the user's head.
- the series of pads may be viewed as a discontinuous inner shell.
- the outside surface of the impact resistant shell (even with the waterproofing layer or outer shell), is made up of an array of crushable bodies rather than a uniform smooth surface, it will be more evident when the impact resistant shell has been damaged and therefore needs replacing.
- the impact resistant shell can be recycled, if made of fibre based materials, such as paper or cardboard.
- the strength of the crushable bodies will depend on the nature and thickness of the sheet material used and so it is possible to adjust the impact strength and crumpling properties of the helmet by the choice of the sheet material used.
- the term “outer” shell does not necessarily mean that it forms the outermost layer of the helmet (although it can) and likewise the term “inner” shell does not necessarily mean that it forms the innermost layer of the helmet (although again it can).
- the outer shell will always lie outside the impact resistant shell and any inner shell in the helmet will always lie inside the impact resistant shell.
- a head protecting helmet comprising a shock indicator that gives it an indication when the helmet has been subject to a shock in excess of a threshold value, thereby indicating that the helmet or at least the shock absorbing part of the helmet should be replaced.
- a shock indicator that gives it an indication when the helmet has been subject to a shock in excess of a threshold value, thereby indicating that the helmet or at least the shock absorbing part of the helmet should be replaced.
- the magnitude of a shock which is a force exerted as a result of acceleration or deceleration, is stated as a multiple of the acceleration caused by earth's gravity, which is indicated by the symbol “G”.
- the helmet can suffer shocks of 150 G and after any shock of 150 G should preferably be replaced.
- the accelerometer contains at least five tubes or flasks each containing a viscous coloured liquid held in a chamber of the flask by a wall having a capillary bore extending through it that normally retains the liquid within the chamber as a result of the surface tension of the liquid and the small size of the bore. However, if a sufficient force is exerted on the liquid due to shocks, the liquid passes through the capillary into a further chamber; the presence of the coloured liquid in the further chamber indicates that the accelerometer has suffered a shock in excess of a threshold value.
- the at least five tubes or flasks communicate with a common further chamber and so the present of the coloured liquid in the common further chamber indicates that the helmet needs replacing.
- Tubes or flasks of the above type are already known and sold under the trademark “Shockwatch”.
- the viscosity of the liquid and the size of the capillary bore are preferably designed to allow the liquid to pass into the common chamber when subjected to a threshold shock that is selected from the range of 75-100 G.
- the common chamber may be located behind a magnified lens, which could be clear or diffusing, thereby making it easier to detect the triggering of accelerometer.
- FIG. 1 shows part of a helmet, that is to say an impact resistant shell in accordance with the present invention, viewed from the front and one side;
- FIG. 2 shows the helmet of FIG. 1 viewed from below;
- FIG. 3 is an end view of corrugated fibre board that may be used in the helmet of FIGS. 1 and 2 ;
- FIG. 4 is a partly cutaway view of part of an arc-shaped rib made of fibre board having a honeycomb core that may be used in the helmet of FIGS. 1 and 2 ;
- FIG. 5 shows the joint between two arc-shaped ribs used in the helmet of FIGS. 1 and 2 .
- FIG. 6 is a schematic view of a helmet in accordance with the present invention using the shell shown in FIGS. 1 and 2 ;
- FIGS. 7 and 8 show, schematically, an alternative arrangement to the impact resistant shell of FIGS. 1 and 2 ;
- FIGS. 9 a and 9 b shows schematically a shock indicator for use as a helmet.
- the helmet of the present invention includes an impact resistant shell that is able to absorb some of the forces exerted on a helmet during a collision with another object, which may be the road, a pavement, a pedestrian or another vehicle.
- another object which may be the road, a pavement, a pedestrian or another vehicle.
- the present invention is not limited to a cycling helmet but cycling will be used to exemplify the diverse applications for which the helmet may be used, some of which are set out above.
- the impact resistant shell 10 of the helmet includes a rim 12 made of a solid fibre board.
- the rim may be made in a single piece or in multiple pieces (as shown in FIGS. 1 and 2 ) that are joined together at connection 13 , which is most clearly shown in FIG. 2 .
- the joint 13 is a simple tongue-and-groove joint that includes a tongue 13 a on one piece of the rim that slots into a groove 13 b cut into the end of a second piece of the rim.
- the rest of the impact resistant shell 10 is made up (a) of series of axial ribs 14 extending between the front 18 and the back 19 of the helmet and (b) a series of lateral ribs 16 extending between the two sides 20 of the helmet.
- the ribs are arranged in planes that extend radially outwards from the helmet and form an intersecting lattice of shock absorbing ribs; the lattice can be seen as an array of 4-sided shock-absorbing cells 23 .
- the axial ribs 1 of FIGS. 1 and 2 come together at the front 18 and the rear 1 of the helmet.
- the lateral ribs 16 come together at the two sides 20 of the helmet.
- the ends of the ribs 14 , 16 slot into grooves 21 in the rim 12 . They may be held in the grooves 21 by adhesive.
- the ribs 14 , 16 are arc shaped and the insides of the ribs forms a head cavity 30 . As is clear from FIGS. 1 and 2 , the ribs 14 , 16 intersect with each other. The joints at these intersecting points are shown in an exploded view in FIG. 5 .
- the axial ribs 14 have a groove 34 cut in the concave side of the rib while the lateral ribs 14 have a groove 32 cut in their convex faces.
- the grooves 32 , 34 can then be slotted into each other together to form a halved cross joint, which means that neither of the ribs 14 , 16 is cut completely through in order to provide the intersection.
- the grooves in the ribs 14 , 16 can extend radially from the centre of the cavity 30 .
- the grooves 32 , 34 are shown to extend at right angles to the plane of the respective ribs but, as can be seen in FIG. 1 , the groove may extend in a non-orthogonal direction to the plane of the ribs that forming an intersection.
- the sizes of the grooves 32 , 34 should accommodate the other rib and the ribs may be held in place either by friction or by adhesive or by a mechanical element.
- some of the grooves 34 in the ribs 14 are larger than necessary to accommodate the corresponding lateral ribs 16 and this provides some play between the ribs which can therefore absorb more impact energy in the case of an accident. Furthermore, it assists in assembling the shell 10 .
- the ribs 14 , 16 may be made of corrugated fibre board, as shown in FIG. 3 .
- Corrugated fibreboard includes at least one undulating section 28 sandwiched between flat fibre board layers 31 to form a series of flutes 29 . It possible to build up a number of such layers in a unitary corrugated fibre board ( FIG. 3 includes two such undulating sections).
- the thickness of the material forming the undulations 28 and the thickness of the flat board 1 should be chosen to give the degree of shock resistance and crumpling need to absorb the type of forces exerted during a collision.
- the ribs can be made from honeycomb fibreboard, which is shown in FIG. 4 and has a pair of fibreboard face sheets 31 ; only one face sheets is shown in FIG. 4 and that face sheet is shown partly cut away so that the internal honeycomb array 33 is visible.
- the honeycomb connects together the face sheets 31 and may be made of plastic or paper or cardboard. It is glued to the face sheets 31 in a known manner. Again, it possible to build up a number of sheets and honeycomb layers in a unitary corrugated fibre board so that three or more sheets 31 are included in each rib, each adjacent pair of sheets sandwiching between them a honeycomb layer.
- the flutes 29 in the ribs may extend in horizontal, vertical, axial or lateral directions or diagonally within the helmet.
- the flutes in alternate lateral ribs 1 extend horizontally (i.e. in the direction between the two sides of the helmet) and such flutes resist especially lateral forces on the helmet.
- the flutes in the other lateral ribs 16 extend vertically and such flutes resist vertically acting forces.
- the flutes extend horizontally which are resistant to forces impacting on the front or rear of the helmet while the flutes on the other ribs extend vertically and such flutes resist vertically acting forces.
- alternate ribs should have vertically-extending flutes and the remaining ribs should have horizontally-extending flutes, although the two central axial ribs 14 may have vertically extending ribs to resist forces exerted down onto the crown of the helmet.
- the honeycomb cells will extend at right angles to the plane of the ribs.
- the impact resistant shell shown in FIGS. 1 and 2 can absorb impact forces from any direction and can crumple as a result, thereby absorbing the energy of the impact and protecting the user's head.
- an outer shell or layer 50 can overlay the shell 10 shown in FIGS. 1 and 2 and which can be fastened to the shell 10 , either permanently or temporary.
- the outer shell 50 should be provided with ventilation holes (not shown) that preferably line up with the spaces between the ribs 14 , 16 of the shell 10 .
- the cardboard used to make the shell 10 may be waterproof by the application of a waterproofing or water resistance layer (not shown).
- the outer shell 50 may be made of acrylic material but it could also be made of other materials for example, polypropylene or ABS having a stiffness coefficient higher than that of the material used to make the impact resistant shell 10 and so absorbs part of the initial shock waves when an impact occurs.
- Slots 52 may he provided in the outer shell in order to attach straps (not shown) that can be secured under the user's chin to hold the helmet on the user's head
- An inner shell 55 may be provided between the user's head and the cavity 30 within the impact resistant shell 10 in order to provide comfort to the user, to dissipate forces being transmitted through the edges of the ribs 14 , 16 directly to the user's head and to ensure that the helmet fits snugly.
- the inner shell may be made of padding, for example a layer of foam and or woven or non-woven fabric.
- the impact resistant shell 10 shown in FIGS. 1 and 2 when made with the ribs of corrugated fibreboard, provides strength and impact resistance by means of the flutes within corrugated material.
- impact strength is provided by holding the ribs in a fixed array of 4-sided cells 23 , each cell having an axis that extends away from the inner cavity 30 of the helmet and generally radially outward from the cavity.
- the ribs being made of the honeycomb material shown in FIG.
- the strength of the helmet will mostly be provided by this array of 4-sided cells, with the honeycomb pattern within the ribs resisting the collapse of the ribs and thereby maintaining the face sheets 31 in a space-apart parallel configuration, which increases the impact resistance of the individual ribs.
- the shell 10 may be made of an array of cylindrical tubes (see FIGS. 7 and 8 ) that are arranged in a dome shape and the under surface (not shown) forms a head cavity.
- the tubes 100 are collected in array with the inner ends of the tubes lying at different elevations in order to provide the shell with a hollow dome-shape.
- the axis of the various tubes shown in FIG. 9 all extend vertically and are intended to resist vertical forces. However, they can be embedded in a matrix so that they extend in different directions from the head in order to provide protection against forces from different directions.
- the tubes instead of being cylindrical, may be frustoconical, which has the advantage that, when the tubes are gathered together with the larger faces ⁇ x (see FIG. 8 ) pointing outwardly and the smaller faces ⁇ y pointing inwardly, the axes of the frusto cones point in different radial directions.
- the tubes 100 are hollow and are generally made of fibre board such as paper or cardboard. Tubes made of this configuration can be incredibly strong and can transmit an impact force directly to the user's head without absorbing it.
- a crumple zone may be introduced in the side walls of the tubes. So that the tubes crumple within their own diameter, it is preferred that the crumple zone is helical in shape and may be formed, as can be seen in FIG. 8 , by helically arranged holes 102 .
- the tubes 100 formed into an impact resistant shell may be incorporated into a helmet with an outer shell 50 and padding 55 (see FIG. 6 ).
- the outside and inside surfaces of an impact resistant shell formed from an array of tubes 100 may be sanded to provide the hollow dome shape.
- FIGS. 9 a and 9 b an arrangement is shown that can detect when a helmet has been subject to impact forces (or shock) exceeding a threshold, indicating that the helmet should be replaced or at least the impact resistant shell 10 should be replaced.
- the indicator includes a central chamber 124 having a number of shock indicator flasks 120 spaced around it and preferably evenly spaced around it.
- FIG. 9 b is a schematic drawing showing one of the flasks 120 and part of the central chamber 124 .
- Each flask includes a space 122 that is filled with coloured liquid that communicates with the central chamber 124 via a capillary bore 128 .
- the common chamber 124 is initially empty.
- the liquid is generally retained within the space 122 .
- the coloured liquid can be forced through the capillary bore into the previously empty common chamber 124 .
- the presence of the coloured liquid within the chamber 124 indicates that the flask has been subject to excessive shock and that the helmet therefore needs replacing.
- the liquid may be such that it adheres to the walls in the common chamber 124 thereby clearly showing that one of the flasks 120 has been subject to an excessive shock.
- the indicator 120 can be small (of the order of a few centimetres) and so it can easily be accommodated in a relatively small cavity within a helmet.
- the common chamber 124 can be smaller than shown.
- a transparent or translucent lens may be provided on the outside of the helmet to view the common indicator chamber 124 ; the magnification makes it easier to see whether or not liquid is located within the chamber 124 .
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Helmets And Other Head Coverings (AREA)
Abstract
A head protection helmet comprises an impact resistant shell comprising a cavity for accommodating a user's head and an array of crushable bodies having a hollow closed configuration, e.g. flutes in corrugated material. The crushable bodies each having an axis that extends outwardly from the cavity to absorb impact forces exerted along the direction of the axis.
Description
- The present invention relates to a helmet. The helmet is primarily intended as a cycling helmet to provide head protection in the event of a cycling accident. However, it also finds application at any time when head protection is needed, for example ice skating, roller skating, skateboarding, caving, climbing, e.g. indoor climbing or mountain climbing, skiing, baseball, American football, ice hockey and head protection at work or when working at heights, e.g. in the construction industry.
- Most bicycle helmets available have (a) a thin outer layer, which may be made, for example, out of polypropylene that is able to absorb initial peak impact forces, (b) a shell within the thin layer and composed of expanded polystyrene that absorbs both initial and subsequent impact forces and (c) padding within the expanded polystyrene shell both to provide comfort to the user and to adjust the shape of the internal cavity within the shell for different shaped and sized heads.
- In general, a cycling helmet should fit closely over the cyclist's head so that any impact force is spread over as wide an area of the head as possible. The impact forces are absorbed by the thin polypropylene layer and the expanded polystyrene shell. In addition, some helmets fracture under impact, which also absorbs energy and reduces the energy transferred to the head.
- Cycling helmets are often treated roughly and such rough treatment can impair the effectiveness of the helmet. However, there is often no outward visible sign of such impairment.
- As mentioned, cycling helmets and helmets for other uses are generally made of synthetic plastics. Although it would be desirable to make the helmets at least partly out of natural material that could be recycled, it is counter-intuitive to use such materials in applications requiring the resistance of such strong forces.
- Helmets should generally be light to be acceptable to wearers. Sports protective helmets should also be well ventilated so that sweat does not accumulate around the user's head and so that body heat generated due to the exertion of cycling or other sport can be displaced through the head.
- Although the materials used for making the cycling helmets are not particularly expensive, it would advantageous to use cheaper materials, if possible.
- The present invention uses the strength of flutes or hollow tubes, e.g. hollow cylinders, hollow cells and hollow frusto-cones, in a helmet to resist impact and also to crumple on impact, such crumpling absorbing significant energy which is thereby not transferred to the user's head.
- In one embodiment, the flutes may be those present in corrugated material, e.g. corrugated fibre board can be used to absorb impact energy. In this case, an impact resistant shell of the helmet of the present invention can be made of such corrugated material, which may be in the form of intersecting arc shaped ribs overlying a head cavity of the helmet and extending outwards, optionally radially outwards, from the cavity. In this case, the arc-shaped ribs may be arranged to extend generally axially (front to back) and laterally (side to side). The arrangement of the flutes may be such that at the front, top and sides of the helmet, at least some of the flutes extend radially outwards from the cavity (e.g. forwardly and optionally also upwardly at the front and sideways and optionally also upwardly at the respective sides). The positioning of the flutes can be brought about by suitably locating the arc-shaped ribs and by selecting the direction of the flutes within those ribs.
- However, sufficient impact resistance can be achieved using the above intersecting arc-shaped ribs but without the use of flutes. The arc-shaped ribs may each be made of one or more sheets. When two or more such sheets are present in a single rib, they will generally lie parallel to each other and may be joined together in a spaced apart relationship. When each rib has three or more sheets, each spaced may be apart from, and connected to, its neighbouring sheet. The material joining the sheets together and maintaining the sheets in a parallel spaced-apart configuration may be composed of cells. Such cells may be formed by a corrugated sheet, as discussed above, or by cells having walls and or axes that extend generally orthogonal to the planes of the sheets. For example, the sheets may be connected by an array of honeycomb cells where the individual cells are hexagonal, square or rectangle in cross-section. The honeycomb cells, which are connected to the sheets overlying them, increase the resistance to flexing of the ribs and thereby make them stiffer. They also maintain the sheets in a parallel spaced-apart configuration, which means that the sheets themselves can absorb greater impact forces than if the sheets were connected together by flutes that have lower ability to maintain the sheets in parallel.
- The sheets are preferably semi-rigid, where the term “semi-rigid” material is used in the present specification in relation to a sheet to denote a material that will remain in a planar configuration but can be crumpled by a substantial force applied within the plane of the sheet. The force it can withstand before crumpling will depend on the nature of the ribs, and the arrangement of the sheets within each rib and the number and arrangement of the ribs within a helmet. The semi-rigid material should be such that the helmet overall can withstand the force required for the application concerned and the various standard that apply to these helmets. Typical materials include cardboard and stiff but flexible plastics.
- The arc-shaped ribs may together form an intersecting array or lattice, with ribs extending axially between the front and the back of the head cavity and laterally between the two opposed sides of the head cavity; they can also extend diagonally. Naturally, the ribs will intersect in such an arrangement and, at the intersection point, the ribs preferably form crossed halved joints, which are made by forming a groove in the lower part of one rib and another groove in the upper part of the other rib so that the two ribs can be slotted into each other without severing either rib completely. The joint can be an interference fit between the two ribs or adhesive can be used to cement the two ribs at the joint. Alternatively, some of the grooves in the ribs may be larger than is necessary to accommodate the intersecting ribs, partly to make manufacture easier and partly to allow a limited amount of movement or play between the ribs, which helps absorb energy in a crash.
- As mentioned above, when corrugations are provided, the corrugations provide the impact strength along the direction of the flutes. Therefore, at the centre of each arc-shaped rib, it is preferred that the flutes extend either parallel to the edge of the rib or at right angles to the edge of the ribs. The latter arrangement absorbs impact forces exerted on the centre of the rib at a right angle to the edge. The former arrangement provides strength at the ends of the rib rather than in the centre and can absorb impact forces exerted at right angles of the ends of the ribs. The flutes in adjacent ribs need not be parallel to each other and indeed it may be advantageous if that is not the case so that adjacent ribs can absorb impact forces applied from different directions. Thus, for example, the flutes of one arc-shaped rib can extend at right angles to the flutes on the adjacent rib.
- The helmet may include a rim encircling the head cavity that may also be made of the same material as the ribs; if made of corrugated material containing flutes, the flutes preferably extend from the front to the back of the head cavity so as to absorb front impact forces.
- Although the corrugated material may be made of plastic, it is preferred to use fibre board (e.g. corrugated cardboard) since the materials for making fibre board are natural and the helmet can be recycled after use. Corrugated fibreboard can be obtained commercially in a large number of different qualities but all qualities are relatively cheap. Honeycombed fibreboard can be made by forming a layer of honeycomb cells and adhering to this layer to the face sheets.
- In a second embodiment, instead of flutes in corrugated boards, the strength of the impact resisting shell may be provided by an array of hollow tubes, e.g. cylinders or frusto-cones, typically made from sheet material, especially paper and cardboard. The ends of the cones or cylinders should point outwardly from the head cavity so that they are able to absorb impact and also crumple under that impact, thereby absorbing energy and reducing the force that is transmitted to the user's head in the event of an accident.
- Cylinders, when packed together in a dome-shaped array, may not present a smooth external surface or a smooth inner surface that outlines the head cavity. In order to address this, it is possible to machine the external or internal surfaces to provide such a smooth domed shape. However, it is not necessary to produce a smooth dome shape to the outside surface.
- Furthermore, an uneven dome shape within the cavity of the impact resistant shell can be tolerated if an inner shell is provided that has a matching outer surface; the inner shell may then provide a smooth domed inner surface. The role of the inner shell will be discussed below. A domed shape can be achieved more easily by using hollow frusto-cones instead of cylinders with the larger end face of the cones pointing outwardly while the smaller faces point inwardly.
- The tubes (hollow frusto-cones or cylinders) can be held in a bundle or array with each tube being in contact with a neighbouring tube. A mixture of cones and cylinders can be used. Alternatively, the tubes can be held in position by a matrix material in which they are captured within the matrix material.
- Hollow cylinders can be made by winding strips of flexible sheet material into a closed shape and retaining the closed shape, for example, by adhesive. The strips used to form such tubes will generally extend helically around the axis of the tube. The manufacture of hollow cylinders is widely practiced in the manufacture of the cores of paper rolls. Frusto-conical shapes can also be made by a similar winding technique.
- The greater the number of tubes (cylinders or frusto-cones) used to make up the impact resistant shell, the greater is the impact strength of the shell. Therefore, the outside diameter of the cylinders or frusto-cones will generally not exceed 4 cm and, for example, will generally not exceed 3 cm. On the other hand, a greater number of tubes will increase the complexity of manufacturing the shell and accordingly the outside diameter of the cylinder should preferably be at least 0.5 cm, e.g. 1 cm. In the case of frusto-cones, the mean diameter of the cones should generally lie in the above ranges.
- The tubes (cylinders or frusto-cones) should crumple on impact. In order to control the degree of crumpling, a line of weakness may be provided in the walls of the hollow tubes along which they can collapse. The lines of weakness are preferably helical in shape so that the crumpling will occur within the boundary of the tubes and the lines of weakness may be provided in the form of holes or openings spaced along the line of weakness.
- As is the case in the first embodiment, cheap material used to make the tubes, which material may be plastic but preferably is paper or cardboard. Cork could also be used.
- In fact, the distinction between the first embodiments and the second embodiment is not clear-cut since the above-described arrangement of intersecting ribs can also be seen as falling within the scope of the second embodiment since the intersecting ribs form an array of cells that are tubes having a 4-sided cross-section.
- In order to waterproof the helmet of the present invention, at least the outside edge regions of the crushable bodies may be covered with a waterproofing material, although optionally an outer shell may be provided that will provide such waterproofing, in which case it is preferred that ventilation openings are provided in the outer shell. The waterproofing material/outer shell is preferably made of a material having a stiffness coefficient higher than that of the material used for forming the crushable bodies so that it is less elastic. In this way, it can assist in resisting the peak force exerted on impact. The preferred materials are polypropylene, acrylic or ABS.
- The helmet may include an inner shell, which may perform a number of functions. Firstly, it can add extra impact resistance to the impact resistant shell of the present invention, for example it could be made of moulded expanded polystyrene. Secondly, it can be used to tailor the helmets to the size of a particular user's head. This can be achieved by making the cavity within the impact resistant shell of the present invention in one standard size and providing an inner shell with an outside that matches the size of the impact resistant shell cavity and an inside that has a head cavity that is matched to the size of a user's head; thus a number of inner shells could be manufactured having variously sized internal cavities to fit various head sizes and shapes. Padding may also be provided for additional comfort and/or ensuring that a tight or snug fit is maintained between the user's head and the helmet, e.g. using insertable padding that can be adhered to the inside surface of the inner shell cavity, as is widely practiced with cycling helmets currently available.
- A further use of the inner shell is to dissipate the impact forces that are transmitted to the inner ends of the crushable bodies, i.e. the ends lying in the head cavity, so they are not transmitted directly on the user's head. In addition, the shape of the cavity within the impact resistant shell may not be uniformly smooth and the outer surface of the inner shell can, as discussed above, be shaped to match the uneven surface of the cavity in the impact resistant shell. This avoids having to shape the head cavity of the impact resistant shell in an expensive manner. The inner shell may be permanently attached to the impact resistant shell of the present invention or may be releasable attached, e.g. using loop-and-hook fastenings, e.g. Velcro®, so that the impact resistant shell of the present invention is replaceable if dented.
- Instead of a continuous inner shell, a series of pads may be used that lie between the array of crushable bodies and the user's head. Such pads may be made of relatively rigid foam material to provide a cushion between the crushable bodies and the user's head. The series of pads may be viewed as a discontinuous inner shell.
- Generally, because the outside surface of the impact resistant shell (even with the waterproofing layer or outer shell), is made up of an array of crushable bodies rather than a uniform smooth surface, it will be more evident when the impact resistant shell has been damaged and therefore needs replacing.
- The impact resistant shell can be recycled, if made of fibre based materials, such as paper or cardboard. The strength of the crushable bodies will depend on the nature and thickness of the sheet material used and so it is possible to adjust the impact strength and crumpling properties of the helmet by the choice of the sheet material used. in the present specification, the term “outer” shell does not necessarily mean that it forms the outermost layer of the helmet (although it can) and likewise the term “inner” shell does not necessarily mean that it forms the innermost layer of the helmet (although again it can). However, the outer shell will always lie outside the impact resistant shell and any inner shell in the helmet will always lie inside the impact resistant shell.
- According to a further aspect of the present invention, there is provided a head protecting helmet comprising a shock indicator that gives it an indication when the helmet has been subject to a shock in excess of a threshold value, thereby indicating that the helmet or at least the shock absorbing part of the helmet should be replaced. Often, for convenience, the magnitude of a shock, which is a force exerted as a result of acceleration or deceleration, is stated as a multiple of the acceleration caused by earth's gravity, which is indicated by the symbol “G”. During a bicycle accident, the helmet can suffer shocks of 150 G and after any shock of 150 G should preferably be replaced.
- The accelerometer contains at least five tubes or flasks each containing a viscous coloured liquid held in a chamber of the flask by a wall having a capillary bore extending through it that normally retains the liquid within the chamber as a result of the surface tension of the liquid and the small size of the bore. However, if a sufficient force is exerted on the liquid due to shocks, the liquid passes through the capillary into a further chamber; the presence of the coloured liquid in the further chamber indicates that the accelerometer has suffered a shock in excess of a threshold value. The at least five tubes or flasks communicate with a common further chamber and so the present of the coloured liquid in the common further chamber indicates that the helmet needs replacing. Tubes or flasks of the above type are already known and sold under the trademark “Shockwatch”. The viscosity of the liquid and the size of the capillary bore are preferably designed to allow the liquid to pass into the common chamber when subjected to a threshold shock that is selected from the range of 75-100 G.
- We have found that at least five such tubes or flasks are needed to ensure that shock exerted in any direction on the helmet is captured and triggers the release of liquid into the common chamber and the use of a larger number is preferred, e.g. six, eight or more.
- The common chamber may be located behind a magnified lens, which could be clear or diffusing, thereby making it easier to detect the triggering of accelerometer.
- There will now be described, by way of example only, several embodiments of the present invention by reference to the accompanying drawings in which:
-
FIG. 1 shows part of a helmet, that is to say an impact resistant shell in accordance with the present invention, viewed from the front and one side; -
FIG. 2 shows the helmet ofFIG. 1 viewed from below; -
FIG. 3 is an end view of corrugated fibre board that may be used in the helmet ofFIGS. 1 and 2 ; -
FIG. 4 is a partly cutaway view of part of an arc-shaped rib made of fibre board having a honeycomb core that may be used in the helmet ofFIGS. 1 and 2 ; -
FIG. 5 shows the joint between two arc-shaped ribs used in the helmet ofFIGS. 1 and 2 . -
FIG. 6 is a schematic view of a helmet in accordance with the present invention using the shell shown inFIGS. 1 and 2 ; -
FIGS. 7 and 8 show, schematically, an alternative arrangement to the impact resistant shell ofFIGS. 1 and 2 ; and -
FIGS. 9 a and 9 b shows schematically a shock indicator for use as a helmet. - The helmet of the present invention includes an impact resistant shell that is able to absorb some of the forces exerted on a helmet during a collision with another object, which may be the road, a pavement, a pedestrian or another vehicle. As mentioned above, the present invention is not limited to a cycling helmet but cycling will be used to exemplify the diverse applications for which the helmet may be used, some of which are set out above.
- Referring initially to
FIGS. 1 and 2 , which show the shell from one side and from below, respectively, the impactresistant shell 10 of the helmet includes arim 12 made of a solid fibre board. The rim may be made in a single piece or in multiple pieces (as shown inFIGS. 1 and 2 ) that are joined together atconnection 13, which is most clearly shown inFIG. 2 . The joint 13 is a simple tongue-and-groove joint that includes atongue 13 a on one piece of the rim that slots into agroove 13 b cut into the end of a second piece of the rim. - The rest of the impact
resistant shell 10 is made up (a) of series ofaxial ribs 14 extending between the front 18 and theback 19 of the helmet and (b) a series oflateral ribs 16 extending between the twosides 20 of the helmet. As can be seen, the ribs are arranged in planes that extend radially outwards from the helmet and form an intersecting lattice of shock absorbing ribs; the lattice can be seen as an array of 4-sided shock-absorbingcells 23. The axial ribs 1 ofFIGS. 1 and 2 come together at the front 18 and the rear 1 of the helmet. Likewise, thelateral ribs 16 come together at the twosides 20 of the helmet. The ends of the 14, 16 slot intoribs grooves 21 in therim 12. They may be held in thegrooves 21 by adhesive. - The
14,16 are arc shaped and the insides of the ribs forms aribs head cavity 30. As is clear fromFIGS. 1 and 2 , the 14, 16 intersect with each other. The joints at these intersecting points are shown in an exploded view inribs FIG. 5 . Theaxial ribs 14 have agroove 34 cut in the concave side of the rib while thelateral ribs 14 have agroove 32 cut in their convex faces. The 32, 34 can then be slotted into each other together to form a halved cross joint, which means that neither of thegrooves 14, 16 is cut completely through in order to provide the intersection. The grooves in theribs 14,16 can extend radially from the centre of theribs cavity 30. InFIG. 5 , the 32,34 are shown to extend at right angles to the plane of the respective ribs but, as can be seen ingrooves FIG. 1 , the groove may extend in a non-orthogonal direction to the plane of the ribs that forming an intersection. The sizes of the 32, 34 should accommodate the other rib and the ribs may be held in place either by friction or by adhesive or by a mechanical element. As can be seen ingrooves FIG. 1 , some of thegrooves 34 in the ribs 14 (as indicated by thereference number 34 a inFIG. 1 ) are larger than necessary to accommodate the correspondinglateral ribs 16 and this provides some play between the ribs which can therefore absorb more impact energy in the case of an accident. Furthermore, it assists in assembling theshell 10. - The
14, 16 may be made of corrugated fibre board, as shown inribs FIG. 3 . Corrugated fibreboard includes at least one undulatingsection 28 sandwiched between flat fibre board layers 31 to form a series offlutes 29. It possible to build up a number of such layers in a unitary corrugated fibre board (FIG. 3 includes two such undulating sections). The thickness of the material forming theundulations 28 and the thickness of the flat board 1 should be chosen to give the degree of shock resistance and crumpling need to absorb the type of forces exerted during a collision. - Alternatively, the ribs can be made from honeycomb fibreboard, which is shown in
FIG. 4 and has a pair offibreboard face sheets 31; only one face sheets is shown inFIG. 4 and that face sheet is shown partly cut away so that theinternal honeycomb array 33 is visible. The honeycomb connects together theface sheets 31 and may be made of plastic or paper or cardboard. It is glued to theface sheets 31 in a known manner. Again, it possible to build up a number of sheets and honeycomb layers in a unitary corrugated fibre board so that three ormore sheets 31 are included in each rib, each adjacent pair of sheets sandwiching between them a honeycomb layer. - Turning back to
FIGS. 1 and 2 and dealing with the case in which the ribs are made of corrugated fibreboard, theflutes 29 in the ribs may extend in horizontal, vertical, axial or lateral directions or diagonally within the helmet. The flutes in alternate lateral ribs 1 extend horizontally (i.e. in the direction between the two sides of the helmet) and such flutes resist especially lateral forces on the helmet. The flutes in the otherlateral ribs 16 extend vertically and such flutes resist vertically acting forces. Likewise in some of theaxial ribs 14, the flutes extend horizontally which are resistant to forces impacting on the front or rear of the helmet while the flutes on the other ribs extend vertically and such flutes resist vertically acting forces. Generally, alternate ribs should have vertically-extending flutes and the remaining ribs should have horizontally-extending flutes, although the two centralaxial ribs 14 may have vertically extending ribs to resist forces exerted down onto the crown of the helmet. - When the ribs are made of the honeycomb material shown in
FIG. 4 , the honeycomb cells will extend at right angles to the plane of the ribs. - The impact resistant shell shown in
FIGS. 1 and 2 can absorb impact forces from any direction and can crumple as a result, thereby absorbing the energy of the impact and protecting the user's head. - In order to provide waterproofing to the fibre board, an outer shell or layer 50 (see
FIG. 6 ) can overlay theshell 10 shown inFIGS. 1 and 2 and which can be fastened to theshell 10, either permanently or temporary. Theouter shell 50 should be provided with ventilation holes (not shown) that preferably line up with the spaces between the 14, 16 of theribs shell 10. In addition, the cardboard used to make theshell 10 may be waterproof by the application of a waterproofing or water resistance layer (not shown). - The
outer shell 50 may be made of acrylic material but it could also be made of other materials for example, polypropylene or ABS having a stiffness coefficient higher than that of the material used to make the impactresistant shell 10 and so absorbs part of the initial shock waves when an impact occurs.Slots 52 may he provided in the outer shell in order to attach straps (not shown) that can be secured under the user's chin to hold the helmet on the user's head - An
inner shell 55 may be provided between the user's head and thecavity 30 within the impactresistant shell 10 in order to provide comfort to the user, to dissipate forces being transmitted through the edges of the 14, 16 directly to the user's head and to ensure that the helmet fits snugly. The inner shell may be made of padding, for example a layer of foam and or woven or non-woven fabric.ribs - As is evident from the discussion above, the impact
resistant shell 10 shown inFIGS. 1 and 2 , when made with the ribs of corrugated fibreboard, provides strength and impact resistance by means of the flutes within corrugated material. In addition impact strength is provided by holding the ribs in a fixed array of 4-sidedcells 23, each cell having an axis that extends away from theinner cavity 30 of the helmet and generally radially outward from the cavity. In the case of the ribs being made of the honeycomb material shown inFIG. 4 , the strength of the helmet will mostly be provided by this array of 4-sided cells, with the honeycomb pattern within the ribs resisting the collapse of the ribs and thereby maintaining theface sheets 31 in a space-apart parallel configuration, which increases the impact resistance of the individual ribs. In a variant of the cellular structure just described, theshell 10 may be made of an array of cylindrical tubes (seeFIGS. 7 and 8 ) that are arranged in a dome shape and the under surface (not shown) forms a head cavity. Thetubes 100 are collected in array with the inner ends of the tubes lying at different elevations in order to provide the shell with a hollow dome-shape. The axis of the various tubes shown inFIG. 9 all extend vertically and are intended to resist vertical forces. However, they can be embedded in a matrix so that they extend in different directions from the head in order to provide protection against forces from different directions. - The tubes, instead of being cylindrical, may be frustoconical, which has the advantage that, when the tubes are gathered together with the larger faces φx (see
FIG. 8 ) pointing outwardly and the smaller faces φy pointing inwardly, the axes of the frusto cones point in different radial directions. - The
tubes 100 are hollow and are generally made of fibre board such as paper or cardboard. Tubes made of this configuration can be incredibly strong and can transmit an impact force directly to the user's head without absorbing it. In order to provide some measure of impact absorption, a crumple zone may be introduced in the side walls of the tubes. So that the tubes crumple within their own diameter, it is preferred that the crumple zone is helical in shape and may be formed, as can be seen inFIG. 8 , by helically arrangedholes 102. - The
tubes 100 formed into an impact resistant shell may be incorporated into a helmet with anouter shell 50 and padding 55 (seeFIG. 6 ). - The outside and inside surfaces of an impact resistant shell formed from an array of
tubes 100 may be sanded to provide the hollow dome shape. - Turning finally to
FIGS. 9 a and 9 b, an arrangement is shown that can detect when a helmet has been subject to impact forces (or shock) exceeding a threshold, indicating that the helmet should be replaced or at least the impactresistant shell 10 should be replaced. As shown inFIG. 9 a, which shows the whole shock indicator; the indicator includes acentral chamber 124 having a number ofshock indicator flasks 120 spaced around it and preferably evenly spaced around it.FIG. 9 b, is a schematic drawing showing one of theflasks 120 and part of thecentral chamber 124. Each flask includes aspace 122 that is filled with coloured liquid that communicates with thecentral chamber 124 via acapillary bore 128. Thecommon chamber 124 is initially empty. Because of the size of thecapillary bore 128 and the viscosity of the liquid, the liquid is generally retained within thespace 122. However, if a particular flask is subject to an acceleration or deceleration (in the case of the orientation shown inFIG. 9 a in the vertical direction), the coloured liquid can be forced through the capillary bore into the previously emptycommon chamber 124. The presence of the coloured liquid within thechamber 124 indicates that the flask has been subject to excessive shock and that the helmet therefore needs replacing. The liquid may be such that it adheres to the walls in thecommon chamber 124 thereby clearly showing that one of theflasks 120 has been subject to an excessive shock. The indicator ofFIGS. 9 a and 9 b can be incorporated into a holder that fits into a cavity within the helmet (not shown) and is held within that cavity by latches (again not shown). Theindicator 120 can be small (of the order of a few centimetres) and so it can easily be accommodated in a relatively small cavity within a helmet. Thecommon chamber 124 can be smaller than shown. A transparent or translucent lens (not shown) may be provided on the outside of the helmet to view thecommon indicator chamber 124; the magnification makes it easier to see whether or not liquid is located within thechamber 124.
Claims (24)
1. A head protection helmet comprising an impact resistant shell comprising:
a cavity for accommodating a user's head and
an array of crushable bodies having a hollow closed configuration, the crushable bodies each having an axis that extends outwardly from the cavity to absorb impact forces exerted along the direction of the axis.
2. A helmet as claimed in claim 1 , wherein the crushable bodies are cells formed by intersecting arc-shaped ribs overlying the cavity, wherein the ribs extend outwards from the cavity.
3. A helmet as claimed in claim 2 , wherein the intersecting arc-shaped ribs are formed of crushable sheet material.
4. A helmet as claimed in claim 2 , wherein the crushable sheet material is a single sheet.
5. A helmet as claimed in claim 3 , wherein the ribs are each made of multiple sheets of a crushable board, the sheets of each rib being connected together.
6. A helmet as claimed in claim 5 , wherein the sheets of each rib are connected together by connector bodies that have an axis that lies generally orthogonal to the plane of the ribs.
7. A helmet as claimed in claim 5 , wherein the sheets of each rib are connected together by an array of honeycomb cells, the cells being of at least square, rectangular or hexagonal shape.
8. A helmet as claimed in claim 5 , wherein the sheets of each rib are connected together by at least one connector body having an axis and wherein said axis extends generally tangentially with respect to the cavity.
9. A helmet as claimed in claim 5 , wherein the sheets of each rib are connected together by crushable bodies having a hollow closed configuration, e.g. the crushable bodies each having an axis that extends outwardly from the cavity to absorb impact forces exerted along the direction of the axis.
10. A helmet as claimed in claim 1 , wherein the crushable bodies are flutes in corrugated material.
11. A helmet as claimed in claim 10 , wherein the corrugated material is in the form of arc-shaped ribs overlying the cavity, wherein the ribs extend outwards from the cavity.
12. A helmet as claimed in claim 11 , wherein the flutes in some of the ribs extend generally horizontally and the flutes in others of the ribs extend in a direction having at least a vertical component.
13. A helmet as claimed in claim 2 , wherein the array of ribs comprises ribs extending axially between the front and the back of the head cavity and ribs extending laterally between two opposed sides of the head cavity, the axial and lateral ribs intersecting, e.g. at crossed halved joints.
14. A helmet as claimed in claim 1 , wherein the shell includes a rim encircling the head cavity, the rim including said crushable bodies.
15. A helmet as claimed in claim 1 , wherein the crushable bodies are tubes that are arranged in an array, the tubes each having an axis that is directed outwardly away from the cavity.
16. A helmet as claimed in claim 15 , wherein the crushable bodies are frusto-cones with the larger surface facing outwards so that the axes of the frusto-cones extend outwardly from the cavity in different directions.
17. A helmet as claimed in claim 15 , wherein the tubes include a line of weakness in the walls of the tubes and are such that they crumple within their own diameters when impacted.
18. A helmet as claimed in claim 15 , wherein the tubes are formed by intersecting arc-shaped ribs overlying the cavity, wherein the ribs extend outwards from the cavity.
19. A helmet as claimed in claim 1 , wherein the crushable bodies have outwardly facing parts that are covered by a waterproof layer, which waterproofing layer is made of a material that has a stiffness coefficient higher than that of the material of the crushable bodies.
20. A helmet as claimed in claim 19 , wherein the waterproofing layer is an outer shell and optionally includes ventilation openings therein.
21. A helmet as claimed in claim 1 , which includes an inner shell which inner shell is in direct or indirect contact with the cavity of the impact absorbent shell and which is releasably connected thereto.
22. A helmet as claimed in claim 1 , which includes padding arranged to be next to the user's head and straps capable of extending under the chin of a user.
23. An impact absorbent shell for a head protection helmet comprising:
a cavity for accommodating a user's head and
an array of crushable bodies having a hollow closed configuration, the crushable bodies each having an axis that extends outwardly from the cavity to absorb impact forces exerted along the direction of the axis, the shell comprising:
a cavity for accommodating a user's head and an array of crushable bodies having a hollow closed configuration, the crushable bodies each having an axis that extends outwardly from the cavity to absorb impact forces exerted along the direction of the axis;
wherein the crushable bodies are cells formed by intersecting arc-shaped ribs overlying the cavity, wherein the ribs extend outwards from the cavity.
24. A head protecting helmet comprising a shock indicator, that gives an indication when the helmet has been subject to a shock in excess of a threshold value, thereby indicating that the helmet or at least a shock absorbing part of the helmet should be replaced, which indicator comprises a chamber and at least 5 flasks spaced around the chamber, each flask having a space containing a colored liquid and each flask including a capillary bore that provides communication between the space of that flask and the chamber, wherein each capillary bore is capable of allowing the liquid in the space adjacent to it to pass into the chamber when the respective flask is subjected to a shock of at least said threshold value.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10250978.3 | 2010-05-26 | ||
| EP10250978A EP2389822A1 (en) | 2010-05-26 | 2010-05-26 | Helmet |
| PCT/GB2011/000814 WO2011148146A2 (en) | 2010-05-26 | 2011-05-26 | Helmet |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2011/000814 A-371-Of-International WO2011148146A2 (en) | 2010-05-26 | 2011-05-26 | Helmet |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/133,000 Continuation US10085508B2 (en) | 2010-05-26 | 2016-04-19 | Helmet |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130305435A1 true US20130305435A1 (en) | 2013-11-21 |
Family
ID=42799899
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/700,045 Abandoned US20130305435A1 (en) | 2010-05-26 | 2011-05-26 | Helmet |
| US15/133,000 Expired - Fee Related US10085508B2 (en) | 2010-05-26 | 2016-04-19 | Helmet |
| US16/147,020 Abandoned US20190090575A1 (en) | 2010-05-26 | 2018-09-28 | Helmet |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/133,000 Expired - Fee Related US10085508B2 (en) | 2010-05-26 | 2016-04-19 | Helmet |
| US16/147,020 Abandoned US20190090575A1 (en) | 2010-05-26 | 2018-09-28 | Helmet |
Country Status (5)
| Country | Link |
|---|---|
| US (3) | US20130305435A1 (en) |
| EP (2) | EP2389822A1 (en) |
| DK (1) | DK2575521T3 (en) |
| ES (1) | ES2550326T3 (en) |
| WO (1) | WO2011148146A2 (en) |
Cited By (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130042748A1 (en) * | 2011-08-17 | 2013-02-21 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Mesostructure Based Scatterers in Helmet Suspension Pads |
| US20140196198A1 (en) * | 2012-09-14 | 2014-07-17 | Yochanan Cohen | Protective Helmets |
| US20140331393A1 (en) * | 2013-05-09 | 2014-11-13 | Joe DaSilva | Wrestling headgear |
| US20150143617A1 (en) * | 2012-03-06 | 2015-05-28 | Loubert S. Suddaby | Helmet with multiple protective zones |
| US20150272258A1 (en) * | 2012-01-18 | 2015-10-01 | Darius J. Preisler | Sports helmet and pad kit for use therein |
| US20160015111A1 (en) * | 2014-07-18 | 2016-01-21 | Salomon S.A.S. | Impact-absorbing helmet |
| USD762925S1 (en) * | 2015-02-04 | 2016-08-02 | 3M Innovative Properties Company | Helmet rib |
| US20160345651A1 (en) * | 2015-05-26 | 2016-12-01 | Paul William Dvorak | Safety Helmet Liner Impact Reducing Technology |
| US20170135433A1 (en) * | 2015-11-13 | 2017-05-18 | Benjamin V. Booher, Sr. | Energy absorbing football helmet |
| WO2017120378A1 (en) * | 2016-01-08 | 2017-07-13 | VICIS, Inc. | Manufacturing impact absorbing structures for an athletic helmet |
| US20170196292A1 (en) * | 2016-01-08 | 2017-07-13 | VICIS, Inc. | Layered materials and structures for enhanced impact absorption |
| CN106954910A (en) * | 2017-04-25 | 2017-07-18 | 费钧 | The spherical deployed configuration and its manufacture method of the tapered reticulate body of 3 D stereo |
| USD806317S1 (en) | 2016-10-31 | 2017-12-26 | memBrain Safety Solutions, LLC | Bicycle helmet |
| US9924756B2 (en) * | 2013-12-09 | 2018-03-27 | Stephen Craig Hyman | Total contact helmet |
| USD828631S1 (en) | 2016-10-31 | 2018-09-11 | memBrain Safety Solutions, LLC | Bicycle helmet |
| JP2018527477A (en) * | 2015-09-18 | 2018-09-20 | エアヘルメット エス.アール.エル. | Composite geometric structure for absorbing and dissipating energy generated by impact and safety helmet comprising said structure |
| WO2018183469A1 (en) * | 2017-03-29 | 2018-10-04 | Park & Diamond Inc. | Helmet |
| WO2019195339A1 (en) * | 2018-04-02 | 2019-10-10 | VICIS, Inc. | Protective helmet |
| IT201800008089A1 (en) * | 2018-08-14 | 2020-02-14 | Tibi Optima Sagl | PROTECTIVE HELMET |
| EP3253243B1 (en) | 2015-02-04 | 2020-04-01 | Oxford University Innovation Limited | An impact absorbing structure and a helmet comprising such a structure |
| US20210015195A1 (en) * | 2019-03-25 | 2021-01-21 | Kuji Sports Co Ltd. | Helmet |
| US10905187B1 (en) | 2020-03-30 | 2021-02-02 | Gwenventions, Llc | Collapsible helmet |
| US10959480B2 (en) | 2016-09-13 | 2021-03-30 | memBrain Safety Solutions, LLC | Machine-vendible foldable bicycle helmet methods and systems |
| US11089832B2 (en) | 2015-05-01 | 2021-08-17 | Gentex Corporation | Helmet impact attenuation article |
| US11229255B2 (en) | 2016-11-08 | 2022-01-25 | JMH Consulting Group, LLC | Helmet |
| US11241059B2 (en) | 2016-01-08 | 2022-02-08 | Vicis Ip, Llc | Laterally supported filaments |
| US11311060B2 (en) * | 2014-01-06 | 2022-04-26 | Lisa Ferrara | Composite devices and methods for providing protection against traumatic tissue injury |
| USD962548S1 (en) | 2016-10-31 | 2022-08-30 | memBrain Safety Solutions, LLC | Helmet |
| US11457684B2 (en) * | 2015-12-24 | 2022-10-04 | Brad W. Maloney | Helmet harness |
| US11571036B2 (en) | 2016-01-08 | 2023-02-07 | Vicis Ip, Llc | Laterally supported filaments |
| US20230371640A1 (en) * | 2022-05-19 | 2023-11-23 | Specialized Bicycle Components, Inc. | Strap Systems and Methods for Vented Helmets |
| US11864617B2 (en) | 2016-09-13 | 2024-01-09 | memBrain Safety Solutions, LLC | Machine vendible expandable helmet and manufacture of same |
| US20240148098A1 (en) * | 2021-03-05 | 2024-05-09 | Specialized Bicycle Components, Inc. | Systems and Methods for Vented Helmets |
| USD1031173S1 (en) * | 2021-03-31 | 2024-06-11 | Ventete Limited | Helmet |
| US12035776B2 (en) | 2018-08-14 | 2024-07-16 | Lazer Sport Nv | Protective helmet |
| US12102159B2 (en) | 2016-01-08 | 2024-10-01 | Vicis Ip, Llc | Impact absorbing structures for athletic helmet |
| US20240324710A1 (en) * | 2023-03-27 | 2024-10-03 | Michael Horgan | Helmet |
| US12268268B2 (en) | 2016-09-13 | 2025-04-08 | memBrain Safety Solutions, LLC | Machine vendible expandable helmet and manufacture of same |
| US12436519B2 (en) | 2020-10-28 | 2025-10-07 | Peridot Print Llc | Generating conformal structures for 3D object models |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9763488B2 (en) | 2011-09-09 | 2017-09-19 | Riddell, Inc. | Protective sports helmet |
| US20140013492A1 (en) * | 2012-07-11 | 2014-01-16 | Apex Biomedical Company Llc | Protective helmet for mitigation of linear and rotational acceleration |
| US10834987B1 (en) | 2012-07-11 | 2020-11-17 | Apex Biomedical Company, Llc | Protective liner for helmets and other articles |
| US10159296B2 (en) | 2013-01-18 | 2018-12-25 | Riddell, Inc. | System and method for custom forming a protective helmet for a customer's head |
| US10736373B2 (en) | 2013-08-13 | 2020-08-11 | Smith Optics, Inc. | Helmet with shock absorbing inserts |
| TW201507646A (en) * | 2013-08-30 | 2015-03-01 | Aegis Sports Inc | Reinforcement structure of safety helmet and manufacturing method thereof |
| JP2016539253A (en) | 2013-12-06 | 2016-12-15 | ベル スポーツ, インコーポレイテッド | Flexible multilayer helmet and method for manufacturing the same |
| US9925440B2 (en) * | 2014-05-13 | 2018-03-27 | Bauer Hockey, Llc | Sporting goods including microlattice structures |
| US10721987B2 (en) | 2014-10-28 | 2020-07-28 | Bell Sports, Inc. | Protective helmet |
| EP3303871B1 (en) | 2015-06-02 | 2021-02-17 | Apex Biomedical Company, LLC | Energy-absorbing structure with defined multi-phasic crush properties |
| DE202015105471U1 (en) | 2015-10-15 | 2017-01-17 | Martin Drechsel | Protective device, in particular helmet, with shock-absorbing, homogeneously ventilating structure |
| US11033796B2 (en) | 2016-07-20 | 2021-06-15 | Riddell, Inc. | System and methods for designing and manufacturing a bespoke protective sports helmet |
| US11399589B2 (en) | 2018-08-16 | 2022-08-02 | Riddell, Inc. | System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers |
| EP3903616B1 (en) * | 2018-10-16 | 2024-06-05 | Lazer Sport NV | A helmet for impact protection |
| CA3169309A1 (en) | 2018-11-21 | 2020-05-28 | Riddell, Inc. | Protective recreational sports helmet with components additively manufactured to manage impact forces |
| USD927084S1 (en) | 2018-11-22 | 2021-08-03 | Riddell, Inc. | Pad member of an internal padding assembly of a protective sports helmet |
| CA3157206A1 (en) | 2019-05-21 | 2020-11-26 | Bauer Hockey Ltd. | Helmets comprising additively-manufactured components |
| KR102052335B1 (en) * | 2019-05-30 | 2019-12-06 | 김윤호 | the improved multi layer safety helmet |
| US12016417B2 (en) | 2020-04-27 | 2024-06-25 | Honeywell International Inc. | Protective helmet |
| DE102020205291A1 (en) | 2020-04-27 | 2021-10-28 | Robert Bosch Gesellschaft mit beschränkter Haftung | Device for mechanically fixed arrangement on a helmet and a helmet with such a device |
| USD937492S1 (en) * | 2020-05-28 | 2021-11-30 | Yoav MICHAELY | Bicycle helmet |
Citations (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2870694A (en) * | 1955-01-20 | 1959-01-27 | British Plaster Board Holdings | Manufacture of cellular structures |
| FR2335168A1 (en) * | 1975-12-16 | 1977-07-15 | Renault | HELMET WITH ENERGY ABSORBING COMPOSITE STRUCTURE, ESPECIALLY FOR CYCLOMOTORISTS |
| GB1578351A (en) * | 1976-12-20 | 1980-11-05 | Du Pont Canada | Protective helmet |
| US4905320A (en) * | 1988-11-10 | 1990-03-06 | Squyers Jr Thomas L | Protective body support |
| US5139838A (en) * | 1990-07-20 | 1992-08-18 | Baum Russell C | Shock absorbent structure for carrying cases |
| US5204998A (en) * | 1992-05-20 | 1993-04-27 | Liu Huei Yu | Safety helmet with bellows cushioning device |
| US5734994A (en) * | 1997-02-06 | 1998-04-07 | M.P.H. Associates, Inc. | Ventilated safety helmet with progressively crushable liner |
| US5747140A (en) * | 1995-03-25 | 1998-05-05 | Heerklotz; Siegfried | Flat upholstered body |
| US5950243A (en) * | 1997-06-13 | 1999-09-14 | Alberta Research Council | Structural shell for protective headgear |
| US6314586B1 (en) * | 2000-10-24 | 2001-11-13 | John R. Duguid | Supplemental protective pad for a sports helmet |
| US20020106483A1 (en) * | 2000-07-07 | 2002-08-08 | Obeshaw Dale Francis | Modified contoured crushable structural members and methods for making the same |
| US20020185795A1 (en) * | 2001-06-07 | 2002-12-12 | Tony Le | Energy absorbing assembly |
| US20050200062A1 (en) * | 2004-03-12 | 2005-09-15 | Dow Global Technologies, Inc. | Impact absorption structure |
| US20050246824A1 (en) * | 2004-04-07 | 2005-11-10 | Crescendo As | Helmet, helmet liner and method for manufacturing the same |
| US20050281987A1 (en) * | 2004-06-18 | 2005-12-22 | Eads Deutschland Gmbh | Impact-absorbing structural component |
| JP2006077934A (en) * | 2004-09-10 | 2006-03-23 | Honda Motor Co Ltd | Shock absorbing member, helmet using the same, and vehicle bumper |
| US20060075693A1 (en) * | 2004-09-24 | 2006-04-13 | Honda Motor Co., Ltd. | Opening polygonal rib structure and polygonal rib structure |
| US20070226881A1 (en) * | 2004-07-09 | 2007-10-04 | Prospective Concepts Ag | Flexible Protective Helmet |
| US7328462B1 (en) * | 2004-02-17 | 2008-02-12 | Albert E Straus | Protective helmet |
Family Cites Families (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB717121A (en) * | 1951-02-26 | 1954-10-20 | Walter Alfred George | Improvements in or relating to protective helmets |
| US2765472A (en) | 1952-03-22 | 1956-10-09 | Schoen-Wolski Wlodzimierz | Collapsible headgear |
| US3353188A (en) | 1965-12-06 | 1967-11-21 | Crincic Laddie John | Collapsible safety helmet |
| US3514787A (en) | 1968-06-24 | 1970-06-02 | Kennedy Alvin B Jun | Collapsible protective hat |
| US3877076A (en) * | 1974-05-08 | 1975-04-15 | Mine Safety Appliances Co | Safety hat energy absorbing liner |
| US3991422A (en) | 1975-04-21 | 1976-11-16 | Hikogi Saotome | Defensive covering for the head |
| US3987495A (en) | 1975-08-11 | 1976-10-26 | The Raymond Lee Organization, Inc. | Motorcycle helmet |
| JPS5383851A (en) | 1976-12-29 | 1978-07-24 | Tatsunoshin Takemi | Foldable safety cap |
| US4291417A (en) | 1978-09-07 | 1981-09-29 | Pagano Alice L | Protective head covering |
| ES269734Y (en) | 1983-01-13 | 1984-01-16 | FOLDING PROTECTIVE HELMET. | |
| FR2561877B3 (en) * | 1984-03-27 | 1986-03-28 | Miki Spa | HELMET, PARTICULARLY FOR SPORTS USES |
| US4607397A (en) | 1984-09-27 | 1986-08-26 | Chevron Research Company | Portable hard hat |
| IT209878Z2 (en) | 1987-01-30 | 1988-11-04 | Free Helmets S R L | PERFECTED PROTECTION HELMET OF THE MOBILE SECTORS TYPE. |
| DE3910889A1 (en) | 1989-04-04 | 1990-10-11 | Hochschorner K W Gmbh | HELMET |
| USRE35193E (en) | 1992-01-15 | 1996-04-02 | Shifrin; Roy | Combined visored cap type protective helmet and pouch for bicyclists or the like |
| US5319808A (en) * | 1992-06-01 | 1994-06-14 | Fibre-Metal Products Co. | Impact absorbing protective cap |
| GB9213704D0 (en) * | 1992-06-27 | 1992-08-12 | Brine C A | Safety helmet |
| US5544367A (en) | 1994-09-01 | 1996-08-13 | March, Ii; Richard W. | Flexible helmet |
| US5661854A (en) | 1994-09-01 | 1997-09-02 | March, Ii; Richard W. | Flexible helmet |
| US5515546A (en) | 1994-09-14 | 1996-05-14 | Shifrin; Roy | Foldable padded helmet |
| US5628071A (en) | 1995-01-13 | 1997-05-13 | Motorika Ltd. | Collapsible helmet |
| US5604935A (en) | 1995-01-13 | 1997-02-25 | Motorika Ltd. | Collapsible helmet |
| US5896590A (en) | 1996-06-19 | 1999-04-27 | Ise Innomotive Systems Europe Gmbh | Protection device for head and body of people |
| US6292952B1 (en) | 1998-09-25 | 2001-09-25 | Sportscope, Inc. | Insert-molded helmet |
| US6159324A (en) | 1999-03-05 | 2000-12-12 | Sportscope | Process for manufacturing protective helmets |
| GB9906994D0 (en) | 1999-03-27 | 1999-05-19 | Skoot Int Ltd | Safety helmet |
| FR2800580B1 (en) * | 1999-11-09 | 2001-12-14 | Salomon Sa | PROTECTIVE HELMET |
| USD480761S1 (en) | 2002-04-25 | 2003-10-14 | Promo Mask, Inc. | Decorative replica baseball batter's helmet |
| USD473265S1 (en) | 2000-07-22 | 2003-04-15 | Promo Mask, Inc. | Decorative replica football helmet |
| USD472582S1 (en) | 2000-06-16 | 2003-04-01 | Promo Mask, Inc. | Decorative replica goaltenders′ mask″ |
| USD472934S1 (en) | 2000-07-31 | 2003-04-08 | Promo Mask, Inc. | Decorative replica motorsports helmet |
| US6637037B1 (en) | 2002-05-15 | 2003-10-28 | Chichuan Hung | Ready safety helmet |
| GB0323781D0 (en) * | 2003-10-10 | 2003-11-12 | Bodycage Ltd | Safety helmet |
| WO2005058083A2 (en) * | 2003-12-12 | 2005-06-30 | Beck Gregory S | Safety helmet with shock detector, helmet attachement device with shock detector & methods |
| US7677538B2 (en) * | 2005-09-20 | 2010-03-16 | Sport Helmets Inc. | Lateral displacement shock absorbing material |
| FR2894784B1 (en) | 2005-12-15 | 2008-07-18 | Pjdo Soc Par Actions Simplifie | FOLDING PROTECTIVE HELMET |
| GR1006703B (en) | 2008-05-16 | 2010-02-19 | Automatic washing and drying machine for helmets | |
| GB2460852A (en) * | 2008-06-12 | 2009-12-16 | Matthew William Aspray | Impact sensor and helmet incorporating the sensor. |
| US20100031426A1 (en) | 2008-08-08 | 2010-02-11 | Thomas Lapham | Portable helmet |
| FR2948540A1 (en) | 2009-07-29 | 2011-02-04 | Philippe Arrouart | FOLDING PROTECTIVE HELMET |
| AU2011315242B2 (en) | 2010-10-13 | 2016-03-24 | Vigil Helmets Ltd | Collapsible helmet |
-
2010
- 2010-05-26 EP EP10250978A patent/EP2389822A1/en not_active Ceased
-
2011
- 2011-05-26 US US13/700,045 patent/US20130305435A1/en not_active Abandoned
- 2011-05-26 ES ES11724002.8T patent/ES2550326T3/en active Active
- 2011-05-26 DK DK11724002.8T patent/DK2575521T3/en active
- 2011-05-26 EP EP11724002.8A patent/EP2575521B1/en not_active Not-in-force
- 2011-05-26 WO PCT/GB2011/000814 patent/WO2011148146A2/en active Application Filing
-
2016
- 2016-04-19 US US15/133,000 patent/US10085508B2/en not_active Expired - Fee Related
-
2018
- 2018-09-28 US US16/147,020 patent/US20190090575A1/en not_active Abandoned
Patent Citations (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2870694A (en) * | 1955-01-20 | 1959-01-27 | British Plaster Board Holdings | Manufacture of cellular structures |
| FR2335168A1 (en) * | 1975-12-16 | 1977-07-15 | Renault | HELMET WITH ENERGY ABSORBING COMPOSITE STRUCTURE, ESPECIALLY FOR CYCLOMOTORISTS |
| GB1578351A (en) * | 1976-12-20 | 1980-11-05 | Du Pont Canada | Protective helmet |
| US4905320A (en) * | 1988-11-10 | 1990-03-06 | Squyers Jr Thomas L | Protective body support |
| US5139838A (en) * | 1990-07-20 | 1992-08-18 | Baum Russell C | Shock absorbent structure for carrying cases |
| US5204998A (en) * | 1992-05-20 | 1993-04-27 | Liu Huei Yu | Safety helmet with bellows cushioning device |
| US5747140A (en) * | 1995-03-25 | 1998-05-05 | Heerklotz; Siegfried | Flat upholstered body |
| US5734994A (en) * | 1997-02-06 | 1998-04-07 | M.P.H. Associates, Inc. | Ventilated safety helmet with progressively crushable liner |
| US5950243A (en) * | 1997-06-13 | 1999-09-14 | Alberta Research Council | Structural shell for protective headgear |
| US20020106483A1 (en) * | 2000-07-07 | 2002-08-08 | Obeshaw Dale Francis | Modified contoured crushable structural members and methods for making the same |
| US6314586B1 (en) * | 2000-10-24 | 2001-11-13 | John R. Duguid | Supplemental protective pad for a sports helmet |
| US20020185795A1 (en) * | 2001-06-07 | 2002-12-12 | Tony Le | Energy absorbing assembly |
| US7328462B1 (en) * | 2004-02-17 | 2008-02-12 | Albert E Straus | Protective helmet |
| US20050200062A1 (en) * | 2004-03-12 | 2005-09-15 | Dow Global Technologies, Inc. | Impact absorption structure |
| US20050246824A1 (en) * | 2004-04-07 | 2005-11-10 | Crescendo As | Helmet, helmet liner and method for manufacturing the same |
| US20050281987A1 (en) * | 2004-06-18 | 2005-12-22 | Eads Deutschland Gmbh | Impact-absorbing structural component |
| US20070226881A1 (en) * | 2004-07-09 | 2007-10-04 | Prospective Concepts Ag | Flexible Protective Helmet |
| JP2006077934A (en) * | 2004-09-10 | 2006-03-23 | Honda Motor Co Ltd | Shock absorbing member, helmet using the same, and vehicle bumper |
| US20060075693A1 (en) * | 2004-09-24 | 2006-04-13 | Honda Motor Co., Ltd. | Opening polygonal rib structure and polygonal rib structure |
Non-Patent Citations (2)
| Title |
|---|
| English machine translation of "FR 2335168 A1" via Espacenet. URL: (translation generated on May 27, 2015) * |
| English machine translation of "JP 2006077934 A" via JPO. URL: (translation generated on May 26, 2015) * |
Cited By (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130042748A1 (en) * | 2011-08-17 | 2013-02-21 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Mesostructure Based Scatterers in Helmet Suspension Pads |
| US20160091283A1 (en) * | 2011-08-17 | 2016-03-31 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Mesostructure Based Scatterers in Helmet Supension Pads |
| US20150272258A1 (en) * | 2012-01-18 | 2015-10-01 | Darius J. Preisler | Sports helmet and pad kit for use therein |
| US20150143617A1 (en) * | 2012-03-06 | 2015-05-28 | Loubert S. Suddaby | Helmet with multiple protective zones |
| US10517347B2 (en) * | 2012-03-06 | 2019-12-31 | Loubert S. Suddaby | Helmet with multiple protective zones |
| US20140196198A1 (en) * | 2012-09-14 | 2014-07-17 | Yochanan Cohen | Protective Helmets |
| US9578917B2 (en) * | 2012-09-14 | 2017-02-28 | Pidyon Controls Inc. | Protective helmets |
| US20140331393A1 (en) * | 2013-05-09 | 2014-11-13 | Joe DaSilva | Wrestling headgear |
| US9924756B2 (en) * | 2013-12-09 | 2018-03-27 | Stephen Craig Hyman | Total contact helmet |
| US11311060B2 (en) * | 2014-01-06 | 2022-04-26 | Lisa Ferrara | Composite devices and methods for providing protection against traumatic tissue injury |
| US20160015111A1 (en) * | 2014-07-18 | 2016-01-21 | Salomon S.A.S. | Impact-absorbing helmet |
| USD762925S1 (en) * | 2015-02-04 | 2016-08-02 | 3M Innovative Properties Company | Helmet rib |
| EP3253243B1 (en) | 2015-02-04 | 2020-04-01 | Oxford University Innovation Limited | An impact absorbing structure and a helmet comprising such a structure |
| US11089832B2 (en) | 2015-05-01 | 2021-08-17 | Gentex Corporation | Helmet impact attenuation article |
| US20160345651A1 (en) * | 2015-05-26 | 2016-12-01 | Paul William Dvorak | Safety Helmet Liner Impact Reducing Technology |
| US11396922B2 (en) * | 2015-09-18 | 2022-07-26 | Airhelmet S. R. L. | Composite geometry structure for the absorption and dissipation of the energy generated by an impact and a safety helmet comprising said structure |
| JP2018527477A (en) * | 2015-09-18 | 2018-09-20 | エアヘルメット エス.アール.エル. | Composite geometric structure for absorbing and dissipating energy generated by impact and safety helmet comprising said structure |
| US10791786B2 (en) | 2015-11-13 | 2020-10-06 | Benjamin V. Booher, Sr. | Energy absorbing football helmet |
| US20170135433A1 (en) * | 2015-11-13 | 2017-05-18 | Benjamin V. Booher, Sr. | Energy absorbing football helmet |
| US10098402B2 (en) * | 2015-11-13 | 2018-10-16 | Benjamin V. Booher, Sr. | Energy absorbing football helmet |
| US11457684B2 (en) * | 2015-12-24 | 2022-10-04 | Brad W. Maloney | Helmet harness |
| US12102159B2 (en) | 2016-01-08 | 2024-10-01 | Vicis Ip, Llc | Impact absorbing structures for athletic helmet |
| US12178275B2 (en) | 2016-01-08 | 2024-12-31 | University Of Washington & Vicis Ip, Llc | Layered materials and structures for enhanced impact absorption |
| US11241059B2 (en) | 2016-01-08 | 2022-02-08 | Vicis Ip, Llc | Laterally supported filaments |
| US20170196292A1 (en) * | 2016-01-08 | 2017-07-13 | VICIS, Inc. | Layered materials and structures for enhanced impact absorption |
| US10433609B2 (en) * | 2016-01-08 | 2019-10-08 | VICIS, Inc. | Layered materials and structures for enhanced impact absorption |
| WO2017120378A1 (en) * | 2016-01-08 | 2017-07-13 | VICIS, Inc. | Manufacturing impact absorbing structures for an athletic helmet |
| US10342283B2 (en) | 2016-01-08 | 2019-07-09 | VICIS, Inc. | Manufacturing impact absorbing structures for an athletic helmet |
| US11571036B2 (en) | 2016-01-08 | 2023-02-07 | Vicis Ip, Llc | Laterally supported filaments |
| US11464269B2 (en) | 2016-01-08 | 2022-10-11 | Vicis Ip, Llc | Layered materials and structures for enhanced impact absorption |
| US12329226B2 (en) | 2016-01-08 | 2025-06-17 | University Of Washington & Vicis Ip, Llc | Layered materials and structures for enhanced impact absorption |
| US11678711B2 (en) | 2016-09-13 | 2023-06-20 | memBrain Safety Solutions, LLC | Machine-vendible foldable bicycle helmet methods and systems |
| US10959480B2 (en) | 2016-09-13 | 2021-03-30 | memBrain Safety Solutions, LLC | Machine-vendible foldable bicycle helmet methods and systems |
| US12268268B2 (en) | 2016-09-13 | 2025-04-08 | memBrain Safety Solutions, LLC | Machine vendible expandable helmet and manufacture of same |
| US11864617B2 (en) | 2016-09-13 | 2024-01-09 | memBrain Safety Solutions, LLC | Machine vendible expandable helmet and manufacture of same |
| USD806317S1 (en) | 2016-10-31 | 2017-12-26 | memBrain Safety Solutions, LLC | Bicycle helmet |
| USD962548S1 (en) | 2016-10-31 | 2022-08-30 | memBrain Safety Solutions, LLC | Helmet |
| USD828631S1 (en) | 2016-10-31 | 2018-09-11 | memBrain Safety Solutions, LLC | Bicycle helmet |
| USD853651S1 (en) | 2016-10-31 | 2019-07-09 | memBrain Safety Solutions, LLC | Bicycle helmet |
| USD899697S1 (en) | 2016-10-31 | 2020-10-20 | memBrain Safety Solutions, LLC | Bicycle helmet |
| US11229255B2 (en) | 2016-11-08 | 2022-01-25 | JMH Consulting Group, LLC | Helmet |
| US11523652B2 (en) | 2017-03-29 | 2022-12-13 | Park & Diamond Inc. | Helmet |
| EP4026449A3 (en) * | 2017-03-29 | 2022-09-21 | Park & Diamond Inc. | Helmet |
| WO2018183469A1 (en) * | 2017-03-29 | 2018-10-04 | Park & Diamond Inc. | Helmet |
| CN106954910A (en) * | 2017-04-25 | 2017-07-18 | 费钧 | The spherical deployed configuration and its manufacture method of the tapered reticulate body of 3 D stereo |
| WO2019195339A1 (en) * | 2018-04-02 | 2019-10-10 | VICIS, Inc. | Protective helmet |
| US12035776B2 (en) | 2018-08-14 | 2024-07-16 | Lazer Sport Nv | Protective helmet |
| IT201800008089A1 (en) * | 2018-08-14 | 2020-02-14 | Tibi Optima Sagl | PROTECTIVE HELMET |
| US20240000180A1 (en) * | 2019-03-25 | 2024-01-04 | Tianqi Technology Co (Ningbo) Ltd | Helmet |
| US20210015195A1 (en) * | 2019-03-25 | 2021-01-21 | Kuji Sports Co Ltd. | Helmet |
| US12150509B2 (en) * | 2019-03-25 | 2024-11-26 | Tianqi Technology Co (Ningbo) Ltd | Helmet |
| US11766083B2 (en) * | 2019-03-25 | 2023-09-26 | Tianqi Technology Co (Ningbo) Ltd | Helmet |
| US10905187B1 (en) | 2020-03-30 | 2021-02-02 | Gwenventions, Llc | Collapsible helmet |
| US12436519B2 (en) | 2020-10-28 | 2025-10-07 | Peridot Print Llc | Generating conformal structures for 3D object models |
| US20240148098A1 (en) * | 2021-03-05 | 2024-05-09 | Specialized Bicycle Components, Inc. | Systems and Methods for Vented Helmets |
| US12369672B2 (en) * | 2021-03-05 | 2025-07-29 | Specialized Bicycle Components, Inc. | Systems and methods for vented helmets |
| USD1031173S1 (en) * | 2021-03-31 | 2024-06-11 | Ventete Limited | Helmet |
| US20230371640A1 (en) * | 2022-05-19 | 2023-11-23 | Specialized Bicycle Components, Inc. | Strap Systems and Methods for Vented Helmets |
| US20240324710A1 (en) * | 2023-03-27 | 2024-10-03 | Michael Horgan | Helmet |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011148146A2 (en) | 2011-12-01 |
| US20170280810A1 (en) | 2017-10-05 |
| ES2550326T3 (en) | 2015-11-06 |
| EP2575521B1 (en) | 2015-07-29 |
| EP2389822A1 (en) | 2011-11-30 |
| WO2011148146A3 (en) | 2012-02-23 |
| DK2575521T3 (en) | 2015-11-02 |
| US20190090575A1 (en) | 2019-03-28 |
| US10085508B2 (en) | 2018-10-02 |
| EP2575521A2 (en) | 2013-04-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10085508B2 (en) | Helmet | |
| US11844390B2 (en) | Helmet with shock absorbing inserts | |
| US11033797B2 (en) | Football helmet having improved impact absorption | |
| EP2822410B1 (en) | Helmet | |
| US8069498B2 (en) | Protective arrangement | |
| US5561866A (en) | Safety Helmets | |
| US10980306B2 (en) | Helmet omnidirectional energy management systems | |
| US20130283504A1 (en) | Helmet pads | |
| US20100299813A1 (en) | Head Protection Apparatus | |
| CN104427896A (en) | Protective helmet for mitigation of linear and rotational acceleration | |
| EP3349607B1 (en) | A composite geometry structure for the absorption and dissipation of the energy generated by an impact and a safety helmet comprising said structure. | |
| US20140373256A1 (en) | Helmet pads | |
| US20160278467A1 (en) | Safety Helmet | |
| US20180064198A1 (en) | Helmet | |
| US20180242675A1 (en) | Helmet | |
| WO2020242373A1 (en) | Protective head device | |
| CA2869063C (en) | Helmet pads | |
| KR20220063824A (en) | Disposable bicycle helmet | |
| CA2108427A1 (en) | Multi impact resistant safety helmet for cyclist |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KRANIUM HEADWEAR LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SURABHI, ANIRUDHA;REEL/FRAME:031226/0180 Effective date: 20130305 |
|
| AS | Assignment |
Owner name: KRANIUM SPORTS, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRANIUM HEADWEAR LIMITED;REEL/FRAME:033801/0754 Effective date: 20140221 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |