US20130172572A1 - Process for Manufacture of N-acylbiphenyl alanine - Google Patents
Process for Manufacture of N-acylbiphenyl alanine Download PDFInfo
- Publication number
- US20130172572A1 US20130172572A1 US13/497,544 US201013497544A US2013172572A1 US 20130172572 A1 US20130172572 A1 US 20130172572A1 US 201013497544 A US201013497544 A US 201013497544A US 2013172572 A1 US2013172572 A1 US 2013172572A1
- Authority
- US
- United States
- Prior art keywords
- formula
- compound
- salt
- acid
- preparing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims 6
- 235000004279 alanine Nutrition 0.000 title description 17
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 title description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 66
- 150000003839 salts Chemical class 0.000 claims description 35
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 18
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 claims description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 12
- -1 preferably Chemical compound 0.000 claims description 9
- 238000010992 reflux Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- OXHNLMTVIGZXSG-UHFFFAOYSA-N 1-Methylpyrrole Chemical compound CN1C=CC=C1 OXHNLMTVIGZXSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 claims description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 6
- 238000005984 hydrogenation reaction Methods 0.000 claims description 5
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 4
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 claims description 4
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 3
- 235000011056 potassium acetate Nutrition 0.000 claims description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 3
- 239000011736 potassium bicarbonate Substances 0.000 claims description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 3
- 235000011181 potassium carbonates Nutrition 0.000 claims description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 3
- BWILYWWHXDGKQA-UHFFFAOYSA-M potassium propanoate Chemical compound [K+].CCC([O-])=O BWILYWWHXDGKQA-UHFFFAOYSA-M 0.000 claims description 3
- 239000004331 potassium propionate Substances 0.000 claims description 3
- 235000010332 potassium propionate Nutrition 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001632 sodium acetate Substances 0.000 claims description 3
- 235000017281 sodium acetate Nutrition 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 235000017550 sodium carbonate Nutrition 0.000 claims description 3
- 239000004324 sodium propionate Substances 0.000 claims description 3
- 235000010334 sodium propionate Nutrition 0.000 claims description 3
- 229960003212 sodium propionate Drugs 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 14
- 238000003786 synthesis reaction Methods 0.000 abstract description 13
- 239000000543 intermediate Substances 0.000 abstract description 9
- 102000003729 Neprilysin Human genes 0.000 abstract description 8
- 108090000028 Neprilysin Proteins 0.000 abstract description 8
- 239000003112 inhibitor Substances 0.000 abstract description 4
- 0 B.O.O=CC1=CC=C(C2=CC=CC=C2)C=C1.[1*]C(=O)N/C(=C\C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O.[1*]C(=O)N/C(=C\C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O.[1*]C(=O)NCC(=O)O.[1*]C1=N/C(=C\C2=CC=C(C3=CC=CC=C3)C=C2)C(=O)O1 Chemical compound B.O.O=CC1=CC=C(C2=CC=CC=C2)C=C1.[1*]C(=O)N/C(=C\C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O.[1*]C(=O)N/C(=C\C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O.[1*]C(=O)NCC(=O)O.[1*]C1=N/C(=C\C2=CC=C(C3=CC=CC=C3)C=C2)C(=O)O1 0.000 description 31
- 239000000047 product Substances 0.000 description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 22
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 19
- 239000000706 filtrate Substances 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- LCRCBXLHWTVPEQ-UHFFFAOYSA-N 2-phenylbenzaldehyde Chemical compound O=CC1=CC=CC=C1C1=CC=CC=C1 LCRCBXLHWTVPEQ-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229960000583 acetic acid Drugs 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 238000004321 preservation Methods 0.000 description 6
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 239000012362 glacial acetic acid Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 4
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- YDFBMJXIOVPLFK-UHFFFAOYSA-N O=C(NC(CC1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O)C1=CC=CC=C1 Chemical compound O=C(NC(CC1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O)C1=CC=CC=C1 YDFBMJXIOVPLFK-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940117389 dichlorobenzene Drugs 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- YUNNBTNVNZITLW-HMMYKYKNSA-N O=C(N/C(=C/C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O)C1=CC=CC=C1 Chemical compound O=C(N/C(=C/C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O)C1=CC=CC=C1 YUNNBTNVNZITLW-HMMYKYKNSA-N 0.000 description 2
- ZDMSZLZFVXBKDU-HKWRFOASSA-N O=C1OC(C2=CC=CC=C2)=N/C1=C\C1=CC=C(C2=CC=CC=C2)C=C1 Chemical compound O=C1OC(C2=CC=CC=C2)=N/C1=C\C1=CC=C(C2=CC=CC=C2)C=C1 ZDMSZLZFVXBKDU-HKWRFOASSA-N 0.000 description 2
- ISDBWOPVZKNQDW-UHFFFAOYSA-N O=CC1=CC=C(C2=CC=CC=C2)C=C1 Chemical compound O=CC1=CC=C(C2=CC=CC=C2)C=C1 ISDBWOPVZKNQDW-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- JCZLABDVDPYLRZ-AWEZNQCLSA-N biphenylalanine Chemical class C1=CC(C[C@H](N)C(O)=O)=CC=C1C1=CC=CC=C1 JCZLABDVDPYLRZ-AWEZNQCLSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 235000011087 fumaric acid Nutrition 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- 229940011051 isopropyl acetate Drugs 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- XTEGVFVZDVNBPF-UHFFFAOYSA-N naphthalene-1,5-disulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1S(O)(=O)=O XTEGVFVZDVNBPF-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- PXQPEWDEAKTCGB-UHFFFAOYSA-N orotic acid Chemical compound OC(=O)C1=CC(=O)NC(=O)N1 PXQPEWDEAKTCGB-UHFFFAOYSA-N 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- UWYVPFMHMJIBHE-OWOJBTEDSA-N (e)-2-hydroxybut-2-enedioic acid Chemical compound OC(=O)\C=C(\O)C(O)=O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- OOKSMYZBWRKRGU-UHFFFAOYSA-N 2-benzoyl-2,3-dihydroxybutanedioic acid Chemical compound OC(=O)C(O)C(O)(C(O)=O)C(=O)C1=CC=CC=C1 OOKSMYZBWRKRGU-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- QAIUEZSSLHVCGO-LFIBNONCSA-N CC(=O)N/C(=C/C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O Chemical compound CC(=O)N/C(=C/C1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O QAIUEZSSLHVCGO-LFIBNONCSA-N 0.000 description 1
- HDNGVBPPMAZUMI-UHFFFAOYSA-N CC(=O)NC(CC1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O Chemical compound CC(=O)NC(CC1=CC=C(C2=CC=CC=C2)C=C1)C(=O)O HDNGVBPPMAZUMI-UHFFFAOYSA-N 0.000 description 1
- FWGUGWIRBPDVNC-WJDWOHSUSA-N CC1=N/C(=C\C2=CC=C(C3=CC=CC=C3)C=C2)C(=O)O1 Chemical compound CC1=N/C(=C\C2=CC=C(C3=CC=CC=C3)C=C2)C(=O)O1 FWGUGWIRBPDVNC-WJDWOHSUSA-N 0.000 description 1
- SDTFVWFRQGWJRV-RXKTVEJJSA-N COC(=O)[C@@H](CC1=CC=C(C2=CC=CC=C2)C=C1)NC(=O)OC(C)(C)C.COC(=O)[C@@H](CC1=CC=C(O)C=C1)NC(=O)OC(C)(C)C.COC(=O)[C@@H](CC1=CC=C(OS(=O)(=O)C(F)(F)F)C=C1)NC(=O)OC(C)(C)C.COC(=O)[C@@H](CC1=CC=C(OS(=O)(=O)C(F)(F)F)C=C1)NC(=O)OC(C)(C)C.N[C@H](CC1=CC=C(O)C=C1)C(=O)O.O=S(=O)(OS(=O)(=O)C(F)(F)F)C(F)(F)F.OB(O)C1=CC=CC=C1 Chemical compound COC(=O)[C@@H](CC1=CC=C(C2=CC=CC=C2)C=C1)NC(=O)OC(C)(C)C.COC(=O)[C@@H](CC1=CC=C(O)C=C1)NC(=O)OC(C)(C)C.COC(=O)[C@@H](CC1=CC=C(OS(=O)(=O)C(F)(F)F)C=C1)NC(=O)OC(C)(C)C.COC(=O)[C@@H](CC1=CC=C(OS(=O)(=O)C(F)(F)F)C=C1)NC(=O)OC(C)(C)C.N[C@H](CC1=CC=C(O)C=C1)C(=O)O.O=S(=O)(OS(=O)(=O)C(F)(F)F)C(F)(F)F.OB(O)C1=CC=CC=C1 SDTFVWFRQGWJRV-RXKTVEJJSA-N 0.000 description 1
- OUYCCCASQSFEME-MRVPVSSYSA-N D-tyrosine Chemical compound OC(=O)[C@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-MRVPVSSYSA-N 0.000 description 1
- 229930195709 D-tyrosine Natural products 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OKJIRPAQVSHGFK-UHFFFAOYSA-N N-acetylglycine Chemical compound CC(=O)NCC(O)=O OKJIRPAQVSHGFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940040526 anhydrous sodium acetate Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- SIVVHUQWDOGLJN-UHFFFAOYSA-N ethylsulfamic acid Chemical group CCNS(O)(=O)=O SIVVHUQWDOGLJN-UHFFFAOYSA-N 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960005010 orotic acid Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- HLIBNTOXKQCYMV-UHFFFAOYSA-N propylsulfamic acid Chemical compound CCCNS(O)(=O)=O HLIBNTOXKQCYMV-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid group Chemical class S(N)(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical class CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/10—Preparation of carboxylic acid amides from compounds not provided for in groups C07C231/02 - C07C231/08
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/12—Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/46—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/47—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/64—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
- C07C233/81—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/82—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/87—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/32—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
- C07C235/34—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/08—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D263/16—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D263/18—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/34—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D263/36—One oxygen atom
- C07D263/42—One oxygen atom attached in position 5
Definitions
- the invention relates to a novel process, novel process steps and novel intermediates useful in the synthesis of pharmaceutically active compounds, in particular neutral endopeptidase (NEP) inhibitors.
- NEP neutral endopeptidase
- the present invention relates to a method to prepare N-acyl derivatives of biphenyl alanine.
- N-acyl derivatives of biphenyl alanine are key intermediates in the synthesis of pharmaceutically active compounds, in particular neutral endopeptidase (NEP) inhibitors, such as those described in U.S. Pat. No. 4,722,810, U.S. Pat. No. 5,223,516, U.S. Pat. No. 4,610,816, U.S. Pat. No. 4,929,641, South African Patent Application 84/0670, UK 69578, U.S. Pat. No.
- NEP neutral endopeptidase
- biphenyl alanine derivatives typically use expensive starting materials such as non-natural D-tyrosine. Moreover, said methods require the use of trifluoromethanesulfonic anhydride, which is also expensive, to activate the phenolic hydroxyl in order to carry out the aryl coupling reaction leading to the desired biphenyl structure.
- trifluoromethanesulfonic anhydride which is also expensive, to activate the phenolic hydroxyl in order to carry out the aryl coupling reaction leading to the desired biphenyl structure.
- This invention provides a method for preparing a N-acylbiphenyl alanine of formula (3), as defined herein.
- the new process, according to the present invention, for producing compounds according to formula (3) is summarized in Scheme 2.
- a compound of formula (1) is obtained.
- Said compound of formula (1) is next converted into a compound of formula (2), as defined herein, which in turn is hydrogenated, for example with hydrogen and palladium on charcoal, to provide the compound of formula (3).
- a compound of formula (3) can be converted into a neutral endopeptidase (NEP) inhibitors, for example, as described in the Journal of Medicinal Chemistry, 1995, Vol. 38, No. 10, 1691, and the patent documents cited hereinbefore, the disclosure for each of which is incorporated by reference
- NEP neutral endopeptidase
- the present invention relates to a method for preparing a compound of formula (1-a), or salt thereof,
- R1 is C 1-7 alkyl, preferably methyl, or C 6-10 aryl, preferably phenyl, comprising reacting
- R1 is as defined for the compound of formula (1-a), and (R2CO) 2 O, wherein R2 is C 1-7 alkyl, preferably methyl or propyl, most preferably methyl or ethyl, under alkaline conditions, to provide the compound of formula (1-a).
- solvents generally known in the art, for example, in the presence of a solvent, (named solvent I), selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, nitrobenzene, heptane, acetic acid, propionic acid, isobutyric acid, n-butyric acid, acetic anhydride or propionic anhydride.
- solvent I selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, nitrobenzene, heptane, acetic acid, propionic acid, isobutyric acid, n-butyric acid, acetic anhydride or propionic anhydride.
- anhydride (B) is acetic anhydride or propionic anhydride.
- under alkaline conditions means that the step requires a base.
- said base is selected from triethylamine, pyridine, N-methylpyrrole, N-methylmorpholine, sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, sodium acetate, potassium acetate, sodium propionate, or potassium propionate.
- step a is carried out at a reaction temperature of from 80 deg C. to reflux, preferably, with a reaction time of 0.5 to 48 hours.
- the molar ratio of said biphenyl formaldehyde:said N-acylglycine (A):said anhydride (B):said base is 1.0:(0.7 to 5.0):(1.0 to 6.0):(0.05 to 2.00); the amount of said solvent 1 is 0 to 20 times the weight of feed amount of said biphenyl formaldehyde.
- the present invention relates to a method for preparing a compound of formula (2-a), or salt thereof,
- R1 is C 1-7 alkyl, preferably methyl, or C 6-10 aryl, preferably phenyl, comprising reacting a compound of formula (1-a), or salt thereof,
- R1 is as defined for a compound of formula (2-a), with water to provide the compound of formula (2-a).
- the reactions described above can be carried out in solvents generally known in the art, for example, in the presence of a solvent, (named solvent II), selected from water, ethanol, methanol, isopropanol, propanol, ethyl acetate, isopropyl acetate, ethyl propionate, acetone, butanone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, N,N-dimethyl formamide, or N-methylpyrrole.
- a solvent selected from water, ethanol, methanol, isopropanol, propanol, ethyl acetate, isopropyl acetate, ethyl propionate, acetone, butanone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, N,N-dimethyl formamide, or N-methylpyrrole.
- step b is carried out at a reaction temperature of from room temperature to reflux.
- the present invention relates to a method for preparing a compound of formula (3), or salt thereof,
- R1 is C 1-7 alkyl, preferably methyl, or C 6-10 aryl, preferably phenyl, comprising treating a compound of formula (2-a), or salt thereof,
- R1 is C 1-7 alkyl, preferably methyl, or C 6-10 aryl, preferably phenyl, under hydrogenation conditions to provide the compound of formula (3).
- Hydrogenation conditions are well-known in the art and thus refer to the use of hydrogen and a transition metal catalyst, for example, as described in Section B.3.3 in WO2009/090251, which is incorporated herein by reference.
- the transition metal catalyst is palladium, preferably palladium on charcoal, preferably containing 1% to 20% palladium by weight.
- the hydrogenation takes place with hydrogen in the presence of a transition metal catalyst comprising an organometallic complex and a chiral ligand, for example as described in Section C.2 in WO2009/090251, which is incorporated herein by reference.
- solvent III selected from ethanol, methanol, ethyl acetate, N, N-dimethyl formamide, N-methylpyrrole and tetrahydrofuran.
- the weight of feed amount of said solvent III is 5 to 50 times of the amount of the compound of formula (1) [named product 1] in step a.
- the amount of palladium on charcoal is 0.1% to 20% of the compound of formula (2) [named product 2] in step b by weight.
- step c glacial acetic acid is also added in order to maintain acidic conditions.
- the reaction temperature is of from 20 deg C. to 150 deg C.
- the pressure of hydrogen is 0.2 MPa to 10.0 MPa.
- the present invention relates to a method for preparing a compound of formula (3), as defined herein, or salt thereof, comprising
- the present invention relates to a method for preparing a compound of formula (3), as defined herein, or salt thereof, comprising
- R1 is a straight-chain or branched-chain alkyl or aryl and R2 is a methyl or ethyl.
- a method for preparing N-acylbiphenyl alanine characterized in that for step a, said solvent I is selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, nitrobenzene, heptane, acetic acid, propionic acid, isobutyric acid, n-butyric acid, acetic anhydride, or propionic anhydride; said anhydride is acetic anhydride or propionic anhydride; said base is selected from triethylamine, pyridine, N-methylpyrrole, N-methylmorpholine, sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, sodium acetate, potassium acetate, sodium propionate, or potassium propionate.
- said solvent I is selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, nitrobenzene, heptane, acetic
- step a is carried out at a reaction temperature from 80 deg C. to reflux with a reaction time of 0.5 to 48 hours.
- said solvent II is selected from water, ethanol, methanol, isopropanol, propanol, ethyl acetate, isopropyl acetate, ethyl propionate, acetone, butanone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, N,N-dimethyl formamide, or N-methylpyrrole.
- step b is carried out at a reaction temperature from room temperature to reflux.
- Alkyl being a radical or part of a radical is a straight or branched (one or, if desired and possible, more times) carbon chain, and is especially C 1 -C 7 -alkyl, such as C 1 -C a -alkyl, in particular branched C 1 -C 4 -alkyl, such as isopropyl.
- the term “lower” or “C 1 -C 7 -” defines a moiety with up to and including maximally 7, especially up to and including maximally 4, carbon atoms, said moiety being branched (one or more times) or straight-chained and bound via a terminal or a non-terminal carbon.
- Lower or C 1 -C 7 -alkyl for example, is n-pentyl, n-hexyl or n-heptyl or preferably C 1 -C 4 -alkyl, especially as methyl, ethyl, n-propyl, sec-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, in particular methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl. Very preferred is methyl or ethyl.
- Aryl as a radical or part of a radical, for example is a mono- or bicyclic aryl with 6 to 22 carbon atoms, such as phenyl, indenyl, indanyl or naphthyl, in particular phenyl.
- the term “ ” represents a covalent bond, which comprises an (E) stereoisomer as well as a (Z) stereoisomer.
- reaction refers to the temperature at which the reaction mixture boils, preferably a temperature up to 180° C., preferably up to 140° C.
- room temperature or “ambient temperature” means a temperature of from 20 to 35° C., such as of from 20 to 25° C.
- any reference to “compounds”, “starting materials” and “intermediates” hereinbefore and hereinafter, is to be understood as referring also to one or more salts thereof or a mixture of a corresponding free compound, intermediate or starting material and one or more salts thereof, each of which is intended to include also any solvate, metabolic precursor such as ester or amide, or salt of any one or more of these, as appropriate and expedient and if not explicitly mentioned otherwise.
- Different crystal forms may be obtainable and then are also included.
- Salts can be formed where salt forming groups, such as basic or acidic groups, are present that can exist in dissociated form at least partially, e.g. in a pH range from 4 to 10 in aqueous solutions, or can be isolated especially in solid, especially crystalline, form.
- salts may be formed preferably with organic or inorganic acids. Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid.
- Suitable organic acids are, for example, carboxylic, phosphonic, sulfonic or sulfamic acids, for example acetic acid, propionic acid, lactic acid, fumaric acid, succinic acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, benzoic acid, methane- or ethane-sulfonic acid, etha-ne-1,2-disulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 1,5-naphtha-lene-disulfonic acid, N-cyclohexylsulfamic acid, N-methyl-, N-ethyl- or N-propyl-sulfamic acid, or other organic protonic acids, such as ascorbic acid.
- carboxylic, phosphonic, sulfonic or sulfamic acids for example acetic acid
- salts may be formed with bases, e.g. metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example N-ethyl-piperidine or N,N′-dimethylpiperazine.
- bases e.g. metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example N-ethyl-piperidine or N,N′-dimethylpiperazine.
- internal salts
- Particularly useful salts include the hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric, lactic acid, fumaric acid, succinic acid, oxalic acid, malic acid, malonic acid, tartaric acid, tolyltartaric acid, benzoyltartaric acid, orotic acid, nicotinic acid, methane-sulfonic acid or 4-methylbenzenesulfonic acid salts of compounds of formula (1), (1-a), (2), (2-a), (3), (3-a) and the like formed from reaction with the above reagents.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
- The invention relates to a novel process, novel process steps and novel intermediates useful in the synthesis of pharmaceutically active compounds, in particular neutral endopeptidase (NEP) inhibitors.
- The present invention relates to a method to prepare N-acyl derivatives of biphenyl alanine. N-acyl derivatives of biphenyl alanine are key intermediates in the synthesis of pharmaceutically active compounds, in particular neutral endopeptidase (NEP) inhibitors, such as those described in U.S. Pat. No. 4,722,810, U.S. Pat. No. 5,223,516, U.S. Pat. No. 4,610,816, U.S. Pat. No. 4,929,641, South African Patent Application 84/0670, UK 69578, U.S. Pat. No. 5,217,996, EP 00342850, GB 02218983, WO 92/14706, EP 00343911, JP 06234754, EP 00361365, WO 90/09374, JP 07157459, WO 94/15908, U.S. Pat. No. 5,273,990, U.S. Pat. No. 5,294,632, U.S. Pat. No. 5,250,522, EP 00636621, WO 93/09101, EP 00590442, WO 93/10773, WO2008/031567 and U.S. Pat. No. 5,217,996.
- Typically, synthetic methods to prepare biphenyl alanine derivatives use expensive starting materials such as non-natural D-tyrosine. Moreover, said methods require the use of trifluoromethanesulfonic anhydride, which is also expensive, to activate the phenolic hydroxyl in order to carry out the aryl coupling reaction leading to the desired biphenyl structure. One example of such a synthetic approach is described in the Journal of Medicinal Chemistry 1995, Vol. 38 No. 10. Scheme 1 illustrates one of these methods:
- Therefore, there is a strong need to develop inexpensive methods to prepare biphenyl alanine derivatives. It is found that the present invention meets this objective and thus provides a process that is industrially advantageous.
- This invention provides a method for preparing a N-acylbiphenyl alanine of formula (3), as defined herein. The new process, according to the present invention, for producing compounds according to formula (3), is summarized in Scheme 2. By reacting biphenyl formaldehyde, as defined herein, N-acylglycine (A), as defined herein, and an anhydride (B), as defined herein, under alkaline conditions, a compound of formula (1), as defined herein, is obtained. Said compound of formula (1) is next converted into a compound of formula (2), as defined herein, which in turn is hydrogenated, for example with hydrogen and palladium on charcoal, to provide the compound of formula (3). A compound of formula (3) can be converted into a neutral endopeptidase (NEP) inhibitors, for example, as described in the Journal of Medicinal Chemistry, 1995, Vol. 38, No. 10, 1691, and the patent documents cited hereinbefore, the disclosure for each of which is incorporated by reference
- The synthetic process summarized in Scheme 2 uses inexpensive starting materials and reagents and is thus suitable for industrial production.
- In a first embodiment the present invention relates to a method for preparing a compound of formula (1-a), or salt thereof,
- preferably wherein the compound of formula (1-a) is of the formula (1),
- wherein R1 is C1-7alkyl, preferably methyl, or C6-10aryl, preferably phenyl,
comprising
reacting - or salt thereof,
with
a compound of formula (A), - or salt thereof,
wherein R1 is as defined for the compound of formula (1-a),
and (R2CO)2O, wherein R2 is C1-7alkyl, preferably methyl or propyl, most preferably methyl or ethyl,
under alkaline conditions,
to provide the compound of formula (1-a). - The reactions described above can be carried out in solvents generally known in the art, for example, in the presence of a solvent, (named solvent I), selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, nitrobenzene, heptane, acetic acid, propionic acid, isobutyric acid, n-butyric acid, acetic anhydride or propionic anhydride.
- Preferably, anhydride (B) is acetic anhydride or propionic anhydride.
- The term “under alkaline conditions” means that the step requires a base. Preferably, said base is selected from triethylamine, pyridine, N-methylpyrrole, N-methylmorpholine, sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, sodium acetate, potassium acetate, sodium propionate, or potassium propionate.
- Preferably, step a is carried out at a reaction temperature of from 80 deg C. to reflux, preferably, with a reaction time of 0.5 to 48 hours.
- Preferably, in step a, the molar ratio of said biphenyl formaldehyde:said N-acylglycine (A):said anhydride (B):said base is 1.0:(0.7 to 5.0):(1.0 to 6.0):(0.05 to 2.00); the amount of said solvent 1 is 0 to 20 times the weight of feed amount of said biphenyl formaldehyde.
- In a further embodiment, the present invention relates to a method for preparing a compound of formula (2-a), or salt thereof,
- preferably wherein the compound of formula (2-a) is of the formula (2),
- wherein R1 is C1-7alkyl, preferably methyl, or C6-10aryl, preferably phenyl, comprising
reacting
a compound of formula (1-a), or salt thereof, - preferably wherein the compound of formula (1-a) is of the formula (1),
- wherein R1 is as defined for a compound of formula (2-a), with water
to provide the compound of formula (2-a). - The reactions described above can be carried out in solvents generally known in the art, for example, in the presence of a solvent, (named solvent II), selected from water, ethanol, methanol, isopropanol, propanol, ethyl acetate, isopropyl acetate, ethyl propionate, acetone, butanone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, N,N-dimethyl formamide, or N-methylpyrrole. Preferably, the weight of feed amount of said solvent II is 2 to 50 times the amount of the compound of formula (1) [named product 1] in step a; the weight of feed amount of water is 0.5 to 20 times the amount of product 1 in step a.
- Preferably, step b is carried out at a reaction temperature of from room temperature to reflux.
- In a further embodiment, the present invention relates to a method for preparing a compound of formula (3), or salt thereof,
- preferably wherein the compound of formula (3) is of the formula (3-a),
- wherein R1 is C1-7alkyl, preferably methyl, or C6-10aryl, preferably phenyl,
comprising
treating a compound of formula (2-a), or salt thereof, - preferably wherein the compound of formula (2-a) is of the formula (2),
- wherein R1 is C1-7alkyl, preferably methyl, or C6-10aryl, preferably phenyl,
under hydrogenation conditions
to provide the compound of formula (3). - Hydrogenation conditions are well-known in the art and thus refer to the use of hydrogen and a transition metal catalyst, for example, as described in Section B.3.3 in WO2009/090251, which is incorporated herein by reference. Preferably the transition metal catalyst is palladium, preferably palladium on charcoal, preferably containing 1% to 20% palladium by weight.
- In another embodiment, the hydrogenation takes place with hydrogen in the presence of a transition metal catalyst comprising an organometallic complex and a chiral ligand, for example as described in Section C.2 in WO2009/090251, which is incorporated herein by reference.
- The reactions described above can be carried out in solvents generally known in the art, for example, in the presence of a solvent (named solvent III) selected from ethanol, methanol, ethyl acetate, N, N-dimethyl formamide, N-methylpyrrole and tetrahydrofuran.
- Preferably, in step c, the weight of feed amount of said solvent III is 5 to 50 times of the amount of the compound of formula (1) [named product 1] in step a. Preferably, the amount of palladium on charcoal is 0.1% to 20% of the compound of formula (2) [named product 2] in step b by weight.
- Preferably, in step c, glacial acetic acid is also added in order to maintain acidic conditions.
- Preferably, the reaction temperature is of from 20 deg C. to 150 deg C.
- Preferably, the pressure of hydrogen is 0.2 MPa to 10.0 MPa.
- In a further aspect, the present invention relates to a method for preparing a compound of formula (3), as defined herein, or salt thereof, comprising
-
- i) step a), as described above;
- ii) step b), as described above; and
- iii) step c) as described above.
- In a still further aspect, the present invention relates to a method for preparing a compound of formula (3), as defined herein, or salt thereof, comprising
-
- iv) step b), as described above; and
- v) step c) as described above.
- A method for preparing N-acylbiphenyl alanine which is characterized by the following steps:
- Wherein R1 is a straight-chain or branched-chain alkyl or aryl and R2 is a methyl or ethyl.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that for step a, the molar ratio of said biphenyl formaldehyde:said N-acylglycine:said anhydride:said base is 1.0:(0.7 to 5.0):(1.0 to 6.0):(0.05 to 2.00), and the amount of said solvent I is 0 to 20 times the weight of feed amount of said biphenyl formaldehyde.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that for step a, said solvent I is selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, nitrobenzene, heptane, acetic acid, propionic acid, isobutyric acid, n-butyric acid, acetic anhydride, or propionic anhydride; said anhydride is acetic anhydride or propionic anhydride; said base is selected from triethylamine, pyridine, N-methylpyrrole, N-methylmorpholine, sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, sodium acetate, potassium acetate, sodium propionate, or potassium propionate.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that step a is carried out at a reaction temperature from 80 deg C. to reflux with a reaction time of 0.5 to 48 hours.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that for step b, said solvent II is selected from water, ethanol, methanol, isopropanol, propanol, ethyl acetate, isopropyl acetate, ethyl propionate, acetone, butanone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, N,N-dimethyl formamide, or N-methylpyrrole.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that for step b, the weight of feed amount of said solvent II is 2 to 50 times the amount of product 1 in step a; the feed amount of said water is 0.5 to 20 times the amount of product 1 in step a.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that step b is carried out at a reaction temperature from room temperature to reflux.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that for step c, the said solvent III is selected from ethanol, methanol, ethyl acetate, N,N-dimethyl formamide, N-methylpyrrole, or tetrahydrofuran; and said palladium charcoal contains 1% to 20% palladium by weight.
- A method for preparing N-acylbiphenyl alanine according to embodiment [1], characterized in that for step c, wherein the weight of feed amount of said solvent III is 5 to 50 times the amount of product 1 in step a, the amount of said palladium charcoal is 0.1% to 20% of the product 2 in step b by weight.
- A method for preparing N-acylbiphenyl alanine according embodiment [1], characterized in that glacial acetic acid is also added in order to adjust pH and maintain acidic conditions while step c is carried out, and the range of reaction temperature is from 20 deg C. to 150 deg C., and said pressure of hydrogen is 0.2 MPa to 10.0 MPa.
- Listed below are definitions of various terms used to describe the present invention. These definitions, either by replacing one, more than one or all general expressions or symbols used in the present disclosure and thus yielding preferred embodiments of the invention, preferably apply to the terms as they are used throughout the specification unless they are otherwise limited in specific instances either individually or as part of a larger group.
- Alkyl being a radical or part of a radical is a straight or branched (one or, if desired and possible, more times) carbon chain, and is especially C1-C7-alkyl, such as C1-Ca-alkyl, in particular branched C1-C4-alkyl, such as isopropyl. The term “lower” or “C1-C7-” defines a moiety with up to and including maximally 7, especially up to and including maximally 4, carbon atoms, said moiety being branched (one or more times) or straight-chained and bound via a terminal or a non-terminal carbon. Lower or C1-C7-alkyl, for example, is n-pentyl, n-hexyl or n-heptyl or preferably C1-C4-alkyl, especially as methyl, ethyl, n-propyl, sec-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, in particular methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl. Very preferred is methyl or ethyl.
- Aryl, as a radical or part of a radical, for example is a mono- or bicyclic aryl with 6 to 22 carbon atoms, such as phenyl, indenyl, indanyl or naphthyl, in particular phenyl.
-
- The term “reflux” refers to the temperature at which the reaction mixture boils, preferably a temperature up to 180° C., preferably up to 140° C.
- As used herein, the term “room temperature” or “ambient temperature” means a temperature of from 20 to 35° C., such as of from 20 to 25° C.
- The terms “transition metal catalyst”, “organometallic complex” and “chiral ligand” are as described in WO2009/090251, and said definitions are incorporated herein by reference.
- In the formulae of the present application the term “Ph” means phenyl.
- In view of the close relationship between the compounds and intermediates in free form and in the form of their salts, including those salts that can be used as intermediates, for example in the purification or identification of the compounds or salts thereof, any reference to “compounds”, “starting materials” and “intermediates” hereinbefore and hereinafter, is to be understood as referring also to one or more salts thereof or a mixture of a corresponding free compound, intermediate or starting material and one or more salts thereof, each of which is intended to include also any solvate, metabolic precursor such as ester or amide, or salt of any one or more of these, as appropriate and expedient and if not explicitly mentioned otherwise. Different crystal forms may be obtainable and then are also included. Salts can be formed where salt forming groups, such as basic or acidic groups, are present that can exist in dissociated form at least partially, e.g. in a pH range from 4 to 10 in aqueous solutions, or can be isolated especially in solid, especially crystalline, form. In the presence of basic groups (e.g. imino or amino), salts may be formed preferably with organic or inorganic acids. Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid. Suitable organic acids are, for example, carboxylic, phosphonic, sulfonic or sulfamic acids, for example acetic acid, propionic acid, lactic acid, fumaric acid, succinic acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, benzoic acid, methane- or ethane-sulfonic acid, etha-ne-1,2-disulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 1,5-naphtha-lene-disulfonic acid, N-cyclohexylsulfamic acid, N-methyl-, N-ethyl- or N-propyl-sulfamic acid, or other organic protonic acids, such as ascorbic acid. In the presence of negatively charged radicals, such as carboxy or sulfo, salts may be formed with bases, e.g. metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example N-ethyl-piperidine or N,N′-dimethylpiperazine. When a basic group and an acid group are present in the same molecule, internal salts may also be formed. Particularly useful salts include the hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric, lactic acid, fumaric acid, succinic acid, oxalic acid, malic acid, malonic acid, tartaric acid, tolyltartaric acid, benzoyltartaric acid, orotic acid, nicotinic acid, methane-sulfonic acid or 4-methylbenzenesulfonic acid salts of compounds of formula (1), (1-a), (2), (2-a), (3), (3-a) and the like formed from reaction with the above reagents. Methods to prepare acid addition salts are described in the literature, for example, in the relevant chapters of “CRC Handbook of Optical Resolutions via Diasteromeric Salt Formation”, D. Kozma, CRC Press 2002, in Acta Cryst, 2006, B62, 498-505 and in Synthesis, 2003, 13, 1965-1967.
- Where the plural form is used for compounds, starting materials, intermediates, salts, pharmaceutical preparations, diseases, disorders and the like, this is intended to mean one (preferred) or more single compound(s), salt(s), pharmaceutical preparation(s), disease(s), disorder(s) or the like, where the singular or the indefinite article (“a”, “an”) is used, this is not intended to exclude the plural, but only preferably means “one”.
- Particular embodiments of the invention are provided in the following Examples. These Examples serve to illustrate the invention without limiting the scope thereof, while they on the other hand represent preferred embodiments of the reaction steps, intermediates and/or the process of the present invention.
-
- In a dry and clean reaction bottle, add 36.4 g of biphenyl formaldehyde (Japan, Mitsubishi Chemical Co, Ltd, industrial, contents >98%), 28 g of acetyl glycine, 56 g of acetic anhydride, and 6 g of anhydrous sodium acetate. Heat to reflux for 0.5 hours. End heat preservation and cool to 80 deg C. Add 200 ml of water and agitate for 30 min. Filtrate and use 100 nil of water to wash filter cake for two times. Vacuum dry wet product at 30 to 40 deg C. to obtain the title product.
- 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J=8.4 Hz, 2H), 7.74-7.66 (m, 2H), 7.66-7.58 (m, 2H), 7.52-7.43 (m, 2H), 7.43-7.36 (m, 1H), 7.19 (s, 1H), 2.43 (s, 3H). M=263.
-
- In a 1000 ml reaction bottle, add 40 g of 4-(4-biphenyl methylene)-2-methyl-oxazole-5 (4H)-ketone (1, R1=Me), 450 ml of acetone, and 60 ml of tap water. Heat to reflux for 8 hours. End heat preservation. Add 3 g activated charcoal and decolorate for 1 hour. Filtrate and wash with 50 ml of acetone. Steam distillate acetone about 300 ml and then add 200 ml of water. Cool down to 20 deg C. Filtrate and dry wet product at 60 deg C. to obtain the title product.
- 1H NMR (400 MHz, DMSO) δ 12.69 (s, 1H), 9.53 (s, 1H), 7.81-7.64 (m, 6H), 7.49 (dd, J=10.4, 4.7 Hz, 2H), 7.39 (dd, J=8.2, 6.5 Hz, 1H), 7.26 (s, 1H), 2.01 (s, 3H). M=281, M+=280.
-
- In a 1 L high-pressure autoclave, add 20 g of 2-acetamido 3-biphenyl propenoic acid (2, R1=Me), 300 ml of anhydrous ethanol, 2 ml of glacial acetic acid, and 1 g of palladium charcoal containing 5% of palladium. Seal the reaction autoclave and use nitrogen to displace air. Heat to 70 to 80 deg C. of internal temperature. Adjust hydrogen pressure to 6 MPa. React for 20 hours with heat preservation. Cool down reaction autoclave to 60 deg C. Release gas. Filtrate it. Wash with 10 ml of ethanol. Condense the filtrate to about 60 ml. Cool down to 0 to 5 deg C. Filtrate and dry wet product at 60 deg C. to obtain the title product.
- 1H NMR (500 MHz, DMSO-d6): 1.82, 2.89-2.93, 3.08-3.12, 4.45-4.50, 7.33-7.37, 7.44-7.47, 7.58-7.60, 7.64-7.66, 8.26˜8.28, 12.75; MS (m/z): 224.07 (100), 167.14 (56), 165.16 (26), 282.94 ([MH+], 1).
-
- In a dry and clean reaction bottle, add 36.4 g of biphenyl formaldehyde (Japan, Mitsubishi Chemical Co, Ltd, industrial, contents >98%), 33 g of N-benzoyl glycine, 52 g of propionic anhydride, and 20 g of N-methylmorpholine and 182 g of chlorobenzene. Heat to 100 deg C. Heat preserve for 24 hours. Cool down to 80 deg C. Add 200 ml of water and agitate for 30 min. Filtrate and use 100 ml of water to wash filter cake for two times. Vacuum dry wet product to obtain the title product.
- 1H NMR (400 MHz, CDCl3) δ 8.29 (d, J=8.4 Hz, 2H), 8.24-8.17 (m, 2H), 7.73 (d, J=8.4 Hz, 2H), 7.69-7.59 (m, 3H), 7.55 (t, J=7.5 Hz, 2H), 7.49 (dd, J=10.2, 4.8 Hz, 2H), 7.44-7.37 (m, 1H), 7.29 (s, 1H). M=325.
-
- In a 1000 ml reaction bottle, add 60 g of 4-(4-biphenyl methylene)-2-phenyl-oxazole-5 (4H)-ketone (1, R1=Ph), 1000 ml of tetrahydrofuran, and 150 ml of tap water. Heat to room temperature. Heat preserve for 24 hours. Add 3 g of activated charcoal and decolorate for 1 hour. Filtrate and wash with 50 ml of tetrahydrofuran. After steam distillating about 600 ml of tetrahydrofuran, cool down to 20 deg C. Filtrate and dry wet product at 60 deg C. to obtain the title product.
- 1H NMR (400 MHz, DMSO) δ 9.61 (s, 1H), 8.00 (t, J=8.6 Hz, 2H), 7.82-7.36 (m, 13H), 7.33 (t, J=7.2 Hz, 1H). M=343, M+=342.
-
- In a 1 L high-pressure autoclave, add 10 g of 2-benzamido 3-biphenyl propenoic acid (2, R1=Ph), 350 ml of methanol, 1 ml of glacial acetic acid, and 2 g of palladium charcoal (Pd/C) containing 5% of palladium. Seal the reaction autoclave and displace air with nitrogen. Heat to 140 to 150 deg C. of internal temperature. Adjust nitrogen pressure to 0.2 MPa. React for 20 hours with heat preservation. Cool down reaction autoclave to 60 deg C. Release gas. Filtrate and wash with about 10 ml of ethanol. Condense filtrate to about 60 ml. Cool down to 0 to 5 deg C. Filtrate and dry wet product at 60 deg C. to obtain the title product.
- 1H NMR (500 MHz, DMSO-d6): 3.12-3.17, 3.23-3.27, 4.65-4.70, 7.31-7.33, 7.34-7.45, 7.46-7.48, 7.58-7.60, 7.62-7.64, 7.83-7.84, 8.77-8.79, 12.85; MS (m/z): 224.0 (100), 167.1 (34), 165.1 (15), 105.1 (10), 77.2 (18), 344.8 ([MH+], 1).
-
- In a dry and clean reaction bottle, add 36.4 g of biphenyl formaldehyde (Japan, Mitsubishi Chemical Co, Ltd, industrial, contents >98%), 33 g of N-benzoyl glycine, 52 g of propionic anhydride, and 10 g of anhydrous sodium propionate and 200 g of dichlorobenzene. Heat to 80 deg C. Heat preserve for 48 hours. Cool down to 80 deg C. Add 200 ml of water and agitate for 30 min. Filtrate and use 100 ml of water to wash filter cake two times. Vacuum dry wet product at 30 to 40 deg C. to obtain the title product.
- Spectroscopic data as Example 4.
-
- In a 1000 ml reaction bottle, add 50 g of 4-(4-biphenyl methylene)-2-phenyl-oxazole-5 (4H)-ketone (1, R1=Ph), 550 ml of butanone, and 120 ml of tap water. Heat to 40 deg C. Heat preservation for 24 hours. Add 3 g of activated charcoal and decolorate for 1 hour. Filtrate and wash with 50 ml of tetrahydrofuran. After steam distillating about 600 ml of tetrahydrofuran cool down to 20 deg C. Filtrate and dry wet product at 60 deg C. to obtain the title product. Spectroscopic data as Example 5.
-
- In a 1 L high-pressure autoclave, add 15 g of 2-benzamido 3-biphenyl propenoic acid (2, R1=Ph), 300 ml of tetrahydrofuran, 1.5 ml of glacial acetic acid, and 4 g of palladium charcoal (Pd/C) containing 5% of palladium. Seal the reaction autoclave and displace air with nitrogen. Heat to 100 to 110 deg C. of internal temperature. Adjust hydrogen pressure to 10.0 MPa. React for 20 hours with heat preservation. Cool down reaction autoclave to 60 deg C. Release gas. Filtrate and wash with about 10 ml of ethanol. Condense filtrate to about 60 ml. Cool down to 0 to 5 deg C. Filtrate and dry wet product at 60 deg C. to obtain the title product.
- Spectroscopic data as Example 6.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/163,526 US9242927B2 (en) | 2008-09-24 | 2014-01-24 | Process for the manufacture of N-acylbiphenyl alanine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810200404.XA CN101684077B (en) | 2008-09-24 | 2008-09-24 | Method for preparing N-acyl diphenylalanine |
PCT/CN2009/074125 WO2010034236A1 (en) | 2008-09-24 | 2009-09-23 | Process for the manufacture of n-acylbiphenyl alanine |
CNPCT/CN2009/074125 | 2009-09-23 | ||
PCT/CN2010/071243 WO2011035569A1 (en) | 2009-09-23 | 2010-03-23 | Process for manufacture of n-acylbphenyl alanine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/071243 A-371-Of-International WO2011035569A1 (en) | 2008-09-24 | 2010-03-23 | Process for manufacture of n-acylbphenyl alanine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/163,526 Continuation US9242927B2 (en) | 2008-09-24 | 2014-01-24 | Process for the manufacture of N-acylbiphenyl alanine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130172572A1 true US20130172572A1 (en) | 2013-07-04 |
Family
ID=42047495
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/497,544 Abandoned US20130172572A1 (en) | 2008-09-24 | 2010-03-23 | Process for Manufacture of N-acylbiphenyl alanine |
US14/163,526 Active US9242927B2 (en) | 2008-09-24 | 2014-01-24 | Process for the manufacture of N-acylbiphenyl alanine |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/163,526 Active US9242927B2 (en) | 2008-09-24 | 2014-01-24 | Process for the manufacture of N-acylbiphenyl alanine |
Country Status (7)
Country | Link |
---|---|
US (2) | US20130172572A1 (en) |
CN (1) | CN101684077B (en) |
ES (1) | ES2627060T3 (en) |
MX (1) | MX2012003488A (en) |
PL (1) | PL2480523T3 (en) |
PT (1) | PT2480523T (en) |
WO (1) | WO2010034236A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101684077B (en) | 2008-09-24 | 2013-01-02 | 浙江九洲药业股份有限公司 | Method for preparing N-acyl diphenylalanine |
WO2011035569A1 (en) * | 2009-09-23 | 2011-03-31 | Zhejiang Jiuzhou Pharmaceutical Co., Ltd. | Process for manufacture of n-acylbphenyl alanine |
JP6150179B2 (en) * | 2011-08-19 | 2017-06-21 | パセオン オーストリア ゲーエムベーハー ウント ツェーオー カーゲー | Synthesis of R-biphenylalaninol |
CN104725279B (en) * | 2015-02-12 | 2018-03-02 | 威海迪素制药有限公司 | A kind of preparation method of N Boc biphenylalanine derivatives |
CN104892447A (en) * | 2015-06-26 | 2015-09-09 | 周治国 | Method for preparing high-purity alpha-dehydroamino acid compounds |
CN105348209B (en) | 2015-12-09 | 2017-12-26 | 浙江天宇药业股份有限公司 | A kind of anti-heart failure medicine LCZ696 preparation method |
KR102763706B1 (en) * | 2015-12-10 | 2025-02-07 | 노파르티스 아게 | Novel methods and intermediates |
CN109071407A (en) * | 2016-02-29 | 2018-12-21 | 广东东阳光药业有限公司 | Intermediate of shakubiqu and preparation method thereof |
CN105820064A (en) * | 2016-04-18 | 2016-08-03 | 浙江天宇药业股份有限公司 | Synthetic method of biphenylyl alaninol derivative and intermediate |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60185752A (en) | 1984-03-05 | 1985-09-21 | Mitsui Toatsu Chem Inc | Production of alpha-acetamidocinnamic acid |
JPS60215657A (en) | 1984-04-10 | 1985-10-29 | Mitsui Toatsu Chem Inc | Preparation of n-acylphenylalanine |
CA1325222C (en) | 1985-08-23 | 1993-12-14 | Lederle (Japan), Ltd. | Process for producing 4-biphenylylacetic acid |
IL123986A (en) | 1997-04-24 | 2011-10-31 | Organon Nv | Serine protease inhibiting antithrombotic agents and pharmaceutical compositions comprising them |
GB2354440A (en) | 1999-07-20 | 2001-03-28 | Merck & Co Inc | Aryl amides as cell adhesion inhibitors |
JP4270484B2 (en) | 2002-03-08 | 2009-06-03 | 第一ファインケミカル株式会社 | Method for producing optically active phenylalanine derivative |
MXPA05000020A (en) * | 2002-07-01 | 2005-12-05 | Pharmacia & Upjohn Co Llc | Inhibitors of hcv ns5b polymerase. |
US20040180943A1 (en) | 2002-07-23 | 2004-09-16 | Augelli-Szafran Corinne Elizabeth | Oxazolone analogs as amyloid aggregation inhibitors and for the treatment of alzheimer's disease and disorders related to amyloidosis |
TW200838501A (en) * | 2007-02-02 | 2008-10-01 | Theravance Inc | Dual-acting antihypertensive agents |
CN101684077B (en) | 2008-09-24 | 2013-01-02 | 浙江九洲药业股份有限公司 | Method for preparing N-acyl diphenylalanine |
CN101774941A (en) | 2009-01-13 | 2010-07-14 | 浙江九洲药业股份有限公司 | Method for preparing and splitting 2-acyl amino-3-biphenylyl propionic acid |
CN101555211B (en) | 2009-05-13 | 2012-01-25 | 浙江九洲药业股份有限公司 | Chemical synthesis method of 2-acylamino-3-biphenyl propionic acid |
-
2008
- 2008-09-24 CN CN200810200404.XA patent/CN101684077B/en active Active
-
2009
- 2009-09-23 WO PCT/CN2009/074125 patent/WO2010034236A1/en active Application Filing
-
2010
- 2010-03-23 PT PT108182635T patent/PT2480523T/en unknown
- 2010-03-23 MX MX2012003488A patent/MX2012003488A/en active IP Right Grant
- 2010-03-23 US US13/497,544 patent/US20130172572A1/en not_active Abandoned
- 2010-03-23 PL PL10818263T patent/PL2480523T3/en unknown
- 2010-03-23 ES ES10818263.5T patent/ES2627060T3/en active Active
-
2014
- 2014-01-24 US US14/163,526 patent/US9242927B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9242927B2 (en) | 2016-01-26 |
PL2480523T3 (en) | 2017-09-29 |
CN101684077A (en) | 2010-03-31 |
WO2010034236A1 (en) | 2010-04-01 |
PT2480523T (en) | 2017-06-12 |
MX2012003488A (en) | 2012-04-20 |
CN101684077B (en) | 2013-01-02 |
ES2627060T3 (en) | 2017-07-26 |
US20140142320A1 (en) | 2014-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9242927B2 (en) | Process for the manufacture of N-acylbiphenyl alanine | |
EP2480523B1 (en) | Process for manufacture of n-acylbphenyl alanine | |
US9181175B2 (en) | Process for manufacture and resolution of 2-acylamino-3-diphenylpropanoic acid | |
US20110054183A1 (en) | Method For Manufacturing Aryl Carboxamides | |
US20060229456A1 (en) | Synthesis of Temozolomide and analogs | |
TW201502124A (en) | Method for preparation of benzimidazole derivatives | |
US20080287693A1 (en) | Process for the Preparation of 1-Naphthol Mixed Ethers and Intermediates of Crystalline Forms of (+) and (-)-Duloxetine | |
TWI395738B (en) | New process for the synthesis of ivabradine and addition salts thereof with a pharmaceutically acceptable acid | |
MXPA04001837A (en) | Processes for the production of alpha-difluoromethyl ornithine (dfmo). | |
JP4511970B2 (en) | Novel synthesis method of 1,3-dihydro-2H-3-benzazepin-2-one compounds and application to the synthesis of ivabradine and its addition salts with pharmaceutically acceptable acids | |
KR101675604B1 (en) | Novel synthesis of substituted 4-amino-pyrimidines | |
US10112901B2 (en) | Method for preparing dabigatran etexilate intermediate, and intermediate compound | |
JP4968602B2 (en) | Method for producing benzamide derivative | |
TW202110847A (en) | 6-aminopyrazolo[3,4-d]pyrimidines and processes for their preparation | |
WO2012069423A1 (en) | Method for the preparation of naproxen chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVARTIS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHEJIANG JIUZHOU PHARMACEUTICAL CO., LTD;REEL/FRAME:028780/0603 Effective date: 20120612 Owner name: ZHEJIANG JIUZHOU PHARMACEUTICAL CO., LTD, CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHEJIANG JIUZHOU PHARMACEUTICAL CO., LTD;REEL/FRAME:028780/0603 Effective date: 20120612 Owner name: ZHEJIANG JIUZHOU PHARMACEUTICAL CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHU, GUOLIANG;SHI, DESONG;WEI, JUNHUI;AND OTHERS;REEL/FRAME:028780/0443 Effective date: 20120612 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |