US20130207325A1 - Wet smelting plant for nickel oxide ore and method of operating the same - Google Patents
Wet smelting plant for nickel oxide ore and method of operating the same Download PDFInfo
- Publication number
- US20130207325A1 US20130207325A1 US13/639,788 US201113639788A US2013207325A1 US 20130207325 A1 US20130207325 A1 US 20130207325A1 US 201113639788 A US201113639788 A US 201113639788A US 2013207325 A1 US2013207325 A1 US 2013207325A1
- Authority
- US
- United States
- Prior art keywords
- feed
- facilities
- wet smelting
- unit
- facility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
- C22B23/0415—Leaching processes with acids or salt solutions except ammonium salts solutions
- C22B23/043—Sulfurated acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0453—Treatment or purification of solutions, e.g. obtained by leaching
- C22B23/0461—Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/02—Apparatus therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a wet smelting plant for nickel oxide ore and a method of operating the same. More specifically, the present invention relates to a wet smelting plant for nickel oxide ore which has multiple series of processing facilities and to a method of operating the same wherein, even when a trouble serious enough to interrupt the operation at a part of the processing facilities (referred to simply as a serious trouble hereinafter) occurs, a reduction in the quantity of processing caused by the serious trouble can be minimized.
- High-pressure acid leaching process with the use of sulfuric acid has been focused as a wet smelting method for nickel oxide ore.
- the process comprises a succession of wet smelting steps without any dry processing step such as a drying step or a roasting step and will thus be advantageous for energy and cost saving and simultaneously for producing a nickel/cobalt mixture sulfide of which the content of nickel is increased to substantially 50 to 60% by weight.
- the high pressure acid leaching process for producing such a nickel/cobalt mixture sulfide includes, for example as shown in FIG. 3 , a pre-process step ( 1 ), a leaching step ( 2 ), a solid/liquid separation step ( 3 ), a neutralization step ( 4 ), a dezincification step ( 5 ), a sulfurization step ( 6 ), and a purifying step ( 7 ).
- the pre-process step ( 1 ) shown in FIG. 3 nickel oxide ore is crushed and screened to have a slurry.
- the slurry produced at the pre-process step ( 1 ) is added with sulfuric acid and agitated at 220 to 280° C. for high-temperature high-pressure acid leaching thus to produce a leached slurry.
- the leached slurry produced at the leaching step ( 2 ) is subjected to solid/liquid separation to produce a leachate containing nickel and cobalt (referred to as crude nickel sulfate aqueous solution hereinafter) and a leached residue.
- the neutralization step ( 4 ) the crude nickel sulfate aqueous solution produced at the solid/liquid separation step ( 3 ) is neutralized.
- the dezincification step ( 5 ) the crude nickel sulfate aqueous solution neutralized at the neutralization step ( 4 ) is added with a hydrogen sulfide gas to produce a precipitate from which a zinc material is removed in the form of zinc sulfide.
- the dezincificated solution produced at the dezincification step ( 5 ) is added with a hydrogen sulfide gas to produce a nickel/cobalt mixture sulfide and a poor nickel liquid.
- the purifying step ( 7 ) the leached residue produced at the solid/liquid separation step ( 3 ) and the poor nickel liquid produced at the sulfurization step ( 6 ) are purified (See Patent Literature 1 for example).
- a wet smelting plant 100 for nickel oxide ore (referred to simply as a wet smelting plant hereinafter) includes, for example, two series of processing facilities, more particularly I-series processing facility and II-series processing facility.
- the two series processing facilities are composed of step operating facilities including pre-process units ( 1 a , 1 b ) for conducting the pre-process step ( 1 ), leaching units ( 2 a , 2 b ) for conducting the leaching step ( 2 ), solid/liquid separation units ( 3 a , 3 b ) for conducting the solid/liquid separation step ( 3 ), neutralization units ( 4 a , 4 b ) for conducting the neutralization step ( 4 ), dezincification units ( 5 a , 5 b ) for conducting the dezincification step ( 5 ), sulfurization units ( 6 a , 6 b ) for conducting the sulfurization step ( 6 ), and purifying units ( 7 a , 7 b ) for conducting the purifying step ( 7 ).
- pre-process units 1 a , 1 b
- leaching units 2 a , 2 b
- solid/liquid separation units 3 a , 3 b
- neutralization units 4 a , 4 b
- dezincification units 5
- the two series processing facilities also include, in addition to the above step operating facilities, utility feed facilities 8 a , 8 b which comprise boilers, water systems, and power systems as shown in FIG. 4 . Furthermore, the two series processing facilities include, as shown in FIG. 5 , hydrogen sulfide feed facilities 10 a , 10 b , neutralizer feed facilities 12 a , 12 b , flocculant feed facilities 14 a , 14 b , and piping systems such as liquid feed pipes which connect the step operating facilities one after another for conducting the prescribed steps.
- the utility feed facilities 8 a , 8 b , the hydrogen sulfide feed facilities 10 a , 10 b , the neutralizer feed facilities 12 a , 12 b , and the flocculant feed facilities 14 a , 14 b are referred to simply as feed facilities hereinafter.
- the step operating facilities in the I series are supplied with steam, water, and electric power from the utility feed facility 8 a while the step operating facilities of the II series are supplied with steam, water, and electric power from the utility feed facility 8 b .
- Amounts of hydrogen sulfide are fed from the hydrogen sulfide feed facilities 10 a , 10 b to the dezincification units 5 a , 5 b and the sulfurization units 6 a , 6 b .
- Amounts of a neutralizer are fed from the neutralizer feed facilities 12 a , 12 b to the neutralization units 4 a , 4 b and the purifying units 7 a , 7 b .
- Amounts of a flocculant are fed from the flocculant feed facilities 14 a , 14 b to the solid/liquid separation units 3 a , 3 b and the neutralization units 4 a , 4 b .
- the piping systems include hydrogen sulfide feed conduits 11 a , 11 b , neutralizer feed conduits 13 a , 13 b , and flocculant feed conduits 15 a , 15 .
- the wet smelting plant 100 is designed to prevent the load, which is received at a given level by each of the step operating facilities and other relevant facilities during the operation, from varying significantly. Also, the wet smelting plant 100 is adapted to avoid the sudden occurrence of any serious trouble through increasing the frequency of the periodical operation shutdown (or inspection) or extending the duration of the operation shutdown for conducting inspection services and, if desired, repairing the facilities.
- the wet smelting plant 100 is inevitable to be free from the occurrence of an unexpected trouble in any of the steps (in the process) and needed to temporally lower (i.e. ramp down) the load just after the troubled step.
- the wet smelting plant 100 is provided normally with an emergency storage vessel so as not to decline the quantity of processing after the ramping down.
- the emergency storage vessel can receive an excessive amount of the process fluid while the load at the steps prior to the troubled step remains unchanged or lowered.
- the load at the step is raised (i.e. ramped up) and repeatedly carry out the processing of the process fluid stored in the emergency storage vessel under the normal load. This will enable to achieve the target quantity of the processing throughout a quarter period or an annual period.
- Such a nearly emergent treatment action may be effected only when the duration of time required for restarting the wet smelting plant 100 is generally not longer than, for example, eight hours although depending on the size of the emergency storage vessel. However, if the duration of time required for restarting the wet smelting plant 100 is longer than eight hours, the process fluid stored in the emergency storage vessel reaches its maximum amount, thus resulting in canceling the entire operation.
- Another serious trouble which may occur in the sulfurization units 6 a , 6 b shown in FIGS. 4 and 5 is that a nickel/cobalt mixture sulfide produced in the sulfurization units 6 a , 6 b grows while being adhered as scales to the inner surface of a reactor container and will thus interrupt the action of the facilities or break down the facilities.
- the wet smelting plant 100 permits a lot of troubles including the above described or reference troubles to occur frequently because of the use of hard ore particles in the form of slurry and the fact inherent to the processing action that nickel/cobalt mixture sulfide is produced and easily adhered to the inner surface of the reactor container. Consequently, the operational efficiency of the wet smelting plant 100 remains not high in common practice.
- the requirement of time which is a sum of the duration of time required for lowering the temperature and the pressure to their normal levels and the duration of time required for raising back to their desired levels is as long as one day or two days (referred to as a preparation period hereinafter). More specifically, the leaching units 2 a , 2 b require a considerable length of the preparation period for discontinuing and restarting their action before restarting the entire action of the processing facilities.
- the preparation period is called once a month
- the operational efficiency will be declined by about 5% at a simple simulation provided that the working days are 30 days per month, as compared with the trouble-free continuous operation. Such a declination in the operational efficiency is a significant drawback in the actual operation.
- a demand for increasing the production of nickel/cobalt mixture sulfide through raising the quantity of processing the nickel oxide ore has been known.
- multiple series of the step operating facilities described above for carrying out the steps are introduced.
- the present invention is proposed in view of the above described problems of the prior art and its object is to provide a wet smelting plant for nickel oxide ore and a method of operating the same in which the wet smelting plant comprises two or more series of processing facilities and, when at least one of the feed facilities in each series including a utility feed facility, a hydrogen sulfide feed facility, a neutralizer feed facility, and a flocculant feed facility has a serious trouble, the reduction in the quantity of processing can be minimized.
- a wet smelting plant for nickel oxide ore comprising two or more series of processing facilities, wherein each processing facility including: a step operating facility having a pre-process unit, a leaching unit, a solid/liquid separation unit, a neutralization unit, a dezincification unit, a sulfurization unit and a purifying unit; a utility feed facility for feeding the pre-process unit, the leaching unit, the solid/liquid separation unit, the neutralization unit, the dezincification unit, the sulfurization unit and the purifying unit with the utility supplies including steam, water and electric power; a hydrogen sulfide feed facility for feeding the dezincification unit and the sulfurization unit with hydrogen sulfide; a flocculant feed facility for feeding the solid/liquid separation unit and the neutralization unit with a flocculant; and a neutralizer feed facility for feeding the neutralization unit and the purifying unit with a neutralizer; and connecting installations for providing connections between the utility feed facilities, between the hydrogen sulf
- the connecting installations are arranged for connecting between the feed facilities at the uppermost of supply paths along which the utility supplies, the hydrogen sulfide, the flocculant, and the neutralizer are fed from the feed facilities. It is further characterized in that the processing facilities of the two or more series are equal in the processing capability. It is still further characterized in that the number of the two or more series is two. It is still further characterized in that the connecting installation includes an opening and closing mechanism.
- a method of operating a wet smelting plant for nickel oxide ore according to the present invention is characterized in that the wet smelting plant for nickel oxide ore described is employed.
- the method of operating a wet smelting plant for nickel oxide according to the present invention is also characterized in that, in case that the action of at least one of the feed facilities in one series composed of the utility feed facility, the hydrogen sulfide feed facility, the flocculant feed facility, and the neutralizer feed facility is discontinued, the feed facilities in the other series are operated at a level higher than the normal operational efficiency while the processing facility of the one series is declined in the operational efficiency.
- the wet smelting plant for nickel oxide ore allows the feed facilities to be connected to each other by the connecting installation, the down time of the processing facilities can be minimized even when a serious trouble occurs in at least the feed facility in the processing facility of any series, thus minimizing the reduction in the quantity of processing. Accordingly, in the present invention, unless serious troubles occur at one time in the like feed facilities of the different series processing facilities, the action of the leaching units remains not interrupted and the operation of the wet smelting plant can be continued, thereby ensuring a minimum of reduction in the quantity of processing at the leaching step.
- Fig. is a schematic view schematically showing a wet smelting plant of the present invention.
- FIG. 2 is a schematic view schematically showing the wet smelting plant of the present invention
- FIG. 3 is a flow chart showing outline steps of a high pressure acid leach process
- FIG. 4 is a schematic view schematically showing a conventional wet smelting plant.
- FIG. 5 is a schematic view schematically showing the conventional wet smelting plant.
- the wet smelting plant according to the present invention comprises two or more series of processing facilities for carrying out a pre-process step, a leaching step, a solid/liquid separation step, a neutralization step, a dezincification step, a sulfurization step, and a purifying step. Since the wet smelting plant is composed of two or more series of the processing facilities, the quantity of processing a raw material or nickel oxide ore can be increased thus to raise the production of nickel/cobalt mixture sulfide.
- the wet smelting plant having two series of the processing facilities will be described in the form of an example.
- the wet smelting plant 20 comprises two series, I series and II series, of the processing facilities.
- the processing facilities include pre-process units ( 1 a , 1 b ), leaching units ( 2 a , 2 b ), solid/liquid separation units ( 3 a , 3 b ), neutralization units ( 4 a , 4 b ), dezincification units ( 5 a , 5 b ), sulfurization units ( 6 a , 6 b ), and purifying units ( 7 a , 7 b ) for carrying out the steps.
- the units in each of the processing facilities are denoted simply as the pre-process unit 1 , the leaching unit 2 , the solid/liquid separation unit 3 , the neutralization unit 4 , the dezincification unit 5 , the sulfurization unit 6 , and the purifying unit 7 unless otherwise explained separately in each of the processing facilities in more detail.
- the pre-process unit 1 is composed of a pre-process system such as a crusher, for example, for carrying out the pre-process step where the raw material or nickel oxide ore is crushed and screened to have a slurry.
- the nickel oxide ore may be, for example, a so-called laterite material such as limonite or saprolite.
- the leaching unit 2 conducts the leaching step where the slurry produced at the pre-process unit 1 is added with sulfuric acid, agitated at 220 to 280° C., and subjected to acid leaching under a high temperature and a high pressure thus to produce a leached slurry.
- the leaching unit 2 may be implemented by, for example, a high temperature pressurizing container (i.e. an autoclave).
- the action of the leaching unit 2 involves leaching of, for example, a sulfate of nickel and cobalt through the leaching reaction and the hydrolysis reaction under a high temperature and a high pressure, represented by the following expressions (1) to (5), and immobilizing the leachate as a hematite of iron sulfate.
- a liquid component of the leached slurry generally contains divalent and trivalent iron ions in addition to nickel and cobalt.
- M is selected from, for example, Ni, Co, Fe, Zn, Cu. Mg, Cr, and Mn.
- the solid/liquid separation unit 3 conducts the solid/liquid separation step where the leached slurry produced at the leaching unit 2 is subjected to solid/liquid separation for producing a leachate liquid (a crude nickel sulfate aqueous solution) which contains nickel and cobalt and a leaching residue.
- the solid/liquid separation step is advantageous of separating a nickel debris, which is adhered to the leaching residue and removed out, from the leached slurry produced at the leaching unit 2 and recovering the same in the crude nickel sulfate aqueous solution.
- the leached slurry is mixed with a rinsing liquid and subjected to the solid/liquid separation in a thickener, which is an implementation of the solid/liquid separation unit, using a flocculant supplied from the flocculant feed facilities 14 a , 14 b which will be described later.
- This action dilutes the leached slurry with the rinsing liquid so that the leaching residue is condensed and recovered as a precipitate in the thickener, whereby the remaining of nickel adhered to the leaching residue can be decreased depending on the degree of dilution.
- the flocculant may be, for example, an anion flocculating agent.
- the neutralization unit 4 is composed of, for example, a neutralizing system such as a neutralizing container for conducting the neutralization step where the crude nickel sulfate aqueous solution produced at the solid/liquid separation unit 3 is neutralized. More specifically in the neutralization unit 4 , the crude nickel sulfate aqueous solution while being prevented from oxidation is added with the flocculant supplied from the flocculant feed facilities 14 a , 14 b and a neutralizing agent supplied form the neutralizer feed facilities 12 a , 12 b , which will be described later, for producing a neutralized precipitate slurry containing trivalent iron and a mother liquid for recovery of nickel.
- a neutralizing system such as a neutralizing container for conducting the neutralization step where the crude nickel sulfate aqueous solution produced at the solid/liquid separation unit 3 is neutralized. More specifically in the neutralization unit 4 , the crude nickel sulfate aqueous solution while being prevented from oxidation is added with the flocculant supplied from
- the neutralization unit 4 enables the neutralization of excessive acid and simultaneously the removal of trivalent iron ions from the solution.
- the neutralizer may be, for example, a calcium carbonate.
- the pH in the neutralization step ranges from 3.2 to 3.8. This pH range can prevent the generation of a hydride of nickel from being excessive.
- the temperature in the neutralization step is 50 to 80° C. If the temperature is lower than 50° C., the precipitate becomes too fine and give a hostile effect to the solid/liquid separation step. If the temperature exceeds 80° C., the resistance to corrosion of the materials of the corresponding units will decrease and the cost of energy for heating up will increase.
- the dezincification unit 5 conducts the dezincification step where the crude nickel sulfate aqueous solution neutralized at the neutralization unit 4 is added with a hydrogen sulfide gas supplied from the hydrogen sulfide feed facilities 10 a , 10 b for removing a precipitate of zinc in the form of zinc sulfide and producing a dezincificated solution.
- the sulfurization unit 6 conducts the sulfurization step where the dezincificated solution produced at the dezincification unit 5 is added with a hydrogen sulfide gas supplied from the hydrogen sulfide feed facilities 10 a , 10 b for producing a nickel/cobalt mixture sulfide and a nickel poor liquid.
- the nickel poor liquid contains very small amounts of nickel and cobalt existed as a recovery loss in addition to impurities including iron, magnesium, manganese, and other elements which are not sulfided.
- the purifying unit 7 conducts the purifying step where the leaching residue produced at the solid/liquid separation unit 3 and the nickel poor liquid produced at the sulfurization unit 6 are purified with the neutralizer supplied from the neutralizer feed facilities 12 a , 12 b .
- the recovery of nickel can thus be accomplished at a higher rate.
- the wet smelting plant 20 includes, as shown in FIGS. 1 and 2 , the utility feed facilities 8 a , 8 b , the hydrogen sulfide feed facilities 10 a , 10 b , the neutralizer feed facilities 12 a , 12 b , and the flocculant feed facilities 14 a , 14 b .
- Those feed facilities are denoted simply as the utility feed facility 8 , the hydrogen sulfate feed facility 10 , the neutralizer feed facility 12 , and the flocculant feed facility 14 unless otherwise explained separately in each of the processing facilities in more detail.
- the utility feed facility 8 comprises, for example, a boiler, a water system, and a power system.
- the boiler is provided for producing a supply of steam to control the reaction temperature in each step operating facility.
- the supply of steam produced by the boiler is fed to the step operating facilities as needed.
- the water system is a system for producing a supply of water used in each step operating facility.
- the supply of water produced by the water system is fed to the step operating facilities as needed.
- the power system is a system for producing a supply of electric power used in each step operating facility.
- the supply of electric power produced by the power system is fed to the step operating facilities as needed.
- the utility feed facility 8 a is connected by utility feed conduits 9 a to the step operating facilities of the I series.
- the utility feed facility 8 b is connected by utility feed conduits 9 b to the step operating facilities of the II series.
- the utility feed conduit 9 a and the utility feed conduit 9 b are connected to each other by a utility connecting installation 16 .
- the utility connecting installation 16 may be equal in the construction to the utility feed conduits 9 a , 9 b .
- the utility connecting installation 16 connects the utility feed conduit 9 a and the utility feed conduit 9 b to each other at the uppermost of a supply path for feeding the utility supplies (of steam, water, and electric power). More particularly, the utility connecting installation 16 extends, for example, from a point close to the joint between the utility feed conduit 9 a and the utility feed facility 8 a to a point close to the joint between the utility feed conduit 9 b and the utility feed facility 8 b .
- the utility connecting installation 16 allows the utility supplies to be fed between the utility feed facilities of different series for mutual substitution, whereby the step operating facilities of each series can efficiently receive the utility supply from, for example, the utility feed facility 8 b when the utility feed facility 8 a has a serious trouble.
- the hydrogen sulfide feed facility 10 is provided for producing a hydrogen sulfide gas and supplying both the dezincification unit 5 and the sulfurization unit 6 with desired amounts of the hydrogen sulfide gas as required.
- the hydrogen sulfide feed facility 10 a is connected by a hydrogen sulfide feed conduit 11 a to the dezincification unit 5 a and the sulfurization unit 6 a .
- the hydrogen sulfide feed facility 10 b is connected by a hydrogen sulfide feed conduit 11 b to the dezincification unit 5 b and the sulfurization unit 6 b .
- the hydrogen sulfide feed conduit 11 a and the hydrogen sulfide feed conduit 11 b are connected to each other by a hydrogen sulfide connecting installation 17 .
- the hydrogen sulfide connecting installation 17 is constructed in the same manner as of, for example, the hydrogen sulfide feed conduit 11 . Also, the hydrogen sulfide connecting installation 17 is connected between the hydrogen sulfide feed conduit 11 a and the hydrogen sulfide feed conduit 11 b to each other at the uppermost of a supply path for feeding the hydrogen sulfide, hence allowing the hydrogen sulfide to be used between the step operating facilities of different series for mutual substitution.
- the hydrogen sulfide connecting installation 17 extends, for example, from a point close to the joint between the hydrogen sulfide feed facility 10 a and the hydrogen sulfide feed conduit 11 a to a point close to the joint between the hydrogen sulfide feed facility 10 b and the hydrogen sulfide feed conduit 11 b . Accordingly, even when the hydrogen sulfide feed facility 10 a ( 10 b ), for example, has a serious trouble, the step operating facilities of each series can efficiently receive the hydrogen sulfide from the other hydrogen sulfide feed facility 10 b ( 10 a ) via the hydrogen sulfide connecting installation 17 .
- the neutralizer feed facility 12 supplies both the neutralization unit 4 and the purifying unit with the above described neutralizer as desired.
- the neutralizer feed facility 12 a is connected to the neutralization unit 4 a and the purifying unit 7 a by a neutralizer feed conduit 13 a .
- the neutralizer feed facility 12 b is connected to the neutralization unit 4 b and the purifying unit 7 b by a neutralizer feed conduit 13 b .
- the neutralizer feed conduit 13 a and the neutralizer feed conduit 13 b are connected to each other by a neutralizer connecting installation 18 .
- the neutralizer connecting installation 18 is constructed in the same manner as of, for example, the neutralizer feed conduit 13 .
- the neutralizer connecting installation 18 is connected between the neutralizer feed conduit 13 a and the neutralizer feed conduit 13 b to each other at the uppermost of a supply path for feeding the neutralizer, hence allowing the neutralizer to be used between the step operating facilities of different series for mutual substitution. More particularly, the neutralizer connecting installation 18 extends, for example, from a point close to the joint between the neutralizer feed facility 12 a and the neutralizer feed conduit 13 a to a point close to the joint between the neutralizer feed facility 12 b and the neutralizer feed conduit 13 b . Accordingly, even when the neutralizer feed facility 12 a , for example, has a serious trouble, the step operating facilities of each series can efficiently receive the neutralizer from the other neutralizer feed facility 12 b via the neutralizer connecting installation 18 .
- the flocculant feed facility 14 supplies both the solid/liquid separation unit 3 and the neutralization unit 4 with the above described flocculant as desired.
- the flocculant feed facility 14 a is connected by a flocculant feed conduit 15 a to the solid/liquid separation unit 3 a and the neutralization unit 4 a .
- the flocculant feed facility 14 b is connected by a flocculant feed conduit 15 b to the solid/liquid separation unit 3 b and the neutralization unit 4 b .
- the flocculant feed conduit 15 a and the flocculant feed conduit 15 b are connected to each other by a flocculant connecting installation 19 .
- the flocculant connecting installation 19 is constructed in the same manner as of, for example, the flocculant feed conduit 15 .
- the flocculant connecting installation 19 is connected between the flocculant feed conduit 15 a and the flocculant feed conduit 15 b to each other at the uppermost of a supply path for feeding the flocculant, hence allowing the flocculant to be used between the step operating facilities of different series for mutual substitution.
- the flocculant connecting installation 19 extends, for example, from a point close to the joint between the flocculant feed facility 14 a and the flocculant feed conduit 15 a to a point close to the joint between the flocculant feed facility 14 b and the flocculant feed conduit 15 b .
- the step operating facilities of each series can efficiently receive the flocculant from the other flocculant feed facility 14 b via the flocculant connecting installation 19 .
- the above described connecting installation includes an opening and closing mechanism (a shutdown mechanism) for controlling and canceling the delivery of the utility supply.
- the utility connecting installation 16 may be equipped preferably with a control valve for controlling the supply of steam or water and a switch for controlling the supply of electric power.
- the hydrogen sulfide connecting installation 17 , the neutralizer connecting installation 18 , and the flocculant connecting installation 19 may be equipped preferably with control valves.
- connection of each connecting installation is cut off by the action of the opening and closing mechanism so that the wet smelting plant 20 having two different series of the processing facilities can be operated separately as a single plant composed of one series of the processing facility.
- the wet smelting plant 20 of which the connecting installations are quipped with opening and closing mechanisms can favorably manage any operational variation such as when different materials which are not equal in the composition have to be processed one after another or when a material of which the composition remains unchanged has to be processed with different processing requirements. Also since the delivery of supplies is favorably controlled by the opening and closing mechanism in the wet smelting plant 20 , the reduction in the quantity of processing caused by the occurrence of a serious trouble can be minimized while the operation is continued and also the restart of the operation after the elimination of the serious trouble will be achieved quickly.
- the processing facilities of multiple series in the wet smelting plant 20 are substantially equal in the capability of processing under favorable conditions in spite of many variations of the requirement to be considered including the period of years for continuing the excavation of nickel oxide ore, the capability of supplying water which is essential for the operation, and the size of area for siting the plant.
- This allows the wet smelting plant 20 to control with much ease the action of the feed facilities in each series and the action of the step operating facilities of each series when a serious trouble has occurred.
- the manuals for operation and controlling are prepared substantially equal in the content between different series of the processing facilities, the cost required for educating the operators can be decreased.
- the wet smelting plant 20 ensures the continuous operation without interrupting the action of the leaching units 2 unless serious troubles occur simultaneously in the like feed facilities of different series, hence minimizing the reduction in the quantity of processing at the leaching units.
- the utility feed facility 8 b falls in a one-side operation mode and raises its operational capability (an operational load) from the normal level. It is preferable in the wet smelting plant 20 that the raise of the operational capability of the utility feed facility 8 b at the one-side operation mode is equal to 120% of the normal level. Since the utility feed facility 8 b in the wet smelting plant 20 is raised to 120% from the normal level in the operational capability, it can stably supply each step operating facility with a desired amount of steam while being not overloaded.
- the expression that the total of the operational capability of the processing facility of each series is 120% means that, when the operational capability of the processing facility of each series is 100% at the normal operation, the operation is carried out at 120% of the total operational capability.
- the wet smelting plant 20 conducts the operation with 60% of the normal operational capability of each of the I series and II series processing facilities. It is alternatively capable that the I series processing facility runs at 50% of the normal level while the II series processing facility runs at 70% of the normal level or that the I series processing facility runs at 70% of the normal level while the II series processing facility runs at 50% of the normal level.
- the leaching unit 2 can be prevented from having the preparation time as equal to at the operation with the supply of steam.
- the wet smelting plant 20 of this embodiment can continue to run the operation without canceling the action of the leaching units 2 since the leaching units 2 are protected from running down unless the like feed facilities of both series meet serious troubles at one time. Accordingly, the reduction in the quantity of processing at the leaching step will be minimized in the wet smelting plant 20 of this embodiment. It would be understood that the probability of having such serious troubles at one time in the like feed facilities of the multiple series in the wet smelting plant 20 is quite low and the processing facilities can practically be avoided from running down upon the occurrence of serious troubles.
- the present invention is applicable to another wet smelting plant having three or more series of the processing facilities.
- the processing facilities in the wet smelting plant having three series of the processing facilities for example, when one series of the processing facility is active, about 1 ⁇ 3 of the operation can be continued with the operational capability shifted down to 33% or when two series of the processing facilities are active, the operation can be continued with the operational capability shifted down to 66%.
- the load imposed excessively on each step operating facility in the active series for increasing the productivity can be declined.
- the above described wet smelting plant for nickel oxide ore may further include an emergency storage vessel (for example, a storage tank for accomplishing an 8-hours period of the utility service).
- an emergency storage vessel for example, a storage tank for accomplishing an 8-hours period of the utility service.
- the utility feed facility 8 b when the utility feed facility 8 b is turned to its one-side operation mode in the wet smelting plant 20 but its operational capability remains at its normal level (100%), the total of the operational capability of the processing facilities of the series stays at 100% with at least the lowest of the operational capability of the leaching unit 2 being set to 50%.
- the utility supply stored in the emergency storage vessel can be used for accomplishing the utility service.
- the highest of the operational capability of each feed facility in the wet smelting plant 20 can be set to higher than 120%, for example, 140% if permitted.
- the total of the operational capability of the processing facility of each series can be 140% with the lowest of the operational capability of the leaching units 2 being 50%.
- the wet smelting plant 20 may further include a detector for detecting the occurrence of a serious trouble in each of the above described feed facilities, and a controller for, when the detector detects the occurrence of a serious trouble, adjusting the operational capability of the feed facility and controlling the action of the opening and closing mechanism. More specifically, the detector is connected to the feed facilities in the wet smelting plant. Also, the controller is connected to the detector, the feed facilities, and the opening and closing mechanisms of the connecting installations.
- the detector examines whether or not the supply of, for example, steam is canceled due to the occurrence of a serious trouble in the utility feed facility 8 a .
- the detector detects the cancellation of the supply of stream from the feed facility, it transmits its detection signal to the controller.
- the controller controls and raises the operational capability of the utility feed facility 8 b turned to the one-side operation mode to 120% of the normal level.
- the controller controls the action of the step operating facilities in both the I series and II series so that the operational capability of the processing facility of each series is lowered to 60% of the normal level and determines the action of the opening and closing mechanism of the connecting installation. Accordingly, even when at least one feed facility in the processing facility of one series encounters a serious trouble, the cancellation of the entire action of the processing facility can be avoided and the reduction of its processing quantity can be minimized.
- Example 1 was conducted a seven-month period of the operation with the wet smelting plant 20 of the present invention shown in FIGS. 1 and 2 .
- the wet smelting plant 20 employed for conducting Example 1 was composed of two series of the processing facilities including the pre-processing units 1 , the leaching units 2 , the solid/liquid separation units 3 , the neutralization units 4 , the dezincification units 5 , the sulfurization units 6 , and the purifying units 7 .
- the wet smelting plant 20 of the present invention also further comprised the utility feed facilities 8 , the hydrogen sulfide feed facilities 10 , the neutralizer feed facilities 12 , and the flocculant feed facilities 14 .
- the wet smelting plant 20 included the utility connecting installation 16 , the hydrogen sulfide connecting installation 17 , the neutralizer connecting installation 18 , and the flocculant connecting installation 19 which are disposed at the uppermost of the supply paths of the feed facilities for connecting between the like feed facilities of the two series.
- Example 1 the feed facilities in the wet smelting plant 20 was arranged so that, when such a serious trouble as described previously occurs in one of the like feed facilities, the operational capability of the other feed facility having no serious trouble was raised to 120% with the total of the operational capability of the processing facilities being 120% and the lowest of the same being not lower than 50%.
- the utility feed facilities 8 encountered the serious trouble four times in total.
- the inactive period of the leaching units 2 was nil.
- the hydrogen sulfide supply the hydrogen sulfide feed facilities 10 encountered the trouble thirty four times.
- the inactive period of the leaching units 2 was nil.
- the neutralizer supply the neutralizer feed facilities 12 encountered the trouble one time.
- the inactive period of the leaching units 2 was nil.
- the flocculant feed facilities 14 encountered no trouble. It is noted that in any case of the trouble, the processing facilities were not in trouble at the same time in both the I series and the II series.
- Comparative Example 1 was conducted a seven-month period of the operation with the use of the wet smelting plant shown in FIGS. 4 and 5 , not the wet smelting plant of the present invention. More specifically, the utility feed facilities 8 , the hydrogen sulfide feed facilities 10 , the neutralizer feed facilities 12 , and the flocculant feed facilities 14 in Comparative Example 1, unlike the arrangement of Example 1, were operated while not connected at the uppermost of the supply paths by the connecting installations between the corresponding pairs for carrying out the delivery of supplies for mutual substitution.
- the utility feed facilities 8 encountered the trouble three times in total. At the result, the inactive period of the leaching units 2 extended 235 hours.
- the hydrogen sulfide supply the hydrogen sulfide feed facilities 10 encountered the trouble thirty times. At the result, the inactive period of the leaching units 2 extended 98 hours.
- the neutralizer feed facilities 12 encountered the trouble one time. At the result, the inactive period of the leaching units 2 extended 4 hours.
- the flocculant feed facilities 14 encountered no trouble. It is noted that in any case of the trouble, the processing facilities were not in trouble at the same time in both the I series and the II series.
- each pair of the feed facilities of the series in the wet smelting plant 20 were connected to each other by the connecting installation and, when one of the feed facilities pair encountered a serious trouble, the other feed facility in the opposite series was enabled to conduct the supply service. It was hence found that the overall operation continued without interrupting the action of the leaching units 2 and the reduction in the quantity of processing at the leaching step was minimized.
- the present invention is not limited to the wet smelting plant for nickel oxide ore but applicable to any plant for treating a slurry containing hard particles or handling generated precipitates which are highly adhesive to the surfaces of the facilities and its industrial advantage will be high.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
A wet smelting plant for nickel oxide ore is provided in which, even when a serious trouble occurs in a processing facility, the preparation period of time of the processing facility required for discontinuing and restarting the operation can be minimized. The wet smelting plant for nickel oxide ore (20) comprises two or more series of the processing facilities, each processing facility including a step operating facility, a utility feed facility (8 a), (8 b), a hydrogen sulfide feed facility (10 a), (10 b), a flocculant feed facility (14 a), (14 b), and a neutralizer feed facility (12 a), (12 b) and is featured in that connecting installations are further provided for connecting between the utility feed facilities (8 a) and (8 b), between the hydrogen sulfide feed facilities (10 a) and (10 b), between the flocculant feed facilities (14 a) and (14 b), and between the neutralizer feed facilities (12 a) and (12 b) in order to make the delivery of utility supplies, hydrogen sulfide, flocculant, and neutralizer for mutual substitution.
Description
- The present invention relates to a wet smelting plant for nickel oxide ore and a method of operating the same. More specifically, the present invention relates to a wet smelting plant for nickel oxide ore which has multiple series of processing facilities and to a method of operating the same wherein, even when a trouble serious enough to interrupt the operation at a part of the processing facilities (referred to simply as a serious trouble hereinafter) occurs, a reduction in the quantity of processing caused by the serious trouble can be minimized.
- The present application asserts priority rights based on JP Patent Application 2010-094330 filed on Apr. 15, 2010. The total contents of disclosure of the patent application of the senior filing date are to be incorporated by reference into the present application.
- High-pressure acid leaching process with the use of sulfuric acid has been focused as a wet smelting method for nickel oxide ore. The process comprises a succession of wet smelting steps without any dry processing step such as a drying step or a roasting step and will thus be advantageous for energy and cost saving and simultaneously for producing a nickel/cobalt mixture sulfide of which the content of nickel is increased to substantially 50 to 60% by weight.
- The high pressure acid leaching process for producing such a nickel/cobalt mixture sulfide includes, for example as shown in
FIG. 3 , a pre-process step (1), a leaching step (2), a solid/liquid separation step (3), a neutralization step (4), a dezincification step (5), a sulfurization step (6), and a purifying step (7). - In the pre-process step (1) shown in
FIG. 3 , nickel oxide ore is crushed and screened to have a slurry. In the leaching step (2), the slurry produced at the pre-process step (1) is added with sulfuric acid and agitated at 220 to 280° C. for high-temperature high-pressure acid leaching thus to produce a leached slurry. In the solid/liquid separation step (3), the leached slurry produced at the leaching step (2) is subjected to solid/liquid separation to produce a leachate containing nickel and cobalt (referred to as crude nickel sulfate aqueous solution hereinafter) and a leached residue. In the neutralization step (4), the crude nickel sulfate aqueous solution produced at the solid/liquid separation step (3) is neutralized. In the dezincification step (5), the crude nickel sulfate aqueous solution neutralized at the neutralization step (4) is added with a hydrogen sulfide gas to produce a precipitate from which a zinc material is removed in the form of zinc sulfide. In the sulfurization step (6), the dezincificated solution produced at the dezincification step (5) is added with a hydrogen sulfide gas to produce a nickel/cobalt mixture sulfide and a poor nickel liquid. In the purifying step (7), the leached residue produced at the solid/liquid separation step (3) and the poor nickel liquid produced at the sulfurization step (6) are purified (SeePatent Literature 1 for example). - As shown in
FIGS. 4 and 5 , awet smelting plant 100 for nickel oxide ore (referred to simply as a wet smelting plant hereinafter) includes, for example, two series of processing facilities, more particularly I-series processing facility and II-series processing facility. The two series processing facilities are composed of step operating facilities including pre-process units (1 a, 1 b) for conducting the pre-process step (1), leaching units (2 a, 2 b) for conducting the leaching step (2), solid/liquid separation units (3 a, 3 b) for conducting the solid/liquid separation step (3), neutralization units (4 a, 4 b) for conducting the neutralization step (4), dezincification units (5 a, 5 b) for conducting the dezincification step (5), sulfurization units (6 a, 6 b) for conducting the sulfurization step (6), and purifying units (7 a, 7 b) for conducting the purifying step (7). - The two series processing facilities also include, in addition to the above step operating facilities,
utility feed facilities FIG. 4 . Furthermore, the two series processing facilities include, as shown inFIG. 5 , hydrogensulfide feed facilities 10 a, 10 b,neutralizer feed facilities 12 a, 12 b,flocculant feed facilities 14 a, 14 b, and piping systems such as liquid feed pipes which connect the step operating facilities one after another for conducting the prescribed steps. It is noted that theutility feed facilities sulfide feed facilities 10 a, 10 b, theneutralizer feed facilities 12 a, 12 b, and theflocculant feed facilities 14 a, 14 b are referred to simply as feed facilities hereinafter. - As shown in
FIGS. 4 and 5 , the step operating facilities in the I series are supplied with steam, water, and electric power from theutility feed facility 8 a while the step operating facilities of the II series are supplied with steam, water, and electric power from theutility feed facility 8 b. Amounts of hydrogen sulfide are fed from the hydrogensulfide feed facilities 10 a, 10 b to thedezincification units 5 a, 5 b and thesulfurization units 6 a, 6 b. Amounts of a neutralizer are fed from theneutralizer feed facilities 12 a, 12 b to theneutralization units 4 a, 4 b and the purifyingunits flocculant feed facilities 14 a, 14 b to the solid/liquid separation units 3 a, 3 b and theneutralization units 4 a, 4 b. The piping systems include hydrogen sulfide feed conduits 11 a, 11 b,neutralizer feed conduits 13 a, 13 b, andflocculant feed conduits 15 a, 15. - In the operation of the
wet smelting plant 100, major intermediate products are provided in the form of liquid or slurry. Accordingly when, during the operation of thewet smelting plant 100, any of steam, water, electric power, the hydrogen sulfide, the flocculant, and the neutralizer fails to be supplied due to the occurrence of a serious trouble at, for example, the boiler, the entire operation of thewet smelting plant 100 will discontinue. It is common to restart the entire operation of thewet smelting plant 100 only after the serious trouble is eliminated or amended. It is hence required for operating thewet smelting plant 100 at a continuous mode and at a high operational efficiency to run theutility feed facilities sulfide feed facilities 10 a, 10 b, and the chemical feed facilities (neutralizer feed facilities 12 a, 12 b andflocculant feed facilities 14 a, 14 b) constantly with trouble-free conditions. - For meeting the requirement, the
wet smelting plant 100 is designed to prevent the load, which is received at a given level by each of the step operating facilities and other relevant facilities during the operation, from varying significantly. Also, thewet smelting plant 100 is adapted to avoid the sudden occurrence of any serious trouble through increasing the frequency of the periodical operation shutdown (or inspection) or extending the duration of the operation shutdown for conducting inspection services and, if desired, repairing the facilities. - Moreover the
wet smelting plant 100 is inevitable to be free from the occurrence of an unexpected trouble in any of the steps (in the process) and needed to temporally lower (i.e. ramp down) the load just after the troubled step. For the compensation, thewet smelting plant 100 is provided normally with an emergency storage vessel so as not to decline the quantity of processing after the ramping down. - As the emergency storage vessel is provided, it can receive an excessive amount of the process fluid while the load at the steps prior to the troubled step remains unchanged or lowered. When the trouble has been eliminated, the load at the step is raised (i.e. ramped up) and repeatedly carry out the processing of the process fluid stored in the emergency storage vessel under the normal load. This will enable to achieve the target quantity of the processing throughout a quarter period or an annual period.
- Such a nearly emergent treatment action may be effected only when the duration of time required for restarting the
wet smelting plant 100 is generally not longer than, for example, eight hours although depending on the size of the emergency storage vessel. However, if the duration of time required for restarting thewet smelting plant 100 is longer than eight hours, the process fluid stored in the emergency storage vessel reaches its maximum amount, thus resulting in canceling the entire operation. - One of the serious troubles which may probably occur in the
pre-process units 1 a, 1 b in thewet smelting plant 100 shown inFIGS. 4 and 5 is known as follows. In brief, nickel oxide ore, after excavated, crushed and screened in a drum washer which comprises a drum and a trommel joined to each other may take a short pass in the trommel and then simply be moved out hence resulting in poor achievement of the processing action. - A technique for solving the prescribed problem has been introduced where an array of projections which locate along the circumference of a plane extending perpendicular to the axis of rotation of the trommel and have substantially a rectangular shape in the cross section at the circumference are formed at intervals of substantially four times the screen opening size of the trommel on the inner side of the trommel in the drum washer (See Patent Literature 2).
- Another serious trouble which may occur in the
sulfurization units 6 a, 6 b shown inFIGS. 4 and 5 is that a nickel/cobalt mixture sulfide produced in thesulfurization units 6 a, 6 b grows while being adhered as scales to the inner surface of a reactor container and will thus interrupt the action of the facilities or break down the facilities. - For solving the another serious trouble, a technique has been introduced where a nickel sulfide of which the content of nickel is 4 to 6 times that of a dezincificated fluid produced in the
dezincification units 5 a, 5 b is used as a seed crystal in cycles in thesulfurization units 6 a, 6 b thus to prevent the growth of the scales (See Patent Literature 3). - As described above, the
wet smelting plant 100 permits a lot of troubles including the above described or reference troubles to occur frequently because of the use of hard ore particles in the form of slurry and the fact inherent to the processing action that nickel/cobalt mixture sulfide is produced and easily adhered to the inner surface of the reactor container. Consequently, the operational efficiency of thewet smelting plant 100 remains not high in common practice. - Particularly, it is generally known that, in case of the occurrence of a serious trouble in any of the prescribed feed facilities, the entire operation of the
wet smelting plant 100 is ceased only when the temperature and the pressure in theleaching units FIGS. 4 and 5 have been lowered to their normal levels. Also, even after the serious trouble is eliminated in theleaching units wet smelting plant 100 can be restarted only with the temperature and the pressure having been raised back to their desired levels. - It is common in the
leaching units leaching units leaching units - A demand for increasing the production of nickel/cobalt mixture sulfide through raising the quantity of processing the nickel oxide ore has been known. For satisfying the demand, multiple series of the step operating facilities described above for carrying out the steps are introduced.
- However, even with the use of the multiple series of the step operating facilities described above, a serious trouble may occur at similar frequency along each series. Hence, when two series, for example, of the step operating facilities are employed as described above, the occurrence of a serious trouble may not be offset by the merit of the two series of the step operating facilities but result in the operational capability lowering down to less than that of a single series of the step operating facilities.
-
- Patent Literature: JP-A-2005-350766
- Patent Literature: JP-A-2009-173967
- Patent Literature: JP-A-2008-231470
- The present invention is proposed in view of the above described problems of the prior art and its object is to provide a wet smelting plant for nickel oxide ore and a method of operating the same in which the wet smelting plant comprises two or more series of processing facilities and, when at least one of the feed facilities in each series including a utility feed facility, a hydrogen sulfide feed facility, a neutralizer feed facility, and a flocculant feed facility has a serious trouble, the reduction in the quantity of processing can be minimized.
- We, the inventors, have studied through a variety of experiments for solving the problems of the prior art and found out that the prescribed problems can be solved by connecting between the utility feed facilities, between the hydrogen sulfide feed facilities, and between the chemical feed facilities in the different series as invented the present invention.
- More specifically, a wet smelting plant for nickel oxide ore according to the present invention is featured comprising two or more series of processing facilities, wherein each processing facility including: a step operating facility having a pre-process unit, a leaching unit, a solid/liquid separation unit, a neutralization unit, a dezincification unit, a sulfurization unit and a purifying unit; a utility feed facility for feeding the pre-process unit, the leaching unit, the solid/liquid separation unit, the neutralization unit, the dezincification unit, the sulfurization unit and the purifying unit with the utility supplies including steam, water and electric power; a hydrogen sulfide feed facility for feeding the dezincification unit and the sulfurization unit with hydrogen sulfide; a flocculant feed facility for feeding the solid/liquid separation unit and the neutralization unit with a flocculant; and a neutralizer feed facility for feeding the neutralization unit and the purifying unit with a neutralizer; and connecting installations for providing connections between the utility feed facilities, between the hydrogen sulfide feed facilities, between the flocculant feed facilities and between the neutralizer feed facilities in order to make the delivery of the utility supplies, the hydrogen sulfide, the flocculant and the neutralizer for mutual substitution.
- It is also characterized in that the connecting installations are arranged for connecting between the feed facilities at the uppermost of supply paths along which the utility supplies, the hydrogen sulfide, the flocculant, and the neutralizer are fed from the feed facilities. It is further characterized in that the processing facilities of the two or more series are equal in the processing capability. It is still further characterized in that the number of the two or more series is two. It is still further characterized in that the connecting installation includes an opening and closing mechanism.
- A method of operating a wet smelting plant for nickel oxide ore according to the present invention is characterized in that the wet smelting plant for nickel oxide ore described is employed.
- The method of operating a wet smelting plant for nickel oxide according to the present invention is also characterized in that, in case that the action of at least one of the feed facilities in one series composed of the utility feed facility, the hydrogen sulfide feed facility, the flocculant feed facility, and the neutralizer feed facility is discontinued, the feed facilities in the other series are operated at a level higher than the normal operational efficiency while the processing facility of the one series is declined in the operational efficiency.
- Since the wet smelting plant for nickel oxide ore according to the present invention allows the feed facilities to be connected to each other by the connecting installation, the down time of the processing facilities can be minimized even when a serious trouble occurs in at least the feed facility in the processing facility of any series, thus minimizing the reduction in the quantity of processing. Accordingly, in the present invention, unless serious troubles occur at one time in the like feed facilities of the different series processing facilities, the action of the leaching units remains not interrupted and the operation of the wet smelting plant can be continued, thereby ensuring a minimum of reduction in the quantity of processing at the leaching step.
- Fig. is a schematic view schematically showing a wet smelting plant of the present invention;
-
FIG. 2 is a schematic view schematically showing the wet smelting plant of the present invention; -
FIG. 3 is a flow chart showing outline steps of a high pressure acid leach process; -
FIG. 4 is a schematic view schematically showing a conventional wet smelting plant; and -
FIG. 5 is a schematic view schematically showing the conventional wet smelting plant. - One embodiment of the wet smelting plant according to the present invention will be described referring in the following order to the relevant drawings.
- 1. Wet smelting Plant
- 2. Method of operating (running) the wet smelting plant when a serious trouble occurs
- The wet smelting plant according to the present invention comprises two or more series of processing facilities for carrying out a pre-process step, a leaching step, a solid/liquid separation step, a neutralization step, a dezincification step, a sulfurization step, and a purifying step. Since the wet smelting plant is composed of two or more series of the processing facilities, the quantity of processing a raw material or nickel oxide ore can be increased thus to raise the production of nickel/cobalt mixture sulfide.
- The wet smelting plant having two series of the processing facilities will be described in the form of an example.
- As shown in
FIGS. 1 and 2 , thewet smelting plant 20 according to the present invention comprises two series, I series and II series, of the processing facilities. The processing facilities include pre-process units (1 a, 1 b), leaching units (2 a, 2 b), solid/liquid separation units (3 a, 3 b), neutralization units (4 a, 4 b), dezincification units (5 a, 5 b), sulfurization units (6 a, 6 b), and purifying units (7 a, 7 b) for carrying out the steps. It is noted that the units in each of the processing facilities are denoted simply as thepre-process unit 1, theleaching unit 2, the solid/liquid separation unit 3, theneutralization unit 4, thedezincification unit 5, thesulfurization unit 6, and thepurifying unit 7 unless otherwise explained separately in each of the processing facilities in more detail. - The
pre-process unit 1 is composed of a pre-process system such as a crusher, for example, for carrying out the pre-process step where the raw material or nickel oxide ore is crushed and screened to have a slurry. The nickel oxide ore may be, for example, a so-called laterite material such as limonite or saprolite. - The
leaching unit 2 conducts the leaching step where the slurry produced at thepre-process unit 1 is added with sulfuric acid, agitated at 220 to 280° C., and subjected to acid leaching under a high temperature and a high pressure thus to produce a leached slurry. Theleaching unit 2 may be implemented by, for example, a high temperature pressurizing container (i.e. an autoclave). More specifically, the action of theleaching unit 2 involves leaching of, for example, a sulfate of nickel and cobalt through the leaching reaction and the hydrolysis reaction under a high temperature and a high pressure, represented by the following expressions (1) to (5), and immobilizing the leachate as a hematite of iron sulfate. However, since the immobilization of iron ions is not completely achieved, a liquid component of the leached slurry generally contains divalent and trivalent iron ions in addition to nickel and cobalt. -
MO+H2SO4→MSO4+H2O (1) - (where M is selected from, for example, Ni, Co, Fe, Zn, Cu. Mg, Cr, and Mn.)
-
2Fe(OH)3→3H2SO4→Fe2(SO4)3+6H2O (2) -
FeO+H2SO4→FeSO4+H2O (3) -
2FeSO4+H2SO4+(½)O2→Fe2(SO4)3+H2O (4) -
Fe2(SO4)3+3H2O→Fe2O3+3H2SO4 (5) - The solid/
liquid separation unit 3 conducts the solid/liquid separation step where the leached slurry produced at theleaching unit 2 is subjected to solid/liquid separation for producing a leachate liquid (a crude nickel sulfate aqueous solution) which contains nickel and cobalt and a leaching residue. The solid/liquid separation step is advantageous of separating a nickel debris, which is adhered to the leaching residue and removed out, from the leached slurry produced at theleaching unit 2 and recovering the same in the crude nickel sulfate aqueous solution. For example, in the solid/liquid separation unit 3, the leached slurry is mixed with a rinsing liquid and subjected to the solid/liquid separation in a thickener, which is an implementation of the solid/liquid separation unit, using a flocculant supplied from theflocculant feed facilities 14 a, 14 b which will be described later. This action dilutes the leached slurry with the rinsing liquid so that the leaching residue is condensed and recovered as a precipitate in the thickener, whereby the remaining of nickel adhered to the leaching residue can be decreased depending on the degree of dilution. The flocculant may be, for example, an anion flocculating agent. - The
neutralization unit 4 is composed of, for example, a neutralizing system such as a neutralizing container for conducting the neutralization step where the crude nickel sulfate aqueous solution produced at the solid/liquid separation unit 3 is neutralized. More specifically in theneutralization unit 4, the crude nickel sulfate aqueous solution while being prevented from oxidation is added with the flocculant supplied from theflocculant feed facilities 14 a, 14 b and a neutralizing agent supplied form theneutralizer feed facilities 12 a, 12 b, which will be described later, for producing a neutralized precipitate slurry containing trivalent iron and a mother liquid for recovery of nickel. As the result, theneutralization unit 4 enables the neutralization of excessive acid and simultaneously the removal of trivalent iron ions from the solution. The neutralizer may be, for example, a calcium carbonate. It is also desired in theneutralization unit 4 that the pH in the neutralization step ranges from 3.2 to 3.8. This pH range can prevent the generation of a hydride of nickel from being excessive. It is preferable in theneutralization unit 4 that the temperature in the neutralization step is 50 to 80° C. If the temperature is lower than 50° C., the precipitate becomes too fine and give a hostile effect to the solid/liquid separation step. If the temperature exceeds 80° C., the resistance to corrosion of the materials of the corresponding units will decrease and the cost of energy for heating up will increase. - The
dezincification unit 5 conducts the dezincification step where the crude nickel sulfate aqueous solution neutralized at theneutralization unit 4 is added with a hydrogen sulfide gas supplied from the hydrogensulfide feed facilities 10 a, 10 b for removing a precipitate of zinc in the form of zinc sulfide and producing a dezincificated solution. - The
sulfurization unit 6 conducts the sulfurization step where the dezincificated solution produced at thedezincification unit 5 is added with a hydrogen sulfide gas supplied from the hydrogensulfide feed facilities 10 a, 10 b for producing a nickel/cobalt mixture sulfide and a nickel poor liquid. The nickel poor liquid contains very small amounts of nickel and cobalt existed as a recovery loss in addition to impurities including iron, magnesium, manganese, and other elements which are not sulfided. - The
purifying unit 7 conducts the purifying step where the leaching residue produced at the solid/liquid separation unit 3 and the nickel poor liquid produced at thesulfurization unit 6 are purified with the neutralizer supplied from theneutralizer feed facilities 12 a, 12 b. In thewet smelting plant 20 equipped with the step operating facilities described above, the recovery of nickel can thus be accomplished at a higher rate. - The
wet smelting plant 20 includes, as shown inFIGS. 1 and 2 , theutility feed facilities sulfide feed facilities 10 a, 10 b, theneutralizer feed facilities 12 a, 12 b, and theflocculant feed facilities 14 a, 14 b. Those feed facilities are denoted simply as theutility feed facility 8, the hydrogensulfate feed facility 10, theneutralizer feed facility 12, and theflocculant feed facility 14 unless otherwise explained separately in each of the processing facilities in more detail. - The
utility feed facility 8 comprises, for example, a boiler, a water system, and a power system. The boiler is provided for producing a supply of steam to control the reaction temperature in each step operating facility. The supply of steam produced by the boiler is fed to the step operating facilities as needed. The water system is a system for producing a supply of water used in each step operating facility. The supply of water produced by the water system is fed to the step operating facilities as needed. The power system is a system for producing a supply of electric power used in each step operating facility. The supply of electric power produced by the power system is fed to the step operating facilities as needed. - The
utility feed facility 8 a is connected by utility feed conduits 9 a to the step operating facilities of the I series. Equally, theutility feed facility 8 b is connected by utility feed conduits 9 b to the step operating facilities of the II series. Moreover, the utility feed conduit 9 a and the utility feed conduit 9 b are connected to each other by autility connecting installation 16. - The
utility connecting installation 16 may be equal in the construction to the utility feed conduits 9 a, 9 b. Theutility connecting installation 16 connects the utility feed conduit 9 a and the utility feed conduit 9 b to each other at the uppermost of a supply path for feeding the utility supplies (of steam, water, and electric power). More particularly, theutility connecting installation 16 extends, for example, from a point close to the joint between the utility feed conduit 9 a and theutility feed facility 8 a to a point close to the joint between the utility feed conduit 9 b and theutility feed facility 8 b. As described, theutility connecting installation 16 allows the utility supplies to be fed between the utility feed facilities of different series for mutual substitution, whereby the step operating facilities of each series can efficiently receive the utility supply from, for example, theutility feed facility 8 b when theutility feed facility 8 a has a serious trouble. - The hydrogen
sulfide feed facility 10 is provided for producing a hydrogen sulfide gas and supplying both thedezincification unit 5 and thesulfurization unit 6 with desired amounts of the hydrogen sulfide gas as required. The hydrogen sulfide feed facility 10 a is connected by a hydrogen sulfide feed conduit 11 a to the dezincification unit 5 a and the sulfurization unit 6 a. Equally, the hydrogensulfide feed facility 10 b is connected by a hydrogen sulfide feed conduit 11 b to thedezincification unit 5 b and thesulfurization unit 6 b. Furthermore, the hydrogen sulfide feed conduit 11 a and the hydrogen sulfide feed conduit 11 b are connected to each other by a hydrogensulfide connecting installation 17. - The hydrogen
sulfide connecting installation 17 is constructed in the same manner as of, for example, the hydrogensulfide feed conduit 11. Also, the hydrogensulfide connecting installation 17 is connected between the hydrogen sulfide feed conduit 11 a and the hydrogen sulfide feed conduit 11 b to each other at the uppermost of a supply path for feeding the hydrogen sulfide, hence allowing the hydrogen sulfide to be used between the step operating facilities of different series for mutual substitution. More particularly, the hydrogensulfide connecting installation 17 extends, for example, from a point close to the joint between the hydrogen sulfide feed facility 10 a and the hydrogen sulfide feed conduit 11 a to a point close to the joint between the hydrogensulfide feed facility 10 b and the hydrogen sulfide feed conduit 11 b. Accordingly, even when the hydrogen sulfide feed facility 10 a (10 b), for example, has a serious trouble, the step operating facilities of each series can efficiently receive the hydrogen sulfide from the other hydrogensulfide feed facility 10 b (10 a) via the hydrogensulfide connecting installation 17. - The
neutralizer feed facility 12 supplies both theneutralization unit 4 and the purifying unit with the above described neutralizer as desired. The neutralizer feed facility 12 a is connected to the neutralization unit 4 a and thepurifying unit 7 a by a neutralizer feed conduit 13 a. Equally, theneutralizer feed facility 12 b is connected to theneutralization unit 4 b and thepurifying unit 7 b by aneutralizer feed conduit 13 b. Moreover, the neutralizer feed conduit 13 a and theneutralizer feed conduit 13 b are connected to each other by aneutralizer connecting installation 18. - The
neutralizer connecting installation 18 is constructed in the same manner as of, for example, theneutralizer feed conduit 13. Theneutralizer connecting installation 18 is connected between the neutralizer feed conduit 13 a and theneutralizer feed conduit 13 b to each other at the uppermost of a supply path for feeding the neutralizer, hence allowing the neutralizer to be used between the step operating facilities of different series for mutual substitution. More particularly, theneutralizer connecting installation 18 extends, for example, from a point close to the joint between the neutralizer feed facility 12 a and the neutralizer feed conduit 13 a to a point close to the joint between theneutralizer feed facility 12 b and theneutralizer feed conduit 13 b. Accordingly, even when the neutralizer feed facility 12 a, for example, has a serious trouble, the step operating facilities of each series can efficiently receive the neutralizer from the otherneutralizer feed facility 12 b via theneutralizer connecting installation 18. - The
flocculant feed facility 14 supplies both the solid/liquid separation unit 3 and theneutralization unit 4 with the above described flocculant as desired. The flocculant feed facility 14 a is connected by a flocculant feed conduit 15 a to the solid/liquid separation unit 3 a and the neutralization unit 4 a. Equally, theflocculant feed facility 14 b is connected by aflocculant feed conduit 15 b to the solid/liquid separation unit 3 b and theneutralization unit 4 b. Moreover, the flocculant feed conduit 15 a and theflocculant feed conduit 15 b are connected to each other by a flocculant connecting installation 19. - The flocculant connecting installation 19 is constructed in the same manner as of, for example, the
flocculant feed conduit 15. The flocculant connecting installation 19 is connected between the flocculant feed conduit 15 a and theflocculant feed conduit 15 b to each other at the uppermost of a supply path for feeding the flocculant, hence allowing the flocculant to be used between the step operating facilities of different series for mutual substitution. More particularly, the flocculant connecting installation 19 extends, for example, from a point close to the joint between the flocculant feed facility 14 a and the flocculant feed conduit 15 a to a point close to the joint between theflocculant feed facility 14 b and theflocculant feed conduit 15 b. Accordingly, even when the flocculant feed facility 14 a, for example, has a serious trouble, the step operating facilities of each series can efficiently receive the flocculant from the otherflocculant feed facility 14 b via the flocculant connecting installation 19. - It is also desired that the above described connecting installation includes an opening and closing mechanism (a shutdown mechanism) for controlling and canceling the delivery of the utility supply. For instance, the
utility connecting installation 16 may be equipped preferably with a control valve for controlling the supply of steam or water and a switch for controlling the supply of electric power. The hydrogensulfide connecting installation 17, theneutralizer connecting installation 18, and the flocculant connecting installation 19 may be equipped preferably with control valves. - If desired, the connection of each connecting installation is cut off by the action of the opening and closing mechanism so that the
wet smelting plant 20 having two different series of the processing facilities can be operated separately as a single plant composed of one series of the processing facility. - In this way, the
wet smelting plant 20 of which the connecting installations are quipped with opening and closing mechanisms can favorably manage any operational variation such as when different materials which are not equal in the composition have to be processed one after another or when a material of which the composition remains unchanged has to be processed with different processing requirements. Also since the delivery of supplies is favorably controlled by the opening and closing mechanism in thewet smelting plant 20, the reduction in the quantity of processing caused by the occurrence of a serious trouble can be minimized while the operation is continued and also the restart of the operation after the elimination of the serious trouble will be achieved quickly. - It is further desired that multiple series of the processing facilities in the
wet smelting plant 20 are installed at substantially equal locations. This will ensure the actions at higher efficiency which include the conveying of nickel oxide ore (the material) and the discharging of a nickel/cobalt mixture sulfide (the product). - It is furthermore desired that the processing facilities of multiple series in the
wet smelting plant 20 are substantially equal in the capability of processing under favorable conditions in spite of many variations of the requirement to be considered including the period of years for continuing the excavation of nickel oxide ore, the capability of supplying water which is essential for the operation, and the size of area for siting the plant. This allows thewet smelting plant 20 to control with much ease the action of the feed facilities in each series and the action of the step operating facilities of each series when a serious trouble has occurred. Also, since the manuals for operation and controlling are prepared substantially equal in the content between different series of the processing facilities, the cost required for educating the operators can be decreased. Moreover, since the processing facilities of different series are equal in the capability of processing, any misconduct or human error deriving from misreading the capability of processing from one processing facility to another throughout the different series can be minimized and the assignment of the operators to actual tasks in working cycle can have a generous margin. - As described above, in the
wet smelting plant 20 of which the feed facilities are connected by the connecting installations, even if a serious trouble occurs in at least one of the feed facilities joined to the processing facility of one series, the desired supply is fed via the connecting installation to the step operating facilities of the other series, whereby the inactive state of theleaching unit 2 will be avoided. Accordingly, thewet smelting plant 20 ensures the continuous operation without interrupting the action of theleaching units 2 unless serious troubles occur simultaneously in the like feed facilities of different series, hence minimizing the reduction in the quantity of processing at the leaching units. - <2. Method of Operating the Wet Smelting Plant when a Serious Trouble Occurs>
- An exemplary method of operating the
wet smelting plant 20 when a serious trouble occurs will now be described. In the following description, the arrangement of thewet smelting plant 20 shown inFIGS. 1 and 2 is referred simply for convenience. - It is assumed that a serious trouble such as the above described one (which causes the cancellation of the operation of any of the processing facilities) occurs in, for example, either the
utility feed facility 8 a or theutility feed facility 8 b in the wet smelting plant and interrupts the action of the feed facility for feeding an amount of stream. For compensation, the operational capability of the other utility feed facility in thewet smelting plant 20 is raised from its normal level. - For instance, when the supply of steam from the
utility feed facility 8 a in thewet smelting plant 20 is interrupted by the serious trouble, theutility feed facility 8 b falls in a one-side operation mode and raises its operational capability (an operational load) from the normal level. It is preferable in thewet smelting plant 20 that the raise of the operational capability of theutility feed facility 8 b at the one-side operation mode is equal to 120% of the normal level. Since theutility feed facility 8 b in thewet smelting plant 20 is raised to 120% from the normal level in the operational capability, it can stably supply each step operating facility with a desired amount of steam while being not overloaded. - It is also determined in the
wet smelting plant 20 that a total of the operating capability of the processing facility of each series is set to 120% while the lowest of the operational capability of each of theleaching units 2 is at least 50%. This allows eachleaching unit 2 in thewet smelting plant 20 to be operated with at least 50% of the normal level. Accordingly, in thewet smelting plant 20, the introduction of the preparation time which gives a significant drawback in the actual operation, described previously, will be avoided without interrupting the action of theleaching unit 2, while the action being certainly discontinued in the conventional plant. - The expression that the total of the operational capability of the processing facility of each series is 120% means that, when the operational capability of the processing facility of each series is 100% at the normal operation, the operation is carried out at 120% of the total operational capability. At an instance of that case, the
wet smelting plant 20 conducts the operation with 60% of the normal operational capability of each of the I series and II series processing facilities. It is alternatively capable that the I series processing facility runs at 50% of the normal level while the II series processing facility runs at 70% of the normal level or that the I series processing facility runs at 70% of the normal level while the II series processing facility runs at 50% of the normal level. - Moreover, in the
wet smelting plant 20, while the supply of water, electric power, hydrogen sulfide, flocculant, or neutralizer, other than the supply of steam described above, is requested, theleaching unit 2 can be prevented from having the preparation time as equal to at the operation with the supply of steam. - As described above, the
wet smelting plant 20 of this embodiment can continue to run the operation without canceling the action of theleaching units 2 since the leachingunits 2 are protected from running down unless the like feed facilities of both series meet serious troubles at one time. Accordingly, the reduction in the quantity of processing at the leaching step will be minimized in thewet smelting plant 20 of this embodiment. It would be understood that the probability of having such serious troubles at one time in the like feed facilities of the multiple series in thewet smelting plant 20 is quite low and the processing facilities can practically be avoided from running down upon the occurrence of serious troubles. - While the foregoing description is made on the
wet smelting plant 20 having two series of the processing facilities, the present invention is applicable to another wet smelting plant having three or more series of the processing facilities. In the processing facilities in the wet smelting plant having three series of the processing facilities, for example, when one series of the processing facility is active, about ⅓ of the operation can be continued with the operational capability shifted down to 33% or when two series of the processing facilities are active, the operation can be continued with the operational capability shifted down to 66%. As described, with the number of series for the processing facilities being increased, the load imposed excessively on each step operating facility in the active series for increasing the productivity can be declined. - The above described wet smelting plant for nickel oxide ore may further include an emergency storage vessel (for example, a storage tank for accomplishing an 8-hours period of the utility service). This permits a more intricate action of adjustment. For example, in case that the
utility feed facility 8 a in the above describedwet smelting plant 20 encounters a serious trouble, the operation can be made with the utility service supported by the supply from the emergency storage vessel while the operational capability of theutility feed facility 8 b remaining at the normal level (100%) instead of raising to 140%. - It is also capable that, when the
utility feed facility 8 b is turned to its one-side operation mode in thewet smelting plant 20 but its operational capability remains at its normal level (100%), the total of the operational capability of the processing facilities of the series stays at 100% with at least the lowest of the operational capability of theleaching unit 2 being set to 50%. For example, with the total of the operational capability of the processing facilities being set to 100%, 50% for each processing facility, the utility supply stored in the emergency storage vessel can be used for accomplishing the utility service. - Moreover, the highest of the operational capability of each feed facility in the
wet smelting plant 20 can be set to higher than 120%, for example, 140% if permitted. For example, when theutility feed facility 8 a encounters a serious trouble and the operational capability of theutility feed facility 8 b is raised to 140%, the total of the operational capability of the processing facility of each series can be 140% with the lowest of the operational capability of theleaching units 2 being 50%. - The
wet smelting plant 20 according to the present invention may further include a detector for detecting the occurrence of a serious trouble in each of the above described feed facilities, and a controller for, when the detector detects the occurrence of a serious trouble, adjusting the operational capability of the feed facility and controlling the action of the opening and closing mechanism. More specifically, the detector is connected to the feed facilities in the wet smelting plant. Also, the controller is connected to the detector, the feed facilities, and the opening and closing mechanisms of the connecting installations. - In the operation of the wet smelting plant, the detector examines whether or not the supply of, for example, steam is canceled due to the occurrence of a serious trouble in the
utility feed facility 8 a. When the detector detects the cancellation of the supply of stream from the feed facility, it transmits its detection signal to the controller. Upon receiving the detection signal from the detector, the controller controls and raises the operational capability of theutility feed facility 8 b turned to the one-side operation mode to 120% of the normal level. Simultaneously, the controller controls the action of the step operating facilities in both the I series and II series so that the operational capability of the processing facility of each series is lowered to 60% of the normal level and determines the action of the opening and closing mechanism of the connecting installation. Accordingly, even when at least one feed facility in the processing facility of one series encounters a serious trouble, the cancellation of the entire action of the processing facility can be avoided and the reduction of its processing quantity can be minimized. - Examples of the embodiments of the present invention will be described It would be understood that the present invention is not limited to any of the examples.
- Example 1 was conducted a seven-month period of the operation with the
wet smelting plant 20 of the present invention shown inFIGS. 1 and 2 . - The
wet smelting plant 20 employed for conducting Example 1 was composed of two series of the processing facilities including thepre-processing units 1, the leachingunits 2, the solid/liquid separation units 3, theneutralization units 4, thedezincification units 5, thesulfurization units 6, and thepurifying units 7. Thewet smelting plant 20 of the present invention also further comprised theutility feed facilities 8, the hydrogensulfide feed facilities 10, theneutralizer feed facilities 12, and theflocculant feed facilities 14. In addition, thewet smelting plant 20 included theutility connecting installation 16, the hydrogensulfide connecting installation 17, theneutralizer connecting installation 18, and the flocculant connecting installation 19 which are disposed at the uppermost of the supply paths of the feed facilities for connecting between the like feed facilities of the two series. - In Example 1, the feed facilities in the
wet smelting plant 20 was arranged so that, when such a serious trouble as described previously occurs in one of the like feed facilities, the operational capability of the other feed facility having no serious trouble was raised to 120% with the total of the operational capability of the processing facilities being 120% and the lowest of the same being not lower than 50%. - For the utility service, the
utility feed facilities 8 encountered the serious trouble four times in total. At the result, the inactive period of theleaching units 2 was nil. For the hydrogen sulfide supply, the hydrogensulfide feed facilities 10 encountered the trouble thirty four times. At the result, the inactive period of theleaching units 2 was nil. For the neutralizer supply, theneutralizer feed facilities 12 encountered the trouble one time. At the result, the inactive period of theleaching units 2 was nil. For the flocculant supply, theflocculant feed facilities 14 encountered no trouble. It is noted that in any case of the trouble, the processing facilities were not in trouble at the same time in both the I series and the II series. - Comparative Example 1 was conducted a seven-month period of the operation with the use of the wet smelting plant shown in
FIGS. 4 and 5 , not the wet smelting plant of the present invention. More specifically, theutility feed facilities 8, the hydrogensulfide feed facilities 10, theneutralizer feed facilities 12, and theflocculant feed facilities 14 in Comparative Example 1, unlike the arrangement of Example 1, were operated while not connected at the uppermost of the supply paths by the connecting installations between the corresponding pairs for carrying out the delivery of supplies for mutual substitution. - For the utility supply (steam, water, electric power), the
utility feed facilities 8 encountered the trouble three times in total. At the result, the inactive period of theleaching units 2 extended 235 hours. For the hydrogen sulfide supply, the hydrogensulfide feed facilities 10 encountered the trouble thirty times. At the result, the inactive period of theleaching units 2 extended 98 hours. For the neutralizer supply, theneutralizer feed facilities 12 encountered the trouble one time. At the result, the inactive period of theleaching units 2 extended 4 hours. For the flocculant supply, theflocculant feed facilities 14 encountered no trouble. It is noted that in any case of the trouble, the processing facilities were not in trouble at the same time in both the I series and the II series. - As apparent from the results of the operation of Example 1, each pair of the feed facilities of the series in the
wet smelting plant 20 were connected to each other by the connecting installation and, when one of the feed facilities pair encountered a serious trouble, the other feed facility in the opposite series was enabled to conduct the supply service. It was hence found that the overall operation continued without interrupting the action of theleaching units 2 and the reduction in the quantity of processing at the leaching step was minimized. - On the contrary, the feed facilities of the series in the wet smelting plant of Comparative Example 1 unlike those of Example 1 were not connected by the connecting installations and, when one of the feed facilities had a serious trouble, the operation failed to continue without interrupting the action of the
leaching units 2. The inactive period of theleaching units 2 was as much as 237 hours in total. - The present invention is not limited to the wet smelting plant for nickel oxide ore but applicable to any plant for treating a slurry containing hard particles or handling generated precipitates which are highly adhesive to the surfaces of the facilities and its industrial advantage will be high.
Claims (17)
1. A wet smelting plant for nickel oxide ore, the plant comprising; two or more series of processing facilities, wherein each processing facility including:
a step operating facility having a pre-process unit, a leaching unit, a solid/liquid separation unit, a neutralization unit, a dezincification unit, a sulfurization unit and a purifying unit;
a utility feed facility for feeding the pre-process unit, the leaching unit, the solid/liquid separation unit, the neutralization unit, the dezincification unit, the sulfurization unit and the purifying unit with the utility supplies including steam, water, and electric power;
a hydrogen sulfide feed facility for feeding the dezincification unit and the sulfurization unit with hydrogen sulfide;
a flocculant feed facility for feeding the solid/liquid separation unit and the neutralization unit with a flocculant; and
a neutralizer feed facility for feeding the neutralization unit and the purifying unit with a neutralizer; and
connecting installations for providing connections between the utility feed facilities, between the hydrogen sulfide feed facilities, between the flocculant feed facilities and between the neutralizer feed facilities in order to make the delivery of the utility supplies, the hydrogen sulfide, the flocculant and the neutralizer for mutual substitution.
2. The wet smelting plant of claim 1 , wherein the connecting installations are arranged for connecting between the feed facilities at the uppermost of supply paths along which the utility, the hydrogen sulfide, the flocculant and the neutralizer are fed from the feed facilities.
3. The wet smelting plant of claim 1 , wherein the processing facilities of the two or more series are equal in the processing capability.
4. The wet smelting plant of claim 1 , wherein the number of the two or more series is two.
5. The wet smelting plant of claim 1 , wherein the connecting installation includes an opening and closing mechanism.
6. A method of operating a wet smelting plant, the plant of claim 1 is employed.
7. The method of operating a wet smelting plant of claim 6 , wherein when the action of at least one of the feed facilities in one of the series including the utility feed facility, the hydrogen sulfide feed facility, the flocculant feed facility and the neutralizer feed facility is discontinued, the feed facilities in the other series are operated at a level higher than the normal operational efficiency and the processing facilities of the series are lowered in the operational efficiency.
8. The wet smelting plant of claim 2 , wherein the processing facilities of the two or more series are equal in the processing capability.
9. The wet smelting plant of claim 2 , wherein the number of the two or more series is two.
10. The wet smelting plant of claim 3 , wherein the number of the two or more series is two.
11. The wet smelting plant of claim 2 , wherein the connecting installation includes an opening and closing mechanism.
12. The wet smelting plant of claim 3 , wherein the connecting installation includes an opening and closing mechanism.
13. The wet smelting plant of claim 4 , wherein the connecting installation includes an opening and closing mechanism.
14. A method of operating a wet smelting plant, the plant of claim 2 is employed.
15. A method of operating a wet smelting plant, the plant of claim 3 is employed.
16. A method of operating a wet smelting plant, the plant of claim 4 is employed.
17. A method of operating a wet smelting plant, the plant of claim 5 is employed.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-094330 | 2010-04-15 | ||
JP2010094330A JP4888578B2 (en) | 2010-04-15 | 2010-04-15 | Nickel oxide ore wet smelting plant and method of operation thereof |
PCT/JP2011/059266 WO2011129395A1 (en) | 2010-04-15 | 2011-04-14 | Plant for wet smelting of laterite nickel ore and method of operating same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130207325A1 true US20130207325A1 (en) | 2013-08-15 |
Family
ID=44798764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/639,788 Abandoned US20130207325A1 (en) | 2010-04-15 | 2011-04-14 | Wet smelting plant for nickel oxide ore and method of operating the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130207325A1 (en) |
EP (1) | EP2559776A4 (en) |
JP (1) | JP4888578B2 (en) |
AU (1) | AU2011241550B2 (en) |
PH (1) | PH12012501998A1 (en) |
WO (1) | WO2011129395A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220127695A1 (en) * | 2019-02-05 | 2022-04-28 | Newcrest Mining Limited | Processing ores containing precious metals |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5365708B2 (en) * | 2012-01-17 | 2013-12-11 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas |
JP5348267B2 (en) * | 2012-03-06 | 2013-11-20 | 住友金属鉱山株式会社 | Dezincing treatment plant, dezincing plant operation method, and nickel oxide ore hydrometallurgy method |
JP5435058B2 (en) * | 2012-03-06 | 2014-03-05 | 住友金属鉱山株式会社 | Neutralization treatment method and neutralization treatment plant |
JP5494754B2 (en) | 2012-07-31 | 2014-05-21 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas |
JP5700029B2 (en) | 2012-12-11 | 2015-04-15 | 住友金属鉱山株式会社 | Method and apparatus for treating poor liquid containing hydrogen sulfide |
JP5720665B2 (en) * | 2012-12-11 | 2015-05-20 | 住友金属鉱山株式会社 | Heavy metal removal method and heavy metal removal apparatus |
JP5644878B2 (en) | 2013-01-21 | 2014-12-24 | 住友金属鉱山株式会社 | Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method |
JP5569611B1 (en) | 2013-03-08 | 2014-08-13 | 住友金属鉱山株式会社 | Nickel oxide ore hydrometallurgical plant and method of operating the hydrometallurgical plant |
JP5637294B1 (en) * | 2013-11-29 | 2014-12-10 | 住友金属鉱山株式会社 | Neutralization method |
JP5637293B1 (en) * | 2013-11-29 | 2014-12-10 | 住友金属鉱山株式会社 | Neutralization method |
JP5637296B1 (en) * | 2013-12-03 | 2014-12-10 | 住友金属鉱山株式会社 | Neutralization method |
JP5637297B1 (en) * | 2013-12-03 | 2014-12-10 | 住友金属鉱山株式会社 | Neutralization method |
JP5637295B1 (en) * | 2013-12-03 | 2014-12-10 | 住友金属鉱山株式会社 | Neutralization method |
JP5725143B2 (en) * | 2013-12-05 | 2015-05-27 | 住友金属鉱山株式会社 | Neutralization treatment plant |
JP5708849B2 (en) * | 2014-02-27 | 2015-04-30 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas |
WO2018143121A1 (en) * | 2017-02-01 | 2018-08-09 | 住友金属鉱山株式会社 | Sulfurization reaction facility |
JP6862970B2 (en) * | 2017-03-21 | 2021-04-21 | 住友金属鉱山株式会社 | Sulfide production equipment |
JP2019203152A (en) * | 2018-05-21 | 2019-11-28 | 住友金属鉱山株式会社 | Ore slurry concentration system, and ore slurry concentration method |
JP7147452B2 (en) * | 2018-10-12 | 2022-10-05 | 住友金属鉱山株式会社 | Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same |
JP7183881B2 (en) * | 2019-03-14 | 2022-12-06 | 住友金属鉱山株式会社 | Ore slurry transfer treatment plant and its operation method |
JP7310490B2 (en) * | 2019-09-25 | 2023-07-19 | 住友金属鉱山株式会社 | Operation method for starting up treatment in the neutralization process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5427606A (en) * | 1990-11-15 | 1995-06-27 | Bruno Sceresini Holding Pty. Ltd. | Base metals recovery by adsorption of cyano complexes on activated carbon |
US6319389B1 (en) * | 1999-11-24 | 2001-11-20 | Hydromet Systems, L.L.C. | Recovery of copper values from copper ores |
US7563421B2 (en) * | 2004-05-13 | 2009-07-21 | Sumitomo Metal Mining Co., Ltd. | Hydrometallurgical process of nickel oxide ore |
US20150023849A1 (en) * | 2012-03-06 | 2015-01-22 | Sumitomo Metal Mining Co., Ltd. | Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63146110A (en) * | 1986-12-10 | 1988-06-18 | Toshiba Corp | Monitoring control unit |
JPH0260437A (en) * | 1988-08-23 | 1990-02-28 | Mitsubishi Electric Corp | Combination of stand-by generator with power system |
JP2960190B2 (en) * | 1991-04-10 | 1999-10-06 | 株式会社東芝 | Steam turbine bypass spray system in combined cycle power plant |
JP3203707B2 (en) * | 1991-10-09 | 2001-08-27 | 大平洋金属株式会社 | Method for recovering valuable metals from oxide ore |
JP3286129B2 (en) * | 1995-09-26 | 2002-05-27 | 株式会社東芝 | Maintenance inspection method for auxiliary cooling equipment of nuclear power plants |
EP1752550B1 (en) * | 2004-05-27 | 2014-01-15 | Pacific Metals Co., Ltd. | Method of recovering nickel and cobalt |
JP5572928B2 (en) * | 2008-07-25 | 2014-08-20 | 住友金属鉱山株式会社 | Method for hydrometallizing nickel oxide ore |
JP5287010B2 (en) * | 2008-07-31 | 2013-09-11 | 住友金属鉱山株式会社 | Method for hydrometallizing nickel oxide ore |
JP5287016B2 (en) * | 2008-08-07 | 2013-09-11 | 住友金属鉱山株式会社 | Method for separating zinc sulfide |
JP5332418B2 (en) * | 2008-09-04 | 2013-11-06 | 住友金属鉱山株式会社 | Autoclave pressure adjustment method |
JP2010094330A (en) | 2008-10-17 | 2010-04-30 | Seiko Epson Corp | Game machine and game system |
-
2010
- 2010-04-15 JP JP2010094330A patent/JP4888578B2/en not_active Expired - Fee Related
-
2011
- 2011-04-14 EP EP11768916.6A patent/EP2559776A4/en not_active Withdrawn
- 2011-04-14 US US13/639,788 patent/US20130207325A1/en not_active Abandoned
- 2011-04-14 PH PH1/2012/501998A patent/PH12012501998A1/en unknown
- 2011-04-14 WO PCT/JP2011/059266 patent/WO2011129395A1/en active Application Filing
- 2011-04-14 AU AU2011241550A patent/AU2011241550B2/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5427606A (en) * | 1990-11-15 | 1995-06-27 | Bruno Sceresini Holding Pty. Ltd. | Base metals recovery by adsorption of cyano complexes on activated carbon |
US6319389B1 (en) * | 1999-11-24 | 2001-11-20 | Hydromet Systems, L.L.C. | Recovery of copper values from copper ores |
US7563421B2 (en) * | 2004-05-13 | 2009-07-21 | Sumitomo Metal Mining Co., Ltd. | Hydrometallurgical process of nickel oxide ore |
US20150023849A1 (en) * | 2012-03-06 | 2015-01-22 | Sumitomo Metal Mining Co., Ltd. | Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220127695A1 (en) * | 2019-02-05 | 2022-04-28 | Newcrest Mining Limited | Processing ores containing precious metals |
Also Published As
Publication number | Publication date |
---|---|
JP4888578B2 (en) | 2012-02-29 |
WO2011129395A1 (en) | 2011-10-20 |
AU2011241550B2 (en) | 2015-07-02 |
EP2559776A1 (en) | 2013-02-20 |
AU2011241550A1 (en) | 2012-11-01 |
EP2559776A4 (en) | 2015-11-18 |
PH12012501998A1 (en) | 2016-11-18 |
JP2011225908A (en) | 2011-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011241550B2 (en) | Plant for wet smelting of laterite nickel ore and method of operating same | |
US9139890B2 (en) | Liquid storage apparatus and method of controlling the pressure in the same | |
AU2009203045B2 (en) | Hydrometallurgical process for nickel oxide ore | |
JP5880903B2 (en) | Nickel oxide ore wet refining plant and method of operation thereof | |
JP5435058B2 (en) | Neutralization treatment method and neutralization treatment plant | |
US20160024614A1 (en) | Hydrometallurgical plant for nickel oxide ore and method for operating the hydrometallurgical plant | |
EP2824203B1 (en) | Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore | |
EP2573197A1 (en) | Method for controlling reaction in sulfuration reaction step | |
JP2009197298A (en) | Wet-smelting method for nickel-oxide ore | |
EP2944702A1 (en) | Operation method for dezincification plant | |
US10351929B2 (en) | Sulfuric acid adding facility and operation method therefor | |
JP7183881B2 (en) | Ore slurry transfer treatment plant and its operation method | |
JP7147452B2 (en) | Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same | |
JP7310490B2 (en) | Operation method for starting up treatment in the neutralization process | |
JP2022104019A (en) | Neutralization method, wet smelting method of nickel oxide ore | |
JP2023031095A (en) | Operational method of filtration unit, dezincification processing method, and purification method of nickel oxide ore | |
Ryan | Practical implementation of the bacterial oxidation process of refractory gold ores DP Ryan Signet Engineering Pty., Ltd., Perth, Western Australia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUMITOMO METAL MINING CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MITSUI, HIROYUKI;NAKAI, OSAMU;KITAZAKI, TOORU;AND OTHERS;SIGNING DATES FROM 20121112 TO 20121126;REEL/FRAME:029440/0644 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |