US20130171106A1 - Use of a combination of myxoma virus and rapamycin for therapeutic treatment - Google Patents
Use of a combination of myxoma virus and rapamycin for therapeutic treatment Download PDFInfo
- Publication number
- US20130171106A1 US20130171106A1 US13/679,096 US201213679096A US2013171106A1 US 20130171106 A1 US20130171106 A1 US 20130171106A1 US 201213679096 A US201213679096 A US 201213679096A US 2013171106 A1 US2013171106 A1 US 2013171106A1
- Authority
- US
- United States
- Prior art keywords
- cancer
- cell
- cells
- virus
- myxoma virus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000700562 Myxoma virus Species 0.000 title claims abstract description 208
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 16
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 title abstract description 124
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 title abstract description 124
- 229960002930 sirolimus Drugs 0.000 title abstract description 124
- 238000011282 treatment Methods 0.000 title abstract description 40
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 98
- 230000005860 defense response to virus Effects 0.000 claims abstract description 77
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 72
- 230000002950 deficient Effects 0.000 claims abstract description 70
- 201000010099 disease Diseases 0.000 claims abstract description 68
- 201000011510 cancer Diseases 0.000 claims abstract description 63
- 102000014150 Interferons Human genes 0.000 claims abstract description 41
- 108010050904 Interferons Proteins 0.000 claims abstract description 41
- 229940079322 interferon Drugs 0.000 claims abstract description 38
- 210000004027 cell Anatomy 0.000 claims description 369
- 241000700605 Viruses Species 0.000 claims description 122
- 108090000623 proteins and genes Proteins 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 47
- 230000009385 viral infection Effects 0.000 claims description 32
- 230000002401 inhibitory effect Effects 0.000 claims description 23
- 239000008194 pharmaceutical composition Substances 0.000 claims description 19
- 206010018338 Glioma Diseases 0.000 claims description 13
- 239000003814 drug Substances 0.000 claims description 12
- 239000002246 antineoplastic agent Substances 0.000 claims description 11
- 210000005260 human cell Anatomy 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 230000011664 signaling Effects 0.000 claims description 11
- 208000032612 Glial tumor Diseases 0.000 claims description 10
- 201000001441 melanoma Diseases 0.000 claims description 10
- 206010009944 Colon cancer Diseases 0.000 claims description 9
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 9
- 206010033128 Ovarian cancer Diseases 0.000 claims description 9
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 9
- 206010038389 Renal cancer Diseases 0.000 claims description 9
- 201000010982 kidney cancer Diseases 0.000 claims description 9
- 206010006187 Breast cancer Diseases 0.000 claims description 7
- 208000026310 Breast neoplasm Diseases 0.000 claims description 7
- 206010060862 Prostate cancer Diseases 0.000 claims description 7
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 7
- 208000036142 Viral infection Diseases 0.000 claims description 7
- 206010003571 Astrocytoma Diseases 0.000 claims description 6
- 230000001684 chronic effect Effects 0.000 claims description 6
- 208000029742 colonic neoplasm Diseases 0.000 claims description 6
- 229940127089 cytotoxic agent Drugs 0.000 claims description 6
- 208000020816 lung neoplasm Diseases 0.000 claims description 6
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 5
- 201000005202 lung cancer Diseases 0.000 claims description 5
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 4
- 206010004593 Bile duct cancer Diseases 0.000 claims description 3
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 3
- 201000010881 cervical cancer Diseases 0.000 claims description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 3
- 229940124597 therapeutic agent Drugs 0.000 claims description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 2
- 206010014733 Endometrial cancer Diseases 0.000 claims description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 claims description 2
- 206010023825 Laryngeal cancer Diseases 0.000 claims description 2
- 208000003445 Mouth Neoplasms Diseases 0.000 claims description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 2
- 208000026900 bile duct neoplasm Diseases 0.000 claims description 2
- 208000006990 cholangiocarcinoma Diseases 0.000 claims description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 2
- 206010023841 laryngeal neoplasm Diseases 0.000 claims description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 claims description 2
- 208000014018 liver neoplasm Diseases 0.000 claims description 2
- 201000002510 thyroid cancer Diseases 0.000 claims description 2
- 208000015181 infectious disease Diseases 0.000 description 82
- 210000004881 tumor cell Anatomy 0.000 description 45
- 241000283973 Oryctolagus cuniculus Species 0.000 description 40
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 description 34
- 102100040019 Interferon alpha-1/13 Human genes 0.000 description 34
- 102100034170 Interferon-induced, double-stranded RNA-activated protein kinase Human genes 0.000 description 29
- 101710089751 Interferon-induced, double-stranded RNA-activated protein kinase Proteins 0.000 description 29
- 230000000694 effects Effects 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 241001465754 Metazoa Species 0.000 description 23
- 208000009091 myxoma Diseases 0.000 description 20
- 238000001000 micrograph Methods 0.000 description 18
- 108010044012 STAT1 Transcription Factor Proteins 0.000 description 17
- 102000006381 STAT1 Transcription Factor Human genes 0.000 description 17
- 230000037361 pathway Effects 0.000 description 17
- 230000010076 replication Effects 0.000 description 17
- 230000003612 virological effect Effects 0.000 description 17
- 244000309459 oncolytic virus Species 0.000 description 16
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- 230000000840 anti-viral effect Effects 0.000 description 15
- 230000014509 gene expression Effects 0.000 description 15
- 239000003550 marker Substances 0.000 description 14
- 230000000174 oncolytic effect Effects 0.000 description 14
- 230000004044 response Effects 0.000 description 14
- 238000001262 western blot Methods 0.000 description 14
- 241000711975 Vesicular stomatitis virus Species 0.000 description 13
- 230000026731 phosphorylation Effects 0.000 description 13
- 238000006366 phosphorylation reaction Methods 0.000 description 13
- 238000002560 therapeutic procedure Methods 0.000 description 13
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 12
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 12
- 210000002950 fibroblast Anatomy 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 10
- 101150112867 MX1 gene Proteins 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 101100198353 Mus musculus Rnasel gene Proteins 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 238000010561 standard procedure Methods 0.000 description 9
- 230000029812 viral genome replication Effects 0.000 description 9
- 101150023320 B16R gene Proteins 0.000 description 8
- 101100316831 Vaccinia virus (strain Copenhagen) B18R gene Proteins 0.000 description 8
- 101100004099 Vaccinia virus (strain Western Reserve) VACWR200 gene Proteins 0.000 description 8
- 239000013592 cell lysate Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 102000006992 Interferon-alpha Human genes 0.000 description 7
- 241000702263 Reovirus sp. Species 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000003902 lesion Effects 0.000 description 7
- 230000003472 neutralizing effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 101100072149 Drosophila melanogaster eIF2alpha gene Proteins 0.000 description 6
- 101000617830 Homo sapiens Sterol O-acyltransferase 1 Proteins 0.000 description 6
- 108010047761 Interferon-alpha Proteins 0.000 description 6
- 102000006382 Ribonucleases Human genes 0.000 description 6
- 108010083644 Ribonucleases Proteins 0.000 description 6
- 102100021993 Sterol O-acyltransferase 1 Human genes 0.000 description 6
- 101000697584 Streptomyces lavendulae Streptothricin acetyltransferase Proteins 0.000 description 6
- 241000700618 Vaccinia virus Species 0.000 description 6
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 6
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 230000002147 killing effect Effects 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 102100020870 La-related protein 6 Human genes 0.000 description 5
- 108050008265 La-related protein 6 Proteins 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 241000288906 Primates Species 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 5
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000019491 signal transduction Effects 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 241000711404 Avian avulavirus 1 Species 0.000 description 4
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 4
- 108700020796 Oncogene Proteins 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 4
- 108091006047 fluorescent proteins Proteins 0.000 description 4
- 102000034287 fluorescent proteins Human genes 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 230000010468 interferon response Effects 0.000 description 4
- 230000004807 localization Effects 0.000 description 4
- 210000001161 mammalian embryo Anatomy 0.000 description 4
- 230000001613 neoplastic effect Effects 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000001959 radiotherapy Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 241000991587 Enterovirus C Species 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102100035549 Eukaryotic translation initiation factor 2 subunit 1 Human genes 0.000 description 3
- 101710151743 Eukaryotic translation initiation factor 2 subunit 1 Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000003996 Interferon-beta Human genes 0.000 description 3
- 108090000467 Interferon-beta Proteins 0.000 description 3
- -1 MCF-7 Chemical compound 0.000 description 3
- 229930191564 Monensin Natural products 0.000 description 3
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 102000043276 Oncogene Human genes 0.000 description 3
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 3
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 3
- 102100027913 Peptidyl-prolyl cis-trans isomerase FKBP1A Human genes 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 102000004265 STAT2 Transcription Factor Human genes 0.000 description 3
- 108010081691 STAT2 Transcription Factor Proteins 0.000 description 3
- 108010006877 Tacrolimus Binding Protein 1A Proteins 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- YJQCOFNZVFGCAF-UHFFFAOYSA-N Tunicamycin II Natural products O1C(CC(O)C2C(C(O)C(O2)N2C(NC(=O)C=C2)=O)O)C(O)C(O)C(NC(=O)C=CCCCCCCCCC(C)C)C1OC1OC(CO)C(O)C(O)C1NC(C)=O YJQCOFNZVFGCAF-UHFFFAOYSA-N 0.000 description 3
- 206010046865 Vaccinia virus infection Diseases 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 210000005069 ears Anatomy 0.000 description 3
- 229960005167 everolimus Drugs 0.000 description 3
- 238000002073 fluorescence micrograph Methods 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229940047124 interferons Drugs 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000007917 intracranial administration Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 229960005358 monensin Drugs 0.000 description 3
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- ZHSGGJXRNHWHRS-VIDYELAYSA-N tunicamycin Chemical compound O([C@H]1[C@@H]([C@H]([C@@H](O)[C@@H](CC(O)[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(NC(=O)C=C2)=O)O)O1)O)NC(=O)/C=C/CC(C)C)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O ZHSGGJXRNHWHRS-VIDYELAYSA-N 0.000 description 3
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 208000007089 vaccinia Diseases 0.000 description 3
- 230000007923 virulence factor Effects 0.000 description 3
- 239000000304 virulence factor Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 2
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 108010036949 Cyclosporine Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 208000006586 Ectromelia Diseases 0.000 description 2
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 241000700563 Leporipoxvirus Species 0.000 description 2
- 206010024503 Limb reduction defect Diseases 0.000 description 2
- 241000609846 Lumpy skin disease virus Species 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 208000037581 Persistent Infection Diseases 0.000 description 2
- 108010017324 STAT3 Transcription Factor Proteins 0.000 description 2
- 102000004495 STAT3 Transcription Factor Human genes 0.000 description 2
- 102000005886 STAT4 Transcription Factor Human genes 0.000 description 2
- 108010019992 STAT4 Transcription Factor Proteins 0.000 description 2
- 102000001712 STAT5 Transcription Factor Human genes 0.000 description 2
- 108010029477 STAT5 Transcription Factor Proteins 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 2
- 208000001203 Smallpox Diseases 0.000 description 2
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 2
- 241000870995 Variola Species 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 201000005793 childhood medulloblastoma Diseases 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 201000003740 cowpox Diseases 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 230000009395 genetic defect Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000015788 innate immune response Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000006662 intracellular pathway Effects 0.000 description 2
- 230000004068 intracellular signaling Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000002101 lytic effect Effects 0.000 description 2
- 229940124302 mTOR inhibitor Drugs 0.000 description 2
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 208000005871 monkeypox Diseases 0.000 description 2
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 2
- 210000005170 neoplastic cell Anatomy 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000004960 subcellular localization Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 229960000235 temsirolimus Drugs 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 230000010415 tropism Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000001018 virulence Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 1
- CTRPRMNBTVRDFH-UHFFFAOYSA-N 2-n-methyl-1,3,5-triazine-2,4,6-triamine Chemical compound CNC1=NC(N)=NC(N)=N1 CTRPRMNBTVRDFH-UHFFFAOYSA-N 0.000 description 1
- 101100463130 Arabidopsis thaliana PDK gene Proteins 0.000 description 1
- 101100002068 Bacillus subtilis (strain 168) araR gene Proteins 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 101100322915 Caenorhabditis elegans akt-1 gene Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 101100342473 Drosophila melanogaster Raf gene Proteins 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 108091007911 GSKs Proteins 0.000 description 1
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 1
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 1
- 101000997835 Homo sapiens Tyrosine-protein kinase JAK1 Proteins 0.000 description 1
- 241000598171 Human adenovirus sp. Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108010086140 Interferon alpha-beta Receptor Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 102000042838 JAK family Human genes 0.000 description 1
- 108091082332 JAK family Proteins 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101710085061 Orsellinic acid synthase Proteins 0.000 description 1
- 101710110277 Orsellinic acid synthase armB Proteins 0.000 description 1
- 241000283977 Oryctolagus Species 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 1
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108091008611 Protein Kinase B Proteins 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 101710141955 RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 1
- 101100523543 Rattus norvegicus Raf1 gene Proteins 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 206010039509 Scab Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 101000677856 Stenotrophomonas maltophilia (strain K279a) Actin-binding protein Smlt3054 Proteins 0.000 description 1
- 241000187391 Streptomyces hygroscopicus Species 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 241000283975 Sylvilagus Species 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 102000046283 TNF-Related Apoptosis-Inducing Ligand Human genes 0.000 description 1
- 108700012411 TNFSF10 Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102100033438 Tyrosine-protein kinase JAK1 Human genes 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 101000645119 Vibrio campbellii (strain ATCC BAA-1116 / BB120) Nucleotide-binding protein VIBHAR_03667 Proteins 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 101100523549 Xenopus laevis raf1 gene Proteins 0.000 description 1
- 241000212749 Zesius chrysomallus Species 0.000 description 1
- 101150037250 Zhx2 gene Proteins 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 230000005735 apoptotic response Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 101150044616 araC gene Proteins 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000009702 cancer cell proliferation Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 208000025997 central nervous system neoplasm Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 244000052637 human pathogen Species 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000008073 immune recognition Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- OSTGTTZJOCZWJG-UHFFFAOYSA-N nitrosourea Chemical compound NC(=O)N=NO OSTGTTZJOCZWJG-UHFFFAOYSA-N 0.000 description 1
- 230000000683 nonmetastatic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 201000005111 ocular hyperemia Diseases 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 238000009521 phase II clinical trial Methods 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 101150063097 ppdK gene Proteins 0.000 description 1
- 230000000063 preceeding effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 125000000561 purinyl group Chemical class N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 108010051423 streptavidin-agarose Proteins 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 230000004222 uncontrolled growth Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
- C12N7/02—Recovery or purification
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/768—Oncolytic viruses not provided for in groups A61K35/761 - A61K35/766
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/436—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/275—Poxviridae, e.g. avipoxvirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/24011—Poxviridae
- C12N2710/24032—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
Definitions
- the present invention relates generally to therapeutic use of Myxoma virus and rapamycin.
- Oncolytic viral therapy is one approach that aims to exploit cellular differences between tumour cells and normal cells.
- This therapy uses replication-competent, tumour-selective viral vectors as anti-cancer agents.
- the oncolytic virus either specifically targets cancer cells for infection, or is more suited for efficient replication in cancer cells versus healthy cells.
- These replication-competent, oncolytic viruses are either naturally occurring or genetically engineered to be a highly selective and highly potent means of targeting the heterogeneous tumour population. Since the replication selective oncolytic virus does not replicate efficiently in normal cells, toxicity to the patient should be low, particularly in comparison to traditional therapies such as radiation or chemotherapy.
- HSV1 herpes simplex virus 1
- VSV Vesicular Stomatitis Virus
- Modified oncolytic viruses currently under investigation as anticancer agents include HSV, adenovirus, Newcastle disease virus (“NDV”), Reovirus and Vaccinia virus, measles, VSV and poliovirus.
- HSV herpes simplex virus 1
- NDV Newcastle disease virus
- Reovirus Reovirus and Vaccinia virus
- measles measles
- VSV poliovirus
- Various oncolytic viruses are in Phase I and Phase II clinical trials with some showing sustained efficacy. However, it is unknown which viruses will best fulfill the oncolytic goals of sustained replication, specificity and potent lytic activity.
- a completely efficient candidate for an oncolytic viral vector would be one that has a short lifecycle, forms mature virions quickly, spreads efficiently from cell to cell and has a large genome ready for insertions.
- evidence suggests that inhibiting the early innate immune response and slowing the development of Th1 responses are important for the efficacy of oncolytic therapy. It is clear that human viruses are highly immunogenic, as measured by the high level of antibody and T cell responses that are observed in the normal population for many of the viruses being considered for the development of oncolytic viruses.
- Adenovirus can be easily genetically manipulated and has well-known associated viral protein function. In addition, it is associated with a fairly mild disease.
- the ONYX-015 human adenovirus (Onyx Pharmaceuticals Inc.) is one of the most extensively tested oncolytic viruses that has been optimized for clinical use. It is believed to replicate preferentially in p53-negative tumours and shows potential in clinical trials with head and neck cancer patients.
- reports show that ONYX-015 has only produced an objective clinical response in 14% of treated patients (Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, Kuhn J, McCarty T, Landers S, Blackburn A, Romel L, Randlev B, Kaye S, Kirn D. J. Clin. Oncol. 2001 Jan. 15; 19(2):289-98).
- WO96/03997 and WO97/26904 describe a mutant oncolytic HSV that inhibits tumour cell growth and is specific to neuronal cells. Further advantages are that the HSV can be genetically modified with ease, and drugs exist to shut off any unwanted viral replication. However, the application of such a common human pathogen is limited, as it is likely that the general population has been exposed and acquired an immune response to this virus, which would attenuate the lytic effect of the virus. HSV can also cause serious side effects or a potentially fatal disease.
- Reovirus type III is associated with relatively mild diseases and its viral gene function is fairly well understood. Reovirus type III is currently being developed by Oncolytic Biotech as a cancer therapeutic which exhibits enhanced replication properties in cells expressing mutant ras oncogen and preferentially grows in PKR ⁇ / ⁇ cells (Strong J. E. and P. W. Lee, J. Virology, 1996. 70:612-616). However, Reovirus is difficult to genetically manipulate and its viral replication cannot be easily shut off.
- VSV is associated with relatively mild diseases and also has well-known viral gene function.
- WO99/04026 discloses the use of VSV as a vector in gene therapy for the expression of wide treatment of a variety of disorders.
- VSV suffers from the same problems as the Reovirus in that it is difficult to genetically manipulate and its viral replication cannot be easily shut off.
- Vaccina virus and Poliovirus are other candidate oncolytic viruses described in the art but have been associated with a serious or potentially fatal disease.
- U.S. Pat. No. 4,806,347 discloses the use of gamma interferon and a fragment of IFN ⁇ against human tumour cells.
- WO99/18799 discloses a method of treating disease in a mammal in which the diseased cells have defects in an interferon-mediated antiviral response, comprising administering to the mammal a therapeutically effective amount of an interferon-sensitive, replication competent clonal virus. It specifically discloses that VSV particles have toxic activity against tumour cells but that alleviation of cytotoxicity in normal cells by VSV occurs in the presence of interferon.
- WO99/18799 also discloses that NDV-induced sensitivity was observed with the interferon-treated tumour cells but that adding interferon to normal cells makes these cells resistant to NDV. This method aims to make cells sensitive to interferon by infecting them with interferon sensitive viruses.
- the present invention is based on the unexpected discovery that rabbit Myxoma virus, including a novel Myxoma virus that does not express functional M135R protein, can selectively infect cells, including human tumour cells, that have a deficient innate anti-viral response, including those that are non-responsive to interferon, and that such infection is enhanced by treating such cells with the drug rapamycin.
- the term “innate” as used in this context describes non-antigen specific immune response. Since Myxoma virus does not replicate efficiently in normal human cells, the virus can therefore be used as a treatment for various disorders and conditions characterized by cells that have a deficient innate anti-viral response, including cells that are non-responsive to interferon, for example, as an oncolytic treatment for cancer.
- the virus can also be used to identify cells that have a deficient innate anti-viral response and to image these cells in vivo.
- the present invention provides a method for inhibiting a cell that has a deficient innate anti-viral response comprising administering to the cell an effective amount of a combination of Myxoma virus and rapamycin.
- the invention provides a method for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response, comprising administering to a patient in need thereof an effective amount of a combination of Myxoma virus and rapamycin.
- the present invention further provides use of an effective amount of a combination of Myxoma virus and rapamycin for inhibiting a cell that has a deficient innate anti-viral response and for the manufacture of a medicament for inhibiting a cell that has a deficient innate anti-viral response.
- the present invention further provides use of an effective amount of a combination of Myxoma virus and rapamycin for treating a disease state in a patient, wherein the disease state is characterized by the presence of cells that have a deficient innate anti-viral response and for the manufacture of a medicament for treating such a disease state in a patient.
- the present invention provides a pharmaceutical composition comprising Myxoma virus and rapamycin.
- the pharmaceutical composition may be useful for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response.
- the present invention provides a kit comprising Myxoma virus, rapamycin and instructions for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response.
- the disease states include cancer and a chronic viral infection.
- the present invention further provides a method of detection a cell that has a deficient innate anti-viral response, comprising exposing a population of cells to a combination of Myxoma virus and rapamycin; allowing the virus to infect a cell that has a deficient innate anti-viral response; and determining the infection of any cells of the population of cells by the Myxoma virus.
- the present invention is further based on the unexpected discovery that rabbit Myxoma virus protein M135R is involved in eliciting an immune response in rabbits and that a Myxoma virus strain that does not express functional M135R can kill cells in vitro, but does not cause myxomatosis disease in animals.
- a viral strain can be used to treat cells having a deficient innate anti-viral response, including those that are non-responsive to interferon, and including treatments given in combination with the drug rapamycin, without the need for increased containment of the virus, leading to improved safety.
- the present invention provides a method for inhibiting a cell that has a deficient innate anti-viral response comprising administering to the cell an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin.
- the invention provides a method for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response, comprising administering to a patient in need thereof an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin.
- the present invention further provides use of an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin, for inhibiting a cell that has a deficient innate anti-viral response and in the manufacture of a medicament for inhibiting a cell that has a deficient innate anti-viral response.
- the present invention further provides use of an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin, for treating a disease state in a patient, wherein the disease state is characterized by the presence of cells that have a deficient innate anti-viral response and in the manufacture of a medicament for treating such a disease state in a patient.
- the present invention provides a Myxoma virus that does not express functional M135R.
- the present invention provides a pharmaceutical composition comprising Myxoma virus that does not express functional M135R.
- the pharmaceutical composition may be useful for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response.
- the pharmaceutical composition may further comprise rapamycin.
- the present invention provides a kit comprising Myxoma virus that does not express functional M135R and instructions for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response.
- the kit may further comprise rapamycin.
- the disease state includes cancer and a chronic viral infection.
- the present invention further provides a method for detecting a cell that has a deficient innate anti-viral response, comprising exposing a population of cells to a Myxoma virus that does not express functional M135R, optionally in combination with rapamycin; allowing the virus to infect a cell that has a deficient innate anti-viral response; and determining the infection of any cells of the population of cells by the Myxoma virus.
- FIG. 1 is a schematic diagram of an interferon mediated anti-viral signalling scheme induced upon viral infection of a cell
- FIG. 2 is a phase contrast micrograph of nonpermissive WT murine embryonic fibroblasts (“MEFs”) after exposure to Myxoma virus, demonstrating that the MEFs become permissive after inhibition of interferon ⁇ / ⁇ with neutralizing antibody;
- MEFs nonpermissive WT murine embryonic fibroblasts
- FIG. 3 is a Western blot showing phosphorylation states (activation) of STAT1 and STAT2 after Myxoma virus infection, demonstrating that nonpermissive infections of MEF cells is associated with activation of STAT 1 and STAT 2;
- FIG. 4 is a Western blot showing phosphorylation states (inactivation) of STAT3, STAT4, STAT5 and STATE after Myxoma virus infection, demonstrating that nonpermissive infections of MEF cells does not activate any of these species;
- FIG. 5 is a phase contrast micrograph of IFN ⁇ / ⁇ R ⁇ / ⁇ MEFs and STAT1 ⁇ / ⁇ MEFs, IFN ⁇ / ⁇ R ⁇ / ⁇ MEFs and STAT1 ⁇ / ⁇ MEFs after infection with Myxoma virus, showing that inactivation of IFN/STAT/JAK signalling renders cells permissive for Myxoma infection;
- FIG. 6 is a Western blot showing phosphorylation states of PKR in nonpermissive wildtype MEFs after Myxoma virus infection, demonstrating that PKR is not activated by Myxoma virus infection;
- FIG. 7 is a Western blot showing phosphorylation states of PKR in wildtype MEFs either mock infected or pre-infected with Myxoma virus, showing that Myxoma virus blocks PKR activation in MEF cells;
- FIG. 8 is a Western blot showing phosphorylation states of PERK in wildtype MEFs after Myxoma virus infection, demonstrating that Myxoma virus blocks PERK activation in MEF cells;
- FIG. 9 is a phase contrast micrograph of PKR ⁇ / ⁇ , RNase L ⁇ / ⁇ and Mx1 ⁇ / ⁇ triple knockout after exposure to Myxoma virus, showing that the antiviral state in MEF cells is mediated by a distinct pathway;
- FIG. 10 is a phase contrast micrograph of PKR ⁇ / ⁇ , RNase L ⁇ / ⁇ and Mx1 ⁇ / ⁇ triple knockout after exposure to Myxoma virus;
- FIG. 11 is a phase contrast micrograph of PKR ⁇ / ⁇ , RNase L ⁇ / ⁇ and Mx1 ⁇ / ⁇ triple knockout after treatment with neutralizing antibody to IFN ⁇ / ⁇ and after exposure to Myxoma virus;
- FIG. 12 is a Western blot showing phosphorylation levels of eIF2 ⁇ and PKR in nonpermissive MEFs after treatment with neutralizing antibody to IFN ⁇ / ⁇ and after exposure to Myxoma virus, showing that eIF2 ⁇ phosphorylation in nonresponsive cells is catalysed by a PKR-independent pathway;
- FIG. 13 is a Western blot showing STAT1 phosphorylation states in PKR ⁇ / ⁇ , RNase L ⁇ / ⁇ and Mx1 ⁇ / ⁇ triple knockout after Myxoma virus infection, indicating normal IFN-induced signalling responses
- FIG. 14 is a phase contrast micrograph illustrating subcellular localization of tyrosine-phosphorylated STAT1 in nonpermissive PKR ⁇ / ⁇ +RNaseL ⁇ / ⁇ +Mx1 ⁇ / ⁇ cells at 12 hours post-infection, indicating that the activated STAT localizes to the nucleus, as predicted for normal IFN/STAT signalling responses;
- FIG. 15 is a fluorescent image of brains from nude mice having intracranial gliomas mock-infected or infected with dead or live Myxoma virus expressing GFP, showing targeting of Myxoma to the glioma cells;
- FIG. 16 is a fluorescent image and a photograph of a thin-sectioned mouse glioma infected with Myxoma virus expressing GFP showing that the Myxoma virus replicated only in tumour cells;
- FIG. 17 is a phase contrast micrograph of HT29 human tumour cells, stained with either X-Gal or Crystal violet after infection with Myxoma virus, showing an example of a non-permissive infection in human cells;
- FIG. 18 is a phase contrast micrograph of HOP92 human tumour cells, stained with X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a permissive infection of human cells;
- FIG. 19 is phase contrast micrograph of OVCAR4 human tumour cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a permissive infection of human cells;
- FIG. 20 is a phase contrast micrograph of SK-MEL3 human tumour cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a permissive infection of human cells;
- FIG. 21 is a phase contrast micrograph of SK-MEL28 human tumour cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a semi-permissive infection of human tumour cells;
- FIG. 22 is a phase contrast micrograph of BGMK cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing a typical permissive control infection;
- FIG. 23 is a phase contrast micrograph of positive control BGMK cells and human tumour lines U87, A172 and U373 infected with increasing concentrations of Myxoma virus expressing the LacZ protein, stained with X-Gal, showing that these human glioma cells were all permissive for Myxoma virus replication;
- FIG. 24 is a graph depicting survival rate of BGMK, U87, A172 and U373 cells infected with Myxoma virus, 72 hours post-infection, at increasing concentrations of the virus, demonstrating the ability of Myxoma to kill all of these cells;
- FIG. 25 is a phase contrast micrograph and fluorescence micrograph of SF04 1585 astrocytoma cells infected with MV GFP, showing the infection in primary human glioma cells;
- FIG. 26 is a phase contrast micrograph of U373 glioma cells infected with Myxoma virus expressing the LacZ protein and stained with X-Gal, showing infection of these human tumour cells;
- FIG. 27 is a graph depicting the survival rate of SF04 1585 cells infected with MV GFP 48 hours post-infection, showing killing of these infected human tumour cells;
- FIG. 28 is a fluorescence micrograph of Daoy and D384 medulloblastoma lines infected with Myxoma virus expressing GFP, showing infection of these human tumour cells.
- FIG. 29 is graphical representations of the rate of virus production in various cell lines with or without pre-treatment with rapamycin: BGMK (primate control cell line); RK-13 and RL5 (rabbit control cell lines); 4T1 and B 16F10 (mouse cancer cell lines); HOS, PC3, 786-0, HCT116, ACHN, MCF-7, M14 and COL0205 (human cancer cell lines); using wildtype virus vMyxLac and the M-T5 knock out virus vMyxT5KO as indicated;
- FIG. 30 is photographs of virally infected cell lines, infected with either vMyxLac or vMyxLacT5-;
- FIG. 31 is graphical representations of the rate of virus production in various cell lines (BGMK; A9; MCF-7; MDA-MB-435; M14; and COL0205) with or without pre-treatment with rapamycin;
- FIG. 32 is (A) a schematic alignment of Myxoma virus protein M135R and Vaccinia virus protein B18R and (B) an amino acid sequence alignment between M135R and the first 179 amino acids of B18R;
- FIG. 33 is (A) a Western blot of M135R expressed in BGMK cells infected with Myxoma virus Lausanne (vMyxLau) and (B) a Western blot of M135R expressed in BGMK cells infected with vMyxLau and treated with araC, tunicamycin or monensin;
- FIG. 34 is (A) a fluorescence micrograph of BGMK cells mock infected or infected with Myxoma virus and stained for M135R and (B) a Western blot against immunoprecipitations or cell lysates of cells infected with wildtype Myxoma virus (vMyxgfp) or an M135R knockout strain (vMyx135KO) using anti-M135R antibody;
- FIG. 35 is (A) is a schematic diagram of the cloning strategy to produce vMyx135KO, (B) an agarose gel of the PCR insert product and (C) a Western blot of cells infected with wildtype and M135R knockout Myxoma virus;
- FIG. 36 is a growth curve of viral foci in BGMK cells infected with vMyxgfp or vMyx135KO;
- FIG. 37 is light and fluorescent micrographs of rabbit embryo fibroblasts infected with vMyxgfp or vMyx135KO;
- FIG. 38 is light and fluorescent micrographs of rabbit HIG82 fibroblasts infected with vMyxgfp or vMyx135KO;
- FIG. 39 is light and fluorescent micrographs of human primary fibroblasts infected with vMyxgfp or vMyx135KO;
- FIG. 40 is a graph of body temperature in rabbits infected with vMyxLau or vMyx135KO;
- FIG. 41 is a graph of 125 I emissions of cells mock infected or infected with vMyxgfp or vMyx135KO and treated with 125 I-labelled rabbit interferon ⁇ / ⁇ ;
- FIG. 42 is a graph of foci formed by infecting RK13 or BGMK cells with vMyxgfp or vMyx135KO, in which cells were untreated or treated with rabbit interferon ⁇ / ⁇ 24 hours prior to infection;
- FIG. 43 is photographs of Western blots using cell lysates from 786-0 human cancer cells that were pre-treated with either 20 nM rapamycin (R) or with the vehicle control (D), probed using antibodies directed against the indicated proteins.
- Myxoma virus a virus that normally infects rabbits
- Myxoma virus can selectively infect and kill cells, including human cells, that have a deficient innate anti-viral response, for example, cells that are non-responsive to interferon, as described in the application PCT/CA2004/000341, which is herein fully incorporated by reference.
- Myxoma virus does not replicate efficiently in normal human cells. Since many diseases or conditions are characterized by the presence of cells that have a deficient innate anti-viral response, including cells that are not responsive to interferon, for example, cancer, Myxoma virus can be used to treat such diseases and conditions, including cancer, with low toxicity for normal healthy cells.
- Myxoma virus can also be used to treat chronically infected cells as such cells have a deficient innate anti-viral response.
- many viruses encode gene products that function to inhibit the antiviral, interferon response of cells; Myxoma virus can selectively infect such cells.
- MV Myxoma virus
- Myxoma virus is the causative agent of myxomatosis in rabbits.
- MV belongs to the Leporipoxvirus genus of the Poxyiridae family, the largest of the DNA viruses.
- MV induces a benign disease in its natural host, the Sylvilagus rabbit in the Americas.
- it is a virulent and host-specific poxvirus that causes a fatal disease in European rabbits, characterized by lesions found systemically and especially around the mucosal areas.
- MV is a large virus with a double-stranded DNA genome of 163 kb which replicates in the cytoplasm of infected cells (B. N. Fields, D. M. Knipe, P. M. Howley, Eds., Virology Lippincott Raven Press, New York, 2nd ed., 1996).
- MV is known to encode a variety of cell-associated and secreted proteins that have been implicated in down-regulation of the host's immune and inflammatory responses and inhibition of apoptosis of virus-infected cells.
- MV can be taken up by all human somatic cells. However, other than in normal somatic rabbit cells, if the cells have a normal innate anti-viral response, the virus will not be able to productively infect the cell, meaning the virus will not be able to replicate and cause cell death.
- Interferons are a family of cytokines that are secreted in response to a variety of stimuli. Interferons bind to cell surface receptors, activating a signaling cascade that leads to numerous cellular responses, including an anti-viral response and induction of growth inhibition and/or apoptotic signals. Interferons are classified as either type I or type II. Type I IFNs include IFN- ⁇ , - ⁇ , - ⁇ , and - ⁇ , which are all monomeric; the only type II IFN is IFN- ⁇ , a dimer. Twelve different subtypes of IFN- ⁇ are produced by 14 genes, but all other IFNs are monogenic (Arduini et al., 1999).
- IFNs exert direct anti-tumour activity via the modulation of oncogene expression. Overexpression of growth-stimulating oncogenes or loss of tumour suppressor oncogenes can lead to malignant transformation.
- Some oncogenes implicated in the genesis of cancer are p53, Rb, PC, NF1, WT1, DCC.
- Myxoma virus as well as other oncolytic viruses such as Reovirus and VSV, needs to bypass the anti-viral defenses that exist in normal healthy cells in order to be able to replicate within cells.
- MV and other oncolytic viruses induce interferon production, and are generally sensitive to the anti-viral effect of the IFN pathway.
- Relevant proteins induced by the IFN anti-viral response, and which principally affect virus multiplication include PKR, OAS synthetase and Rnase L nuclease.
- PKR activates eIF2 ⁇ , leading to inhibition of translation and induction of apoptosis.
- FIG. 1 A schematic representation of the IFN response pathway is depicted in FIG. 1 . In normal cells, MV is directly affected by PKR and eIF2 ⁇ .
- Anti-viral response pathways are often disrupted in cancerous cells. For example, reduced or defective response to IFN is a genetic defect that often arises during the process of transformation and tumour evolution. Over 80% of tumour cell lines do not respond to, or exhibit impaired responses to, interferon. (Stojdl et al., Cancer Cell (2003) 4: 263-275 and references cited therein; Wong et al. J Biol. Chem . (1997) 272(45):28779-85; Sun et al. Blood . (1998) 91(2):570-6; Matin et al. Cancer Res . (2001) 61(5):2261-6; Balachandran et al Cancer Cell (2004) 5(1):51-65). As previously disclosed in PCT/CA2004/000341, MV can infect and kill cancer cells, including human tumour cells, and without being limited by any particular theory, it is believed that MV can infect these cells because they have a deficient innate anti-viral response.
- Myxoma virus is a virulent virus, it is host-specific and has a very narrow host range; it does not infect humans or mice. Without being limited by any specific theory, it is believed that since Myxoma virus is a non-human virus, it should encounter no pre-existing immune recognition in humans. Therefore, its potential as an oncolytic virus will be less compromised and Myxoma virus should provide more potent infection of permissive tumour cells than native human viruses, and thereby can provide an effective oncolytic treatment for cancer.
- the Myxoma virus host range gene M-T5 appears to play a critical role during Myxoma virus infection of many human tumour cell lines (Sypula et al, (2004) Gene Ther. Mol. Biol. 8:103).
- the MT-5 gene encodes an ankyrin repeat protein that is required for Myxoma replication in rabbit lymphocytes, and Myxoma virus with the MT-5 gene deleted cannot cause myxomatosis in susceptible rabbits (Mossman et al, (1996) J. Virol. 70: 4394). Available evidence suggests that differences in the intracellular signalling within an infected human tumour cell are critical for distinguishing human tumour cells that are permissive to Myxoma virus infection and productive replication (Johnston et al, (2003) J. Virol. 77: 5877).
- Myxoma virus possesses a protein, M135R, which displays homology to the amino terminus portion of interferon ⁇ / ⁇ receptor (“IFN ⁇ / ⁇ -R”). It has been suggested that M135R mimics the host IFN ⁇ / ⁇ -R in order to prevent IFN ⁇ / ⁇ from triggering a host anti-viral response (Barrett et al., Seminars in Immunology (2001)13:73-84). The prediction is based on sequence homology to the viral IFN ⁇ / ⁇ -R from vaccinia virus, B18R, and it has been demonstrated that Vaccinia virus (“VV”) employs such an immune evasion strategy. However, M135R is only half the size of VV B18R and all other IFN ⁇ / ⁇ -R homologs from sequenced poxviruses, and in all cases aligns only to the amino terminus half of the homolog.
- IFN ⁇ / ⁇ -R interferon ⁇ / ⁇ receptor
- the present invention relates to the discovery that Myxoma virus that does not express functional M135R is useful for treatment of cells having a deficient innate anti-viral response, including for oncolytic studies, since this virus provides a safer alternative for oncolytic viral therapy as no unusual containment strategies should be needed for patients undergoing treatment.
- the present invention relates to the discovery that the anti-cancer agent rapamycin acts to enhance the levels of infectivity of Myxoma virus in human tumour cells which are permissive for Myxoma virus infection, and that rapamycin allows replication of certain strains of Myxoma virus in human tumour cells which, without rapamycin, are restrictive for the replication of those strains of Myxoma virus.
- a cell that is permissive for Myxoma virus infection is a cell that the virus can enter and in which the virus can productively reproduce.
- Permissive cells may have defects or mutations in one or more of the pathways that involve the proteins PTEN, PDK, AKT, GSK, Raf, mTOR or P70S6K.
- a restrictive cell is a cell which is permissive to Myxoma virus only under certain conditions, but does not allow productive infection under other conditions.
- a restrictive cell may be permissive to wildtype strains of the virus, but does not allow certain mutant Myxoma strains, for example a strain having the MT-5 gene knocked out, to productively reproduce.
- a cell restrictive for Myxoma virus may not permit productive infection of Myxoma virus alone, but when treated with rapamycin, the same Myxoma virus is able to productively infect the cell.
- Abortive cell lines are non-permissive for Myxoma virus infection, meaning that the virus may be able to enter the cell, but does not productively infect the cell.
- rapamycin when used in combination with Myxoma virus, enhances the infectivity of Myxoma virus for cells having a deficient innate anti-viral response.
- the present invention relates to the use of rapamycin in combination with Myxoma virus to treat cells having a deficient innate anti-viral response.
- Rapamycin is a macrocyclic lactone that has been shown to be the active antifungal compound purified from the soil bacterium Streptomyces hygroscopicus .
- Rapamycin as used herein refers to rapamycin (also referred to as sirolimus) and analogs or derivatives thereof capable of complexing with FKBP12 and inhibiting mTOR, including the analogs CCI-779 (also referred to as cell cycle inhibitor-779 or rapamycin-42,2,2-bis(hydroxymethyl)-propionic acid) and RAD001 (also referred to as everolimus or 40-O-(2-hydroxyethyl)-rapamycin).
- Rapamycin, CCI-779 and RAD001 are commercially available, and rapamycin is available under the name RapamuneTM, from Wyeth-Ayerst.
- the term rapamycin further includes pharmaceutically acceptable salts and esters of rapamycin, its hydrates, solvates, polymorphs, analogs or derivatives, as well as pro-drugs or precursors which are metabolized or converted to rapamycin or its analogs or derivatives during use, for example when administered to a patient.
- Rapamycin as an inhibitor of cellular signaling is highly specific: it enters the cell and binds to a cellular protein known as FKBP12. The rapamycin/FKBP12 complex then binds to the specific cellular target mTOR (mammalian Target of Rapamycin).
- mTOR mimmalian Target of Rapamycin
- Many cancers have been shown to develop from an over activity of signaling molecules such as PI3K, or a loss of the tumor suppressor gene PTEN. Both of these molecules lie upstream of mTOR.
- mTOR has been shown to be a central regulator of cell proliferation, growth, differentiation, migration and survival, and is therefore an ideal target in stemming the uncontrolled growth of cancer cells. Cancer cell lines that are sensitive to rapamycin are generally those that have resulted from an activation of the pathway through mTOR.
- Rapamycins are used primarily in transplant patients as an alternative or complementary treatment to cyclosporine treatment.
- rapamycin treatment generally has fewer side effects that cyclosporine A or FK506.
- retrospective studies have indicated that patients on rapamycin treatment generally develop fewer cancers and have a lower incidence of CMV (cytomegalovirus; a herpes virus) infection. It is therefore surprising that rapamycin treatment enhances Myxoma virus infection of cancer cells, particularly in light of research postulating that CMV replication should be reduced by rapamycin (reviewed by Ponticelli: “The pleiotropic effects of mTOR inhibitors” in J Nephrology 2004; 17: 762).
- Myxoma virus takes advantage of aberrant signaling through the mTOR pathway that may be associated with the neoplastic phenotype of these cells. Manipulation of this pathway by mTOR inhibitors could then be a selective advantage to the virus.
- a method for inhibiting a cell that has a deficient innate anti-viral response comprising administering to the cell an effective amount of Myxoma virus.
- the virus is administered in combination with an effective amount of rapamycin.
- the Myxoma virus may be any virus that belongs to the Leporipoxvirus species of pox viruses that is replication-competent.
- the Myxoma virus may be a wild-type strain of Myxoma virus or it may be a genetically modified strain of Myxoma virus, including an MT-5 knockout strain of Myxoma.
- the Myxoma virus may be a strain that has an attenuated affect in rabbits, thereby causing lower risk of disease, including a strain that does not express functional M135 protein, as described below.
- the Myxoma virus is a Myxoma virus that does not express functional M135R.
- a Myxoma virus that does not express functional M135R includes a Myxoma virus that has part, or all, of the open reading frame that encodes M135R deleted, replaced or interrupted such that no gene product, no stable gene product, or no functional gene product is expressed. Such a virus also includes a Myxoma virus that has part, or all, of the M135R gene regulatory region deleted, replaced or interrupted such that no protein can be expressed from the gene encoding M135R.
- Functional M135R protein is M135R that is transcribed, translated, folded, post-translationally modified and localized within the cell, and which allows Myxoma virus to cause myxomatosis in an infected host.
- M135R protein is not, or not properly or not sufficiently, transcribed, translated, folded, post-translationally modified or localized within the cell such that an infected host does not develop myxomatosis, then no functional M135R protein is expressed in the cell.
- the cell is non-responsive to interferon.
- the cell is a mammalian cancer cell. In one embodiment the cell is a human cancer cell including a human solid tumour cell.
- the cell is chronically infected with a virus.
- a “combination” of rapamycin and Myxoma virus for administration may be formulated together in the same dosage form or may be formulated in separate dosage forms, and the separate dosage forms may be the same form or different forms, for administration by the same mode or by different modes of administration.
- administration of a combination of rapamycin and Myxoma virus when not together in the same dosage form, means that the rapamycin and Myxoma virus are administered concurrently to the mammal being treated, and may be administered at the same time or sequentially in any order or at different points in time.
- rapamycin and Myxoma virus may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.
- a cell that has a deficient innate anti-viral response refers to a cell that, when exposed to a virus or when invaded by a virus, does not induce anti-viral defence mechanisms, which include inhibition of viral replication, production of interferon, induction of the interferon response pathway, and apoptosis, which may or may not be mediated by interferon, and is thereby infectable by MV, alone or in combination with rapamycin treatment.
- the term includes a cell that has a reduced or defective innate anti-viral response upon exposure to or infection by a virus as compared to a normal cell, for example, a non-infected, or non-cancer cell.
- the deficiency may be caused by various causes, including infection, genetic defect, or environmental stress. It will however be understood that when the deficiency is caused by a pre-existing infection, superinfection by MV may be excluded and a skilled person can readily identify such instances. A skilled person can readily determine without undue experimentation whether any given cell type has a deficient innate anti-viral response and therefore infectable by Myxoma virus, either alone or in combination with rapamycin treatment. For example, VSV is commonly used to measure an anti-viral response of a cell.
- a skilled person can take an explant, grow some of the cells in vitro and determine infectability by VSV or alternatively, by Myxoma virus, including Myxoma virus in combination with rapamycin.
- a cell that is non-responsive to interferon means a cell that does not respond to the activity of interferon, for example anti-viral or anti-tumour activity of interferon or that has an abnormal interferon response, for example, a reduced or ineffective response to interferon, or abnormal interferon signalling as measured by, for example, phosphorylation or activation of signalling molecules such as transcription factors, for example STAT1.
- the cell may not undergo inhibition of proliferation or it may not be killed when exposed to interferon levels sufficient to induce such a response in a cell that is responsive to interferon.
- the cell that is non-responsive to interferon may have a defect in the intracellular signalling pathway or pathways that are normally activated in the responsive cells.
- susceptibility to infection by VSV is indicative of non-responsiveness to interferon, and a skilled person can readily determine whether a particular cell is non-responsive to interferon by its ability, or lack thereof, to inhibit VSV infection in the presence of interferon or using other markers of interferon activity known in the art, for example, the level of expression of IFN stimulated genes such as PKR, STAT, OAS, MX.
- replication-competent refers to a virus that is capable of infecting and replicating within a particular host cell. This includes a virus which alone is restricted for replication in a particular host cell, but when the host cell is treated with rapamycin, the virus can then productively infect that cell.
- a cell as used herein includes a single cell as well as a plurality or population of cells. Administering an agent to a cell includes both in vitro and in vivo administrations.
- animal as used herein includes all members of the animal kingdom, including particularly mammals, especially humans.
- the term “inhibiting” a cell that has a deficient innate anti-viral response includes cell death by lysis or apoptosis or other mechanisms of cell death, in addition to rendering the cell incapable of growing or dividing or reducing or retarding cell growth or division.
- the Myxoma virus genome may be readily modified to express one or more therapeutic transgenes using standard molecular biology techniques known to a skilled person, and described for example in Sambrook et al. ((2001) Molecular Cloning: a Laboratory Manual, 3 rd ed., Cold Spring Harbour Laboratory Press).
- a skilled person will be able to readily determine which portions of the Myxoma viral genome can be deleted such that the virus is still capable of productive infection.
- non-essential regions of the viral genome that can be deleted can be deduced from comparing the published viral genome sequence with the genomes of other well-characterized viruses (see for example C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.- X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, Virology (1999) 264: 298-318)).
- therapeutic gene or “therapeutic transgenes” as used herein is intended to describe broadly any gene the expression of which effects a desired result, for example, anti-cancer effect.
- the virus may be modified to carry a gene that will enhance the anti-cancer effect of the viral treatment.
- a gene may be a gene that is involved in triggering apoptosis, or is involved in targeting the infected cell for immune destruction, such as a gene that repairs a lack of response to interferon, or which results in the expression of a cell surface marker that stimulates an antibody response, such as a bacterial cell surface antigen.
- the virus may also be modified to express genes involved in shutting off the neoplastic or cancer cell's proliferation and growth, thereby preventing the cells from dividing.
- the virus may be modified to include therapeutic genes, such as genes involved in the synthesis of chemotherapeutic agents, or it may be modified to have increased replication levels in cells of the particular species from which the cells to be inhibited or killed are derived, for example, human cells.
- therapeutic genes such as genes involved in the synthesis of chemotherapeutic agents
- genes that may be inserted into the Myxoma virus to increase its anti-cancer effect include the human gene for the TRAIL protein or the adenoviral gene that encodes the E4 orf4 polypeptide, both of which proteins are involved in killing human tumour cells.
- therapeutic effect of the Myxoma virus may be achieved by cell lysis by the virus or by delivery of therapeutic products by the virus.
- the inclusion of rapamycin in combination with the Myxoma virus should allow for enhancement of the effect of Myxoma virus alone. That is, the Myxoma virus, when administered in combination with rapamycin should be able to productively infect a greater number of target cells than Myxoma virus alone, or should be able to productively infect target cells having a deficient innate anti-viral response which are restrictive for productive infection by Myxoma virus in the absence of rapamycin.
- the virus may be prepared using standard techniques known in the art.
- the virus may be prepared by infecting cultured rabbit cells with the Myxoma virus strain that is to be used, allowing the infection to progress such that the virus replicates in the cultured cells and can be released by standard methods known in the art for disrupting the cell surface and thereby releasing the virus particles for harvesting. Once harvested, the virus titre may be determined by infecting a confluent lawn of rabbit cells and performing a plaque assay (see Mossman et al. (1996) Virology 215:17-30).
- a method for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response in a patient in need of such treatment comprising administering to the patient an effective amount of Myxoma virus, optionally in combination with rapamycin.
- the patient may be any animal, including a mammal, including a human.
- a disease state characterized by the presence of cells that have a deficient innate anti-viral response refers to any disease, disorder or condition which is associated with, related to, or a characteristic of which is, the presence of cells that have a deficient innate anti-viral response and which disease, disorder, condition or symptoms thereof may be treated by killing these cells.
- the disease state may be cancer.
- the disease state may also include chronic infection with a virus.
- Treating” a disease state refers to an approach for obtaining beneficial or desired results, including clinical results.
- Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilization of the state of disease, prevention of development of disease, prevention of spread of disease, delay or slowing of disease progression, delay or slowing of disease onset, amelioration or palliation of the disease state, and remission (whether partial or total).
- Treating can also mean prolonging survival of a patient beyond that expected in the absence of treatment.
- “Treating” can also mean inhibiting the progression of disease, slowing the progression of disease temporarily, although more preferably, it involves halting the progression of the disease permanently.
- the disease state is cancer.
- the cancer may be any type of cancer wherein at least some of the cells, although not necessarily all of the cells have a deficient innate anti-viral response.
- the cancer may be a cancer wherein at least some of the cells are non-responsive to interferon.
- the terms “tumour”, “tumour cells”, “cancer” and “cancer cells”, (used interchangeably) refer to cells that exhibit abnormal growth, characterized by a significant loss of control of cell proliferation or cells that have been immortalized.
- the term “cancer” or “tumour” includes metastatic as well as non-metastatic cancer or tumours.
- “neoplastic” or “neoplasm” broadly refers to a cell or cells that proliferate without normal growth inhibition mechanisms, and therefore includes benign tumours, in addition to cancer as well as dysplastic or hyperplastic cells.
- a cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor.
- Types of cancer that may be treated according to the present invention include, but are not limited to, hematopoietic cell cancers including leukemias and lymphomas, colon cancer, lung cancer, kidney cancer, pancreas cancer, endometrial cancer, thyroid cancer, oral cancer, ovarian cancer, laryngeal cancer, hepatocellular cancer, bile duct cancer, squamous cell carcinoma, prostate cancer, breast cancer, cervical cancer, colorectal cancer, melanomas and any other tumours.
- hematopoietic cell cancers including leukemias and lymphomas, colon cancer, lung cancer, kidney cancer, pancreas cancer, endometrial cancer, thyroid cancer, oral cancer, ovarian cancer, laryngeal cancer, hepatocellular cancer, bile duct cancer, squamous cell carcinoma, prostate cancer, breast cancer, cervical cancer, colorectal cancer, melanomas and any other tumours.
- Solid tumours such as sarcomas and carcinomas include but are not limited to fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, lymphoid malignancy, pancreatic cancer, breast cancer, lung cancers, ovarian cancer, prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, Wilms' tumor, cervical cancer, testicular tumor, bladder carcinoma, and CNS tumors
- the disease state is a chronic viral infection.
- the chronically infecting virus may be any virus that infects and replicates in cells of an animal in a persistent manner over a prolonged period so as to cause a pathological condition.
- the chronically infecting virus may be a virus that is associated or correlated with the development of cancer.
- a chronic infection with a virus may be diagnosed using standard methods known in the art.
- a chronic viral infection may be detected by the presence of anti-viral antibodies in the patient or a positive test for the presence of viral RNA or DNA in cells of the patient.
- an effective amount of the Myxoma virus, and optionally the combination of Myxoma virus with rapamycin is the amount required, at the dosages and for sufficient time period, for the virus to alleviate, improve, mitigate, ameliorate, stabilize, prevent the spread of, slow or delay the progression of or cure the disease.
- it may be an amount sufficient to achieve the effect of reducing the number of or destroying cancerous cells or neoplastic cells, or reducing the number of or destroying cells chronically infected with a virus, or inhibiting the growth and/or proliferation of such cells.
- the effective amount to be administered to a patient can vary depending on many factors such as the pharmacodynamic properties of the Myxoma virus and the optionally rapamycin, the modes of administration, the age, health and weight of the patient, the nature and extent of the disease state, the frequency of the treatment and the type of concurrent treatment, if any, and the virulence and titre of the virus.
- the virus may be administered initially in a suitable amount that may be adjusted as required, depending on the clinical response of the patient.
- the effective amount of virus can be determined empirically and depends on the maximal amount of the virus that can be administered safely, and the minimal amount of the virus that produces the desired result.
- Myxoma virus may be administered to the patient using standard methods of administration.
- the virus is administered systemically.
- the virus is administered by injection at the disease site.
- the disease state is a solid tumour and the virus is administered by injection at the tumour site.
- the virus may be administered orally or parenterally, or by any standard method known in the art.
- the appropriate dose level should be the minimum amount that would achieve the desired result.
- the concentration of virus to be administered will vary depending on the virulence of the particular strain of Myxoma that is to be administered and on the nature of the cells that are being targeted.
- a dose of less than about 10 9 plaque forming units (“pfu”) is administered to a human patient.
- between about 10 2 to about 10 9 pfu, between about 10 2 to about 10 7 pfu, between about 10 3 to about 10 6 pfu, or between about 10 4 to about 10 5 pfu may be administered in a single dose.
- the effective amount of rapamycin can be determined empirically and will depend on the amount and strain of virus being administered, the maximum amount of rapamycin that can be safely administered and the minimal amount of rapamycin that can be administered in order to achieve an enhancement of the infectivity of Myxoma virus.
- Rapamycin may be administered to the patient using standard methods of administration. In one embodiment, the rapamycin is administered systemically. In another embodiment, the rapamycin is administered by injection at the disease site. In a particular embodiment, the disease state is a solid tumour and the rapamycin is administered by injection at the tumour site. In various embodiments, the rapamycin may be administered orally or parenterally, or by any standard method known in the art.
- the total amount of rapamycin may be administered in a single dose or in multiple doses spread out over 1 day or several days.
- the frequency and duration of administration of doses can be readily determined.
- the schedule of dosing will depend on the length of time that the Myxoma virus is to be administered. For example, rapamycin may be administered once to a patient, or may be administered 2 to 4 times per day.
- the dose of rapamycin may be from about 0.01 to about 250 mg per kg of body weight per day, from about 0.01 to 50 mg per kg of body weight per day, from about 0.05 to 10 mg per kg of body weight per day, or from about 0.1 to 7.5 mg per kg of body weight per day.
- Effective amounts of a combination of Myxoma virus and rapamycin can be given repeatedly, depending upon the effect of the initial treatment regimen. Administrations are typically given periodically, while monitoring any response. It will be recognized by a skilled person that lower or higher dosages than those indicated above may be given, according to the administration schedules and routes selected.
- the Myxoma virus may be administered as a sole therapy or may be administered in combination with other therapies, including chemotherapy, radiation therapy or other anti-viral therapies.
- the Myxoma virus may be administered either prior to or following surgical removal of a primary tumour or prior to, concurrently with or following treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.
- the Myxoma virus, optionally in combination with rapamycin can be administered in combination with, or in a sequential fashion with, other oncolytic viruses, which may demonstrate specificity for varying tumour cell types.
- the Myxoma virus may be formulated as an ingredient in a pharmaceutical composition. Therefore, in a further embodiment, there is provided a pharmaceutical composition comprising Myxoma virus, and optionally rapamycin, and a pharmaceutically acceptable diluent.
- the invention in one aspect therefore also includes such pharmaceutical compositions for use in inhibiting a cell that has a deficient innate anti-viral response or treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response.
- the compositions may routinely contain pharmaceutically acceptable concentrations of salt, buffering agents, preservatives and various compatible carriers.
- the recombinant Myxoma virus may be formulated in a physiological salt solution.
- compositions may additionally contain additional therapeutic agents, such as additional anti-cancer agents.
- additional therapeutic agents such as additional anti-cancer agents.
- the compositions include a chemotherapeutic agent.
- the chemotherapeutic agent may be substantially any agent which exhibits an oncolytic effect against cancer cells or neoplastic cells of the patient and that does not inhibit or diminish the tumour killing effect of the Myxoma virus.
- the chemotherapeutic agent may be, without limitation, an anthracycline, an alkylating agent, an alkyl sulfonate, an aziridine, an ethylenimine, a methylmelamine, a nitrogen mustard, a nitrosourea, an antibiotic, an antimetabolite, a folic acid analogue, a purine analogue, a pyrimidine analogue, an enzyme, a podophyllotoxin, a platinum-containing agent or a cytokine.
- the chemotherapeutic agent is one that is known to be effective against the particular cell type that is cancerous or neoplastic.
- the proportion and identity of the pharmaceutically acceptable diluent is determined by chosen route of administration, compatibility with a live virus, and where applicable compatibility with the chemical stability of rapamycin, and standard pharmaceutical practice.
- the pharmaceutical composition will be formulated with components that will not significantly impair the biological properties of the live Myxoma virus, or cause degradation of or reduce the stability or efficacy of the rapamycin where included.
- the pharmaceutical composition can be prepared by known methods for the preparation of pharmaceutically acceptable compositions suitable for administration to patients, such that an effective quantity of the active substance or substances is combined in a mixture with a pharmaceutically acceptable vehicle.
- Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985).
- the compositions include, albeit not exclusively, solutions of the Myxoma virus, optionally with rapamycin, in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffer solutions with a suitable pH and iso-osmotic with physiological fluids.
- the pharmaceutical composition may be administered to a patient in a variety of forms depending on the selected route of administration, as will be understood by those skilled in the art.
- the composition of the invention may be administered orally or parenterally.
- Parenteral administration includes intravenous, intraperitoneal, subcutaneous, intramuscular, transepithelial, nasal, intrapulmonary, intrathecal, rectal and topical modes of administration.
- Parenteral administration may be by continuous infusion over a selected period of time.
- the pharmaceutical composition may be administered orally, for example, with an inert diluent or with an assimilable carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets.
- the Myxoma virus may be incorporated, optionally together with rapamycin, with an excipient and be used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers and the like.
- Solutions of Myxoma virus, optionally together with rapamycin, may be prepared in a physiologically suitable buffer. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms, but that will not inactivate the live virus. A person skilled in the art would know how to prepare suitable formulations. Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington's Pharmaceutical Sciences and in The United States Pharmacopeia: The National Formulary (USP 24 NF19) published in 1999.
- the composition is administered by injection (subcuteanously, intravenously, intramuscularly, etc.) directly at the disease site, such as a tumour site, or by oral administration, alternatively by transdermal administration.
- the forms of the pharmaceutical composition suitable for injectable use include sterile aqueous solutions or dispersion and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions, wherein the term sterile does not extend to the live Myxoma virus itself that is to be administered. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists.
- the dose of the pharmaceutical composition that is to be used depends on the particular condition being treated, the severity of the condition, the individual patient parameters including age, physical condition, size and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and other similar factors that are within the knowledge and expertise of the health practioner. These factors are known to those of skill in the art and can be addressed with minimal routine experimentation.
- the Myxoma virus optionally in combination with rapamycin, or pharmaceutical compositions comprising the Myxoma virus and rapamycin, either together in the same formulation or different formulations, may also be packaged as a kit, containing instructions for use of Myxoma virus and rapamycin, including the use of Myxoma virus, or use of Myxoma virus in combination with rapamycin, to inhibit a cell that has a deficient innate anti-viral response, or use of Myxoma virus, or use of Myxoma virus in combination with rapamycin, to treat a disease state characterized by the presence of cells that have a deficient innate anti-viral response, in a patient in need thereof.
- the disease state may be cancer, or it may be a chronic viral infection.
- the present invention also contemplates the use of Myxoma virus, optionally in combination with rapamycin, for inhibiting a cell that has a deficient innate anti-viral response.
- the cell is non-responsive to interferon.
- Myxoma virus, optionally in combination with rapamycin for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response, in a patient in need thereof.
- the disease state is cancer.
- Myxoma virus optionally in combination with rapamycin, in the manufacture of a medicament, for inhibiting a cell that has a deficient innate anti-viral response, or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response in a patient in need thereof.
- MV can selectively infect cells in or derived from animals other than the natural host of MV, from a population of cells, which have a deficient innate anti-viral response.
- This ability of MV provides for the use of MV in detecting cells from a population of cells, either in culture or in an animal, that have a deficient innate anti-viral response, including cells that are non-responsive to interferon.
- Such cells may otherwise not be easily detectable, for example certain cancer cells that have not yet advanced to palpable tumour, or have not yet induced noticeable symptoms in the animal.
- a method for detecting cells that have a deficient innate anti-viral response in a patient comprising administering to the patient Myxoma virus modified to express a detectable marker, optionally in combination with rapamycin; allowing the virus to infect a cell that has a deficient innate anti-viral response in the patient; and detecting the cell expressing the detectable marker in the patient.
- the infected cells may be detected using any conventional method for visualizing diagnostic images.
- the method of detection will depend on the particular detectable marker that is used.
- cells infected with Myxoma virus genetically modified to express a fluorescent protein may be detected using fluorescence digital imaging microscopy.
- Other methods include computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography. Skilled artisans will be able to determine the appropriate method for detecting a particular detectable marker.
- the detectable marker includes, but is not limited to, any marker for which genes for its expression or synthesis can be inserted into the Myxoma genome so as to result in expression or synthesis of the marker within cells that are infected by the modified virus.
- the detectable marker may be a fluorescent protein.
- the infected cells may be detected at a suitable time interval after administration of the modified virus to the patient, so as to allow for the virus to infect any cells that have a deficient innate anti-viral response, and to express the detectable marker in such cells at levels that would allow for detection. For example, detection may occur anywhere between 2 and 20 days following administration to the patient of the virus genetically modified to express a fluorescent protein.
- the detecting method may be carried out repeatedly at intervals in a patient in order to monitor the presence of cells that have a deficient innate anti-viral response in that patient.
- the method for detecting such cells using Myxoma virus may be carried out on a patient at 6 month, 1 year or 2 year intervals, as is necessary, depending on the nature of the cells that has a deficient innate anti-viral response and the nature of any disease state caused as a result of the presence of such cells in a patient. Repeating the method over a time period allows for monitoring of the progression or remission of disease state, or the spread of disease within the body of the patient.
- Myxoma virus is capable of selectively infecting cells that have a deficient innate anti-viral response, and can be used as an indicator of such a deficiency in cells.
- cells removed from a patient may be assayed for deficiency in innate anti-viral response using the methods of the present invention. Such determination may indicate, when combined with other indicators, that the patient may be suffering from a particular disease state, for example, cancer.
- a method for detecting in a sample a cell that has a deficient innate anti-viral response comprising culturing the cell, exposing cultured cells to Myxoma virus, optionally in combination with rapamycin; and determining infectivity of cells by Myxoma virus.
- the cells may be removed from a subject, including a human subject, using known biopsy methods.
- the biopsy method will depend on the location and type of cell that is to be tested.
- Cells are cultured according to known culturing techniques, and are exposed to MV, and optionally rapamycin, by adding live Myxoma virus, and optionally rapamycin, to the culture medium. Where Myxoma virus is added in combination with rapamycin, the virus and rapamycin may be added either simultaneously or sequentially.
- the multiplicity of infection (“MOI”) including in the presence of rapamycin, may be varied to determine an optimum MOI for a given cell type, density and culture technique, and a particular rapamycin concentration, using a positive control cell culture that is known to be infected upon exposure to MV.
- the amount of rapamycin, and the timing of addition of rapamycin and Myxoma virus to the cultured cells may be varied depending on cell type, method of culturing and strain of virus. Such parameters can be readily tested and adjusted with minimal testing using routine methods.
- Infectivity of the cultured cells by MV may be determined by various methods known to a skilled person, including the ability of the MV to cause cell death. It may also involve the addition of reagents to the cell culture to complete an enzymatic or chemical reaction with a viral expression product.
- the viral expression product may be expressed from a reporter gene that has been inserted into the MV genome.
- the MV may be modified to enhance the ease of detection of infection state.
- the MV may be genetically modified to express a marker that can be readily detected by phase contrast microscopy, fluorescence microscopy or by radioimaging.
- the marker may be an expressed fluorescent protein or an expressed enzyme that may be involved in a colorimetric or radiolabelling reaction.
- the marker may be a gene product that interrupts or inhibits a particular function of the cells being tested.
- Viral strains used include wildtype MV, MV modified to express either green fluorescence protein (“GFP”) or ⁇ -galactosidase (“LacZ”), and killed (“dead”) MV. Viruses were prepped and titred using standard techniques.
- Mouse experiments were performed using mouse embryo fibroblasts (“MEFs”) derived from a wild-type mouse, and from the following mouse knockouts: IFN ⁇ / ⁇ receptor homozygous knockout; STAT1 homozygous knockout; PKR heterozygous; RNaseL heterozygous knockout; Mx1 heterozygous knockout; triple PKR/RNaseL/Mx1 homozygous knockout.
- MEFs mouse embryo fibroblasts
- mice were implanted with intracranial human gliomas U87. 15 days after implantation, mice were intratumourally injected with live or dead MV GFP, at a titre of 5 ⁇ 10 6 , or mock-infected. 72 hours post-infection, animals were sacrificed, the brains removed, embedded in OCT (Optimal Cutting Temperature compound), and frozen sections were cut. Myxoma-GFP was visualized in whole brain sections by fluorescence microscopy. Sections were then fixed and stained with H&E (hemotoxylin and eosin) to visualize the tumor.
- H&E hemotoxylin and eosin
- tumour cell assays For human tumour cell assays, the tumours were trypsonized and plated immediately after surgery and infected with virus the next day at an MOI of 0.1, 1.0 or 10. Data was gathered regarding cytotoxicity and viral expression using phase microscopy and fluorescent microscopy, respectively, at 24 and 48 hours post-infection. Assays using the yellow tetrazolium salt MTT were performed to quantify the % cell survival (as a percentage of cells surviving mock infection) at 48, 72 or 96 hours post-infection.
- IFNs play a key role in mounting anti-viral responses
- the restrictive phenotype was related to the “antiviral state” mediated by IFN.
- IFN ⁇ / ⁇ intracellular pathway In order to confirm the importance of the IFN ⁇ / ⁇ intracellular pathway in maintaining a nonpermissive state in MEFs, genetic deletion studies were performed to provide disruptions in the IFN ⁇ / ⁇ receptors and in the intracellular cascade. Genetic deletion of IFN receptors or JAK1 or STAT1 was performed. MV was used to infect WT MEFs, IFN ⁇ / ⁇ R ⁇ / ⁇ MEFs and STAT1 ⁇ / ⁇ MEFs. IFN ⁇ / ⁇ R ⁇ / ⁇ MEFs and STAT1 ⁇ / ⁇ MEFs were permissive to MV demonstrating the IFN ⁇ / ⁇ and STAT1 signalling cascades are critical for MV infection ( FIG. 5 ).
- PKA Protein Kinase R
- PKR Protein Kinase R
- MV was use to infect MEFs with single gene knockouts of PKR, RNaseL or Mx1 ( FIG. 9 ). It was discovered that PKR, RNaseL and Mx1 are nonessential for maintaining nonpermissiveness for Myxoma virus infection. To further confirm the nonessential role of PKR, RNaseL and Mx1 a Triple knockout of PKR ⁇ / ⁇ , RNase L ⁇ / ⁇ and Mx1 ⁇ / ⁇ in MEFs was performed. A PKR ⁇ / ⁇ , RNase L ⁇ / ⁇ and Mx1 ⁇ / ⁇ triple knockout does not support Myxoma virus infection ( FIG.
- STAT1 is both serine- and tyrosine-phosphorylated following Myxoma infections in nonpermissive PKR, RNaseL and Mx1 Triple KO MEFs ( FIG. 13 ). Subcellular localization of tyrosine-phosphorylated STAT1 in nonpermissive PKR ⁇ / ⁇ +RNaseL ⁇ / ⁇ +Mx1 ⁇ / ⁇ MEFs following Myxoma virus infection is also shown ( FIG. 14 ).
- tumours are non-responsive to interferon, and that the tumour cells do not have normal IFN signaling cascades compared to those found in normal human cells, studies were performed to investigate the effect of Myxoma virus on human tumours. The results are summarized below.
- Myxoma virus was used to study the infectivity and cytolytic effects on various control and human tumour cell lines: BGMK, HT29, HOP92, OVCAR4, SK-MEL3, and SK-MEL28.
- MV demonstrated various infectivity and cytolytic results: HT29 ( FIG. 17 ) HOP92 ( FIG. 18 ), OVCAR4 ( FIG. 19 ) SK-MEL3 ( FIG. 20 ), SK-MEL28 ( FIG. 21 ) and BGMK ( FIG. 22 ).
- tumour cells were tested and Table 1 below classifies the various tumour types tested as permissive or non-permissive.
- Various human tumour lines demonstrated varying responsiveness to infection with increasing concentrations of MV-LacZ.
- U373 cells required higher virus titres to achieve the levels of cell killing achieved with lower virus titres in U87 ( FIG. 23 and FIG. 24 ).
- Myxoma efficiently infected astrocytoma cells ( FIG. 25 ), and glioma cells ( FIG. 26 ).
- Myxoma was effective at 48 hours post-infection at killing human astrocytoma and pediatric medulloblastoma cells ( FIGS. 27 and 28 ).
- Viral strains used include wildtype MV (“vMyxLac”), and MV modified to have the MT-5 gene knocked out (“vMyxLacT5-”). Viruses were prepped and titred using standard techniques.
- cells were grown in vitro in a monolayer, and pretreated with 20 nM rapamycin or a control (1:5000 dilution of DMSO) prior to infection with virus.
- Samples of indicated cell lines infected with the indicated viral strain were collected at 72 hours post infection and lysed.
- the virus contained within the cell lysates was titrated and used to infect BGMK monolayers.
- cells were fixed and stained using X-gal.
- Myxoma virus has been previously demonstrated by the inventors to be able to infect and replicate in many types of human tumor cells (Sypula et al. (2004) Gene Ther. Mol. Biol. 8:103).
- This rabbit specific virus can preferentially infect a majority (approximately 70%) of human cancer cell lines from the NCI reference collection.
- the host range gene M-T5 was found to play a critical role during Myxoma virus infection of many of these cell lines.
- the ability of Myxoma virus to replicate and spread following a low multiplicity of infection was performed using a multistep growth curve, using BGMK (control primate cell line); RK-13 and RL5 (control rabbit cell lines); 4T1 and B16F10 (mouse cancer cell lines); HOS and PC3 (permissive human cancer cell lines); 786-0, HCT116 and ACHN (restrictive human cancer cell lines); MCF-7, M14 and COL0205 (abortive human cancer cell lines).
- vMyxLac and the M-T5 knock out virus vMyxT5KO were tested to investigate the ability of both viruses to infect and spread throughout the monolayer in the presence and absence of pre-treatment with rapamycin.
- Virus titre was assessed by foci formation on BGMK cells. Cells were pretreated with 20 nM rapamycin or appropriate vehicle control (1:5000 dilution of DMSO) for 6 hours before infection.
- rapamycin has no effect on control BGMK cells, nor on either of the rabbit cell lines tested, including the RL-5 cells, which are non permissive for the MT-5 knock out virus.
- rapamycin does enhance the replication of myxoma virus in mouse tumour cell lines, and marginally in permissive (Type I) cell lines, such as PC-3. Rapamycin has less of an effect on highly permissive cells such as HOS cells, likely due to the fact that such cell lines are already maximally permissive for the Myxoma virus.
- tumour cells that are “restrictive” for Myxoma infection i.e. those cells that permit the replication of the wild type Myxoma virus but not the MT-5 knock-out virus, with rapamycin resulted in a restoration of the ability of Myxoma virus to replicate in these cancer cell lines, which include renal, colon and ovarian cancer cell lines ( FIGS. 29 and 30 ).
- rapamycin acts to enhance Myxoma virus infection.
- rapamycin appears to influence the ability of cancer cells that are poorly infectable by this virus to permit virus replication.
- Myxoma Virus M135KO Variant as an Improved Oncolytic Virus Candidate
- M135R is Expressed from Myxoma Virus as an Early Gene
- Myxoma virus encodes a protein (M135R) identified from the sequencing of the MV genome (Cameron et al. Virology (1999) 264: 298-318) predicted to mimic the host IFN ⁇ / ⁇ receptor and prevent IFN ⁇ / ⁇ from triggering a host anti-viral response (Barrett et al. Seminars in Immunology (2001) 13:73-84). This prediction is based on sequence homology to the viral IFN ⁇ / ⁇ receptor homolog from vaccinia virus (B18R), which virus has been demonstrated to employ such an immune evasion strategy (Symons et al. Cell (1995) 81:551-560).
- M135R is only half the size of VV B18R and all other IFN ⁇ / ⁇ -R homologs sequenced from poxviruses, and in all cases aligns only to the amino terminus half of poxviral IFN ⁇ / ⁇ -R homologs.
- FIG. 32 indicates the predicted structure and sequence similarity between M135R from MV and B 18R from VV. Only the first 179 amino acid residues of B18R are shown in the sequence alignment.
- Table 2 indicates the % identity between M135R and the indicated poxviral IFN ⁇ / ⁇ -R homologs. Numbers above the diagonal represent % identity and numbers below the diagonal represent % similarity between any two species. The numbers in brackets across the top represent the number of amino acids in the putative proteins. Comparison was done between the predicted full length copy of M135R (178 amino acids) and the first 178 residues of each homolog only.
- M135R Peptides against predicted immunogenic regions of M135R were synthesized and used to generate polyclonal antibodies in rabbits that were used in western blot analysis, immuno-precipitations and immuno-fluorescence. Immunoblotting confirmed that M135R is synthesized as an early gene whose expression can be detected as early as three hours post infection ( FIG. 33A ; lane 1: mock infected BGMK cells; lanes 2-6: BGMK cells infected with vMyxLau 0, 3, 6, 18 and 36 hours post infection, respectively). Treatment of infected cells with AraC indicates that synthesis of M135R was not altered by inhibition of late protein expression and is therefore an early gene ( FIG. 33B ).
- M135R is N-linked glycosylated, likely at the single site predicted from the sequence ( FIG. 33B ).
- Monensin treatment suggests that there is no O-linked glycosylation.
- BGMKs were infected at an moi of 10 with Myxoma virus.
- Cells were treated with AraC at a concentration of 40 ⁇ g/ml, tunicamycin at 1 ⁇ g/ml and monensin at 1 ⁇ g/ml, or were untreated, at the times indicated.
- M135R was detected with a peptide antibody.
- M135R Encodes a Signal Sequence but is not Secreted
- M135R has a functional signal sequence as well as a transmembrane domain prompted us to test the localization of M135R.
- Two pieces of evidence indicate that M135R localizes to the cell surface.
- M135R staining pattern indicates localization to the cell surface of infected cells.
- vMyxLau is a true wildtype strain of Myxoma virus which has not been altered by insertion of the ⁇ -gal or EGFP gene.
- the second piece of evidence for cell surface localization M135R follows biotinylation of cell surface proteins of GHOST cells infected with either vMyxgfp or vMyx135KO. Twenty-four hours post infection cell lysates were prepared. Streptavidin agarose beads were mixed with 500 ⁇ g of total cellular protein from cell lysates for 45 minutes. The beads were washed and separated on a 15% PAGE-SDS gel and then probed with anti-M135R. 50 ⁇ g of total protein from the infected cell lysates were run as controls. Immunoprecipitation of biotinylated surface proteins indicates that m135R is at the surface of infected cells ( FIG. 34B ).
- M135R is Non-Essential for Myxoma Virus Replication In Vitro
- M135R To test the ability of M135R to act as a virulence factor we constructed a recombinant virus in which M135R was deleted and replaced by a cassette encoding EGFP and gpt under VV early/late promoters (460 nucleotides, or 86% of the orf was deleted).
- the cloning strategy and cassette is shown in FIG. 35A .
- the recombinant was plaque-purified by selecting virus clones expressing EGFP. The purity of the recombinant was confirmed by PCR ( FIG. 35B ; Lane 1 is the 1 Kb plus DNA ladder, Lane 2 and 3 are PCR products from two purified vMyx135KO clones.
- the PCR product represents the region into which the M135R coding region has been deleted and the EGFP/gpt marker has been inserted.
- Lane 2 is plaque 1 and Lane 3 is plaque 2.
- Lane 4 represents the same region and covers the native, uninterrupted M135R locus.).
- Immunoblotting of BGMK cells infected with either vMyxLau or vMyx135KO confirmed that vMyx135KO had lost M135R expression ( FIG. 35C ; time course of expression of M135R: Lane 1 is uninfected BGMK cells.
- Lanes 2-6 represent BGMK cells infected with vMyxLau at times 0 (lane 2), 3 (lane 3), 6 (lane 4), 18 (lane 5), and 36 hours post infection (lane 6).
- Lanes 7 and 8 represent BGMK cells infected with vMyx135KO at 6 (lane 7) and 18 (lane 8) hours post infection.
- Lane 9 is a positive control with M135R expressed in Ac
- M135R is a Critical Virulence Factor for Pathogenesis in Rabbits
- the temperature of rabbits was taken daily for the three days preceeding the study. This was considered the baseline body temperatures of the animals. We continued to take the temperatures daily of each animal for the duration of the study. However there was no difference in body temperature between the treatment groups ( FIG. 40 ). This suggests that M135R does not play a role in the febrile response of infected animals.
- M135R does not Bind or Inhibit Rabbit IFN ⁇ / ⁇
- M135R The sequence of M135R is similar to the vaccinia B18R, an IFN ⁇ / ⁇ receptor mimic.
- FIG. 43 Western Blot analysis was performed using cell lysates from 786-0 cells, a Type II cancer cell line where rapamycin enhances myxoma virus infection. Lysates were collected 16 hours post infection with either vMyxLac or vMyxT5KO at an MOI of 3, or without virus infection. Indicated lanes contain protein from cells that were pretreated with 20 nM rapamycin (designated R) or appropriate vehicle control (1:5000 dilution of DMSO, designated D) for 6 hours before infection. The blots were probed using primary antibodies directed against the indicated proteins.
- myxoma virus infection affects many of the signaling pathways that converge on mTOR, the physiologic target of rapamycin.
- vMyxLac wild type
- vMyxT5KO MT-5 deficient virus
- rapamycin has a beneficial effect on virus replication
- global effects are observed in many of these signaling molecules that would not be predictable based on treatment with rapamycin alone (see mock infected lanes).
- These effects include an increase in the kinase activity of AKT-1, Raf-1, GSK-3 ⁇ and mTOR itself, as well as a decrease in the kinase activity of PTEN and p70S6K. This data indicate that these pathways are likely to play a role in myxoma virus permissiveness in human cancer cells lines.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Communicable Diseases (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 12/850,599 filed Aug. 4, 2010, which is a continuation of U.S. patent application Ser. No. 11/908,076, filed Sep. 7, 2007, which is a §371 of PCT/CA06/00315, filed Mar. 6, 2006, which claims the benefit of U.S. Provisional Application No. 60/658,816, filed Mar. 7, 2005, the disclosures of which are incorporated herein by reference in their entireties.
- The present invention relates generally to therapeutic use of Myxoma virus and rapamycin.
- Current treatments used to treat various types of cancer tend to work by poisoning or killing the cancerous cell. Unfortunately, treatments that are toxic to cancer cells typically tend to be toxic to healthy cells as well. Moreover, the heterogenous nature of tumours is one of the primary reasons that effective treatments for cancer remain elusive. Current mainstream therapies such as chemotherapy and radiotherapy tend to be used within a narrow therapeutic window of toxicity. These types of therapies are considered blunt tools that have limited applicability due to the varying types of tumour cells and the limited window in which these treatments can be administered.
- Modern anticancer therapies currently being developed attempt to selectively target tumour cells while being less toxic to healthy cells, thereby being more likely to leave healthy cells unaffected.
- Oncolytic viral therapy is one approach that aims to exploit cellular differences between tumour cells and normal cells. This therapy uses replication-competent, tumour-selective viral vectors as anti-cancer agents. The oncolytic virus either specifically targets cancer cells for infection, or is more suited for efficient replication in cancer cells versus healthy cells. These replication-competent, oncolytic viruses are either naturally occurring or genetically engineered to be a highly selective and highly potent means of targeting the heterogeneous tumour population. Since the replication selective oncolytic virus does not replicate efficiently in normal cells, toxicity to the patient should be low, particularly in comparison to traditional therapies such as radiation or chemotherapy.
- Numerous studies have reported oncolytic activity for various virus strains, with the most promising oncolytic viruses being a naturally occurring or genetically modified version of adenovirus, herpes simplex virus 1 (“HSV1”), Reovirus, Vaccinia Virus, Vesicular Stomatitis Virus (“VSV”) or Poliovirus. Modified oncolytic viruses currently under investigation as anticancer agents include HSV, adenovirus, Newcastle disease virus (“NDV”), Reovirus and Vaccinia virus, measles, VSV and poliovirus. Various oncolytic viruses are in Phase I and Phase II clinical trials with some showing sustained efficacy. However, it is unknown which viruses will best fulfill the oncolytic goals of sustained replication, specificity and potent lytic activity. A completely efficient candidate for an oncolytic viral vector would be one that has a short lifecycle, forms mature virions quickly, spreads efficiently from cell to cell and has a large genome ready for insertions. As well, evidence suggests that inhibiting the early innate immune response and slowing the development of Th1 responses are important for the efficacy of oncolytic therapy. It is clear that human viruses are highly immunogenic, as measured by the high level of antibody and T cell responses that are observed in the normal population for many of the viruses being considered for the development of oncolytic viruses.
- Clinical work has shown that current oncolytic viruses are indeed safe, but are not potent enough as monotherapies to be completely clinically effective. As insufficient or inefficient infection of tumour cells is usually observed, the current movement is to arm candidate viruses by genetically engineering them to express therapeutic transgenes to increase their efficiency. Most of the above-mentioned oncolytic viruses are also being tested in combination with other common oncolytic therapies.
- Adenovirus can be easily genetically manipulated and has well-known associated viral protein function. In addition, it is associated with a fairly mild disease. The ONYX-015 human adenovirus (Onyx Pharmaceuticals Inc.) is one of the most extensively tested oncolytic viruses that has been optimized for clinical use. It is believed to replicate preferentially in p53-negative tumours and shows potential in clinical trials with head and neck cancer patients. However, reports show that ONYX-015 has only produced an objective clinical response in 14% of treated patients (Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, Kuhn J, McCarty T, Landers S, Blackburn A, Romel L, Randlev B, Kaye S, Kirn D. J. Clin. Oncol. 2001 Jan. 15; 19(2):289-98).
- WO96/03997 and WO97/26904 describe a mutant oncolytic HSV that inhibits tumour cell growth and is specific to neuronal cells. Further advantages are that the HSV can be genetically modified with ease, and drugs exist to shut off any unwanted viral replication. However, the application of such a common human pathogen is limited, as it is likely that the general population has been exposed and acquired an immune response to this virus, which would attenuate the lytic effect of the virus. HSV can also cause serious side effects or a potentially fatal disease.
- Reovirus type III is associated with relatively mild diseases and its viral gene function is fairly well understood. Reovirus type III is currently being developed by Oncolytic Biotech as a cancer therapeutic which exhibits enhanced replication properties in cells expressing mutant ras oncogen and preferentially grows in PKR −/− cells (Strong J. E. and P. W. Lee, J. Virology, 1996. 70:612-616). However, Reovirus is difficult to genetically manipulate and its viral replication cannot be easily shut off.
- VSV is associated with relatively mild diseases and also has well-known viral gene function. WO99/04026 discloses the use of VSV as a vector in gene therapy for the expression of wide treatment of a variety of disorders. However, VSV suffers from the same problems as the Reovirus in that it is difficult to genetically manipulate and its viral replication cannot be easily shut off.
- Vaccina virus and Poliovirus are other candidate oncolytic viruses described in the art but have been associated with a serious or potentially fatal disease.
- U.S. Pat. No. 4,806,347 discloses the use of gamma interferon and a fragment of IFNγ against human tumour cells. WO99/18799 discloses a method of treating disease in a mammal in which the diseased cells have defects in an interferon-mediated antiviral response, comprising administering to the mammal a therapeutically effective amount of an interferon-sensitive, replication competent clonal virus. It specifically discloses that VSV particles have toxic activity against tumour cells but that alleviation of cytotoxicity in normal cells by VSV occurs in the presence of interferon. WO99/18799 also discloses that NDV-induced sensitivity was observed with the interferon-treated tumour cells but that adding interferon to normal cells makes these cells resistant to NDV. This method aims to make cells sensitive to interferon by infecting them with interferon sensitive viruses.
- The present invention is based on the unexpected discovery that rabbit Myxoma virus, including a novel Myxoma virus that does not express functional M135R protein, can selectively infect cells, including human tumour cells, that have a deficient innate anti-viral response, including those that are non-responsive to interferon, and that such infection is enhanced by treating such cells with the drug rapamycin. The term “innate” as used in this context describes non-antigen specific immune response. Since Myxoma virus does not replicate efficiently in normal human cells, the virus can therefore be used as a treatment for various disorders and conditions characterized by cells that have a deficient innate anti-viral response, including cells that are non-responsive to interferon, for example, as an oncolytic treatment for cancer. The virus can also be used to identify cells that have a deficient innate anti-viral response and to image these cells in vivo.
- In one aspect, the present invention provides a method for inhibiting a cell that has a deficient innate anti-viral response comprising administering to the cell an effective amount of a combination of Myxoma virus and rapamycin.
- In one aspect, the invention provides a method for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response, comprising administering to a patient in need thereof an effective amount of a combination of Myxoma virus and rapamycin.
- The present invention further provides use of an effective amount of a combination of Myxoma virus and rapamycin for inhibiting a cell that has a deficient innate anti-viral response and for the manufacture of a medicament for inhibiting a cell that has a deficient innate anti-viral response. The present invention further provides use of an effective amount of a combination of Myxoma virus and rapamycin for treating a disease state in a patient, wherein the disease state is characterized by the presence of cells that have a deficient innate anti-viral response and for the manufacture of a medicament for treating such a disease state in a patient.
- In another aspect, the present invention provides a pharmaceutical composition comprising Myxoma virus and rapamycin. The pharmaceutical composition may be useful for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response.
- In another aspect, the present invention provides a kit comprising Myxoma virus, rapamycin and instructions for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response. The disease states include cancer and a chronic viral infection.
- The present invention further provides a method of detection a cell that has a deficient innate anti-viral response, comprising exposing a population of cells to a combination of Myxoma virus and rapamycin; allowing the virus to infect a cell that has a deficient innate anti-viral response; and determining the infection of any cells of the population of cells by the Myxoma virus.
- The present invention is further based on the unexpected discovery that rabbit Myxoma virus protein M135R is involved in eliciting an immune response in rabbits and that a Myxoma virus strain that does not express functional M135R can kill cells in vitro, but does not cause myxomatosis disease in animals. Such a viral strain can be used to treat cells having a deficient innate anti-viral response, including those that are non-responsive to interferon, and including treatments given in combination with the drug rapamycin, without the need for increased containment of the virus, leading to improved safety.
- In one aspect, the present invention provides a method for inhibiting a cell that has a deficient innate anti-viral response comprising administering to the cell an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin.
- In one aspect, the invention provides a method for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response, comprising administering to a patient in need thereof an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin.
- The present invention further provides use of an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin, for inhibiting a cell that has a deficient innate anti-viral response and in the manufacture of a medicament for inhibiting a cell that has a deficient innate anti-viral response.
- The present invention further provides use of an effective amount of Myxoma virus that does not express functional M135R, optionally in combination with an effective amount of rapamycin, for treating a disease state in a patient, wherein the disease state is characterized by the presence of cells that have a deficient innate anti-viral response and in the manufacture of a medicament for treating such a disease state in a patient.
- In a further aspect, the present invention provides a Myxoma virus that does not express functional M135R.
- In another aspect, the present invention provides a pharmaceutical composition comprising Myxoma virus that does not express functional M135R. The pharmaceutical composition may be useful for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response. The pharmaceutical composition may further comprise rapamycin.
- In another aspect, the present invention provides a kit comprising Myxoma virus that does not express functional M135R and instructions for inhibiting a cell that has a deficient innate anti-viral response or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response. The kit may further comprise rapamycin. The disease state includes cancer and a chronic viral infection.
- The present invention further provides a method for detecting a cell that has a deficient innate anti-viral response, comprising exposing a population of cells to a Myxoma virus that does not express functional M135R, optionally in combination with rapamycin; allowing the virus to infect a cell that has a deficient innate anti-viral response; and determining the infection of any cells of the population of cells by the Myxoma virus.
- Other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the invention are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
- In the figures, which illustrate embodiments of the present invention, by way of example only.
-
FIG. 1 is a schematic diagram of an interferon mediated anti-viral signalling scheme induced upon viral infection of a cell; -
FIG. 2 is a phase contrast micrograph of nonpermissive WT murine embryonic fibroblasts (“MEFs”) after exposure to Myxoma virus, demonstrating that the MEFs become permissive after inhibition of interferon α/β with neutralizing antibody; -
FIG. 3 is a Western blot showing phosphorylation states (activation) of STAT1 and STAT2 after Myxoma virus infection, demonstrating that nonpermissive infections of MEF cells is associated with activation ofSTAT 1 andSTAT 2; -
FIG. 4 is a Western blot showing phosphorylation states (inactivation) of STAT3, STAT4, STAT5 and STATE after Myxoma virus infection, demonstrating that nonpermissive infections of MEF cells does not activate any of these species; -
FIG. 5 is a phase contrast micrograph of IFNα/β R−/− MEFs and STAT1 −/− MEFs, IFNα/β R−/− MEFs and STAT1 −/− MEFs after infection with Myxoma virus, showing that inactivation of IFN/STAT/JAK signalling renders cells permissive for Myxoma infection; -
FIG. 6 is a Western blot showing phosphorylation states of PKR in nonpermissive wildtype MEFs after Myxoma virus infection, demonstrating that PKR is not activated by Myxoma virus infection; -
FIG. 7 is a Western blot showing phosphorylation states of PKR in wildtype MEFs either mock infected or pre-infected with Myxoma virus, showing that Myxoma virus blocks PKR activation in MEF cells; -
FIG. 8 is a Western blot showing phosphorylation states of PERK in wildtype MEFs after Myxoma virus infection, demonstrating that Myxoma virus blocks PERK activation in MEF cells; -
FIG. 9 is a phase contrast micrograph of PKR−/−, RNase L−/− and Mx1−/− triple knockout after exposure to Myxoma virus, showing that the antiviral state in MEF cells is mediated by a distinct pathway; -
FIG. 10 is a phase contrast micrograph of PKR−/−, RNase L−/− and Mx1−/− triple knockout after exposure to Myxoma virus; -
FIG. 11 is a phase contrast micrograph of PKR−/−, RNase L−/− and Mx1−/− triple knockout after treatment with neutralizing antibody to IFNα/β and after exposure to Myxoma virus; -
FIG. 12 is a Western blot showing phosphorylation levels of eIF2α and PKR in nonpermissive MEFs after treatment with neutralizing antibody to IFNα/β and after exposure to Myxoma virus, showing that eIF2α phosphorylation in nonresponsive cells is catalysed by a PKR-independent pathway; -
FIG. 13 is a Western blot showing STAT1 phosphorylation states in PKR−/−, RNase L−/− and Mx1−/− triple knockout after Myxoma virus infection, indicating normal IFN-induced signalling responses -
FIG. 14 is a phase contrast micrograph illustrating subcellular localization of tyrosine-phosphorylated STAT1 in nonpermissive PKR−/−+RNaseL−/−+Mx1 −/− cells at 12 hours post-infection, indicating that the activated STAT localizes to the nucleus, as predicted for normal IFN/STAT signalling responses; -
FIG. 15 is a fluorescent image of brains from nude mice having intracranial gliomas mock-infected or infected with dead or live Myxoma virus expressing GFP, showing targeting of Myxoma to the glioma cells; -
FIG. 16 is a fluorescent image and a photograph of a thin-sectioned mouse glioma infected with Myxoma virus expressing GFP showing that the Myxoma virus replicated only in tumour cells; -
FIG. 17 is a phase contrast micrograph of HT29 human tumour cells, stained with either X-Gal or Crystal violet after infection with Myxoma virus, showing an example of a non-permissive infection in human cells; -
FIG. 18 is a phase contrast micrograph of HOP92 human tumour cells, stained with X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a permissive infection of human cells; -
FIG. 19 is phase contrast micrograph of OVCAR4 human tumour cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a permissive infection of human cells; -
FIG. 20 is a phase contrast micrograph of SK-MEL3 human tumour cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a permissive infection of human cells; -
FIG. 21 is a phase contrast micrograph of SK-MEL28 human tumour cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing an example of a semi-permissive infection of human tumour cells; -
FIG. 22 is a phase contrast micrograph of BGMK cells, stained with either X-Gal or Crystal Violet after infection with Myxoma virus, showing a typical permissive control infection; -
FIG. 23 is a phase contrast micrograph of positive control BGMK cells and human tumour lines U87, A172 and U373 infected with increasing concentrations of Myxoma virus expressing the LacZ protein, stained with X-Gal, showing that these human glioma cells were all permissive for Myxoma virus replication; -
FIG. 24 is a graph depicting survival rate of BGMK, U87, A172 and U373 cells infected with Myxoma virus, 72 hours post-infection, at increasing concentrations of the virus, demonstrating the ability of Myxoma to kill all of these cells; -
FIG. 25 is a phase contrast micrograph and fluorescence micrograph of SF04 1585 astrocytoma cells infected with MV GFP, showing the infection in primary human glioma cells; -
FIG. 26 is a phase contrast micrograph of U373 glioma cells infected with Myxoma virus expressing the LacZ protein and stained with X-Gal, showing infection of these human tumour cells; -
FIG. 27 is a graph depicting the survival rate of SF04 1585 cells infected withMV GFP 48 hours post-infection, showing killing of these infected human tumour cells; -
FIG. 28 is a fluorescence micrograph of Daoy and D384 medulloblastoma lines infected with Myxoma virus expressing GFP, showing infection of these human tumour cells. -
FIG. 29 is graphical representations of the rate of virus production in various cell lines with or without pre-treatment with rapamycin: BGMK (primate control cell line); RK-13 and RL5 (rabbit control cell lines); 4T1 and B 16F10 (mouse cancer cell lines); HOS, PC3, 786-0, HCT116, ACHN, MCF-7, M14 and COL0205 (human cancer cell lines); using wildtype virus vMyxLac and the M-T5 knock out virus vMyxT5KO as indicated; -
FIG. 30 is photographs of virally infected cell lines, infected with either vMyxLac or vMyxLacT5-; -
FIG. 31 is graphical representations of the rate of virus production in various cell lines (BGMK; A9; MCF-7; MDA-MB-435; M14; and COL0205) with or without pre-treatment with rapamycin; -
FIG. 32 is (A) a schematic alignment of Myxoma virus protein M135R and Vaccinia virus protein B18R and (B) an amino acid sequence alignment between M135R and the first 179 amino acids of B18R; -
FIG. 33 is (A) a Western blot of M135R expressed in BGMK cells infected with Myxoma virus Lausanne (vMyxLau) and (B) a Western blot of M135R expressed in BGMK cells infected with vMyxLau and treated with araC, tunicamycin or monensin; -
FIG. 34 is (A) a fluorescence micrograph of BGMK cells mock infected or infected with Myxoma virus and stained for M135R and (B) a Western blot against immunoprecipitations or cell lysates of cells infected with wildtype Myxoma virus (vMyxgfp) or an M135R knockout strain (vMyx135KO) using anti-M135R antibody; -
FIG. 35 is (A) is a schematic diagram of the cloning strategy to produce vMyx135KO, (B) an agarose gel of the PCR insert product and (C) a Western blot of cells infected with wildtype and M135R knockout Myxoma virus; -
FIG. 36 is a growth curve of viral foci in BGMK cells infected with vMyxgfp or vMyx135KO; -
FIG. 37 is light and fluorescent micrographs of rabbit embryo fibroblasts infected with vMyxgfp or vMyx135KO; -
FIG. 38 is light and fluorescent micrographs of rabbit HIG82 fibroblasts infected with vMyxgfp or vMyx135KO; -
FIG. 39 is light and fluorescent micrographs of human primary fibroblasts infected with vMyxgfp or vMyx135KO; -
FIG. 40 is a graph of body temperature in rabbits infected with vMyxLau or vMyx135KO; -
FIG. 41 is a graph of 125I emissions of cells mock infected or infected with vMyxgfp or vMyx135KO and treated with 125I-labelled rabbit interferon α/β; -
FIG. 42 is a graph of foci formed by infecting RK13 or BGMK cells with vMyxgfp or vMyx135KO, in which cells were untreated or treated with rabbit interferon α/β24 hours prior to infection; and -
FIG. 43 is photographs of Western blots using cell lysates from 786-0 human cancer cells that were pre-treated with either 20 nM rapamycin (R) or with the vehicle control (D), probed using antibodies directed against the indicated proteins. - Previously, the inventors have discovered that wildtype Myxoma virus, a virus that normally infects rabbits, can selectively infect and kill cells, including human cells, that have a deficient innate anti-viral response, for example, cells that are non-responsive to interferon, as described in the application PCT/CA2004/000341, which is herein fully incorporated by reference. Myxoma virus does not replicate efficiently in normal human cells. Since many diseases or conditions are characterized by the presence of cells that have a deficient innate anti-viral response, including cells that are not responsive to interferon, for example, cancer, Myxoma virus can be used to treat such diseases and conditions, including cancer, with low toxicity for normal healthy cells. Myxoma virus can also be used to treat chronically infected cells as such cells have a deficient innate anti-viral response. For example, many viruses encode gene products that function to inhibit the antiviral, interferon response of cells; Myxoma virus can selectively infect such cells.
- Myxoma virus (“MV”) is the causative agent of myxomatosis in rabbits. MV belongs to the Leporipoxvirus genus of the Poxyiridae family, the largest of the DNA viruses. MV induces a benign disease in its natural host, the Sylvilagus rabbit in the Americas. However, it is a virulent and host-specific poxvirus that causes a fatal disease in European rabbits, characterized by lesions found systemically and especially around the mucosal areas. (Cameron C, Hota-Mitchell S, Chen L, Barrett J, Cao J X, Macaulay C, Willer D, Evans D, McFadden G. Virology 1999, 264(2): 298-318; Kerr P & McFadden G. Viral Immunology 2002, 15(2): 229-246).
- MV is a large virus with a double-stranded DNA genome of 163 kb which replicates in the cytoplasm of infected cells (B. N. Fields, D. M. Knipe, P. M. Howley, Eds., Virology Lippincott Raven Press, New York, 2nd ed., 1996). MV is known to encode a variety of cell-associated and secreted proteins that have been implicated in down-regulation of the host's immune and inflammatory responses and inhibition of apoptosis of virus-infected cells. MV can be taken up by all human somatic cells. However, other than in normal somatic rabbit cells, if the cells have a normal innate anti-viral response, the virus will not be able to productively infect the cell, meaning the virus will not be able to replicate and cause cell death.
- Interferons (“IFNs”) are a family of cytokines that are secreted in response to a variety of stimuli. Interferons bind to cell surface receptors, activating a signaling cascade that leads to numerous cellular responses, including an anti-viral response and induction of growth inhibition and/or apoptotic signals. Interferons are classified as either type I or type II. Type I IFNs include IFN-α, -β, -τ, and -ω, which are all monomeric; the only type II IFN is IFN-γ, a dimer. Twelve different subtypes of IFN-α are produced by 14 genes, but all other IFNs are monogenic (Arduini et al., 1999). IFNs exert direct anti-tumour activity via the modulation of oncogene expression. Overexpression of growth-stimulating oncogenes or loss of tumour suppressor oncogenes can lead to malignant transformation. Some oncogenes implicated in the genesis of cancer are p53, Rb, PC, NF1, WT1, DCC.
- Myxoma virus, as well as other oncolytic viruses such as Reovirus and VSV, needs to bypass the anti-viral defenses that exist in normal healthy cells in order to be able to replicate within cells. MV and other oncolytic viruses induce interferon production, and are generally sensitive to the anti-viral effect of the IFN pathway. Relevant proteins induced by the IFN anti-viral response, and which principally affect virus multiplication include PKR, OAS synthetase and Rnase L nuclease. PKR activates eIF2α, leading to inhibition of translation and induction of apoptosis. A schematic representation of the IFN response pathway is depicted in
FIG. 1 . In normal cells, MV is directly affected by PKR and eIF2α. - Anti-viral response pathways are often disrupted in cancerous cells. For example, reduced or defective response to IFN is a genetic defect that often arises during the process of transformation and tumour evolution. Over 80% of tumour cell lines do not respond to, or exhibit impaired responses to, interferon. (Stojdl et al., Cancer Cell (2003) 4: 263-275 and references cited therein; Wong et al. J Biol. Chem. (1997) 272(45):28779-85; Sun et al. Blood. (1998) 91(2):570-6; Matin et al. Cancer Res. (2001) 61(5):2261-6; Balachandran et al Cancer Cell (2004) 5(1):51-65). As previously disclosed in PCT/CA2004/000341, MV can infect and kill cancer cells, including human tumour cells, and without being limited by any particular theory, it is believed that MV can infect these cells because they have a deficient innate anti-viral response.
- Evidence suggests that inhibiting the early innate immune response and slowing the development of Th1 responses are important for the efficacy of oncolytic therapy. Although Myxoma virus is a virulent virus, it is host-specific and has a very narrow host range; it does not infect humans or mice. Without being limited by any specific theory, it is believed that since Myxoma virus is a non-human virus, it should encounter no pre-existing immune recognition in humans. Therefore, its potential as an oncolytic virus will be less compromised and Myxoma virus should provide more potent infection of permissive tumour cells than native human viruses, and thereby can provide an effective oncolytic treatment for cancer.
- The Myxoma virus host range gene M-T5 appears to play a critical role during Myxoma virus infection of many human tumour cell lines (Sypula et al, (2004) Gene Ther. Mol. Biol. 8:103).
- The MT-5 gene encodes an ankyrin repeat protein that is required for Myxoma replication in rabbit lymphocytes, and Myxoma virus with the MT-5 gene deleted cannot cause myxomatosis in susceptible rabbits (Mossman et al, (1996) J. Virol. 70: 4394). Available evidence suggests that differences in the intracellular signalling within an infected human tumour cell are critical for distinguishing human tumour cells that are permissive to Myxoma virus infection and productive replication (Johnston et al, (2003) J. Virol. 77: 5877).
- Furthermore, Myxoma virus possesses a protein, M135R, which displays homology to the amino terminus portion of interferon α/β receptor (“IFNα/β-R”). It has been suggested that M135R mimics the host IFNα/β-R in order to prevent IFNα/β from triggering a host anti-viral response (Barrett et al., Seminars in Immunology (2001)13:73-84). The prediction is based on sequence homology to the viral IFNα/β-R from vaccinia virus, B18R, and it has been demonstrated that Vaccinia virus (“VV”) employs such an immune evasion strategy. However, M135R is only half the size of VV B18R and all other IFNα/β-R homologs from sequenced poxviruses, and in all cases aligns only to the amino terminus half of the homolog.
- The inventors have discovered that even though immunofluorescence results suggest that M135R localizes to the cell surface, attempts to demonstrate the ability of M135R to interact with IFNα/β have been negative. Despite these results, the inventors have discovered that deletion of M135R severely attenuates the ability of Myxoma virus to cause disease in host animals although Myxoma virus having such a deletion is equally effective at infecting and killing cells in vitro compared to wildtype MV. Thus, in one aspect, the present invention relates to the discovery that Myxoma virus that does not express functional M135R is useful for treatment of cells having a deficient innate anti-viral response, including for oncolytic studies, since this virus provides a safer alternative for oncolytic viral therapy as no unusual containment strategies should be needed for patients undergoing treatment.
- In another aspect, the present invention relates to the discovery that the anti-cancer agent rapamycin acts to enhance the levels of infectivity of Myxoma virus in human tumour cells which are permissive for Myxoma virus infection, and that rapamycin allows replication of certain strains of Myxoma virus in human tumour cells which, without rapamycin, are restrictive for the replication of those strains of Myxoma virus. A cell that is permissive for Myxoma virus infection is a cell that the virus can enter and in which the virus can productively reproduce. Permissive cells may have defects or mutations in one or more of the pathways that involve the proteins PTEN, PDK, AKT, GSK, Raf, mTOR or P70S6K. A restrictive cell is a cell which is permissive to Myxoma virus only under certain conditions, but does not allow productive infection under other conditions. For example, a restrictive cell may be permissive to wildtype strains of the virus, but does not allow certain mutant Myxoma strains, for example a strain having the MT-5 gene knocked out, to productively reproduce. In another example, a cell restrictive for Myxoma virus may not permit productive infection of Myxoma virus alone, but when treated with rapamycin, the same Myxoma virus is able to productively infect the cell. Abortive cell lines are non-permissive for Myxoma virus infection, meaning that the virus may be able to enter the cell, but does not productively infect the cell.
- Thus, rapamycin, when used in combination with Myxoma virus, enhances the infectivity of Myxoma virus for cells having a deficient innate anti-viral response. The present invention relates to the use of rapamycin in combination with Myxoma virus to treat cells having a deficient innate anti-viral response.
- Rapamycin is a macrocyclic lactone that has been shown to be the active antifungal compound purified from the soil bacterium Streptomyces hygroscopicus. Rapamycin as used herein refers to rapamycin (also referred to as sirolimus) and analogs or derivatives thereof capable of complexing with FKBP12 and inhibiting mTOR, including the analogs CCI-779 (also referred to as cell cycle inhibitor-779 or rapamycin-42,2,2-bis(hydroxymethyl)-propionic acid) and RAD001 (also referred to as everolimus or 40-O-(2-hydroxyethyl)-rapamycin). Rapamycin, CCI-779 and RAD001 are commercially available, and rapamycin is available under the name Rapamune™, from Wyeth-Ayerst. The term rapamycin further includes pharmaceutically acceptable salts and esters of rapamycin, its hydrates, solvates, polymorphs, analogs or derivatives, as well as pro-drugs or precursors which are metabolized or converted to rapamycin or its analogs or derivatives during use, for example when administered to a patient.
- Rapamycin as an inhibitor of cellular signaling is highly specific: it enters the cell and binds to a cellular protein known as FKBP12. The rapamycin/FKBP12 complex then binds to the specific cellular target mTOR (mammalian Target of Rapamycin). Many cancers have been shown to develop from an over activity of signaling molecules such as PI3K, or a loss of the tumor suppressor gene PTEN. Both of these molecules lie upstream of mTOR. mTOR has been shown to be a central regulator of cell proliferation, growth, differentiation, migration and survival, and is therefore an ideal target in stemming the uncontrolled growth of cancer cells. Cancer cell lines that are sensitive to rapamycin are generally those that have resulted from an activation of the pathway through mTOR.
- Rapamycins are used primarily in transplant patients as an alternative or complementary treatment to cyclosporine treatment. In transplant patients, rapamycin treatment generally has fewer side effects that cyclosporine A or FK506. In addition, retrospective studies have indicated that patients on rapamycin treatment generally develop fewer cancers and have a lower incidence of CMV (cytomegalovirus; a herpes virus) infection. It is therefore surprising that rapamycin treatment enhances Myxoma virus infection of cancer cells, particularly in light of research postulating that CMV replication should be reduced by rapamycin (reviewed by Ponticelli: “The pleiotropic effects of mTOR inhibitors” in J Nephrology 2004; 17: 762). Without being limited to a particular theory, it is possible that Myxoma virus takes advantage of aberrant signaling through the mTOR pathway that may be associated with the neoplastic phenotype of these cells. Manipulation of this pathway by mTOR inhibitors could then be a selective advantage to the virus.
- Thus, there is provided a method for inhibiting a cell that has a deficient innate anti-viral response comprising administering to the cell an effective amount of Myxoma virus. In a further embodiment, the virus is administered in combination with an effective amount of rapamycin.
- The Myxoma virus may be any virus that belongs to the Leporipoxvirus species of pox viruses that is replication-competent. The Myxoma virus may be a wild-type strain of Myxoma virus or it may be a genetically modified strain of Myxoma virus, including an MT-5 knockout strain of Myxoma. The Myxoma virus may be a strain that has an attenuated affect in rabbits, thereby causing lower risk of disease, including a strain that does not express functional M135 protein, as described below.
- In a particular embodiment, the Myxoma virus is a Myxoma virus that does not express functional M135R.
- A Myxoma virus that does not express functional M135R includes a Myxoma virus that has part, or all, of the open reading frame that encodes M135R deleted, replaced or interrupted such that no gene product, no stable gene product, or no functional gene product is expressed. Such a virus also includes a Myxoma virus that has part, or all, of the M135R gene regulatory region deleted, replaced or interrupted such that no protein can be expressed from the gene encoding M135R. Functional M135R protein is M135R that is transcribed, translated, folded, post-translationally modified and localized within the cell, and which allows Myxoma virus to cause myxomatosis in an infected host. If the M135R protein is not, or not properly or not sufficiently, transcribed, translated, folded, post-translationally modified or localized within the cell such that an infected host does not develop myxomatosis, then no functional M135R protein is expressed in the cell.
- In a further embodiment, the cell is non-responsive to interferon.
- In specific embodiments, the cell is a mammalian cancer cell. In one embodiment the cell is a human cancer cell including a human solid tumour cell.
- In another embodiment, the cell is chronically infected with a virus.
- A “combination” of rapamycin and Myxoma virus for administration may be formulated together in the same dosage form or may be formulated in separate dosage forms, and the separate dosage forms may be the same form or different forms, for administration by the same mode or by different modes of administration. Furthermore, administration of a combination of rapamycin and Myxoma virus, when not together in the same dosage form, means that the rapamycin and Myxoma virus are administered concurrently to the mammal being treated, and may be administered at the same time or sequentially in any order or at different points in time. Thus, rapamycin and Myxoma virus may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.
- The term “effective amount” as used herein means an amount effective, at dosages and for periods of time necessary to achieve the desired result.
- The term “a cell that has a deficient innate anti-viral response” as used herein refers to a cell that, when exposed to a virus or when invaded by a virus, does not induce anti-viral defence mechanisms, which include inhibition of viral replication, production of interferon, induction of the interferon response pathway, and apoptosis, which may or may not be mediated by interferon, and is thereby infectable by MV, alone or in combination with rapamycin treatment. The term includes a cell that has a reduced or defective innate anti-viral response upon exposure to or infection by a virus as compared to a normal cell, for example, a non-infected, or non-cancer cell. This includes a cell that is non-responsive to interferon and a cell that has a reduced or defective apoptotic response or induction of the apoptotic pathway. The deficiency may be caused by various causes, including infection, genetic defect, or environmental stress. It will however be understood that when the deficiency is caused by a pre-existing infection, superinfection by MV may be excluded and a skilled person can readily identify such instances. A skilled person can readily determine without undue experimentation whether any given cell type has a deficient innate anti-viral response and therefore infectable by Myxoma virus, either alone or in combination with rapamycin treatment. For example, VSV is commonly used to measure an anti-viral response of a cell.
- To assess whether a given cell type, for example a given cancer cell type, has a deficient innate anti-viral response, a skilled person can take an explant, grow some of the cells in vitro and determine infectability by VSV or alternatively, by Myxoma virus, including Myxoma virus in combination with rapamycin.
- The term “a cell that is non-responsive to interferon” as used throughout the specification means a cell that does not respond to the activity of interferon, for example anti-viral or anti-tumour activity of interferon or that has an abnormal interferon response, for example, a reduced or ineffective response to interferon, or abnormal interferon signalling as measured by, for example, phosphorylation or activation of signalling molecules such as transcription factors, for example STAT1. For example, without limitation, the cell may not undergo inhibition of proliferation or it may not be killed when exposed to interferon levels sufficient to induce such a response in a cell that is responsive to interferon. The cell that is non-responsive to interferon may have a defect in the intracellular signalling pathway or pathways that are normally activated in the responsive cells. Typically, susceptibility to infection by VSV is indicative of non-responsiveness to interferon, and a skilled person can readily determine whether a particular cell is non-responsive to interferon by its ability, or lack thereof, to inhibit VSV infection in the presence of interferon or using other markers of interferon activity known in the art, for example, the level of expression of IFN stimulated genes such as PKR, STAT, OAS, MX.
- The term “replication-competent” as used throughout the specification refers to a virus that is capable of infecting and replicating within a particular host cell. This includes a virus which alone is restricted for replication in a particular host cell, but when the host cell is treated with rapamycin, the virus can then productively infect that cell.
- The term “a cell” as used herein includes a single cell as well as a plurality or population of cells. Administering an agent to a cell includes both in vitro and in vivo administrations.
- The term “animal” as used herein includes all members of the animal kingdom, including particularly mammals, especially humans.
- The term “inhibiting” a cell that has a deficient innate anti-viral response includes cell death by lysis or apoptosis or other mechanisms of cell death, in addition to rendering the cell incapable of growing or dividing or reducing or retarding cell growth or division.
- The Myxoma virus genome may be readily modified to express one or more therapeutic transgenes using standard molecular biology techniques known to a skilled person, and described for example in Sambrook et al. ((2001) Molecular Cloning: a Laboratory Manual, 3rd ed., Cold Spring Harbour Laboratory Press). A skilled person will be able to readily determine which portions of the Myxoma viral genome can be deleted such that the virus is still capable of productive infection. For example, non-essential regions of the viral genome that can be deleted can be deduced from comparing the published viral genome sequence with the genomes of other well-characterized viruses (see for example C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.- X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, Virology (1999) 264: 298-318)).
- The term “therapeutic gene” or “therapeutic transgenes” as used herein is intended to describe broadly any gene the expression of which effects a desired result, for example, anti-cancer effect. For example, the virus may be modified to carry a gene that will enhance the anti-cancer effect of the viral treatment. Such a gene may be a gene that is involved in triggering apoptosis, or is involved in targeting the infected cell for immune destruction, such as a gene that repairs a lack of response to interferon, or which results in the expression of a cell surface marker that stimulates an antibody response, such as a bacterial cell surface antigen. The virus may also be modified to express genes involved in shutting off the neoplastic or cancer cell's proliferation and growth, thereby preventing the cells from dividing. As well, the virus may be modified to include therapeutic genes, such as genes involved in the synthesis of chemotherapeutic agents, or it may be modified to have increased replication levels in cells of the particular species from which the cells to be inhibited or killed are derived, for example, human cells. Specific examples of genes that may be inserted into the Myxoma virus to increase its anti-cancer effect include the human gene for the TRAIL protein or the adenoviral gene that encodes the E4 orf4 polypeptide, both of which proteins are involved in killing human tumour cells.
- It will be understood that therapeutic effect of the Myxoma virus, including when used in combination with rapamycin, may be achieved by cell lysis by the virus or by delivery of therapeutic products by the virus. The inclusion of rapamycin in combination with the Myxoma virus should allow for enhancement of the effect of Myxoma virus alone. That is, the Myxoma virus, when administered in combination with rapamycin should be able to productively infect a greater number of target cells than Myxoma virus alone, or should be able to productively infect target cells having a deficient innate anti-viral response which are restrictive for productive infection by Myxoma virus in the absence of rapamycin.
- The virus may be prepared using standard techniques known in the art. For example, the virus may be prepared by infecting cultured rabbit cells with the Myxoma virus strain that is to be used, allowing the infection to progress such that the virus replicates in the cultured cells and can be released by standard methods known in the art for disrupting the cell surface and thereby releasing the virus particles for harvesting. Once harvested, the virus titre may be determined by infecting a confluent lawn of rabbit cells and performing a plaque assay (see Mossman et al. (1996) Virology 215:17-30).
- There is also provided a method for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response in a patient in need of such treatment comprising administering to the patient an effective amount of Myxoma virus, optionally in combination with rapamycin. The patient may be any animal, including a mammal, including a human.
- “A disease state characterized by the presence of cells that have a deficient innate anti-viral response” as used herein refers to any disease, disorder or condition which is associated with, related to, or a characteristic of which is, the presence of cells that have a deficient innate anti-viral response and which disease, disorder, condition or symptoms thereof may be treated by killing these cells. For example, the disease state may be cancer. The disease state may also include chronic infection with a virus.
- “Treating” a disease state refers to an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilization of the state of disease, prevention of development of disease, prevention of spread of disease, delay or slowing of disease progression, delay or slowing of disease onset, amelioration or palliation of the disease state, and remission (whether partial or total). “Treating” can also mean prolonging survival of a patient beyond that expected in the absence of treatment. “Treating” can also mean inhibiting the progression of disease, slowing the progression of disease temporarily, although more preferably, it involves halting the progression of the disease permanently.
- In one embodiment, the disease state is cancer. The cancer may be any type of cancer wherein at least some of the cells, although not necessarily all of the cells have a deficient innate anti-viral response. In one embodiment, the cancer may be a cancer wherein at least some of the cells are non-responsive to interferon. As used herein, the terms “tumour”, “tumour cells”, “cancer” and “cancer cells”, (used interchangeably) refer to cells that exhibit abnormal growth, characterized by a significant loss of control of cell proliferation or cells that have been immortalized. The term “cancer” or “tumour” includes metastatic as well as non-metastatic cancer or tumours. As used herein, “neoplastic” or “neoplasm” broadly refers to a cell or cells that proliferate without normal growth inhibition mechanisms, and therefore includes benign tumours, in addition to cancer as well as dysplastic or hyperplastic cells.
- A cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor.
- Types of cancer that may be treated according to the present invention include, but are not limited to, hematopoietic cell cancers including leukemias and lymphomas, colon cancer, lung cancer, kidney cancer, pancreas cancer, endometrial cancer, thyroid cancer, oral cancer, ovarian cancer, laryngeal cancer, hepatocellular cancer, bile duct cancer, squamous cell carcinoma, prostate cancer, breast cancer, cervical cancer, colorectal cancer, melanomas and any other tumours. Solid tumours such as sarcomas and carcinomas include but are not limited to fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, lymphoid malignancy, pancreatic cancer, breast cancer, lung cancers, ovarian cancer, prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, Wilms' tumor, cervical cancer, testicular tumor, bladder carcinoma, and CNS tumors (such as a glioma, astrocytoma, medulloblastoma, craniopharyogioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma and retinoblastoma).
- In another embodiment, the disease state is a chronic viral infection.
- The chronically infecting virus may be any virus that infects and replicates in cells of an animal in a persistent manner over a prolonged period so as to cause a pathological condition. The chronically infecting virus may be a virus that is associated or correlated with the development of cancer.
- A chronic infection with a virus may be diagnosed using standard methods known in the art. For example, a chronic viral infection may be detected by the presence of anti-viral antibodies in the patient or a positive test for the presence of viral RNA or DNA in cells of the patient.
- When administered to a patient, an effective amount of the Myxoma virus, and optionally the combination of Myxoma virus with rapamycin, is the amount required, at the dosages and for sufficient time period, for the virus to alleviate, improve, mitigate, ameliorate, stabilize, prevent the spread of, slow or delay the progression of or cure the disease. For example, it may be an amount sufficient to achieve the effect of reducing the number of or destroying cancerous cells or neoplastic cells, or reducing the number of or destroying cells chronically infected with a virus, or inhibiting the growth and/or proliferation of such cells.
- The effective amount to be administered to a patient can vary depending on many factors such as the pharmacodynamic properties of the Myxoma virus and the optionally rapamycin, the modes of administration, the age, health and weight of the patient, the nature and extent of the disease state, the frequency of the treatment and the type of concurrent treatment, if any, and the virulence and titre of the virus.
- One of skill in the art can determine the appropriate amount of Myxoma virus for administration based on the above factors. The virus may be administered initially in a suitable amount that may be adjusted as required, depending on the clinical response of the patient. The effective amount of virus can be determined empirically and depends on the maximal amount of the virus that can be administered safely, and the minimal amount of the virus that produces the desired result.
- Myxoma virus may be administered to the patient using standard methods of administration. In one embodiment, the virus is administered systemically. In another embodiment, the virus is administered by injection at the disease site. In a particular embodiment, the disease state is a solid tumour and the virus is administered by injection at the tumour site. In various embodiments, the virus may be administered orally or parenterally, or by any standard method known in the art.
- To produce the same clinical effect when administering the virus systemically as that achieved through injection of the virus at the disease site, administration of significantly higher amounts of virus may be required. However, the appropriate dose level should be the minimum amount that would achieve the desired result.
- The concentration of virus to be administered will vary depending on the virulence of the particular strain of Myxoma that is to be administered and on the nature of the cells that are being targeted. In one embodiment, a dose of less than about 109 plaque forming units (“pfu”) is administered to a human patient. In various embodiments, between about 102 to about 109 pfu, between about 102 to about 107 pfu, between about 103 to about 106 pfu, or between about 104 to about 105 pfu may be administered in a single dose.
- One of skill in the art can also determine, using the above factors, the appropriate amount of rapamycin to administer to a patient. The effective amount of rapamycin can be determined empirically and will depend on the amount and strain of virus being administered, the maximum amount of rapamycin that can be safely administered and the minimal amount of rapamycin that can be administered in order to achieve an enhancement of the infectivity of Myxoma virus.
- Rapamycin may be administered to the patient using standard methods of administration. In one embodiment, the rapamycin is administered systemically. In another embodiment, the rapamycin is administered by injection at the disease site. In a particular embodiment, the disease state is a solid tumour and the rapamycin is administered by injection at the tumour site. In various embodiments, the rapamycin may be administered orally or parenterally, or by any standard method known in the art.
- The total amount of rapamycin may be administered in a single dose or in multiple doses spread out over 1 day or several days. The frequency and duration of administration of doses can be readily determined. The schedule of dosing will depend on the length of time that the Myxoma virus is to be administered. For example, rapamycin may be administered once to a patient, or may be administered 2 to 4 times per day.
- In various embodiments, the dose of rapamycin may be from about 0.01 to about 250 mg per kg of body weight per day, from about 0.01 to 50 mg per kg of body weight per day, from about 0.05 to 10 mg per kg of body weight per day, or from about 0.1 to 7.5 mg per kg of body weight per day.
- Effective amounts of a combination of Myxoma virus and rapamycin can be given repeatedly, depending upon the effect of the initial treatment regimen. Administrations are typically given periodically, while monitoring any response. It will be recognized by a skilled person that lower or higher dosages than those indicated above may be given, according to the administration schedules and routes selected.
- The Myxoma virus, optionally in combination with rapamycin, may be administered as a sole therapy or may be administered in combination with other therapies, including chemotherapy, radiation therapy or other anti-viral therapies. For example, the Myxoma virus, optionally in combination with rapamycin, may be administered either prior to or following surgical removal of a primary tumour or prior to, concurrently with or following treatment such as administration of radiotherapy or conventional chemotherapeutic drugs. In one embodiment, the Myxoma virus, optionally in combination with rapamycin can be administered in combination with, or in a sequential fashion with, other oncolytic viruses, which may demonstrate specificity for varying tumour cell types.
- To aid in administration, the Myxoma virus, optionally in combination together with rapamycin, may be formulated as an ingredient in a pharmaceutical composition. Therefore, in a further embodiment, there is provided a pharmaceutical composition comprising Myxoma virus, and optionally rapamycin, and a pharmaceutically acceptable diluent. The invention in one aspect therefore also includes such pharmaceutical compositions for use in inhibiting a cell that has a deficient innate anti-viral response or treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response. The compositions may routinely contain pharmaceutically acceptable concentrations of salt, buffering agents, preservatives and various compatible carriers. For all forms of delivery, the recombinant Myxoma virus may be formulated in a physiological salt solution.
- The pharmaceutical compositions may additionally contain additional therapeutic agents, such as additional anti-cancer agents. In one embodiment, the compositions include a chemotherapeutic agent. The chemotherapeutic agent, for example, may be substantially any agent which exhibits an oncolytic effect against cancer cells or neoplastic cells of the patient and that does not inhibit or diminish the tumour killing effect of the Myxoma virus. For example, the chemotherapeutic agent may be, without limitation, an anthracycline, an alkylating agent, an alkyl sulfonate, an aziridine, an ethylenimine, a methylmelamine, a nitrogen mustard, a nitrosourea, an antibiotic, an antimetabolite, a folic acid analogue, a purine analogue, a pyrimidine analogue, an enzyme, a podophyllotoxin, a platinum-containing agent or a cytokine. Preferably, the chemotherapeutic agent is one that is known to be effective against the particular cell type that is cancerous or neoplastic.
- The proportion and identity of the pharmaceutically acceptable diluent is determined by chosen route of administration, compatibility with a live virus, and where applicable compatibility with the chemical stability of rapamycin, and standard pharmaceutical practice. Generally, the pharmaceutical composition will be formulated with components that will not significantly impair the biological properties of the live Myxoma virus, or cause degradation of or reduce the stability or efficacy of the rapamycin where included.
- The pharmaceutical composition can be prepared by known methods for the preparation of pharmaceutically acceptable compositions suitable for administration to patients, such that an effective quantity of the active substance or substances is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985). On this basis, the compositions include, albeit not exclusively, solutions of the Myxoma virus, optionally with rapamycin, in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffer solutions with a suitable pH and iso-osmotic with physiological fluids.
- The pharmaceutical composition may be administered to a patient in a variety of forms depending on the selected route of administration, as will be understood by those skilled in the art. The composition of the invention may be administered orally or parenterally. Parenteral administration includes intravenous, intraperitoneal, subcutaneous, intramuscular, transepithelial, nasal, intrapulmonary, intrathecal, rectal and topical modes of administration. Parenteral administration may be by continuous infusion over a selected period of time.
- The pharmaceutical composition may be administered orally, for example, with an inert diluent or with an assimilable carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets. For oral therapeutic administration, the Myxoma virus may be incorporated, optionally together with rapamycin, with an excipient and be used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers and the like.
- Solutions of Myxoma virus, optionally together with rapamycin, may be prepared in a physiologically suitable buffer. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms, but that will not inactivate the live virus. A person skilled in the art would know how to prepare suitable formulations. Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington's Pharmaceutical Sciences and in The United States Pharmacopeia: The National Formulary (
USP 24 NF19) published in 1999. - In different embodiments, the composition is administered by injection (subcuteanously, intravenously, intramuscularly, etc.) directly at the disease site, such as a tumour site, or by oral administration, alternatively by transdermal administration.
- The forms of the pharmaceutical composition suitable for injectable use include sterile aqueous solutions or dispersion and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions, wherein the term sterile does not extend to the live Myxoma virus itself that is to be administered. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists.
- The dose of the pharmaceutical composition that is to be used depends on the particular condition being treated, the severity of the condition, the individual patient parameters including age, physical condition, size and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and other similar factors that are within the knowledge and expertise of the health practioner. These factors are known to those of skill in the art and can be addressed with minimal routine experimentation.
- The Myxoma virus, optionally in combination with rapamycin, or pharmaceutical compositions comprising the Myxoma virus and rapamycin, either together in the same formulation or different formulations, may also be packaged as a kit, containing instructions for use of Myxoma virus and rapamycin, including the use of Myxoma virus, or use of Myxoma virus in combination with rapamycin, to inhibit a cell that has a deficient innate anti-viral response, or use of Myxoma virus, or use of Myxoma virus in combination with rapamycin, to treat a disease state characterized by the presence of cells that have a deficient innate anti-viral response, in a patient in need thereof. The disease state may be cancer, or it may be a chronic viral infection.
- The present invention also contemplates the use of Myxoma virus, optionally in combination with rapamycin, for inhibiting a cell that has a deficient innate anti-viral response. In one embodiment, the cell is non-responsive to interferon. There is further provided use of Myxoma virus, optionally in combination with rapamycin, for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response, in a patient in need thereof. In one embodiment the disease state is cancer.
- There is also provided use of Myxoma virus, optionally in combination with rapamycin, in the manufacture of a medicament, for inhibiting a cell that has a deficient innate anti-viral response, or for treating a disease state characterized by the presence of cells that have a deficient innate anti-viral response in a patient in need thereof.
- MV can selectively infect cells in or derived from animals other than the natural host of MV, from a population of cells, which have a deficient innate anti-viral response. This ability of MV provides for the use of MV in detecting cells from a population of cells, either in culture or in an animal, that have a deficient innate anti-viral response, including cells that are non-responsive to interferon. Such cells may otherwise not be easily detectable, for example certain cancer cells that have not yet advanced to palpable tumour, or have not yet induced noticeable symptoms in the animal.
- Thus, in one embodiment, there is provided a method for detecting cells that have a deficient innate anti-viral response in a patient, comprising administering to the patient Myxoma virus modified to express a detectable marker, optionally in combination with rapamycin; allowing the virus to infect a cell that has a deficient innate anti-viral response in the patient; and detecting the cell expressing the detectable marker in the patient.
- The infected cells may be detected using any conventional method for visualizing diagnostic images. The method of detection will depend on the particular detectable marker that is used. For example, cells infected with Myxoma virus genetically modified to express a fluorescent protein may be detected using fluorescence digital imaging microscopy. Other methods include computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography. Skilled artisans will be able to determine the appropriate method for detecting a particular detectable marker.
- The detectable marker includes, but is not limited to, any marker for which genes for its expression or synthesis can be inserted into the Myxoma genome so as to result in expression or synthesis of the marker within cells that are infected by the modified virus. For example, in one embodiment, the detectable marker may be a fluorescent protein. The infected cells may be detected at a suitable time interval after administration of the modified virus to the patient, so as to allow for the virus to infect any cells that have a deficient innate anti-viral response, and to express the detectable marker in such cells at levels that would allow for detection. For example, detection may occur anywhere between 2 and 20 days following administration to the patient of the virus genetically modified to express a fluorescent protein.
- The detecting method may be carried out repeatedly at intervals in a patient in order to monitor the presence of cells that have a deficient innate anti-viral response in that patient. For example, the method for detecting such cells using Myxoma virus may be carried out on a patient at 6 month, 1 year or 2 year intervals, as is necessary, depending on the nature of the cells that has a deficient innate anti-viral response and the nature of any disease state caused as a result of the presence of such cells in a patient. Repeating the method over a time period allows for monitoring of the progression or remission of disease state, or the spread of disease within the body of the patient.
- Myxoma virus is capable of selectively infecting cells that have a deficient innate anti-viral response, and can be used as an indicator of such a deficiency in cells. Thus, cells removed from a patient may be assayed for deficiency in innate anti-viral response using the methods of the present invention. Such determination may indicate, when combined with other indicators, that the patient may be suffering from a particular disease state, for example, cancer.
- In one embodiment therefore, there is provided a method for detecting in a sample a cell that has a deficient innate anti-viral response comprising culturing the cell, exposing cultured cells to Myxoma virus, optionally in combination with rapamycin; and determining infectivity of cells by Myxoma virus.
- The cells may be removed from a subject, including a human subject, using known biopsy methods. The biopsy method will depend on the location and type of cell that is to be tested.
- Cells are cultured according to known culturing techniques, and are exposed to MV, and optionally rapamycin, by adding live Myxoma virus, and optionally rapamycin, to the culture medium. Where Myxoma virus is added in combination with rapamycin, the virus and rapamycin may be added either simultaneously or sequentially. The multiplicity of infection (“MOI”), including in the presence of rapamycin, may be varied to determine an optimum MOI for a given cell type, density and culture technique, and a particular rapamycin concentration, using a positive control cell culture that is known to be infected upon exposure to MV.
- The amount of rapamycin, and the timing of addition of rapamycin and Myxoma virus to the cultured cells may be varied depending on cell type, method of culturing and strain of virus. Such parameters can be readily tested and adjusted with minimal testing using routine methods.
- Infectivity of the cultured cells by MV, including in the presence of rapamycin, may be determined by various methods known to a skilled person, including the ability of the MV to cause cell death. It may also involve the addition of reagents to the cell culture to complete an enzymatic or chemical reaction with a viral expression product. The viral expression product may be expressed from a reporter gene that has been inserted into the MV genome.
- In one embodiment the MV may be modified to enhance the ease of detection of infection state. For example, the MV may be genetically modified to express a marker that can be readily detected by phase contrast microscopy, fluorescence microscopy or by radioimaging. The marker may be an expressed fluorescent protein or an expressed enzyme that may be involved in a colorimetric or radiolabelling reaction. In another embodiment the marker may be a gene product that interrupts or inhibits a particular function of the cells being tested.
- The invention is further illustrated by the following non-limiting examples.
- Viral strains used include wildtype MV, MV modified to express either green fluorescence protein (“GFP”) or β-galactosidase (“LacZ”), and killed (“dead”) MV. Viruses were prepped and titred using standard techniques.
- Mouse experiments were performed using mouse embryo fibroblasts (“MEFs”) derived from a wild-type mouse, and from the following mouse knockouts: IFNα/β receptor homozygous knockout; STAT1 homozygous knockout; PKR heterozygous; RNaseL heterozygous knockout; Mx1 heterozygous knockout; triple PKR/RNaseL/Mx1 homozygous knockout.
- Human experiments were performed on BGMK control cells and human tumour cell lines HT29, HOP92, OVCAR4, OVCAR5, SK-MEL3, SK-MEL28, M14, SKOV3, PC3, DU145, CAKI-1, 786-0, T47D, MDAMB 435, SF04, U87, A172, U373, Daoy and D384 as described in Stojdl et al., Cancer Cell (2003) 4: 263-275.
- Generally, assays and experiments were performed as described in Lalani et al. Virology (1999) 256: 233-245; Johnston et al. J Virology (2003) 77(13): 7682-7688; and Sypula et al. Gen Ther Mol Biol (2004) 8: 103.
- For the in vivo mouse studies, nude mice were implanted with intracranial human gliomas U87. 15 days after implantation, mice were intratumourally injected with live or dead MV GFP, at a titre of 5×106, or mock-infected. 72 hours post-infection, animals were sacrificed, the brains removed, embedded in OCT (Optimal Cutting Temperature compound), and frozen sections were cut. Myxoma-GFP was visualized in whole brain sections by fluorescence microscopy. Sections were then fixed and stained with H&E (hemotoxylin and eosin) to visualize the tumor.
- For human tumour cell assays, the tumours were trypsonized and plated immediately after surgery and infected with virus the next day at an MOI of 0.1, 1.0 or 10. Data was gathered regarding cytotoxicity and viral expression using phase microscopy and fluorescent microscopy, respectively, at 24 and 48 hours post-infection. Assays using the yellow tetrazolium salt MTT were performed to quantify the % cell survival (as a percentage of cells surviving mock infection) at 48, 72 or 96 hours post-infection.
- Human pediatric medulloblastoma cell lines, Daoy and D384, were infected with 10 M.O.I. of Myxoma-GFP. 72 hours after infection, cell viability was measured using MTT.
- Previous research showed that some clones of mouse 3T3 cells transfected with chemokine receptors were infectable by Myxoma virus while other clones were not. To investigate whether Myxoma virus tropism in other mouse cells was dependent on any particular receptors, we exploited primary mouse embryo fibroblasts (MEFs) from wild-type (WT) mice and various gene knock-outs.
- Since IFNs play a key role in mounting anti-viral responses, we hypothesized that the restrictive phenotype was related to the “antiviral state” mediated by IFN. Disruption of the chain of events of the IFN system, neutralizing circulating IFN with antibodies or generating IFN receptor negative mice, or mice with deleted genes in the intracellular pathway of signal transmission, would severely compromise the host's resistance to the Myxoma virus which typically does not infect normal mouse cells.
- In order to test this hypothesis we needed to demonstrate if the non-infectivity of Myxoma virus in the nonpermissive cells was due to the antiviral action of IFNs. Various MEF cell types having knock-outs of one or more proteins involved in intracellular IFN signaling response were tested for the effect of MV infection on the IFN pathway.
- Experiments performed on primary MEFs demonstrated that wildtype (“WT”) MEFs are not infectable by Myxoma virus. The MEFs are fully infectable by Myxoma virus when the IFN pathway is blocked by neutralizing antibody to IFNα/β (
FIG. 2 ). However, MEFs exposed to neutralizing antibodies to IFNγ remained nonpermissive. This outlined the importance of IFNα/β but not IFNγ in creating a permissive environment for Myxoma virus to infect MEFs in vitro. Different intracellular signaling pathways for IFNα/β and IFNγ have been identified in the literature. However, both IFNα/β and IFNγ likely play an important role in infected hosts, unlike cultured fibroblasts. We predict that human tumors deficient in either IFNα/β and/or IFNγ pathway will be susceptible to Myxoma virus infection in vivo. - We examined the activity of STAT1 and STAT2 in nonpermissive WT MEFs that were infected with MV. The results shown in
FIG. 3 indicated that STAT1 and STAT2 were activated. Further study showed that STAT3, STAT4 and STAT5 are not activated (FIG. 4 ). - In order to confirm the importance of the IFNα/β intracellular pathway in maintaining a nonpermissive state in MEFs, genetic deletion studies were performed to provide disruptions in the IFNα/β receptors and in the intracellular cascade. Genetic deletion of IFN receptors or JAK1 or STAT1 was performed. MV was used to infect WT MEFs, IFNα/β R−/− MEFs and STAT1 −/− MEFs. IFNα/β R−/− MEFs and STAT1 −/− MEFs were permissive to MV demonstrating the IFNα/β and STAT1 signalling cascades are critical for MV infection (
FIG. 5 ). - Protein Kinase R (PKR) is an enzyme induced in a wide variety of cells by IFNα/β. This kinase, in the presence of dsRNA, undergoes autophosphorylation and then phosphorylates several cellular proteins including eukaryotic protein synthesis initiation factor (eIF-2α) whose phosphorylation can induces an inhibition of protein translation and apoptosis. PKR is also indicated in the activation of RNaseL. We examined the activation of PKR in nonpermissive MEFs following MV infection. PKR is not phosphorylated in nonpermissive MEFs in which the antiviral state is well established (
FIG. 6 ). Furthermore MV infection inhibits PKR phosphorylation (FIG. 7 ). In addition, PERK (PKR-like, ER kinase) is not phosphorylated in the primary WT MEFs following Myxoma virus infection (FIG. 8 ). - MV was use to infect MEFs with single gene knockouts of PKR, RNaseL or Mx1 (
FIG. 9 ). It was discovered that PKR, RNaseL and Mx1 are nonessential for maintaining nonpermissiveness for Myxoma virus infection. To further confirm the nonessential role of PKR, RNaseL and Mx1 a Triple knockout of PKR−/−, RNase L−/− and Mx1−/− in MEFs was performed. A PKR−/−, RNase L−/− and Mx1−/− triple knockout does not support Myxoma virus infection (FIG. 10 ), however MEFs with a triple KO of PKR, RNaseL and Mx1 treated with a neutralizing antibody to Interferon α/β becomes permissive to Myxoma virus infection (compareFIGS. 10 and 11 ). These experiments demonstrate that PKR, RNaseL and Mx1 are not essential in mediating the nonpermissiveness of MEFs to MV. - Further studies were performed to examine the activation of eIF-2α and PKR in nonpermissive wildtype MEFs and permissive IFNα/β R−/− MEFs and STAT1 −/−MEFs after MV infection. After MV infection, eIF-2α is phosphorylated in nonpermissive and permissive MEFs although PKR is not phosphorylated in either case (
FIG. 12 ). This demonstrates that without the involvement of PKR and PERK, the antiviral state is mediated by another pathway that causes eIF2α phosphorylation. - STAT1 is both serine- and tyrosine-phosphorylated following Myxoma infections in nonpermissive PKR, RNaseL and Mx1 Triple KO MEFs (
FIG. 13 ). Subcellular localization of tyrosine-phosphorylated STAT1 in nonpermissive PKR−/−+RNaseL−/−+Mx1 −/− MEFs following Myxoma virus infection is also shown (FIG. 14 ). - In summary, these results indicate that a parallel PKR/PERK-independent antiviral pathway involving IFN/STAT1 is critical for poxvirus tropism. Furthermore, eIF2α phosphorylation is the best marker for the antiviral action by INF.
- We studied the ability of MV to infect human tumour cells in an in vivo system. Nude mice were injected with human glioma cells, and subsequently developed intracranial gliomas. Live virus was able to infect these human tumours cells but did not infect surrounding cells (
FIG. 15 ). The localization of fluorescent signal from GFP to the tumour is depicted inFIG. 16 . - Given that many human tumours are non-responsive to interferon, and that the tumour cells do not have normal IFN signaling cascades compared to those found in normal human cells, studies were performed to investigate the effect of Myxoma virus on human tumours. The results are summarized below.
- Initially, Myxoma virus was used to study the infectivity and cytolytic effects on various control and human tumour cell lines: BGMK, HT29, HOP92, OVCAR4, SK-MEL3, and SK-MEL28. MV demonstrated various infectivity and cytolytic results: HT29 (
FIG. 17 ) HOP92 (FIG. 18 ), OVCAR4 (FIG. 19 ) SK-MEL3 (FIG. 20 ), SK-MEL28 (FIG. 21 ) and BGMK (FIG. 22 ). - Additional tumour cells were tested and Table 1 below classifies the various tumour types tested as permissive or non-permissive.
-
TABLE 1 Myxoma Virus Trophism for Human Tumour Cells Non- Cell Line Cell Origin Species Permissive Permissive BGMK Kidney Monkey X RK-13 Kidney Rabbit X RL5 T-Lymphocyte Rabbit X HOS Osteosarcoma Human X PC3 Prostate cancer Human X Caki-1 Renal cancer Human X HCT116 Colon cancer Human X 786-0 Renal cancer Human X SK-OV-3 Ovarian cancer Human X ACHN Renal cancer Human X HOP92 Lung cancer Human X SK-MEL3 Melanoma Human X SK-MEL28 Melanoma Human X OVCAR4 Ovarian cancer Human X OVCAR5 Ovarian cancer Human X DU145 Prostate cancer Human X A498 Renal cancer Human X T47D Breast cancer Human X Colo205 Colon cancer Human X HT29 Colon cancer Human X MDAMB Breast cancer Human X 435 M14 Melanoma Human X MCF7 Breast cancer Human X SK-MEL5 Melanoma Human X - Various human tumour lines demonstrated varying responsiveness to infection with increasing concentrations of MV-LacZ. For example, U373 cells required higher virus titres to achieve the levels of cell killing achieved with lower virus titres in U87 (
FIG. 23 andFIG. 24 ). Myxoma efficiently infected astrocytoma cells (FIG. 25 ), and glioma cells (FIG. 26 ). Myxoma was effective at 48 hours post-infection at killing human astrocytoma and pediatric medulloblastoma cells (FIGS. 27 and 28 ). - Viral strains used include wildtype MV (“vMyxLac”), and MV modified to have the MT-5 gene knocked out (“vMyxLacT5-”). Viruses were prepped and titred using standard techniques.
- Human experiments were performed on BGMK primate control cells, RK-13 rabbit control cells and normal human fibroblasts A9, restrictive human tumour cell lines 786-0 (renal), ACHN (renal), HCT116 (colon), MCF-7 (breast), MDA-MB-435 (breast), M14 (melanoma) and COL0205 (colon).
- Generally, assays and experiments were performed as described in Lalani et al. Virology (1999) 256: 233-245; Johnston et al. J Virology (2003) 77(13): 7682-7688; and Sypula et al. Gen Ther Mol Biol (2004) δ: 103.
- For viral growth curves, cells were grown in vitro in a monolayer, and pretreated with 20 nM rapamycin or a control (1:5000 dilution of DMSO) prior to infection with virus.
- Samples of indicated cell lines infected with the indicated viral strain were collected at 72 hours post infection and lysed. The virus contained within the cell lysates was titrated and used to infect BGMK monolayers. At 48 hours post infection, cells were fixed and stained using X-gal.
- Myxoma virus has been previously demonstrated by the inventors to be able to infect and replicate in many types of human tumor cells (Sypula et al. (2004) Gene Ther. Mol. Biol. 8:103). This rabbit specific virus can preferentially infect a majority (approximately 70%) of human cancer cell lines from the NCI reference collection. In addition, the host range gene M-T5 was found to play a critical role during Myxoma virus infection of many of these cell lines.
- In the present investigation of potential intracellular molecules that may be affecting the ability of Myxoma to selectively replicate within human tumour cells, the effect of rapamycin was tested.
- As seen in
FIG. 29 , the ability of Myxoma virus to replicate and spread following a low multiplicity of infection (MOI) was performed using a multistep growth curve, using BGMK (control primate cell line); RK-13 and RL5 (control rabbit cell lines); 4T1 and B16F10 (mouse cancer cell lines); HOS and PC3 (permissive human cancer cell lines); 786-0, HCT116 and ACHN (restrictive human cancer cell lines); MCF-7, M14 and COL0205 (abortive human cancer cell lines). Both wild type vMyxLac and the M-T5 knock out virus vMyxT5KO were tested to investigate the ability of both viruses to infect and spread throughout the monolayer in the presence and absence of pre-treatment with rapamycin. Virus titre was assessed by foci formation on BGMK cells. Cells were pretreated with 20 nM rapamycin or appropriate vehicle control (1:5000 dilution of DMSO) for 6 hours before infection. - As demonstrated, rapamycin has no effect on control BGMK cells, nor on either of the rabbit cell lines tested, including the RL-5 cells, which are non permissive for the MT-5 knock out virus. However, rapamycin does enhance the replication of myxoma virus in mouse tumour cell lines, and marginally in permissive (Type I) cell lines, such as PC-3. Rapamycin has less of an effect on highly permissive cells such as HOS cells, likely due to the fact that such cell lines are already maximally permissive for the Myxoma virus. The greatest effect with rapamycin was observed in the restrictive (Type II) cell lines (786-0, HCT116 and ACHN), which are permissive for wildtype virus but non-permissive for the vMyxT5KO strain. Some effect was seen even in abortive (Type III) cell lines MCF-7 and COL0205, although not in abortive cell line M14.
- Samples of the BGMK and 786-0 infected cells were then collected and lysed, and the isolated virus was used to infect monolayers of BGMK cells (
FIG. 30 ). Virally infected cells were visualized using X-Gal staining. - Pretreatment of tumour cells that are “restrictive” for Myxoma infection, i.e. those cells that permit the replication of the wild type Myxoma virus but not the MT-5 knock-out virus, with rapamycin resulted in a restoration of the ability of Myxoma virus to replicate in these cancer cell lines, which include renal, colon and ovarian cancer cell lines (
FIGS. 29 and 30 ). - In addition, the treatment with rapamycin enhanced the ability of the wild type virus to replicate in these same cells, but not control rabbit or primate cells. These results indicate that rapamycin acts to enhance Myxoma virus infection. In addition, rapamycin appears to influence the ability of cancer cells that are poorly infectable by this virus to permit virus replication.
- Subsequent experiments examined the effect of rapamycin treatment on human tumour cells that could not support wild type Myxoma virus infection (
FIG. 31 ). The pretreatment had little effect on control primate cells or normal human fibroblasts, yet could enhance virus infectivity in several cell lines, including the breast cancer cell line MCF-7. As several of the human tumour cell lines remained resistant to rapamycin treatment, as well as the control cell lines, it is unlikely that rapamycin treatment could permit Myxoma virus to productively infect non-transformed tissue. - M135R is Expressed from Myxoma Virus as an Early Gene
- Myxoma virus encodes a protein (M135R) identified from the sequencing of the MV genome (Cameron et al. Virology (1999) 264: 298-318) predicted to mimic the host IFNα/β receptor and prevent IFNα/β from triggering a host anti-viral response (Barrett et al. Seminars in Immunology (2001) 13:73-84). This prediction is based on sequence homology to the viral IFNα/β receptor homolog from vaccinia virus (B18R), which virus has been demonstrated to employ such an immune evasion strategy (Symons et al. Cell (1995) 81:551-560). However M135R is only half the size of VV B18R and all other IFN α/β-R homologs sequenced from poxviruses, and in all cases aligns only to the amino terminus half of poxviral IFN α/β-R homologs.
FIG. 32 indicates the predicted structure and sequence similarity between M135R from MV and B 18R from VV. Only the first 179 amino acid residues of B18R are shown in the sequence alignment. Table 2 indicates the % identity between M135R and the indicated poxviral IFN α/β-R homologs. Numbers above the diagonal represent % identity and numbers below the diagonal represent % similarity between any two species. The numbers in brackets across the top represent the number of amino acids in the putative proteins. Comparison was done between the predicted full length copy of M135R (178 amino acids) and the first 178 residues of each homolog only. -
TABLE 2 Comparison of M135R to Other Poxviral Homologs % Identity Myxoma Vaccinia Variola Monkeypox Cowpox Ectromelia Camelpox YLDV Swinepox LSDV species (178) (351) (354) (352) (351) (358) (355) (351) (344) (360) Myxoma — 24 21 24 23 21 22 20 18 17 Vaccinia 39 — 80 93 90 84 79 20 23 25 Variola 36 88 — 79 87 88 79 19 24 24 Monkeypox 38 95 87 — 86 83 78 20 20 26 Cowpox 38 93 93 91 — 92 88 21 23 25 Ectromelia 35 89 93 87 94 — 87 17 21 25 Camelpox 34 86 94 85 92 93 — 17 23 24 YLDV 38 37 37 37 38 34 34 — 23 28 Swinepox 32 39 39 36 39 35 37 38 — 25 LSDV 32 39 39 41 38 39 36 43 38 — - Peptides against predicted immunogenic regions of M135R were synthesized and used to generate polyclonal antibodies in rabbits that were used in western blot analysis, immuno-precipitations and immuno-fluorescence. Immunoblotting confirmed that M135R is synthesized as an early gene whose expression can be detected as early as three hours post infection (
FIG. 33A ; lane 1: mock infected BGMK cells; lanes 2-6: BGMK cells infected withvMyxLau FIG. 33B ). However treatment with tunicamycin indicates that M135R is N-linked glycosylated, likely at the single site predicted from the sequence (FIG. 33B ). Monensin treatment suggests that there is no O-linked glycosylation. For the results shown inFIG. 33 , BGMKs were infected at an moi of 10 with Myxoma virus. Cells were treated with AraC at a concentration of 40 μg/ml, tunicamycin at 1 μg/ml and monensin at 1 μg/ml, or were untreated, at the times indicated. M135R was detected with a peptide antibody. - Sequence analysis of M135R indicates the presence of a predicted signal sequence (
FIG. 32B ). However there is also a predicted transmembrane domain at the carboxy terminus (FIG. 32B ). Immunoblots of supernatants from infected BGMK cells indicate that M135R is not secreted. However, M135R is easily detected in whole cell lysates (FIG. 33 ). To test whether the signal sequence functioned to drive M135R to the cell surface, we deleted the transmembrane domain and cloned the mutant into a baculovirus expression system. Comparison of AcM135R and Ac135ΔTM infected supernatants indicated that full length M135R is found in the cell lysate there is no evidence of secretion. In contrast Ac135ΔTM is secreted and confirms that the signal sequence functions to drive M135R into the extracellular environment (data not shown). - The observation that M135R has a functional signal sequence as well as a transmembrane domain prompted us to test the localization of M135R. Two pieces of evidence indicate that M135R localizes to the cell surface. First, when BGMKs were seeded onto glass coverslips and infected with vMyxLau (moi of 10) for 24 hours then M135R was detected by immunostaining with affinity purified anti-M135R followed by FITC-conjugated secondary antibody (
FIG. 34A ). M135R staining pattern indicates localization to the cell surface of infected cells. vMyxLau is a true wildtype strain of Myxoma virus which has not been altered by insertion of the β-gal or EGFP gene. - The second piece of evidence for cell surface localization M135R follows biotinylation of cell surface proteins of GHOST cells infected with either vMyxgfp or vMyx135KO. Twenty-four hours post infection cell lysates were prepared. Streptavidin agarose beads were mixed with 500 μg of total cellular protein from cell lysates for 45 minutes. The beads were washed and separated on a 15% PAGE-SDS gel and then probed with anti-M135R. 50 μg of total protein from the infected cell lysates were run as controls. Immunoprecipitation of biotinylated surface proteins indicates that m135R is at the surface of infected cells (
FIG. 34B ). - To test the ability of M135R to act as a virulence factor we constructed a recombinant virus in which M135R was deleted and replaced by a cassette encoding EGFP and gpt under VV early/late promoters (460 nucleotides, or 86% of the orf was deleted). The cloning strategy and cassette is shown in
FIG. 35A . The recombinant was plaque-purified by selecting virus clones expressing EGFP. The purity of the recombinant was confirmed by PCR (FIG. 35B ;Lane 1 is the 1 Kb plus DNA ladder,Lane Lane 2 isplaque 1 andLane 3 isplaque 2.Lane 4 represents the same region and covers the native, uninterrupted M135R locus.). Immunoblotting of BGMK cells infected with either vMyxLau or vMyx135KO confirmed that vMyx135KO had lost M135R expression (FIG. 35C ; time course of expression of M135R:Lane 1 is uninfected BGMK cells. Lanes 2-6 represent BGMK cells infected with vMyxLau at times 0 (lane 2), 3 (lane 3), 6 (lane 4), 18 (lane 5), and 36 hours post infection (lane 6).Lanes Lane 9 is a positive control with M135R expressed in AcNPV.). - Single step growth curves were used to test the ability of vMyx135KO to replicate in BGMK cells. BGMK cells were infected with vMyxgfp or vMyx135KO at an moi of 5 and cells were collected at the times indicated. Virus titres were determined on BGMK cells. There was no difference in the replication pattern between vMyxgfp and vMyx135KO (
FIG. 36 ). These results indicate that M135R is not required for replication in vitro. - During our studies of the ability of another gene of Myxoma to influence Myxoma replication in rabbit primary embryo fibroblasts (REFs), we used vMyx135KO as a knockout control and observed a curious phenomenon. Infection of the REFs with vMyxgfp resulted in a normal focus of infection however vMyx135KO produced a plaque-like zone of infection (
FIG. 37 ). When we tested other cells to confirm this phenotype we were able to replicate the plaque formation in other rabbit fibroblasts (HIG-82,FIG. 38 ) and human primary fibroblasts (ccd922-sk,FIG. 39 ). - We next tested the ability of vMyx135KO to produce myxomatosis in lab rabbits. In contrast to the animals injected with vMyxLau or vMyxgfp which developed normal myxomatosis and had to be euthanized between
days day 6 and continuing over the next 3-4 days the differences between the different viruses became evident. Those animals injected with the wildtype or revertant virus had numerous secondary lesions in the ears, eyes and nose which were not observed in the animals injected with vMyx135KO (Table 3). We conclude that loss of M135R drastically attenuated MV in animal models and indicates that M135R is a critical virulence factor. -
TABLE 3 Pathogenesis of vMyx135KO Compared to Wildtype Controls Observations and Time of onset (number + days indicates first appearance in days post injection) Lausanne (4 vMyx135KO (6 vMyx135REV Clinical Signs animals) animals) (3 animals) inoculation 2 days: red, 4 days: 11-16 mm 3 days: small red site visible red, raised, dark lump, slightly slightly raised centre raised 4 days: red, dark centre satellites 4 days 6 days: just 6 days: 5-10 visible beginning, over increasing to course of infection 30-40 satellites very few observed visible by day 8conjunctival none observed 9 days: single rabbit none observed inflammation discharge from eye anogenital 7 days: 7 days: redness, edema swelling swelling secondary 6-7 days: first 7 days: few small 6 days: first observed lesions around eyes red spots not yet as red areas on then ears lesions, ears eyes eyelids, clearly lesion by day 7respiratory little or none little or none little or none difficulty lesion 11 days: 25 mm, regression black, scabby satellites losing colour and becoming scabby 13 days: scab beginning to separate from healthy tissue two animals all animals three animals euthanized recovered euthanized day 10day 9two animals euthanized day 10 - The temperature of rabbits was taken daily for the three days preceeding the study. This was considered the baseline body temperatures of the animals. We continued to take the temperatures daily of each animal for the duration of the study. However there was no difference in body temperature between the treatment groups (
FIG. 40 ). This suggests that M135R does not play a role in the febrile response of infected animals. - M135R does not Bind or Inhibit Rabbit IFN α/β
- The sequence of M135R is similar to the vaccinia B18R, an IFNα/β receptor mimic. We tested the ability of M135R to bind
rabbit type 1 IFN. We first iodinated rabbit IFN (5 μg, using Iodobeads) and tested the ability of vMyx135KO infected cells to bind 125I-rabbit IFN in comparison to cells infected with vMyxgfp (moi of 10). Cells were collected, washed and counted in a gamma counter. Deletion of M135R did not affect IFNα/β binding to infected cells and we did not observe any difference in the amount of IFN bound to the cell surface of either RK13 or BGMK cells (FIG. 41 ). As well, treatment of RK13 or BGMK cells with exogenous rabbit type1 IFN did not affect infection of cells by vMyx135KO (FIG. 42 ; cells were seeded in 12 well dishes and infected with the indicated virus at an moi of 0.01; fluorescent foci were counted 72-96 hours post infection; 200 units of rabbit IFNα/β was either added 24 hours prior to infection or cells were untreated). This same result was observed when cells were pretreated 24 h before infection to induce an anti-viral state in the cell. We did not notice any significant difference in the foci formed following infection in either RK13 or BGMK cells (data not shown). This phenomenon was also true if cells were treated with human IFNα/D (data not shown). As well, we were unable to observe any binding when Ac135ΔTM supernatants were applied to rabbit IFN α/β adhered to a BIAcore chip (data not shown). - Western Blot analysis (
FIG. 43 ) was performed using cell lysates from 786-0 cells, a Type II cancer cell line where rapamycin enhances myxoma virus infection. Lysates were collected 16 hours post infection with either vMyxLac or vMyxT5KO at an MOI of 3, or without virus infection. Indicated lanes contain protein from cells that were pretreated with 20 nM rapamycin (designated R) or appropriate vehicle control (1:5000 dilution of DMSO, designated D) for 6 hours before infection. The blots were probed using primary antibodies directed against the indicated proteins. - As demonstrated, myxoma virus infection affects many of the signaling pathways that converge on mTOR, the physiologic target of rapamycin. In the context of infection with either wild type (vMyxLac) or MT-5 deficient (vMyxT5KO) virus, where rapamycin has a beneficial effect on virus replication, global effects are observed in many of these signaling molecules that would not be predictable based on treatment with rapamycin alone (see mock infected lanes). These effects include an increase in the kinase activity of AKT-1, Raf-1, GSK-3β and mTOR itself, as well as a decrease in the kinase activity of PTEN and p70S6K. This data indicate that these pathways are likely to play a role in myxoma virus permissiveness in human cancer cells lines.
- As can be understood by one skilled in the art, many modifications to the exemplary embodiments described herein are possible. The invention, rather, is intended to encompass all such modification within its scope, as defined by the claims.
- Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention in order to achieve the same result in substantially the same way. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art of this invention, unless defined otherwise.
- All reference cited herein are fully incorporated by reference
Claims (21)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/679,096 US20130171106A1 (en) | 2005-03-07 | 2012-11-16 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
US14/049,737 US9987315B2 (en) | 2005-03-07 | 2013-10-09 | Use of a combination of Myxoma virus and rapamycin for therapeutic treatment |
US15/972,994 US20180256656A1 (en) | 2005-03-07 | 2018-05-07 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65881605P | 2005-03-07 | 2005-03-07 | |
PCT/CA2006/000315 WO2006094385A1 (en) | 2005-03-07 | 2006-03-06 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
US90807608A | 2008-08-13 | 2008-08-13 | |
US12/850,599 US20110195050A1 (en) | 2005-03-07 | 2010-08-04 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
US13/679,096 US20130171106A1 (en) | 2005-03-07 | 2012-11-16 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/850,599 Continuation US20110195050A1 (en) | 2005-03-07 | 2010-08-04 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/049,737 Continuation US9987315B2 (en) | 2005-03-07 | 2013-10-09 | Use of a combination of Myxoma virus and rapamycin for therapeutic treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130171106A1 true US20130171106A1 (en) | 2013-07-04 |
Family
ID=36952904
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/908,076 Abandoned US20090035276A1 (en) | 2005-03-07 | 2006-03-06 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
US12/850,599 Abandoned US20110195050A1 (en) | 2005-03-07 | 2010-08-04 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
US13/679,096 Abandoned US20130171106A1 (en) | 2005-03-07 | 2012-11-16 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
US14/049,737 Active 2026-04-19 US9987315B2 (en) | 2005-03-07 | 2013-10-09 | Use of a combination of Myxoma virus and rapamycin for therapeutic treatment |
US15/972,994 Abandoned US20180256656A1 (en) | 2005-03-07 | 2018-05-07 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/908,076 Abandoned US20090035276A1 (en) | 2005-03-07 | 2006-03-06 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
US12/850,599 Abandoned US20110195050A1 (en) | 2005-03-07 | 2010-08-04 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/049,737 Active 2026-04-19 US9987315B2 (en) | 2005-03-07 | 2013-10-09 | Use of a combination of Myxoma virus and rapamycin for therapeutic treatment |
US15/972,994 Abandoned US20180256656A1 (en) | 2005-03-07 | 2018-05-07 | Use of a combination of myxoma virus and rapamycin for therapeutic treatment |
Country Status (15)
Country | Link |
---|---|
US (5) | US20090035276A1 (en) |
EP (2) | EP2388315B1 (en) |
JP (2) | JP2008531739A (en) |
KR (1) | KR101479093B1 (en) |
CN (2) | CN102357104B (en) |
AU (1) | AU2006222500B2 (en) |
CA (1) | CA2600675C (en) |
DK (1) | DK2388315T3 (en) |
HK (1) | HK1163175A1 (en) |
IL (2) | IL185376A0 (en) |
MX (1) | MX2007010962A (en) |
NZ (2) | NZ577283A (en) |
RU (1) | RU2461630C2 (en) |
UA (1) | UA96412C2 (en) |
WO (1) | WO2006094385A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9987315B2 (en) | 2005-03-07 | 2018-06-05 | The University Of Western Ontario | Use of a combination of Myxoma virus and rapamycin for therapeutic treatment |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2951453A1 (en) | 2006-06-01 | 2007-12-13 | The University Of Western Ontario | Myxoma virus mutants for cancer treatment |
KR101585702B1 (en) * | 2008-05-22 | 2016-01-15 | 제일약품주식회사 | Tumor suppressor-based susceptibility of hyperproliferative cells to oncolytic viral therapy |
US20120100109A1 (en) * | 2010-10-26 | 2012-04-26 | Xiaoliu Zhang | Method for increasing the replication of oncolytic HSVs in highly resistant tumor cells using mTOR pathway and PI3K inhibitors |
CN109453198A (en) | 2011-06-09 | 2019-03-12 | 佛罗里达大学研究基金会有限公司 | The treatment or prevention method of graft versus host disease |
RU2695136C1 (en) * | 2018-06-19 | 2019-07-22 | Общество с ограниченной ответственностью Биотехнология (ООО Биотехнология) | Oncolytic treatment method for breast cancer |
US20210301263A1 (en) * | 2018-08-08 | 2021-09-30 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods for improved poxvirus yields |
CN112969468A (en) * | 2018-09-05 | 2021-06-15 | 亚利桑那州立大学董事会 | Oncolytic virus platform for treatment of hematologic cancer |
WO2021046048A1 (en) | 2019-09-02 | 2021-03-11 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods and compositions for improving oncolytic virus infection for nonpermissive cancers |
JP2023524920A (en) * | 2019-10-10 | 2023-06-14 | アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティ | Oncolytic viruses containing immunomodulatory transgenes and uses thereof |
KR20220078665A (en) * | 2019-10-10 | 2022-06-10 | 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 | Oncolytic Viruses Expressing Multispecific Immune Cell Engagers |
WO2022139440A1 (en) * | 2020-12-22 | 2022-06-30 | 바이로큐어 주식회사 | Novel recombinant myxoma virus and use thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082529A1 (en) * | 1997-10-03 | 2004-04-29 | Abraham Hochberg | Methods and compositions for inducing tumor-specific cytotoxicity |
WO2004078206A1 (en) * | 2003-03-07 | 2004-09-16 | Robarts Research Institute | Use of myxoma virus for the therapeutic treatment of cancer and chronic viral infection |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4401653A (en) * | 1981-03-09 | 1983-08-30 | Ayerst, Mckenna & Harrison Inc. | Combination of rapamycin and picibanil for the treatment of tumors |
US4806347A (en) | 1985-12-11 | 1989-02-21 | Schering Corporation | Interferon combinations |
GB9415320D0 (en) | 1994-07-29 | 1994-09-21 | Medical Res Council | Cancer treatment |
EP1314430A1 (en) | 1996-01-25 | 2003-05-28 | The University Court Of The University Of Glasgow | Treatment of non-neuronal cancer using HSV mutant |
WO1999004026A2 (en) | 1997-07-18 | 1999-01-28 | Chiron Corporation | Lentiviral vectors |
NZ550147A (en) | 1997-10-09 | 2008-09-26 | Wellstat Biologics Corp | Treatment of neoplasms with viruses |
US6264940B1 (en) * | 1998-08-05 | 2001-07-24 | The Research Foundation Of State University Of New York | Recombinant poliovirus for the treatment of cancer |
JP2003504063A (en) | 1999-07-12 | 2003-02-04 | バイロン セラピューティクス インコーポレイテッド | A novel myxoma gene that regulates immunity |
CA2388807C (en) * | 1999-11-12 | 2013-08-06 | Matthew C. Coffey | Viruses for the treatment of cellular proliferative disorders |
AU2001261738A1 (en) * | 2000-05-17 | 2001-11-26 | London Health Sciences Centre | Compositions and methods for promoting immunosuppression |
SK288834B6 (en) | 2001-02-19 | 2021-03-10 | Novartis Pharma Ag | 40-O- (2-hydroxyethyl) -rapamycin for use as the sole active ingredient in the treatment of a solid tumor other than lymphatic cancer |
UA77200C2 (en) * | 2001-08-07 | 2006-11-15 | Wyeth Corp | Antineoplastic combination of cci-779 and bkb-569 |
WO2004014314A2 (en) * | 2002-08-12 | 2004-02-19 | David Kirn | Methods and compositions concerning poxviruses and cancer |
JP2006524246A (en) * | 2003-04-22 | 2006-10-26 | ワイス | Anti-neoplastic combination |
WO2005002607A2 (en) * | 2003-07-07 | 2005-01-13 | Oncolytics Biotech Inc. | Oncolytic reoviruses for the treatment of neoplasms having activated pp2a or rac |
CN1946421B (en) * | 2004-04-27 | 2013-07-17 | 威尔斯达特生物制剂公司 | Cancer treatment using viruses and camptothecins |
NZ577283A (en) | 2005-03-07 | 2010-11-26 | Robarts Res Inst | Use of a Myxoma virus that does not express functional M135R |
-
2006
- 2006-03-06 NZ NZ577283A patent/NZ577283A/en not_active IP Right Cessation
- 2006-03-06 RU RU2007137008/10A patent/RU2461630C2/en not_active IP Right Cessation
- 2006-03-06 MX MX2007010962A patent/MX2007010962A/en active IP Right Grant
- 2006-03-06 DK DK11174887.7T patent/DK2388315T3/en active
- 2006-03-06 NZ NZ560840A patent/NZ560840A/en unknown
- 2006-03-06 EP EP11174887.7A patent/EP2388315B1/en not_active Not-in-force
- 2006-03-06 JP JP2008500016A patent/JP2008531739A/en active Pending
- 2006-03-06 WO PCT/CA2006/000315 patent/WO2006094385A1/en active Application Filing
- 2006-03-06 CA CA2600675A patent/CA2600675C/en not_active Expired - Fee Related
- 2006-03-06 KR KR1020077022872A patent/KR101479093B1/en not_active Expired - Fee Related
- 2006-03-06 UA UAA200710934A patent/UA96412C2/en unknown
- 2006-03-06 CN CN201110306752.7A patent/CN102357104B/en not_active Expired - Fee Related
- 2006-03-06 AU AU2006222500A patent/AU2006222500B2/en not_active Ceased
- 2006-03-06 US US11/908,076 patent/US20090035276A1/en not_active Abandoned
- 2006-03-06 CN CN2006800075336A patent/CN101137748B/en not_active Expired - Fee Related
- 2006-03-06 EP EP06705269A patent/EP1863906A4/en not_active Withdrawn
-
2007
- 2007-08-20 IL IL185376A patent/IL185376A0/en unknown
-
2010
- 2010-08-04 US US12/850,599 patent/US20110195050A1/en not_active Abandoned
- 2010-09-07 IL IL208070A patent/IL208070A/en not_active IP Right Cessation
-
2012
- 2012-04-19 HK HK12103930.3A patent/HK1163175A1/en not_active IP Right Cessation
- 2012-09-07 JP JP2012197457A patent/JP5674210B2/en not_active Expired - Fee Related
- 2012-11-16 US US13/679,096 patent/US20130171106A1/en not_active Abandoned
-
2013
- 2013-10-09 US US14/049,737 patent/US9987315B2/en active Active
-
2018
- 2018-05-07 US US15/972,994 patent/US20180256656A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082529A1 (en) * | 1997-10-03 | 2004-04-29 | Abraham Hochberg | Methods and compositions for inducing tumor-specific cytotoxicity |
WO2004078206A1 (en) * | 2003-03-07 | 2004-09-16 | Robarts Research Institute | Use of myxoma virus for the therapeutic treatment of cancer and chronic viral infection |
US7582614B2 (en) * | 2003-03-07 | 2009-09-01 | Robarts Research Institute | Use of myxoma virus for the therapeutic treatment of cancer and chronic viral infection |
Non-Patent Citations (10)
Title |
---|
Barrett et al (Fourteenth International Poxvirus and Iridovirus Conference, Lake Placid, NY, Sept 2002, IDS). * |
Bell et al (Cancer Cell, 2003, 4, 7-11 * |
Kelland et al European Journal of Cancer, 2004, 40, 827-836 * |
Kerbel et al Cancer Biology & Therapy 2: 4 suppl. 1, S134-139 * |
Liu et al J Virol 2011 ;85:3270-82 * |
Lu et al Cancer Gene Ther. 1999 Jan-Feb; 6(1): 64-72 * |
McCabe et al. Vaccine 2002;20:2454-62 * |
McFadden, Nat Reviews Microbiol 2005; 3:201-13 * |
Soudais, et al FASEB J., 2004, 18(2): 391-3. * |
Stojdl et al (Nature Med. 2000, 821-825 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9987315B2 (en) | 2005-03-07 | 2018-06-05 | The University Of Western Ontario | Use of a combination of Myxoma virus and rapamycin for therapeutic treatment |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9987315B2 (en) | Use of a combination of Myxoma virus and rapamycin for therapeutic treatment | |
US8227440B2 (en) | Use of Myxoma virus for the therapeutic treatment of cancer and chronic viral infection | |
EP2451945A1 (en) | Oncolytic viruses and methods for treating neoplastic disorders | |
CN100379453C (en) | Use of myxoma virus in the treatment of cancer and chronic viral infections | |
Ohnesorge | New approaches in the therapy of NUT carcinomas (NCs) involving immunovirotherapy and BET-protein inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WHITE OAK GLOBAL ADVISORS, LLC, AS ADMINISTRATIVE Free format text: SECURITY AGREEMENT;ASSIGNOR:WELLSTAT BIOLOGICS CORPORATION;REEL/FRAME:031029/0801 Effective date: 20130801 |
|
AS | Assignment |
Owner name: PDL BIOPHARMA, INC., NEVADA Free format text: SECURITY AGREEMENT;ASSIGNOR:WELLSTAT BIOLOGICS CORPORATION;REEL/FRAME:031288/0530 Effective date: 20130820 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: WELLSTAT BIOLOGICS CORPORATION, MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WHITE OAK GLOBAL ADVISORS, LLC, AS ADMINISTRATIVE AGENT;REEL/FRAME:055060/0338 Effective date: 20210108 |