US20130288884A1 - Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof - Google Patents
Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof Download PDFInfo
- Publication number
- US20130288884A1 US20130288884A1 US13/880,184 US201113880184A US2013288884A1 US 20130288884 A1 US20130288884 A1 US 20130288884A1 US 201113880184 A US201113880184 A US 201113880184A US 2013288884 A1 US2013288884 A1 US 2013288884A1
- Authority
- US
- United States
- Prior art keywords
- catalyst
- copper
- containing compound
- rare earth
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 92
- 239000000460 chlorine Substances 0.000 title claims abstract description 45
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 43
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 title claims abstract description 39
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910000041 hydrogen chloride Inorganic materials 0.000 title claims abstract description 35
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 23
- 230000003647 oxidation Effects 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 36
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052802 copper Inorganic materials 0.000 claims abstract description 32
- 239000010949 copper Substances 0.000 claims abstract description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052796 boron Inorganic materials 0.000 claims abstract description 16
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 15
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 15
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 14
- 239000010941 cobalt Substances 0.000 claims abstract description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 239000011777 magnesium Substances 0.000 claims abstract description 14
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 14
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 14
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 14
- 239000011701 zinc Substances 0.000 claims abstract description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000004480 active ingredient Substances 0.000 claims abstract description 13
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 13
- 239000011575 calcium Substances 0.000 claims abstract description 13
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- 239000010936 titanium Substances 0.000 claims abstract description 12
- 229910052788 barium Inorganic materials 0.000 claims abstract description 11
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 13
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000002808 molecular sieve Substances 0.000 claims description 12
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 12
- 150000002823 nitrates Chemical class 0.000 claims description 10
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 150000001805 chlorine compounds Chemical class 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 7
- 150000001242 acetic acid derivatives Chemical class 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 239000011591 potassium Substances 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 6
- 229960003280 cupric chloride Drugs 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 239000005995 Aluminium silicate Substances 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 235000012211 aluminium silicate Nutrition 0.000 claims description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 5
- 150000002910 rare earth metals Chemical class 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- 229910002651 NO3 Inorganic materials 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 4
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 229910021538 borax Inorganic materials 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 229940076286 cupric acetate Drugs 0.000 claims description 2
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 2
- 150000002602 lanthanoids Chemical class 0.000 claims description 2
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 2
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 claims description 2
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 claims description 2
- 150000001639 boron compounds Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 41
- 238000005470 impregnation Methods 0.000 abstract description 14
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 8
- 239000001103 potassium chloride Substances 0.000 description 8
- 235000011164 potassium chloride Nutrition 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005868 electrolysis reaction Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229910004631 Ce(NO3)3.6H2O Inorganic materials 0.000 description 6
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 6
- 239000008187 granular material Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910020851 La(NO3)3.6H2O Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910017498 Nd(NO3)3.6H2O Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- -1 silicons Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000002479 acid--base titration Methods 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910001902 chlorine oxide Inorganic materials 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 150000008422 chlorobenzenes Chemical class 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 239000000490 cosmetic additive Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 231100000171 higher toxicity Toxicity 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 150000002909 rare earth metal compounds Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/14—Iron group metals or copper
- B01J29/146—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/138—Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/16—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/04—Preparation of chlorine from hydrogen chloride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/20—Improvements relating to chlorine production
Definitions
- the present invention relates to a catalyst for preparing chlorine by the oxidation of hydrogen chloride and a method for producing the same.
- Chlorine is an important basic chemical material which has been widely used in the industries of novel materials such as polyurethanes, silicons, epoxy resins, chlorinated rubbers, chlorinated polymers, chlorinated hydrocarbons and the like; the new energy industries such as manufacture of polycrystalline silicon and the like; the industries of fine chemicals such as disinfectors, detergents, food additives, cosmetic additives and the like; the industries of pesticides/pharmaceuticals such as synthetic glycerin, chlorobenzenes, chloroacetic acid, benzyl chloride, PCl 3 and the like; as well as the industries of paper manufacture, textile industries, metallurgy industries and petroleum and chemical industries, etc.
- the catalytic oxidation method the cyclic oxidation method and the oxidative electrolysis method.
- the representative cyclic oxidation method is developed by Dupont.
- sulfuric acid is used as a cyclic oxidative medium and nitric acid is used as a catalyst.
- nitric acid is used as a catalyst.
- the oxidative electrolysis method can well relief the second problem, which was describe above, in the chlor-alkali industry. However, it still has an electricity consumption level of above 1700 kWh per ton chlorine, and thereby the status of high electricity-consumption in the production of chlorine is not substantially improved.
- the method of catalytic oxidation of hydrogen chloride also requires relatively large equipment investment, and in general, the cost for production of chlorine is estimated to be slightly higher than that of the method of ion membrane electrolysis according to the present technique of Sumitomo (Japan).
- the greatest advantage of this method is its low electricity consumption of only about 230 kWh per ton chlorine. In addition, it is an environment-friendly chemical process.
- the active ingredients mainly are metal elements such as copper, chromium, gold and ruthenium, etc.
- gold and ruthenium-based catalysts are expensive and have poor performance in sulfur-tolerance.
- Chromium-based catalysts pollute the environment due to their higher toxicity.
- the above two kinds of catalysts have such problems of high economic cost or environmental pollution or the like in use.
- copper-based catalysts have both advantages of lower cost and being environmentally friendly, thus are of great interests.
- CN200710121298.1 discloses a catalyst containing cupric chloride, potassium chloride and cerium chloride with alumina as support and treated by phosphoric acid.
- the yield of chlorine is 80.1% under the conditions that the ratio of hydrogen chloride and oxygen is 1:1, the temperature of fixed bed reactor is 400° C., the reaction pressure is 0.1 MPa and the space velocity of hydrogen chloride is 0.8 hr ⁇ 1 .
- this catalyst has a relatively low activity, and the loss of the cupric chloride ingredient under a higher temperature impairs the use life of the catalyst.
- CN200910027312.0 discloses a catalyst containing cupric chloride, potassium chloride, manganese nitrate and cerium nitrate supported on silica gel or ReY molecular sieve. With 25 g of this catalyst, the hydrogen chloride conversion is 83.6% with both of hydrogen chloride and oxygen flow rates of 200 ml/min at a reaction temperature of 380° C. However, this catalyst still has the disadvantages of loss of copper ingredients and a relatively low space velocity.
- U.S. Pat. No. 4,123,389 discloses a copper-based catalyst with silica gel, alumina or titania as a support, in which the loading amount of active ingredients is between 25% and 70%.
- the process of preparation of the catalyst needs organic solvents and thus causes great environmental pollution.
- One object of the invention is to provide a catalyst for production of chlorine by catalytic oxidation of hydrogen chloride which overcomes the disadvantages of the current copper-based catalysts and the catalyst herein has good reaction activity and stability.
- Another object of the invention is to provide a method for preparing the above catalyst for production of chlorine by catalytic oxidation of hydrogen chloride.
- the catalyst for production of chlorine by catalytic oxidation of hydrogen chloride comprises a support and active ingredients comprising 1-20 wt % of copper, 0.01-5 wt % of boron, 0.1-10 wt % of alkali metal element(s), 0.1-15 wt % of one or more rare earth elements, and 0-10 wt % of one or more elements selected from magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium and titanium, the weight percent of each ingredient is based on the total weight of the catalyst.
- the method for preparing the catalyst according to the present invention comprises the steps of:
- step (3) calcining the solid obtained in step (2) at a temperature of 450-650° C. for 1-5 h to obtain the catalyst.
- the catalyst according to the present invention can be easily prepared. Meanwhile, comparing with gold and ruthenium-based catalysts, the catalyst according to the invention has a relatively lower price. Due to free of the toxic ingredients such as Cr, etc., the catalyst is relatively environment-friendly and does not cause secondary pollution. Comparing with the available copper-containing catalysts, the catalyst according to the invention has a better stability due to the addition of boron which greatly inhibits the loss of the copper ingredient.
- the copper-containing compound and the compound containing a transition metal other than copper are firstly loaded on the support by impregnation, and then the other ingredients are loaded on the support by the second impregnation, which makes the resulted catalyst has higher activity, and thereby a higher yield of chlorine can be realized under a higher space velocity of hydrogen chloride.
- the catalyst provided by the present invention can improve the yield of chlorine by about 1%-3%, and even by about 4%-5%.
- the catalyst for oxidation of hydrogen chloride and the preparation method of the catalyst according to the invention are illustrated in detail below, however the present invention is not limited by the following description in any way.
- the total weight of the catalyst refers to the weight of the final catalyst product.
- the catalyst comprises the following active ingredients: 4-15 wt %, more preferably 5-12 wt % of copper; 0.1-4 wt %, more preferably 0.15-3 wt % of boron; 2-7 wt %, more preferably 2.5-6 wt % of alkali metal element(s); 1-11 wt %, more preferably 2-9 wt % of one or more rare earth elements; 1-8wt %, more preferably 2-6 wt % of one or more elements selected from magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium and titanium; as well as 60-90 wt %, preferably 60-85 wt % of a support.
- the alkali metal element is any one selected from lithium, sodium, potassium and cesium, preferably is sodium or potassium.
- the rare earth element is at least one selected from lanthanide elements, preferably is one or more selected from cerium, lanthanum, praseodymium and neodymium.
- the support according to the invention is at least one selected from molecular sieve, kaolin, diatomite, silica, alumina, titania and zirconia, preferably is molecular sieve or kaolin, and more preferably is type Y molecular sieve (Y-zeolite).
- the impregnation time preferably lasts 8-16 h and then dried at a temperature of 70-110 ° C. for 12-24 h.
- the used copper-containing compound is a soluble salt of copper, preferably one or more selected from cupric nitrate, cupric chloride and cupric acetate.
- the used copper-containing compounds are cupric nitrate and cupric chloride.
- the compound containing a transition metal other than copper is selected from soluble salts of manganese, iron, nickel, cobalt, zinc, ruthenium and titanium, preferably one or more selected from corresponding nitrates, chlorides and acetates of manganese, iron, nickel, cobalt, zinc and titanium, and more preferably one or more of corresponding nitrates, chlorides and acetates of manganese, iron, cobalt and zinc.
- the boron-containing compound is one or two or three of boric acid, sodium borate and potassium borate.
- the alkali metal compound is one or more selected from chlorides, nitrates, acetates, carbonates and borates of lithium, sodium, potassium, preferably one or more selected from chloride, nitrate, acetate, carbonate and borate of sodium or potassium.
- the alkaline earth metal compound is one or more selected from chlorides, nitrates, acetates, carbonates and borates of magnesium, calcium and barium, and preferably one or more selected from chlorides, nitrates, acetates, carbonates and borates of magnesium and calcium.
- the rare earth metal compound is one or more selected from nitrates and chlorides of cerium, lanthanum, praseodymium and neodymium, preferably one or more selected from the nitrates.
- the catalyst of the invention is useful in the reaction for producing chlorine by catalytic oxidation of hydrogen chloride, which may be carried out in a fixed bed reactor or in other reactors suitable for such reactions.
- the reaction conditions for producing chlorine by the oxidation of hydrogen chloride are that: the reaction temperature is 320-460° C., preferably 360-400° C.; the reaction pressure is 0.1-0.6 MPa, preferably 0.1-0.35 MPa; the mole ratio between hydrogen chloride and oxygen is 0.5-9:1, preferably 1-4:1; and the mass space velocity of hydrogen chloride is 0.1-2.5 h ⁇ 1 , preferably 0.5-2 ⁇ 1 .
- the present invention provides the catalyst for producing chlorine by the oxidation of hydrogen chloride, which comprises a support and the metal salts or metal oxides applied thereon.
- the metal salts or metal oxides are loaded onto the support such that the catalyst comprises: 1-20 wt % of copper, 0.01-5 wt % of boron, 0.1-10 wt % of alkali metal element, 0.1-15 wt % of one or two or more of rare earth elements, ⁇ 0-10 wt % of one or two or more of magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium or titanium, each based on the total weight of the catalyst.
- the following Examples and Comparative Examples are carried out in a fixed bed reactor.
- the general reaction procedure is as follows: hydrogen chloride and oxygen are fed into the top of a quartz tube reactor with their pressures respectively controlled by pressure stabilization valves and their flow rates respectively controlled by mass flow controllers, and the gas flows pass the catalyst bed to conduct the reaction after preheated with quartz sands.
- the reaction product is absorbed by an excess potassium iodide solution, and the amount of resultant chlorine is measured by the iodometric method and the amount of unreacted hydrogen chloride is measured by acid-base titration for calculating the yield of chlorine.
- the aqueous solution containing active ingredients is slight excess in impregnation steps, and the solid is directly dried after impregnation, thus there is no loss of the active ingredients.
- HY molecular sieve In a 40 ml of aqueous solution that contains 26.3 g CuCl 2 .2H 2 O, 60 g of HY molecular sieve (rare earth HY molecular sieve, manufactured by Mingmeiyoujie Mining Co. Ltd., Mingguang City, the same below) is impregnated for 12 h, then dried at 90° C. for 16 h.
- the resultant solid is re-dispersed in a 50 ml of aqueous solution that contains 0.92 g H 3 BO 3 , 4.95 g KCl, 8.15 g Ce(NO 3 ) 3 .6H 2 O and 4.05 g Nd(NO 3 ) 3 .6H 2 O to perform impregnation for 12 h, then dried at 90° C. for 16 h.
- the dried solid is calcined at 500° C. for 4 h to obtain 90 g of active catalyst. It is tableted to obtain catalyst granules of 30-60 mesh.
- Example 4 In a fixed bed reactor, 6 g of the catalyst prepared in Example 4 is loaded to conduct a reaction with the flow rates of hydrogen chloride and oxygen of 150 ml/min respectively, with the reaction temperature at 383° C. and the reaction pressure at 0.18 MPa. After 4 h of reaction, the chlorine yield is 85.7%, and after 100 h of reaction, is 85.2%. The activity of the catalyst substantially keeps activity. After 1000 h of reaction, the chlorine yield is 85.1%.
- Example 4 It can be concluded from the comparison between Example 4 and Comparative Example 2 that the catalyst obtained through the two-step impregnation process has a significantly higher activity than that of the catalyst prepared by the one-step impregnation process has.
- Use of the inventive catalyst in a reaction for production of chlorine by oxidation of hydrogen chloride can increase the chlorine yield by about 3 percent.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
- The present invention relates to a catalyst for preparing chlorine by the oxidation of hydrogen chloride and a method for producing the same.
- Chlorine is an important basic chemical material which has been widely used in the industries of novel materials such as polyurethanes, silicons, epoxy resins, chlorinated rubbers, chlorinated polymers, chlorinated hydrocarbons and the like; the new energy industries such as manufacture of polycrystalline silicon and the like; the industries of fine chemicals such as disinfectors, detergents, food additives, cosmetic additives and the like; the industries of pesticides/pharmaceuticals such as synthetic glycerin, chlorobenzenes, chloroacetic acid, benzyl chloride, PCl3 and the like; as well as the industries of paper manufacture, textile industries, metallurgy industries and petroleum and chemical industries, etc.
- Almost all chlorine is produced by the electrolysis of sodium chloride solution in the industries. This process has two big problems. The first one is the high electricity consumption of up to 2760 kWh per ton chlorine, that makes the electricity consumption of the entire chlor-alkali industry comprises about 5% of the total industrial electricity consumption in China. The second one is the process co-produces chlorine and sodium hydroxide. While when sodium hydroxide requirements do not coincide with the demand for chlorine which increases greatly due to the rapid development of chlorine-consuming industries, oversupply of sodium hydroxide occurs. Thus, it is necessary to find a new source of chlorine for the further development of chlorine-consuming industries.
- On the other hand, since chlorine is used as a reaction medium in most chlorine-consuming industries, it is not part of the final products but discharged from reaction systems in a form of hydrogen chloride as a by-product. As the rapid development of chlorine-consuming industries, it is increasingly difficult to find outlets for hydrogen chloride. The resulting by-produced hydrochloric acid has low added value, needs high cost for transport and storage and the sale is difficult. Also, 20-50 times of waste water produced in subsequent applications generates a great deal of pressure on the environment. In the case of co-production of PVC, the domestic capacity of PVC is much excessive, and the export amount, price and utilization of capacity are always unsatisfied. Thus, under the current conditions, the outlet of hydrogen chloride has become a bottleneck restricting further development of the chlorine-consuming industries.
- If the by-produced hydrogen chloride could be directly transformed into chlorine, the closed circulation of “chlorine” would be realized, thereby the two bottlenecks of upstream and downstream of the chlorine-consuming industries can be essentially solved. The oxidation of hydrogen chloride by oxygen or air as an oxidant to prepare chlorine is a good route. This reaction is represented by the following stoichiometric formula:
-
- Currently, there are three different routes to carry out this process, which are the catalytic oxidation method, the cyclic oxidation method and the oxidative electrolysis method. Among them, the representative cyclic oxidation method is developed by Dupont. In this method, sulfuric acid is used as a cyclic oxidative medium and nitric acid is used as a catalyst. Thus, its equipment investment and operational cost are high, and its operation is complex and lack of flexibility. The oxidative electrolysis method can well relief the second problem, which was describe above, in the chlor-alkali industry. However, it still has an electricity consumption level of above 1700 kWh per ton chlorine, and thereby the status of high electricity-consumption in the production of chlorine is not substantially improved. Furthermore, in comparison to ion-membrane electrolysis, the method of oxidative electrolysis of hydrochloric acid requires more complex equipments and has no advantages in economical efficiency and operability. This technique is mastered only by Bayer. However, Bayer introduced the catalytic oxidation technique from Sumitomo (Japan) while is actively finding a market for its oxidative electrolysis technique.
- Objectively, the method of catalytic oxidation of hydrogen chloride also requires relatively large equipment investment, and in general, the cost for production of chlorine is estimated to be slightly higher than that of the method of ion membrane electrolysis according to the present technique of Sumitomo (Japan). The greatest advantage of this method is its low electricity consumption of only about 230 kWh per ton chlorine. In addition, it is an environment-friendly chemical process.
- In the reported catalysts for hydrogen chloride oxidation, the active ingredients mainly are metal elements such as copper, chromium, gold and ruthenium, etc. Among them, gold and ruthenium-based catalysts are expensive and have poor performance in sulfur-tolerance. Chromium-based catalysts pollute the environment due to their higher toxicity. Thus, the above two kinds of catalysts have such problems of high economic cost or environmental pollution or the like in use. Compared with them, copper-based catalysts have both advantages of lower cost and being environmentally friendly, thus are of great interests.
- CN200710121298.1 discloses a catalyst containing cupric chloride, potassium chloride and cerium chloride with alumina as support and treated by phosphoric acid. For this catalyst the yield of chlorine is 80.1% under the conditions that the ratio of hydrogen chloride and oxygen is 1:1, the temperature of fixed bed reactor is 400° C., the reaction pressure is 0.1 MPa and the space velocity of hydrogen chloride is 0.8 hr−1. However, this catalyst has a relatively low activity, and the loss of the cupric chloride ingredient under a higher temperature impairs the use life of the catalyst.
- CN200910027312.0 discloses a catalyst containing cupric chloride, potassium chloride, manganese nitrate and cerium nitrate supported on silica gel or ReY molecular sieve. With 25 g of this catalyst, the hydrogen chloride conversion is 83.6% with both of hydrogen chloride and oxygen flow rates of 200 ml/min at a reaction temperature of 380° C. However, this catalyst still has the disadvantages of loss of copper ingredients and a relatively low space velocity.
- U.S. Pat. No. 4,123,389 discloses a copper-based catalyst with silica gel, alumina or titania as a support, in which the loading amount of active ingredients is between 25% and 70%. The process of preparation of the catalyst needs organic solvents and thus causes great environmental pollution.
- Therefore, it is still a technical challenge in the related field to develop a cheap, environment-friendly catalyst with high activity and stability for production of chlorine by catalytic oxidation of hydrogen chloride.
- One object of the invention is to provide a catalyst for production of chlorine by catalytic oxidation of hydrogen chloride which overcomes the disadvantages of the current copper-based catalysts and the catalyst herein has good reaction activity and stability.
- Another object of the invention is to provide a method for preparing the above catalyst for production of chlorine by catalytic oxidation of hydrogen chloride.
- The catalyst for production of chlorine by catalytic oxidation of hydrogen chloride according to the present invention comprises a support and active ingredients comprising 1-20 wt % of copper, 0.01-5 wt % of boron, 0.1-10 wt % of alkali metal element(s), 0.1-15 wt % of one or more rare earth elements, and 0-10 wt % of one or more elements selected from magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium and titanium, the weight percent of each ingredient is based on the total weight of the catalyst.
- The method for preparing the catalyst according to the present invention comprises the steps of:
- (1) preparing a solution by dissolving a copper-containing compound as required and optionally a compound containing a transition metal other than copper in water, then impregnating a support with the solution, and drying the impregnated support;
- (2) dissolving a boron-containing compound, a alkali metal-containing compound, a rare earth metal-containing compound and a alkaline earth metal-containing compound as required in water, then impregnating the dried solid obtained in step (1) with the solution, and drying the impregnated solid;
- (3) calcining the solid obtained in step (2) at a temperature of 450-650° C. for 1-5 h to obtain the catalyst.
- The catalyst according to the present invention can be easily prepared. Meanwhile, comparing with gold and ruthenium-based catalysts, the catalyst according to the invention has a relatively lower price. Due to free of the toxic ingredients such as Cr, etc., the catalyst is relatively environment-friendly and does not cause secondary pollution. Comparing with the available copper-containing catalysts, the catalyst according to the invention has a better stability due to the addition of boron which greatly inhibits the loss of the copper ingredient. In addition, in the two-step impregnation process, the copper-containing compound and the compound containing a transition metal other than copper are firstly loaded on the support by impregnation, and then the other ingredients are loaded on the support by the second impregnation, which makes the resulted catalyst has higher activity, and thereby a higher yield of chlorine can be realized under a higher space velocity of hydrogen chloride. Comparing with the available copper-based catalyst, the catalyst provided by the present invention can improve the yield of chlorine by about 1%-3%, and even by about 4%-5%.
- The catalyst for oxidation of hydrogen chloride and the preparation method of the catalyst according to the invention are illustrated in detail below, however the present invention is not limited by the following description in any way. In the present invention, the total weight of the catalyst refers to the weight of the final catalyst product.
- According to the catalyst for oxidation of hydrogen chloride provided in the present invention, preferably the catalyst comprises the following active ingredients: 4-15 wt %, more preferably 5-12 wt % of copper; 0.1-4 wt %, more preferably 0.15-3 wt % of boron; 2-7 wt %, more preferably 2.5-6 wt % of alkali metal element(s); 1-11 wt %, more preferably 2-9 wt % of one or more rare earth elements; 1-8wt %, more preferably 2-6 wt % of one or more elements selected from magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium and titanium; as well as 60-90 wt %, preferably 60-85 wt % of a support.
- In the catalyst according to the invention, the alkali metal element is any one selected from lithium, sodium, potassium and cesium, preferably is sodium or potassium. The rare earth element is at least one selected from lanthanide elements, preferably is one or more selected from cerium, lanthanum, praseodymium and neodymium.
- The support according to the invention is at least one selected from molecular sieve, kaolin, diatomite, silica, alumina, titania and zirconia, preferably is molecular sieve or kaolin, and more preferably is type Y molecular sieve (Y-zeolite).
- According to the preparation method of the catalyst for oxidation of hydrogen chloride of the invention, in steps (1) and (2), the impregnation time preferably lasts 8-16 h and then dried at a temperature of 70-110 ° C. for 12-24 h.
- In the process for preparation of the catalyst, the used copper-containing compound is a soluble salt of copper, preferably one or more selected from cupric nitrate, cupric chloride and cupric acetate. In general, when two or more soluble copper salts are used, they can be combined in any proportions. More preferably, the used copper-containing compounds are cupric nitrate and cupric chloride.
- The compound containing a transition metal other than copper is selected from soluble salts of manganese, iron, nickel, cobalt, zinc, ruthenium and titanium, preferably one or more selected from corresponding nitrates, chlorides and acetates of manganese, iron, nickel, cobalt, zinc and titanium, and more preferably one or more of corresponding nitrates, chlorides and acetates of manganese, iron, cobalt and zinc.
- The boron-containing compound is one or two or three of boric acid, sodium borate and potassium borate. The alkali metal compound is one or more selected from chlorides, nitrates, acetates, carbonates and borates of lithium, sodium, potassium, preferably one or more selected from chloride, nitrate, acetate, carbonate and borate of sodium or potassium. The alkaline earth metal compound is one or more selected from chlorides, nitrates, acetates, carbonates and borates of magnesium, calcium and barium, and preferably one or more selected from chlorides, nitrates, acetates, carbonates and borates of magnesium and calcium. The rare earth metal compound is one or more selected from nitrates and chlorides of cerium, lanthanum, praseodymium and neodymium, preferably one or more selected from the nitrates.
- The catalyst of the invention is useful in the reaction for producing chlorine by catalytic oxidation of hydrogen chloride, which may be carried out in a fixed bed reactor or in other reactors suitable for such reactions.
- The reaction conditions for producing chlorine by the oxidation of hydrogen chloride are that: the reaction temperature is 320-460° C., preferably 360-400° C.; the reaction pressure is 0.1-0.6 MPa, preferably 0.1-0.35 MPa; the mole ratio between hydrogen chloride and oxygen is 0.5-9:1, preferably 1-4:1; and the mass space velocity of hydrogen chloride is 0.1-2.5 h−1, preferably 0.5-2−1.
- The present invention provides the catalyst for producing chlorine by the oxidation of hydrogen chloride, which comprises a support and the metal salts or metal oxides applied thereon. The metal salts or metal oxides are loaded onto the support such that the catalyst comprises: 1-20 wt % of copper, 0.01-5 wt % of boron, 0.1-10 wt % of alkali metal element, 0.1-15 wt % of one or two or more of rare earth elements, ≧0-10 wt % of one or two or more of magnesium, calcium, barium, manganese, iron, nickel, cobalt, zinc, ruthenium or titanium, each based on the total weight of the catalyst.
- The catalyst and the preparation method thereof according to the invention will be further described in detail with reference to the following Examples. But the present invention is not limited by these Examples in any way. In the following Examples and Comparative Examples, “%” used refers to “wt %” unless specified otherwise.
- The following Examples and Comparative Examples are carried out in a fixed bed reactor. The general reaction procedure is as follows: hydrogen chloride and oxygen are fed into the top of a quartz tube reactor with their pressures respectively controlled by pressure stabilization valves and their flow rates respectively controlled by mass flow controllers, and the gas flows pass the catalyst bed to conduct the reaction after preheated with quartz sands. The reaction product is absorbed by an excess potassium iodide solution, and the amount of resultant chlorine is measured by the iodometric method and the amount of unreacted hydrogen chloride is measured by acid-base titration for calculating the yield of chlorine.
- In addition, in the following Examples and Comparative Examples, the aqueous solution containing active ingredients is slight excess in impregnation steps, and the solid is directly dried after impregnation, thus there is no loss of the active ingredients.
- In a 40 ml of aqueous solution that contains 26.3 g CuCl2.2H2O, 60 g of HY molecular sieve (rare earth HY molecular sieve, manufactured by Mingmeiyoujie Mining Co. Ltd., Mingguang City, the same below) is impregnated for 12 h, then dried at 90° C. for 16 h. The resultant solid is re-dispersed in a 50 ml of aqueous solution that contains 0.92 g H3BO3, 4.95 g KCl, 8.15 g Ce(NO3)3.6H2O and 4.05 g Nd(NO3)3.6H2O to perform impregnation for 12 h, then dried at 90° C. for 16 h. The dried solid is calcined at 500° C. for 4 h to obtain 90 g of active catalyst. It is tableted to obtain catalyst granules of 30-60 mesh. 6 g of the catalyst of 30-60 mesh is loaded in a fixed bed reactor to conduct a reaction with of the flow rates of hydrogen chloride and oxygen of 100 ml/min respectively, with the reaction temperature at 380° C. and the reaction pressure at 0.18 MPa. After 4 h of reaction, the chlorine yield is 88.6%; and after 100 h of reaction, the chlorine yield is 89.0%. The activity of the catalyst is stable. After 1000 h of reaction, the chlorine yield is 87.8%, that is, the catalyst still keeps quite a high activity.
- In a 42 ml of aqueous solution that contains 26.3 g CuCl2.2H2O, 60 g HY molecular sieve is impregnated for 12 h, then dried at 90° C. for 16 h. The resultant solid is re-dispersed in a 54 ml of aqueous solution that contains 4.95 g KCl, 8.15 g Ce(NO3)3.6H2O and 4.05 g Nd(NO3)3.6H2O to perform impregnation for 12 h, then dried at 90° C. for 16 h. After being calcined at 500° C. for 4 h, 90 g of active catalyst is obtained. It is tableted to obtain catalyst granules of 30-60 mesh.
- With the same reaction conditions as in Example 1, the chlorine yield is 88.2% after 4 h of reaction, and is 86.4% after 100 h of reaction. Obviously, the catalyst has a relatively poor stability.
- It can be concluded from the comparison of Example 1 and Comparative Example 1 that the addition of boron element improves the stability of the catalyst.
- In a 41 ml of aqueous solution that contains 26.3 g CuCl2.2H2O, 60 g kaolin is impregnated for 12 h, then dried at 90° C. for 16 h. The resultant solid is re-dispersed in a 49 ml of aqueous solution that contains 1.15 g H3BO3, 4.95 g KCl, 8.15 g Ce(NO3)3.6H2O and 4.05 g La(NO3)3.6H2O to perform impregnation for 12 h, then dried at 90° C. for 16 h. After being calcined at 500° C. for 4 h, 90 g of active catalyst is obtained. It is tableted to obtain catalyst granules of 30-60 mesh. With the same reaction conditions as in Example 1, the chlorine yield is 86.1% after 4 h of reaction and is 85.8% after 100 h of reaction. The activity of the catalyst substantially remains unchanged. After 1000 h of reaction, the catalyst still keeps its activity with the chlorine yield of 85.4%.
- In a 45 ml of aqueous solution that contains 17.8 g CuCl2.2H2O and 11.5 g Co(NO3)2.6H2O, 60 g HY molecular sieve is impregnated for 12 h, then dried at 90° C. for 16 h. The resultant solid is re-dispersed in a 50 ml of aqueous solution that contains 0.46 g H3BO3, 4.95 g KCl, 8.15 g Ce(NO3)3.6H2O and 4.05 g Pr(NO3)3.6H2O to perform impregnation for 12 h, then dried at 90° C. for 16 h. After being calcined at 500° C. for 4 h, 86 g of active catalyst is obtained. It is tableted to obtain catalyst granules of 30-60 mesh. With the same reaction conditions as in Example 1, the chlorine yield is 86.4% after 4 h of reaction and is 86.8% after 100 h of reaction. The catalyst keeps a stable activity. The chlorine yield is 86.0% after 1000 h of reaction.
- In a 40 ml of aqueous solution that contains 26.3 g CuCl2.2H2O, 60 g HY molecular sieve is impregnated for 12 h, then dried at 90° C. for 16 h. The resultant solid is re-dispersed in a 54 ml of aqueous solution that contains 0.92 g H3BO3, 3.05 g KCl, 1.35 g Mg(NO3)2.2H2O, 8.15 g Ce(NO3)3.6H2O and 4.05 g La(NO3)3.6H2O to perform impregnation for 12 h, then dried at 90° C. for 16 h. After being calcined at 500° C. for 4 h, 89 g of active catalyst is obtained. It is tableted to obtain catalyst granules of 30-60 mesh.
- In a fixed bed reactor, 6 g of the catalyst prepared in Example 4 is loaded to conduct a reaction with the flow rates of hydrogen chloride and oxygen of 150 ml/min respectively, with the reaction temperature at 383° C. and the reaction pressure at 0.18 MPa. After 4 h of reaction, the chlorine yield is 85.7%, and after 100 h of reaction, is 85.2%. The activity of the catalyst substantially keeps activity. After 1000 h of reaction, the chlorine yield is 85.1%.
- In a 65 ml of aqueous solution that contains 26.3 g CuCl2.2H2O, 3.05 g KCl, 1.35 g Mg(NO3)2 2H2O, 8.15 g Ce(NO3)3.6H2O and 4.05 g La(NO3)3.6H2O, 60 g HY molecular sieve is impregnated for 12 h, then dried at 90° C. for 16 h. After being calcined at 550° C. for 4 h, 90 g of active catalyst is obtained. It is tableted to obtain catalyst granules of 30-60 mesh. With the same hydrogen chloride oxidation reaction conditions as in Example 4, the chlorine yield is 82.9% after 4 h of reaction and is 82.0% after 100 h of reaction. The chlorine yield is 80.2% after 1000 h of reaction
- It can be concluded from the comparison between Example 4 and Comparative Example 2 that the catalyst obtained through the two-step impregnation process has a significantly higher activity than that of the catalyst prepared by the one-step impregnation process has. Use of the inventive catalyst in a reaction for production of chlorine by oxidation of hydrogen chloride can increase the chlorine yield by about 3 percent.
Claims (18)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010567038.9 | 2010-11-18 | ||
CN2010105670389A CN102000583B (en) | 2010-11-18 | 2010-11-18 | Catalyst for preparing chlorine by oxidizing hydrogen chloride and preparation method thereof |
PCT/CN2011/075319 WO2012065427A1 (en) | 2010-11-18 | 2011-06-03 | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/075319 A-371-Of-International WO2012065427A1 (en) | 2010-11-18 | 2011-06-03 | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/621,282 Division US10576465B2 (en) | 2010-11-18 | 2017-06-13 | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130288884A1 true US20130288884A1 (en) | 2013-10-31 |
Family
ID=43808436
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/880,184 Abandoned US20130288884A1 (en) | 2010-11-18 | 2011-06-03 | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
US15/621,282 Active 2031-08-02 US10576465B2 (en) | 2010-11-18 | 2017-06-13 | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/621,282 Active 2031-08-02 US10576465B2 (en) | 2010-11-18 | 2017-06-13 | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
Country Status (8)
Country | Link |
---|---|
US (2) | US20130288884A1 (en) |
EP (1) | EP2481478B1 (en) |
JP (1) | JP5624221B2 (en) |
KR (1) | KR101493293B1 (en) |
CN (1) | CN102000583B (en) |
BR (1) | BR112013011155A8 (en) |
HU (1) | HUE047675T2 (en) |
WO (1) | WO2012065427A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10226758B2 (en) | 2014-01-21 | 2019-03-12 | Wanhua Chemical Group Co., Ltd. | Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine |
CN110697656A (en) * | 2019-11-12 | 2020-01-17 | 浙江博瑞电子科技有限公司 | Preparation method of high-purity hydrogen chloride |
US11000837B2 (en) | 2016-08-03 | 2021-05-11 | Wanhua Chemical Group Co., Ltd. | Catalyst for preparing chlorine gas by hydrogen chloride oxidation, and preparation method and application thereof |
US11072527B2 (en) * | 2016-12-02 | 2021-07-27 | Mitsui Chemicals, Inc. | Method for producing chlorine by oxidation of hydrogen chloride |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102000583B (en) | 2010-11-18 | 2012-08-15 | 烟台万华聚氨酯股份有限公司 | Catalyst for preparing chlorine by oxidizing hydrogen chloride and preparation method thereof |
CN103043611A (en) * | 2013-01-04 | 2013-04-17 | 甘肃银光聚银化工有限公司 | Device and method for using copper-based catalyst to oxidize hydrogen chloride and produce chlorine in two-section circulating fluidized bed |
CN103055897B (en) * | 2013-01-05 | 2014-05-21 | 万华化学集团股份有限公司 | Regeneration method of catalyst for producing chlorine by oxidizing hydrogen chloride |
CN103920499B (en) * | 2013-01-15 | 2016-02-03 | 南京工业大学 | Catalyst for preparing chlorine by oxidizing hydrogen chloride with activated clay as carrier and preparation method and application thereof |
CN105268448B (en) * | 2014-07-21 | 2017-12-22 | 上海氯碱化工股份有限公司 | The catalyst and preparation method and application of chlorine are prepared using by-product hydrogen chloride as raw material |
CN105642318B (en) * | 2014-11-11 | 2018-08-21 | 上海氯碱化工股份有限公司 | The preparation method of catalyst of catalytic oxidation of hydrogen chloride for preparing chlorine gas and application |
CN105289631B (en) * | 2015-11-25 | 2020-10-30 | 上海氯碱化工股份有限公司 | Catalyst for preparing chlorine by catalytic oxidation of hydrogen chloride and preparation method and application thereof |
KR20180111828A (en) * | 2016-02-04 | 2018-10-11 | 코베스트로 도이칠란트 아게 | Catalysts and methods for preparing chlorine by gas phase oxidation |
CN106890666B (en) * | 2017-02-09 | 2019-06-28 | 西安近代化学研究所 | A kind of catalyst of hydrogen chloride Efficient Conversion preparing chlorine gas |
KR102287846B1 (en) | 2018-12-21 | 2021-08-06 | 한화솔루션 주식회사 | Catalyst for Hydrogen Chloride Oxidation Reaction for Chlorine Production and Preparation Method thereof |
CN109821571B (en) * | 2019-03-15 | 2021-09-17 | 西安近代化学研究所 | Preparation method of high-activity hydrogen chloride oxidation catalyst |
CN112044440B (en) * | 2019-06-06 | 2021-09-10 | 中南大学 | Catalyst for preparing chlorine gas by catalytic oxidation of hydrogen chloride and preparation method and application thereof |
KR102709295B1 (en) | 2019-12-31 | 2024-09-23 | 한화솔루션 주식회사 | Molding catalyst for hydrogen chloride oxidation reaction and preparation method thereof |
CN111450881B (en) * | 2020-01-03 | 2022-09-20 | 万华化学集团股份有限公司 | Modified Cu-Al hydrotalcite catalyst for hydrogen chloride oxidation and preparation method and application thereof |
CN111252737A (en) * | 2020-01-19 | 2020-06-09 | 无锡玖汇科技有限公司 | Solid reactant for preparing chlorine in situ by hydrochloric acid |
EP4157522A1 (en) | 2020-05-29 | 2023-04-05 | Basf Se | Catalyst for hydrogen chloride oxidation and production thereof |
CN114904561B (en) * | 2022-05-07 | 2024-06-25 | 万华化学集团股份有限公司 | Catalyst for preparing chlorine and application thereof |
CN115970705B (en) * | 2022-12-23 | 2025-04-04 | 万华化学集团股份有限公司 | A fluidized bed catalyst composition and its preparation method and application |
CN116618069B (en) * | 2023-07-24 | 2023-11-14 | 山东东岳氟硅材料有限公司 | Preparation method and application of catalyst for catalytic oxidation of fluorine-containing hydrogen chloride |
CN117019127B (en) * | 2023-10-10 | 2024-01-02 | 山东东岳高分子材料有限公司 | Catalyst carrier, catalyst for preparing chlorine by hydrogen chloride oxidation and preparation method of catalyst |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5258348A (en) * | 1989-10-31 | 1993-11-02 | The Dow Chemical Company | Supported catalyst for the dehydrogenation of hydrocarbons and method for the preparation of the catalyst |
US20040133054A1 (en) * | 2002-12-06 | 2004-07-08 | Pelati Joseph E. | Dehydrogenation catalyst and process for preparing the same |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4123389A (en) | 1977-02-02 | 1978-10-31 | Allied Chemical Corporation | Pyrogenic silica or titania or alpha-alumina cuprous chloride catalyst of hydrogen chloride/oxygen reaction |
JP3270670B2 (en) * | 1994-11-14 | 2002-04-02 | 三井化学株式会社 | Catalyst for the production of chlorine from hydrogen chloride |
SG67942A1 (en) * | 1995-05-18 | 1999-10-19 | Sumitomo Chem Ind | Process for producing chlorine |
DE19533659A1 (en) * | 1995-09-12 | 1997-03-13 | Basf Ag | Process for the production of chlorine from hydrogen chloride |
JP3852983B2 (en) * | 1996-06-21 | 2006-12-06 | 三井化学株式会社 | Catalyst for producing chlorine from hydrogen chloride |
DE19748299A1 (en) * | 1996-10-31 | 1998-05-07 | Sumitomo Chemical Co | Production of chlorine@ |
US6852667B2 (en) * | 1998-02-16 | 2005-02-08 | Sumitomo Chemical Company Limited | Process for producing chlorine |
CN1076632C (en) * | 1998-03-30 | 2001-12-26 | 中国石油化工总公司 | Alkyl arene dehydrogenating catalyst |
DE10244996A1 (en) * | 2002-09-26 | 2004-04-01 | Basf Ag | Catalyst for the catalytic oxidation of hydrogen chloride |
US7012166B2 (en) * | 2003-03-18 | 2006-03-14 | General Electric Company | Catalyst composition and method for chlorinating aromatic compounds |
DE102005008612A1 (en) * | 2005-02-23 | 2006-08-24 | Basf Ag | Chlorine production from hydrogen chloride, comprises feeding hydrogen chloride containing stream, feeding, cooling and drying product gas stream, liquefacting the gas stream and separating gas/liquid stream and aqueous hydrochloric acid |
FR2889523B1 (en) * | 2005-08-03 | 2007-12-28 | Servier Lab | NOVEL CRYSTALLINE FORM V OF AGOMELATIN, PROCESS FOR PREPARING THE SAME AND PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME |
WO2007125004A1 (en) * | 2006-04-26 | 2007-11-08 | Basf Aktiengesellschaft | Method for manufacturing catalysts for catalytic hydrogen chloride oxidation |
CN101130428B (en) * | 2007-02-02 | 2010-09-01 | 清华大学 | Technique for producing chlorine by hydrogen chloride catalytic oxidation |
RU2486006C2 (en) * | 2007-07-13 | 2013-06-27 | Байер Интеллектуэль Проперти Гмбх | Temperature-resistant catalyst for gas-phase oxidation of hydrogen chloride |
CN100569368C (en) | 2007-09-03 | 2009-12-16 | 清华大学 | A kind of oxychlorination catalyst and its application |
KR101161958B1 (en) * | 2007-09-27 | 2012-07-04 | 미쓰이 가가쿠 가부시키가이샤 | Catalyst, method for producing the same, and method for producing chlorine using the catalyst |
JP5015057B2 (en) * | 2008-04-09 | 2012-08-29 | 三井化学株式会社 | Catalyst for synthesis of chlorine and method for producing the same, and method for synthesizing chlorine using the catalyst |
US20110268649A1 (en) * | 2008-12-30 | 2011-11-03 | Basf Se | Catalyst comprising ruthenium and nickel for the oxidation of hydrogen chloride |
WO2010097424A2 (en) * | 2009-02-26 | 2010-09-02 | Basf Se | Catalyst for hydrogen chloride oxidation comprising ruthenium and silver and/or calcium |
JP5468065B2 (en) | 2009-03-26 | 2014-04-09 | 三井化学株式会社 | Catalyst for producing chlorine and method for producing chlorine using the catalyst |
JP2010228952A (en) * | 2009-03-26 | 2010-10-14 | Mitsui Chemicals Inc | Method for producing chlorine form hydrogen chloride using fluidizing bed reactor |
JP5289132B2 (en) * | 2009-03-26 | 2013-09-11 | 三井化学株式会社 | Catalyst for producing chlorine and method for producing chlorine using the catalyst |
CN101559374B (en) | 2009-05-27 | 2011-09-21 | 南京工业大学 | A kind of bifunctional catalyst and its preparation method and application |
CN101862663A (en) * | 2010-06-02 | 2010-10-20 | 上海氯碱化工股份有限公司 | Catalyst for producing chlorine by catalytic oxidation of hydrogen chloride and preparation method thereof |
CN102000583B (en) * | 2010-11-18 | 2012-08-15 | 烟台万华聚氨酯股份有限公司 | Catalyst for preparing chlorine by oxidizing hydrogen chloride and preparation method thereof |
-
2010
- 2010-11-18 CN CN2010105670389A patent/CN102000583B/en active Active
-
2011
- 2011-06-03 US US13/880,184 patent/US20130288884A1/en not_active Abandoned
- 2011-06-03 WO PCT/CN2011/075319 patent/WO2012065427A1/en active Application Filing
- 2011-06-03 BR BR112013011155A patent/BR112013011155A8/en active IP Right Grant
- 2011-06-03 EP EP11832062.1A patent/EP2481478B1/en active Active
- 2011-06-03 KR KR1020137015646A patent/KR101493293B1/en active Active
- 2011-06-03 HU HUE11832062A patent/HUE047675T2/en unknown
- 2011-06-03 JP JP2013539118A patent/JP5624221B2/en active Active
-
2017
- 2017-06-13 US US15/621,282 patent/US10576465B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5258348A (en) * | 1989-10-31 | 1993-11-02 | The Dow Chemical Company | Supported catalyst for the dehydrogenation of hydrocarbons and method for the preparation of the catalyst |
US20040133054A1 (en) * | 2002-12-06 | 2004-07-08 | Pelati Joseph E. | Dehydrogenation catalyst and process for preparing the same |
Non-Patent Citations (1)
Title |
---|
Machine Translatin of Gong (CN1230461A) , publication date October 6, 1999. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10226758B2 (en) | 2014-01-21 | 2019-03-12 | Wanhua Chemical Group Co., Ltd. | Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine |
US11000837B2 (en) | 2016-08-03 | 2021-05-11 | Wanhua Chemical Group Co., Ltd. | Catalyst for preparing chlorine gas by hydrogen chloride oxidation, and preparation method and application thereof |
US11072527B2 (en) * | 2016-12-02 | 2021-07-27 | Mitsui Chemicals, Inc. | Method for producing chlorine by oxidation of hydrogen chloride |
CN110697656A (en) * | 2019-11-12 | 2020-01-17 | 浙江博瑞电子科技有限公司 | Preparation method of high-purity hydrogen chloride |
Also Published As
Publication number | Publication date |
---|---|
JP2014503341A (en) | 2014-02-13 |
KR101493293B1 (en) | 2015-02-16 |
WO2012065427A1 (en) | 2012-05-24 |
JP5624221B2 (en) | 2014-11-12 |
CN102000583B (en) | 2012-08-15 |
US20170274361A1 (en) | 2017-09-28 |
KR20130089269A (en) | 2013-08-09 |
HUE047675T2 (en) | 2020-05-28 |
EP2481478A4 (en) | 2013-11-13 |
US10576465B2 (en) | 2020-03-03 |
EP2481478B1 (en) | 2019-11-20 |
EP2481478A1 (en) | 2012-08-01 |
BR112013011155A2 (en) | 2016-08-23 |
CN102000583A (en) | 2011-04-06 |
BR112013011155A8 (en) | 2018-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10576465B2 (en) | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof | |
CN101357337B (en) | Hydrogen chloride oxidation catalyst and preparation method thereof | |
CN101125297A (en) | A kind of oxychlorination catalyst and its application | |
CN101979142A (en) | Catalyst for synthesizing propylene carbonate by alcoholysis of urea and its preparation and application method | |
CN108707131A (en) | A kind of application process based on the catalyst of synthesizing annular carbonate under normal temperature and pressure | |
CN106749059A (en) | The preparation method of chloride benzotriazole ultraviolet absorbent | |
CN106861707B (en) | A kind of preparation method of preparing chlorine by oxidizing hydrogen chloride catalyst | |
Fink et al. | Hydrogen storage in the carbon dioxide–formic acid cycle | |
CN106861714B (en) | A kind of catalyst of hydrogen chloride conversion preparing chlorine gas | |
CN102276475A (en) | Method for synthesizing 1,5-dinitronaphthalene and 1,8-dinitronaphthalene | |
CN105268448B (en) | The catalyst and preparation method and application of chlorine are prepared using by-product hydrogen chloride as raw material | |
CN106902848B (en) | A kind of hydrogen chloride reforming catalyst | |
CN103920522A (en) | Method for preparing catalyst assisting in synthesizing aniline through one-step amination of benzene | |
CN107497466A (en) | A kind of o-chloro benzonitrile catalyst and preparation method thereof | |
CN111848555A (en) | A new method for preparing 5,5'-dialkyl-2,2'-bifuran compounds from 2-alkyl furan | |
CN112745266A (en) | Gemini type imidazolyl ionic liquid and application thereof | |
CN105237427A (en) | Method for preparing amide compounds by amine catalytic oxidation | |
CN103288608B (en) | The novel method of nano-nickel oxide catalyzing alcohols matter selective oxidation | |
Choudhary et al. | Generation of hydrogen peroxide via the selective reduction of oxygen by hydrazine sulfate over Br-promoted Pd/Al2O3 catalyst in an aqueous medium at ambient conditions | |
US20070155992A1 (en) | Catalytic conversion of liquid alcohols and other reactants to products | |
CN106890666B (en) | A kind of catalyst of hydrogen chloride Efficient Conversion preparing chlorine gas | |
CN103242132A (en) | 1,1,1,2,3,3,3-heptafluoropropane preparation method | |
Mondelli et al. | Development of industrial catalysts for sustainable chlorine production | |
CN117753470A (en) | Catalyst for preparing chlorine, preparation method and application thereof | |
CN105251481A (en) | Preparation method of dechlorination catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NINGBO WANHUA POLYURETHANES CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YI, GUANGQUAN;LOU, YINCHUAN;WAN, YI;AND OTHERS;REEL/FRAME:030768/0136 Effective date: 20130620 Owner name: WANHUA CHEMICAL GROUP CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YI, GUANGQUAN;LOU, YINCHUAN;WAN, YI;AND OTHERS;REEL/FRAME:030768/0136 Effective date: 20130620 |
|
AS | Assignment |
Owner name: WANHUA CHEMICAL (NINGBO) CO., LTD., CHINA Free format text: CHANGE OF NAME;ASSIGNOR:NINGBO WANHUA POLYURETHANES CO., LTD.;REEL/FRAME:040184/0280 Effective date: 20130806 |
|
AS | Assignment |
Owner name: WANHUA CHEMICAL GROUP CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANHUA CHEMICAL (NINGBO) CO., LTD.;REEL/FRAME:040861/0118 Effective date: 20161101 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |