US20130292398A1 - Pill Container - Google Patents
Pill Container Download PDFInfo
- Publication number
- US20130292398A1 US20130292398A1 US13/463,147 US201213463147A US2013292398A1 US 20130292398 A1 US20130292398 A1 US 20130292398A1 US 201213463147 A US201213463147 A US 201213463147A US 2013292398 A1 US2013292398 A1 US 2013292398A1
- Authority
- US
- United States
- Prior art keywords
- pill
- cap
- pill container
- pen
- interior cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D21/00—Nestable, stackable or joinable containers; Containers of variable capacity
- B65D21/02—Containers specially shaped, or provided with fittings or attachments, to facilitate nesting, stacking, or joining together
- B65D21/0201—Containers specially shaped, or provided with fittings or attachments, to facilitate nesting, stacking, or joining together stackable or joined together side-by-side
- B65D21/0204—Containers specially shaped, or provided with fittings or attachments, to facilitate nesting, stacking, or joining together stackable or joined together side-by-side and joined together by interconnecting formations forming part of the container, e.g. dove-tail, snap connections, hook elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D83/00—Containers or packages with special means for dispensing contents
- B65D83/04—Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, spherical or like small articles, e.g. tablets or pills
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
Definitions
- This description relates to a pill container.
- Pharmaceutical pills for example, often come in short round plastic bottles with childproof lids. Sometimes people move them into other kinds of containers that are set up to make it easier to take the pills as prescribed during a day or a week.
- an apparatus in one aspect, includes a chamber elongated along a longitudinal axis and shaped to receive pharmaceutical pills arranged along the longitudinal axis in a row, in which any cross-section of the chamber perpendicular to the longitudinal axis intersects a maximum of one pharmaceutical pill.
- an apparatus in another aspect, includes a tube elongated along a longitudinal axis, a portion of the tube comprising multiple compartments arranged along the longitudinal axis, the compartment having a largest cross-sectional dimension perpendicular to the longitudinal axis sized to fit a single pharmaceutical pill within the compartment.
- At least one compartment may include a sponge-like material. At least one compartment may include a cover. The cover may include a transparent material. The cover may include an opaque material. The cover may include a translucent material. At least one compartment may include a sliding cover. At least one compartment may include a hinge and a flip cover attached to the hinge. The tube may include a sliding cover spanning at least two compartments. Each of two or more compartments may include a sliding cover.
- the apparatus may include a ring sized to surround the portion of the tube including the compartment, the ring including a window sized to admit a pharmaceutical pill.
- an apparatus in another aspect, includes means for holding a chain of elongated pharmaceutical pills arranged in a row in an oblong chamber, in which a largest cross-sectional dimension of the chamber is smaller than an elongated dimension of any of the elongated pharmaceutical pills.
- an method of storing and dispensing pills includes forming a row of pills by placing each pill in an open end of a container, and removing them from the container in an order reverse of the order in which they were put into the container, each successively removed pill being the only pill accessible at the open end of the container.
- an apparatus in another aspect, in general, includes a tubular body elongated along a longitudinal axis and having an interior cavity and a first open end, the interior cavity extending along the longitudinal axis and sized to receive a single syringe, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit the single syringe within the cavity, the first open end sized to admit the single syringe into the interior cavity, and a device to selectively allow insertion and removal of the single syringe from the interior cavity.
- an apparatus in another aspect, in general, includes a tubular body elongated along a longitudinal axis and having an interior cavity and a first open end, the interior cavity extending along the longitudinal axis and sized to receive a single headphone device, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit the single headphone device within the cavity, the first open end sized to admit the single headphone device into the interior cavity, and a device to selectively allow insertion and removal of the single headphone device from the interior cavity.
- an apparatus in another aspect, in general, includes a tubular body elongated along a longitudinal axis and having an interior cavity and a first open end, the interior cavity extending along the longitudinal axis and sized to receive multiple pharmaceutical pills, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit a single pharmaceutical pill within the cavity, the first open end sized to admit a pharmaceutical pill into the interior cavity, a device to selectively allow insertion and removal of pills from the interior cavity, and a clip for affixing the tubular body to an item of clothing.
- the clip may conform to a shape of the tubular body.
- An interior surface of the clip may be parallel to a surface of the tubular body.
- An inset cut from the tubular body may form the clip.
- the clip may be affixed to the device.
- an apparatus in another aspect, in general, includes a first tubular piece elongated along a longitudinal axis; a second tubular piece elongated along the longitudinal axis and sized to be received by the first tubular piece, the two tubular pieces together forming an interior cavity, at least one tubular piece having a first open end sized to admit a pharmaceutical pill into the interior cavity, the interior cavity extending along the longitudinal axis and sized to receive multiple pharmaceutical pills, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit a single pharmaceutical pill within the cavity.
- the apparatus may include a locking mechanism that, when engaged, resists movement of the first tubular piece relative to the second tubular piece.
- the locking mechanism may be engaged by pulling one of the tubular pieces.
- the locking mechanism may be engaged by rotating one of the tubular pieces.
- the locking mechanism may include a pin, tooth, or screw. Motion of the first tubular piece relative to the second tubular piece may cause a change in size of the interior cavity.
- FIG. 1 shows a pill container
- FIG. 2 shows a pill container carried by a human being.
- FIGS. 3A and 3B are side and perspective views of a pill container.
- FIG. 4 shows a cap for a pill container.
- FIGS. 5A , 5 B, and 5 C are side, top, and front views of a pill container.
- FIG. 6 shows a bundle of pill containers.
- FIGS. 7-10B and 12 A- 17 show other kinds of pill containers.
- FIGS. 11A-11B show a sectional door.
- FIG. 1 shows a pill container 100 having an elongated, tubular body 102 to hold pharmaceutical pills.
- the shape of the pill container 100 is chosen so that it is convenient for a human being to carry the pill container 100 and access the pills inside.
- the tubular body 102 has an interior cavity 104 (hidden in FIG. 1 but visible in FIGS. 3A , 3 B, and 4 ) that can hold multiple pills lined up in a row.
- a cap 106 covers one end 108 of the tubular body 102 and can be opened (e.g., removed, slid off, flipped open, or popped off, among other things) to remove pills from the interior cavity 104 and admit pills into the interior cavity 104 .
- the tubular body 102 has a cross-section 110 in the shape of a hexagon. Other versions of the pill container 100 could have a different shape to the cross-section 110 .
- the cross-section 110 could have the shape of another kind of polygon, or could have a round shape, or could have another kind of shape.
- the interior cavity 104 has a shape similar to a shape of the tubular body 102 .
- the tubular body 102 has a hexagonal shape (e.g., a hexagonal cross-section)
- the interior cavity 104 may also have a hexagonal shape.
- the interior cavity 104 has a shape different from a shape of the tubular body 102 .
- the interior cavity 104 may could have a different shape such as a cylindrical shape (e.g., having a circular or oval cross-section).
- FIGS. 3A , 3 B, and 4 A cross-section of the interior cavity 104 is shown in FIGS. 3A , 3 B, and 4 .
- the pill container 100 is generally wide enough only to accommodate a single pill at any point along a longitudinal axis 118 of the pill container 100 . Pills may come in a variety of shapes and sizes, and so in some examples, some pills may overlap within a cross-section 110 at certain points along the longitudinal axis 118 .
- a pill having a rounded edge may contact another pill having a rounded edge in a way that causes the very ends of the rounded edges to minimally overlap.
- the shape of the interior cavity 104 is chosen to minimize overlap of pills within any cross-section 110 of the tubular body 102 .
- the tubular body 102 has a length 120 that is at least, or greater than, a sum of the lengths of the longest sides of the maximum number of pharmaceutical pills accommodated by the tubular body 102 (e.g., accommodated by the interior cavity 104 ).
- pills or pharmaceutical pills we mean any kind of capsule, tablet, or other pill that is ingested by a human being.
- the pills could be prescription pills, or off-the-shelf medication like NSAIDs or painkillers, or nutritional supplements such as vitamins or antioxidants, or any other kind of substance.
- Most pills contain a substance documented in a standard reference for these kinds of substances.
- the reference work is sometimes called a pharmacopoeia and may be maintained by a governing body of a country, an administrative agency, or a non-profit organization.
- Pills in the shape of capsules usually have an elongated body and rounded edges.
- a capsule having an elongated shape is shown in FIGS. 3A and 3B .
- Most capsules have a length of between ten and twenty millimeters, but some are slightly smaller or larger.
- Most capsules also have a diameter of between five and ten millimeters.
- Capsules can conform to standard sizes which sometimes have numerical designations such as “3,” “2,” “1,” “0,” “00,” and so on.
- a “0” sized capsule may have a standard length and diameter which is larger than the length and diameter of a “1” sized capsule.
- a capsule having a standard size can contain a consistent dose of a pharmaceutical or nutritional supplement.
- a pill container 100 could be designed to hold a pill of a particular standard size. Further, one pill container could be produced to hold one size of pill (e.g., one capsule of a standard size), and another pill container could be produced to hold another size of pill.
- a single pill container could also contain pills of multiple types and having similar, but not identical, sizes.
- Pills can come in other forms besides capsules. Some pills are called tablets, and sometimes have a round shape or oval shape rather than an elongated shape. The diameter of a tablet is usually larger than the diameter of a capsule. Also, some tablets are called softgels, especially tablets with a gelatin coating or encapsulating material. A pill container could even store other kinds of objects that have approximately the same size and shape as a pill.
- the tubular body 102 could be made of a substantially transparent material, or a substantially opaque material, or a substantially translucent material, or portions of the tubular body 102 could be made of any or all of these. Some materials that could be used include a metal material, a plastic material, a wood material, a glass material, fiberglass, stone, rubber, clay, porcelain, bamboo, paper, cardboard, or other natural or synthetic materials, including original materials or recycled materials, disposable materials, or any combination of these.
- the cap 106 and other components of the pill container 100 could also be made of any of these materials.
- the pill container 100 has a second cap 112 that covers a second end 114 of the tubular body 102 .
- the second cap 112 can be opened to remove pills from the interior cavity 104 and admit pills into the interior cavity 104 . If the first cap 106 cannot be opened (e.g., if the cap 106 is jammed or stuck) then the second cap 112 can be opened and the second end 114 can be used as an alternative to the first end 108 as a point of access to the interior cavity 104 .
- the pill container 100 has a clip 116 attached to or integrated with the tubular body 102 .
- the clip 116 allows the pill container 100 to be affixed to an item of clothing.
- the clip 116 can be attached to or integrated with the cap 106 or the second cap 112 .
- the clip 116 could be made of the same material as the tubular body 102 or could be made of a different material.
- some or all of the components of the pill container 100 are magnetized, e.g., made of a magnetic material or made at least partially of a magnetic material.
- the cap 106 or the second cap 112 or the tubular body 102 or the clip 116 could be magnetized. If at least one of the components of the pill container 100 are magnetized then the pill container 100 could be affixed to some metal surfaces such as a refrigerator door.
- Pills may be admitted into the interior cavity 104 by a human being who manually opens the cap 106 and inserts pills into the interior cavity 104 , or pills may be admitted into the interior cavity 104 by a machine that inserts pills into the interior cavity 104 , or pills may be admitted into the interior cavity 104 using another technique.
- FIG. 2 shows the pill container 100 in a shirt pocket 200 of a shirt 202 worn by a person 204 .
- the elongated shape of the pill container 100 gives the container similar dimensions to a pen or other writing instrument.
- the pill container 100 can be placed in any receptacle, pouch, pocket, or other vessel into which writing instruments can be placed. As shown in FIG. 2 , the pill container 100 appears to be a writing instrument when placed in the shirt pocket 200 . Because many vessels for writing instruments exist in clothing, briefcases, backpacks, desk drawers, and other types of apparel or luggage, the pill container 100 can fit into many of those existing vessels. A person 204 can thus make use of those existing vessels when carrying his or her pill container 100 .
- the person 204 may make the person 204 more likely to carry the pill container 100 rather than, for example, forget to bring the pill container 100 or find the pill container 100 inconvenient to carry. Further, the person 204 may prefer that the pill container 100 appear to be a writing instrument so that no attention is called to the pill container 100 .
- Writing instruments come in a variety of shapes and sizes and so the pill container 100 could be designed to have any of these shapes and sizes and achieve the goal of mimicking a writing instrument.
- writing instruments are commonly at least five times as long as they are wide.
- the pill container 100 can be designed to be at least five times as long as it is wide.
- a longer pill container 100 can accommodate more pills, because the pill container 100 is generally wide enough only to accommodate a single pill at any point along the longitudinal axis of the pill container 100 .
- different versions of the pill container 100 can have different widths 122 . Pill containers 100 having one width 122 can accommodate pills having one width, while pill containers 100 having another width 122 can accommodate pills having a different width.
- FIGS. 3A and 3B show a row 300 of pills 302 a - g within the interior cavity 104 of the tubular body 102 of the pill container 100 .
- a cross-section 310 of the interior cavity 104 intersects, at most, one pill 302 a - g .
- Seven pills 302 a - g are shown in the figure, and no more than seven pills 302 a - g will fit within the interior cavity 104 of this pill container 100 .
- Other versions of the pill container 100 could fit a greater or lesser number of pills within their respective interior cavities, for example, depending on the degree to which the interior cavity 104 is elongated along the longitudinal axis 118 of the pill container 100 . Because the pills 302 a - g are arranged in a row 300 , the pills will retain the order in which they were inserted into the pill container 100 even if the pill container 100 is transported, shaken, or disturbed.
- a first pill 302 a can be inserted 304 into the open end 108 of the tubular body 102 . If the pill container 100 is held in an upright orientation 306 or a substantially upright orientation then the first pill 302 a will slide toward the second open end 114 of the interior cavity 104 . The first pill 302 a is held inside the interior cavity 104 by the second cap 112 . If the orientation of the pill container 100 changes, the first pill 302 a may slide from the second open end 114 back to the first open end 108 or anywhere in between.
- the second pill 302 b will enter the interior cavity 104 at a position ahead of the first pill 302 a.
- the second pill 302 b may slide to contact the first pill 302 a and rest in position in contact with the first pill 302 a.
- the second pill 302 b may freely slide between the first pill 302 a and the cap 106 .
- the second pill 302 b will not pass beyond the first pill 302 a within the interior cavity 104 because the cross section 310 of the interior cavity 104 is not large enough to admit two pills.
- a human being in possession of the pill container 100 wishes to remove the first pill 302 a at the open end 108 then he or she must first remove the second pill 302 b. If a third pill 302 c is inserted, the third pill 302 c would have to be removed before the second pill 302 b is removed.
- pills 302 a - g inserted into the pill container 100 will remain in the order in which they have been inserted.
- the pill 302 a - g most recently inserted into the open end 108 of the pill container 100 is also the first pill that can be removed from the pill container 100 .
- This configuration is sometimes called “last in, first out” or “LIFO.”
- a human being could insert a pill to be taken in the evening of the subsequent day prior to a pill to be taken in the morning of the subsequent day.
- the pill to be taken in the morning will be the first pill capable of exiting the interior cavity 104 at the open end 108 .
- the pills 302 a - g could be of multiple types and placed in the pill container 100 in an order that conforms to an order in which a human being is to take the pills 302 a - g.
- FIG. 4 shows the cap 106 of the pill container 100 .
- the cap 106 covers an open end 108 of the tubular body 102 .
- the open end 108 is a point of access to an interior cavity 412 .
- This version of the interior cavity 412 has a circular cross section 410 .
- this version of the interior cavity 412 has a cylindrical shape.
- the cap 106 is an example of a device that can be used to selectively prevent or allow pills to be inserted into the interior cavity or removed from the interior cavity. When the cap is closed, the cap prevents pills from being inserted or removed. When the cap is opened, the cap allows pills to be inserted or removed.
- the cap 106 is affixed to the tubular body 102 by a spring hinge 402 .
- the spring hinge 402 is aligned parallel to a longitudinal axis 118 ( FIG. 1 ) of the tubular body 102 .
- the spring hinge 402 allows the cap 106 to spin around an axis 404 defined by the center of the spring hinge 402 , exposing the interior cavity 412 of the tubular body 102 .
- the motion of the cap 106 is defined by an arc 406 .
- the cap 106 can spin clockwise or counterclockwise.
- the spring hinge 402 biases the cap 106 to a position enclosing the open end 108 of the tubular body 102 .
- the cap 106 shown is hexagonal to match the hexagonal shape of the tubular body 102 .
- the cap 106 could have other shapes.
- the tubular body 102 were circular in shape, the cap 106 could also be circular in shape.
- the cap 106 also need not match the shape of the tubular body 102 .
- caps could be used with the pill container 100 .
- the cap 106 need not be attached to the tubular body 102 by a hinge.
- the cap 106 could be a twist-off cap which engages with grooves on the tubular body 102 to cover the open end 108 .
- the twist-off cap has “child-resistant” features, similar to the caps used in other pill bottles.
- the cap 106 could be made of rubber or another material that can frictionally engage with the tubular body 102 to resist forces that would otherwise dislodge the cap 106 .
- FIGS. 5A , 5 B, and 5 C show side, top, and front views 500 a, 500 b, 500 c of the one version of pill container 100 a and measurements of its components.
- the pill container 100 a shown is one example of the pill container 100 and the measurements described here are examples of measurements that could characterize the physical dimensions of a pill container. None of these measurements are required for a pill container to function and other versions of a pill container could have other measurements.
- the total length TL of the pill container 100 a is 149 millimeters and is the longest dimension of the pill container 100 a.
- the width TW of the pill container 100 a is 17.321 millimeters. In this example, the ratio of length to width of the pill container 100 a is 8.6, but other pill containers could have another ratio of length to width such as 5 or a different ratio.
- the tubular body 102 a has a length TBL of 140 millimeters.
- the cap 106 a has a height CH of 5 millimeters.
- the second cap 112 a has a height SCH of 3.2 millimeters.
- a distance SCD of 0.8 millimeters separates the second cap 112 a from the widest portion of the tubular body 102 a, such that a narrower portion of the tubular body 102 a spans the distance SCD.
- the tubular body 102 a has a hexagonal cross-section 502 . Each face of the six faces of the tubular body 102 a has a width FW of 8.66 millimeters.
- the tubular body 102 a has a thickness TT of 0.6 millimeters, such that the interior cavity 104 a of the tubular body 102 a is enclosed by a material 0.6 millimeters thick.
- the tubular body 102 a has an indentation 504 that interrupts the hexagonal shape of the tubular body 102 a.
- the indentation 504 has a planar surface 506 that extends along a portion of the length of the tubular body 102 a.
- the planar surface 506 has a width PW of 10.046 millimeters.
- the indentation 504 begins at a distance ID of 10 millimeters from the second open end 114 a of the tubular body 102 a.
- a slope 508 defines a first edge of the indentation 504 .
- the slope 508 has an angle SA of 135.97 degrees as measured from the planar surface 506 of the indentation 504 .
- the clip 116 a extends along a portion of the length of the tubular body 102 a and terminates at a distance CLD of 60 millimeters from the open end 108 a of the tubular body 102 a.
- the clip 116 a has a height CLH of 1.91 millimeters and the clip 116 a has a width CLW of 6.617 millimeters.
- the clip 116 a defines a gap 512 between the clip 116 a and a planar surface 506 of the indentation 504 of the tubular body 102 a and the gap 512 has a length GL of 47 millimeters.
- the interior surface 526 on the bottom of the clip 116 a is defines a plane that is parallel to the planar surface 506 of the indentation 504 of the tubular body 102 a.
- the indentation 504 of the tubular body 102 a forms the clip 116 a , such that the clip 116 a is flush with sides of the tubular body 102 a.
- the clip 116 a conforms to the polygonal shape of the tubular body 102 a and does not project beyond the main shape of the tubular body 102 a. If the tubular body 102 a were another shape, for example, a cylindrical shape (e.g., having a circular or oval cross-section), then the clip 116 a could conform to the cylindrical shape.
- the clip 116 a could be formed by cutting a portion of the tubular body 102 a.
- the cap 106 a has a recessed hexagonal indentation 514 that defines a raised ridge 516 at the edges of the top surface 518 of the cap 106 a.
- Each edge of the recessed hexagonal indentation 514 has a length RHL of 6.928 millimeters.
- the cap 106 a has a shortest diameter CSD of 7.5 millimeters, such that the shortest diameter CSD is a length from the center of the top surface 518 of the cap to a midpoint 520 of any edge 522 of the cap 106 a.
- the angle CEA between any edge 522 of the cap 106 a and an adjacent edge is 120 degrees.
- Each edge 522 of the cap 106 a has cutouts each of which span a length ECL of one millimeter.
- a portion of the cap 106 a has a cutout 524 at a location at which the cap 106 a is joined to the tubular body 102 by a hinge.
- the cutout has a length C
- This version of the pill container 100 a has a product logo 528 on one side of the tubular body 102 a.
- the product logo 528 spans a length PLL of 20 millimeters.
- a bundle can be formed from a configuration of multiple pill containers.
- seven hexagonal pill containers 100 b - h can be grouped together into a bundle 600 .
- the pill containers 100 b - h each have a hexagonal shape
- the pill containers 100 b - h can be arranged such that an edge 602 of one pill container 100 b touches an edge 604 of another pill container 100 c. If this is done for six of the pill containers 100 b - g , then the bundle 600 will form a hexagonal shape.
- a seventh pill container 100 h can be placed in the center of the bundle 600 .
- the bundle 600 can be stored and transported in a manner that conserves space and ensures that the pill containers 100 b - h stay together.
- a bundle 600 of seven pill containers 100 b - h allows the pill containers 100 b - h to each correspond to a day of a seven-day week.
- each pill container 100 b - h can be filled with pills to be taken on the corresponding day of the week.
- each pill container 100 b - h is labeled with an indicator 606 for the day of the week, for example, a letter such as “M” for Monday.
- portions of the pill containers 100 b - h are magnetized.
- the caps 106 b - h (or second caps 116 b - h or both) can be made of or partially made of a magnetic material, or the tubular bodies of the pill containers 100 b - h could be made of or partially made of a magnetic material. If the magnetic poles of the magnetized portions of the pill containers 100 b - h are aligned correctly then the bundle 600 will stay together and retain its shape.
- the pill containers 100 b - h could have a shape other than a hexagonal shape.
- pill containers 100 b - h having a cylindrical shape e.g., having a circular or oval cross-section
- FIG. 7 shows a pill container 700 having a tubular body 702 split into multiple compartments 704 a - g .
- Each compartment 704 a has a cover 706 that can be opened and closed to access the compartment 704 a within.
- the cover 706 could be partially or completely transparent (e.g., made of a transparent material).
- the cover 706 could be partially or completely opaque (e.g., made of a transparent material).
- the cover 706 could be partially or completely translucent (e.g., made of a translucent material).
- the cover 706 could be a sliding cover that can be slid 708 to reveal the contents of the compartment 704 a.
- the cover 706 could be a flip cover attached to a hinge, such that the cover 706 can be flipped 710 upward to reveal the contents of the compartment 704 a.
- a cover 706 spans more than two compartments 704 a - g , such that the cover 706 can be slid 708 or flipped 710 to reveal the contents of multiple compartments 704 a - g.
- each compartment 704 a can include a buffer material such as a sponge-like material to hold a pill in place and absorb motion of a pill that would otherwise move around within the compartment 704 a.
- each compartments 704 a - g is labeled with an indicator 712 for the day of the week, for example, a letter such as “M” for Monday.
- FIG. 8 shows a pill container 800 having a sliding mechanism 802 that can be used to eject pills 804 from an interior cavity 806 .
- the sliding mechanism 802 has a handle 810 that can be slid 812 along the longitudinal axis 814 of a tubular body 816 .
- a portion of the sliding mechanism 802 which extends into the interior cavity 806 pushes 818 pills 804 along the longitudinal axis 814 and out of an open end 820 of the interior cavity 806 .
- the sliding mechanism 802 travels along the path of a groove 822 cut out of the tubular body 816 .
- FIGS. 9A and 9B show a pill container 900 having an interior spring 902 that applies pressure 904 on the pills 906 within the interior cavity 908 of the pill container 900 .
- the pressure 904 applied by the interior spring 902 pushes pills 906 out of the interior cavity 908 when a cap 910 is removed from an open end 912 of the interior cavity 908 . Pills 906 can be pushed 914 into the interior cavity 908 when the pill container 900 is loaded with pills, thus compressing 916 the interior spring 902 .
- the interior spring 902 will push 918 the pills 906 outward so they can be consumed by a user of the pill container 900 .
- FIGS. 10A and 10B show a pill container 1100 having a button 1102 on one end 1104 of a tubular body 1106 .
- the button 1102 can be pressed 1108 to eject 1110 a pill 1112 from an interior cavity 1114 of the tubular body 1106 .
- the button 1102 is positioned at one end 1104 of the tubular body 1106 and is attached to a rod 1118 within the interior cavity 1114 which is in turn attached to a ring 1120 at a second end 1122 of the tubular body 1106 .
- the ring 1120 is in contact with a sectional door 1116 that covers the second end 1122 of the tubular body.
- the button 1102 is pressed 1108 then the pressure causes the rod to apply pressure to the ring 1120 , which in turn causes sections 1126 of the sectional door 1116 to open. Pills 1112 can then slide out of the interior cavity 1114 .
- FIGS. 11A and 11B show a close-up view of the sectional door 1116 .
- This sectional door 1116 has six sections 1130 a - f , although other numbers of sections can be used in other implementations.
- Each section 1130 a - f flips 1132 open when pressure 1134 is applied to the section.
- the pressure 1134 can be applied by a ring 1120 manipulated by a button 1102 ( FIGS. 10A and 10B ).
- the sectional door 1116 is open ( FIG. 11A ) pills can exit the interior cavity 1114 , and then the sectional door 1116 is closed ( FIG. 11B ) the second end 1122 interior cavity 1114 is covered by the sections 1130 a - f.
- some or all of the sections 1130 a - f include a spring hingel 136 that biases the sections 1130 a - f to the closed position 1138 .
- the sectional door 1116 can be used with other versions of the pill container.
- the sectional door 1116 could be used with the pill container 800 shown in FIG. 8 .
- the pills 804 would apply pressure 1134 to the sections 1130 a - f to move them to the open position 1140 .
- FIGS. 12A and 12B show a pill container 1200 having a cap 1202 that flips 1204 upward.
- the cap 1202 covers an open end 1206 of a tubular body 1208 .
- frictional pressure 1210 is applied to an edge 1212 of the cap 1202 , the cap 1202 flips 1204 upward.
- An interior cavity 1214 can then be accessed.
- the cap 1202 is affixed to the tubular body 1208 by a hinge 1216 that spans the length or a portion of the length of an edge 1218 of the cap 1202 .
- the edge 1218 is opposite the edge 1212 of the cap 1202 to which pressure is applied to open the cap 1202 .
- the shape of the edges 1212 , 1218 corresponds to the shape of sides 1220 of the tubular body 1208 .
- FIGS. 13A and 13B show a pill container 1300 that is expandable and contractible.
- the pill container 1300 has a contracted configuration 1302 and an expanded configuration 1304 .
- the pill container 1300 can hold a larger number of pills 1306 in the expanded configuration 1304 than the contracted configuration 1302 .
- the pill container has a rotating handle 1308 at one end 1310 of a tubular body 1312 .
- a second tubular body 1316 extends 1318 outward from the end 1310 of the tubular body 1312 , expanding the space available in an interior cavity 1320 .
- the second tubular body 1316 is sized to fit within the tubular body 1312 .
- the second tubular body 1316 engages with threading 1326 within the tubular body 1312 , which provides a guide to the second tubular body 1316 as the rotating handle 1308 is rotated 1314 .
- the second tubular body 1316 can be extended to any point within the distance 1322 between the end of the tubular body 1312 and the maximum extension 1324 of the second tubular body 1316 .
- the second tubular body 1316 can be retracted 1328 by rotating 1330 the rotating handle 1308 in another direction (e.g. clockwise).
- FIGS. 14A and 14B show another pill container 1400 that is expandable and contractible.
- the pill container 1400 has a contracted configuration 1402 and an expanded configuration 1404 .
- a pull handle 1406 allows a second tubular body 1408 to be pulled 1410 out from a tubular body 1412 , expanding the space available in an interior cavity 1414 .
- the second tubular body 1408 has teeth 1416 , 1418 which can engage with indentations 1420 , 1422 in the wall of the tubular body 1412 .
- the combination of the teeth and indentations acts as a locking mechanism and resists movement of the second tubular body 1408 relative to the tubular body 1412 .
- the combination of the teeth and indentations provides discrete units of expansion of the second tubular body 1408 .
- a tooth 1416 will disengage with one indentation 1420 and engage with the next indentation 1422 , expanding the interior cavity 1414 by one unit of expansion.
- the pull handle 1406 is rotated 1424 (e.g., either clockwise or counter-clockwise) to disengage a tooth 1416 from an indentation 1420 , then the pull handle 1406 is pulled 1410 , and then the pull handle 1406 is rotated 1424 again to engage the tooth 1416 with the next indentation 1422 .
- Other types of locking mechanisms could be used to resist movement of the second tubular body 1408 relative to the tubular body 1412 .
- a pin or a screw could be used.
- FIGS. 15A and 15B show a pill container 1500 having a first interior cavity 1502 and a second interior cavity 1504 .
- Each interior cavity 1502 , 1504 is sized to contain at least one pill.
- the first interior cavity 1502 is accessible at a first open end 1506 that is covered by a first cap 1508
- the second interior cavity 1504 is accessible at a second open end 1510 that is covered by a second cap 1512 .
- a divider 1520 separates the two cavities.
- a pill 1514 placed in the first interior cavity 1502 cannot be accessed in the second interior cavity 1504 and vice-versa.
- Each cavity can be demarcated for a particular purpose.
- an indicator 1516 placed on the first cap 1508 can indicate that the first interior cavity 1502 contains pills to be taken in the daytime
- an indicator 1518 placed on the second cap 1512 can indicate that the second interior cavity 1504 contains pills to be taken in the nighttime.
- FIGS. 16A and 16B show a pill container 1600 having an inner tubular body 1602 that functions as a drawer.
- the inner tubular body 1602 and an outer tubular body 1606 of the pill container 1600 have an approximately similar length 1604 to each other.
- a closed configuration 1608 the inner tubular body 1602 is contained entirely within the outer tubular body 1606 .
- a pull handle 1610 of the inner tubular body 1602 is pulled 1612 , a portion of the inner tubular body 1602 is exposed.
- the inner tubular body 1602 has a cutout 1614 that exposes an inner cavity 1616 of the inner tubular body 1602 . When the cutout 1614 is exposed, pills 1618 can be inserted into or removed from the inner cavity 1616 .
- FIG. 17 shows a pill container 1700 that can function as a writing instrument.
- the various versions of the pill container described herein have approximately the same size and dimensions as a writing instrument.
- This version of the pill container 1700 has a writing tip 1702 that can be used to write on any conventional writing surface such as paper.
- One end 1704 of the pill container 1700 has a removable cap 1706 that, when removed, exposes the writing tip 1702 .
- the writing tip 1702 expresses ink and contains an ink tank.
- the writing tip 1702 may be removable and contain an ink tank that can be refilled or replaced.
- the writing tip 1702 contains pencil graphite and can be reloaded with graphite pieces.
- the writing tip 1702 is a stylus tip suitable for use on an electronic device having a touch sensitive surface such as a smartphone or a personal digital assistant or a tablet computer.
- the pill container 1700 can also contain pills 1708 in a similar manner as the other pill containers described herein.
- a clip 116 ( FIG. 1 ) is attached to the removable cap 1706 , similar to the manner in which a clip is attached to a cap of an ink pen.
- the pill container can be arranged to contain objects other than pills.
- a pill container 100 ( FIG. 1 ) can be sized to fit a single syringe within an interior cavity, rather than or along with pills.
- the pill container 100 can be sized to fit a single headphone device within an interior cavity.
- the headphone device could be a pair of earbuds and wires attached to the earbuds (e.g. for attaching the earbuds to a music player, smart phone, or other device).
- the pill container can contain electronics, for example, components that provide electronic reminders, or communication devices that can interact with electronic devices such as computer systems or mobile devices such as smart phones.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
Abstract
Description
- This application is a continuation of and claims the benefit of priority from U.S. application Ser. No. 13/462,274, filed May 2, 2012, the disclosure of which is hereby incorporated by reference in its entirety.
- This description relates to a pill container.
- Pharmaceutical pills, for example, often come in short round plastic bottles with childproof lids. Sometimes people move them into other kinds of containers that are set up to make it easier to take the pills as prescribed during a day or a week.
- In general, in one aspect, an apparatus includes a chamber elongated along a longitudinal axis and shaped to receive pharmaceutical pills arranged along the longitudinal axis in a row, in which any cross-section of the chamber perpendicular to the longitudinal axis intersects a maximum of one pharmaceutical pill.
- In general, in another aspect, an apparatus includes a tube elongated along a longitudinal axis, a portion of the tube comprising multiple compartments arranged along the longitudinal axis, the compartment having a largest cross-sectional dimension perpendicular to the longitudinal axis sized to fit a single pharmaceutical pill within the compartment.
- Implementations may include one or more of the following features. At least one compartment may include a sponge-like material. At least one compartment may include a cover. The cover may include a transparent material. The cover may include an opaque material. The cover may include a translucent material. At least one compartment may include a sliding cover. At least one compartment may include a hinge and a flip cover attached to the hinge. The tube may include a sliding cover spanning at least two compartments. Each of two or more compartments may include a sliding cover. The apparatus may include a ring sized to surround the portion of the tube including the compartment, the ring including a window sized to admit a pharmaceutical pill.
- In another aspect, in general, an apparatus includes means for holding a chain of elongated pharmaceutical pills arranged in a row in an oblong chamber, in which a largest cross-sectional dimension of the chamber is smaller than an elongated dimension of any of the elongated pharmaceutical pills.
- In another aspect, in general, an method of storing and dispensing pills includes forming a row of pills by placing each pill in an open end of a container, and removing them from the container in an order reverse of the order in which they were put into the container, each successively removed pill being the only pill accessible at the open end of the container.
- In another aspect, in general, an apparatus includes a tubular body elongated along a longitudinal axis and having an interior cavity and a first open end, the interior cavity extending along the longitudinal axis and sized to receive a single syringe, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit the single syringe within the cavity, the first open end sized to admit the single syringe into the interior cavity, and a device to selectively allow insertion and removal of the single syringe from the interior cavity.
- In another aspect, in general, an apparatus includes a tubular body elongated along a longitudinal axis and having an interior cavity and a first open end, the interior cavity extending along the longitudinal axis and sized to receive a single headphone device, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit the single headphone device within the cavity, the first open end sized to admit the single headphone device into the interior cavity, and a device to selectively allow insertion and removal of the single headphone device from the interior cavity.
- In another aspect, in general, an apparatus includes a tubular body elongated along a longitudinal axis and having an interior cavity and a first open end, the interior cavity extending along the longitudinal axis and sized to receive multiple pharmaceutical pills, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit a single pharmaceutical pill within the cavity, the first open end sized to admit a pharmaceutical pill into the interior cavity, a device to selectively allow insertion and removal of pills from the interior cavity, and a clip for affixing the tubular body to an item of clothing.
- Implementations may include one or more of the following features. The clip may conform to a shape of the tubular body. An interior surface of the clip may be parallel to a surface of the tubular body. An inset cut from the tubular body may form the clip. The clip may be affixed to the device.
- In another aspect, in general, an apparatus includes a first tubular piece elongated along a longitudinal axis; a second tubular piece elongated along the longitudinal axis and sized to be received by the first tubular piece, the two tubular pieces together forming an interior cavity, at least one tubular piece having a first open end sized to admit a pharmaceutical pill into the interior cavity, the interior cavity extending along the longitudinal axis and sized to receive multiple pharmaceutical pills, the interior cavity having a largest cross-sectional dimension perpendicular to the longitudinal axis that is sized to fit a single pharmaceutical pill within the cavity.
- Implementations may include one or more of the following features. The apparatus may include a locking mechanism that, when engaged, resists movement of the first tubular piece relative to the second tubular piece. The locking mechanism may be engaged by pulling one of the tubular pieces. The locking mechanism may be engaged by rotating one of the tubular pieces. The locking mechanism may include a pin, tooth, or screw. Motion of the first tubular piece relative to the second tubular piece may cause a change in size of the interior cavity.
- Other features and advantages will become apparent from the following description, and from the claims.
-
FIG. 1 shows a pill container. -
FIG. 2 shows a pill container carried by a human being. -
FIGS. 3A and 3B are side and perspective views of a pill container. -
FIG. 4 shows a cap for a pill container. -
FIGS. 5A , 5B, and 5C are side, top, and front views of a pill container. -
FIG. 6 shows a bundle of pill containers. -
FIGS. 7-10B and 12A-17 show other kinds of pill containers. -
FIGS. 11A-11B show a sectional door. -
FIG. 1 shows apill container 100 having an elongated,tubular body 102 to hold pharmaceutical pills. The shape of thepill container 100 is chosen so that it is convenient for a human being to carry thepill container 100 and access the pills inside. - The
tubular body 102 has an interior cavity 104 (hidden inFIG. 1 but visible inFIGS. 3A , 3B, and 4) that can hold multiple pills lined up in a row. Acap 106 covers oneend 108 of thetubular body 102 and can be opened (e.g., removed, slid off, flipped open, or popped off, among other things) to remove pills from theinterior cavity 104 and admit pills into theinterior cavity 104. Here, thetubular body 102 has across-section 110 in the shape of a hexagon. Other versions of thepill container 100 could have a different shape to thecross-section 110. For example, thecross-section 110 could have the shape of another kind of polygon, or could have a round shape, or could have another kind of shape. In some implementations, theinterior cavity 104 has a shape similar to a shape of thetubular body 102. For example, if thetubular body 102 has a hexagonal shape (e.g., a hexagonal cross-section), theinterior cavity 104 may also have a hexagonal shape. In some implementations, theinterior cavity 104 has a shape different from a shape of thetubular body 102. For example, if thetubular body 102 has a hexagonal shape, theinterior cavity 104 may could have a different shape such as a cylindrical shape (e.g., having a circular or oval cross-section). - When pills are admitted into the
interior cavity 104 the pills will accumulate in the cavity in a row because thecross-section 110 of thetubular body 102 causes the cross-section of theinterior cavity 104 is large enough to fit at most a single pill rather than multiple pills. A cross-section of theinterior cavity 104 is shown inFIGS. 3A , 3B, and 4. Put another way, thepill container 100 is generally wide enough only to accommodate a single pill at any point along alongitudinal axis 118 of thepill container 100. Pills may come in a variety of shapes and sizes, and so in some examples, some pills may overlap within across-section 110 at certain points along thelongitudinal axis 118. For example, a pill having a rounded edge may contact another pill having a rounded edge in a way that causes the very ends of the rounded edges to minimally overlap. However, the shape of theinterior cavity 104 is chosen to minimize overlap of pills within anycross-section 110 of thetubular body 102. Further, thetubular body 102 has alength 120 that is at least, or greater than, a sum of the lengths of the longest sides of the maximum number of pharmaceutical pills accommodated by the tubular body 102 (e.g., accommodated by the interior cavity 104). - When we refer to pills or pharmaceutical pills, we mean any kind of capsule, tablet, or other pill that is ingested by a human being. The pills could be prescription pills, or off-the-shelf medication like NSAIDs or painkillers, or nutritional supplements such as vitamins or antioxidants, or any other kind of substance. Most pills contain a substance documented in a standard reference for these kinds of substances. The reference work is sometimes called a pharmacopoeia and may be maintained by a governing body of a country, an administrative agency, or a non-profit organization.
- Pills in the shape of capsules usually have an elongated body and rounded edges. One example of a capsule having an elongated shape is shown in
FIGS. 3A and 3B . Most capsules have a length of between ten and twenty millimeters, but some are slightly smaller or larger. Most capsules also have a diameter of between five and ten millimeters. Capsules can conform to standard sizes which sometimes have numerical designations such as “3,” “2,” “1,” “0,” “00,” and so on. For example, a “0” sized capsule may have a standard length and diameter which is larger than the length and diameter of a “1” sized capsule. Among other things, a capsule having a standard size can contain a consistent dose of a pharmaceutical or nutritional supplement. Apill container 100 could be designed to hold a pill of a particular standard size. Further, one pill container could be produced to hold one size of pill (e.g., one capsule of a standard size), and another pill container could be produced to hold another size of pill. A single pill container could also contain pills of multiple types and having similar, but not identical, sizes. - Pills can come in other forms besides capsules. Some pills are called tablets, and sometimes have a round shape or oval shape rather than an elongated shape. The diameter of a tablet is usually larger than the diameter of a capsule. Also, some tablets are called softgels, especially tablets with a gelatin coating or encapsulating material. A pill container could even store other kinds of objects that have approximately the same size and shape as a pill.
- The
tubular body 102 could be made of a substantially transparent material, or a substantially opaque material, or a substantially translucent material, or portions of thetubular body 102 could be made of any or all of these. Some materials that could be used include a metal material, a plastic material, a wood material, a glass material, fiberglass, stone, rubber, clay, porcelain, bamboo, paper, cardboard, or other natural or synthetic materials, including original materials or recycled materials, disposable materials, or any combination of these. Thecap 106 and other components of thepill container 100 could also be made of any of these materials. - In some implementations, the
pill container 100 has asecond cap 112 that covers asecond end 114 of thetubular body 102. Thesecond cap 112 can be opened to remove pills from theinterior cavity 104 and admit pills into theinterior cavity 104. If thefirst cap 106 cannot be opened (e.g., if thecap 106 is jammed or stuck) then thesecond cap 112 can be opened and thesecond end 114 can be used as an alternative to thefirst end 108 as a point of access to theinterior cavity 104. - In some implementations, the
pill container 100 has aclip 116 attached to or integrated with thetubular body 102. Theclip 116 allows thepill container 100 to be affixed to an item of clothing. In some examples, theclip 116 can be attached to or integrated with thecap 106 or thesecond cap 112. Theclip 116 could be made of the same material as thetubular body 102 or could be made of a different material. - In some implementations, some or all of the components of the
pill container 100 are magnetized, e.g., made of a magnetic material or made at least partially of a magnetic material. For example, thecap 106 or thesecond cap 112 or thetubular body 102 or theclip 116 could be magnetized. If at least one of the components of thepill container 100 are magnetized then thepill container 100 could be affixed to some metal surfaces such as a refrigerator door. - Pills may be admitted into the
interior cavity 104 by a human being who manually opens thecap 106 and inserts pills into theinterior cavity 104, or pills may be admitted into theinterior cavity 104 by a machine that inserts pills into theinterior cavity 104, or pills may be admitted into theinterior cavity 104 using another technique. -
FIG. 2 shows thepill container 100 in ashirt pocket 200 of ashirt 202 worn by aperson 204. The elongated shape of thepill container 100 gives the container similar dimensions to a pen or other writing instrument. Thepill container 100 can be placed in any receptacle, pouch, pocket, or other vessel into which writing instruments can be placed. As shown inFIG. 2 , thepill container 100 appears to be a writing instrument when placed in theshirt pocket 200. Because many vessels for writing instruments exist in clothing, briefcases, backpacks, desk drawers, and other types of apparel or luggage, thepill container 100 can fit into many of those existing vessels. Aperson 204 can thus make use of those existing vessels when carrying his or herpill container 100. This may make theperson 204 more likely to carry thepill container 100 rather than, for example, forget to bring thepill container 100 or find thepill container 100 inconvenient to carry. Further, theperson 204 may prefer that thepill container 100 appear to be a writing instrument so that no attention is called to thepill container 100. - Writing instruments come in a variety of shapes and sizes and so the
pill container 100 could be designed to have any of these shapes and sizes and achieve the goal of mimicking a writing instrument. For example, writing instruments are commonly at least five times as long as they are wide. Accordingly, thepill container 100 can be designed to be at least five times as long as it is wide. Alonger pill container 100 can accommodate more pills, because thepill container 100 is generally wide enough only to accommodate a single pill at any point along the longitudinal axis of thepill container 100. Further, different versions of thepill container 100 can havedifferent widths 122.Pill containers 100 having onewidth 122 can accommodate pills having one width, whilepill containers 100 having anotherwidth 122 can accommodate pills having a different width. -
FIGS. 3A and 3B show arow 300 of pills 302 a-g within theinterior cavity 104 of thetubular body 102 of thepill container 100. Across-section 310 of theinterior cavity 104 intersects, at most, one pill 302 a-g. Seven pills 302 a-g are shown in the figure, and no more than seven pills 302 a-g will fit within theinterior cavity 104 of thispill container 100. Other versions of thepill container 100 could fit a greater or lesser number of pills within their respective interior cavities, for example, depending on the degree to which theinterior cavity 104 is elongated along thelongitudinal axis 118 of thepill container 100. Because the pills 302 a-g are arranged in arow 300, the pills will retain the order in which they were inserted into thepill container 100 even if thepill container 100 is transported, shaken, or disturbed. - If the
interior cavity 104 of thepill container 100 is empty, afirst pill 302 a can be inserted 304 into theopen end 108 of thetubular body 102. If thepill container 100 is held in anupright orientation 306 or a substantially upright orientation then thefirst pill 302 a will slide toward the secondopen end 114 of theinterior cavity 104. Thefirst pill 302 a is held inside theinterior cavity 104 by thesecond cap 112. If the orientation of thepill container 100 changes, thefirst pill 302 a may slide from the secondopen end 114 back to the firstopen end 108 or anywhere in between. - If a
second pill 302 b is inserted 304 into theopen end 108, thesecond pill 302 b will enter theinterior cavity 104 at a position ahead of thefirst pill 302 a. Depending on the orientation of thepill container 100, thesecond pill 302 b may slide to contact thefirst pill 302 a and rest in position in contact with thefirst pill 302 a. Thesecond pill 302 b may freely slide between thefirst pill 302 a and thecap 106. However, thesecond pill 302 b will not pass beyond thefirst pill 302 a within theinterior cavity 104 because thecross section 310 of theinterior cavity 104 is not large enough to admit two pills. If a human being in possession of thepill container 100 wishes to remove thefirst pill 302 a at theopen end 108 then he or she must first remove thesecond pill 302 b. If athird pill 302 c is inserted, thethird pill 302 c would have to be removed before thesecond pill 302 b is removed. - In this way, pills 302 a-g inserted into the
pill container 100 will remain in the order in which they have been inserted. The pill 302 a-g most recently inserted into theopen end 108 of thepill container 100 is also the first pill that can be removed from thepill container 100. This configuration is sometimes called “last in, first out” or “LIFO.” As an example of use, a human being could insert a pill to be taken in the evening of the subsequent day prior to a pill to be taken in the morning of the subsequent day. On the subsequent day, when the human being opens thecap 106 to take one pill, the pill to be taken in the morning will be the first pill capable of exiting theinterior cavity 104 at theopen end 108. The pills 302 a-g could be of multiple types and placed in thepill container 100 in an order that conforms to an order in which a human being is to take the pills 302 a-g. -
FIG. 4 shows thecap 106 of thepill container 100. Thecap 106 covers anopen end 108 of thetubular body 102. Theopen end 108 is a point of access to aninterior cavity 412. This version of theinterior cavity 412 has acircular cross section 410. Thus, this version of theinterior cavity 412 has a cylindrical shape. - The
cap 106 is an example of a device that can be used to selectively prevent or allow pills to be inserted into the interior cavity or removed from the interior cavity. When the cap is closed, the cap prevents pills from being inserted or removed. When the cap is opened, the cap allows pills to be inserted or removed. - The
cap 106 is affixed to thetubular body 102 by aspring hinge 402. Thespring hinge 402 is aligned parallel to a longitudinal axis 118 (FIG. 1 ) of thetubular body 102. Thespring hinge 402 allows thecap 106 to spin around anaxis 404 defined by the center of thespring hinge 402, exposing theinterior cavity 412 of thetubular body 102. The motion of thecap 106 is defined by anarc 406. Thecap 106 can spin clockwise or counterclockwise. Thespring hinge 402 biases thecap 106 to a position enclosing theopen end 108 of thetubular body 102. Force must be applied to thecap 106 to place thecap 106 into a different position other than the position enclosing theopen end 108 of thetubular body 102. Thecap 106 shown is hexagonal to match the hexagonal shape of thetubular body 102. However, thecap 106 could have other shapes. For example, if thetubular body 102 were circular in shape, thecap 106 could also be circular in shape. Thecap 106 also need not match the shape of thetubular body 102. - Other types of caps could be used with the
pill container 100. Thecap 106 need not be attached to thetubular body 102 by a hinge. In some examples, thecap 106 could be a twist-off cap which engages with grooves on thetubular body 102 to cover theopen end 108. In some examples, the twist-off cap has “child-resistant” features, similar to the caps used in other pill bottles. In some examples, thecap 106 could be made of rubber or another material that can frictionally engage with thetubular body 102 to resist forces that would otherwise dislodge thecap 106. -
FIGS. 5A , 5B, and 5C show side, top, andfront views pill container 100 a and measurements of its components. Thepill container 100 a shown is one example of thepill container 100 and the measurements described here are examples of measurements that could characterize the physical dimensions of a pill container. None of these measurements are required for a pill container to function and other versions of a pill container could have other measurements. - The total length TL of the
pill container 100 a is 149 millimeters and is the longest dimension of thepill container 100 a. The width TW of thepill container 100 a is 17.321 millimeters. In this example, the ratio of length to width of thepill container 100 a is 8.6, but other pill containers could have another ratio of length to width such as 5 or a different ratio. The tubular body 102 a has a length TBL of 140 millimeters. Thecap 106 a has a height CH of 5 millimeters. The second cap 112 a has a height SCH of 3.2 millimeters. A distance SCD of 0.8 millimeters separates the second cap 112 a from the widest portion of the tubular body 102 a, such that a narrower portion of the tubular body 102 a spans the distance SCD. - The tubular body 102 a has a
hexagonal cross-section 502. Each face of the six faces of the tubular body 102 a has a width FW of 8.66 millimeters. The tubular body 102 a has a thickness TT of 0.6 millimeters, such that theinterior cavity 104 a of the tubular body 102 a is enclosed by a material 0.6 millimeters thick. The tubular body 102 a has anindentation 504 that interrupts the hexagonal shape of the tubular body 102 a. Theindentation 504 has aplanar surface 506 that extends along a portion of the length of the tubular body 102 a. Theplanar surface 506 has a width PW of 10.046 millimeters. Theindentation 504 begins at a distance ID of 10 millimeters from the second open end 114 a of the tubular body 102 a. Aslope 508 defines a first edge of theindentation 504. Theslope 508 has an angle SA of 135.97 degrees as measured from theplanar surface 506 of theindentation 504. - The
clip 116 a extends along a portion of the length of the tubular body 102 a and terminates at a distance CLD of 60 millimeters from the open end 108 a of the tubular body 102 a. Theclip 116 a has a height CLH of 1.91 millimeters and theclip 116 a has a width CLW of 6.617 millimeters. Theclip 116 a defines agap 512 between theclip 116 a and aplanar surface 506 of theindentation 504 of the tubular body 102 a and thegap 512 has a length GL of 47 millimeters. Theinterior surface 526 on the bottom of theclip 116 a is defines a plane that is parallel to theplanar surface 506 of theindentation 504 of the tubular body 102 a. Theindentation 504 of the tubular body 102 a forms theclip 116 a, such that theclip 116 a is flush with sides of the tubular body 102 a. Put another way, theclip 116 a conforms to the polygonal shape of the tubular body 102 a and does not project beyond the main shape of the tubular body 102 a. If the tubular body 102 a were another shape, for example, a cylindrical shape (e.g., having a circular or oval cross-section), then theclip 116 a could conform to the cylindrical shape. During manufacturing, theclip 116 a could be formed by cutting a portion of the tubular body 102 a. - The
cap 106 a has a recessedhexagonal indentation 514 that defines a raisedridge 516 at the edges of thetop surface 518 of thecap 106 a. Each edge of the recessedhexagonal indentation 514 has a length RHL of 6.928 millimeters. Thecap 106 a has a shortest diameter CSD of 7.5 millimeters, such that the shortest diameter CSD is a length from the center of thetop surface 518 of the cap to amidpoint 520 of anyedge 522 of thecap 106 a. The angle CEA between anyedge 522 of thecap 106 a and an adjacent edge is 120 degrees. Eachedge 522 of thecap 106 a has cutouts each of which span a length ECL of one millimeter. A portion of thecap 106 a has acutout 524 at a location at which thecap 106 a is joined to thetubular body 102 by a hinge. The cutout has a length CCL of two millimeters. - This version of the
pill container 100 a has aproduct logo 528 on one side of the tubular body 102 a. Theproduct logo 528 spans a length PLL of 20 millimeters. - As shown in
FIG. 6 , a bundle can be formed from a configuration of multiple pill containers. For example, sevenhexagonal pill containers 100 b-h can be grouped together into abundle 600. Because thepill containers 100 b-h each have a hexagonal shape, thepill containers 100 b-h can be arranged such that anedge 602 of onepill container 100 b touches anedge 604 of anotherpill container 100 c. If this is done for six of thepill containers 100 b-g, then thebundle 600 will form a hexagonal shape. Aseventh pill container 100 h can be placed in the center of thebundle 600. Thebundle 600 can be stored and transported in a manner that conserves space and ensures that thepill containers 100 b-h stay together. Further, abundle 600 of sevenpill containers 100 b-h allows thepill containers 100 b-h to each correspond to a day of a seven-day week. For example, eachpill container 100 b-h can be filled with pills to be taken on the corresponding day of the week. In some examples, eachpill container 100 b-h is labeled with anindicator 606 for the day of the week, for example, a letter such as “M” for Monday. - In some implementations, portions of the
pill containers 100 b-h are magnetized. For example, the caps 106 b-h (or second caps 116 b-h or both) can be made of or partially made of a magnetic material, or the tubular bodies of thepill containers 100 b-h could be made of or partially made of a magnetic material. If the magnetic poles of the magnetized portions of thepill containers 100 b-h are aligned correctly then thebundle 600 will stay together and retain its shape. - In some implementations, the
pill containers 100 b-h could have a shape other than a hexagonal shape. For example,pill containers 100 b-h having a cylindrical shape (e.g., having a circular or oval cross-section) can be placed in abundle 600 of seven pill containers or another number of pill containers. - Many different configurations of pill containers are possible.
FIG. 7 shows apill container 700 having atubular body 702 split into multiple compartments 704 a-g. In this example, there are seven compartments 704 a-g each sized to fit a single pill. Eachcompartment 704 a has acover 706 that can be opened and closed to access thecompartment 704 a within. In some examples, thecover 706 could be partially or completely transparent (e.g., made of a transparent material). In some examples, thecover 706 could be partially or completely opaque (e.g., made of a transparent material). In some examples, thecover 706 could be partially or completely translucent (e.g., made of a translucent material). In some implementations, thecover 706 could be a sliding cover that can be slid 708 to reveal the contents of thecompartment 704 a. In some implementations, thecover 706 could be a flip cover attached to a hinge, such that thecover 706 can be flipped 710 upward to reveal the contents of thecompartment 704 a. In some implementations, acover 706 spans more than two compartments 704 a-g, such that thecover 706 can be slid 708 or flipped 710 to reveal the contents of multiple compartments 704 a-g. - In some implementations, each
compartment 704 a can include a buffer material such as a sponge-like material to hold a pill in place and absorb motion of a pill that would otherwise move around within thecompartment 704 a. In some examples, each compartments 704 a-g is labeled with anindicator 712 for the day of the week, for example, a letter such as “M” for Monday. -
FIG. 8 shows apill container 800 having a slidingmechanism 802 that can be used to ejectpills 804 from aninterior cavity 806. The slidingmechanism 802 has ahandle 810 that can be slid 812 along thelongitudinal axis 814 of atubular body 816. A portion of the slidingmechanism 802 which extends into theinterior cavity 806 pushes 818pills 804 along thelongitudinal axis 814 and out of anopen end 820 of theinterior cavity 806. The slidingmechanism 802 travels along the path of agroove 822 cut out of thetubular body 816. -
FIGS. 9A and 9B show apill container 900 having aninterior spring 902 that applies pressure 904 on thepills 906 within theinterior cavity 908 of thepill container 900. The pressure 904 applied by theinterior spring 902 pushespills 906 out of theinterior cavity 908 when acap 910 is removed from anopen end 912 of theinterior cavity 908.Pills 906 can be pushed 914 into theinterior cavity 908 when thepill container 900 is loaded with pills, thus compressing 916 theinterior spring 902. When thecap 910 is opened, theinterior spring 902 will push 918 thepills 906 outward so they can be consumed by a user of thepill container 900. -
FIGS. 10A and 10B show apill container 1100 having abutton 1102 on oneend 1104 of atubular body 1106. Thebutton 1102 can be pressed 1108 to eject 1110 apill 1112 from aninterior cavity 1114 of thetubular body 1106. Thebutton 1102 is positioned at oneend 1104 of thetubular body 1106 and is attached to arod 1118 within theinterior cavity 1114 which is in turn attached to aring 1120 at asecond end 1122 of thetubular body 1106. Thering 1120 is in contact with asectional door 1116 that covers thesecond end 1122 of the tubular body. When thebutton 1102 is pressed 1108 then the pressure causes the rod to apply pressure to thering 1120, which in turn causessections 1126 of thesectional door 1116 to open.Pills 1112 can then slide out of theinterior cavity 1114. -
FIGS. 11A and 11B show a close-up view of thesectional door 1116. Thissectional door 1116 has six sections 1130 a-f, although other numbers of sections can be used in other implementations. Each section 1130 a-f flips 1132 open whenpressure 1134 is applied to the section. For example, thepressure 1134 can be applied by aring 1120 manipulated by a button 1102 (FIGS. 10A and 10B ). When thesectional door 1116 is open (FIG. 11A ) pills can exit theinterior cavity 1114, and then thesectional door 1116 is closed (FIG. 11B ) thesecond end 1122interior cavity 1114 is covered by the sections 1130 a-f. In some implementations, some or all of the sections 1130 a-f include a spring hingel 136 that biases the sections 1130 a-f to theclosed position 1138. - When the
spring hinge 1136 is used,pressure 1134 must be continuously applied to the sections 1130 a-f to keep the sections 1130 a-f in theopen position 1140. - The
sectional door 1116 can be used with other versions of the pill container. For example, thesectional door 1116 could be used with thepill container 800 shown inFIG. 8 . In this example, thepills 804 would applypressure 1134 to the sections 1130 a-f to move them to theopen position 1140. -
FIGS. 12A and 12B show apill container 1200 having acap 1202 that flips 1204 upward. Thecap 1202 covers anopen end 1206 of atubular body 1208. Whenfrictional pressure 1210 is applied to anedge 1212 of thecap 1202, thecap 1202 flips 1204 upward. Aninterior cavity 1214 can then be accessed. Thecap 1202 is affixed to thetubular body 1208 by ahinge 1216 that spans the length or a portion of the length of anedge 1218 of thecap 1202. Theedge 1218 is opposite theedge 1212 of thecap 1202 to which pressure is applied to open thecap 1202. In some implementations, the shape of theedges sides 1220 of thetubular body 1208. -
FIGS. 13A and 13B show apill container 1300 that is expandable and contractible. Thepill container 1300 has a contractedconfiguration 1302 and an expandedconfiguration 1304. Thepill container 1300 can hold a larger number ofpills 1306 in the expandedconfiguration 1304 than the contractedconfiguration 1302. The pill container has arotating handle 1308 at oneend 1310 of atubular body 1312. When therotating handle 1308 is rotated 1314 in one direction (e.g., counterclockwise), a secondtubular body 1316 extends 1318 outward from theend 1310 of thetubular body 1312, expanding the space available in aninterior cavity 1320. The secondtubular body 1316 is sized to fit within thetubular body 1312. The secondtubular body 1316 engages with threading 1326 within thetubular body 1312, which provides a guide to the secondtubular body 1316 as therotating handle 1308 is rotated 1314. The secondtubular body 1316 can be extended to any point within thedistance 1322 between the end of thetubular body 1312 and themaximum extension 1324 of the secondtubular body 1316. The secondtubular body 1316 can be retracted 1328 by rotating 1330 therotating handle 1308 in another direction (e.g. clockwise). -
FIGS. 14A and 14B show anotherpill container 1400 that is expandable and contractible. Thepill container 1400 has a contractedconfiguration 1402 and an expandedconfiguration 1404. Apull handle 1406 allows a secondtubular body 1408 to be pulled 1410 out from atubular body 1412, expanding the space available in aninterior cavity 1414. In some implementations, the secondtubular body 1408 hasteeth indentations tubular body 1412. The combination of the teeth and indentations acts as a locking mechanism and resists movement of the secondtubular body 1408 relative to thetubular body 1412. Further, the combination of the teeth and indentations provides discrete units of expansion of the secondtubular body 1408. When thepull handle 1406 is pulled 1410, atooth 1416 will disengage with oneindentation 1420 and engage with thenext indentation 1422, expanding theinterior cavity 1414 by one unit of expansion. In some implementations, thepull handle 1406 is rotated 1424 (e.g., either clockwise or counter-clockwise) to disengage atooth 1416 from anindentation 1420, then thepull handle 1406 is pulled 1410, and then thepull handle 1406 is rotated 1424 again to engage thetooth 1416 with thenext indentation 1422. Other types of locking mechanisms could be used to resist movement of the secondtubular body 1408 relative to thetubular body 1412. For example, a pin or a screw could be used. -
FIGS. 15A and 15B show apill container 1500 having a firstinterior cavity 1502 and a secondinterior cavity 1504. Eachinterior cavity interior cavity 1502 is accessible at a firstopen end 1506 that is covered by afirst cap 1508, and the secondinterior cavity 1504 is accessible at a secondopen end 1510 that is covered by asecond cap 1512. Adivider 1520 separates the two cavities. Apill 1514 placed in the firstinterior cavity 1502 cannot be accessed in the secondinterior cavity 1504 and vice-versa. Each cavity can be demarcated for a particular purpose. For example, anindicator 1516 placed on thefirst cap 1508 can indicate that the firstinterior cavity 1502 contains pills to be taken in the daytime, and anindicator 1518 placed on thesecond cap 1512 can indicate that the secondinterior cavity 1504 contains pills to be taken in the nighttime. -
FIGS. 16A and 16B show apill container 1600 having an innertubular body 1602 that functions as a drawer. The innertubular body 1602 and an outertubular body 1606 of thepill container 1600 have an approximatelysimilar length 1604 to each other. In aclosed configuration 1608, the innertubular body 1602 is contained entirely within the outertubular body 1606. When apull handle 1610 of the innertubular body 1602 is pulled 1612, a portion of the innertubular body 1602 is exposed. The innertubular body 1602 has acutout 1614 that exposes aninner cavity 1616 of the innertubular body 1602. When thecutout 1614 is exposed,pills 1618 can be inserted into or removed from theinner cavity 1616. -
FIG. 17 shows apill container 1700 that can function as a writing instrument. As noted above, the various versions of the pill container described herein have approximately the same size and dimensions as a writing instrument. This version of thepill container 1700 has awriting tip 1702 that can be used to write on any conventional writing surface such as paper. Oneend 1704 of thepill container 1700 has aremovable cap 1706 that, when removed, exposes thewriting tip 1702. - In some implementations, the
writing tip 1702 expresses ink and contains an ink tank. For example, thewriting tip 1702 may be removable and contain an ink tank that can be refilled or replaced. In some implementations, thewriting tip 1702 contains pencil graphite and can be reloaded with graphite pieces. In some implementations, thewriting tip 1702 is a stylus tip suitable for use on an electronic device having a touch sensitive surface such as a smartphone or a personal digital assistant or a tablet computer. Thepill container 1700 can also containpills 1708 in a similar manner as the other pill containers described herein. - In some implementations, a clip 116 (
FIG. 1 ) is attached to theremovable cap 1706, similar to the manner in which a clip is attached to a cap of an ink pen. - In some implementations, the pill container can be arranged to contain objects other than pills. For example, a pill container 100 (
FIG. 1 ) can be sized to fit a single syringe within an interior cavity, rather than or along with pills. As another example, thepill container 100 can be sized to fit a single headphone device within an interior cavity. For example, the headphone device could be a pair of earbuds and wires attached to the earbuds (e.g. for attaching the earbuds to a music player, smart phone, or other device). - In some implementations, the pill container can contain electronics, for example, components that provide electronic reminders, or communication devices that can interact with electronic devices such as computer systems or mobile devices such as smart phones.
- Many other configurations are possible. The implementations described here are only examples and other implementations are within the scope of the claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/463,147 US20130292398A1 (en) | 2012-05-02 | 2012-05-03 | Pill Container |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/462,274 US20130292403A1 (en) | 2012-05-02 | 2012-05-02 | Pill Container |
US13/463,147 US20130292398A1 (en) | 2012-05-02 | 2012-05-03 | Pill Container |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/462,274 Continuation US20130292403A1 (en) | 2012-05-02 | 2012-05-02 | Pill Container |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130292398A1 true US20130292398A1 (en) | 2013-11-07 |
Family
ID=49511761
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/462,274 Abandoned US20130292403A1 (en) | 2012-05-02 | 2012-05-02 | Pill Container |
US13/463,147 Abandoned US20130292398A1 (en) | 2012-05-02 | 2012-05-03 | Pill Container |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/462,274 Abandoned US20130292403A1 (en) | 2012-05-02 | 2012-05-02 | Pill Container |
Country Status (1)
Country | Link |
---|---|
US (2) | US20130292403A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2907455A2 (en) | 2014-02-12 | 2015-08-19 | Ethicon Endo-Surgery, Inc. | Deliverable surgical instrument |
EP2910196A1 (en) | 2014-02-24 | 2015-08-26 | Ethicon Endo-Surgery, Inc. | Fastening System Comprising a Firing Member Lockout |
CN104936078A (en) * | 2015-07-07 | 2015-09-23 | 常州百富电子有限公司 | Earplug for storing tablets |
WO2015160878A2 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridge assemblies and staple retainer cover arrangements |
EP3009082A1 (en) | 2014-10-16 | 2016-04-20 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising an adjunct material |
EP3017772A2 (en) | 2014-11-06 | 2016-05-11 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable adjunct material |
WO2016189497A1 (en) * | 2015-05-26 | 2016-12-01 | Michel Poirier | Modular medication dispensing system |
WO2018002249A1 (en) * | 2016-06-30 | 2018-01-04 | Sarstedt Aktiengesellschaft & Co. Kg | Device for making available absorbent sample carriers having a quantity of dried liquid, in particular blood |
PL126471U1 (en) * | 2017-07-06 | 2019-01-14 | Krzysztof Michniewicz | Tablet dispenser |
WO2020097415A1 (en) * | 2018-11-08 | 2020-05-14 | Brown Adam Charles | Magnetic locking container |
CN111252392A (en) * | 2020-01-16 | 2020-06-09 | 四川大学华西医院 | Medicine box |
US12070059B2 (en) | 2020-09-04 | 2024-08-27 | Nicoventures Trading Limited | Child-resistant container for tobacco-containing products |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9730557B2 (en) | 2007-05-16 | 2017-08-15 | Ecolab Usa Inc. | Keyed dispensing cartridge with valve insert |
WO2013103664A1 (en) * | 2012-01-03 | 2013-07-11 | Csp Technologies, Inc. | Dispenser |
JP6970690B2 (en) * | 2016-05-23 | 2021-11-24 | シーエスピー テクノロジーズ,インコーポレイティド | Rotatable dispenser assembly for solid units |
US10683160B2 (en) * | 2017-02-15 | 2020-06-16 | Nypro Inc. | Apparatus, system and method for a pill dispenser |
US10569286B2 (en) | 2017-05-08 | 2020-02-25 | Ecolab Usa Inc. | Shaped cartridge dispensing systems |
CN110151555B (en) * | 2019-06-27 | 2021-04-27 | 吉林大学 | A kind of method for using granular medicine preparation device to control patient's accurate medicine taking |
USD940450S1 (en) * | 2020-03-09 | 2022-01-11 | Shenzhen Yuwen E-Commerce Co., Ltd. | Pill box |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1671285A (en) * | 1924-02-14 | 1928-05-29 | Hanna John Paul | Dispensing package |
US3251459A (en) * | 1964-06-05 | 1966-05-17 | Edgar J Lacour | Pocket medicine container |
US5512346A (en) * | 1994-09-21 | 1996-04-30 | Owens-Corning Fiberglas Technology, Inc. | Insulation assembly for compressible insulation material |
US7204391B2 (en) * | 2005-01-12 | 2007-04-17 | Jonathan David Toker | One at a time pill dispenser |
US7527447B2 (en) * | 2007-03-27 | 2009-05-05 | Chin-Kuang Huang | Magnetic cap for writing instrument |
US8225955B2 (en) * | 2009-06-03 | 2012-07-24 | Balm Chicky, Inc. | Dual-supply product container |
US20120275142A1 (en) * | 2009-02-27 | 2012-11-01 | Benton Lundy | Light assembly and method of use |
US20130263424A1 (en) * | 2010-05-12 | 2013-10-10 | James Giocastro | Dual compartment dispenser |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US935723A (en) * | 1906-08-13 | 1909-10-05 | Otto Zimmermann | Formation of stacks of tubes. |
US1485716A (en) * | 1922-03-17 | 1924-03-04 | Rogers Reginald Hubert | Pocket container for confections and the like |
US2060406A (en) * | 1935-05-08 | 1936-11-10 | Walter W Tiede | Tablet holder |
US2893599A (en) * | 1954-11-30 | 1959-07-07 | Richard S Kay | Pill dispenser |
US2935180A (en) * | 1957-05-14 | 1960-05-03 | Lorenzo Runeberg | Tablet case with a tablet holder |
US3051307A (en) * | 1960-11-07 | 1962-08-28 | Kendall & Co | Adhesive tape package |
US3151459A (en) * | 1963-04-10 | 1964-10-06 | Clark Equipment Co | Master cylinder |
US3159308A (en) * | 1963-05-14 | 1964-12-01 | Passavanti Lawrence | Article dispensing device comprising a pair of tubular members |
US3243081A (en) * | 1963-11-29 | 1966-03-29 | Edward F Schmank | Tablet dispenser |
US3515111A (en) * | 1968-08-19 | 1970-06-02 | Ce De Candy Inc | Spring actuated projectile projecting device |
US3591043A (en) * | 1969-04-21 | 1971-07-06 | Kelly Murphy | Article container and dispenser |
US3679384A (en) * | 1970-05-07 | 1972-07-25 | Bendix Corp | Method for forming a honeycomb structure |
US3687336A (en) * | 1970-10-05 | 1972-08-29 | Lilly Co Eli | Pill dispenser with removable cartridge |
US3968902A (en) * | 1975-03-17 | 1976-07-13 | Bachmann Mario E | Tablet dispenser |
US4171753A (en) * | 1976-12-10 | 1979-10-23 | Bastiaan Vreede | Holder for capsules, pills and similar objects |
US4174048A (en) * | 1977-10-04 | 1979-11-13 | Volpe John J Jr | Tablet retaining and dispensing device |
JPS5848858A (en) * | 1981-09-17 | 1983-03-22 | Horiba Ltd | Automatic metal analyzing device |
US4525913A (en) * | 1982-04-15 | 1985-07-02 | Krukowski Blair S | Chain replacement apparatus |
US4465191A (en) * | 1982-06-14 | 1984-08-14 | Darbo Rolf E | Personal tablet dispenser |
US4589575A (en) * | 1983-11-15 | 1986-05-20 | Allan Rigberg | Hygienic dispenser for wafers |
US5246022A (en) * | 1988-07-29 | 1993-09-21 | Gina Israel | Apparatus for holding dental floss containers and spools |
US5013232A (en) * | 1989-08-24 | 1991-05-07 | General Motors Corporation | Extrusion die construction |
US5018621A (en) * | 1990-04-16 | 1991-05-28 | Connell Jr John J O | Cylindrical container and dispenser for spherical objects |
US5230440A (en) * | 1990-04-26 | 1993-07-27 | Pentel Kabushiki Kaisha | Granular body discharge container, granular body storage tube and granular body assembly |
US5071033A (en) * | 1990-07-26 | 1991-12-10 | Practical Products, Co. | Tablet dispenser |
US5178298A (en) * | 1992-02-12 | 1993-01-12 | Allina Curtis J | Candy dispenser |
US5213213A (en) * | 1992-04-13 | 1993-05-25 | Merck & Co., Inc. | Medication container |
US5269413A (en) * | 1992-09-04 | 1993-12-14 | George Stern | Container for pills |
GB2270293A (en) * | 1992-09-05 | 1994-03-09 | Medix Ltd | Drug dispensing system |
US5520307A (en) * | 1993-06-23 | 1996-05-28 | Ronee Miller | Dispensing top for pill case |
US5509573A (en) * | 1994-03-23 | 1996-04-23 | Campoli; William J. | Aseptic dispensing system |
GB9423389D0 (en) * | 1994-11-19 | 1995-01-11 | Smithkline Beecham Plc | Container |
US5608940A (en) * | 1995-08-07 | 1997-03-11 | L.A.P. Innovations, Inc. | Combination toothbrush and storage/dispenser apparatus and method of making the same thereof |
US5785206A (en) * | 1996-10-18 | 1998-07-28 | Candy Novelty Works Ltd. | Dispenser for candies or the like |
US5915560A (en) * | 1997-05-03 | 1999-06-29 | George; Donald C. | Compartmentalized pill dispenser |
WO2003079028A1 (en) * | 2002-03-11 | 2003-09-25 | Leco Corporation | Automatic crucible and sample loading system and method |
US6588958B1 (en) * | 2002-04-02 | 2003-07-08 | Concept Workshop Worldwide, Llc | Airtight magnetic applicator system |
US6964343B2 (en) * | 2002-07-12 | 2005-11-15 | Jeffrey Tilly | Container system for organizing items |
US7371472B2 (en) * | 2002-12-24 | 2008-05-13 | Sagami Chemical Metal Co., Ltd. | Permanent magnet ring |
US20050148809A1 (en) * | 2003-12-29 | 2005-07-07 | Delaney Timothy P. | High power therapeutic magnetic jewelry |
US6793430B1 (en) * | 2004-03-11 | 2004-09-21 | Yu-Hsuan Liu | Structure of a multi-functional board eraser |
JP2006183801A (en) * | 2004-12-28 | 2006-07-13 | Showa Corp | Front forks such as motorcycles |
US7161451B2 (en) * | 2005-04-14 | 2007-01-09 | Gm Global Technology Operations, Inc. | Modular permanent magnet chuck |
US20070014624A1 (en) * | 2005-07-18 | 2007-01-18 | Steph Fogelson | Dispenser with magnetized elements |
US7955155B2 (en) * | 2007-07-09 | 2011-06-07 | Mega Brands International | Magnetic and electronic toy construction systems and elements |
US20100282762A1 (en) * | 2009-05-11 | 2010-11-11 | Larry Wendall Leonard | Mobile Insulin Storage Cooler (MISC) |
US8235262B1 (en) * | 2010-05-13 | 2012-08-07 | Corbin Sakdol | Magnetic implement holder |
GB201008032D0 (en) * | 2010-05-14 | 2010-06-30 | Dow Corning | Solar reflection apparatus |
US20130048341A1 (en) * | 2011-08-26 | 2013-02-28 | Robert Walder | Magnetic cable management system |
US20130062225A1 (en) * | 2011-09-13 | 2013-03-14 | Barry James LaVaque | Arm palette |
-
2012
- 2012-05-02 US US13/462,274 patent/US20130292403A1/en not_active Abandoned
- 2012-05-03 US US13/463,147 patent/US20130292398A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1671285A (en) * | 1924-02-14 | 1928-05-29 | Hanna John Paul | Dispensing package |
US3251459A (en) * | 1964-06-05 | 1966-05-17 | Edgar J Lacour | Pocket medicine container |
US5512346A (en) * | 1994-09-21 | 1996-04-30 | Owens-Corning Fiberglas Technology, Inc. | Insulation assembly for compressible insulation material |
US7204391B2 (en) * | 2005-01-12 | 2007-04-17 | Jonathan David Toker | One at a time pill dispenser |
US7527447B2 (en) * | 2007-03-27 | 2009-05-05 | Chin-Kuang Huang | Magnetic cap for writing instrument |
US20120275142A1 (en) * | 2009-02-27 | 2012-11-01 | Benton Lundy | Light assembly and method of use |
US8225955B2 (en) * | 2009-06-03 | 2012-07-24 | Balm Chicky, Inc. | Dual-supply product container |
US20130263424A1 (en) * | 2010-05-12 | 2013-10-10 | James Giocastro | Dual compartment dispenser |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2907455A2 (en) | 2014-02-12 | 2015-08-19 | Ethicon Endo-Surgery, Inc. | Deliverable surgical instrument |
WO2015122998A1 (en) | 2014-02-12 | 2015-08-20 | Ethicon Endo-Surgery, Inc. | Deliverable surgical instrument |
EP3536251A1 (en) | 2014-02-12 | 2019-09-11 | Ethicon Endo-Surgery, Inc. | Deliverable surgical instrument |
EP2918234A2 (en) | 2014-02-24 | 2015-09-16 | Ethicon Endo-Surgery, Inc. | Implantable layer assemblies |
WO2015126552A1 (en) | 2014-02-24 | 2015-08-27 | Ethicon Endo-Surgery, Inc. | Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments |
EP2910198A2 (en) | 2014-02-24 | 2015-08-26 | Ethicon Endo-Surgery, Inc. | Implantable layers and methods for alerting implantable layers for use with surgical fastening instruments |
EP2910199A1 (en) | 2014-02-24 | 2015-08-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge including a barbed staple |
EP2910197A2 (en) | 2014-02-24 | 2015-08-26 | Ethicon Endo-Surgery, Inc. | Implantable Layers and Methods for Altering One or More Properties of Implantable Layers for Use with Fastening Instruments |
WO2015126656A1 (en) | 2014-02-24 | 2015-08-27 | Ethicon Endo-Surgery, Inc. | Staple cartridge including a barbed staple |
WO2015126556A1 (en) | 2014-02-24 | 2015-08-27 | Ethicon Endo-Surgery, Inc. | Implantable layers and methods for altering implantable layers for use with surgical fastening instruments |
WO2015126655A1 (en) | 2014-02-24 | 2015-08-27 | Ethicon Endo-Surgery, Inc. | Implantable layers comprising a pressed region |
WO2015126658A2 (en) | 2014-02-24 | 2015-08-27 | Ethicon Endo-Surgery, Inc. | Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument |
EP2910196A1 (en) | 2014-02-24 | 2015-08-26 | Ethicon Endo-Surgery, Inc. | Fastening System Comprising a Firing Member Lockout |
WO2015126555A1 (en) | 2014-02-24 | 2015-08-27 | Ethicon Endo-Surgery, Inc. | Staple cartridge including a barbed staple |
WO2015126554A1 (en) | 2014-02-24 | 2015-08-27 | Ethicon Endo-Surgery, Inc. | Fastening system comprising a firing member lockout |
EP2913011A1 (en) | 2014-02-24 | 2015-09-02 | Ethicon Endo-Surgery, Inc. | Implantable layers comprising a pressed region |
EP2910201A2 (en) | 2014-02-24 | 2015-08-26 | Ethicon Endo-Surgery, Inc. | Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument |
EP2910200A1 (en) | 2014-02-24 | 2015-08-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge including a barbed staple |
EP3581119A1 (en) | 2014-02-24 | 2019-12-18 | Ethicon LLC | Fastener cartridge |
WO2015160878A2 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridge assemblies and staple retainer cover arrangements |
EP3009082A1 (en) | 2014-10-16 | 2016-04-20 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising an adjunct material |
EP3017772A2 (en) | 2014-11-06 | 2016-05-11 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable adjunct material |
WO2016073538A1 (en) | 2014-11-06 | 2016-05-12 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable adjunct material |
US11484474B2 (en) * | 2015-05-26 | 2022-11-01 | Michel Poirier | Portable medication dispenser |
US10555873B2 (en) | 2015-05-26 | 2020-02-11 | Michel Poirier | Modular medication dispensing system |
WO2016189497A1 (en) * | 2015-05-26 | 2016-12-01 | Michel Poirier | Modular medication dispensing system |
CN104936078A (en) * | 2015-07-07 | 2015-09-23 | 常州百富电子有限公司 | Earplug for storing tablets |
CN109475865A (en) * | 2016-06-30 | 2019-03-15 | 萨斯特德特股份两合公司 | For providing the device of the sample carrier for having adsorption capacity with dried amount of liquid, especially blood |
JP2019525130A (en) * | 2016-06-30 | 2019-09-05 | ザルシュテット アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフトSarstedt AG & Co. KG | Device for providing an absorbent sample carrier having a dry liquid volume, in particular blood |
US11439331B2 (en) | 2016-06-30 | 2022-09-13 | Sarstedt Ag & Co. Kg | Device for making available absorbent sample carriers having a quantity of dried liquid, in particular blood |
WO2018002249A1 (en) * | 2016-06-30 | 2018-01-04 | Sarstedt Aktiengesellschaft & Co. Kg | Device for making available absorbent sample carriers having a quantity of dried liquid, in particular blood |
PL126471U1 (en) * | 2017-07-06 | 2019-01-14 | Krzysztof Michniewicz | Tablet dispenser |
WO2020097415A1 (en) * | 2018-11-08 | 2020-05-14 | Brown Adam Charles | Magnetic locking container |
CN111252392A (en) * | 2020-01-16 | 2020-06-09 | 四川大学华西医院 | Medicine box |
US12070059B2 (en) | 2020-09-04 | 2024-08-27 | Nicoventures Trading Limited | Child-resistant container for tobacco-containing products |
Also Published As
Publication number | Publication date |
---|---|
US20130292403A1 (en) | 2013-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130292398A1 (en) | Pill Container | |
US9889068B1 (en) | Pill organizer | |
AU2003206579B2 (en) | Blister pack device | |
US7353939B2 (en) | Pill cases with a retractable display assembly | |
US9365333B2 (en) | Safe container | |
US10577152B2 (en) | Safe container | |
US20100147735A1 (en) | Pill Organizer and Dispenser | |
EP3897510B1 (en) | Pill dispenser for medications, vitamins and/or dietary supplements | |
US8550248B1 (en) | Personalizable organizer display for identifying actual pill samples and indicating associated information therewith | |
US20110278195A1 (en) | Dual compartment dispenser | |
US20140251862A1 (en) | Pill containers with registers and methods | |
US20130263424A1 (en) | Dual compartment dispenser | |
US20180044060A1 (en) | Pill container kit | |
US20090149989A1 (en) | Medicine dispensing system | |
GB2122578A (en) | Device for dispensing pills and the like | |
US20150041351A1 (en) | Multi-compartment container for the secure storage of therapeutic agents | |
US20050258054A1 (en) | Container for pills and drink | |
US20050029155A1 (en) | Container for storing pills | |
KR200349504Y1 (en) | Portable tabloid case | |
US8857616B2 (en) | Reference apparatus | |
US8458990B1 (en) | General and medicinal sorting device | |
US11844745B2 (en) | Pill regulator apparatus | |
US20070007162A1 (en) | Monthly system for dispensing medication/supplements | |
JP2005015006A (en) | Fixed-number tablet take-out container | |
KR200498015Y1 (en) | Carrier for pill pack of pill packaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CAPSULEPEN LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COTE, JOSEPH;SHI, MINHAO;REEL/FRAME:029083/0208 Effective date: 20120822 |
|
AS | Assignment |
Owner name: CAPSULEPEN LLC, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 7014 23TH AVENUE SUITE 202 BROOKYLN, NEW YORK 11228 PREVIOUSLY RECORDED ON REEL 029083 FRAME 0208. ASSIGNOR(S) HEREBY CONFIRMS THE 323 EAST 92ND STREET APT. #3 NEW YORK, NY 10125;ASSIGNOR:CAPSULEPEN LLC;REEL/FRAME:029134/0527 Effective date: 20120822 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |