US20130160865A1 - Chemical delivery system - Google Patents
Chemical delivery system Download PDFInfo
- Publication number
- US20130160865A1 US20130160865A1 US13/690,498 US201213690498A US2013160865A1 US 20130160865 A1 US20130160865 A1 US 20130160865A1 US 201213690498 A US201213690498 A US 201213690498A US 2013160865 A1 US2013160865 A1 US 2013160865A1
- Authority
- US
- United States
- Prior art keywords
- eductor
- fluid flow
- bulk fluid
- valve
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/10—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
- F16K11/20—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
- F16K11/22—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K27/00—Construction of housing; Use of materials therefor
- F16K27/003—Housing formed from a plurality of the same valve elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L37/00—Couplings of the quick-acting type
- F16L37/08—Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members
- F16L37/12—Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members using hooks, pawls, or other movable or insertable locking members
- F16L37/14—Joints secured by inserting between mating surfaces an element, e.g. a piece of wire, a pin, a chain
- F16L37/142—Joints secured by inserting between mating surfaces an element, e.g. a piece of wire, a pin, a chain where the securing element is inserted tangentially
- F16L37/144—Joints secured by inserting between mating surfaces an element, e.g. a piece of wire, a pin, a chain where the securing element is inserted tangentially the securing element being U-shaped
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L39/00—Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L41/00—Branching pipes; Joining pipes to walls
- F16L41/02—Branch units, e.g. made in one piece, welded, riveted
- F16L41/03—Branch units, e.g. made in one piece, welded, riveted comprising junction pieces for four or more pipe members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0324—With control of flow by a condition or characteristic of a fluid
- Y10T137/0329—Mixing of plural fluids of diverse characteristics or conditions
- Y10T137/0352—Controlled by pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0402—Cleaning, repairing, or assembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0402—Cleaning, repairing, or assembling
- Y10T137/0441—Repairing, securing, replacing, or servicing pipe joint, valve, or tank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0402—Cleaning, repairing, or assembling
- Y10T137/0491—Valve or valve element assembling, disassembling, or replacing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/598—With repair, tapping, assembly, or disassembly means
- Y10T137/6007—Assembling or disassembling multi way valve
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87249—Multiple inlet with multiple outlet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87571—Multiple inlet with single outlet
- Y10T137/87587—Combining by aspiration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87571—Multiple inlet with single outlet
- Y10T137/87587—Combining by aspiration
- Y10T137/87619—With selectively operated flow control means in inlet
- Y10T137/87627—Flow control means is located in aspirated fluid inlet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/877—With flow control means for branched passages
- Y10T137/87877—Single inlet with multiple distinctly valved outlets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/877—With flow control means for branched passages
- Y10T137/87885—Sectional block structure
Definitions
- the present invention relates generally to chemical dispensing systems. More specifically, the present invention is directed to a dispensing system having a common, expandable manifold that supplies a bulk fluid to a plurality of chemical eductors attached to the manifold.
- Water is often used as a bulk fluid to transport various chemicals which are intended to be used in a dilution ratio. Since it is often inconvenient or expensive to transport and store chemical solutions at their intended working concentrations, various methods have been devolved to mix concentrated chemicals into a flow stream of other fluids. Metering pumps, batch tanks, spraying of concentrated chemicals are all typical methods currently in use today. Feeding chemicals by using a venturi is also very common.
- a particular orifice is chosen to create a low-pressure region.
- a port is adapted to allow another feed of fluid to be drawn into the main flow stream. It is under this low pressure that concentrated chemicals can be metered in using a partial vacuum.
- these venturi-based chemical delivery systems are simple, reliable and work very well.
- NPT National Pipe Thread Tapered Thread
- Pipe threads are commonly understood to be a permanent method of connecting pipe sections and fittings. While it is possible to remove a pipe thread joint and reassemble it, it generally requires tools and significant maintenance time. Depending upon the fluids and operational environments, oftentimes the mating threads will deteriorate with use. Also, pipe thread connections can be prone to leaking unless large forces are used to tighten and eliminate any gaps. In many instances, connection sealants such as Teflon tape can be used to seal pipe thread connections but this method can facilitate very high hoop-stresses in the pipe fittings, which can result in splitting within the metal or plastic fittings during assembly or alternatively, lead to fatigue cracking over time.
- connection sealants such as Teflon tape can be used to seal pipe thread connections but this method can facilitate very high hoop-stresses in the pipe fittings, which can result in splitting within the metal or plastic fittings during assembly or alternatively, lead to fatigue cracking over time.
- Teflon is a very friction-free material and will allow much higher hoop-stress to be attained relative to torque. Also, Teflon tape builds thickness and can add to the effective diameter leading to additional hoop-stress. Finally, the use of Teflon tape or can result in fouling of precision orifices, valves and other critical components by the release of small shards of debris. While other conventional thread sealants may overcome many of the disadvantages of using Teflon tape with pipe threads, these pastes and liquids can be messy and tend to harden over time which can make joint disassembly almost impossible.
- a representative expandable chemical delivery system allows for individual chemical eductors to be operably connected to a fluid manifold without requiring any threading of the eductor and without disassembly of any other eductor currently, operably connected to the fluid manifold.
- This allows the down stream piping and plumbing to be installed to the eductor prior to placing the inlet connection into the manifold. Replacement in the field is simplified considerably.
- This new architecture is easier to remove and install by just removing locking and/or shear pins.
- a shared manifold body can provide integrity to the connection architecture of representative expandable chemical delivery systems so as to allow for operation in excess of 1000 psi.
- Each eductor member can be individually operated by selectively actuating a corresponding valve assembly. In this manner, the plurality of individual eductor members can be supplied via a single common bulk fluid stream at the direction of multiple valve assemblies.
- representative embodiments of expandable chemical delivery systems can utilize a manifold body having easy push-to-connect/lockable interfaces for its replaceable components allowing the manifold body to be selectively configured without disassembling existing connections including associated upstream or downstream piping or tubing connections.
- an expandable chemical delivery system can be used in vehicle washing applications or in other suitable fluid handling applications wherein a plurality of eductors are used to introduce different chemicals or liquids using a shared bulk fluid.
- the manifold body has a common bulk fluid inlet that feeds all educators attached to the manifold.
- expandable chemical delivery systems provide for a compact manifold system that avoids the use of excess space.
- the expandable chemical delivery system allows for easy configuration, installation, maintenance and repair without requiring additional clearance or work space for disassembly and the use of tools.
- an expandable chemical delivery system can have a smaller manifold footprint by providing for a plurality of selectively operable chemical eductors that are placed in close proximity to one another.
- a manifold footprint By the use of quick-connect fittings to couple the chemical eductors to a manifold body, the rotation and disassembly space needed with conventional distribution manifolds is avoided.
- connections can be made to the manifold body by pushing the component into an eductor port on the manifold body without any rotation of the eductor member. Once the eductor member is operably connected to the eductor port, the eductor member can be rotated to allow for physical adjustment of eductor orientation without compromising the seal or joint integrity.
- connections can include a locking member such as, for example, a spring/loaded clip or shear pin, that prevents disassembly of the quick-connect connection without the express intent and physical intervention of the operator who must generally release the locking feature in order to disconnect the component.
- a locking member such as, for example, a spring/loaded clip or shear pin, that prevents disassembly of the quick-connect connection without the express intent and physical intervention of the operator who must generally release the locking feature in order to disconnect the component.
- an expandable chemical delivery system can comprise a plurality of individual manifold bodies that are coupled together with a coupling system so as to define a common bulk fluid flow path having a shared bulk fluid inlet.
- Each manifold body can further include a valve assembly and eductor assembly such that administration of a chemical through a particular eductor assembly is controlled through actuation of the corresponding valve assembly.
- a high-pressure expandable chemical delivery system can comprise a common manifold body with a plurality of eductor members and a plurality of valve assemblies.
- the common manifold body can include a single bulk fluid inlet supplying a bulk fluid conduit and a plurality of eductor conduits in fluid communication with the bulk fluid conduit.
- Each eductor conduit is fluidly connected to a valve port such that actuation of selected valve assemblies allows the bulk fluid to flow through the selected eductor conduit and to the selected eductor member.
- Representative embodiments of the common manifold body can assume a radial or linear orientation and in some instance, are operable at pressures up to 1000 psig.
- FIG. 1 is a perspective view of a representative embodiment of an expandable chemical delivery system according to the present invention.
- FIG. 2 is a rear view of the expandable chemical delivery system of FIG. 1 .
- FIG. 3 is a front view of the expandable chemical delivery system of FIG. 1 .
- FIG. 4 is an end view of the expandable chemical delivery system of FIG. 1 .
- FIG. 5 is a section view of a representative embodiment of an eductor assembly according to the present invention.
- FIG. 6 is a perspective view of a representative embodiment of a manifold body according to the present invention.
- FIG. 7 is a perspective view of the manifold body of FIG. 6 .
- FIG. 8 is a perspective view of the manifold body of FIG. 6 .
- FIG. 9 is a perspective view of the manifold body of FIG. 6 .
- FIG. 10 is a perspective, partial section view of the manifold body of FIG. 6 .
- FIG. 11 is a perspective view of the manifold body of FIG. 6 prior to attachment to a representative embodiment of a valve assembly according to the present invention.
- FIG. 12 is a perspective view of the coupled manifold body of FIG. 6 with the valve assembly of FIG. 11 .
- FIG. 13 is an exploded perspective view of the valve assembly.
- FIG. 14 is a perspective view of a representative embodiment of an eductor member according to the present invention.
- FIG. 15 is a perspective view of the manifold body of FIG. 6 prior to attachment to the eductor member of FIG. 14 .
- FIG. 16 is a perspective view of the coupled manifold body of FIG. 6 with the eductor member of FIG. 14 .
- FIG. 17 is a perspective view of the eductor member of FIG. 14 .
- FIG. 18 is a perspective view of a first and second eductor assembly prior to being approximated to form the expandable chemical delivery system.
- FIG. 19 is a perspective view of the first and second eductor assembly arranged in approximated relation.
- FIG. 20 is a perspective view of four eductor assemblies arranged in approximated relation.
- FIG. 21 is a perspective, partial section view of the expandable chemical delivery system of FIG. 1 taken at line 21 - 21 of FIG. 4 .
- FIG. 22 is a front, perspective view of a representative embodiment of a high-pressure expandable chemical delivery system utilizing a rotary manifold body according to the present invention.
- FIG. 23 is a rear, perspective view of the high-pressure expandable chemical delivery system of FIG. 22 .
- FIG. 24 is a section view of the high pressure expandable chemical delivery system of FIG. 22 .
- FIG. 25 is a front, perspective view of a representative embodiment of a high-pressure expandable chemical delivery system utilizing a linear manifold body according to the present invention.
- FIG. 26 is a front, perspective view of the high-pressure expandable chemical delivery system of FIG. 25 .
- FIG. 27 is an exploded, perspective view of the high-pressure expandable chemical delivery system of FIG. 25 .
- a representative expandable chemical delivery system 100 generally comprises a plurality of eductor assemblies 102 .
- the plurality of eductor assemblies 102 are mechanically and fluidly interconnected such that expandable chemical delivery system 100 is capable of being positioned and mounted as an integral unit.
- expandable chemical delivery system 100 can comprise four eductor assemblies 102 though it will be understood that expandable chemical delivery system 100 generally includes at least two eductor assemblies 102 .
- each eductor assembly 102 generally comprises a manifold body 104 , a valve assembly 106 and an eductor member 108 .
- Manifold body 104 is illustrated generally in FIGS. 6 , 7 , 8 and 9 .
- Manifold body 104 generally comprises a unitary molded body 110 having a substantially flat mounting surface 111 with two or more mounting holes 112 .
- Manifold body 104 is preferably fabricated of a suitable polymeric material that combines the qualities of strength and chemical resistance such as, for example, acetal, nylon, polyphenyl sulfide and the like.
- Manifold body 104 includes a bulk fluid inlet 114 and an axially aligned bulk fluid outlet 116 that are fluidly interconnected with a bulk fluid flow path 118 .
- Bulk fluid inlet 114 and bulk fluid outlet 116 have substantially similar configurations and generally include a mounting face 120 and a sealing groove 122 .
- Manifold body 104 further comprises an eductor port 124 and an axially aligned valve port 126 that are fluidly interconnected by a dispensing fluid flow path 128 .
- Bulk fluid flow path 118 and dispensing fluid flow path 128 are generally arranged transversely to one another and have substantially large enough diameters such that the bulk fluid flow path 118 and dispensing fluid flow path 128 are fluidly interconnected even though their respective flow axis reside on different planes within the manifold body 104 .
- Eductor port 124 generally includes a pair of upper locking apertures 130 and a pair of lower locking apertures 132 .
- a pair of locking grooves 134 reside between corresponding upper locking apertures 130 and lower locking apertures 132 such that a pair of continuous locking bores 135 connect corresponding upper locking apertures 130 and lower locking apertures 132 as shown in FIG. 10 .
- a locking member 136 having a pair of insertion legs 138 is configured such that each leg 138 is simultaneously slidably insertable into corresponding upper locking aperture 130 and lower locking aperture 132 with a portion of legs 138 residing within locking groove 134 .
- Valve port 126 generally includes a valve mounting face 140 and an internal port thread 142 .
- valve assembly 106 typically comprises an actuator portion 150 and a valve portion 152 .
- Valve assembly 106 generally comprises any of a variety of suitable valve constructions including, for example, a cartridge-style valve having a solenoid, armature and a valve seat.
- valve assembly 106 comprises a solenoid valve assembly.
- Actuator portion 150 generally includes an electrical connector 154 and an enclosed electrical coil.
- Valve portion 152 includes a valve seat 156 , a valve plunger 158 , a friction ring 160 , a piston 162 , a spring 164 and a valve stem 166 .
- a valve cap 168 generally comprises a cover member 170 that is positionable over the valve seat 156 to maintain the positioning of the components making up the valve portion 152 as the valve assembly 106 is attached to the manifold body 104 .
- Cover member 170 generally comprises an internal cap thread 172 that is threadably engaged to a valve seat thread 174 as well as an external cap thread 176 that is configured to engage internal port thread 142 on the manifold body 104 .
- Valve plunger 158 includes a projecting portion 178 and an oversized portion 180 defining a sealing flange 182 . Sealing flange 182 is configured to selectively, sealingly engage a dispensing surface 184 within the valve seat 156 .
- Valve seat 156 includes a plurality of valve inlets 186 that allow the bulk fluid from the bulk fluid flow path 118 into the dispensing fluid flow path 128 .
- eductor member 108 generally comprises a molded body 190 having a dispensing inlet 192 , a dispensing outlet 194 and a chemical inlet 196 .
- eductor member 108 can comprise an eductor assembly as disclosed and taught in United States Patent Publication No. 2006/0157131A1, which is hereby incorporated by reference.
- Eductor member 108 is generally sized and selected by a user based upon its capacity to deliver a specified amount of chemical into the bulk fluid for dispensing out the dispensing outlet 194 .
- Dispensing inlet 192 is generally sized for slidable insertion within eductor port 124 and includes a tapered leading edge 198 , a radial sealing groove 200 and a radial locking groove 202 .
- Dispensing outlet 194 generally includes an outlet thread 204 that is configured for connection to a conventional tube fitting for delivering fluid to a point of use. Alternatively, dispensing outlet 194 could further comprise connection orientations such as, for example, a hose barb, a Joint Industry Council (JIC) fitting or a quick-release configuration similar to that employed on dispensing inlet 192 .
- Chemical inlet 196 includes a barbed fitting 206 that is configured for attachment to conventional chemical supply tubing.
- the bulk fluid enters through the dispensing inlet 192 and passes through a spray nozzle 208 entering a mixing zone 210 immediately thereafter. After the bulk fluid exits the spray nozzle 208 , the bulk fluid enters the mixing zone 210 wherein educted chemical and bulk fluid combine and are then conducted out of the eductor member 108 through a divergent zone 212 downstream of the mixing zone 210 .
- Educted chemical is fed to an eductor leg inlet passageway 214 which is comprised of an injection housing 216 , a retention sleeve 218 , a spring 220 , a check ball 222 , and a check valve o-ring 224 .
- bulk fluid typically water
- each eductor assembly 102 is assembled by sealingly attaching the valve assembly 106 and eductor member 108 to the manifold body 104 .
- valve assembly 106 is attached to the valve port 126 by threadably coupling the external cap thread 176 to the internal port thread 142 .
- locking member 136 is slidably inserted into the upper locking apertures 130 such that each insertion leg 138 resides within the corresponding continuous locking bore 135 .
- Dispensing inlet 192 is slidingly inserted into the eductor port 124 such that tapered leading edge 198 advances past the insertion legs 138 residing within locking grooves 134 such that the insertion legs 138 are captured within the radial locking groove 202 .
- An o-ring placed within radial sealing groove 200 seals against an interior perimeter surface of the eductor port 124 .
- the radial sealing mechanism allows the molded body 190 and especially the chemical inlet 196 to be rotatably positioned so as to facilitate easy attachment of the chemical supply tubing to the barbed fitting 206 without interfering with attachment of chemical supply tubing to an adjacent eductor assembly 102 .
- any number of eductor assemblies 102 can be arranged as shown in FIGS. 18 and 19 so as to form expandable chemical delivery system 100 .
- a pair of eductor assemblies 102 are arranged such that the bulk fluid inlet 114 of the first eductor assembly 102 is aligned with the bulk fluid outlet 116 of the second eductor assembly 102 .
- an o-ring is captured within the approximated sealing grooves 122 as the mounting faces 120 come into contact.
- the bulk fluid flow paths 118 of the first and second eductor assemblies 102 are aligned so as to define a common bulk fluid flow path 118 .
- additional eductor assemblies 102 can be arranged and approximated such as, for example, the four eductor assemblies 102 shown in FIG. 20 .
- Coupling assembly 230 generally comprises a coupling tube 232 and a pair of coupling nuts 234 .
- Coupling tube 232 has a diameter smaller than the bulk fluid flow path 118 and includes a first end 236 and a second end 238 .
- a plurality of inlet wall apertures 240 are arranged proximate the first end 236 and a plurality of outlet wall apertures 242 are located proximate the closed end 238 .
- wall apertures can be positioned anywhere along the coupling tube 230 between first end 236 and second end 238 .
- Each end of coupling tube 232 includes an external tube thread 244 and an internal tube thread 245 .
- the coupling tube 232 is inserted through the common bulk fluid flow path 118 defined by the adjacently positioned eductor assemblies 102 such that the external tube thread 244 on the second end 238 extends from the single exposed bulk fluid outlet 116 and the external tube thread 244 on the first end 236 extends from the bulk fluid inlet 114 .
- the coupling nuts 234 are positioned over the first end 236 and second end 238 respectively and tightened over external tube threads 244 .
- the eductor assemblies 102 are forcibly tightened against one another so as to form a sealed and now integral expandable chemical delivery system 100 .
- a bulk fluid supply can be connected at the first end 236 while the internal tube thread 245 at the second end 238 can be used to connect a plumbing connector to an additional chemical delivery system 100 or alternatively, for receiving a conventional threaded plug 248 to close the second end 238 .
- coupling tube 232 is chosen to have a selected tube length 246 corresponding to the number of eductor assemblies 102 .
- the chemical dispensing capacity of expandable chemical delivery system 100 can be selectively increased or decreased by adding/removing eductor assemblies 102 and selecting coupling tube 232 with the corresponding tube length 246 .
- expandable chemical delivery system 100 is assembled based on the number of eductor assemblies 102 necessary to deliver the desired chemicals.
- expandable delivery system 100 can be utilized in an automated car wash using a detergent, a spot-free rinse agent and a liquid wax such that three eductor assemblies 102 are required.
- a control system such as, for example, a microprocessor, Programmable Logic Controller or other known control system actuates the selected valve assembly 106 so as to allow the bulk fluid to flow from bulk fluid inlet 114 , into the coupling tube 232 and out inlet wall apertures 240 and outlet wall apertures 242 such that the bulk fluid enters the bulk fluid flow path 118 .
- valve assemblies 106 can be actuated causing valve plunger 158 to be withdrawn such that sealing flange 182 disengages from the dispensing surface 184 such that the bulk fluid enters the dispensing fluid flow path 128 through the valve inlets 186 .
- valve plunger 158 is withdrawn such that sealing flange 182 disengages from the dispensing surface 184 such that the bulk fluid enters the dispensing fluid flow path 128 through the valve inlets 186 .
- the bulk fluid is directed through the eductor member 108 and out the dispensing outlet 194 with the desired chemical introduced through chemical inlet 196 .
- one or more of the valve assemblies 106 can be simultaneously actuated such that introduction of the bulk fluid through the single bulk fluid inlet 114 allows a plurality of distinct mixed chemical streams to be delivered simultaneously through a plurality of dispensing outlets 194 .
- an alternative embodiment of a high-pressure expandable chemical delivery system 300 performs similarly to expandable chemical delivery system 100 but utilizes a single rotary manifold block 302 with a plurality of valve assemblies 304 , eductor assemblies 306 and a mounting bracket 307 .
- Rotary manifold block 302 includes a single bulk fluid inlet 308 providing bulk fluid to a bulk fluid flow conduit 310 within the rotary manifold block 302 .
- Fluidly interconnected to the bulk fluid flow conduit 310 is a plurality of individual eductor flow conduits 312 that are fluidly connected to an eductor mounting port 314 .
- Each eductor flow conduit 312 is intersected by a valve bore 316 arranged generally transversely to its corresponding eductor flow conduit 312 .
- Each valve bore 316 includes a valve mounting port 318 .
- manifold body 302 can be fabricated to accommodate any number of valve assemblies 304 and eductor assemblies 306 for example, four or six valve and eductor assemblies in a variety of physical arrangements.
- Manifold body 302 can be fabricated of suitable materials including for example, aluminum, stainless steel, titanium and the like and can include resistant coating on wetted parts to improve chemical compatibility and corrosion resistance.
- a high pressure expandable chemical delivery system 400 can comprise a linear manifold block 402 with valve assemblies 106 and eductor members 108 .
- valve assembly 304 can substantially resemble valve assembly 106 such that valve assembly 304 is threadably mountable to the valve mounting port 316 in a manner similar to that of valve assembly 102 and valve port 126 .
- valve assembly 304 can comprise an actuator portion 320 and a valve portion 322 wherein the valve portion 322 includes a valve plunger 324 that is generally configured to slidably engage (closing) or disengage (opening) the eductor flow conduit 310 through the valve bore 314 .
- a user can selectively allow bulk fluid to flow through the educator flow conduit 310 by directing the actuator portion 320 to withdraw the valve plunger 324 from the eductor flow conduit 310 .
- Each eductor assembly 306 can substantially resemble eductor member 108 and can mount to eductor mounting port 312 in a manner similar to eductor member 108 and eductor port 124 .
- Each eductor port 312 includes a pair of locking apertures 330 and corresponding locking groves 332 located within the eductor port 312 to define a pair of continuous locking bores 334 .
- Locking member 136 is again utilized to attach each eductor assembly 306 to its eductor mounting port 312 by simultaneously sliding the insertion legs 138 into the continuous locking bores 334 .
- the eductor assembly 306 can be slidably inserted and captured within the eductor mounting port 312 in a similar manner as previously described with respect to the eductor member 108 and eductor port 124 .
- expandable chemical delivery system 100 and high-pressure expandable chemical delivery system 300 With the current design of expandable chemical delivery system 100 and high-pressure expandable chemical delivery system 300 , no disconnection of bulk fluid supply piping is necessary to accomplish replacement or perform maintenance on individual eductor assemblies or valve assemblies.
- the mounting arrangement of the educator assembly to the manifold body for both expandable chemical delivery system 100 and high-pressure expandable chemical delivery system 300 allow an operator to rotatably manipulate the orientation and position of the eductor assembly, and more specifically, the chemical inlet based upon available space, access and ease of connection to chemical supply piping/tubing.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Jet Pumps And Other Pumps (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Abstract
An expandable chemical delivery system sharing a common bulk fluid inlet and bulk fluid flow path to direct a bulk fluid through one or more selected chemical eductors. Each chemical eductor is slidably insertable into an eductor port on the manifold body such that rotation of the chemical eductor is not required for installation. After installation, the orientation of the chemical eductor can be rotatably adjusted so as to avoid interference with adjacent chemical eductors. Delivery of a bulk fluid to each chemical eductor is controlled via a corresponding valve assembly that selectively allows or blocks flow of the bulk fluid from the bulk fluid flow path to the corresponding chemical eductor. The manifold body can include a plurality of individual manifold bodies approximated with a coupling system to define the bulk fluid flow path. Alternatively, the manifold body can comprise a single fabricated body for high pressure operation.
Description
- This application is a continuation of application Ser. No. 12/246,317 filed Oct. 6, 2008, which claims the benefit of U.S. Provisional Application No. 60/998,021 filed Oct. 5, 2007, each of which is hereby fully incorporated herein by reference.
- The present invention relates generally to chemical dispensing systems. More specifically, the present invention is directed to a dispensing system having a common, expandable manifold that supplies a bulk fluid to a plurality of chemical eductors attached to the manifold.
- Water is often used as a bulk fluid to transport various chemicals which are intended to be used in a dilution ratio. Since it is often inconvenient or expensive to transport and store chemical solutions at their intended working concentrations, various methods have been devolved to mix concentrated chemicals into a flow stream of other fluids. Metering pumps, batch tanks, spraying of concentrated chemicals are all typical methods currently in use today. Feeding chemicals by using a venturi is also very common.
- In this chemical dilution, mixing and delivery method, a particular orifice is chosen to create a low-pressure region. In this low-pressure region, a port is adapted to allow another feed of fluid to be drawn into the main flow stream. It is under this low pressure that concentrated chemicals can be metered in using a partial vacuum. As long as there is a suitable difference in the inlet and outlet pressures, these venturi-based chemical delivery systems are simple, reliable and work very well.
- Currently in the marketplace, similar eductors/injectors are hard plumbed or directly threaded into manifold blocks using traditional National Pipe Thread Tapered Thread (NPT) threads. This can be difficult to deal with in the field when additional plumbing or piping is attached or the injector arrangement is reconfigured. Typical eductors have an operational life of 1-3 years at which point they typically need to be replaced.
- Pipe threads are commonly understood to be a permanent method of connecting pipe sections and fittings. While it is possible to remove a pipe thread joint and reassemble it, it generally requires tools and significant maintenance time. Depending upon the fluids and operational environments, oftentimes the mating threads will deteriorate with use. Also, pipe thread connections can be prone to leaking unless large forces are used to tighten and eliminate any gaps. In many instances, connection sealants such as Teflon tape can be used to seal pipe thread connections but this method can facilitate very high hoop-stresses in the pipe fittings, which can result in splitting within the metal or plastic fittings during assembly or alternatively, lead to fatigue cracking over time. The reason this is common is that Teflon is a very friction-free material and will allow much higher hoop-stress to be attained relative to torque. Also, Teflon tape builds thickness and can add to the effective diameter leading to additional hoop-stress. Finally, the use of Teflon tape or can result in fouling of precision orifices, valves and other critical components by the release of small shards of debris. While other conventional thread sealants may overcome many of the disadvantages of using Teflon tape with pipe threads, these pastes and liquids can be messy and tend to harden over time which can make joint disassembly almost impossible.
- While the aforementioned difficulties of conventional pipe and tubing connections can lead to increased expense in maintaining conventional piping arrangements, these difficulties are even more pronounced within chemical injection systems that utilize a manifold to inject a plurality of distinct chemicals into a fluid stream.
- In order to address the limitations described above, a representative expandable chemical delivery system allows for individual chemical eductors to be operably connected to a fluid manifold without requiring any threading of the eductor and without disassembly of any other eductor currently, operably connected to the fluid manifold. This allows the down stream piping and plumbing to be installed to the eductor prior to placing the inlet connection into the manifold. Replacement in the field is simplified considerably. This new architecture is easier to remove and install by just removing locking and/or shear pins. In some embodiments, a shared manifold body can provide integrity to the connection architecture of representative expandable chemical delivery systems so as to allow for operation in excess of 1000 psi.
- Each eductor member can be individually operated by selectively actuating a corresponding valve assembly. In this manner, the plurality of individual eductor members can be supplied via a single common bulk fluid stream at the direction of multiple valve assemblies. In addition, representative embodiments of expandable chemical delivery systems can utilize a manifold body having easy push-to-connect/lockable interfaces for its replaceable components allowing the manifold body to be selectively configured without disassembling existing connections including associated upstream or downstream piping or tubing connections. In one representative embodiment, an expandable chemical delivery system can be used in vehicle washing applications or in other suitable fluid handling applications wherein a plurality of eductors are used to introduce different chemicals or liquids using a shared bulk fluid. The manifold body has a common bulk fluid inlet that feeds all educators attached to the manifold.
- In one aspect of the present disclosure, expandable chemical delivery systems provide for a compact manifold system that avoids the use of excess space. Through the use of quick-connect type fittings, the expandable chemical delivery system allows for easy configuration, installation, maintenance and repair without requiring additional clearance or work space for disassembly and the use of tools.
- In another aspect of the disclosure, an expandable chemical delivery system can have a smaller manifold footprint by providing for a plurality of selectively operable chemical eductors that are placed in close proximity to one another. Through the use of quick-connect fittings to couple the chemical eductors to a manifold body, the rotation and disassembly space needed with conventional distribution manifolds is avoided. Generally, connections can be made to the manifold body by pushing the component into an eductor port on the manifold body without any rotation of the eductor member. Once the eductor member is operably connected to the eductor port, the eductor member can be rotated to allow for physical adjustment of eductor orientation without compromising the seal or joint integrity. In addition, the connections can include a locking member such as, for example, a spring/loaded clip or shear pin, that prevents disassembly of the quick-connect connection without the express intent and physical intervention of the operator who must generally release the locking feature in order to disconnect the component.
- In another aspect of the disclosure, an expandable chemical delivery system can comprise a plurality of individual manifold bodies that are coupled together with a coupling system so as to define a common bulk fluid flow path having a shared bulk fluid inlet. Each manifold body can further include a valve assembly and eductor assembly such that administration of a chemical through a particular eductor assembly is controlled through actuation of the corresponding valve assembly. By defining a common bulk fluid flow path, overall size of the expandable chemical delivery system is reduced and plumbing/tubing connections are reduced.
- In another aspect of the disclosure, a high-pressure expandable chemical delivery system can comprise a common manifold body with a plurality of eductor members and a plurality of valve assemblies. The common manifold body can include a single bulk fluid inlet supplying a bulk fluid conduit and a plurality of eductor conduits in fluid communication with the bulk fluid conduit. Each eductor conduit is fluidly connected to a valve port such that actuation of selected valve assemblies allows the bulk fluid to flow through the selected eductor conduit and to the selected eductor member. Representative embodiments of the common manifold body can assume a radial or linear orientation and in some instance, are operable at pressures up to 1000 psig.
- The above summary of the invention is not intended to describe each illustrated embodiment or every implementation of the present invention. The figures and the detailed description that follow more particularly exemplify these embodiments.
- These as well as other objects and advantages of the disclosure, will be more completely understood and appreciated by referring to the following more detailed description of representative embodiments of the invention in conjunction with the accompanying drawings of which:
-
FIG. 1 is a perspective view of a representative embodiment of an expandable chemical delivery system according to the present invention. -
FIG. 2 is a rear view of the expandable chemical delivery system ofFIG. 1 . -
FIG. 3 is a front view of the expandable chemical delivery system ofFIG. 1 . -
FIG. 4 is an end view of the expandable chemical delivery system ofFIG. 1 . -
FIG. 5 is a section view of a representative embodiment of an eductor assembly according to the present invention. -
FIG. 6 is a perspective view of a representative embodiment of a manifold body according to the present invention. -
FIG. 7 is a perspective view of the manifold body ofFIG. 6 . -
FIG. 8 is a perspective view of the manifold body ofFIG. 6 . -
FIG. 9 is a perspective view of the manifold body ofFIG. 6 . -
FIG. 10 is a perspective, partial section view of the manifold body ofFIG. 6 . -
FIG. 11 is a perspective view of the manifold body ofFIG. 6 prior to attachment to a representative embodiment of a valve assembly according to the present invention. -
FIG. 12 is a perspective view of the coupled manifold body ofFIG. 6 with the valve assembly ofFIG. 11 . -
FIG. 13 is an exploded perspective view of the valve assembly. -
FIG. 14 is a perspective view of a representative embodiment of an eductor member according to the present invention. -
FIG. 15 is a perspective view of the manifold body ofFIG. 6 prior to attachment to the eductor member ofFIG. 14 . -
FIG. 16 is a perspective view of the coupled manifold body ofFIG. 6 with the eductor member ofFIG. 14 . -
FIG. 17 is a perspective view of the eductor member ofFIG. 14 . -
FIG. 18 is a perspective view of a first and second eductor assembly prior to being approximated to form the expandable chemical delivery system. -
FIG. 19 is a perspective view of the first and second eductor assembly arranged in approximated relation. -
FIG. 20 is a perspective view of four eductor assemblies arranged in approximated relation. -
FIG. 21 is a perspective, partial section view of the expandable chemical delivery system ofFIG. 1 taken at line 21-21 ofFIG. 4 . -
FIG. 22 is a front, perspective view of a representative embodiment of a high-pressure expandable chemical delivery system utilizing a rotary manifold body according to the present invention. -
FIG. 23 is a rear, perspective view of the high-pressure expandable chemical delivery system ofFIG. 22 . -
FIG. 24 is a section view of the high pressure expandable chemical delivery system ofFIG. 22 . -
FIG. 25 is a front, perspective view of a representative embodiment of a high-pressure expandable chemical delivery system utilizing a linear manifold body according to the present invention. -
FIG. 26 is a front, perspective view of the high-pressure expandable chemical delivery system ofFIG. 25 . -
FIG. 27 is an exploded, perspective view of the high-pressure expandable chemical delivery system ofFIG. 25 . - Referring now to
FIGS. 1 , 2 and 3, a representative expandablechemical delivery system 100 generally comprises a plurality ofeductor assemblies 102. The plurality ofeductor assemblies 102 are mechanically and fluidly interconnected such that expandablechemical delivery system 100 is capable of being positioned and mounted as an integral unit. As illustrated inFIGS. 1 , 2 and 3, expandablechemical delivery system 100 can comprise foureductor assemblies 102 though it will be understood that expandablechemical delivery system 100 generally includes at least twoeductor assemblies 102. As shown inFIGS. 4 and 5 , eacheductor assembly 102 generally comprises amanifold body 104, avalve assembly 106 and aneductor member 108. -
Manifold body 104 is illustrated generally inFIGS. 6 , 7, 8 and 9.Manifold body 104 generally comprises a unitary moldedbody 110 having a substantially flat mountingsurface 111 with two or more mounting holes 112.Manifold body 104 is preferably fabricated of a suitable polymeric material that combines the qualities of strength and chemical resistance such as, for example, acetal, nylon, polyphenyl sulfide and the like.Manifold body 104 includes abulk fluid inlet 114 and an axially alignedbulk fluid outlet 116 that are fluidly interconnected with a bulkfluid flow path 118.Bulk fluid inlet 114 andbulk fluid outlet 116 have substantially similar configurations and generally include a mountingface 120 and a sealinggroove 122.Manifold body 104 further comprises aneductor port 124 and an axially alignedvalve port 126 that are fluidly interconnected by a dispensingfluid flow path 128. Bulkfluid flow path 118 and dispensingfluid flow path 128 are generally arranged transversely to one another and have substantially large enough diameters such that the bulkfluid flow path 118 and dispensingfluid flow path 128 are fluidly interconnected even though their respective flow axis reside on different planes within themanifold body 104.Eductor port 124 generally includes a pair ofupper locking apertures 130 and a pair oflower locking apertures 132. Within theeductor port 124, a pair of lockinggrooves 134 reside between correspondingupper locking apertures 130 andlower locking apertures 132 such that a pair of continuous locking bores 135 connect correspondingupper locking apertures 130 andlower locking apertures 132 as shown inFIG. 10 . A lockingmember 136 having a pair ofinsertion legs 138 is configured such that eachleg 138 is simultaneously slidably insertable into correspondingupper locking aperture 130 andlower locking aperture 132 with a portion oflegs 138 residing within lockinggroove 134.Valve port 126 generally includes avalve mounting face 140 and aninternal port thread 142. - Referring now to
FIGS. 11 , 12, 13 as well as toFIG. 5 ,valve assembly 106 typically comprises anactuator portion 150 and a valve portion 152.Valve assembly 106 generally comprises any of a variety of suitable valve constructions including, for example, a cartridge-style valve having a solenoid, armature and a valve seat. In a preferred embodiment,valve assembly 106 comprises a solenoid valve assembly.Actuator portion 150 generally includes anelectrical connector 154 and an enclosed electrical coil. Valve portion 152 includes avalve seat 156, avalve plunger 158, afriction ring 160, apiston 162, aspring 164 and avalve stem 166. Avalve cap 168 generally comprises acover member 170 that is positionable over thevalve seat 156 to maintain the positioning of the components making up the valve portion 152 as thevalve assembly 106 is attached to themanifold body 104.Cover member 170 generally comprises an internal cap thread 172 that is threadably engaged to a valve seat thread 174 as well as an external cap thread 176 that is configured to engageinternal port thread 142 on themanifold body 104.Valve plunger 158 includes a projectingportion 178 and anoversized portion 180 defining a sealingflange 182. Sealingflange 182 is configured to selectively, sealingly engage a dispensingsurface 184 within thevalve seat 156.Valve seat 156 includes a plurality ofvalve inlets 186 that allow the bulk fluid from the bulkfluid flow path 118 into the dispensingfluid flow path 128. - As illustrated in
FIGS. 14 , 15, 16 and 17 as well as referring toFIG. 5 ,eductor member 108 generally comprises a moldedbody 190 having a dispensinginlet 192, a dispensingoutlet 194 and achemical inlet 196. In one representative embodiment,eductor member 108 can comprise an eductor assembly as disclosed and taught in United States Patent Publication No. 2006/0157131A1, which is hereby incorporated by reference.Eductor member 108 is generally sized and selected by a user based upon its capacity to deliver a specified amount of chemical into the bulk fluid for dispensing out the dispensingoutlet 194.Dispensing inlet 192 is generally sized for slidable insertion withineductor port 124 and includes a taperedleading edge 198, aradial sealing groove 200 and aradial locking groove 202.Dispensing outlet 194 generally includes anoutlet thread 204 that is configured for connection to a conventional tube fitting for delivering fluid to a point of use. Alternatively, dispensingoutlet 194 could further comprise connection orientations such as, for example, a hose barb, a Joint Industry Council (JIC) fitting or a quick-release configuration similar to that employed on dispensinginlet 192.Chemical inlet 196 includes abarbed fitting 206 that is configured for attachment to conventional chemical supply tubing. Withineductor member 108, the bulk fluid enters through the dispensinginlet 192 and passes through aspray nozzle 208 entering amixing zone 210 immediately thereafter. After the bulk fluid exits thespray nozzle 208, the bulk fluid enters the mixingzone 210 wherein educted chemical and bulk fluid combine and are then conducted out of theeductor member 108 through adivergent zone 212 downstream of the mixingzone 210. Educted chemical is fed to an eductorleg inlet passageway 214 which is comprised of aninjection housing 216, aretention sleeve 218, aspring 220, acheck ball 222, and a check valve o-ring 224. A vacuum created in aventuri 226 contained in the eductor body bulk fluid path educts concentrated chemical through the eductorleg inlet passageway 214. Suction from theventuri 226 overcomes spring force resulting from thespring 220 and allows concentrated chemical to flow past the check-ball 222 and into the mixingzone 210 wherein bulk fluid (typically water) and concentrated chemical are mixed. - Referring again to
FIGS. 4 and 5 , eacheductor assembly 102 is assembled by sealingly attaching thevalve assembly 106 andeductor member 108 to themanifold body 104. Generally,valve assembly 106 is attached to thevalve port 126 by threadably coupling the external cap thread 176 to theinternal port thread 142. To attacheductor member 108 to themanifold body 104, lockingmember 136 is slidably inserted into theupper locking apertures 130 such that eachinsertion leg 138 resides within the corresponding continuous locking bore 135.Dispensing inlet 192 is slidingly inserted into theeductor port 124 such that taperedleading edge 198 advances past theinsertion legs 138 residing within lockinggrooves 134 such that theinsertion legs 138 are captured within theradial locking groove 202. An o-ring placed within radial sealing groove 200 seals against an interior perimeter surface of theeductor port 124. Through the interaction of lockingmember 136 withradial locking groove 202,eductor member 108 can be quickly attached and replaced should theeductor member 108 fail during use. In addition, the radial sealing mechanism allows the moldedbody 190 and especially thechemical inlet 196 to be rotatably positioned so as to facilitate easy attachment of the chemical supply tubing to thebarbed fitting 206 without interfering with attachment of chemical supply tubing to anadjacent eductor assembly 102. - With
eductor assemblies 102 assembled as described, any number ofeductor assemblies 102 can be arranged as shown inFIGS. 18 and 19 so as to form expandablechemical delivery system 100. As shown inFIG. 18 , a pair ofeductor assemblies 102 are arranged such that thebulk fluid inlet 114 of thefirst eductor assembly 102 is aligned with thebulk fluid outlet 116 of thesecond eductor assembly 102. As the alignedbulk fluid inlet 114 andbulk fluid outlet 116 are moved into physical contact, an o-ring is captured within the approximated sealinggrooves 122 as the mounting faces 120 come into contact. In this manner, the bulkfluid flow paths 118 of the first andsecond eductor assemblies 102 are aligned so as to define a common bulkfluid flow path 118. In a similar manner,additional eductor assemblies 102 can be arranged and approximated such as, for example, the foureductor assemblies 102 shown inFIG. 20 . - With the plurality of
eductor assemblies 102 arranged in approximation such as, for example, as shown inFIGS. 19 and 20 , a coupling assembly 230 as shown inFIG. 21 is used to retain theeductor assemblies 102 so as to define the expandablechemical delivery system 100. Coupling assembly 230 generally comprises acoupling tube 232 and a pair of coupling nuts 234. Couplingtube 232 has a diameter smaller than the bulkfluid flow path 118 and includes afirst end 236 and asecond end 238. A plurality ofinlet wall apertures 240 are arranged proximate thefirst end 236 and a plurality ofoutlet wall apertures 242 are located proximate theclosed end 238. Alternatively, wall apertures can be positioned anywhere along the coupling tube 230 betweenfirst end 236 andsecond end 238. Each end ofcoupling tube 232 includes anexternal tube thread 244 and aninternal tube thread 245. Thecoupling tube 232 is inserted through the common bulkfluid flow path 118 defined by the adjacently positionedeductor assemblies 102 such that theexternal tube thread 244 on thesecond end 238 extends from the single exposedbulk fluid outlet 116 and theexternal tube thread 244 on thefirst end 236 extends from thebulk fluid inlet 114. Thecoupling nuts 234 are positioned over thefirst end 236 andsecond end 238 respectively and tightened overexternal tube threads 244. As thecoupling nuts 234 are tightened on thecoupling tube 232, theeductor assemblies 102 are forcibly tightened against one another so as to form a sealed and now integral expandablechemical delivery system 100. Using theinternal tube thread 245, a bulk fluid supply can be connected at thefirst end 236 while theinternal tube thread 245 at thesecond end 238 can be used to connect a plumbing connector to an additionalchemical delivery system 100 or alternatively, for receiving a conventional threadedplug 248 to close thesecond end 238. Depending upon the number of distinct chemicals and thus, the number ofeductor assemblies 102 to be used in forming the expandablechemical delivery system 100,coupling tube 232 is chosen to have a selected tube length 246 corresponding to the number ofeductor assemblies 102. In this manner, the chemical dispensing capacity of expandablechemical delivery system 100 can be selectively increased or decreased by adding/removingeductor assemblies 102 and selectingcoupling tube 232 with the corresponding tube length 246. - In use, expandable
chemical delivery system 100 is assembled based on the number ofeductor assemblies 102 necessary to deliver the desired chemicals. For instance,expandable delivery system 100 can be utilized in an automated car wash using a detergent, a spot-free rinse agent and a liquid wax such that threeeductor assemblies 102 are required. Based upon the cycle to be performed, a control system such as, for example, a microprocessor, Programmable Logic Controller or other known control system actuates the selectedvalve assembly 106 so as to allow the bulk fluid to flow frombulk fluid inlet 114, into thecoupling tube 232 and outinlet wall apertures 240 andoutlet wall apertures 242 such that the bulk fluid enters the bulkfluid flow path 118. With the bulk fluid present within the bulkfluid flow path 118, one or more of thevalve assemblies 106 can be actuated causingvalve plunger 158 to be withdrawn such that sealingflange 182 disengages from the dispensingsurface 184 such that the bulk fluid enters the dispensingfluid flow path 128 through thevalve inlets 186. Once the bulk fluid is flowing within the dispensingfluid flow path 128, the bulk fluid is directed through theeductor member 108 and out the dispensingoutlet 194 with the desired chemical introduced throughchemical inlet 196. Depending upon the process, one or more of thevalve assemblies 106 can be simultaneously actuated such that introduction of the bulk fluid through the singlebulk fluid inlet 114 allows a plurality of distinct mixed chemical streams to be delivered simultaneously through a plurality of dispensingoutlets 194. - Referring now to
FIGS. 22 , 23, 24, an alternative embodiment of a high-pressure expandablechemical delivery system 300 performs similarly to expandablechemical delivery system 100 but utilizes a singlerotary manifold block 302 with a plurality ofvalve assemblies 304,eductor assemblies 306 and a mountingbracket 307.Rotary manifold block 302 includes a singlebulk fluid inlet 308 providing bulk fluid to a bulkfluid flow conduit 310 within therotary manifold block 302. Fluidly interconnected to the bulkfluid flow conduit 310 is a plurality of individualeductor flow conduits 312 that are fluidly connected to aneductor mounting port 314. Eacheductor flow conduit 312 is intersected by avalve bore 316 arranged generally transversely to its correspondingeductor flow conduit 312. Each valve bore 316 includes avalve mounting port 318. It will be understood thatmanifold body 302 can be fabricated to accommodate any number ofvalve assemblies 304 andeductor assemblies 306 for example, four or six valve and eductor assemblies in a variety of physical arrangements.Manifold body 302 can be fabricated of suitable materials including for example, aluminum, stainless steel, titanium and the like and can include resistant coating on wetted parts to improve chemical compatibility and corrosion resistance. In some embodiments, the use of thesingle manifold block 302 allows the high-pressure expandablechemical delivery system 300 to accommodate bulk fluid pressure of up to 1000 psig. In some embodiments as illustrated inFIGS. 25 , 26 and 27, a high pressure expandablechemical delivery system 400 can comprise alinear manifold block 402 withvalve assemblies 106 andeductor members 108. - Each
valve assembly 304 can substantially resemblevalve assembly 106 such thatvalve assembly 304 is threadably mountable to thevalve mounting port 316 in a manner similar to that ofvalve assembly 102 andvalve port 126. Similarly tovalve assembly 106,valve assembly 304 can comprise an actuator portion 320 and a valve portion 322 wherein the valve portion 322 includes a valve plunger 324 that is generally configured to slidably engage (closing) or disengage (opening) theeductor flow conduit 310 through the valve bore 314. Thus, a user can selectively allow bulk fluid to flow through theeducator flow conduit 310 by directing the actuator portion 320 to withdraw the valve plunger 324 from theeductor flow conduit 310. - Each
eductor assembly 306 can substantially resembleeductor member 108 and can mount to eductor mountingport 312 in a manner similar toeductor member 108 andeductor port 124. Eacheductor port 312 includes a pair of locking apertures 330 and corresponding locking groves 332 located within theeductor port 312 to define a pair of continuous locking bores 334. Lockingmember 136 is again utilized to attach eacheductor assembly 306 to itseductor mounting port 312 by simultaneously sliding theinsertion legs 138 into the continuous locking bores 334. With the lockingmember 136 positioned as described, theeductor assembly 306 can be slidably inserted and captured within theeductor mounting port 312 in a similar manner as previously described with respect to theeductor member 108 andeductor port 124. - With the current design of expandable
chemical delivery system 100 and high-pressure expandablechemical delivery system 300, no disconnection of bulk fluid supply piping is necessary to accomplish replacement or perform maintenance on individual eductor assemblies or valve assemblies. In addition, the mounting arrangement of the educator assembly to the manifold body for both expandablechemical delivery system 100 and high-pressure expandablechemical delivery system 300 allow an operator to rotatably manipulate the orientation and position of the eductor assembly, and more specifically, the chemical inlet based upon available space, access and ease of connection to chemical supply piping/tubing. - While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it will be apparent to those of ordinary skill in the art that the invention is not to be limited to the disclosed embodiments. It will be readily apparent to those of ordinary skill in the art that many modifications and equivalent arrangements can be made thereof without departing from the spirit and scope of the present disclosure, such scope to be accorded the broadest interpretation of the appended claims so as to encompass all equivalent structures and products.
Claims (18)
1. A chemical delivery system, comprising:
a manifold block including a bulk fluid inlet connected to a bulk fluid flow conduit, and wherein a plurality of individual fluid flow conduits fluidly intersect the bulk fluid flow conduit, each individual fluid flow conduit being intersected by a valve bore having a valve mounting port and each individual fluid flow conduit having an educator mounting port;
at least one eductor assembly, each eductor assembly being individually attached to one of the educator mounting ports; and
a plurality of valve assemblies, each valve assembly being individually mounted to one of the valve mounting ports so as to selectively control flow of a bulk fluid through the individual fluid flow conduits such that individual eductor assemblies can removed from operation without preventing flow of the bulk fluid through the bulk fluid flow conduit.
2. The chemical delivery system of claim 1 , wherein each eductor assembly attaches to the corresponding eductor mounting port with a quick-connect fitting.
3. The chemical delivery system of claim 1 , wherein a removable locking member retains attachment of the eductor member to the eductor port.
4. The chemical delivery system of claim 3 , wherein each eductor port comprises a pair of continuous locking bores for receiving a pair of locking legs on the removable locking member, the locking legs being retained within opposed sides of a radial locking groove on a dispensing inlet of the eductor member.
5. The chemical delivery system of claim 1 , wherein each eductor assembly includes a chemical inlet and wherein the chemical inlet can be selectively rotatably positioned with respect to the eductor mounting port.
6. The chemical delivery system of claim 1 , wherein the valve assembly includes a valve cap, the valve cap being adapted to physically mount the valve assembly within the valve mounting port while simultaneously retaining internal actuation elements of the valve assembly.
7. The chemical delivery system of claim 1 , comprising a plurality of eductor assemblies.
8. The chemical delivery system of claim 1 , wherein the plurality of individual fluid flow conduits are arranged in linear relation along the manifold block.
9. The chemical delivery system of claim 1 , wherein the plurality of individual fluid flow conduits are arranged in radial relation on the manifold block.
10. A method of educting bulk chemicals, comprising:
fabricating a manifold block having a bulk fluid inlet connected to a bulk fluid flow conduit, and wherein a plurality of individual fluid flow conduits fluidly intersect the bulk fluid flow conduit, each individual fluid flow conduit being intersected by a valve bore having a valve mounting port and each individual fluid flow conduit having an educator mounting port;
attaching at least one eductor assembly to the manifold block, each eductor assembly being individually attached to one of the educator mounting ports; and
mounting a plurality of valve assemblies to the manifold block, each valve assembly being individually mounted to one of the valve mounting ports such that each valve assembly selectively controls flow of a bulk fluid through the corresponding fluid flow conduit.
11. The method of claim 10 , wherein the step of attaching at least one eductor assembly to the manifold block comprises:
attaching a plurality of eductor assemblies to the manifold block.
12. The method of claim 11 , further comprising:
removing one of the individual eductor assemblies from the manifold block without preventing flow of the bulk fluid through the bulk fluid flow conduit.
13. The method of claim 11 , further comprising:
replacing one of the individual eductor assemblies for the manifold block without preventing flow of the bulk fluid through the bulk fluid flow conduit.
14. The method of claim 11 , further comprising:
rotating each eductor assembly such that a chemical inlet on each eductor assembly is selectively positioned with respect to the eductor mounting port.
15. The method of claim 10 , wherein fabricating the manifold block, further comprises:
arranging the individual fluid flow conduits linearly along the bulk fluid flow conduit.
16. The method of claim 10 , wherein fabricating the manifold block, further comprises:
arranging the individual fluid flow conduits radially around the bulk fluid flow conduit.
17. The method of claim 10 , wherein attaching the at least one eductor assembly to the manifold block further comprises:
coupling the at least one eductor assembly to the eductor mounting port with a quick-connect fitting.
18. The method of claim 17 , further comprising:
locking the at least one eductor assembly to the eductor mounting port with a removable locking member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/690,498 US20130160865A1 (en) | 2007-10-05 | 2012-11-30 | Chemical delivery system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99802107P | 2007-10-05 | 2007-10-05 | |
US12/246,317 US8322367B2 (en) | 2007-10-05 | 2008-10-06 | Chemical delivery system |
US13/690,498 US20130160865A1 (en) | 2007-10-05 | 2012-11-30 | Chemical delivery system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/246,317 Continuation US8322367B2 (en) | 2007-10-05 | 2008-10-06 | Chemical delivery system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130160865A1 true US20130160865A1 (en) | 2013-06-27 |
Family
ID=40522256
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/246,317 Active 2031-05-16 US8322367B2 (en) | 2007-10-05 | 2008-10-06 | Chemical delivery system |
US13/690,498 Abandoned US20130160865A1 (en) | 2007-10-05 | 2012-11-30 | Chemical delivery system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/246,317 Active 2031-05-16 US8322367B2 (en) | 2007-10-05 | 2008-10-06 | Chemical delivery system |
Country Status (2)
Country | Link |
---|---|
US (2) | US8322367B2 (en) |
WO (1) | WO2009046433A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3042811A1 (en) | 2015-01-08 | 2016-07-13 | Istobal S.A. | Dosing and distributing modular panel for vehicle washing plants |
US9421559B2 (en) | 2013-02-10 | 2016-08-23 | Hydra-Flex, Inc. | Air driven dispenser for delivery of undiluted chemical |
CN107709861A (en) * | 2015-06-24 | 2018-02-16 | Smc株式会社 | Multi-connection integral type manifold valve |
US20220275876A1 (en) * | 2019-08-28 | 2022-09-01 | Zhejiang Dunan Artificial Environment Co., Ltd. | Valve Body Connection Structure and Valve Assembly with Valve Body Connection Structure |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8887743B2 (en) * | 2009-09-10 | 2014-11-18 | Hydra-Flex, Inc. | Chemical delivery system and platform |
WO2011047088A1 (en) * | 2009-10-13 | 2011-04-21 | Coast Pneumatics, Inc. | Flow controller |
US9421566B2 (en) * | 2009-12-04 | 2016-08-23 | Hydra-Flex, Inc. | Chemical delivery data acquisition system |
US8336573B2 (en) * | 2010-03-10 | 2012-12-25 | Coast Pneumatics, Inc. | Modular manifold with quick disconnect valve fittings |
US8333214B2 (en) * | 2010-03-10 | 2012-12-18 | Coast Pneumatics, Inc. | Modular manifold with quick disconnect valve fittings |
US8327879B2 (en) * | 2010-03-10 | 2012-12-11 | Coast Pneumatics, Inc. | Modular manifold with quick disconnect valve fittings |
US8678237B2 (en) | 2011-04-29 | 2014-03-25 | Hydra-Flex, Inc. | Micro dosing panel system |
US20120279912A1 (en) * | 2011-05-02 | 2012-11-08 | Dubois Chemicals, Inc. | Chemical Mixing System and Method |
US9803783B2 (en) * | 2011-12-26 | 2017-10-31 | Gates Corporation | Hand tightened hydraulic fitting |
US9339773B2 (en) | 2012-01-31 | 2016-05-17 | Hydra-Flex, Inc. | Chemical dispensing apparatus and related methods |
EP2636933B8 (en) * | 2012-03-06 | 2014-08-20 | AFRISO-Euro-Index GmbH | Modular fluid distributor |
JP6003716B2 (en) * | 2012-04-17 | 2016-10-05 | 株式会社デンソー | Channel switching device |
US8939322B2 (en) * | 2012-05-07 | 2015-01-27 | Rodney Laible | Wall mounted dispenser |
ES2443083B1 (en) * | 2012-07-17 | 2014-09-10 | Bnstar Innovations, S. L. | EMPOTRABLE HYDRAULIC CONNECTION ASSEMBLY |
CN105339136B (en) * | 2013-06-27 | 2018-07-10 | 盖茨公司 | For removing the draw-out device for being fixed on the adapter in port |
US10613553B2 (en) * | 2013-07-09 | 2020-04-07 | Deka Products Limited Partnership | Modular valve apparatus and system |
US10786795B2 (en) * | 2013-11-30 | 2020-09-29 | John Boticki | Individualized flow regulation system and method |
DE102014216696A1 (en) * | 2014-08-22 | 2016-02-25 | Zf Friedrichshafen Ag | Valve block for a hydraulic or pneumatic system of a gearbox |
US11357966B2 (en) * | 2015-04-23 | 2022-06-14 | B. Braun Medical Inc. | Compounding device, system, kit, software, and method |
US10443747B2 (en) | 2016-01-13 | 2019-10-15 | Hydra-Flex Inc. | Manifold with integrated valve |
DE102016202026A1 (en) * | 2016-02-10 | 2017-08-10 | Mack & Schneider Gmbh | valve means |
US10731768B2 (en) * | 2016-10-12 | 2020-08-04 | Ecolab Usa Inc. | Systems and methods for manifold valves |
CN106523743A (en) * | 2016-12-11 | 2017-03-22 | 丹东通博电器(集团)有限公司 | Micro- and small-flow control valve device |
BE1024953B1 (en) * | 2017-01-31 | 2018-08-30 | Out And Out Chemistry Sprl | Method for connecting at least two fluidic valves and the fluidic communication system implemented |
US10856668B2 (en) | 2017-04-10 | 2020-12-08 | Hill-Rom Services, Inc. | Mattress overlay control system with rotary valves and graphical user interface for percussion and vibration, turn assist and microclimate management |
US11287837B2 (en) * | 2017-09-07 | 2022-03-29 | Toflo Corporation | Flow rate control unit |
ES2959840T3 (en) * | 2018-05-14 | 2024-02-28 | Faster Srl | Support system for quick couplings, in particular for flat-faced cartridge couplings |
CN208605661U (en) * | 2018-05-14 | 2019-03-15 | 讯凯国际股份有限公司 | Control valve |
CN110513558B (en) * | 2018-08-21 | 2024-06-21 | 浙江长兴杭华玻璃有限公司 | Automatic switching device for gas interruption of gas transmission pipeline |
WO2020210606A1 (en) * | 2019-04-11 | 2020-10-15 | As America, Inc. | Universal rough-in valve and manifold |
US11719350B2 (en) * | 2019-06-12 | 2023-08-08 | Vitesco Technologies USA, LLC | Coolant flow control module |
CA3178838A1 (en) | 2020-05-07 | 2021-11-11 | Sonny's Hfi Holdings, Llc | Sensing and control of vehicle wash components and systems and methods thereof |
US20220026004A1 (en) * | 2020-07-22 | 2022-01-27 | Enerco Group, Inc. | Quick connect system and method |
US11009143B1 (en) * | 2020-12-22 | 2021-05-18 | Zap Mosquito Solutions Inc. | Expandable solenoid system |
WO2022217323A1 (en) * | 2021-04-16 | 2022-10-20 | Australian Valve Group Pty Ltd | Modular valve assemblies with optional swing out |
US12188525B2 (en) * | 2022-02-14 | 2025-01-07 | Sonnax Transmission Company | Solenoid stabilizers and methods for stabilizing solenoids in valve bodies |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4691850A (en) * | 1984-08-09 | 1987-09-08 | Kirschmann John D | Chemical dispensing system |
US5435157A (en) * | 1994-01-27 | 1995-07-25 | Sunburst Chemicals, Inc. | Laundry chemical dispenser |
US5607651A (en) * | 1994-12-06 | 1997-03-04 | Ecolab Inc. | Multiple product dispensing system including dispenser for forming use solution from solid chemical compositions |
US6240953B1 (en) * | 1998-04-13 | 2001-06-05 | Sunburst Chemicals, Inc. | Multiple cleaning chemical dispenser |
US6322242B1 (en) * | 2000-07-12 | 2001-11-27 | S. C. Johnson Commercial Markets, Inc. | Multistation color coded liquid mixing and dispensing apparatus |
US6619318B2 (en) * | 2001-09-25 | 2003-09-16 | Hydro Systems Company | Multiple flow rate eductive dispenser |
US6733044B2 (en) * | 2001-08-24 | 2004-05-11 | Yin Hsiang Huang | Device for linking fluid-conditioning units |
US20060157131A1 (en) * | 2005-01-20 | 2006-07-20 | Harris Jaime L | Eductor assembly with dual-material eductor body |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA920912A (en) * | 1971-08-18 | 1973-02-13 | J. Dyck Gerhard | Stacked valve system |
US4781467A (en) * | 1986-04-09 | 1988-11-01 | Cca, Inc. | Foam-generating apparatus |
US4848391A (en) * | 1988-07-12 | 1989-07-18 | Midtec, Inc. Of America | Expandable manifold for water delivery system |
US5050631A (en) * | 1989-08-23 | 1991-09-24 | Honda Giken Kogyo Kabushiki Kaisha | Fluid diverging system |
USD368298S (en) * | 1994-05-17 | 1996-03-26 | Midtec, Inc. Of America | Multiple water line valved manifold |
WO1998040651A1 (en) * | 1997-03-10 | 1998-09-17 | Lsp Industries, Inc. | Fluid valve and manifold assembly |
JP2004000878A (en) | 2002-04-25 | 2004-01-08 | Yaskawa Electric Corp | Fluid mixing apparatus |
US6929032B2 (en) * | 2003-04-02 | 2005-08-16 | Sea Tech, Inc. | Manifold |
-
2008
- 2008-10-06 US US12/246,317 patent/US8322367B2/en active Active
- 2008-10-06 WO PCT/US2008/078967 patent/WO2009046433A2/en active Application Filing
-
2012
- 2012-11-30 US US13/690,498 patent/US20130160865A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4691850A (en) * | 1984-08-09 | 1987-09-08 | Kirschmann John D | Chemical dispensing system |
US5435157A (en) * | 1994-01-27 | 1995-07-25 | Sunburst Chemicals, Inc. | Laundry chemical dispenser |
US5607651A (en) * | 1994-12-06 | 1997-03-04 | Ecolab Inc. | Multiple product dispensing system including dispenser for forming use solution from solid chemical compositions |
US6240953B1 (en) * | 1998-04-13 | 2001-06-05 | Sunburst Chemicals, Inc. | Multiple cleaning chemical dispenser |
US6322242B1 (en) * | 2000-07-12 | 2001-11-27 | S. C. Johnson Commercial Markets, Inc. | Multistation color coded liquid mixing and dispensing apparatus |
US6733044B2 (en) * | 2001-08-24 | 2004-05-11 | Yin Hsiang Huang | Device for linking fluid-conditioning units |
US6619318B2 (en) * | 2001-09-25 | 2003-09-16 | Hydro Systems Company | Multiple flow rate eductive dispenser |
US20060157131A1 (en) * | 2005-01-20 | 2006-07-20 | Harris Jaime L | Eductor assembly with dual-material eductor body |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9421559B2 (en) | 2013-02-10 | 2016-08-23 | Hydra-Flex, Inc. | Air driven dispenser for delivery of undiluted chemical |
EP3042811A1 (en) | 2015-01-08 | 2016-07-13 | Istobal S.A. | Dosing and distributing modular panel for vehicle washing plants |
CN107709861A (en) * | 2015-06-24 | 2018-02-16 | Smc株式会社 | Multi-connection integral type manifold valve |
US20220275876A1 (en) * | 2019-08-28 | 2022-09-01 | Zhejiang Dunan Artificial Environment Co., Ltd. | Valve Body Connection Structure and Valve Assembly with Valve Body Connection Structure |
US11946558B2 (en) * | 2019-08-28 | 2024-04-02 | Zhejiang Dunan Artificial Environment Co., Ltd. | Valve body connection structure and valve assembly with valve body connection structure |
Also Published As
Publication number | Publication date |
---|---|
WO2009046433A3 (en) | 2009-06-25 |
US8322367B2 (en) | 2012-12-04 |
WO2009046433A2 (en) | 2009-04-09 |
US20090090415A1 (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8322367B2 (en) | Chemical delivery system | |
US11867301B2 (en) | Manifold with integrated valve | |
EP1415721B1 (en) | Body of a spray gun | |
US5501397A (en) | Recirculating paint system having a valved quick disconnect fluid coupling assembly | |
US20140042242A1 (en) | Quick-disconnect keyed venturi | |
US6105880A (en) | Mixing block for mixing multi-component reactive material coating systems and an apparatus using same | |
US6116261A (en) | Solvent and air mixing system with air bleed backflow | |
US11691164B2 (en) | Mix manifold and valve seal assembly | |
WO2021080584A1 (en) | Spool valve for polyurethane foam dispenser | |
WO2021080579A1 (en) | Metal foam dispenser and method of use for polyurethane foam dispensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HYDRA-FLEX INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARRIS, JAIME L.;BROWN, GARY A.;KENSINGER, DAVID G.;AND OTHERS;SIGNING DATES FROM 20081010 TO 20081022;REEL/FRAME:029384/0460 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |