+

US20130167834A1 - Multi-section heat-pipe solar collector - Google Patents

Multi-section heat-pipe solar collector Download PDF

Info

Publication number
US20130167834A1
US20130167834A1 US13/338,434 US201113338434A US2013167834A1 US 20130167834 A1 US20130167834 A1 US 20130167834A1 US 201113338434 A US201113338434 A US 201113338434A US 2013167834 A1 US2013167834 A1 US 2013167834A1
Authority
US
United States
Prior art keywords
heat
pipe
collecting
section
collecting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/338,434
Inventor
Dah-Chyi Kuo
Xue-Hai Wang
Ling Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUNSHAN JUE-CHUNG ELECTRONICS Co Ltd
Kunshan Jue Chung Electronics Co Ltd
Original Assignee
Kunshan Jue Chung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunshan Jue Chung Electronics Co Ltd filed Critical Kunshan Jue Chung Electronics Co Ltd
Priority to US13/338,434 priority Critical patent/US20130167834A1/en
Assigned to KUNSHAN JUE-CHUNG ELECTRONICS CO., LTD. reassignment KUNSHAN JUE-CHUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUO, DAH-CHYI, LONG, Ling, WANG, Xue-hai
Publication of US20130167834A1 publication Critical patent/US20130167834A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S2010/751Special fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a solar collector, and in particular to a multi-section heat-pipe solar collector.
  • solar collector has become a popular device having commercial use and economical benefits.
  • heat pipes having good heat conductivity are assembled in the solar collector to serve as heat-conducting elements.
  • Such a heat-pipe solar collector has been well developed.
  • the existing heat-pipe solar collector includes a heat-exchanging pipe, a plurality of heat pipes inserted into the heat-exchanging pipe, and a plurality of heat-collecting plates inserted into the heat pipes respectively.
  • cold water flows into one end of the heat-exchanging pipe through the heat pipes and then takes away the heat contained in the heat pipes. Finally, the water absorbing the heat contained in the heat pipes exits the other end of the heat-exchanging pipe.
  • the heat-collecting plates increase the heat-collecting area of the solar collector, thereby increasing the heat-collecting efficiency.
  • FIG. 1 is a schematic view showing the combination of the heat pipes and the heat-collecting plates of the conventional heat-pipe solar collector.
  • the heat pipe 10 ′ is connected onto a rectangular heat-collecting plate 20 ′. That is, the heat-collecting plate 20 ′ is uniformly welded to the heat pipe 10 ′. The heat absorbed by the heat-collecting plate 20 ′ will conduct to the heat pipe 10 ′. Then, the heat pipe 10 ′ exchanges the heat with the outside to release the heat by means of the phase change of the working fluid in the heat pipe 10 ′, whereby the solar collector can collect the solar energy and provide the collected solar energy as a heat source
  • the heat transfer efficiency of the evaporating section of one heat pipe may be varied based on the locations of the evaporating section. That is, the heat transfer characteristics of the evaporating section of the heat pipe are not consistent.
  • the heat flux of the heat pipe near its condensing section is larger, whereas the heat flux of the heat pipe away from the condensing section is smaller.
  • the traditional way of welding the rectangular heat-collecting plate to the heat pipe makes the evaporating section of the heat pipe to have a uniform heat flux.
  • the heat pipe 10 ′ cannot exhibit the heat-conducting effect completely. Therefore, it is an important issue for the present Inventor to arrange the heat-collecting plates 20 ′ and the heat pipes 10 ′ more reasonably to thereby exhibit the heat transfer characteristics of the heat pipe 10 ′ and improve the heat-collecting effect of the heat collector.
  • the present Inventor proposes a novel and reasonable structure based on his expert knowledge and deliberate researches.
  • the present invention is to provide a multi-section heat-pipe solar collector, whereby the heat pipe can exhibit an excellent heat-conducting effect and the heat-collecting effect of the solar collector can be improved.
  • the present invention provides a multi-section heat-pipe solar collector, including a heat-exchanging pipe and at least one heat-collecting module.
  • the heat-collecting module comprises a heat pipe and a plurality of heat-collecting plates serially connected on one side of the heat pipe at intervals. One end of the heat pipe is inserted into the heat-exchanging pipe.
  • the heat-collecting plates are arranged on the other end of the heat pipe in multiple sections and have different heat transfer characteristics.
  • the present invention provides a multi-section heat-pipe solar collector, in which the heat-absorbing effect and the heat-conducting effect of the heat-collecting plates near the condensing section of the heat pipe may be different from the heat-absorbing effect and the heat-conducting effect of the heat-collecting plate away from the condensing section of the heat pipe, so that the heat pipe can exhibit an excellent performance.
  • the heat-collecting module of the present invention comprises a heat pipe and a plurality of heat-collecting plates serially connected on one side of the heat pipe at intervals. Since the heat flux of the evaporating section of the heat pipe is different, the heat flux of the heat pipe near the condensing section is larger, whereas the heat flux of the heat pipe away from the condensing section is smaller. Thus, if the material, thickness or surface coating of the heat-collecting plate is adjusted, the heat flux of the evaporating section of the heat pipe can be distributed uniformly. In this way, the heat transfer efficiency of the heat pipe can be exhibited completely and the heat-collecting effect of the solar collector can be improved.
  • FIG. 1 is a schematic view showing the combination of the heat pipes and the heat-collecting plates of a conventional solar collector
  • FIG. 2 is a schematic view showing the operation of the multi-section heat-pipe solar collector of the present invention
  • FIG. 3 is a plan view showing the multi-section heat-pipe solar collector of the present invention.
  • FIG. 4 is a schematic view showing the external appearance of the heat-collecting module of the present invention.
  • FIG. 5 is a schematic view showing another embodiment of the heat-collecting module of the present invention.
  • FIG. 2 is a schematic view showing the operation of the multi-section heat-pipe solar collector of the present invention
  • FIG. 3 is a plan view showing the multi-section heat-pipe solar collector of the present invention.
  • the multi-section heat-pipe solar collector 1 includes a heat-collecting support 10 , a heat-exchanging pipe 20 , and at least one heat-collecting module 30 .
  • the heat collector 1 comprises a plurality of heat-collecting modules 30 .
  • Each of the heat-collecting modules 30 comprises a heat pipe 31 and a plurality of heat-collecting plates 32 serially connected to one side of the heat pipe 31 at intervals. These heat-collecting plates 32 are arranged on the other end of the heat pipe 31 in multiple sections and have different heat transfer characteristics.
  • the heat-collecting support 10 is a triangular three-dimensional support, but it is not limited thereto.
  • the heat-exchanging pipe 20 and the heat-collecting module 30 are fixed onto the heat-collecting support 10 .
  • the heat-exchanging pipe 20 is disposed on the heat-collecting support 10 at a higher position.
  • the working fluid in the heat pipe conducts the heat of the heat pipe 31 to the heat-exchanging pipe 20 for heat exchange, so that the heat collector 1 can generate a heat-collecting effect.
  • the heat-exchanging pipe 20 has a water exhaust port 201 and a water intake port 202 opposite to each other. Cold water flows into the heat-exchanging pipe 20 via the water intake port 202 . The cold water flowing into the heat-exchanging pipe 20 will take away the heat of the heat pipe 31 and then exit to the outside via the water exhaust port 201 . In this way, the heat pipe 31 can generate a heat-exchanging effect, so that the heat collector 1 can achieve a heat-collecting effect.
  • the heat pipe 31 is inserted into the heat-exchanging pipe 20 .
  • the heat-collecting plates 32 support the other end of the heat pipe 31 and are serially connected on one side of the heat pipe 31 at interval.
  • the heat pipe 31 comprises a condensing section 311 and an evaporating section 312 .
  • the condensing section 311 is inserted into the heat-exchanging pipe 20 .
  • the evaporating section 312 is inserted into the heat-collecting plate 32 .
  • the heat pipe 31 is inserted into the heat-exchanging pipe 20 via a connecting sleeve 33 .
  • FIG. 4 is a schematic view showing the external appearance of the heat-collecting module of the present invention.
  • These heat-collecting plates 32 are arranged on the evaporating section 312 of the heat pipe 31 longitudinally.
  • the heat-collecting plate 32 near the condensing section 312 is called as a first heat-collecting plate 321
  • the heat-collecting plate 32 away from the condensing section 312 is called as a second heat-collecting plate 322 .
  • the heat-conducting efficiency of the first heat-collecting plate 321 may be different from that of the second heat-collecting plate 322 .
  • the heat-conducting efficiency of the first heat-collecting plate 321 is larger than that of the second heat-collecting plate 322 .
  • the heat flux of the evaporating section 312 of the heat pipe 31 can be distributed in a reasonable manner, so that the heat pipe 31 can exhibit a heat-conducting efficiency and the heat-collecting module 30 can achieve an excellent heat-collecting effect.
  • the first heat-collecting plate 321 is made of a first metal
  • the second heat-collecting plate 322 is made of a second metal.
  • the heat transfer coefficient of the first heat-collecting plate 321 is different from that of the second heat-collecting plate 322 .
  • the heat transfer coefficient of the first heat-collecting plate 321 may be larger than that of the second heat-collecting plate 322 .
  • the first heat-collecting plate 321 may be made of a metal having a greater heat transfer coefficient such as copper.
  • the second heat-collecting plate 322 may be made of a metal having a smaller heat transfer coefficient such as magnesium, iron or the like.
  • the thickness of the material of the heat-collecting plate 32 may be adjusted to change the temperature uniformity thereof, thereby adjusting the heat-conducting performance. If the heat-collecting plates 32 are made of the same material, the thickness of the first heat-collecting plate 321 may be different from that of the second heat-collecting plate 322 . When the thickness of the first heat-collecting plate 321 is larger, the temperature uniformity and the heat-conducting efficiency are better. On the other hand, when the thickness of the second heat-collecting plate 322 is smaller, the temperature uniformity and the heat-conducting efficiency are inferior to those of the first heat-collecting plate 321 .
  • the heat-collecting module 30 a comprises a heat pipe 31 a and a plurality of heat-collecting plates 32 a .
  • the heat pipe 31 a comprises a condensing section 311 a and an evaporating section 312 a .
  • the heat-collecting plate 32 a near the condensing section 312 a is called as a first heat-collecting plate 321 a .
  • the heat-collecting plate 32 a away from the condensing section 312 a is called as a second heat-collecting plate 322 a.
  • the differences between the present embodiment and the first embodiment lies in that: the surfaces of the heat-collecting plates 32 a are formed with different coatings, thereby generating different emissive characteristics.
  • a surface of the first heat-collecting plate 321 a has a first coating.
  • a surface of the second heat-collecting plate 322 a has a second coating.
  • the thermal emissive coefficient of the first coating is different from that of the second coating. Since the surface coating has an influence on the thermal radiation absorptivity and emissivity of the heat-collecting plate 32 a .
  • the thermal emissive coefficient of the first coating is smaller than that of the second coating, so that the heat-absorbing effect of the first heat-collecting plate 321 a is better than that of the second heat-collecting plate 322 a.
  • the material, thickness, surface coating or the like of the heat-collecting plate 32 , 32 a is adjusted to make the heat flux of the evaporating section 312 , 312 a of the heat pipe 31 , 31 a to be distributed reasonably. In this way, the heat pipe 31 , 31 a can exhibit an excellent heat-conducting efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A multi-section heat-pipe solar collector includes a heat-exchanging pipe and at least one heat-collecting module. The heat-collecting module includes a heat pipe and a plurality of heat-collecting plates serially connected on one side of the heat pipe at intervals. One end of the heat pipe is inserted into the heat-exchanging pipe. The heat-collecting plates are arranged on the other end of the heat pipe in multiple sections and have different heat transfer characteristics respectively.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a solar collector, and in particular to a multi-section heat-pipe solar collector.
  • 2. Description of Prior Art
  • Among the solar devices, solar collector has become a popular device having commercial use and economical benefits. In order to improve the conversion efficiency of the solar energy, heat pipes having good heat conductivity are assembled in the solar collector to serve as heat-conducting elements. Such a heat-pipe solar collector has been well developed.
  • The existing heat-pipe solar collector includes a heat-exchanging pipe, a plurality of heat pipes inserted into the heat-exchanging pipe, and a plurality of heat-collecting plates inserted into the heat pipes respectively. In use, cold water flows into one end of the heat-exchanging pipe through the heat pipes and then takes away the heat contained in the heat pipes. Finally, the water absorbing the heat contained in the heat pipes exits the other end of the heat-exchanging pipe. The heat-collecting plates increase the heat-collecting area of the solar collector, thereby increasing the heat-collecting efficiency.
  • FIG. 1 is a schematic view showing the combination of the heat pipes and the heat-collecting plates of the conventional heat-pipe solar collector. As shown in this figure, the heat pipe 10′ is connected onto a rectangular heat-collecting plate 20′. That is, the heat-collecting plate 20′ is uniformly welded to the heat pipe 10′. The heat absorbed by the heat-collecting plate 20′ will conduct to the heat pipe 10′. Then, the heat pipe 10′ exchanges the heat with the outside to release the heat by means of the phase change of the working fluid in the heat pipe 10′, whereby the solar collector can collect the solar energy and provide the collected solar energy as a heat source
  • However, the heat transfer efficiency of the evaporating section of one heat pipe may be varied based on the locations of the evaporating section. That is, the heat transfer characteristics of the evaporating section of the heat pipe are not consistent. In general, the heat flux of the heat pipe near its condensing section is larger, whereas the heat flux of the heat pipe away from the condensing section is smaller. The traditional way of welding the rectangular heat-collecting plate to the heat pipe makes the evaporating section of the heat pipe to have a uniform heat flux. As a result, the heat pipe 10′ cannot exhibit the heat-conducting effect completely. Therefore, it is an important issue for the present Inventor to arrange the heat-collecting plates 20′ and the heat pipes 10′ more reasonably to thereby exhibit the heat transfer characteristics of the heat pipe 10′ and improve the heat-collecting effect of the heat collector.
  • In order to solve the above problems, the present Inventor proposes a novel and reasonable structure based on his expert knowledge and deliberate researches.
  • SUMMARY OF THE INVENTION
  • The present invention is to provide a multi-section heat-pipe solar collector, whereby the heat pipe can exhibit an excellent heat-conducting effect and the heat-collecting effect of the solar collector can be improved.
  • The present invention provides a multi-section heat-pipe solar collector, including a heat-exchanging pipe and at least one heat-collecting module. The heat-collecting module comprises a heat pipe and a plurality of heat-collecting plates serially connected on one side of the heat pipe at intervals. One end of the heat pipe is inserted into the heat-exchanging pipe. The heat-collecting plates are arranged on the other end of the heat pipe in multiple sections and have different heat transfer characteristics.
  • The present invention provides a multi-section heat-pipe solar collector, in which the heat-absorbing effect and the heat-conducting effect of the heat-collecting plates near the condensing section of the heat pipe may be different from the heat-absorbing effect and the heat-conducting effect of the heat-collecting plate away from the condensing section of the heat pipe, so that the heat pipe can exhibit an excellent performance.
  • In comparison with prior art, the heat-collecting module of the present invention comprises a heat pipe and a plurality of heat-collecting plates serially connected on one side of the heat pipe at intervals. Since the heat flux of the evaporating section of the heat pipe is different, the heat flux of the heat pipe near the condensing section is larger, whereas the heat flux of the heat pipe away from the condensing section is smaller. Thus, if the material, thickness or surface coating of the heat-collecting plate is adjusted, the heat flux of the evaporating section of the heat pipe can be distributed uniformly. In this way, the heat transfer efficiency of the heat pipe can be exhibited completely and the heat-collecting effect of the solar collector can be improved.
  • BRIEF DESCRIPTION OF DRAWING
  • FIG. 1 is a schematic view showing the combination of the heat pipes and the heat-collecting plates of a conventional solar collector;
  • FIG. 2 is a schematic view showing the operation of the multi-section heat-pipe solar collector of the present invention;
  • FIG. 3 is a plan view showing the multi-section heat-pipe solar collector of the present invention;
  • FIG. 4 is a schematic view showing the external appearance of the heat-collecting module of the present invention; and
  • FIG. 5 is a schematic view showing another embodiment of the heat-collecting module of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The detailed description and technical contents of the present invention will become apparent with the following detailed description accompanied with related drawings. It is noteworthy to point out that the drawings is provided for the illustration purpose only, but not intended for limiting the scope of the present invention.
  • Please refer to FIGS. 2 and 3. FIG. 2 is a schematic view showing the operation of the multi-section heat-pipe solar collector of the present invention, and FIG. 3 is a plan view showing the multi-section heat-pipe solar collector of the present invention. The multi-section heat-pipe solar collector 1 includes a heat-collecting support 10, a heat-exchanging pipe 20, and at least one heat-collecting module 30. In the present embodiment, the heat collector 1 comprises a plurality of heat-collecting modules 30. Each of the heat-collecting modules 30 comprises a heat pipe 31 and a plurality of heat-collecting plates 32 serially connected to one side of the heat pipe 31 at intervals. These heat-collecting plates 32 are arranged on the other end of the heat pipe 31 in multiple sections and have different heat transfer characteristics.
  • In the present embodiment, the heat-collecting support 10 is a triangular three-dimensional support, but it is not limited thereto. The heat-exchanging pipe 20 and the heat-collecting module 30 are fixed onto the heat-collecting support 10. The heat-exchanging pipe 20 is disposed on the heat-collecting support 10 at a higher position. When the heat pipe 31 is heated, the working fluid in the heat pipe conducts the heat of the heat pipe 31 to the heat-exchanging pipe 20 for heat exchange, so that the heat collector 1 can generate a heat-collecting effect.
  • The heat-exchanging pipe 20 has a water exhaust port 201 and a water intake port 202 opposite to each other. Cold water flows into the heat-exchanging pipe 20 via the water intake port 202. The cold water flowing into the heat-exchanging pipe 20 will take away the heat of the heat pipe 31 and then exit to the outside via the water exhaust port 201. In this way, the heat pipe 31 can generate a heat-exchanging effect, so that the heat collector 1 can achieve a heat-collecting effect.
  • One end of the heat pipe 31 is inserted into the heat-exchanging pipe 20. The heat-collecting plates 32 support the other end of the heat pipe 31 and are serially connected on one side of the heat pipe 31 at interval. In the present embodiment, the heat pipe 31 comprises a condensing section 311 and an evaporating section 312. The condensing section 311 is inserted into the heat-exchanging pipe 20. The evaporating section 312 is inserted into the heat-collecting plate 32. The heat pipe 31 is inserted into the heat-exchanging pipe 20 via a connecting sleeve 33.
  • Please refer to FIG. 4, which is a schematic view showing the external appearance of the heat-collecting module of the present invention. These heat-collecting plates 32 are arranged on the evaporating section 312 of the heat pipe 31 longitudinally. The heat-collecting plate 32 near the condensing section 312 is called as a first heat-collecting plate 321, and the heat-collecting plate 32 away from the condensing section 312 is called as a second heat-collecting plate 322. The heat-conducting efficiency of the first heat-collecting plate 321 may be different from that of the second heat-collecting plate 322. In the present embodiment, the heat-conducting efficiency of the first heat-collecting plate 321 is larger than that of the second heat-collecting plate 322. In this way, the heat flux of the evaporating section 312 of the heat pipe 31 can be distributed in a reasonable manner, so that the heat pipe 31 can exhibit a heat-conducting efficiency and the heat-collecting module 30 can achieve an excellent heat-collecting effect.
  • As shown in FIG. 1, the first heat-collecting plate 321 is made of a first metal, and the second heat-collecting plate 322 is made of a second metal. The heat transfer coefficient of the first heat-collecting plate 321 is different from that of the second heat-collecting plate 322. In practice, the heat transfer coefficient of the first heat-collecting plate 321 may be larger than that of the second heat-collecting plate 322. The first heat-collecting plate 321 may be made of a metal having a greater heat transfer coefficient such as copper. On the other hand, the second heat-collecting plate 322 may be made of a metal having a smaller heat transfer coefficient such as magnesium, iron or the like.
  • Moreover, the thickness of the material of the heat-collecting plate 32 may be adjusted to change the temperature uniformity thereof, thereby adjusting the heat-conducting performance. If the heat-collecting plates 32 are made of the same material, the thickness of the first heat-collecting plate 321 may be different from that of the second heat-collecting plate 322. When the thickness of the first heat-collecting plate 321 is larger, the temperature uniformity and the heat-conducting efficiency are better. On the other hand, when the thickness of the second heat-collecting plate 322 is smaller, the temperature uniformity and the heat-conducting efficiency are inferior to those of the first heat-collecting plate 321.
  • Please refer to FIG. 5, which shows another embodiment of the heat-collecting module of the present invention. In the present embodiment, the heat-collecting module 30 a comprises a heat pipe 31 a and a plurality of heat-collecting plates 32 a. The heat pipe 31 a comprises a condensing section 311 a and an evaporating section 312 a. The heat-collecting plate 32 a near the condensing section 312 a is called as a first heat-collecting plate 321 a. The heat-collecting plate 32 a away from the condensing section 312 a is called as a second heat-collecting plate 322 a.
  • The difference between the present embodiment and the first embodiment lies in that: the surfaces of the heat-collecting plates 32 a are formed with different coatings, thereby generating different emissive characteristics. In the present embodiment, a surface of the first heat-collecting plate 321 a has a first coating. A surface of the second heat-collecting plate 322 a has a second coating. The thermal emissive coefficient of the first coating is different from that of the second coating. Since the surface coating has an influence on the thermal radiation absorptivity and emissivity of the heat-collecting plate 32 a. In the present embodiment, the thermal emissive coefficient of the first coating is smaller than that of the second coating, so that the heat-absorbing effect of the first heat-collecting plate 321 a is better than that of the second heat-collecting plate 322 a.
  • According to the above, in the heat-collecting module 30 of the present invention, the material, thickness, surface coating or the like of the heat-collecting plate 32, 32 a is adjusted to make the heat flux of the evaporating section 312, 312 a of the heat pipe 31, 31 a to be distributed reasonably. In this way, the heat pipe 31, 31 a can exhibit an excellent heat-conducting efficiency.
  • Although the present invention has been described with reference to the foregoing preferred embodiments, it will be understood that the invention is not limited to the details thereof.
  • Various equivalent variations and modifications can still occur to those skilled in this art in view of the teachings of the present invention. Thus, all such variations and equivalent modifications are also embraced within the scope of the invention as defined in the appended claims.

Claims (8)

What is claimed is:
1. A multi-section heat-pipe solar collector, including:
a heat-exchanging pipe; and
at least one heat-collecting module comprising a heat pipe and a plurality of heat-collecting plates serially connected on one side of the heat pipe at intervals, one end of the heat pipe being inserted into the heat-exchanging pipe, the heat-collecting plates being arranged on the other end of the heat pipe in multiple sections and having different heat transfer characteristics respectively.
2. The multi-section heat-pipe solar collector according to claim 1, further including a heat-collecting support and a connecting sleeve, the heat-exchanging pipe and the heat-collecting plates being fixed on the heat-collecting support, the heat pipe being inserted into the heat-exchanging pipe via the connecting sleeve.
3. The multi-section heat-pipe solar collector according to claim 1, wherein the heat-exchanging pipe has a water exhaust port and a water intake port opposite to each other, cold water flows into the heat-exchanging pipe via the water intake port, and the cold water flowing through the heat pipe exits the heat pipe via the water exhaust port.
4. The multi-section heat-pipe solar collector according to claim 1, wherein the heat pipe comprises a condensing section and an evaporating section, the condensing section is inserted into the heat-exchanging pipe, and the evaporating section is inserted into the heat-collecting plates.
5. The multi-section heat-pipe solar collector according to claim 4, wherein the heat-collecting plate near the condensing section is a first heat-collecting plate, the heat-collecting plate away from the condensing section is a second heat-collecting plate, and the heat-conducting efficiency of the first heat-collecting plate is different from of the heat-conducting efficiency of the second heat-collecting plate.
6. The multi-section heat-pipe solar collector according to claim 5, wherein the first heat-collecting plate is made of a first metal, the second heat-collecting plate is made of a second metal, and the heat transfer coefficient of the first metal is different from the heat transfer coefficient of the second metal.
7. The multi-section heat-pipe solar collector according to claim 5, wherein the heat-collecting plates are made of the same material, and the thickness of the first heat-collecting plate is different from the thickness of the second heat-collecting plate.
8. The multi-section heat-pipe solar collector according to claim 5, wherein a surface of the first heat-collecting plate has a first coating, a surface of the second heat-collecting plate has a second coating, and the thermal emissive coefficient of the first coating is different from the thermal emissive coefficient of the second coating.
US13/338,434 2011-12-28 2011-12-28 Multi-section heat-pipe solar collector Abandoned US20130167834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/338,434 US20130167834A1 (en) 2011-12-28 2011-12-28 Multi-section heat-pipe solar collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/338,434 US20130167834A1 (en) 2011-12-28 2011-12-28 Multi-section heat-pipe solar collector

Publications (1)

Publication Number Publication Date
US20130167834A1 true US20130167834A1 (en) 2013-07-04

Family

ID=48693839

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/338,434 Abandoned US20130167834A1 (en) 2011-12-28 2011-12-28 Multi-section heat-pipe solar collector

Country Status (1)

Country Link
US (1) US20130167834A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033234A1 (en) * 2014-03-12 2015-03-12 Fricaeco América, Sapi De C.V. Solar fluids preheating system with low thermal losses
US20150167298A1 (en) * 2012-08-31 2015-06-18 Odilo Reutter Building module and method for utilizing thermal energy
GB2524026A (en) * 2014-03-11 2015-09-16 Nicholas Anthony Allen Solar thermal panel
CN106196647A (en) * 2016-08-29 2016-12-07 天津大学 A kind of economic benefits and social benefits solar thermal collector utilizing heat pipe
CN107084540A (en) * 2017-05-10 2017-08-22 安徽建筑大学 Multi-functional hot pipe type solar heat collector
CN107091533A (en) * 2017-03-15 2017-08-25 浙江神德新能源有限公司 A kind of novel heat collecting pipe group
US20170277235A1 (en) * 2016-03-28 2017-09-28 Microsoft Technology Licensing, Llc Black body radiation in a computing device
CN107830570A (en) * 2017-11-30 2018-03-23 海宁奇瑞特光电有限公司 Improved solar heating device
CN110686415A (en) * 2019-10-26 2020-01-14 北京工业大学 A vacuum tube-micro heat pipe array solar heat collection-heat storage integrated device using compound parabolic concentrator
CN110701799A (en) * 2019-10-26 2020-01-17 北京工业大学 A vacuum tube solar collector-heat storage integrated device based on lap-joint micro heat pipe array
CN111412664A (en) * 2020-03-27 2020-07-14 汪洋 A kind of manufacturing method of solar water heater
CN112283955A (en) * 2020-10-30 2021-01-29 兰州交通大学 Wing box micro-grooved heat pipe heat collector plate, louver flat plate solar collector and its application

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663953B2 (en) * 2012-08-31 2017-05-30 Odilo Reutter Building module and method for utilizing thermal energy
US20150167298A1 (en) * 2012-08-31 2015-06-18 Odilo Reutter Building module and method for utilizing thermal energy
GB2524026A (en) * 2014-03-11 2015-09-16 Nicholas Anthony Allen Solar thermal panel
WO2015033234A1 (en) * 2014-03-12 2015-03-12 Fricaeco América, Sapi De C.V. Solar fluids preheating system with low thermal losses
WO2017172420A3 (en) * 2016-03-28 2018-02-22 Microsoft Technology Licensing, Llc Black body radiation in a computing device
US20170277235A1 (en) * 2016-03-28 2017-09-28 Microsoft Technology Licensing, Llc Black body radiation in a computing device
CN109074138A (en) * 2016-03-28 2018-12-21 微软技术许可有限责任公司 Calculate the black body radiation in equipment
US10429908B2 (en) * 2016-03-28 2019-10-01 Microsoft Technology Licensing, Llc Black body radiation in a computing device
EP4235359A3 (en) * 2016-03-28 2023-09-27 Microsoft Technology Licensing, LLC Black body radiation in a computing device
CN106196647A (en) * 2016-08-29 2016-12-07 天津大学 A kind of economic benefits and social benefits solar thermal collector utilizing heat pipe
CN107091533A (en) * 2017-03-15 2017-08-25 浙江神德新能源有限公司 A kind of novel heat collecting pipe group
CN107084540A (en) * 2017-05-10 2017-08-22 安徽建筑大学 Multi-functional hot pipe type solar heat collector
CN107830570A (en) * 2017-11-30 2018-03-23 海宁奇瑞特光电有限公司 Improved solar heating device
CN110686415A (en) * 2019-10-26 2020-01-14 北京工业大学 A vacuum tube-micro heat pipe array solar heat collection-heat storage integrated device using compound parabolic concentrator
CN110701799A (en) * 2019-10-26 2020-01-17 北京工业大学 A vacuum tube solar collector-heat storage integrated device based on lap-joint micro heat pipe array
CN111412664A (en) * 2020-03-27 2020-07-14 汪洋 A kind of manufacturing method of solar water heater
CN112283955A (en) * 2020-10-30 2021-01-29 兰州交通大学 Wing box micro-grooved heat pipe heat collector plate, louver flat plate solar collector and its application

Similar Documents

Publication Publication Date Title
US20130167834A1 (en) Multi-section heat-pipe solar collector
JP6397163B2 (en) High efficiency heat dissipation device, solar panel and cogeneration system in solar power generation
CN108847511A (en) A kind of integrated heat exchange structure based on battery modules
JP2011181882A5 (en)
CN106839463A (en) Flat-plate type micro heat pipe array type solar air heat-collecting, accumulation of heat integrated apparatus
CN102128552B (en) Single-sided wavy plate pulsating heat pipe
CN105450173B (en) A kind of heat pipe-type condensation photovoltaic cools down heat collector
CN202142519U (en) Thin thermal plate structure
CN205249143U (en) Heat pipe formula spotlight photovoltaic cooling heating device
CN202382462U (en) Flat plate solar collector and heat-absorbing plate core thereof
CN102097515A (en) Heat pipe radiating system for concentrating photovoltaic
JP3174464U (en) Multistage heat pipe type solar energy collector
CN108469193B (en) Novel gravity heat pipe module and high-efficiency heat exchanger designed by same
CN202328844U (en) Multi-section heat pipe type solar heat collector
CN215832064U (en) Heat dissipation device for electric control element and air conditioner outdoor unit
CN212538920U (en) A heat dissipation device with a microchannel heat exchanger combined with a heat pipe
CN204240825U (en) The finned surface cooler of a kind of multiloop
CN108377632A (en) Air conditioner electrical apparatus box and air conditioner
CN203148066U (en) Novel micro heat pipe array flat-plate water-free solar collector and novel micro heat pipe array water heater
TWI528003B (en) Multi-section type solar collector
CN106907868A (en) A kind of solar attachment and heat dump
CN203744369U (en) Novel heat pipe warmer
DK2585770T3 (en) Solar absorber, solabsorberindretning and solar collector
CN201652598U (en) Vacuum superconducting radiator
WO2009075611A3 (en) Heating panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: KUNSHAN JUE-CHUNG ELECTRONICS CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUO, DAH-CHYI;WANG, XUE-HAI;LONG, LING;REEL/FRAME:027455/0865

Effective date: 20111219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载