US20130252913A1 - 18-Membered Macrocycles and Analogs Thereof - Google Patents
18-Membered Macrocycles and Analogs Thereof Download PDFInfo
- Publication number
- US20130252913A1 US20130252913A1 US13/838,634 US201313838634A US2013252913A1 US 20130252913 A1 US20130252913 A1 US 20130252913A1 US 201313838634 A US201313838634 A US 201313838634A US 2013252913 A1 US2013252913 A1 US 2013252913A1
- Authority
- US
- United States
- Prior art keywords
- tiacumicin
- compound
- composition
- opt
- antibiotic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007549 18-membered macrocycles Chemical class 0.000 title description 5
- 150000001875 compounds Chemical class 0.000 claims abstract description 90
- ZVGNESXIJDCBKN-UUEYKCAUSA-N fidaxomicin Chemical compound O([C@@H]1[C@@H](C)O[C@H]([C@H]([C@H]1O)OC)OCC\1=C/C=C/C[C@H](O)/C(C)=C/[C@@H]([C@H](/C(C)=C/C(/C)=C/C[C@H](OC/1=O)[C@@H](C)O)O[C@H]1[C@H]([C@@H](O)[C@H](OC(=O)C(C)C)C(C)(C)O1)O)CC)C(=O)C1=C(O)C(Cl)=C(O)C(Cl)=C1CC ZVGNESXIJDCBKN-UUEYKCAUSA-N 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000004599 antimicrobial Substances 0.000 claims abstract description 6
- 208000035143 Bacterial infection Diseases 0.000 claims abstract description 5
- 208000022362 bacterial infectious disease Diseases 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 54
- 229960000628 fidaxomicin Drugs 0.000 claims description 31
- -1 C-19 Ketone Chemical class 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 10
- TVNPCAPJKIVYOW-FBXMOKBDSA-N [6-[[(3e,5e,9e,13e,15e)-12-[3,4-dihydroxy-6,6-dimethyl-5-(2-methylpropanoyloxy)oxan-2-yl]oxy-11-ethyl-8-hydroxy-18-(1-hydroxyethyl)-9,13,15-trimethyl-2-oxo-1-oxacyclooctadeca-3,5,9,13,15-pentaen-3-yl]methoxy]-4-hydroxy-5-methoxy-2-methyloxan-3-yl] 3,5-dic Chemical compound O=C/1OC(C(C)O)C\C=C(/C)\C=C(C)\C(OC2C(C(O)C(OC(=O)C(C)C)C(C)(C)O2)O)C(CC)\C=C(C)\C(O)C\C=C\C=C\1COC(C(C1O)OC)OC(C)C1OC(=O)C1=C(C)C(Cl)=C(O)C(Cl)=C1O TVNPCAPJKIVYOW-FBXMOKBDSA-N 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000000651 prodrug Substances 0.000 claims description 6
- 229940002612 prodrug Drugs 0.000 claims description 6
- 241000124008 Mammalia Species 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 3
- 239000003429 antifungal agent Substances 0.000 claims description 2
- 229940121375 antifungal agent Drugs 0.000 claims description 2
- 239000012453 solvate Substances 0.000 claims 2
- 238000007911 parenteral administration Methods 0.000 claims 1
- ZVGNESXIJDCBKN-WUIGKKEISA-N R-Tiacumicin B Natural products O([C@@H]1[C@@H](C)O[C@H]([C@H]([C@H]1O)OC)OCC1=CC=CC[C@H](O)C(C)=C[C@@H]([C@H](C(C)=CC(C)=CC[C@H](OC1=O)[C@@H](C)O)O[C@H]1[C@H]([C@@H](O)[C@H](OC(=O)C(C)C)C(C)(C)O1)O)CC)C(=O)C1=C(O)C(Cl)=C(O)C(Cl)=C1CC ZVGNESXIJDCBKN-WUIGKKEISA-N 0.000 abstract description 32
- 241000193163 Clostridioides difficile Species 0.000 abstract description 31
- 229930187202 Tiacumicin Natural products 0.000 abstract description 24
- 238000011282 treatment Methods 0.000 abstract description 15
- 239000003814 drug Substances 0.000 abstract description 13
- 229940079593 drug Drugs 0.000 abstract description 12
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 9
- 208000015181 infectious disease Diseases 0.000 abstract description 8
- 230000003389 potentiating effect Effects 0.000 abstract description 2
- 230000003115 biocidal effect Effects 0.000 description 30
- 239000003242 anti bacterial agent Substances 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 229940088710 antibiotic agent Drugs 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 108010059993 Vancomycin Proteins 0.000 description 16
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 16
- 229960003165 vancomycin Drugs 0.000 description 16
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 16
- 230000001374 post-anti-biotic effect Effects 0.000 description 15
- 206010012735 Diarrhoea Diseases 0.000 description 14
- 238000009472 formulation Methods 0.000 description 13
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 12
- 239000003826 tablet Substances 0.000 description 12
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 11
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 10
- 229960000282 metronidazole Drugs 0.000 description 10
- 239000004005 microsphere Substances 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 9
- 230000004071 biological effect Effects 0.000 description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 210000001035 gastrointestinal tract Anatomy 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- 206010009657 Clostridium difficile colitis Diseases 0.000 description 7
- 241000193468 Clostridium perfringens Species 0.000 description 7
- 208000003100 Pseudomembranous Enterocolitis Diseases 0.000 description 7
- 229930182971 R-Tiacumicin Natural products 0.000 description 7
- 238000013270 controlled release Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- 239000002775 capsule Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 206010009887 colitis Diseases 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- UGUQYYDLVJZAOK-KXXQQZAXSA-N *.*.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H]([C@@H](C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S Chemical compound *.*.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H]([C@@H](C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S UGUQYYDLVJZAOK-KXXQQZAXSA-N 0.000 description 4
- RIGKRCKVHYMONR-KTIMFLPYSA-N CCC1=C(C(=O)O[C@H]2[C@H](C)O[C@H](OC(C)(C)C)[C@H](CO)[C@@H]2O)C(O)=C(Cl)C(O)=C1Cl Chemical compound CCC1=C(C(=O)O[C@H]2[C@H](C)O[C@H](OC(C)(C)C)[C@H](CO)[C@@H]2O)C(O)=C(Cl)C(O)=C1Cl RIGKRCKVHYMONR-KTIMFLPYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 241001495431 Dactylosporangium aurantiacum Species 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- 241000194032 Enterococcus faecalis Species 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 206010037128 Pseudomembranous colitis Diseases 0.000 description 4
- 241000295644 Staphylococcaceae Species 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 208000010227 enterocolitis Diseases 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 241000606124 Bacteroides fragilis Species 0.000 description 3
- 241000193403 Clostridium Species 0.000 description 3
- 241000194031 Enterococcus faecium Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 3
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 3
- 150000007945 N-acyl ureas Chemical class 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241000191967 Staphylococcus aureus Species 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000010564 aerobic fermentation Methods 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 229960003085 meticillin Drugs 0.000 description 3
- 239000008108 microcrystalline cellulose Substances 0.000 description 3
- 229940016286 microcrystalline cellulose Drugs 0.000 description 3
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- XCCNUYOPISRJTH-MPPDQPJWSA-N CC(C)C(=O)O[C@H]1[C@@H](O)[C@H](O)C(C)(C)O[C@H]1OC(C)(C)C Chemical compound CC(C)C(=O)O[C@H]1[C@@H](O)[C@H](O)C(C)(C)O[C@H]1OC(C)(C)C XCCNUYOPISRJTH-MPPDQPJWSA-N 0.000 description 2
- OMMWIXPUMXBMEE-XKEANGNCSA-N CCc(c(Cl)c1O)c(C(O[C@@H]([C@H](C)O[C@@H]([C@@H]2OC)OC(C)(C)C)[C@H]2O)=O)c(O)c1Cl Chemical compound CCc(c(Cl)c1O)c(C(O[C@@H]([C@H](C)O[C@@H]([C@@H]2OC)OC(C)(C)C)[C@H]2O)=O)c(O)c1Cl OMMWIXPUMXBMEE-XKEANGNCSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241001112695 Clostridiales Species 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 241000194033 Enterococcus Species 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- QUCZMUVAQHIOID-UHFFFAOYSA-N Everninic acid Chemical class COC1=CC(C)=C(C(O)=O)C(O)=C1 QUCZMUVAQHIOID-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 206010017964 Gastrointestinal infection Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241000364057 Peoria Species 0.000 description 2
- 241000191992 Peptostreptococcus Species 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000194017 Streptococcus Species 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 0 [1*]C1/C(C)=C/C(C)=C/CC(C([3*])C)OC(=O)/C(C[2*])=C/C=C/CC(O)/C(C)=C/C1CC Chemical compound [1*]C1/C(C)=C/C(C)=C/CC(C([3*])C)OC(=O)/C(C[2*])=C/C=C/CC(O)/C(C)=C/C1CC 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 229940082483 carnauba wax Drugs 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 210000004051 gastric juice Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 229940014259 gelatin Drugs 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 150000002678 macrocyclic compounds Chemical class 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 231100000057 systemic toxicity Toxicity 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- HXBYBCASAVUYKF-GVYWOMJSSA-N (4r,5s,6r,7r)-4,5,6,7,8-pentahydroxyoctane-2,3-dione Chemical compound CC(=O)C(=O)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO HXBYBCASAVUYKF-GVYWOMJSSA-N 0.000 description 1
- HXBYBCASAVUYKF-YTQLPXDHSA-N (4r,5s,6s,7r)-4,5,6,7,8-pentahydroxyoctane-2,3-dione Chemical compound CC(=O)C(=O)[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO HXBYBCASAVUYKF-YTQLPXDHSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- WVZJADRXEMPSMP-OYPUTTKWSA-N *.*.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](O/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H](C(C)=O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](O/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H]([C@H](C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S.S.S.S.S Chemical compound *.*.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](O/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H](C(C)=O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](O/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H]([C@H](C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S.S.S.S.S WVZJADRXEMPSMP-OYPUTTKWSA-N 0.000 description 1
- QYSZDYVQRYWFPL-GGXDKVHPSA-N *.*.CC[C@H]1/C=C(\C)[C@@H](O)C/C=C/C=C(\CO[C@@H]2O[C@H](C)[C@@H](OC(=O)C3=C(C)C(Cl)=C(O)C(Cl)=C3O)[C@H](O)[C@@H]2OC)C(=O)O[C@H]([C@@H](C)[Y])C/C=C(C)/C=C(\C)[C@@H]1O[C@@H]1OC(C)(C)[C@@H](OC(C)=O)[C@H](O)[C@@H]1O.S.S.S Chemical compound *.*.CC[C@H]1/C=C(\C)[C@@H](O)C/C=C/C=C(\CO[C@@H]2O[C@H](C)[C@@H](OC(=O)C3=C(C)C(Cl)=C(O)C(Cl)=C3O)[C@H](O)[C@@H]2OC)C(=O)O[C@H]([C@@H](C)[Y])C/C=C(C)/C=C(\C)[C@@H]1O[C@@H]1OC(C)(C)[C@@H](OC(C)=O)[C@H](O)[C@@H]1O.S.S.S QYSZDYVQRYWFPL-GGXDKVHPSA-N 0.000 description 1
- OZLKGCMQHJXNMT-YLDBUJHFSA-N *.C.C.C.C.C.C.CC[C@H]1/C=C(\C)[C@@H](O)C/C=C/C=C(\CO[C@@H]2O[C@H](C)[C@@H](OC(=O)C3=C(C)C(Cl)=C(O)C(Cl)=C3O)[C@H](O)[C@@H]2OC)C(=O)O[C@H](C(C)[Y])C/C=C(C)/C=C(\C)[C@@H]1O[C@@H]1OC(C)(C)[C@@H](OC(C)=O)[C@H](O)[C@@H]1O.S.S.S Chemical compound *.C.C.C.C.C.C.CC[C@H]1/C=C(\C)[C@@H](O)C/C=C/C=C(\CO[C@@H]2O[C@H](C)[C@@H](OC(=O)C3=C(C)C(Cl)=C(O)C(Cl)=C3O)[C@H](O)[C@@H]2OC)C(=O)O[C@H](C(C)[Y])C/C=C(C)/C=C(\C)[C@@H]1O[C@@H]1OC(C)(C)[C@@H](OC(C)=O)[C@H](O)[C@@H]1O.S.S.S OZLKGCMQHJXNMT-YLDBUJHFSA-N 0.000 description 1
- LQCJSRWDBBILEA-JBCGBDADSA-N *.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H](C(C)=O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S Chemical compound *.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H](C(C)=O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S LQCJSRWDBBILEA-JBCGBDADSA-N 0.000 description 1
- UGUQYYDLVJZAOK-FBDRJNJYSA-N *.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H](C(C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S Chemical compound *.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H](C(C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S UGUQYYDLVJZAOK-FBDRJNJYSA-N 0.000 description 1
- XVFHFSOPLIHDED-FPVYAUJDSA-N *.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H]([C@H](C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S.S Chemical compound *.CCC1=C(C(=O)O[C@H]2[C@H](O)[C@H](OC)[C@H](OC/C3=C\C=C\C[C@H](O)/C(C)=C/[C@H](CC)[C@@H](O[C@@H]4OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]4O)/C(C)=C/C(C)=C/C[C@@H]([C@H](C)O)OC3=O)O[C@@H]2C)C(O)=C(Cl)C(O)=C1Cl.S.S.S.S XVFHFSOPLIHDED-FPVYAUJDSA-N 0.000 description 1
- OXFWYLWDCMNBAR-JQNAJSTISA-N *.CC[C@H]1/C=C(\C)[C@@H](O)C/C=C/C=C(\CO[C@@H]2O[C@H](C)[C@@H](OC(=O)C3=C(C)C(Cl)=C(O)C(Cl)=C3O)[C@H](O)[C@@H]2OC)C(=O)O[C@H]([C@H](C)O)C/C=C(C)/C=C(\C)[C@@H]1O[C@@H]1OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]1O.S.S.S.S Chemical compound *.CC[C@H]1/C=C(\C)[C@@H](O)C/C=C/C=C(\CO[C@@H]2O[C@H](C)[C@@H](OC(=O)C3=C(C)C(Cl)=C(O)C(Cl)=C3O)[C@H](O)[C@@H]2OC)C(=O)O[C@H]([C@H](C)O)C/C=C(C)/C=C(\C)[C@@H]1O[C@@H]1OC(C)(C)[C@@H](OC(=O)C(C)C)[C@H](O)[C@@H]1O.S.S.S.S OXFWYLWDCMNBAR-JQNAJSTISA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 1
- HMBHAQMOBKLWRX-UHFFFAOYSA-N 2,3-dihydro-1,4-benzodioxine-3-carboxylic acid Chemical compound C1=CC=C2OC(C(=O)O)COC2=C1 HMBHAQMOBKLWRX-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241001464890 Anaerococcus prevotii Species 0.000 description 1
- 241001464898 Anaerococcus tetradius Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- MMSIWGFIGDTTSS-VPOLOUISSA-N CC(=O)O[C@H]1[C@H](O)[C@H](O)[C@H](OC(C)(C)C)OC1(C)C Chemical compound CC(=O)O[C@H]1[C@H](O)[C@H](O)[C@H](OC(C)(C)C)OC1(C)C MMSIWGFIGDTTSS-VPOLOUISSA-N 0.000 description 1
- IMSMPJVOFLZECG-SRRSOLGSSA-N CC(C)C(=O)O[C@@H]1[C@H](O)[C@H](OC(C)(C)C)OC(C)(C)[C@H]1O Chemical compound CC(C)C(=O)O[C@@H]1[C@H](O)[C@H](OC(C)(C)C)OC(C)(C)[C@H]1O IMSMPJVOFLZECG-SRRSOLGSSA-N 0.000 description 1
- MVPBRJQWWWMUKO-MPPDQPJWSA-N CC(C)C(=O)O[C@H]1[C@H](O)[C@H](O)[C@H](OC(C)(C)C)OC1(C)C Chemical compound CC(C)C(=O)O[C@H]1[C@H](O)[C@H](O)[C@H](OC(C)(C)C)OC1(C)C MVPBRJQWWWMUKO-MPPDQPJWSA-N 0.000 description 1
- DNSRMABBHIYSRK-NOOOWODRSA-N CCC(=O)O[C@H]1[C@@H](O)[C@H](O)C(C)(C)O[C@H]1OC(C)(C)C Chemical compound CCC(=O)O[C@H]1[C@@H](O)[C@H](O)C(C)(C)O[C@H]1OC(C)(C)C DNSRMABBHIYSRK-NOOOWODRSA-N 0.000 description 1
- UCLJGXSQQIEEQE-ILPGKRJFSA-N CCC1=C(C(=O)O[C@@H]2[C@@H](O)[C@H](C)O[C@H](OC(C)(C)C)[C@@H]2OC)C(O)=C(Cl)C(O)=C1Cl Chemical compound CCC1=C(C(=O)O[C@@H]2[C@@H](O)[C@H](C)O[C@H](OC(C)(C)C)[C@@H]2OC)C(O)=C(Cl)C(O)=C1Cl UCLJGXSQQIEEQE-ILPGKRJFSA-N 0.000 description 1
- PMUWYENQZOOHLP-OSFYFWSMSA-N CC[O](C(C)C)[C@@H]([C@H]([C@H]1O)O)OC(C)(C)[C@H]1OC(C(C)C)=O Chemical compound CC[O](C(C)C)[C@@H]([C@H]([C@H]1O)O)OC(C)(C)[C@H]1OC(C(C)C)=O PMUWYENQZOOHLP-OSFYFWSMSA-N 0.000 description 1
- UOCQOJDFRKYYQU-XWDOFXKUSA-N CCc(c(Cl)c1O)c(C(O[C@H]([C@H]([C@H](C)O[C@@H]2OC(C)C)O)[C@H]2OC)=O)c(O)c1Cl Chemical compound CCc(c(Cl)c1O)c(C(O[C@H]([C@H]([C@H](C)O[C@@H]2OC(C)C)O)[C@H]2OC)=O)c(O)c1Cl UOCQOJDFRKYYQU-XWDOFXKUSA-N 0.000 description 1
- 241001147791 Clostridium paraputrificum Species 0.000 description 1
- 241000186528 Clostridium tertium Species 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 208000002881 Colic Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 241000186427 Cutibacterium acnes Species 0.000 description 1
- 241001495437 Dactylosporangium Species 0.000 description 1
- 241001404671 Dactylosporangium aurantiacum subsp. hamdenensis Species 0.000 description 1
- 241001657508 Eggerthella lenta Species 0.000 description 1
- 208000004232 Enteritis Diseases 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000186588 Erysipelatoclostridium ramosum Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 241000192016 Finegoldia magna Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000605909 Fusobacterium Species 0.000 description 1
- 241000605956 Fusobacterium mortiferum Species 0.000 description 1
- 241000605986 Fusobacterium nucleatum Species 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241001134635 Micromonosporaceae Species 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- CJBIUUVHWWAIPX-ZCEGTHKRSA-N N-[(3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl)-2-[(3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxan-3-yl]acetamide Chemical compound C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)C1(O)[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@H](O1)CO CJBIUUVHWWAIPX-ZCEGTHKRSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 229910004679 ONO2 Inorganic materials 0.000 description 1
- 241000193465 Paeniclostridium sordellii Species 0.000 description 1
- 241000193157 Paraclostridium bifermentans Species 0.000 description 1
- 241001464887 Parvimonas micra Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 241000605894 Porphyromonas Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000605861 Prevotella Species 0.000 description 1
- 206010057071 Rectal tenesmus Diseases 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241001464947 Streptococcus milleri Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241001509489 Terrisporobacter glycolicus Species 0.000 description 1
- 241001148134 Veillonella Species 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- 241001246487 [Clostridium] bolteae Species 0.000 description 1
- 241000186561 [Clostridium] clostridioforme Species 0.000 description 1
- 241000193462 [Clostridium] innocuum Species 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000002814 agar dilution Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- JQXXHWHPUNPDRT-BQVAUQFYSA-N chembl1523493 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2C=NN1CCN(C)CC1 JQXXHWHPUNPDRT-BQVAUQFYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000007910 chewable tablet Substances 0.000 description 1
- 238000004296 chiral HPLC Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229940075419 choline hydroxide Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000039 congener Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 239000007938 effervescent tablet Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical class FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 150000002243 furanoses Chemical group 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FBPFZTCFMRRESA-UHFFFAOYSA-N hexane-1,2,3,4,5,6-hexol Chemical compound OCC(O)C(O)C(O)C(O)CO FBPFZTCFMRRESA-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- NXMXPVQZFYYPGD-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;methyl prop-2-enoate Chemical compound COC(=O)C=C.COC(=O)C(C)=C NXMXPVQZFYYPGD-UHFFFAOYSA-N 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 229940055076 parasympathomimetics choline ester Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000007149 pericyclic reaction Methods 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 239000008196 pharmacological composition Substances 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 229940055019 propionibacterium acne Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003214 pyranose derivatives Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 208000026773 severe abdominal cramp Diseases 0.000 description 1
- 208000026775 severe diarrhea Diseases 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229940066765 systemic antihistamines substituted ethylene diamines Drugs 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 208000012271 tenesmus Diseases 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H17/00—Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
- C07H17/04—Heterocyclic radicals containing only oxygen as ring hetero atoms
- C07H17/08—Hetero rings containing eight or more ring members, e.g. erythromycins
Definitions
- the present invention relates generally to the 18-membered macrocyclic antimicrobial agents called Tiacumicins, specifically, the R-Tiacumicin B or Tiacumicin B and its related compounds.
- substantially pure R-Tiacumicin B as a potent antibiotic agent for the treatment of bacterial infections, specifically GI infections caused by toxin producing strains of Clostridium difficile ( C. difficile ), Staphylococcus aureus ( S. aureus ) including methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens ( C. perfringens ).
- Macrocycles are an important therapeutic class of antibiotics. These compounds are frequently produced as a family of closely related biogenetic congeners.
- the Tiacumicins are a series of 18-membered macrocyclic antibiotics in which the macrocyclic ring is glycosidically attached to one or two sugars. A seven-carbon sugar is esterfied at various positions with small fatty acids. The other sugar, when present, is esterified with an isomer of the fully substituted benzoic acid, everninic acid. (Journal of Liquid Chromatography, 1988, 11: 191-201).
- Tiacumicins are a family of related compounds that contain the 18-membered ring shown in Formula I below.
- Tiacumicin A-F Tiacumicin A-F
- substituents R 1 , R 2 , and R 3 U.S. Pat. No. 4,918,174; J. Antibiotics, 1987, 40: 575-588, as shown in Table 1.
- Tiacumicins A-F have been characterized spectroscopically and by other physical methods.
- the chemical structures of Tiacumicins are based on spectroscopy: UV-vis, IR and 1 H and 13 C NMR, see for example J. Antibiotics, 1987, 40: 575-588. Inspection of Table 1 reveals that certain members of the family are structurally related isomers and/or differ by the presence or absence of certain moieties. Others differ in the nature of their ester groups.
- Tiacumicins are produced by bacteria, including Dactylosporangium aurantiacum subspecies hamdenensis , which may be obtained from the ARS Patent Collection of the Northern Regional Research Center, United States Department of Agriculture, 1815 North University Street, Peoria, Ill. 61604, accession number NRRL 18085. The characteristics of strain AB 718C-41 are given in J. Antibiotics, 1987, 40: 567-574 and U.S. Pat. No. 4,918,174.
- C. difficile -associated diarrhea is a disease characterized by severe and painful diarrhea. C. difficile is responsible for approximately 20% of the cases of antibiotic-associated diarrhea (AAD) and the majority of the cases of antibiotic-associated colitis (AAC). These diseases are typically caused by toxin producing strains of C. difficile, S. aureus including methicillin-resistant S. aureus (MRSA) and Clostridium perfringens ( C. perfringens ).
- AAD represents a major economic burden to the healthcare system that is conservatively estimated at $3-6 billion per year in excess hospital costs in the U.S. alone.
- VRE Vancomycin-resistant enterococci, for which intestinal colonization provides a constant reservoir for infection, has also emerged as a major nosocomial pathogen associated with increased health care cost and mortality.
- VRE can appear as coinfection in patients infected with C. difficile , or more commonly cause infection in certain high risk patients such as haematology and oncology patients, patients in intensive care units and patients receiving solid organ transplants.
- Methicillin-resistant Staphylococci such as MRSA
- Staphylococci are increasing in prevalence in both the hospital and community settings. Staphylococci are found on the skin and within the digestive and respiratory tracts but can infect open wounds and burns and can progress to serious systemic infection.
- the emergence of multi-drug resistant Staphylococci, especially, in the hospital where antibiotic use is frequent and selective pressure for drug-resistant organisms is high, has proven a challenge for treating these patients.
- the presence of MRSA on the skin of patients and health care workers promotes transmission of the multi-drug resistant organisms.
- AAD is a significant problem in hospitals and long-term care facilities and in the community.
- C. difficile is the leading cause of AAD in the hospital setting, accounting for approximately 20% of cases of AAD and the majority of cases of antibiotic-associated colitis (AAC).
- AAC antibiotic-associated colitis
- CDAD Clostridium difficile -associated diarrhea
- PMC pseudomembranous colitis
- CDAD pseudomembranous colitis
- Diarrhea and colitis are caused by the elaboration of one or more C. difficile toxins.
- the organism proliferates in the colon in patients who have been given broad-spectrum antibiotics or, less commonly, cancer chemotherapy.
- CDAD is diagnosed in approximately 20% of hospitalized patients who develop diarrhea after treatment with such agents.
- Vancomycin is not recommended for first-line treatment of CDAD mainly because it is the only antibiotic active against some serious life-threatening multi-drug resistant bacteria. Therefore, in an effort to minimize the emergence of vancomycin-resistant Enterococcus (VRE) or vancomycin-resistant S. aureus (VRSA), the medical community discourages the use of this drug except when absolutely necessary.
- VRE vancomycin-resistant Enterococcus
- VRSA vancomycin-resistant S. aureus
- Metronidazole is recommended as initial therapy out of concern for the promotion and selection of vancomycin resistant gut flora, especially enterococci. Despite reports that the frequency of C. difficile resistance may be >6% in some countries, metronidazole remains nearly as effective as vancomycin, is considerably less expensive, and can be used either orally or intravenously. Metronidazole is associated with significant adverse effects including nausea, neuropathy, leukopenia, seizures, and a toxic reaction to alcohol. Furthermore, it is not safe for use in children or pregnant women. Clinical recurrence occurs in up to 20% of cases after treatment with either vancomycin or metronidazole. Therapy with metronidazole has been reported to be an important risk factor for VRE colonization and infection.
- CDAD Clostridium difficile -associated diarrhea
- Tiacumicins show activity against a variety of bacterial pathogens and in particular against C. difficile , a Gram-positive bacterium (Antimicrob. Agents Chemother. 1991, 1108-1111).
- C. difficile is an anaerobic spore-forming bacterium that causes an infection of the bowel. Diarrhea is the most common symptom but abdominal pain and fever may also occur.
- C. difficile is a major causative agent of colitis (inflammation of the colon) and diarrhea that may occur following antibiotic intake. This bacterium is primarily acquired in hospitals and chronic care facilities. Because Tiacumicin B shows promising activity against C.
- Tiacumicins may also find use for the treatment of gastrointestinal cancers.
- the present invention relates to new pharmaceutical compositions containing R-Tiacumicins, specifically the optically pure R-Tiacumicin B, and to the use of these new compositions in combination with existing drugs to treat infections caused by gram-positive anerobes.
- One embodiment of the present invention is directed towards the discovery that the chiral center at C-19 of Tiacumicin B has great effect on biological activity. It has now been discovered that a substantially pure preparation of higher activity R-Tiacumicin B, which has an R-hydroxy group at C-19 has surprisingly lower MIC values than the optically pure S-isomer of Tiacumicin B and other Tiacumicin B related compounds.
- the substantially pure R-Tiacumicin B has an unusually long post-antibiotic activity (PAE).
- PAE post-antibiotic activity
- This invention encompasses the composition of novel antibiotic agents, containing substantially pure R-Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis .
- the production method is covered by WO 2004/014295 A2, which is hereby incorporated by reference.
- FIG. 1 shows the Oak Ridge Thermal Ellipsoid Plot Program (ORTEP) chemical structure of R-Tiacumicin B.
- antibiotic-associated condition refers to a condition resulting when antibiotic therapy disturbs the balance of the microbial flora of the gut, allowing pathogenic organisms such as enterotoxin producing strains of C. difficile, S. aureus and C. perfringens to flourish. These organisms can cause diarrhea, pseudomembranous colitis, and colitis and are manifested by diarrhea, urgency, abdominal cramps, tenesmus, and fever among other symptoms. Diarrhea, when severe, causes dehydration and the medical complications associated with dehydration.
- asymmetrically substituted refers to a molecular structure in which an atom having four tetrahedral valences is attached to four different atoms or groups.
- the commonest cases involve the carbon atom.
- two optical isomers D- and L-enantiomers or R- and S-enantiomers
- R- and S-enantiomers two optical isomers per carbon atom
- Many compounds have more than one asymmetric carbon. This results in the possibility of many optical isomers, the number being determined by the formula 2 n , where n is the number of asymmetric carbons.
- biohydrolyzable carbamate As used herein, and unless otherwise indicated, the terms “biohydrolyzable carbamate,” “biohydrolyzable carbonate,” “biohydrolyzable ureide” and “biohydrolyzable phosphate” mean a carbamate, carbonate, ureide and phosphate, respectively, of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound.
- biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
- biohydrolyzable ester means an ester of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound.
- biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters.
- biohydrolyzable amide means an amide of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound.
- biohydrolyzable amides include, but are not limited to, lower alkyl amides, .alpha.-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.
- broth refers to the fluid culture medium as obtained during or after fermentation. Broth comprises a mixture of water, the desired antibiotic(s), unused nutrients, living or dead organisms, metabolic products, and the adsorbent with or without adsorbed product.
- C-19 Ketone refers to a Tiacumicin B related compound shown below in Formula II:
- diastereomers refers to stereoisomers that are not mirror images of each other.
- enantiomer refers to a non-superimposable mirror image of itself.
- An enantiomer of an optically active isomer rotates plane polarized light in an equal but opposite direction of the original isomer.
- a solution of equal parts of an optically active isomer and its enantiomer is known as a racemic solution and has a net rotation of plane polarized light of zero.
- Enantiomers will have the opposite prefixes of each other: D- becomes L- or R-becomes S-. Often only one enantiomer is active in a biological system, because most biological reactions are enzymatic and the enzymes can only attach to one of the enantiomers.
- excipient refers to an inert substance added to a pharmacological composition to further facilitate administration of a compound.
- excipients include but are not limited to, calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.
- halogen includes F, Cl, Br and I.
- hydrate means a compound of the present invention or a salt thereof that further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.
- isomeric mixture means a mixture of two or more configurationally distinct chemical species having the same chemical formula.
- An isomeric mixture is a genus comprising individual isomeric species.
- isomeric mixtures include stereoisomers (enantiomers and diastereomers), regioisomers, as might result for example from a pericyclic reaction.
- the compounds of the present invention comprise asymmetrically substituted carbon atoms. Such asymmetrically substituted carbon atoms can result in mixtures of stereoisomers at a particular asymmetrically substituted carbon atom or a single stereoisomer. As a result, racemic mixtures, mixtures of diastereomers, as well as single diastereomers of the compounds of the invention are included in the present invention.
- Lipiarmycin A4 refers to a Tiacumicin B related compound shown below in Formula III:
- lower alkyl refers to an optionally substituted straight-chain or optionally substituted branched-chain having from 1 to about 8 carbons (e.g., C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 ,), more preferably 1 to 4 carbons (e.g., C 1 , C 2 , C 3 , C 4 ,).
- alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl.
- a “lower alkyl” is generally a shorter alkyl, e.g., one containing from 1 to about 4 carbon atoms (e.g., C 1 , C 2 , C 3 , C 4 ,).
- microcycles refers to organic molecules with large ring structures usually containing over 10 atoms.
- 18-membered macrocycles refers to organic molecules with ring structures containing 18 atoms.
- membered ring can embrace any cyclic structure, including carbocycles and heterocycles as described above.
- membered is meant to denote the number of skeletal atoms that constitute the ring.
- pyridine, pyran and thiopyran are 6 membered rings and pyrrole, furan, and thiophene are 5 membered rings.
- MIC or “minimum inhibitory concentration” refers to the lowest concentration of an antibiotic that is needed to inhibit growth of a bacterial isolate in vitro.
- a common method for determining the MIC of an antibiotic is to prepare several tubes containing serial dilutions of the antibiotic, that are then inoculated with the bacterial isolate of interest. The MIC of an antibiotic can be determined from the tube with the lowest concentration that shows no turbidity (no growth).
- MIC 50 refers to the lowest concentration of antibiotic required to inhibit the growth of 50% of the bacterial strains tested within a given bacterial species.
- MIC 90 refers to the lowest concentration of antibiotic required to inhibit the growth of 90% of the bacterial strains tested within a given bacterial species.
- OPT-80 refers to a preparation containing R-Tiacumicin B and Tiacumicin B related compounds (including, but not limited to, Tiacumicins, Lipiarmycin A4 and C-19 Ketone). Preparations of this type are described in detail in PCT application PCT/US03/21977, having an international publication number of WO 2004/014295 A2 and which preparations and are incorporated here by reference.
- ORTEP refers to the Oak Ridge Thermal Ellipsoid Plot computer program, written in Fortran, for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids, derived from anisotropic temperature factor parameters, on the atomic sites. The program also produces stereoscopic pairs of illustrations which aid in the visualization of complex arrangements of atoms and their correlated thermal motion patterns.
- PAE post-antibiotic effect
- patient refers to a human or animal in need of medical treatment.
- human patients are typically institutionalized in a primary medical care facility such as a hospital or nursing home.
- treatment of a disease associated with the use of antibiotics or cancer chemotherapies or antiviral therapies can occur on an outpatient basis, upon discharge from a primary care facility, or can be prescribed by a physician for home-care, not in association with a primary medical care facility
- Animals in need of medical treatment are typically in the care of a veterinarian.
- pharmaceutically acceptable carrier refers to a carrier or diluent that is pharmaceutically acceptable.
- salts derived from appropriate bases include alkali metal (e.g., sodium or potassium), alkaline earth metal (e.g., magnesium), ammonium and N(C 1 -C 4 alkyl) 4 + salts, and the like. Illustrative examples of some of these include sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate, and the like.
- pharmaceutically acceptable salt also refers to salts prepared from pharmaceutically acceptable non-toxic acids, including inorganic acids and organic acids.
- Suitable non-toxic acids include inorganic and organic acids such as, but not limited to, acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, gluconic, glutamic, glucorenic, galacturonic, glycidic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, propionic, phosphoric, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, p-toluenesulfonic and the like. Particularly preferred are hydrochloric, hydrobromic, phosphoric, and sulfuric acids, and most particularly preferred is the hydrochloride salt.
- composition refers to a composition of the R-Tiacumicin described herein, or physiologically acceptable salts thereof, with other chemical components, such as physiologically acceptable carriers and/or excipients.
- the purpose of a pharmaceutical composition is to facilitate administration of a compound to a mammal, including humans.
- physiologically acceptable carrier refers to a carrier or diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the administered compound.
- prodrug means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide the compound.
- prodrugs include, but are not limited to, compounds that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues.
- Other examples of prodrugs include compounds that comprise —NO, —NO 2 , —ONO, or —ONO 2 moieties.
- prodrug may also to be interpreted to exclude other compounds of the invention for example racemates.
- pseudomembranous colitis or “enteritis” refers to the formation of pseudomembranous material (i.e., material composed of fibrin, mucous, necrotic epithelial cells and leukocytes) due to inflammation of the mucous membrane of both the small and large intestine.
- R and S configuration are as defined by the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem. (1976) 45, 13-30.
- Chiral molecules can be named based on the atomic numbers of the atoms or groups of atoms, the ligands that are attached to the chiral center. The ligands are given a priority (the higher the atomic number the higher the priority) and if the priorities increase in a clockwise direction, they are said to be R-. Otherwise, if they are prioritized in a counterclockwise direction they are said to be S-.
- R-Tiacumicin B refers to the optically pure (R)-isomer of Tiacumicin B with an (R)-hydroxy group at C-19, as shown below in Formula IV:
- S-Tiacumicin B refers to the optically pure (S)-isomer of Tiacumicin B with an (S)-hydroxy group at C-19, as shown below in Formula V:
- stereoisomers refers to compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial arrangement.
- the terms “optically pure,” “stereomerically pure,” and “substantially stereomerically pure” are used interchangeably and mean one stereoisomer of a compound or a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomer(s) of that compound.
- a stereomerically pure compound or composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
- a stereomerically pure compound or composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound.
- a typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
- saccharide generally refers to mono-, di- or oligosaccharides.
- a saccharide may be substituted, for example, glucosamine, galactosamine, acetylglucose, acetylgalactose, N-acetylglucosamine, N-acetyl-galactosamine, galactosyl-N-acetylglucosamine, N-acetylneuraminic acid (sialic acid), etc., as well as sulfated and phosphorylated sugars.
- the saccharides are in their pyranose or furanose form.
- Tiacumicin refers to a family of compounds all of which comprise the 18-membered macrocycle shown below in Formula I:
- Tiacumicin B refers to the 18-membered macrocycle shown below in Formula VI:
- yield refers to an amount of crude Tiacumicin re-constituted in methanol to the same volume as the original fermentation broth. Yield is determined using standard HPLC techniques. Yield is reported in units of mg/L.
- This invention encompasses the composition of novel antibiotic agents, Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis .
- the production method is covered by WO 2004/014295 A2.
- the present invention relates to new antibacterial compositions containing R-Tiacumicins, specifically the R-Tiacumicin B (which has an R-hydroxyl at C-19), and to the use of these new compositions in combination with existing drugs to treat infections caused by gram-positive anerobes.
- the present invention further relates to stereoisomerically pure Tiacumicin B, which contains 90-100% of the R-stereoisomer, preferably at least 93% of the R-stereoisomer, more preferably 95% of the R-stereoisomer, even more preferably 99% of the R-stereoisomer.
- X is selected from lower alkyl, and wherein the term “lower alkyl” as used herein refers to branched or straight chain alkyl groups comprising one to two carbon atoms, including methyl, ethyl, n-propyl, isopropyl, and the like; and Y is selected from OH or a ketone ( ⁇ O); and Z is selected from H or lower alkyl, and wherein the term “lower alkyl” as used herein refers to branched or straight chain alkyl groups comprising one to five carbon atoms, including methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, and the like.
- Preferred compounds of the invention are compounds of Formula VII wherein X is methyl or ethyl, Y is ketone ( ⁇ O) or OH and Z is isopropyl.
- More preferred compounds of the invention are the compound of the Formula VII wherein X is ethyl, Y is ketone ( ⁇ O) or OH and Z is isopropyl.
- the most preferred compounds of the invention are the compounds of Formula VII wherein X is ethyl, Y is OH R and Z is isopropyl.
- One embodiment of the present invention is directed towards the discovery that the chiral center at C-19 of Tiacumicin B has great effect on biological activity. It has now been discovered that R-Tiacumicin B, which has an R-hydroxy group at C-19 has significantly higher activity than the S-Tiacumicin B and other Tiacumicin B related compounds (Lipiarmycin A4 and C-19 Ketone). The higher activity is shown by much lowered MIC values, which can be seen below in Example 3, Tables 3 and 4 for several strains of C. difficile, S. aureus, E. faecalis , and E. faecium . This effect of the C-19 chiral center on biological activity is an unexpected and novel discovery.
- OPT-80 (which is composed almost entirely of the R-Tiacumicin B) has an unusually long post-antibiotic effect (PAE). This is discussed below in Example 4, where it is shown that OPT-80 has a PAE of greater than 24 hours. This PAE is unexpectedly longer than the usual antibiotic PAE of 1-5 hours.
- the present invention also relates to the disclosure of pharmaceutical compositions, which comprise a compound of the present invention in combination with a pharmaceutically acceptable carrier.
- Yet another aspect of the invention discloses a method of inhibiting or treating bacterial infections in humans, comprising administering to the patient a therapeutically effective amount of a compound of the invention alone or in combination with another antibacterial or antifungal agent.
- the 18-membered macrocycles and analogs thereof are produced by fermentation. Cultivation of Dactylosporangium aurantiacum subsp. hamdenensis AB 718C-41 NRRL 18085 for the production of the Tiacumicins is carried out in a medium containing carbon sources, inorganic salts and other organic ingredients with one or more absorbents under proper aeration conditions and mixing in a sterile environment.
- the microorganism to produce the active antibacterial agents was identified as belonging to the family Actinoplanaceae, genus Dactylosporangium ( J. of Antibiotics, 1987, 40: 567-574 and U.S. Pat. No. 4,918,174). It has been designated Dactylasporangium aurantiacum subspecies hamdenensis 718C-41.
- the subculture was obtained from the ARS Patent Collection of the Northern Regional Research Center, United States Department of Agriculture, 1815 North University Street, Peoria, Ill. 61604, U.S.A., where it was assigned accession number NRRL 18085.
- the characteristics of strain AB 718C-41 are given in the Journal of Antibiotics, 1987, 40: 567-574 and U.S. Pat. No. 4,918,174.
- Methods of isolating stereomerically pure isomers are known in the art.
- Methods of isolating stereomerically pure R-Tiacumicin include, but are not limited to, recrystallization of the crude mixture in solvents including, aqueous methanol or isopropanol and chiral HPLC.
- This invention encompasses the composition of novel antibiotic agents, Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis .
- the production method is covered by WO 2004/014295 A2, which is hereby incorporated by reference.
- compositions of the Tiacumicin compounds of the present invention may be formulated to release an antibiotic substantially immediately upon administration or at any predetermined time or time period after administration.
- compositions are generally known as modified release formulations, which include formulations that create a substantially constant concentration of the drug within the intestinal tract over an extended period of time, and formulations that have modified release characteristics based on temporal or environmental criteria as described in Modified-Release Drug Delivery Technology, ed. M. J. Rathbone, J. Hodgraft and M. S. Roberts. Marcel Dekker, Inc. New York.
- any oral biologically-acceptable dosage form, or combinations thereof, can be employed in the methods of the invention.
- dosage forms include, without limitation, chewable tablets, quick dissolve tablets, effervescent tablets, reconstitutable powders, elixirs, liquids, suppositories, creams, solutions, suspensions, emulsions, tablets, multi-layer tablets, bi-layer tablets, capsules, soft gelatin capsules, hard gelatin capsules, osmotic tablets, osmotic capsules, caplets, lozenges, chewable lozenges, beads, powders, granules, particles, microparticles, dispersible granules, ingestibles, infusions, health bars, confections, animal feeds, cereals, cereal coatings, foods, nutritive foods, functional foods and combinations thereof.
- the preparation of any of the above dosage forms is well known to persons of ordinary skill in the art.
- the pharmaceutical formulations may be designed to provide either immediate or controlled release of the antibiotic upon reaching the target site.
- the selection of immediate or controlled release compositions depends upon a variety of factors including the species and antibiotic susceptibility of Gram-positive bacteria being treated and the bacteriostatic/bactericidal characteristics of the therapeutics. Methods well known in the art for making formulations are found, for example, in Remington: The Science and Practice of Pharmacy (20th ed.), ed. A. R. Gennaro, 2000, Lippincott Williams & Wilkins, Philadelphia, or in Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York.
- Immediate release formulations for oral use include tablets or capsules containing the active ingredient(s) in a mixture with non-toxic pharmaceutically acceptable excipients.
- excipients may be, for example, inert diluents or fillers (e.g., sucrose, sorbitol, sugar, mannitol, microcrystalline cellulose, starches including potato starch, calcium carbonate, sodium chloride, lactose, calcium phosphate, calcium sulfate, or sodium phosphate); granulating and disintegrating agents (e.g., cellulose derivatives including microcrystalline cellulose, starches including potato starch, croscarmellose sodium, alginates, or alginic acid); binding agents (e.g., sucrose, glucose, mannitol, sorbitol, acacia, alginic acid, sodium alginate, gelatin, starch, pregelatinized starch, microcrystalline cellulose, magnesium aluminum silicate, carboxymethylcellulose sodium, methylcellulose, hydroxy
- compositions can be colorants, flavoring agents, plasticizers, humectants, buffering agents, and the like as are found, for example, in The Handbook of Pharmaceutical Excipients, third edition, edited by Arthur H. Kibbe, American Pharmaceutical Association Washington D.C.
- Dissolution or diffusion controlled release can be achieved by appropriate coating of a tablet, capsule, pellet, or granulate formulation of compounds, or by incorporating the compound into an appropriate matrix.
- a controlled release coating may include one or more of the coating substances mentioned above and/or, e.g., shellac, beeswax, glycowax, castor wax, carnauba wax, stearyl alcohol, glyceryl monostearate, glyceryl distearate, glycerol palmitostearate, ethylcellulose, acrylic resins, dl-polylactic acid, cellulose acetate butyrate, polyvinyl chloride, polyvinyl acetate, vinyl pyrrolidone, polyethylene, polymethacrylate, methylmethacrylate, 2-hydroxymethacrylate, methacrylate hydrogels, 1,3 butylene glycol, ethylene glycol methacrylate, and/or polyethylene glycols.
- the matrix material may also include, e.g., hydrated methylcellulose, carnauba wax and stearyl alcohol, carbopol 934, silicone, glyceryl tristearate, methyl acrylate-methyl methacrylate, polyvinyl chloride, polyethylene, and/or halogenated fluorocarbon.
- a controlled release composition may also be in the form of a buoyant tablet or capsule (i.e., a tablet or capsule that, upon oral administration, floats on top of the gastric content for a certain period of time).
- a buoyant tablet formulation of the compound(s) can be prepared by granulating a mixture of the antibiotic with excipients and 20-75% w/w of hydrocolloids, such as hydroxyethylcellulose, hydroxypropylcellulose, or hydroxypropyl-methylcellulose. The obtained granules can then be compressed into tablets. On contact with the gastric juice, the tablet forms a substantially water-impermeable gel barrier around its surface.
- This gel barrier takes part in maintaining a density of less than one, thereby allowing the tablet to remain buoyant in the gastric juice.
- Other useful controlled release compositions are known in the art (see, for example, U.S. Pat. Nos. 4,946,685 and 6,261,601).
- a modified release composition may be comprised of a compression-coated core whose geometric configuration controls the release profile of the encapsulated antibiotic. By varying the geometry of the core, the profile of the antibiotic release can be adjusted to follow zero order, first order or a combination of these orders.
- the system can also be designed to deliver more beneficial agents at the same time, each having a different release profile (see, for example U.S. Pat. Nos. 4,111,202 and 3,279,995).
- Formulations that target the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin), that release to particular regions of the intestinal tract can also be prepared.
- the Tiacumicin compounds of the present invention, specifically OPT-80 can be encapsulated in an enteric coating that prevents release degradation and release from occurring in the stomach, but dissolves readily in the mildly acidic or neutral pH environment of the small intestine.
- a formulation targeted for release of antibiotic to the colon, utilizing technologies such as time-dependent, pH-dependent, or enzymatic erosion of polymer matrix or coating can also be used.
- the targeted delivery properties of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), containing formulation may be modified by other means.
- the antibiotic may be complexed by inclusion, ionic association, hydrogen bonding, hydrophobic bonding, or covalent bonding.
- polymers or complexes susceptible to enzymatic or microbial lysis may also be used as a means to deliver drug.
- Microsphere encapsulation of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), is another useful pharmaceutical formulation for targeted antibiotic release.
- the antibiotic-containing microspheres can be used alone for antibiotic delivery, or as one component of a two-stage release formulation. Suitable staged release formulations may consist of acid stable microspheres, encapsulating the compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), to be released later in the lower intestinal tract admixed with an immediate release formulation to deliver antibiotic to the stomach and upper duodenum.
- Microspheres can be made by any appropriate method, or from any pharmaceutically acceptable material. Particularly useful are proteinoid microspheres (see, for example, U.S. Pat. No. 5,601,846, or 5,792,451) and PLGA-containing microspheres (see, for example, U.S. Pat. No. 6,235,224 or 5,672,659). Other polymers commonly used in the formation of microspheres include, for example, poly- ⁇ -caprolactone, poly(e ⁇ caprolactone-Co-DL-lactic acid), poly(DL-lactic acid), poly(DL-lactic acid-Co-glycolic acid) and poly(s-caprolactone-Co-glycolic acid) (see, for example, Pitt et al., J. Pharm.
- Microspheres can be made by procedures well known in the art including spray drying, coacervation, and emulsification (see for example Davis et al. Microsphere and Drug Therapy, 1984, Elsevier; Benoit et al. Biodegradable Microspheres: Advances in Production Technologies, Chapter 3, ed. Benita, S, 1996, Dekker, New York; Microencapsulation and Related Drug Processes, Ed. Deasy, 1984, Dekker, New York; U.S. Pat. No. 6,365,187).
- Powders, dispersible powders, or granules suitable for preparation of aqueous solutions or suspensions of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), by addition of water are convenient dosage forms for oral administration.
- Formulation as a suspension provides the active ingredient in a mixture with a dispersing or wetting agent, suspending agent, and one or more preservatives.
- Suitable dispersing or wetting agents are, for example, naturally-occurring phosphatides (e.g., lecithin or condensation products of ethylene oxide with a fatty acid, a long chain aliphatic alcohol, or a partial ester derived from fatty acids) and a hexitol or a hexitol anhydride (e.g., polyoxyethylene stearate, polyoxyethylene sorbitol monooleate, polyoxyethylene sorbitan monooleate, and the like).
- Suitable suspending agents are, for example, sodium carboxymethylcellulose, methylcellulose, sodium alginate, and the like.
- the official chemical name is 3-[[[6-Deoxy-4-O-(3,5-dichloro-2-ethyl-4,6-dihydroxybenzoyl)-2-O-methyl- ⁇ -D-mannopyranosyl]oxy]-methyl]-12(R)-[[6-deoxy-5-C-methyl-4-O-(2-methyl-1-oxopropyl)- ⁇ -D-lyxo-hexopyranosyl]oxy]-11(S)-ethyl-8(5)-hydroxy-18(5)-(1(R)-hydroxyethyl)-9,13,15-trimethyloxacyclooctadeca-3,5,9,13,15-pentaene-2-one.
- OPT-80 which is composed almost entirely of the R-Tiacumicin B, which is the most active component of OPT-80
- S-Tiacumicin B which is the most active component of OPT-80
- S-Tiacumicin B Lipiarmycin A4, and C-19 ketone
- OPT-80 (which is composed almost entirely of the R-Tiacumicin B) and its related compounds were tested against C. difficile .
- the MIC values are reported below in Table 3.
- OPT-80 was surprisingly active when compared to its enantiomer S-Tiacumicin B and Lipiarmycin A4.
- OPT-80 (which is composed almost entirely of the R-Tiacumicin B) and its related compounds were tested against several other pathogens. The MIC values are reported below in Table 4. OPT-80 was surprisingly active when compared to S-Tiacumicin B and Lipiarmycin A4.
- the post-antibiotic effect (PAE) of OPT-80 (which is composed almost entirely of the R-Tiacumicin B) was measured versus two strains of C. difficile , ATCC 43255 and a clinical isolate, LC3. Vancomycin and rifampin were tested additionally versus LC3.
- OPT-80 which is composed almost entirely of the R-Tiacumicin B
- metronidazole metronidazole
- vancomycin vancomycin
- OPT-80 The in vitro activity of OPT-80 was determined against 350 anaerobes. The experimental procedure for which is outlined in Antimicrobial Agents and Chemotherapy, 2004, 48: 4430-4434, which is hereby incorporated by reference in its entirety.
- Antimicrobial concentration ranges were selected to encompass or surpass the levels that would be achieved in the gut (to the extent that this information is available), subject to the limitations of solubility of the drugs in the testing medium.
- the range of concentration of OPT-80 used during testing was 0.03 ⁇ g/ml to 1024 ⁇ g/ml.
- the bacteria tested were generally placed into genus, species, or other groups with at least 10 isolates.
- the ranges and the MICs at which 50 and 90% of isolates were inhibited were determined except for organisms with fewer than 10 strains tested, for which only the ranges are reported (Table 8).
- OPT-80 had good activity against most anaerobic gram-positive non-spore-forming rods and anaerobic gram-positive cocci. OPT-80 also showed good activity against enterococci and staphylococci.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present application is a continuation-in-part application of International Application PCT/US2005/002887, filed Jan. 31, 2005, which is incorporated by reference in its entirety.
- The present invention relates generally to the 18-membered macrocyclic antimicrobial agents called Tiacumicins, specifically, the R-Tiacumicin B or Tiacumicin B and its related compounds. In particular, substantially pure R-Tiacumicin B, as a potent antibiotic agent for the treatment of bacterial infections, specifically GI infections caused by toxin producing strains of Clostridium difficile (C. difficile), Staphylococcus aureus (S. aureus) including methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens (C. perfringens).
- Macrocycles are an important therapeutic class of antibiotics. These compounds are frequently produced as a family of closely related biogenetic congeners. The Tiacumicins are a series of 18-membered macrocyclic antibiotics in which the macrocyclic ring is glycosidically attached to one or two sugars. A seven-carbon sugar is esterfied at various positions with small fatty acids. The other sugar, when present, is esterified with an isomer of the fully substituted benzoic acid, everninic acid. (Journal of Liquid Chromatography, 1988, 11: 191-201).
- Tiacumicins are a family of related compounds that contain the 18-membered ring shown in Formula I below.
- At present, several distinct Tiacumicins have been identified and six of these (Tiacumicin A-F) are defined by their particular pattern of substituents R1, R2, and R3 (U.S. Pat. No. 4,918,174; J. Antibiotics, 1987, 40: 575-588), as shown in Table 1.
- Tiacumicins A-F have been characterized spectroscopically and by other physical methods. The chemical structures of Tiacumicins are based on spectroscopy: UV-vis, IR and 1H and 13C NMR, see for example J. Antibiotics, 1987, 40: 575-588. Inspection of Table 1 reveals that certain members of the family are structurally related isomers and/or differ by the presence or absence of certain moieties. Others differ in the nature of their ester groups.
- Tiacumicins are produced by bacteria, including Dactylosporangium aurantiacum subspecies hamdenensis, which may be obtained from the ARS Patent Collection of the Northern Regional Research Center, United States Department of Agriculture, 1815 North University Street, Peoria, Ill. 61604, accession number NRRL 18085. The characteristics of strain AB 718C-41 are given in J. Antibiotics, 1987, 40: 567-574 and U.S. Pat. No. 4,918,174.
- C. difficile-associated diarrhea (CDAD) is a disease characterized by severe and painful diarrhea. C. difficile is responsible for approximately 20% of the cases of antibiotic-associated diarrhea (AAD) and the majority of the cases of antibiotic-associated colitis (AAC). These diseases are typically caused by toxin producing strains of C. difficile, S. aureus including methicillin-resistant S. aureus (MRSA) and Clostridium perfringens (C. perfringens). AAD represents a major economic burden to the healthcare system that is conservatively estimated at $3-6 billion per year in excess hospital costs in the U.S. alone.
- Vancomycin-resistant enterococci, for which intestinal colonization provides a constant reservoir for infection, has also emerged as a major nosocomial pathogen associated with increased health care cost and mortality. VRE can appear as coinfection in patients infected with C. difficile, or more commonly cause infection in certain high risk patients such as haematology and oncology patients, patients in intensive care units and patients receiving solid organ transplants.
- Methicillin-resistant Staphylococci, such as MRSA, are increasing in prevalence in both the hospital and community settings. Staphylococci are found on the skin and within the digestive and respiratory tracts but can infect open wounds and burns and can progress to serious systemic infection. The emergence of multi-drug resistant Staphylococci, especially, in the hospital where antibiotic use is frequent and selective pressure for drug-resistant organisms is high, has proven a challenge for treating these patients. The presence of MRSA on the skin of patients and health care workers promotes transmission of the multi-drug resistant organisms.
- Similar diseases, including but not limited to clostridial enterocolitis, neonatal diarrhea, antibiotic-associated enterocolitis, sporadic enterocolitis, and nosocomial enterocolitis are also significant problems in some animal species.
- AAD is a significant problem in hospitals and long-term care facilities and in the community. C. difficile is the leading cause of AAD in the hospital setting, accounting for approximately 20% of cases of AAD and the majority of cases of antibiotic-associated colitis (AAC). The rising incidence of Clostridium difficile-associated diarrhea (CDAD) has been attributed to the frequent prescription of broad-spectrum antibiotics to hospitalized patients.
- The most serious form of the disease is pseudomembranous colitis (PMC), which is manifested histologically by colitis with mucosal plaques, and clinically by severe diarrhea, abdominal cramps, and systemic toxicity. The overall mortality rate from CDAD is low, but is much greater in patients who develop severe colitis or systemic toxicity. A recent study has shown that even when death is not directly attributable to C. difficile, the rate of mortality in CDAD patients as compared to case-matched controls is much greater.
- Diarrhea and colitis are caused by the elaboration of one or more C. difficile toxins. The organism proliferates in the colon in patients who have been given broad-spectrum antibiotics or, less commonly, cancer chemotherapy. CDAD is diagnosed in approximately 20% of hospitalized patients who develop diarrhea after treatment with such agents.
- There are currently two dominant therapies for CDAD: vancomycin and metronidazole. Vancomycin is not recommended for first-line treatment of CDAD mainly because it is the only antibiotic active against some serious life-threatening multi-drug resistant bacteria. Therefore, in an effort to minimize the emergence of vancomycin-resistant Enterococcus (VRE) or vancomycin-resistant S. aureus (VRSA), the medical community discourages the use of this drug except when absolutely necessary.
- Metronidazole is recommended as initial therapy out of concern for the promotion and selection of vancomycin resistant gut flora, especially enterococci. Despite reports that the frequency of C. difficile resistance may be >6% in some countries, metronidazole remains nearly as effective as vancomycin, is considerably less expensive, and can be used either orally or intravenously. Metronidazole is associated with significant adverse effects including nausea, neuropathy, leukopenia, seizures, and a toxic reaction to alcohol. Furthermore, it is not safe for use in children or pregnant women. Clinical recurrence occurs in up to 20% of cases after treatment with either vancomycin or metronidazole. Therapy with metronidazole has been reported to be an important risk factor for VRE colonization and infection. The current treatment regime against Gastrointestinal infections, e.g., Clostridium difficile-associated diarrhea (CDAD) is rather cumbersome, requiring up to 500 mg four-times daily for 10 to 14 days. Thus, there is a need for better treatment for cases of CDAD as well as for cases of other Antibiotic-associated diarrhea (AAD) and Antibiotic-associated colitis (AAC).
- Tiacumicins, specifically Tiacumicin B, show activity against a variety of bacterial pathogens and in particular against C. difficile, a Gram-positive bacterium (Antimicrob. Agents Chemother. 1991, 1108-1111). C. difficile is an anaerobic spore-forming bacterium that causes an infection of the bowel. Diarrhea is the most common symptom but abdominal pain and fever may also occur. C. difficile is a major causative agent of colitis (inflammation of the colon) and diarrhea that may occur following antibiotic intake. This bacterium is primarily acquired in hospitals and chronic care facilities. Because Tiacumicin B shows promising activity against C. difficile, it is expected to be useful in the treatment of bacterial infections, especially those of the gastrointestinal tract, in mammals. Examples of such treatments include but are not limited to treatment of colitis and treatment of irritable bowel syndrome. Tiacumicins may also find use for the treatment of gastrointestinal cancers.
- Tiacumicin antibiotics are described in U.S. Pat. No. 4,918,174 (issued Apr. 17, 1990), J. Antibiotics 1987, 40: 575-588, J. Antibiotics 1987, 40: 567-574, J. Liquid Chromatography 1988, 11: 191-201, Antimicrobial Agents and Chemotherapy 1991, 35: 1108-1111, U.S. Pat. No. 5,583,115 (issued Dec. 10, 1996), and U.S. Pat. No. 5,767,096 (issued Jun. 16, 1998), which are all incorporated herein by reference. Related compounds are the Lipiarmycin antibiotics (c.f., J. Chem. Soc. Perkin Trans. I, 1987, 1353-1359 and J. Antibiotics 1988, 41: 308-315) and the Clostomicin antibiotics (J. Antibiotics 1986, 39: 1407-1412), which are all incorporated herein by reference.
- The present invention relates to new pharmaceutical compositions containing R-Tiacumicins, specifically the optically pure R-Tiacumicin B, and to the use of these new compositions in combination with existing drugs to treat infections caused by gram-positive anerobes.
- One embodiment of the present invention is directed towards the discovery that the chiral center at C-19 of Tiacumicin B has great effect on biological activity. It has now been discovered that a substantially pure preparation of higher activity R-Tiacumicin B, which has an R-hydroxy group at C-19 has surprisingly lower MIC values than the optically pure S-isomer of Tiacumicin B and other Tiacumicin B related compounds.
- In another embodiment of the present invention the substantially pure R-Tiacumicin B has an unusually long post-antibiotic activity (PAE).
- This invention encompasses the composition of novel antibiotic agents, containing substantially pure R-Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis. The production method is covered by WO 2004/014295 A2, which is hereby incorporated by reference.
-
FIG. 1 shows the Oak Ridge Thermal Ellipsoid Plot Program (ORTEP) chemical structure of R-Tiacumicin B. - The term “antibiotic-associated condition” refers to a condition resulting when antibiotic therapy disturbs the balance of the microbial flora of the gut, allowing pathogenic organisms such as enterotoxin producing strains of C. difficile, S. aureus and C. perfringens to flourish. These organisms can cause diarrhea, pseudomembranous colitis, and colitis and are manifested by diarrhea, urgency, abdominal cramps, tenesmus, and fever among other symptoms. Diarrhea, when severe, causes dehydration and the medical complications associated with dehydration.
- The term “asymmetrically substituted” refers to a molecular structure in which an atom having four tetrahedral valences is attached to four different atoms or groups. The commonest cases involve the carbon atom. In such cases, two optical isomers (D- and L-enantiomers or R- and S-enantiomers) per carbon atom result which are nonsuperposable mirror images of each other. Many compounds have more than one asymmetric carbon. This results in the possibility of many optical isomers, the number being determined by the formula 2n, where n is the number of asymmetric carbons.
- As used herein, and unless otherwise indicated, the terms “biohydrolyzable carbamate,” “biohydrolyzable carbonate,” “biohydrolyzable ureide” and “biohydrolyzable phosphate” mean a carbamate, carbonate, ureide and phosphate, respectively, of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
- As used herein, and unless otherwise indicated, the term “biohydrolyzable ester” means an ester of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters.
- As used herein, and unless otherwise indicated, the term “biohydrolyzable amide” means an amide of a compound that either: 1) does not interfere with the biological activity of the compound but can confer upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is biologically inactive but is converted in vivo to the biologically active compound. Examples of biohydrolyzable amides include, but are not limited to, lower alkyl amides, .alpha.-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.
- The term “broth” as used herein refers to the fluid culture medium as obtained during or after fermentation. Broth comprises a mixture of water, the desired antibiotic(s), unused nutrients, living or dead organisms, metabolic products, and the adsorbent with or without adsorbed product.
- The term “C-19 Ketone” refers to a Tiacumicin B related compound shown below in Formula II:
- The term “diastereomers” refers to stereoisomers that are not mirror images of each other.
- The term “enantiomer” refers to a non-superimposable mirror image of itself. An enantiomer of an optically active isomer rotates plane polarized light in an equal but opposite direction of the original isomer. A solution of equal parts of an optically active isomer and its enantiomer is known as a racemic solution and has a net rotation of plane polarized light of zero. Enantiomers will have the opposite prefixes of each other: D- becomes L- or R-becomes S-. Often only one enantiomer is active in a biological system, because most biological reactions are enzymatic and the enzymes can only attach to one of the enantiomers.
- The term “excipient” refers to an inert substance added to a pharmacological composition to further facilitate administration of a compound. Examples of excipients include but are not limited to, calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.
- The term “halogen” includes F, Cl, Br and I.
- As used herein, the term “hydrate” means a compound of the present invention or a salt thereof that further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.
- The term “isomeric mixture” means a mixture of two or more configurationally distinct chemical species having the same chemical formula. An isomeric mixture is a genus comprising individual isomeric species. Examples of isomeric mixtures include stereoisomers (enantiomers and diastereomers), regioisomers, as might result for example from a pericyclic reaction. The compounds of the present invention comprise asymmetrically substituted carbon atoms. Such asymmetrically substituted carbon atoms can result in mixtures of stereoisomers at a particular asymmetrically substituted carbon atom or a single stereoisomer. As a result, racemic mixtures, mixtures of diastereomers, as well as single diastereomers of the compounds of the invention are included in the present invention.
- The term “Lipiarmycin A4” refers to a Tiacumicin B related compound shown below in Formula III:
- The term “lower alkyl,” alone or in combination, refers to an optionally substituted straight-chain or optionally substituted branched-chain having from 1 to about 8 carbons (e.g., C1, C2, C3, C4, C5, C6, C7, C8,), more preferably 1 to 4 carbons (e.g., C1, C2, C3, C4,).
- Examples of alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl. A “lower alkyl” is generally a shorter alkyl, e.g., one containing from 1 to about 4 carbon atoms (e.g., C1, C2, C3, C4,).
- The term “macrocycles” refers to organic molecules with large ring structures usually containing over 10 atoms.
- The term “18-membered macrocycles” refers to organic molecules with ring structures containing 18 atoms.
- The term “membered ring” can embrace any cyclic structure, including carbocycles and heterocycles as described above. The term “membered” is meant to denote the number of skeletal atoms that constitute the ring. Thus, for example, pyridine, pyran and thiopyran are 6 membered rings and pyrrole, furan, and thiophene are 5 membered rings.
- The term “MIC” or “minimum inhibitory concentration” refers to the lowest concentration of an antibiotic that is needed to inhibit growth of a bacterial isolate in vitro. A common method for determining the MIC of an antibiotic is to prepare several tubes containing serial dilutions of the antibiotic, that are then inoculated with the bacterial isolate of interest. The MIC of an antibiotic can be determined from the tube with the lowest concentration that shows no turbidity (no growth).
- The term “MIC50” refers to the lowest concentration of antibiotic required to inhibit the growth of 50% of the bacterial strains tested within a given bacterial species.
- The term “MIC90” refers to the lowest concentration of antibiotic required to inhibit the growth of 90% of the bacterial strains tested within a given bacterial species.
- The term “OPT-80” refers to a preparation containing R-Tiacumicin B and Tiacumicin B related compounds (including, but not limited to, Tiacumicins, Lipiarmycin A4 and C-19 Ketone). Preparations of this type are described in detail in PCT application PCT/US03/21977, having an international publication number of WO 2004/014295 A2 and which preparations and are incorporated here by reference.
- The term “ORTEP” refers to the Oak Ridge Thermal Ellipsoid Plot computer program, written in Fortran, for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids, derived from anisotropic temperature factor parameters, on the atomic sites. The program also produces stereoscopic pairs of illustrations which aid in the visualization of complex arrangements of atoms and their correlated thermal motion patterns.
- The term “PAE” or “post-antibiotic effect” refers to a well-established pharmacodynamic parameter that reflects the persistent suppression of bacterial growth following antibiotic exposure.
- The term “patient” refers to a human or animal in need of medical treatment. For the purposes of this invention, human patients are typically institutionalized in a primary medical care facility such as a hospital or nursing home. However, treatment of a disease associated with the use of antibiotics or cancer chemotherapies or antiviral therapies can occur on an outpatient basis, upon discharge from a primary care facility, or can be prescribed by a physician for home-care, not in association with a primary medical care facility Animals in need of medical treatment are typically in the care of a veterinarian.
- The term “pharmaceutically acceptable carrier” refers to a carrier or diluent that is pharmaceutically acceptable.
- The term “pharmaceutically acceptable salts” refers to those derived from pharmaceutically acceptable inorganic and organic bases. Salts derived from appropriate bases include alkali metal (e.g., sodium or potassium), alkaline earth metal (e.g., magnesium), ammonium and N(C1-C4 alkyl)4 + salts, and the like. Illustrative examples of some of these include sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate, and the like. The term “pharmaceutically acceptable salt” also refers to salts prepared from pharmaceutically acceptable non-toxic acids, including inorganic acids and organic acids. Suitable non-toxic acids include inorganic and organic acids such as, but not limited to, acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, gluconic, glutamic, glucorenic, galacturonic, glycidic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, propionic, phosphoric, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, p-toluenesulfonic and the like. Particularly preferred are hydrochloric, hydrobromic, phosphoric, and sulfuric acids, and most particularly preferred is the hydrochloride salt.
- The term “pharmaceutical composition” refers to a composition of the R-Tiacumicin described herein, or physiologically acceptable salts thereof, with other chemical components, such as physiologically acceptable carriers and/or excipients. The purpose of a pharmaceutical composition is to facilitate administration of a compound to a mammal, including humans.
- The term “physiologically acceptable carrier” refers to a carrier or diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the administered compound.
- As used herein, and unless otherwise indicated, the term “prodrug” means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide the compound. Examples of prodrugs include, but are not limited to, compounds that comprise biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. Other examples of prodrugs include compounds that comprise —NO, —NO2, —ONO, or —ONO2 moieties. When used to describe a compound of the invention, the term “prodrug” may also to be interpreted to exclude other compounds of the invention for example racemates.
- The term “pseudomembranous colitis” or “enteritis” refers to the formation of pseudomembranous material (i.e., material composed of fibrin, mucous, necrotic epithelial cells and leukocytes) due to inflammation of the mucous membrane of both the small and large intestine.
- The terms “R” and “S” configuration, as used herein, are as defined by the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem. (1976) 45, 13-30. Chiral molecules can be named based on the atomic numbers of the atoms or groups of atoms, the ligands that are attached to the chiral center. The ligands are given a priority (the higher the atomic number the higher the priority) and if the priorities increase in a clockwise direction, they are said to be R-. Otherwise, if they are prioritized in a counterclockwise direction they are said to be S-.
- The term “R-Tiacumicin B” refers to the optically pure (R)-isomer of Tiacumicin B with an (R)-hydroxy group at C-19, as shown below in Formula IV:
- The term “S-Tiacumicin B” refers to the optically pure (S)-isomer of Tiacumicin B with an (S)-hydroxy group at C-19, as shown below in Formula V:
- The term “stereoisomers” refers to compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial arrangement.
- As used herein, and unless otherwise indicated, the terms “optically pure,” “stereomerically pure,” and “substantially stereomerically pure” are used interchangeably and mean one stereoisomer of a compound or a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomer(s) of that compound. For example, a stereomerically pure compound or composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound. A stereomerically pure compound or composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
- The term “sugar” generally refers to mono-, di- or oligosaccharides. A saccharide may be substituted, for example, glucosamine, galactosamine, acetylglucose, acetylgalactose, N-acetylglucosamine, N-acetyl-galactosamine, galactosyl-N-acetylglucosamine, N-acetylneuraminic acid (sialic acid), etc., as well as sulfated and phosphorylated sugars. For the purposes of this definition, the saccharides are in their pyranose or furanose form.
- The term “Tiacumicin” as used herein refers to a family of compounds all of which comprise the 18-membered macrocycle shown below in Formula I:
- The term “Tiacumicin B” as used herein refers to the 18-membered macrocycle shown below in Formula VI:
- The term “yield” as used herein refers to an amount of crude Tiacumicin re-constituted in methanol to the same volume as the original fermentation broth. Yield is determined using standard HPLC techniques. Yield is reported in units of mg/L.
- This invention encompasses the composition of novel antibiotic agents, Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis. The production method is covered by WO 2004/014295 A2.
- The present invention relates to new antibacterial compositions containing R-Tiacumicins, specifically the R-Tiacumicin B (which has an R-hydroxyl at C-19), and to the use of these new compositions in combination with existing drugs to treat infections caused by gram-positive anerobes.
- The present invention further relates to stereoisomerically pure Tiacumicin B, which contains 90-100% of the R-stereoisomer, preferably at least 93% of the R-stereoisomer, more preferably 95% of the R-stereoisomer, even more preferably 99% of the R-stereoisomer.
- In accordance with the present invention there are provided compounds with the structure of Formula VII:
- wherein:
X is selected from lower alkyl, and wherein the term “lower alkyl” as used herein refers to branched or straight chain alkyl groups comprising one to two carbon atoms, including methyl, ethyl, n-propyl, isopropyl, and the like; and
Y is selected from OH or a ketone (═O); and
Z is selected from H or lower alkyl, and wherein the term “lower alkyl” as used herein refers to branched or straight chain alkyl groups comprising one to five carbon atoms, including methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, and the like. - Preferred compounds of the invention are compounds of Formula VII wherein X is methyl or ethyl, Y is ketone (═O) or OH and Z is isopropyl.
- More preferred compounds of the invention are the compound of the Formula VII wherein X is ethyl, Y is ketone (═O) or OH and Z is isopropyl.
- The most preferred compounds of the invention are the compounds of Formula VII wherein X is ethyl, Y is OH R and Z is isopropyl.
- One embodiment of the present invention is directed towards the discovery that the chiral center at C-19 of Tiacumicin B has great effect on biological activity. It has now been discovered that R-Tiacumicin B, which has an R-hydroxy group at C-19 has significantly higher activity than the S-Tiacumicin B and other Tiacumicin B related compounds (Lipiarmycin A4 and C-19 Ketone). The higher activity is shown by much lowered MIC values, which can be seen below in Example 3, Tables 3 and 4 for several strains of C. difficile, S. aureus, E. faecalis, and E. faecium. This effect of the C-19 chiral center on biological activity is an unexpected and novel discovery.
- In another embodiment of the present invention OPT-80 (which is composed almost entirely of the R-Tiacumicin B) has an unusually long post-antibiotic effect (PAE). This is discussed below in Example 4, where it is shown that OPT-80 has a PAE of greater than 24 hours. This PAE is unexpectedly longer than the usual antibiotic PAE of 1-5 hours.
- The present invention also relates to the disclosure of pharmaceutical compositions, which comprise a compound of the present invention in combination with a pharmaceutically acceptable carrier.
- Yet another aspect of the invention discloses a method of inhibiting or treating bacterial infections in humans, comprising administering to the patient a therapeutically effective amount of a compound of the invention alone or in combination with another antibacterial or antifungal agent.
- The 18-membered macrocycles and analogs thereof are produced by fermentation. Cultivation of Dactylosporangium aurantiacum subsp. hamdenensis AB 718C-41 NRRL 18085 for the production of the Tiacumicins is carried out in a medium containing carbon sources, inorganic salts and other organic ingredients with one or more absorbents under proper aeration conditions and mixing in a sterile environment.
- The microorganism to produce the active antibacterial agents was identified as belonging to the family Actinoplanaceae, genus Dactylosporangium (J. of Antibiotics, 1987, 40: 567-574 and U.S. Pat. No. 4,918,174). It has been designated Dactylasporangium aurantiacum subspecies hamdenensis 718C-41. The subculture was obtained from the ARS Patent Collection of the Northern Regional Research Center, United States Department of Agriculture, 1815 North University Street, Peoria, Ill. 61604, U.S.A., where it was assigned accession number NRRL 18085. The characteristics of strain AB 718C-41 are given in the Journal of Antibiotics, 1987, 40: 567-574 and U.S. Pat. No. 4,918,174.
- Methods of isolating stereomerically pure isomers are known in the art. Methods of isolating stereomerically pure R-Tiacumicin include, but are not limited to, recrystallization of the crude mixture in solvents including, aqueous methanol or isopropanol and chiral HPLC.
- This invention encompasses the composition of novel antibiotic agents, Tiacumicins, by submerged aerobic fermentation of the microorganism Dactylosporangium aurantiacum subspecies hamdenensis. The production method is covered by WO 2004/014295 A2, which is hereby incorporated by reference.
- Pharmaceutical compositions of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin), according to the invention may be formulated to release an antibiotic substantially immediately upon administration or at any predetermined time or time period after administration.
- The latter types of compositions are generally known as modified release formulations, which include formulations that create a substantially constant concentration of the drug within the intestinal tract over an extended period of time, and formulations that have modified release characteristics based on temporal or environmental criteria as described in Modified-Release Drug Delivery Technology, ed. M. J. Rathbone, J. Hodgraft and M. S. Roberts. Marcel Dekker, Inc. New York.
- Any oral biologically-acceptable dosage form, or combinations thereof, can be employed in the methods of the invention. Examples of such dosage forms include, without limitation, chewable tablets, quick dissolve tablets, effervescent tablets, reconstitutable powders, elixirs, liquids, suppositories, creams, solutions, suspensions, emulsions, tablets, multi-layer tablets, bi-layer tablets, capsules, soft gelatin capsules, hard gelatin capsules, osmotic tablets, osmotic capsules, caplets, lozenges, chewable lozenges, beads, powders, granules, particles, microparticles, dispersible granules, ingestibles, infusions, health bars, confections, animal feeds, cereals, cereal coatings, foods, nutritive foods, functional foods and combinations thereof. The preparation of any of the above dosage forms is well known to persons of ordinary skill in the art. Additionally, the pharmaceutical formulations may be designed to provide either immediate or controlled release of the antibiotic upon reaching the target site. The selection of immediate or controlled release compositions depends upon a variety of factors including the species and antibiotic susceptibility of Gram-positive bacteria being treated and the bacteriostatic/bactericidal characteristics of the therapeutics. Methods well known in the art for making formulations are found, for example, in Remington: The Science and Practice of Pharmacy (20th ed.), ed. A. R. Gennaro, 2000, Lippincott Williams & Wilkins, Philadelphia, or in Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York.
- Immediate release formulations for oral use include tablets or capsules containing the active ingredient(s) in a mixture with non-toxic pharmaceutically acceptable excipients. These excipients may be, for example, inert diluents or fillers (e.g., sucrose, sorbitol, sugar, mannitol, microcrystalline cellulose, starches including potato starch, calcium carbonate, sodium chloride, lactose, calcium phosphate, calcium sulfate, or sodium phosphate); granulating and disintegrating agents (e.g., cellulose derivatives including microcrystalline cellulose, starches including potato starch, croscarmellose sodium, alginates, or alginic acid); binding agents (e.g., sucrose, glucose, mannitol, sorbitol, acacia, alginic acid, sodium alginate, gelatin, starch, pregelatinized starch, microcrystalline cellulose, magnesium aluminum silicate, carboxymethylcellulose sodium, methylcellulose, hydroxypropyl methylcellulose, ethylcellulose, polyvinylpyrrolidone, or polyethylene glycol); and lubricating agents, glidants, and antiadhesives (e.g., magnesium stearate, zinc stearate, stearic acid, silicas, hydrogenated vegetable oils, or talc). Other pharmaceutically acceptable excipients can be colorants, flavoring agents, plasticizers, humectants, buffering agents, and the like as are found, for example, in The Handbook of Pharmaceutical Excipients, third edition, edited by Arthur H. Kibbe, American Pharmaceutical Association Washington D.C.
- Dissolution or diffusion controlled release can be achieved by appropriate coating of a tablet, capsule, pellet, or granulate formulation of compounds, or by incorporating the compound into an appropriate matrix. A controlled release coating may include one or more of the coating substances mentioned above and/or, e.g., shellac, beeswax, glycowax, castor wax, carnauba wax, stearyl alcohol, glyceryl monostearate, glyceryl distearate, glycerol palmitostearate, ethylcellulose, acrylic resins, dl-polylactic acid, cellulose acetate butyrate, polyvinyl chloride, polyvinyl acetate, vinyl pyrrolidone, polyethylene, polymethacrylate, methylmethacrylate, 2-hydroxymethacrylate, methacrylate hydrogels, 1,3 butylene glycol, ethylene glycol methacrylate, and/or polyethylene glycols. In a controlled release matrix formulation, the matrix material may also include, e.g., hydrated methylcellulose, carnauba wax and stearyl alcohol, carbopol 934, silicone, glyceryl tristearate, methyl acrylate-methyl methacrylate, polyvinyl chloride, polyethylene, and/or halogenated fluorocarbon.
- A controlled release composition may also be in the form of a buoyant tablet or capsule (i.e., a tablet or capsule that, upon oral administration, floats on top of the gastric content for a certain period of time). A buoyant tablet formulation of the compound(s) can be prepared by granulating a mixture of the antibiotic with excipients and 20-75% w/w of hydrocolloids, such as hydroxyethylcellulose, hydroxypropylcellulose, or hydroxypropyl-methylcellulose. The obtained granules can then be compressed into tablets. On contact with the gastric juice, the tablet forms a substantially water-impermeable gel barrier around its surface. This gel barrier takes part in maintaining a density of less than one, thereby allowing the tablet to remain buoyant in the gastric juice. Other useful controlled release compositions are known in the art (see, for example, U.S. Pat. Nos. 4,946,685 and 6,261,601).
- A modified release composition may be comprised of a compression-coated core whose geometric configuration controls the release profile of the encapsulated antibiotic. By varying the geometry of the core, the profile of the antibiotic release can be adjusted to follow zero order, first order or a combination of these orders. The system can also be designed to deliver more beneficial agents at the same time, each having a different release profile (see, for example U.S. Pat. Nos. 4,111,202 and 3,279,995).
- Formulations that target the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin), that release to particular regions of the intestinal tract can also be prepared. The Tiacumicin compounds of the present invention, specifically OPT-80, can be encapsulated in an enteric coating that prevents release degradation and release from occurring in the stomach, but dissolves readily in the mildly acidic or neutral pH environment of the small intestine. A formulation targeted for release of antibiotic to the colon, utilizing technologies such as time-dependent, pH-dependent, or enzymatic erosion of polymer matrix or coating can also be used.
- The targeted delivery properties of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), containing formulation may be modified by other means. For example, the antibiotic may be complexed by inclusion, ionic association, hydrogen bonding, hydrophobic bonding, or covalent bonding. In addition polymers or complexes susceptible to enzymatic or microbial lysis may also be used as a means to deliver drug.
- Microsphere encapsulation of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), is another useful pharmaceutical formulation for targeted antibiotic release. The antibiotic-containing microspheres can be used alone for antibiotic delivery, or as one component of a two-stage release formulation. Suitable staged release formulations may consist of acid stable microspheres, encapsulating the compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), to be released later in the lower intestinal tract admixed with an immediate release formulation to deliver antibiotic to the stomach and upper duodenum.
- Microspheres can be made by any appropriate method, or from any pharmaceutically acceptable material. Particularly useful are proteinoid microspheres (see, for example, U.S. Pat. No. 5,601,846, or 5,792,451) and PLGA-containing microspheres (see, for example, U.S. Pat. No. 6,235,224 or 5,672,659). Other polymers commonly used in the formation of microspheres include, for example, poly-ε-caprolactone, poly(e˜caprolactone-Co-DL-lactic acid), poly(DL-lactic acid), poly(DL-lactic acid-Co-glycolic acid) and poly(s-caprolactone-Co-glycolic acid) (see, for example, Pitt et al., J. Pharm. Sci., 68:1534, 1979). Microspheres can be made by procedures well known in the art including spray drying, coacervation, and emulsification (see for example Davis et al. Microsphere and Drug Therapy, 1984, Elsevier; Benoit et al. Biodegradable Microspheres: Advances in Production Technologies, Chapter 3, ed. Benita, S, 1996, Dekker, New York; Microencapsulation and Related Drug Processes, Ed. Deasy, 1984, Dekker, New York; U.S. Pat. No. 6,365,187).
- Powders, dispersible powders, or granules suitable for preparation of aqueous solutions or suspensions of the Tiacumicin compounds of the present invention, specifically OPT-80 (which is composed almost entirely of the R-Tiacumicin B), by addition of water are convenient dosage forms for oral administration. Formulation as a suspension provides the active ingredient in a mixture with a dispersing or wetting agent, suspending agent, and one or more preservatives. Suitable dispersing or wetting agents are, for example, naturally-occurring phosphatides (e.g., lecithin or condensation products of ethylene oxide with a fatty acid, a long chain aliphatic alcohol, or a partial ester derived from fatty acids) and a hexitol or a hexitol anhydride (e.g., polyoxyethylene stearate, polyoxyethylene sorbitol monooleate, polyoxyethylene sorbitan monooleate, and the like). Suitable suspending agents are, for example, sodium carboxymethylcellulose, methylcellulose, sodium alginate, and the like.
- The following examples are provided by way of describing specific embodiments of the present invention without intending to limit the scope of the invention in any way.
- The exact structure of the R-Tiacumicin B (the major most active component of OPT-80) is shown below in Formula IV. The X-ray crystal structure of the R-Tiacumicin B was obtained from a colorless, parallelepiped-shaped crystal (0.08×0.14×0.22 mm) grown in methanol and is shown as an ORTEP diagram in
FIG. 1 . This x-ray structure confirms the structure shown below in Formula IV. The official chemical name is 3-[[[6-Deoxy-4-O-(3,5-dichloro-2-ethyl-4,6-dihydroxybenzoyl)-2-O-methyl-β-D-mannopyranosyl]oxy]-methyl]-12(R)-[[6-deoxy-5-C-methyl-4-O-(2-methyl-1-oxopropyl)-β-D-lyxo-hexopyranosyl]oxy]-11(S)-ethyl-8(5)-hydroxy-18(5)-(1(R)-hydroxyethyl)-9,13,15-trimethyloxacyclooctadeca-3,5,9,13,15-pentaene-2-one. - The analytical data of OPT-80 (which is composed almost entirely of the R-Tiacumicin B, which is the most active component of OPT-80) and three related compounds (S-Tiacumicin B, Lipiarmycin A4, and C-19 ketone) are summarized below. The structures of these compounds are shown in Formula VIII and Table 2 below.
- mp 166-169° C. (white needle from isopropanol);
- [α]D 20 −6.9 (c 2.0, MeOH);
- MS m/z (ESI) 1079.7 (M+Na)+;
- 1H 1H NMR NMR (400 MHz, CD3OD) δ 7.21 (d, 1H), 6.59 (dd, 1H), 5.95 (ddd, 1H), 5.83 (br s, 1H), 5.57 (t, 1H), 5.13 (br d, 1H), 5.09 (t, 1H), 5.02 (d, 1H), 4.71 (m, 1H), 4.71 (br s, 1H), 4.64 (br s, 1H), 4.61 (d, 1H), 4.42 (d, 1H), 4.23 (m, 1H), 4.02 (pentet, 1H), 3.92 (dd, 1H), 3.73 (m, 2H), 3.70 (d, 1H), 3.56 (s, 3H), 3.52-3.56 (m, 2H), 2.92 (m, 2H), 2.64-2.76 (m, 3H), 2.59 (heptet, 1H), 2.49 (ddd, 1H), 2.42 (ddd, 1H), 2.01 (dq, 1H), 1.81 (s, 3H), 1.76 (s, 3H), 1.65 (s, 3H), 1.35 (d, 3H), 1.29 (m, 1H), 1.20 (t, 3H), 1.19 (d, 3H), 1.17 (d, 3H), 1.16 (d, 3H), 1.14 (s, 3H), 1.12 (s, 3H), 0.87 (t, 3H);
- 13C NMR (100 MHz, CD3OD) δ 178.4, 169.7, 169.1, 154.6, 153.9, 146.2, 143.7, 141.9, 137.1, 137.0, 136.4, 134.6, 128.5, 126.9, 125.6, 124.6, 114.8, 112.8, 108.8, 102.3, 97.2, 94.3, 82.5, 78.6, 76.9, 75.9, 74.5, 73.5, 73.2, 72.8, 71.6, 70.5, 68.3, 63.9, 62.2, 42.5, 37.3, 35.4, 28.7, 28.3, 26.9, 26.4, 20.3, 19.6, 19.2, 18.7, 18.2, 17.6, 15.5, 14.6, 14.0, 11.4.
-
- NaBH4 (9 eq, 48 mg) was added in three portions to a solution of C-19 Ketone (150 mg) in 3 mL MeOH. After 1 h, saturated NH4Cl solution was added. The mixture was extracted with CHCl3, and then concentrated. S-Tiacumicin B was purified by YMC-pack ODS-A 75×30 mm I.D. column (H2O:MeOH:AcOH 28:72:1) yielding pure 35 mg of pure S-Tiacumicin B.
- MS m/z 1074.5 (M+NH4)+;
- 1HNMR (400 MHz, CDCl3) δ 7.15 (d, J=11.4 Hz, 1H), 6.58 (dd, J=14.1, 11.4 Hz, 1H), 5.82 (ddd, J=14.1, 10.6, 3.5 Hz, 1H), 5.78 (s, 1H), 5.40 (dd, J=7.8, 7.8 Hz, 1H), 5.15 (dd, J=9.5, 9.5 Hz, 1H), 5.01 (d, J=9.9 Hz, 1H), 5.01 (d, J=9.9 Hz, 1H), 4.77 (ddd, J=5.8, 5.3, 5.3 Hz, 1H), 4.68 (d, J=11.6 Hz, 1H), 4.65 (br s, 1H), 4.62 (br s, 1H), 4.42 (d, J=11.6 Hz, 1H), 4.28 (br s, 1H), 4.07-3.97 (m, 2H), 3.74-3.58 (m, 4H), 3.61 (s, 3H), 3.52 (dq, J=9.5, 5.8 Hz, 1H), 3.08 (dq, J=12.6, 6.1 Hz, 1H), 3.01 (dq, J=12.6, 6.1 Hz, 1H), 2.77-2.65 (m, 2H), 2.60 (heptet, J=6.9 Hz, 1H), 2.55-2.44 (m, 3H), 1.95-1.84 (m, 1H), 1.80 (s, 3H), 1.76 (s, 3H), 1.66 (s, 3H), 1.34 (d, J=5.8 Hz, 3H), 1.29-1.24 (m, 1H), 1.27 (d, J=6.6 Hz, 3H), 1.21 (t, J=6.1 Hz, 3H), 1.19 (d, J=6.9 Hz, 3H), 1.18 (d, J=6.9 Hz, 3H), 1.15 (s, 3H), 1.10 (s, 3H), 0.84 (t, J=7.2 Hz, 3H);
- 13C NMR (100 MHz, CDCl3) δ 177.4, 170.1, 168.8, 157.6, 152.8, 144.4, 143.1, 141.1, 136.7, 136.2, 134.9, 133.8, 128.7, 125.7, 125.2, 123.0, 113.9, 107.5, 107.2, 101.7, 94.9, 92.6, 80.8, 79.2, 76.6, 74.8, 73.5, 72.7, 71.9, 71.7, 70.2, 70.1, 69.5, 63.5, 62.3, 41.5, 36.6, 34.3, 29.5, 28.2, 26.2, 26.0, 19.4, 19.3, 18.9, 18.5, 17.8, 17.3, 15.3, 14.1, 13.7, 11.1;
- MS m/z 1060.5 (M+NH4)+;
- 1H NMR (400 MHz, CDCl3) δ 7.12 (d, J=11.6 Hz, 1H), 6.59 (dd, J=14.1, 11.6 Hz, 1H), 5.85 (br s, 1H), 5.83 (ddd, J=14.1, 10.6, 4.8 Hz, 1H), 5.47 (dd, J=8.3, 8.3 Hz, 1H), 5.12 (dd, J=9.6, 9.6 Hz, 1H), 5.00 (d, J=10.1 Hz, 1H), 4.98 (br d, J=10.6 Hz, 1H), 4.75-4.69 (m, 1H), 4.68 (d, J=11.4 Hz, 1H), 4.66 (br s, 1H), 4.62 (br s, 1H), 4.40 (d, J=11.4 Hz, 1H), 4.26 (br s, 1H), 4.07-4.00 (m, 1H), 4.02 (br d, J=3.3 Hz, 1H), 3.75-3.61 (m, 4H), 3.62 (s, 3H), 3.55 (dq, J=9.6, 6.1 Hz, 1H), 2.82-2.45 (m, 6H), 2.60 (s, 3H), 2.07-1.97 (m, 1H), 1.92 (s, 3H), 1.81 (s, 3H), 1.67 (s, 3H), 1.32 (d, J=6.1 Hz, 3H), 1.30-1.22 (m, 1H), 1.21 (d, J=6.6 Hz, 3H), 1.19 (d, J=7.1 Hz, 3H), 1.18 (d, J=7.1 Hz, 3H), 1.15 (s, 3H), 1.10 (s, 3H), 0.83 (t, J=7.2 Hz, 3H);
- 13C NMR (100 MHz, CDCl3) δ 177.4, 170.5, 168.9, 157.8, 153.0, 144.3, 140.9, 137.7, 137.0, 136.3, 134.6, 134.4, 129.1, 127.9, 125.3, 123.2, 114.5, 107.4, 107.0, 101.8, 94.7, 92.5, 80.3, 79.6, 76.7, 74.9, 73.5, 72.7, 71.9, 71.6, 70.2, 70.1, 69.1, 63.6, 62.3, 41.9, 36.9, 34.4, 28.8, 28.2, 25.9, 20.0, 19.3, 19.0, 18.6, 18.5, 17.8, 17.2, 15.5, 13.8. 11.2;
- MS m/z 1072.5 (M+NH4)+;
- 1H NMR (400 MHz, CDCl3) δ 7.27 (d, J=11.4 Hz, 1H), 6.61 (dd, J=14.7, 11.4 Hz, 1H), 5.91 (ddd, J=14.7, 9.1, 5.8 Hz, 1H), 5.83 (s, 1H), 5.31 (dd, J=7.9, 7.9 Hz, 1H), 5.14 (dd, J=9.7, 9.7 Hz, 1H), 5.06 (d, J=10.6 Hz, 1H), 5.00 (d, J=10.1 Hz, 1H), 4.98 (dd, J=7.1, 4.8 Hz, 1H), 4.67 (d, J=11.9 Hz, 1H), 4.66 (br s, 1H), 4.61 (br s, 1H), 4.42 (d, J=11.9 Hz, 1H), 4.30 (br s, 1H), 4.02 (br d, J=3.3 Hz, 1H), 3.63-3.60 (m, 4H), 3.62 (s, 3H), 3.51 (dq, J=9.7, 6.1 Hz, 1H), 3.09 (dq, J=14.4, 7.3 Hz, 1H), 3.03 (dq, J=14.4, 7.3 Hz, 1H), 2.76-2.50 (m, 6H), 2.21 (s, 3H), 1.93-1.87 (m, 1H), 1.87 (s, 3H), 1.75 (s, 3H), 1.63 (s, 3H), 1.32 (d, J=6.1 Hz, 3H), 1.27-1.22 (m, 1H), 1.21 (t, J=7.3 Hz, 3H), 1.19 (d, J=7.1 Hz, 3H), 1.18 (d, J=7.1 Hz, 3H), 1.14 (s, 3H), 1.10 (s, 3H), 0.84 (t, J=7.3 Hz, 3H);
- 13C NMR (100 MHz, CDCl3) δ 205.5, 177.4, 170.1, 166.9, 157.6, 152.8, 145.7, 143.1, 142.0, 137.1, 136.8, 135.5, 133.7, 128.3, 124.8, 124.0, 122.8, 113.9, 107.3, 107.2, 101.3, 94.8, 92.4, 80.4, 77.7, 76.6, 74.7, 73.5, 72.6, 71.8, 71.7, 70.2, 70.0, 63.0, 62.3, 41.5, 36.5, 34.3, 29.6, 28.1, 26.2, 26.1, 26.0, 19.2, 18.9, 18.5, 17.8, 17.3, 15.2, 14.0, 13.3, 11.0
- OPT-80 (which is composed almost entirely of the R-Tiacumicin B) and its related compounds were tested against C. difficile. The MIC values are reported below in Table 3. OPT-80 was surprisingly active when compared to its enantiomer S-Tiacumicin B and Lipiarmycin A4.
-
TABLE 3 MIC (μg/ml) versus C. difficile strains R-Tiacumicin B (>90% C. difficile Stereomerically Lipiarmycin C-19 strains Pure) S-Tiacumicin B A4 Ketone ATCC 9689 0.03 0.125 0.06 0.06 ATCC 43255 0.125 1 0.5 0.5 ATCC 17857 0.03 0.25 0.06 nd LC # 1 (Clinical 0.125 1 0.5 0.5 isolate) - OPT-80 (which is composed almost entirely of the R-Tiacumicin B) and its related compounds were tested against several other pathogens. The MIC values are reported below in Table 4. OPT-80 was surprisingly active when compared to S-Tiacumicin B and Lipiarmycin A4.
-
TABLE 4 MIC (μg/ml) against other microorganisms R-Tiacumicin B (>90% Strain Stereomerically Lipiarmycin ID # Organism Pure) S- Tiacumicin B A4 1 S. aureus 4 64 8 (ATCC 29213) 2 S. aureus, (MRSA) 4 64 16 3 S. aureus, (MRSA) 4 64 8 4 E. faecalis 2 8 2 (ATCC 29212) 5 E. faecalis 4 32 16 Vanc. resistant 6 E. faecalis 1 16 4 Vanc. resistant 7 E. faecium 1 8 4 Vanc. resistant 8 E. faecium 1 32 32 Vanc. resistant - The post-antibiotic effect (PAE) of OPT-80 (which is composed almost entirely of the R-Tiacumicin B) was measured versus two strains of C. difficile, ATCC 43255 and a clinical isolate, LC3. Vancomycin and rifampin were tested additionally versus LC3.
- The PAE at 4× the MIC was observed to be extremely long: greater than 24 hours, for both strains. Because of the long duration of this effect, an exact PAE was not calculated. Vancomycin, on the other hand, had a more normal PAE of less than an hour when used at 4× the MIC versus strain LC3.
- The in vitro efficacy of OPT-80 (which is composed almost entirely of the R-Tiacumicin B), metronidazole, and vancomycin were assessed versus 110 genetically distinct clinical isolates of C. difficile via agar dilution. The MIC data are presented in Tables 5 and 6.
-
TABLE 5 Geometric mean, MIC ranges, MIC50, and MIC90 values for OPT-80 against 110 C. difficile clinical isolates, vancomycin, and metronidazole, in μg/mL. Range Geometric Mean MIC50 MIC90 OPT-80 0.015-0.25 0.08 0.125 0.125 Metronidazole 0.025-0.5 0.15 0.125 0.25 Vancomycin 0.06-4 0.8 1 1 -
TABLE 6 Raw MIC data for OPT-80, vancomycin (VAN), and metronidazole (MTZ) versus 110 clinical isolates of C. difficile, in μg/mL. R-Tiacumicin B (>90% Stereomerically ORG ID Pure) MTZ VAN A1 1535 0.125 0.25 1 B1 832 0.06 0.125 1 D1 1360 0.03 0.25 1 E1 816 0.06 0.125 1 F1 1015 0.125 0.125 1 G1 1077 0.125 0.125 1 I1 1389 0.125 0.125 1 J1 5971 0.06 0.25 1 J7 4224 0.03 0.125 1 J9 4478 0.06 0.125 1 K1 4305 0.125 0.25 0.5 K14 5780 0.125 0.125 1 L1 1423 0.125 0.125 0.5 N1 471 0.125 0.125 0.5 O1 1861 0.06 0.125 1 R1 397 0.125 0.125 1 R6 6015 0.015 0.25 2 V1 1521 0.125 0.125 0.5 W1 3931 0.125 0.5 1 X1 1890 0.125 0.125 1 Y1 5639 0.06 0.125 0.5 Y2 1459 0.06 0.125 1 Z1 3036 0.03 0.125 1 AA2 4380 0.015 0.125 1 AB2 1725 0.06 0.125 1 AC1 1546 0.06 0.125 1 AF1 1808 0.125 0.125 0.5 AG1 3044 0.125 0.125 1 AH1 3430 0.125 0.25 0.5 AJ1 1557 0.06 0.125 1 AL1 1753 0.06 0.125 0.5 AN1 464 0.125 0.125 0.5 AO1 287 0.125 0.125 1 AS1 4099 0.125 0.125 1 AT1 1216 0.125 0.125 1 AV1 941 0.25 0.125 0.5 CJ1 893 0.125 0.025 1 AW1 4501 0.125 0.125 1 BE1 4307 0.125 0.25 1 BH1 4506 0.06 0.06 0.5 BI1 1675 0.125 0.125 1 BK1 4291 0.125 0.125 0.5 BL1 716 0.125 0.125 1 BM1 1453 0.06 0.125 1 BN1 1322 0.125 0.25 1 BR1 1321 0.06 0.125 1 BT1 706 0.06 0.125 1 BV1 1183 0.125 0.25 1 BW1 3130 0.125 0.125 1 BX1 4271 0.125 0.25 1 CN1 667 0.25 0.25 1 CB1 1584 0.25 0.125 1 CF1 5922 0.125 0.125 1 CG1 1566 0.125 0.125 1 CL1 3851 0.25 0.125 1 CO1 4652 0.25 0.125 1 CP1 5491 0.125 0.25 1 61 5930 0.03 0.25 1 63 6029 0.25 0.25 0.06 64 5940 0.125 0.25 1 65 5967 0.06 0.25 0.5 66 6366 0.015 0.125 0.5 67 6367 0.125 0.25 1 68 6368 0.03 0.125 0.06 69 6370 0.25 0.25 0.5 70 6376 0.125 0.25 2 71 6379 0.125 0.25 1 72 6380 0.125 0.25 2 73 6382 0.25 0.25 1 75 6388 0.125 0.125 0.5 76 6389 0.125 0.25 0.5 77 6390 0.06 0.125 1 78 6392 0.015 0.03 0.5 80 6327 0.125 0.125 0.5 81 6328 0.125 0.125 0.5 82 6329 0.06 0.03 0.5 83 6330 0.06 0.125 0.5 84 6331 0.125 0.25 0.5 85 6332 0.06 0.125 1 86 6333 0.03 0.125 0.5 87 6334 0.125 0.125 0.5 88 6335 0.125 0.25 0.5 89 6336 0.25 0.5 1 90 6338 0.125 0.125 1 91 6339 0.125 0.125 1 93 6341 0.125 0.125 1 94 6343 0.015 0.06 0.5 95 6347 0.125 0.125 1 96 6348 0.06 0.125 0.5 97 6349 0.25 0.125 1 98 6350 0.125 0.5 1 101 6354 0.015 0.06 1 102 6355 0.016 0.125 1 103 6068 0.06 0.125 1 104 6060 0.03 0.25 1 105 6071 0.03 0.125 0.5 106 6078 0.03 0.25 0.5 107 6079 0.06 0.125 0.5 109 6274 0.015 0.125 1 111 6279 0.03 0.125 1 112 6280 0.06 0.125 0.5 113 6304 0.06 0.125 1 114 386 0.06 0.125 4 115 5985 0.015 0.25 2 116 5702 0.06 0.125 1 117 6026 0.06 0.125 2 120 6057 0.03 0.25 1 121 6072 0.06 0.25 0.5 122 6111 0.25 0.25 0.5 100 6353 0.125 0.25 1 - The in vitro activity of OPT-80 was determined against 350 anaerobes. The experimental procedure for which is outlined in Antimicrobial Agents and Chemotherapy, 2004, 48: 4430-4434, which is hereby incorporated by reference in its entirety.
- All organisms, including the 21 C. difficile strains, were separate isolates and not clonally related. All quality-control gram-negative and -positive strains recommended by NCCLS were included with each run: in every case, results (where available) were in range.
- Results of MIC testing are presented in Table 7.
-
TABLE 7 MICs (μg/ml) of R-Tiacumicin B (>90% Stereomerically Pure) Organism MIC range MIC50 MIC90 Bacteroides fragilis (19) 64->128 >128 >128 Non-fragilis B. fragilis 64->128 >128 >128 group species (38) Prevotella/Porphyromonas 16->128 >128 >128 species (42) Fusobacterium nucleatum (14) 64->128 >128 >128 Fusobacterium mortiferum (10) 64->128 >128 >128 Fusobacterium species, 16->128 >128 >128 miscellaneous (14) Peptostreptococcus tetradius (16) 0.25-2.0 1.0 1.0 Peptostreptococcus 0.25-1.0 0.5 1.0 asaccharolyticus (15) Peptostreptococcus <0.016-0.03 <0.016 <0.016 anaerobius (15) Finegoldia magna (15) 0.25-2.0 1.0 1.0 Micromonas micros (14) <0.016-0.06 0.03 0.06 Peptostreptococcus prevotii (3) 0.25-1.0 NA NA Propionibacterium acnes (20) 0.5-1.0 4.0 4.0 Eggerthella lenta (10) <0.016-0.06 <0.016 <0.03 Miscellaneous gram-positive <0.016-16 <0.125 16 non-spore-forming rods (20) Clostridium perfringens (35) <0.016-0.06 <0.016 0.03 Clostridium difficile (21) <0.016-0.25 <0.016 0.125 Clostridium tertium (10) <0.016-0.06 <0.016 0.03 Clostridium species (19) <0.016-0.06 <0.016 0.03 Clostridium spp. (all) (85) <0.016-0.06 <0.016 0.06 - The in vitro activity of OPT-80 against intestinal bacteria was evaluated. The experimental procedure for which is outlined in Antimicrobial Agents and Chemotherapy, 2004, 48: 4898-4902, which is hereby incorporated by reference in its entirety.
- Antimicrobial concentration ranges were selected to encompass or surpass the levels that would be achieved in the gut (to the extent that this information is available), subject to the limitations of solubility of the drugs in the testing medium. The range of concentration of OPT-80 used during testing was 0.03 μg/ml to 1024 μg/ml.
- For analysis, the bacteria tested were generally placed into genus, species, or other groups with at least 10 isolates. The ranges and the MICs at which 50 and 90% of isolates were inhibited were determined except for organisms with fewer than 10 strains tested, for which only the ranges are reported (Table 8).
- OPT-80 had good activity against most anaerobic gram-positive non-spore-forming rods and anaerobic gram-positive cocci. OPT-80 also showed good activity against enterococci and staphylococci.
-
TABLE 8 In vitro activity of R-Tiacumicin B (>90% Stereomerically Pure) against 453 bacterial isolates Organism MIC range MIC50 MIC90 Bacteroides fragilis 256->1024 256 >1024 group spp. (50) Veillonella spp. (10) 16-128 32 128 Other anaerobic gram-negative 0.06-1024 1024 >1024 rods (51) All anaerobic gram-negative 0.06->1024 256 >1024 species (111) Clostridium bifermentans (9) 0.06 NA NA Clostridium bolteae (7) 1-64 NA NA Clostridium clostridioforme (4) 4-128 NA NA Clostridium difficile (23) 0.06-2 0.12 0.25 Clostridium glycolicum (9) 0.06-1 NA NA Clostridium innocuum (9) 32-128 NA NA Clostridium paraputrificum (8) 0.06-8 NA NA Clostridium perfringens (14) 0.06 0.062 0.062 Clostridium ramosum (10) 256-512 512 512 Clostridium sordellii (5) 0.06 NA NA Other clostridial species (9) 0.06->1024 NA NA All Clostridium species (107) 0.06->1024 0.062 128 Anaerobic non-spore-forming 0.06->1024 1 32 gram-positive rods (63) Anaerobic gram-positive 0.06->1024 0.5 2 cocci (49) All anaerobic gram-positive 0.06->1024 0.12 64 species (219) Streptococcus, formerly 16-64 32 32 S. milleri group (14) Other Streptococcus species (9) 16-128 NA NA Enterococcus species (21) 2.0-16 8 8 Staphylococcus aureus and 0.25-2 0.5 2 Staphylococcus epidermidis (19) Total for all strains (453) 0.06->1024 8 1024 - All references discussed above are herein incorporated by reference in their entirety for all purposes. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/838,634 US20130252913A1 (en) | 2005-01-31 | 2013-03-15 | 18-Membered Macrocycles and Analogs Thereof |
US16/154,373 US10583449B1 (en) | 2012-08-29 | 2018-10-08 | Fluid dispersion assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2005/002887 WO2006085838A1 (en) | 2005-01-31 | 2005-01-31 | 18-membered macrocycles and analogs thereof |
US11/882,219 US7906489B2 (en) | 2004-05-14 | 2007-07-31 | 18-membered macrocycles and analogs thereof |
US12/551,056 US8586551B2 (en) | 2005-01-31 | 2009-08-31 | 18-membered macrocycles and analogs thereof |
US13/838,634 US20130252913A1 (en) | 2005-01-31 | 2013-03-15 | 18-Membered Macrocycles and Analogs Thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/551,056 Continuation US8586551B2 (en) | 2005-01-31 | 2009-08-31 | 18-membered macrocycles and analogs thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/844,650 Continuation US9527094B1 (en) | 2012-08-29 | 2015-09-03 | Fluid dispersion assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130252913A1 true US20130252913A1 (en) | 2013-09-26 |
Family
ID=39887707
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/882,219 Active 2027-03-04 US7906489B2 (en) | 2004-05-14 | 2007-07-31 | 18-membered macrocycles and analogs thereof |
US12/551,056 Active 2026-07-14 US8586551B2 (en) | 2005-01-31 | 2009-08-31 | 18-membered macrocycles and analogs thereof |
US13/046,375 Abandoned US20110166090A1 (en) | 2005-01-31 | 2011-03-11 | 18-Membered Macrocycles and Analogs Thereof |
US13/838,634 Abandoned US20130252913A1 (en) | 2005-01-31 | 2013-03-15 | 18-Membered Macrocycles and Analogs Thereof |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/882,219 Active 2027-03-04 US7906489B2 (en) | 2004-05-14 | 2007-07-31 | 18-membered macrocycles and analogs thereof |
US12/551,056 Active 2026-07-14 US8586551B2 (en) | 2005-01-31 | 2009-08-31 | 18-membered macrocycles and analogs thereof |
US13/046,375 Abandoned US20110166090A1 (en) | 2005-01-31 | 2011-03-11 | 18-Membered Macrocycles and Analogs Thereof |
Country Status (1)
Country | Link |
---|---|
US (4) | US7906489B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9808530B2 (en) | 2013-01-15 | 2017-11-07 | Astellas Pharma Europe Ltd. | Composition of tiacumicin compounds |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2305245T3 (en) * | 2004-05-14 | 2019-05-31 | Merck Sharp & Dohme | Treatment of diseases associated with the use of antibiotics |
US7906489B2 (en) | 2004-05-14 | 2011-03-15 | Optimer Pharmaceuticals, Inc. | 18-membered macrocycles and analogs thereof |
US7378508B2 (en) * | 2007-01-22 | 2008-05-27 | Optimer Pharmaceuticals, Inc. | Polymorphic crystalline forms of tiacumicin B |
US20080176927A1 (en) * | 2007-01-19 | 2008-07-24 | Optimer Pharmaceuticals, Inc. | Compositions of stable tiacumicins |
TWI523654B (en) * | 2007-11-27 | 2016-03-01 | 默沙東藥廠 | Antibiotic macrocycle compounds and methods of manufacture and use thereof |
CA2799386A1 (en) * | 2010-05-18 | 2011-11-24 | Optimer Pharmaceuticals, Inc. | Treatment of clostridium difficile infection in patients undergoing antibiotic therapy |
MX2012013372A (en) * | 2010-05-18 | 2013-05-01 | Optimer Pharmaceuticals Inc | Methods of treating recurring bacterial infection. |
ZA201401683B (en) | 2013-03-08 | 2017-06-28 | Cipla Ltd | Pharmaceutical compositions for rectal administration |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060257981A1 (en) * | 2002-07-29 | 2006-11-16 | Optimer Pharmaceuticals, Inc. | Tiacumicin production |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1458512A (en) * | 1973-11-22 | 1976-12-15 | Lepetit Spa | Antibiotic substance |
US4918174A (en) * | 1986-09-26 | 1990-04-17 | Abbott Laboratories | Tiacumicin compounds |
US5583115A (en) * | 1995-05-09 | 1996-12-10 | Abbott Laboratories | Dialkyltiacumicin compounds |
US5767096A (en) | 1996-07-12 | 1998-06-16 | Abbott Laboratories | Bromotiacumicin compounds |
US20070105791A1 (en) | 2002-07-29 | 2007-05-10 | Optimer Pharmaceuticals, Inc. | Method of treating clostridium difficile-associated diarrhea |
PL2305245T3 (en) * | 2004-05-14 | 2019-05-31 | Merck Sharp & Dohme | Treatment of diseases associated with the use of antibiotics |
US7906489B2 (en) * | 2004-05-14 | 2011-03-15 | Optimer Pharmaceuticals, Inc. | 18-membered macrocycles and analogs thereof |
US7378508B2 (en) | 2007-01-22 | 2008-05-27 | Optimer Pharmaceuticals, Inc. | Polymorphic crystalline forms of tiacumicin B |
EP1848273A4 (en) | 2005-01-31 | 2010-02-24 | Optimer Pharmaceuticals Inc | 18-membered macrocycles and analogs thereof |
CN102503994A (en) | 2005-10-21 | 2012-06-20 | 奥普蒂姆药物公司 | Method of treating clostridium difficile-associated diarrhea |
US20080176927A1 (en) | 2007-01-19 | 2008-07-24 | Optimer Pharmaceuticals, Inc. | Compositions of stable tiacumicins |
ZA200905337B (en) | 2007-01-22 | 2010-10-27 | Optimer Pharmaceuticals Inc | Macrocyclic polymorphs, compositions comprising such polymorphs, and methods of use and manufacture thereof |
TWI523654B (en) | 2007-11-27 | 2016-03-01 | 默沙東藥廠 | Antibiotic macrocycle compounds and methods of manufacture and use thereof |
-
2007
- 2007-07-31 US US11/882,219 patent/US7906489B2/en active Active
-
2009
- 2009-08-31 US US12/551,056 patent/US8586551B2/en active Active
-
2011
- 2011-03-11 US US13/046,375 patent/US20110166090A1/en not_active Abandoned
-
2013
- 2013-03-15 US US13/838,634 patent/US20130252913A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060257981A1 (en) * | 2002-07-29 | 2006-11-16 | Optimer Pharmaceuticals, Inc. | Tiacumicin production |
Non-Patent Citations (1)
Title |
---|
Ansel, H.C., Allen, Jr., L.V., Popovich, N.G. (1999) Pharmaceutical Dosage Forms and Drug Delivery Systems, published by Lippincott Williams & Wilkins, p.120-128. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9808530B2 (en) | 2013-01-15 | 2017-11-07 | Astellas Pharma Europe Ltd. | Composition of tiacumicin compounds |
Also Published As
Publication number | Publication date |
---|---|
US7906489B2 (en) | 2011-03-15 |
US8586551B2 (en) | 2013-11-19 |
US20100009925A1 (en) | 2010-01-14 |
US20110166090A1 (en) | 2011-07-07 |
US20080269145A1 (en) | 2008-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8586551B2 (en) | 18-membered macrocycles and analogs thereof | |
AU2005327308B2 (en) | 18-membered macrocycles and analogs thereof | |
US8916527B2 (en) | Antibiotic macrocycle compounds and methods of manufacture and use thereof | |
JP6101010B2 (en) | Treatment of diseases associated with the use of antibiotics | |
KR101401658B1 (en) | Antibiotic consisting of ginsenoside compound K or derivatives thereof | |
AU2012200784B2 (en) | 18-membered macrocycles and analogs thereof | |
JP5825217B2 (en) | 18-membered macrocycle and similar compounds | |
CN106317206B (en) | Norvancomycin dimer derivative and preparation method and medicinal application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT, CANADA Free format text: SECURITY AGREEMENT;ASSIGNORS:OPTIMER PHARMACEUTICALS, INC.;TRIUS THERAPEUTICS INC.;REEL/FRAME:031628/0850 Effective date: 20131112 Owner name: ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT, CAN Free format text: SECURITY AGREEMENT;ASSIGNORS:OPTIMER PHARMACEUTICALS, INC.;TRIUS THERAPEUTICS INC.;REEL/FRAME:031628/0850 Effective date: 20131112 |
|
AS | Assignment |
Owner name: TRIUS THERAPEUTICS, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT;REEL/FRAME:036178/0175 Effective date: 20150707 Owner name: OPTIMER PHARMACEUTICALS, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA, AS ADMINISTRATIVE AGENT;REEL/FRAME:036178/0175 Effective date: 20150707 |
|
AS | Assignment |
Owner name: OPTIMER PHARMACEUTICALS LLC, NEW JERSEY Free format text: CHANGE OF NAME;ASSIGNOR:OPTIMER PHARMACEUTICALS, INC.;REEL/FRAME:036333/0793 Effective date: 20150611 |
|
AS | Assignment |
Owner name: MERCK SHARP & DOHME CORP., NEW JERSEY Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:OPTIMER PHARMACEUTICALS LLC;REEL/FRAME:036328/0122 Effective date: 20150728 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |