US20130158184A1 - Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions - Google Patents
Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions Download PDFInfo
- Publication number
- US20130158184A1 US20130158184A1 US13/692,419 US201213692419A US2013158184A1 US 20130158184 A1 US20130158184 A1 US 20130158184A1 US 201213692419 A US201213692419 A US 201213692419A US 2013158184 A1 US2013158184 A1 US 2013158184A1
- Authority
- US
- United States
- Prior art keywords
- composition
- weight
- weight percent
- poly
- terephthalate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 87
- -1 Poly(Cyclohexanedimethanol Terephthalate) Polymers 0.000 title claims abstract description 43
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 18
- 125000000524 functional group Chemical group 0.000 claims description 16
- 239000003381 stabilizer Substances 0.000 claims description 16
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 13
- 239000005977 Ethylene Substances 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 11
- 239000012744 reinforcing agent Substances 0.000 claims description 11
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 229920000728 polyester Polymers 0.000 claims description 8
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 7
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 claims description 4
- 239000003365 glass fiber Substances 0.000 claims description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 229920001897 terpolymer Polymers 0.000 claims description 4
- 239000004611 light stabiliser Substances 0.000 claims description 3
- 239000000454 talc Substances 0.000 claims description 3
- 229910052623 talc Inorganic materials 0.000 claims description 3
- 239000011256 inorganic filler Substances 0.000 claims 5
- 229910003475 inorganic filler Inorganic materials 0.000 claims 5
- 125000003700 epoxy group Chemical group 0.000 claims 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims 1
- 239000012745 toughening agent Substances 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000000178 monomer Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229920001169 thermoplastic Polymers 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 230000003078 antioxidant effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004416 thermosoftening plastic Substances 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000012763 reinforcing filler Substances 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000010456 wollastonite Substances 0.000 description 3
- 229910052882 wollastonite Inorganic materials 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920013651 Zenite Polymers 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 2
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- SKBBQSLSGRSQAJ-UHFFFAOYSA-N CC(=O)C1=CC=C(C(C)=O)C=C1 Chemical compound CC(=O)C1=CC=C(C(C)=O)C=C1 SKBBQSLSGRSQAJ-UHFFFAOYSA-N 0.000 description 1
- QHXSIYGHLLXFGV-UHFFFAOYSA-N COCC1CCC(COC)CC1 Chemical compound COCC1CCC(COC)CC1 QHXSIYGHLLXFGV-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- BAAAEEDPKUHLID-UHFFFAOYSA-N decyl(triethoxy)silane Chemical compound CCCCCCCCCC[Si](OCC)(OCC)OCC BAAAEEDPKUHLID-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical group 0.000 description 1
- YGUFXEJWPRRAEK-UHFFFAOYSA-N dodecyl(triethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OCC)(OCC)OCC YGUFXEJWPRRAEK-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 239000005043 ethylene-methyl acrylate Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 1
- 229960003493 octyltriethoxysilane Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- BPILDHPJSYVNAF-UHFFFAOYSA-M sodium;diiodomethanesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C(I)I BPILDHPJSYVNAF-UHFFFAOYSA-M 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical class S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- IJJXVFCJVQEXHZ-UHFFFAOYSA-N triethoxy(heptadecyl)silane Chemical compound CCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC IJJXVFCJVQEXHZ-UHFFFAOYSA-N 0.000 description 1
- FZXOVEZAKDRQJC-UHFFFAOYSA-N triethoxy(nonyl)silane Chemical compound CCCCCCCCC[Si](OCC)(OCC)OCC FZXOVEZAKDRQJC-UHFFFAOYSA-N 0.000 description 1
- FZMJEGJVKFTGMU-UHFFFAOYSA-N triethoxy(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC FZMJEGJVKFTGMU-UHFFFAOYSA-N 0.000 description 1
- ZJLGWINGXOQWDC-UHFFFAOYSA-N triethoxy(pentadecyl)silane Chemical compound CCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC ZJLGWINGXOQWDC-UHFFFAOYSA-N 0.000 description 1
- SVKDNKCAGJVMMY-UHFFFAOYSA-N triethoxy(tetradecyl)silane Chemical compound CCCCCCCCCCCCCC[Si](OCC)(OCC)OCC SVKDNKCAGJVMMY-UHFFFAOYSA-N 0.000 description 1
- IMAMKGXMSYGEGR-UHFFFAOYSA-N triethoxy(tridecyl)silane Chemical compound CCCCCCCCCCCCC[Si](OCC)(OCC)OCC IMAMKGXMSYGEGR-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- PGNWIWKMXVDXHP-UHFFFAOYSA-L zinc;1,3-benzothiazole-2-thiolate Chemical compound [Zn+2].C1=CC=C2SC([S-])=NC2=C1.C1=CC=C2SC([S-])=NC2=C1 PGNWIWKMXVDXHP-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H01L33/56—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
- H10H20/854—Encapsulations characterised by their material, e.g. epoxy or silicone resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/8506—Containers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2993—Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
- Y10T428/2995—Silane, siloxane or silicone coating
Definitions
- the present invention relates to light emitting diode assembly components comprising poly(1,4-cyclohexanedimethanol terephthalate) (PCT) compositions containing titanium dioxide.
- PCT poly(1,4-cyclohexanedimethanol terephthalate)
- LED's Light-emitting semiconductor diodes
- LED's are increasingly being used as light sources in numerous applications due to their many advantages over traditional light sources. LED's generally consume significantly less power than incandescent and other light sources, require a low voltage to operate, are resistant to mechanical shock, require low maintenance, and generate minimal heat when operating. As a result, they are displacing incandescent and other light sources in many uses and have found applications in such disparate areas as traffic signals, large area displays (including video displays), interior and exterior lighting, cellular telephone displays, automotive displays, and flashlights.
- LED assemblies are typically used in such applications as components in assemblies.
- LED assemblies comprise a housing partially surrounding at least one LED and an electrical connection between the diode and an electrical circuit.
- the assembly may further comprise a lens that is adhered to the housing and that fully or partially covers the LED and serves to focus the light emitted by the LED.
- LED housings It would be desirable to make LED housings from polymeric materials, as such materials may be injection molded and offer considerable design flexibility.
- useful polymeric compositions would preferably satisfy a number of conditions. Since many LED assemblies are attached to circuits boards using reflow oven welding processes that operate at elevated temperatures, useful compositions would be sufficiently heat resistant to withstand the welding conditions and minimal surface blistering of the housing during the welding process. Useful compositions would further preferably exhibit good whiteness/reflectivity to maximize the amount of light reflected by the housing, have good ultraviolet light resistance, good long-term resistance to the operating temperatures of the LED assembly, and have good adhesion to any lens material used.
- the poly(1,4-cyclohexanedimethanol terephthalate) compositions used in the present invention satisfy the foregoing requirements.
- WO 03/085029 discloses a polyamide resin composition useful in the production of light-emitting diode reflectors.
- polyamides often do not have good color retention upon exposure to ultraviolet light or heat.
- a light-emitting diode assembly housing comprising a poly(1,4-cyclohexanedimethanol terephthalate) composition, comprising:
- weight percentages are based on the total weight of the composition.
- LED assembly a device comprising at least one light-emitting semiconductor diode, an electrical connection capable of connecting the diode to an electrical circuit, and a housing partially surrounding the diode.
- the LED assembly may optionally have a lens that fully or partially covers the LED.
- the LED assembly housing comprises a poly(1,4-cyclohexanedimethanol terephthalate) (PCT) composition comprising titanium dioxide.
- PCT poly(1,4-cyclohexanedimethanol terephthalate)
- PCT poly(1,4-cyclohexanedimethanol terephthalate)
- PCT poly(1,4-cyclohexanedimethanol terephthalate)
- a polyester formed from a dial and a dicarboxylic acid At least about 80 mole percent, more preferably at least about 90 mole percent, and especially preferably all of the dial repeat units are derived from 1,4-cyclohexanedimethanol and are of formula (I).
- At least about 80 mole percent, more preferably at least about 90 mole percent, and especially preferably all of the dicarboxylic acid repeat units are derived from terephthalic acid and are of formula (II).
- the PCT may also contain up to 10 mole percent (based on the total amount of (I) and (II) present) of one or more repeat unit derived from hydroxycarboxylic acids, although it is preferred that no such repeat unit be present.
- One particular preferred PCT contains (I) as the diol repeat unit, (II) is 95 mole percent of dicarboxylic acid repeat unit and the other 5 mole percent of the dicarboxylic repeat unit is derived from isophthalic acid, and no repeat units derived from hydroxycarboxylic acid are present.
- the PCT is present in from about 40 to about 95 weight percent of the composition, or preferably about 50 to about 85 weight percent, based on the total weight of the composition.
- compositions may optionally contain up to about 70 weight percent, or more preferably about 1 to about 40 weight percent of other thermoplastic polymers, such as other thermoplastic polyesters (such as poly(ethylene terephthalate), poly(propylene terephthalate), poly(butylene terephthalate), poly(naphthalene terephthalate), and the like), liquid crystalline polyesters, and the like, wherein the weight percentages are based on the total weight of PCT and other thermoplastic polymer.
- other thermoplastic polyesters such as poly(ethylene terephthalate), poly(propylene terephthalate), poly(butylene terephthalate), poly(naphthalene terephthalate), and the like
- liquid crystalline polyesters such as poly(ethylene terephthalate), poly(propylene terephthalate), poly(butylene terephthalate), poly(naphthalene terephthalate), and the like
- weight percentages are based on the total weight of PCT and other thermoplastic poly
- the titanium dioxide used in the compositions may be any sort, but is preferably in the rutile form.
- the titanium dioxide comprises about 5 to about 60 weight percent, or preferably about 15 to about 50 weight percent, or more preferably about 20 to about 40 weight percent of the total composition.
- the surface of the titanium dioxide particles will preferably be coated.
- the titanium dioxide will preferably be first coated with an inorganic coating and then an organic coating that is applied over the inorganic coating.
- the titanium dioxide particles may be coated using any method known in the art.
- Preferred inorganic coatings include metal oxides.
- Organic coatings may include one or more of carboxylic acids, polyols, alkanolamines, and/or silicon compounds.
- carboxylic acids suitable for use as an organic coating include adipic acid, terephthalic acid, lauric acid, myristic acid, palmitic acid, stearic acid, polyhydroxystearic acid, oleic acid, salicylic acid, malic acid, and maleic acid.
- carboxylic acid includes the esters and salts of the carboxylic acids.
- silicon compounds suitable for an organic coating include, but are not limited to, silicates, organic silanes, and organic siloxanes, including organoalkoxysilanes, aminosilanes, epoxysilanes, mercaptosilanes, and polyhydroxysiloxanes
- Suitable silanes can have the formula R x Si(R′) 4-x wherein R is a nonhydrolyzable aliphatic, cycloaliphatic, or aromatic group having from 1 to about 20 carbon atoms, and R′ is one or more hydrolyzable groups such as an alkoxy, halogen, acetoxy, or hydroxy group, and X is 1, 2, or 3.
- Useful suitable slimes suitable for an organic coating include one or more of hexyltrimethoxysilane, octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, hexadecyltriethoxysliane, heptadecyltriethoxysilane, octadecyltriethoxysilane, N-(2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxys
- the organic coating preferably comprises about 0.1 to about 10 weight percent, or more preferably about 0.5 to about 7 weight percent, or yet more preferably about 0.5 to about 5 weight percent-of the coated titanium dioxide.
- suitable inorganic coatings include metal oxides and hydrous oxides, including oxides and hydrous oxides of silicon, aluminum, zirconium, phosphorous, zinc, rare earth elements, and the like.
- a preferred metal oxide is alumina.
- the inorganic coating preferably comprises about 0.25 to about 50 weight percent, or more preferably about 1.0 to about 25 weight percent, or yet more preferably about 2 to about 20 weight percent of the coated titanium dioxide.
- compositions may optionally contain up to about 40 weight percent of one or more inorganic reinforcing agents and/or fillers.
- suitable reinforcing agents include glass fibers and minerals, particularly fibrous minerals such as wollastonite.
- fillers include calcium carbonate, talc, mica, and kaolin.
- the reinforcing agent and/or filler is preferably present in about 1 to about 40 weight percent, or more preferably about 1 to about 20 weight percent of the total composition.
- compositions may optionally contain up to about 15 weight percent of one or more polymeric tougheners.
- the toughener will typically be an elastomer having a relatively low melting point, generally ⁇ 200° C., preferably ⁇ 150° C. and that has attached to it functional groups that can react with the PCT (and optionally other polymers present). Since PCT usually have carboxyl and hydroxyl groups present, these functional groups usually can react with carboxyl and/or hydroxyl groups. Examples of such functional groups include epoxy, carboxylic anhydride, hydroxyl (alcohol), carboxyl, and isocyanate. Preferred functional groups era epoxy, and carboxylic anhydride, and epoxy is especially preferred.
- Such functional groups are usually “attached” to the polymeric tougheners by grafting small molecules onto an already existing polymer or by copolymerizing a monomer containing the desired functional group when the polymeric tougheners molecules are made by copolymerization.
- maleic anhydride may be grafted onto a hydrocarbon rubber using free radical grafting techniques.
- the resulting grafted polymer has carboxylic anhydride and/or carboxyl groups attached to it.
- An example of a polymeric tougheners wherein the functional groups are copolymerized into the polymer is a copolymer of ethylene and a (meth)acrylate monomer containing the appropriate functional group.
- (meth)acrylate herein is meant the compound may be either an acrylate, a methacrylate, or a mixture of the two.
- Useful (meth)acrylate functional compounds include (meth)acrylic acid, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate, and 2-isocyanatoethyl (meth)acrylate.
- ethylene and a functional (meth)acrylate monomer other monomers may be copolymerized into such a polymer, such as vinyl acetate, unfunctionalized (meth)acrylate esters such as ethyl (meth)acrylate, n-butyl (meth)acrylate, and cyclohexyl (meth)acrylate.
- Preferred toughening agents include those listed in U.S. Pat. No. 4,753,980, which is hereby included by reference.
- Especially preferred tougheners are copolymers of ethylene, ethyl acrylate or n-butyl acrylate, and glycidyl methacrylate, such as EBAGMA and ethylene/methyl acrylate copolymers.
- the polymeric toughener contain about 0.5 to about 20 weight percent of repeat units derived from monomers containing functional groups, preferably about 1.0 to about 15 weight percent, more preferably about 7 to about 13 weight percent of repeat units derived from monomers containing functional groups. There may be more than one type of repeat unit derived from functionalized monomer present in the polymeric toughener. It has been found that toughness of the composition is increased by increasing the amount of polymeric toughener and/or the amount of functional groups. However, these amounts should preferably not be increased to the point that the composition may crosslink, especially before the final part shape is attained.
- the polymeric toughener may also be thermoplastic acrylic polymers that are not copolymers of ethylene.
- the thermoplastic acrylic polymers are made by polymerizing acrylic acid, acrylate esters (such as methyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, and n-octyl acrylate), methacrylic acid, and methacrylate esters (such as methyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate (BA), isobutyl methacrylate, n-amyl methacrylate, n-octyl methacrylate, glycidyl methacrylate (GMA) and the like).
- acrylate esters such as methyl acrylate, n-propyl acrylate, isopropyl acrylate, n
- Copolymers derived from two or more of the forgoing types of monomers may also be used, as well as copolymers made by polymerizing one or more of the forgoing types of monomers with styrene, acrylonitrile, butadiene, isoprene, and the like. Part or all of the components in these copolymers should preferably have a glass transition temperature of not higher than 0° C.
- Preferred monomers for the preparation of a thermoplastic acrylic polymer toughening agent are methyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, and n-octyl acrylate.
- a thermoplastic acrylic polymer toughening agent have a core-shell structure.
- the core-shell structure is one in which the core portion preferably has a glass transition temperature of 0° C. or less, while the shell portion is preferably has a glass transition temperature higher than that of the core portion.
- the core portion may be grafted with silicone.
- the shell section may be grafted with a low surface energy substrate such as silicone, fluorine, and the like.
- An acrylic polymer with a core-shell structure that has low surface energy substrates grafted to the surface will aggregate with itself during or after mixing with the thermoplastic polyester and other components of the composition of the invention and can be easily uniformly dispersed in the composition.
- the tougheners preferably comprise about 0.5 to about 15 weight percent, or more preferably about 1 to about 10 weight percent, or yet more preferably about 1 to about 5 weight percent, of the total weight of the composition.
- compositions may optionally contain up to about 3 weight percent of one or more oxidative stabilizers.
- suitable oxidative stabilizers include phosphite and hypophosphite stabilizers, hindered phenol stabilizers, hindered amine stabilizers, and thioesters.
- the oxidative stabilizers comprise about 0.1 to about 3 weight percent, or preferably about 0.1 to about 1 weight percent, or more preferably about 0.1 to about 0.6 weight percent, of the total weight of the composition.
- compositions may optionally further contain up to about 3 weight percent of ultraviolet light stabilizers or UV blockers.
- ultraviolet light stabilizers include triazoles and triazines.
- the ultraviolet light stabilizers comprise about 0.1 to about 3 weight percent, or preferably about 0.1 to about 1 weight percent, or more preferably about 0.1 to about 0.6 weight percent, of the total weight of the composition.
- compositions are melt-mixed blends, wherein all of the polymeric components are well-dispersed within each other and all of the non-polymeric ingredients are well-dispersed in and bound by the polymer matrix, such that the blend forms a unified whole.
- Any melt-mixing method may be used to combine the polymeric components and non-polymeric ingredients of the present invention.
- the polymeric components and non-polymeric ingredients may be added to a melt mixer, such as, for example, a single or twin-screw extruder; a blender; a kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed.
- part of the polymeric components and/or non-polymeric ingredients are first added and melt-mixed with the remaining polymeric components and non-polymeric ingredients being subsequently added and further melt-mixed until a well-mixed composition is obtained.
- the LED assembly housing of the present invention may be in the form of a single piece or may be formed by assembling two or more subparts. When it is in the form of a single piece, it is prepared from the PCT composition. When it is formed from two or more subparts, at least one of the parts is prepared from the PCT composition. When it is formed from two or more subparts, one or more of those parts may be metal, ceramic, or a polymeric material other than the PCT composition. The subparts may be connected mechanically, by gluing, or by overmolding a polymeric material over a metal or other polymeric part.
- the housing or housing subpart prepared from the composition used in the present invention may be formed from the PCT composition by any suitable melt-processing method known to those skilled in the art, such as injection molding or the like.
- the housing may be overmolded over a metal (such as copper or silver-coated copper) lead frame that can be used to make an electrical connection to an LED inserted into the housing.
- the housing preferably has a cavity in the portion of the housing that surrounds the LED, which serves to reflect the LED fight in the outward direction and towards a lens, if one is present.
- the cavity may be in a cylindrical, conical, parabolic or other curved form, and preferably has a smooth surface.
- the walls of the cavity may be parallel or substantially parallel to the diode.
- a lens may be formed over the diode cavity and may comprise an epoxy or silicone material.
- the housings of the present invention may be incorporated into LED assemblies used in applications such as traffic signals, large area displays (including video displays), video screens, interior and exterior lighting, cellular telephone display backlights, automotive displays, vehicle brake fights, vehicle head lamps, laptop computer display backlights, pedestrian floor illumination, and flashlights.
- applications such as traffic signals, large area displays (including video displays), video screens, interior and exterior lighting, cellular telephone display backlights, automotive displays, vehicle brake fights, vehicle head lamps, laptop computer display backlights, pedestrian floor illumination, and flashlights.
- compositions of Examples 1-5 and Comparative Example 1 were prepared by melt blending the ingredients shown in Table 1 in a 55 mm kneader operating at about 300° C. using a screw speed of about 350 rpm and a melt temperature of about 330° C. Upon exiting the extruder, the compositions were cooled and pelletized.
- PCT is poly(1,4-cyclohexanedimethanol terephthalate).
- Polyamide is a copolyamide made from terephthalic acid, adipic acid, and hexamethylenediamine with a melting point of ca. 315° C.
- Toughener A is EMAC® SP2260, an ethylene-methyl acrylate copolymer supplied by Eastman Chemical Co., Kingsport, Tenn.
- Toughener B is an ethylene/n-butyl acrylate/glycidyl methacrylate terpolymer.
- Lubricant is Licowax® PED521, supplied by Clariant Corp., Charlotte, N.C.
- Stabilizer A is an epoxy cresol novolac resin.
- Stabilizer B is Irgafos® 12, supplied by Ciba, Basel,
- Antioxidant A is Irganox® 1010, supplied by Ciba, Basel.
- Antioxidant B is Ultranox® 626A, supplied by G.E. Specialty Chemicals, Parkersburg, W.Va.
- Antioxidant C is Irganox® 1098, supplied by Ciba, Basel, Poly(butylene terephthalate) is Crastin® 6136, supplied by E.I. du Pont de Nemours & Co., Wilmington, Del.
- Titanium Dioxide A is RCL4 TiO2, supplied by Millenium Inorganic Chemicals, Hunt Valley, Md.
- Titanium Dioxide B is P-150, supplied by E.I. du Pont de Nemours & Co., Wilmington, Del.
- Zenite® 6000 is a liquid crystalline polyester supplied by E.I. du Pont de Nemours & Co., Wilmington, Del.
- Wollastonite is Nayd M200, supplied by Nyco Minerals, Willsboro, N.Y.
- compositions were molded into ISO tensile bars according to ISO method 527-1/2 using a mold temperature of about 100° C. and tensile modulus was determined using the same method. Notched Chary impact strengths were determined following ISO 179/1eA. The results are shown in Table 1.
- the whiteness index was determined for each composition using a colorimeter following ISO 11475:2004 and using the CIE D65 daylight illuminant at 10 degrees. Measurements were done on tensile bars that had been heat aged in air for 2 hours at 150° C., 180° C., 200° C., or 230° C. The results are shown in Table 1. Higher numbers indicate better whiteness.
- Blistering resistance was determined using a dip soldering test. Bars having a thickness of 0.8 mm were molded according to according to UL Test No. UL-94; 20 mm Vertical Burning Test from the compositions of Examples 1, 2, 4, and 5 were dipped in molten solder to a depth of 15 mm in a Rhesca Co. Ltd. Solder Checker SAT-5100 for 5 or 10 seconds. The bars were used dry-as-molded (DAM) or after conditioning for 168 hours at 85° C. and 85 percent relative humidity (RH). The solder was at a temperature of 255, 260 or 265° C. Upon being removed from the solder, the bars were inspected for surface blisters. The results are given in Table 2.
- the ultraviolet (UV) light stability of the color of the compositions was determined by exposing ISO tensile bars to UV radiation.
- the samples were placed into the test chamber of a tabletop SUNTEST sunlight exposure system supplied by ATLAS Electric Devices Co. wherein they are directly exposed to UV radiation.
- the bars were irradiated for 300 h with a filter that cut off radiation having a wavelength of less than 300 nm.
- the surface temperature of the sample was 40° C. and the distance from the lamp to the sample was 22 cm.
- the bars were irradiated for 46 h without a filter.
- the surface temperature of the sample was 75° C. and the distance from the lamp to the sample was 4 cm. The second set of conditions was more severe.
- the percent reflectance of incident radiation at 630, 520, or 460 nm was measured using a DATACOLOR color/meter.
- the colorimeter is calibrated by measuring a black trap and a white tile defined as standards. The results are given in Table 3. Higher percentages indicate better UV stability.
- compositions of Examples 1-5 and Comparative Example 1 are molded into light emitting diode assembly housings that contain epoxy lenses.
- the housings made from the compositions of Examples 1-5 have good resistance to surface blistering when the housing are welded to circuit boards, good adhesion to the epoxy lens. Furthermore, the housings made from the compositions of Examples 1-5 have significantly improved color stability upon exposure to heat than the housings made from the compositions of Comparative Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Led Device Packages (AREA)
Abstract
Light-emitting diode assembly housing comprising high temperature poly(1,4-cyclohexanedimethanol terephthalate) compositions containing titanium dioxide.
Description
- This application claims the benefit of priority to U.S. Provisional Application No. 60/716,877, filed Sep. 14, 2005.
- The present invention relates to light emitting diode assembly components comprising poly(1,4-cyclohexanedimethanol terephthalate) (PCT) compositions containing titanium dioxide.
- Light-emitting semiconductor diodes (LED's) are increasingly being used as light sources in numerous applications due to their many advantages over traditional light sources. LED's generally consume significantly less power than incandescent and other light sources, require a low voltage to operate, are resistant to mechanical shock, require low maintenance, and generate minimal heat when operating. As a result, they are displacing incandescent and other light sources in many uses and have found applications in such disparate areas as traffic signals, large area displays (including video displays), interior and exterior lighting, cellular telephone displays, automotive displays, and flashlights.
- LED's are typically used in such applications as components in assemblies. LED assemblies comprise a housing partially surrounding at least one LED and an electrical connection between the diode and an electrical circuit. The assembly may further comprise a lens that is adhered to the housing and that fully or partially covers the LED and serves to focus the light emitted by the LED.
- It would be desirable to make LED housings from polymeric materials, as such materials may be injection molded and offer considerable design flexibility. However, useful polymeric compositions would preferably satisfy a number of conditions. Since many LED assemblies are attached to circuits boards using reflow oven welding processes that operate at elevated temperatures, useful compositions would be sufficiently heat resistant to withstand the welding conditions and minimal surface blistering of the housing during the welding process. Useful compositions would further preferably exhibit good whiteness/reflectivity to maximize the amount of light reflected by the housing, have good ultraviolet light resistance, good long-term resistance to the operating temperatures of the LED assembly, and have good adhesion to any lens material used. The poly(1,4-cyclohexanedimethanol terephthalate) compositions used in the present invention satisfy the foregoing requirements.
- WO 03/085029 discloses a polyamide resin composition useful in the production of light-emitting diode reflectors. However, polyamides often do not have good color retention upon exposure to ultraviolet light or heat.
- There is disclosed herein a light-emitting diode assembly housing comprising a poly(1,4-cyclohexanedimethanol terephthalate) composition, comprising:
-
- (a) about 40 to about 95 weight percent poly(1,4-cyclohexanedimethanol terephthalate); and
- (b) about 5 to about 80 weight percent of titanium dioxide;
- (c) 0 to about 40 weight percent of at least one inorganic reinforcing agent or filler; and
- (d) 0 to about 3 weight percent of at least one oxidative stabilizer,
- wherein the weight percentages are based on the total weight of the composition.
- As used herein, by the terms “light-emitting diode assembly” or “LED assembly” is meant a device comprising at least one light-emitting semiconductor diode, an electrical connection capable of connecting the diode to an electrical circuit, and a housing partially surrounding the diode. The LED assembly may optionally have a lens that fully or partially covers the LED.
- The LED assembly housing comprises a poly(1,4-cyclohexanedimethanol terephthalate) (PCT) composition comprising titanium dioxide.
- By “poly(1,4-cyclohexanedimethanol terephthalate)” (PCT) is meant a polyester formed from a dial and a dicarboxylic acid. At least about 80 mole percent, more preferably at least about 90 mole percent, and especially preferably all of the dial repeat units are derived from 1,4-cyclohexanedimethanol and are of formula (I).
- At least about 80 mole percent, more preferably at least about 90 mole percent, and especially preferably all of the dicarboxylic acid repeat units are derived from terephthalic acid and are of formula (II).
- The PCT may also contain up to 10 mole percent (based on the total amount of (I) and (II) present) of one or more repeat unit derived from hydroxycarboxylic acids, although it is preferred that no such repeat unit be present. One particular preferred PCT contains (I) as the diol repeat unit, (II) is 95 mole percent of dicarboxylic acid repeat unit and the other 5 mole percent of the dicarboxylic repeat unit is derived from isophthalic acid, and no repeat units derived from hydroxycarboxylic acid are present. The PCT is present in from about 40 to about 95 weight percent of the composition, or preferably about 50 to about 85 weight percent, based on the total weight of the composition.
- The compositions may optionally contain up to about 70 weight percent, or more preferably about 1 to about 40 weight percent of other thermoplastic polymers, such as other thermoplastic polyesters (such as poly(ethylene terephthalate), poly(propylene terephthalate), poly(butylene terephthalate), poly(naphthalene terephthalate), and the like), liquid crystalline polyesters, and the like, wherein the weight percentages are based on the total weight of PCT and other thermoplastic polymer.
- The titanium dioxide used in the compositions may be any sort, but is preferably in the rutile form. The titanium dioxide comprises about 5 to about 60 weight percent, or preferably about 15 to about 50 weight percent, or more preferably about 20 to about 40 weight percent of the total composition.
- The surface of the titanium dioxide particles will preferably be coated. The titanium dioxide will preferably be first coated with an inorganic coating and then an organic coating that is applied over the inorganic coating. The titanium dioxide particles may be coated using any method known in the art. Preferred inorganic coatings include metal oxides. Organic coatings may include one or more of carboxylic acids, polyols, alkanolamines, and/or silicon compounds.
- Examples of carboxylic acids suitable for use as an organic coating include adipic acid, terephthalic acid, lauric acid, myristic acid, palmitic acid, stearic acid, polyhydroxystearic acid, oleic acid, salicylic acid, malic acid, and maleic acid. As used herein, the term “carboxylic acid” includes the esters and salts of the carboxylic acids.
- Examples of silicon compounds suitable for an organic coating include, but are not limited to, silicates, organic silanes, and organic siloxanes, including organoalkoxysilanes, aminosilanes, epoxysilanes, mercaptosilanes, and polyhydroxysiloxanes Suitable silanes can have the formula RxSi(R′)4-x wherein R is a nonhydrolyzable aliphatic, cycloaliphatic, or aromatic group having from 1 to about 20 carbon atoms, and R′ is one or more hydrolyzable groups such as an alkoxy, halogen, acetoxy, or hydroxy group, and X is 1, 2, or 3.
- Useful suitable slimes suitable for an organic coating include one or more of hexyltrimethoxysilane, octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, hexadecyltriethoxysliane, heptadecyltriethoxysilane, octadecyltriethoxysilane, N-(2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane and combinations of two or more thereof. In other useful silanes, R has between 8 and 18 carbon atoms and R′ is one or more of chloro, methoxy, ethoxy, or hydroxy groups.
- When present, the organic coating preferably comprises about 0.1 to about 10 weight percent, or more preferably about 0.5 to about 7 weight percent, or yet more preferably about 0.5 to about 5 weight percent-of the coated titanium dioxide.
- Examples of suitable inorganic coatings include metal oxides and hydrous oxides, including oxides and hydrous oxides of silicon, aluminum, zirconium, phosphorous, zinc, rare earth elements, and the like. A preferred metal oxide is alumina.
- The inorganic coating preferably comprises about 0.25 to about 50 weight percent, or more preferably about 1.0 to about 25 weight percent, or yet more preferably about 2 to about 20 weight percent of the coated titanium dioxide.
- The compositions may optionally contain up to about 40 weight percent of one or more inorganic reinforcing agents and/or fillers. Example of suitable reinforcing agents include glass fibers and minerals, particularly fibrous minerals such as wollastonite. Examples of fillers include calcium carbonate, talc, mica, and kaolin. When present, the reinforcing agent and/or filler is preferably present in about 1 to about 40 weight percent, or more preferably about 1 to about 20 weight percent of the total composition.
- The compositions may optionally contain up to about 15 weight percent of one or more polymeric tougheners. The toughener will typically be an elastomer having a relatively low melting point, generally <200° C., preferably <150° C. and that has attached to it functional groups that can react with the PCT (and optionally other polymers present). Since PCT usually have carboxyl and hydroxyl groups present, these functional groups usually can react with carboxyl and/or hydroxyl groups. Examples of such functional groups include epoxy, carboxylic anhydride, hydroxyl (alcohol), carboxyl, and isocyanate. Preferred functional groups era epoxy, and carboxylic anhydride, and epoxy is especially preferred. Such functional groups are usually “attached” to the polymeric tougheners by grafting small molecules onto an already existing polymer or by copolymerizing a monomer containing the desired functional group when the polymeric tougheners molecules are made by copolymerization. As an example of grafting, maleic anhydride may be grafted onto a hydrocarbon rubber using free radical grafting techniques. The resulting grafted polymer has carboxylic anhydride and/or carboxyl groups attached to it. An example of a polymeric tougheners wherein the functional groups are copolymerized into the polymer is a copolymer of ethylene and a (meth)acrylate monomer containing the appropriate functional group. By (meth)acrylate herein is meant the compound may be either an acrylate, a methacrylate, or a mixture of the two. Useful (meth)acrylate functional compounds include (meth)acrylic acid, 2-hydroxyethyl (meth)acrylate, glycidyl (meth)acrylate, and 2-isocyanatoethyl (meth)acrylate. In addition to ethylene and a functional (meth)acrylate monomer, other monomers may be copolymerized into such a polymer, such as vinyl acetate, unfunctionalized (meth)acrylate esters such as ethyl (meth)acrylate, n-butyl (meth)acrylate, and cyclohexyl (meth)acrylate. Preferred toughening agents include those listed in U.S. Pat. No. 4,753,980, which is hereby included by reference. Especially preferred tougheners are copolymers of ethylene, ethyl acrylate or n-butyl acrylate, and glycidyl methacrylate, such as EBAGMA and ethylene/methyl acrylate copolymers.
- It is preferred that the polymeric toughener contain about 0.5 to about 20 weight percent of repeat units derived from monomers containing functional groups, preferably about 1.0 to about 15 weight percent, more preferably about 7 to about 13 weight percent of repeat units derived from monomers containing functional groups. There may be more than one type of repeat unit derived from functionalized monomer present in the polymeric toughener. It has been found that toughness of the composition is increased by increasing the amount of polymeric toughener and/or the amount of functional groups. However, these amounts should preferably not be increased to the point that the composition may crosslink, especially before the final part shape is attained.
- The polymeric toughener may also be thermoplastic acrylic polymers that are not copolymers of ethylene. The thermoplastic acrylic polymers are made by polymerizing acrylic acid, acrylate esters (such as methyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, and n-octyl acrylate), methacrylic acid, and methacrylate esters (such as methyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate (BA), isobutyl methacrylate, n-amyl methacrylate, n-octyl methacrylate, glycidyl methacrylate (GMA) and the like). Copolymers derived from two or more of the forgoing types of monomers may also be used, as well as copolymers made by polymerizing one or more of the forgoing types of monomers with styrene, acrylonitrile, butadiene, isoprene, and the like. Part or all of the components in these copolymers should preferably have a glass transition temperature of not higher than 0° C. Preferred monomers for the preparation of a thermoplastic acrylic polymer toughening agent are methyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, and n-octyl acrylate.
- It is preferred that a thermoplastic acrylic polymer toughening agent have a core-shell structure. The core-shell structure is one in which the core portion preferably has a glass transition temperature of 0° C. or less, while the shell portion is preferably has a glass transition temperature higher than that of the core portion. The core portion may be grafted with silicone. The shell section may be grafted with a low surface energy substrate such as silicone, fluorine, and the like. An acrylic polymer with a core-shell structure that has low surface energy substrates grafted to the surface will aggregate with itself during or after mixing with the thermoplastic polyester and other components of the composition of the invention and can be easily uniformly dispersed in the composition.
- When present, the tougheners preferably comprise about 0.5 to about 15 weight percent, or more preferably about 1 to about 10 weight percent, or yet more preferably about 1 to about 5 weight percent, of the total weight of the composition.
- The compositions may optionally contain up to about 3 weight percent of one or more oxidative stabilizers. Examples of suitable oxidative stabilizers include phosphite and hypophosphite stabilizers, hindered phenol stabilizers, hindered amine stabilizers, and thioesters. When present, the oxidative stabilizers comprise about 0.1 to about 3 weight percent, or preferably about 0.1 to about 1 weight percent, or more preferably about 0.1 to about 0.6 weight percent, of the total weight of the composition.
- The compositions may optionally further contain up to about 3 weight percent of ultraviolet light stabilizers or UV blockers. Examples include triazoles and triazines. When present, the ultraviolet light stabilizers comprise about 0.1 to about 3 weight percent, or preferably about 0.1 to about 1 weight percent, or more preferably about 0.1 to about 0.6 weight percent, of the total weight of the composition.
- The compositions are melt-mixed blends, wherein all of the polymeric components are well-dispersed within each other and all of the non-polymeric ingredients are well-dispersed in and bound by the polymer matrix, such that the blend forms a unified whole. Any melt-mixing method may be used to combine the polymeric components and non-polymeric ingredients of the present invention. For example, the polymeric components and non-polymeric ingredients may be added to a melt mixer, such as, for example, a single or twin-screw extruder; a blender; a kneader; or a Banbury mixer, either all at once through a single step addition, or in a stepwise fashion, and then melt-mixed. When adding the polymeric components and non-polymeric ingredients in a stepwise fashion, part of the polymeric components and/or non-polymeric ingredients are first added and melt-mixed with the remaining polymeric components and non-polymeric ingredients being subsequently added and further melt-mixed until a well-mixed composition is obtained.
- The LED assembly housing of the present invention may be in the form of a single piece or may be formed by assembling two or more subparts. When it is in the form of a single piece, it is prepared from the PCT composition. When it is formed from two or more subparts, at least one of the parts is prepared from the PCT composition. When it is formed from two or more subparts, one or more of those parts may be metal, ceramic, or a polymeric material other than the PCT composition. The subparts may be connected mechanically, by gluing, or by overmolding a polymeric material over a metal or other polymeric part. The housing or housing subpart prepared from the composition used in the present invention may be formed from the PCT composition by any suitable melt-processing method known to those skilled in the art, such as injection molding or the like. The housing may be overmolded over a metal (such as copper or silver-coated copper) lead frame that can be used to make an electrical connection to an LED inserted into the housing.
- The housing preferably has a cavity in the portion of the housing that surrounds the LED, which serves to reflect the LED fight in the outward direction and towards a lens, if one is present. The cavity may be in a cylindrical, conical, parabolic or other curved form, and preferably has a smooth surface. Alternatively, the walls of the cavity may be parallel or substantially parallel to the diode. A lens may be formed over the diode cavity and may comprise an epoxy or silicone material.
- The housings of the present invention may be incorporated into LED assemblies used in applications such as traffic signals, large area displays (including video displays), video screens, interior and exterior lighting, cellular telephone display backlights, automotive displays, vehicle brake fights, vehicle head lamps, laptop computer display backlights, pedestrian floor illumination, and flashlights.
- The compositions of Examples 1-5 and Comparative Example 1 were prepared by melt blending the ingredients shown in Table 1 in a 55 mm kneader operating at about 300° C. using a screw speed of about 350 rpm and a melt temperature of about 330° C. Upon exiting the extruder, the compositions were cooled and pelletized.
- The following ingredients are shown In Table 1:
PCT is poly(1,4-cyclohexanedimethanol terephthalate).
Polyamide is a copolyamide made from terephthalic acid, adipic acid, and hexamethylenediamine with a melting point of ca. 315° C.
Toughener A is EMAC® SP2260, an ethylene-methyl acrylate copolymer supplied by Eastman Chemical Co., Kingsport, Tenn.
Toughener B is an ethylene/n-butyl acrylate/glycidyl methacrylate terpolymer.
Lubricant is Licowax® PED521, supplied by Clariant Corp., Charlotte, N.C.
Stabilizer A is an epoxy cresol novolac resin.
Stabilizer B is Irgafos® 12, supplied by Ciba, Basel,
Antioxidant A is Irganox® 1010, supplied by Ciba, Basel.
Antioxidant B is Ultranox® 626A, supplied by G.E. Specialty Chemicals, Parkersburg, W.Va.
Antioxidant C is Irganox® 1098, supplied by Ciba, Basel,
Poly(butylene terephthalate) is Crastin® 6136, supplied by E.I. du Pont de Nemours & Co., Wilmington, Del.
Titanium Dioxide A is RCL4 TiO2, supplied by Millenium Inorganic Chemicals, Hunt Valley, Md.
Titanium Dioxide B is P-150, supplied by E.I. du Pont de Nemours & Co., Wilmington, Del.
Zenite® 6000 is a liquid crystalline polyester supplied by E.I. du Pont de Nemours & Co., Wilmington, Del.
Wollastonite is Nayd M200, supplied by Nyco Minerals, Willsboro, N.Y. - The compositions were molded into ISO tensile bars according to ISO method 527-1/2 using a mold temperature of about 100° C. and tensile modulus was determined using the same method. Notched Chary impact strengths were determined following ISO 179/1eA. The results are shown in Table 1.
- The whiteness index was determined for each composition using a colorimeter following ISO 11475:2004 and using the CIE D65 daylight illuminant at 10 degrees. Measurements were done on tensile bars that had been heat aged in air for 2 hours at 150° C., 180° C., 200° C., or 230° C. The results are shown in Table 1. Higher numbers indicate better whiteness.
- Blistering resistance was determined using a dip soldering test. Bars having a thickness of 0.8 mm were molded according to according to UL Test No. UL-94; 20 mm Vertical Burning Test from the compositions of Examples 1, 2, 4, and 5 were dipped in molten solder to a depth of 15 mm in a Rhesca Co. Ltd. Solder Checker SAT-5100 for 5 or 10 seconds. The bars were used dry-as-molded (DAM) or after conditioning for 168 hours at 85° C. and 85 percent relative humidity (RH). The solder was at a temperature of 255, 260 or 265° C. Upon being removed from the solder, the bars were inspected for surface blisters. The results are given in Table 2.
- The ultraviolet (UV) light stability of the color of the compositions was determined by exposing ISO tensile bars to UV radiation. The samples were placed into the test chamber of a tabletop SUNTEST sunlight exposure system supplied by ATLAS Electric Devices Co. wherein they are directly exposed to UV radiation. In one set of samples, the bars were irradiated for 300 h with a filter that cut off radiation having a wavelength of less than 300 nm. The surface temperature of the sample was 40° C. and the distance from the lamp to the sample was 22 cm. In a second set of samples, the bars were irradiated for 46 h without a filter. The surface temperature of the sample was 75° C. and the distance from the lamp to the sample was 4 cm. The second set of conditions was more severe.
- After irradiation, the percent reflectance of incident radiation at 630, 520, or 460 nm was measured using a DATACOLOR color/meter. The colorimeter is calibrated by measuring a black trap and a white tile defined as standards. The results are given in Table 3. Higher percentages indicate better UV stability.
-
TABLE 1 Example Example Example Example Example Comparative 1 2 3 4 5 Ex. 1 PCT 55.58 55.51 55.58 50.58 50.58 — Poiyamide — — — — — 59.6 Toughener A — 3 — — — — Toughener B 2.9 — 2.9 2.9 2.9 — Talc 2 2 2 2 2 — Lubricant 0.5 0.5 0.5 0.5 0.5 — Stabilizer A 0.5 0.5 0.5 0.5 0.5 — Stabilizer B — — — — — 0.2 Antioxidant A 0.19 0.19 0.19 0.19 0.19 — Antioxidant B 0.3 0.3 0.3 0.3 0.3 — Antioxidant C — — — — — 0.2 Poly(butylene terephthalate) 3 3 3 3 3 — Titanium dioxide A 30 30 — 35 30 20 Titanium dioxide B — — 30 — — — Zenite ® 6000 5 5 5 — — — Wollastonite — — — — 10 20 Tensile modulus (GPa) 2.4 2.7 2.3 2.4 2.7 5.8 Notched Charpy 2.5 3.6 2.1 3.1 2.8 1.9 impact strength (kJ/m2) Whiteness index Aged at 150° C. for 2 h 62 67 47 67 65 60 Aged at 180° C. for 2 h 52 61 34 55 54 39 Aged at 200° C. for 2 h 44 48 23 46 55 −8 Aged at 230° C. for 2 h 32 37 8 33 33 −40 Ingredient quantities are given in weight percent based on the total weight of the composition. -
TABLE 2 Solder temp Time Example Example Example Example (° C.) Conditioning (sec) 1 2 4 5 260 DAM 5 O O O O 85° C./85% X O O O RH/168 h DAM 10 O O O O 85° C./85% XX O O O RH/168 h [“O” denotes that no blisters were observed; “X” denotes that blisters having a diameter of less than about 5 mm were observed; and “XX” denotes that blisters having a diameter of greater than about 5 mm were observed.] -
TABLE 3 Percent Reflectance Example Example Example Example Example Comparative 1 2 3 4 5 Ex. 1 Irradiated for 630 nm 92 92 90 92 90 89 300 h with a filter that cut off 520 nm 88 89 85 89 87 87 radiation < 300 nm. Surface temperature 460 nm 82 84 79 86 84 85 of sample = 40° C. Distance from lamp to sample = 22 cm Irradiated for 48 h 630 nm 84 91 89 90 87 86 without a UV filter. 520 nm 79 87 82 86 82 79 Surface temperature 460 nm 72 82 74 82 76 70 of sample = 75° C. Distance from lamp to sample = 4 cm - The compositions of Examples 1-5 and Comparative Example 1 are molded into light emitting diode assembly housings that contain epoxy lenses. The housings made from the compositions of Examples 1-5 have good resistance to surface blistering when the housing are welded to circuit boards, good adhesion to the epoxy lens. Furthermore, the housings made from the compositions of Examples 1-5 have significantly improved color stability upon exposure to heat than the housings made from the compositions of Comparative Example 1.
Claims (29)
1.-17. (canceled)
18. A composition comprising:
(a) about 40 to about 95 weight percent poly(1,4-cyclohexanedimethanol terephthalate); and
(b) about 15 to about 50 weight percent of rutile titanium dioxide;
(c) 0 to about 40 weight percent of one or more inorganic reinforcing agents and/or one or more inorganic fillers;
(d) 0 to about 3 weight percent of one or more oxidative stabilizers; and
(e) an ethylene/(meth)acrylate copolymer and/or an ethylene, ethyl acrylate or n-butyl acrylate and glycidyl methacrylate terpolymer;
wherein the weight percentages are based on the total weight of the composition.
19. The composition as defined in claim 18 , wherein the composition contains from about 1% to about 20% by weight of an inorganic filler.
20. The composition as defined in claim 18 , wherein the composition contains from about 1% to about 20% by weight of the inorganic reinforcing agent, the inorganic reinforcing agent comprising glass fibers.
21. The composition as defined in claim 18 , wherein the composition contains from about 0.1% to about 3% by weight of the oxidative stabilizer.
22. The composition as defined in claim 20 , wherein the composition contains from about 0.1% to about 3% by weight of the oxidative stabilizer.
23. The composition as defined in claim 18 , wherein the composition further comprises from about 0.1% to about 3% by weight of an ultraviolet light stabilizer.
24. The composition as defined in claim 18 , wherein both the ethylene/methacrylate copolymer and the ethylene, ethyl acrylate or n-butyl acrylate and glycidyl methacrylate terpolymer are present in the composition.
25. The composition as defined in claim 18 , wherein the composition further comprises a polymer having attached to it functional groups that react with the poly(1,4-cyclohexanedimethanol terephthalate).
26. The composition as defined in claim 25 , wherein the composition contains from about 1% to about 20% by weight of an inorganic filler.
27. The composition as defined in claim 18 , wherein the composition further contains polybutylene terephthalate, polyethylene terephthalate or a liquid crystalline polyester.
28. A housing for a light-emitting diode for reflecting light in an outward direction, comprising a composition as defined in claim 18 .
29. A composition comprising:
(a) about 40 to about 95 weight percent poly(1,4-cyclohexanedimethanol terephthalate); and
(b) about 5 to about 60 weight percent of titanium dioxide; and
(c) from about 0.5% to about 15% by weight of a polymer that has attached to it functional groups that react with the poly(1,4-cyclohexanedimethanol terephthalate).
30. The composition as defined in claim 29 , wherein the functional groups that are attached to the polymer comprise epoxy groups.
31. The composition as defined in claim 29 , wherein the functional groups that are attached to the polymer comprise carboxylic anhydride groups, hydroxyl groups, carboxyl groups, or isocyanate groups.
32. The composition as defined in claim 30 , wherein the epoxy groups are grafted to the polymer that reacts with the poly(1,4-cyclohexanedimethanol terephthalate).
33. The composition as defined in claim 29 , further comprising from about 1% to about 20% by weight of one or more inorganic reinforcing agents.
34. The composition as defined in claim 29 , further comprising from about 1% to about 20% by weight of one or more inorganic fillers.
35. The composition as defined in claim 33 , wherein the inorganic reinforcing agent comprises glass fibers.
36. The composition as defined in claim 29 , further comprising from about 0.1% to about 3% by weight of an oxidative stabilizer.
37. The composition as defined in claim 34 , wherein the inorganic filler comprises talc.
38. The composition as defined in claim 29 , wherein the composition further contains polybutylene terephthalate, polyethylene terephthalate or a liquid crystalline polyester.
39. The composition as defined in claim 29 , further comprising an ethylene/(meth)acrylate copolymer.
40. A housing for a light-emitting diode for reflecting light in an outward direction, comprising a composition as defined in claim 29 .
41. A composition comprising:
(a) about 40 to about 95 weight percent poly(1,4-cyclohexanedimethanol terephthalate); and
(b) about 5 to about 60 weight percent of titanium dioxide;
(c) about 1 to about 20 weight percent of one or more inorganic reinforcing agents;
(d) from about 0.1% to about 3% by weight of one or more oxidative stabilizers;
(e) an ethylene/(meth)acrylate copolymer and/or an ethylene, ethylacrylate or n-butylacrylate and glycidyl methacrylate terpolymer; and
(f) a polymer having attached to it functional groups that react with the poly(1,4-cyclohexanedimethanol terephthalate).
42. The composition as defined in claim 41 , wherein the titanium dioxide is present in an amount from about 15% to about 50% by weight.
43. The composition as defined in claim 41 , wherein the inorganic reinforcing agent comprises glass fibers.
44. The composition as defined in claim 41 , further containing polybutylene terephthalate, polyethylene terephthalate or a liquid crystalline polyester.
45. A housing for a light-emitting diode for reflecting light in an outward direction, comprising a composition as defined in claim 41 .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/692,419 US20130158184A1 (en) | 2005-09-14 | 2012-12-03 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
US15/253,049 US20170084801A1 (en) | 2005-09-14 | 2016-08-31 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71687705P | 2005-09-14 | 2005-09-14 | |
US11/517,110 US8007885B2 (en) | 2005-09-14 | 2006-09-07 | Light-emitting diode assembly housing comprising poly(cyclohexanedimethanol terephthalate) compositions |
US13/221,189 US20110310622A1 (en) | 2005-09-14 | 2011-08-30 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
US13/692,419 US20130158184A1 (en) | 2005-09-14 | 2012-12-03 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/221,189 Division US20110310622A1 (en) | 2005-09-14 | 2011-08-30 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/253,049 Continuation US20170084801A1 (en) | 2005-09-14 | 2016-08-31 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130158184A1 true US20130158184A1 (en) | 2013-06-20 |
Family
ID=37575222
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/517,110 Expired - Fee Related US8007885B2 (en) | 2005-09-14 | 2006-09-07 | Light-emitting diode assembly housing comprising poly(cyclohexanedimethanol terephthalate) compositions |
US13/221,189 Abandoned US20110310622A1 (en) | 2005-09-14 | 2011-08-30 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
US13/692,419 Abandoned US20130158184A1 (en) | 2005-09-14 | 2012-12-03 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
US15/253,049 Abandoned US20170084801A1 (en) | 2005-09-14 | 2016-08-31 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/517,110 Expired - Fee Related US8007885B2 (en) | 2005-09-14 | 2006-09-07 | Light-emitting diode assembly housing comprising poly(cyclohexanedimethanol terephthalate) compositions |
US13/221,189 Abandoned US20110310622A1 (en) | 2005-09-14 | 2011-08-30 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/253,049 Abandoned US20170084801A1 (en) | 2005-09-14 | 2016-08-31 | Light-Emitting Diode Assembly Housing Comprising Poly(Cyclohexanedimethanol Terephthalate) Compositions |
Country Status (4)
Country | Link |
---|---|
US (4) | US8007885B2 (en) |
EP (2) | EP2472603A1 (en) |
JP (2) | JP5254018B2 (en) |
WO (1) | WO2007033129A2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104650547A (en) * | 2015-01-21 | 2015-05-27 | 金发科技股份有限公司 | Polyester composition for reflecting plate |
US9062198B2 (en) | 2011-04-14 | 2015-06-23 | Ticona Llc | Reflectors for light-emitting diode assemblies containing a white pigment |
US9153757B2 (en) | 2011-08-01 | 2015-10-06 | Mitsui Chemicals, Inc. | Thermoplastic resin composition for reflective material, reflective plate, and light-emitting diode element |
US9163140B2 (en) | 2010-12-14 | 2015-10-20 | Lanxess Deutschland Gmbh | Polyester compositions |
US9187621B2 (en) | 2011-12-30 | 2015-11-17 | Ticona Llc | Reflector for light-emitting devices |
US9240537B2 (en) | 2012-11-09 | 2016-01-19 | Toyoda Gosei Co., Ltd. | Light-emitting device including case and sealant |
US9284448B2 (en) | 2011-04-14 | 2016-03-15 | Ticona Llc | Molded reflectors for light-emitting diode assemblies |
US9453119B2 (en) | 2011-04-14 | 2016-09-27 | Ticona Llc | Polymer composition for producing articles with light reflective properties |
US9567460B2 (en) | 2012-12-18 | 2017-02-14 | Ticona Llc | Molded reflectors for light-emitting diode assemblies |
US9840610B2 (en) | 2014-09-30 | 2017-12-12 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition and molded article using the same |
EP3163332A4 (en) * | 2014-06-30 | 2018-01-17 | Mitsui Chemicals, Inc. | Resin composition for reflective material, and reflective panel including same |
US10131785B2 (en) | 2015-06-30 | 2018-11-20 | Lotte Advanced Materials Co., Ltd. | Polyester resin composition with excellent impact resistance and light reliability and molded article using the same |
US10301449B2 (en) | 2013-11-29 | 2019-05-28 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having excellent light stability at high temperature |
US10508190B2 (en) | 2014-12-17 | 2019-12-17 | Lotte Advanced Materials Co., Ltd. | Polyester resin composition and molded article manufactured therefrom |
US10636951B2 (en) | 2014-06-27 | 2020-04-28 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having excellent reflectivity |
US10822490B2 (en) | 2013-12-30 | 2020-11-03 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having excellent shock resistance and light resistance |
US11384220B2 (en) | 2016-10-17 | 2022-07-12 | Shiraishi Kogyo Kaisha, Ltd. | White resin composition |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8007885B2 (en) * | 2005-09-14 | 2011-08-30 | Georgios Topoulos | Light-emitting diode assembly housing comprising poly(cyclohexanedimethanol terephthalate) compositions |
JP5217099B2 (en) * | 2006-03-06 | 2013-06-19 | 東洋インキScホールディングス株式会社 | Resin composition |
KR100903683B1 (en) * | 2007-12-27 | 2009-06-18 | 제일모직주식회사 | Chemical resistance shock resistant thermoplastic resin composition with excellent hydrolysis resistance |
KR100960866B1 (en) * | 2008-06-19 | 2010-06-08 | 제일모직주식회사 | Styrene-based thermoplastic resin composition excellent in thermal stability, light stability and impact resistance |
KR100960622B1 (en) * | 2008-07-09 | 2010-06-07 | 제일모직주식회사 | Styrene-based thermoplastic resin composition excellent in impact resistance and paintability |
JP5923162B2 (en) * | 2011-04-14 | 2016-05-24 | ティコナ・エルエルシー | Polymer composition for producing products with light reflecting properties |
US8480254B2 (en) | 2011-04-14 | 2013-07-09 | Ticona, Llc | Molded reflective structures for light-emitting diodes |
JP5871920B2 (en) | 2011-06-08 | 2016-03-01 | 三井化学株式会社 | Thermoplastic resin composition for reflector, reflector and light-emitting diode element |
KR101360892B1 (en) | 2011-06-21 | 2014-02-11 | 제일모직주식회사 | Polyester Resin Composition Having Good Reflectance, Heat Resistance, Yellowing Resistance and Humidity Resistance |
JP5731312B2 (en) * | 2011-08-01 | 2015-06-10 | 三井化学株式会社 | Thermoplastic resin for reflector and reflector |
JP5919071B2 (en) * | 2012-04-06 | 2016-05-18 | 三井化学株式会社 | Thermoplastic resin for reflector and reflector |
EP2634211B1 (en) | 2011-12-16 | 2015-07-15 | Solvay Specialty Polymers USA, LLC. | Heat and light resistant polymer composition |
KR101961956B1 (en) * | 2011-12-16 | 2019-03-25 | 솔베이 스페셜티 폴리머즈 유에스에이, 엘.엘.씨. | Heat and light resistant polymer composition |
KR101549492B1 (en) * | 2011-12-28 | 2015-09-03 | 제일모직주식회사 | Polyester Resin Composition Having Yellowing Resistance and High Impact Strength |
JP5932480B2 (en) | 2012-05-02 | 2016-06-08 | デュポン株式会社 | Polyester composition filled with graphite |
WO2014076971A1 (en) * | 2012-11-19 | 2014-05-22 | 三井化学株式会社 | Polyester resin composition, manufacturing method therefor, and camera module containing said polyester resin composition |
EP2738204B1 (en) | 2012-11-29 | 2019-01-09 | Solvay Specialty Polymers USA, LLC. | Polyester compositions with improved crystallization rate |
EP2738203B1 (en) | 2012-11-29 | 2018-04-18 | Solvay Specialty Polymers USA, LLC. | Polyester compositions with improved heat and light aging |
KR101566062B1 (en) * | 2012-12-31 | 2015-11-04 | 제일모직주식회사 | Polyester Resin Composition for Reflectors of Light-Emitting Devices and Molded Article Using Same |
US20140191263A1 (en) * | 2013-01-07 | 2014-07-10 | Sabic Innovative Plastics Ip B.V. | Compositions for an led reflector and articles thereof |
TWI612097B (en) * | 2013-05-10 | 2018-01-21 | 三井化學股份有限公司 | Polyester resin composition for reflective material and reflector containing the same |
JP6155930B2 (en) * | 2013-07-17 | 2017-07-05 | 大日本印刷株式会社 | SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE COMPONENT AND METHOD FOR PRODUCING THE SAME, AND REFLECTOR, MANUFACTURING METHOD THEREFOR, AND REFLECTOR FORMING COMPOSITION |
JP6221662B2 (en) * | 2013-11-13 | 2017-11-01 | 東洋紡株式会社 | Polyester resin composition for LED reflector |
ES2899882T3 (en) | 2013-11-27 | 2022-03-15 | Lanxess Deutschland Gmbh | Use of polyester compositions |
DE102014000613A1 (en) | 2014-01-18 | 2015-07-23 | Lanxess Deutschland Gmbh | Polyester compositions |
PL2878628T3 (en) | 2013-11-27 | 2017-08-31 | Lanxess Deutschland Gmbh | Polyester compounds |
DE102014000612A1 (en) | 2014-01-18 | 2015-07-23 | Lanxess Deutschland Gmbh | Polyester compositions |
IN2014DE03298A (en) * | 2013-11-27 | 2015-09-25 | Lanxess Deutschland Gmbh | |
EP2878625A1 (en) | 2013-11-27 | 2015-06-03 | LANXESS Deutschland GmbH | Polyester compounds |
KR20160101982A (en) | 2013-12-20 | 2016-08-26 | 솔베이 스페셜티 폴리머즈 유에스에이, 엘.엘.씨. | Polyester compositions with improved whiteness |
KR102252792B1 (en) * | 2013-12-30 | 2021-05-17 | 에스케이케미칼 주식회사 | Poly(cyclohexylenedimethylene terephtalate) copolymer having advenced impact strength, discoloration resistance and reflectance, and resin molded article manufactured therefrom |
EP2915841A1 (en) * | 2014-03-04 | 2015-09-09 | LANXESS Deutschland GmbH | Polyester compounds |
JPWO2015199062A1 (en) * | 2014-06-25 | 2017-04-20 | ユニチカ株式会社 | Resin composition and molded body thereof |
WO2016002193A1 (en) * | 2014-06-30 | 2016-01-07 | 三井化学株式会社 | Polyester resin composition for reflective materials and reflection plate containing same |
KR101786192B1 (en) * | 2014-09-30 | 2017-11-15 | 롯데첨단소재(주) | Thermoplastic resin composition and molded article using the same |
KR102251212B1 (en) * | 2014-12-03 | 2021-05-11 | 에스케이케미칼 주식회사 | Polyester resin composition and article formed thereform |
JP6248065B2 (en) * | 2015-06-10 | 2017-12-13 | 白石工業株式会社 | White resin composition |
CN108352435A (en) | 2015-11-16 | 2018-07-31 | 株式会社可乐丽 | LED reflector plate polymer blend, LED reflector plate, the light-emitting device for having the reflecting plate |
JP6547615B2 (en) * | 2015-12-16 | 2019-07-24 | 日亜化学工業株式会社 | Method of manufacturing package, method of manufacturing light emitting device, package, and light emitting device |
KR101842331B1 (en) * | 2015-12-31 | 2018-03-26 | 롯데첨단소재(주) | Thermoplastic resin composition AND ARTICLE COMPRISING THE SAME |
WO2017209172A1 (en) * | 2016-05-31 | 2017-12-07 | 株式会社クラレ | Polyester composition for led reflection plates, led reflection plate and light emitting device provided with said reflection plate |
US10633535B2 (en) | 2017-02-06 | 2020-04-28 | Ticona Llc | Polyester polymer compositions |
WO2018235821A1 (en) * | 2017-06-23 | 2018-12-27 | 株式会社クラレ | Polyester composition for LED reflector, LED reflector comprising the composition and light emitting device comprising the reflector |
CN111133043A (en) * | 2017-07-20 | 2020-05-08 | 伊士曼化工公司 | Polymer composition comprising a crystalline polymer and a stabiliser composition |
US11492484B2 (en) | 2017-07-20 | 2022-11-08 | Eastman Chemical Company | Polymer compositions having improved properties of thermal stability, color, and/or flow |
GB2567456B (en) | 2017-10-12 | 2021-08-11 | Si Group Switzerland Chaa Gmbh | Antidegradant blend |
WO2019155419A1 (en) | 2018-02-08 | 2019-08-15 | Celanese Sales Germany Gmbh | Polymer composite containing recycled carbon fibers |
GB201807302D0 (en) | 2018-05-03 | 2018-06-20 | Addivant Switzerland Gmbh | Antidegradant blend |
WO2020150209A1 (en) | 2019-01-18 | 2020-07-23 | Eastman Chemical Company | Polymer compositions with improved weathering resistance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5207967A (en) * | 1992-03-02 | 1993-05-04 | Eastman Kodak Company | Multicomponent polyester/polycarbonate blends with improved impact strength and processability |
US20030109629A1 (en) * | 2001-10-19 | 2003-06-12 | Pierre Jean R. | UV stabilized, impact modified polyester/polycarbonate blends, articles, and methods of manufacture thereof |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4172859A (en) * | 1975-05-23 | 1979-10-30 | E. I. Du Pont De Nemours And Company | Tough thermoplastic polyester compositions |
JPS5527335A (en) | 1978-08-18 | 1980-02-27 | Teijin Ltd | Polyester resin composition |
FR2542422B1 (en) * | 1983-03-08 | 1985-08-23 | Cibie Projecteurs | AUTOMOTIVE PROJECTOR WITH INCLINED ICE PROVIDED WITH RECTIFIER OPTICAL ELEMENTS |
WO1985003718A1 (en) | 1984-02-24 | 1985-08-29 | E. I. Du Pont De Nemours And Company | Toughened thermoplastic polyester compositions |
US4887819A (en) * | 1984-05-01 | 1989-12-19 | Walker John A | Casino board game |
US4999055A (en) * | 1988-02-03 | 1991-03-12 | E. I. Du Pont De Nemours And Company | TiO2 pigments resistant to discoloration in the presence of polymer additives |
US4859732A (en) * | 1988-02-22 | 1989-08-22 | Eastman Kodak Company | Reinforced molding composition based on poly(1,4-cyclohexylene dimethylene terephthalate) having improved crystallization characteristics |
US5256787A (en) * | 1990-09-03 | 1993-10-26 | Ciba-Geigy Corporation | Tri-piperdine compounds as stabilizers for organic materials |
JPH04142362A (en) | 1990-10-03 | 1992-05-15 | Nippon G Ii Plast Kk | Highly heat-resistant resin composition having high reflectance |
JPH0625517A (en) | 1992-06-30 | 1994-02-01 | Toray Ind Inc | Polyester resin composition |
JPH06151977A (en) * | 1992-11-11 | 1994-05-31 | Sharp Corp | Optical semiconductor device |
JP2987208B2 (en) * | 1994-02-28 | 1999-12-06 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | Silane-treated titanium dioxide pigments that are resistant to discoloration when incorporated in polymers |
JP2994219B2 (en) | 1994-05-24 | 1999-12-27 | シャープ株式会社 | Method for manufacturing semiconductor device |
JPH10154830A (en) * | 1996-09-27 | 1998-06-09 | Nichia Chem Ind Ltd | Light emitting device and display device using the same |
JPH11246722A (en) | 1998-02-27 | 1999-09-14 | Sekisui Chem Co Ltd | Polyvinyl chloride part for pipeline |
JPH11269367A (en) * | 1998-03-23 | 1999-10-05 | Daicel Chem Ind Ltd | Resin composition and molded article |
JP3305283B2 (en) * | 1998-05-01 | 2002-07-22 | キヤノン株式会社 | Image display device and control method of the device |
US5965261A (en) * | 1998-11-16 | 1999-10-12 | Clariant Finance (Bvi) Limited | Polyester |
US6236061B1 (en) | 1999-01-08 | 2001-05-22 | Lakshaman Mahinda Walpita | Semiconductor crystallization on composite polymer substrates |
US20030096122A1 (en) * | 2001-09-28 | 2003-05-22 | Mercx Franciscus Petrus Maria | Metallized polyester composition |
JP2003262701A (en) * | 2002-03-08 | 2003-09-19 | Kanegafuchi Chem Ind Co Ltd | Composition for optical material, optical material, liquid crystal display device and light emitting diode obtained by using the same, and method for manufacturing them |
AU2003236271A1 (en) | 2002-04-05 | 2003-10-20 | Mitsui Chemicals, Inc. | Resin composition for light emitting diode reflectors |
US6994461B2 (en) * | 2002-07-19 | 2006-02-07 | Pervaiz Lodhie | LED lamp for vehicle signal light |
JP2005038661A (en) | 2003-07-17 | 2005-02-10 | Konica Minolta Holdings Inc | Organic electroluminescent element, display device, lighting device and light source |
US7119141B2 (en) * | 2003-08-20 | 2006-10-10 | General Electric Company | Polyester molding composition |
US20050176835A1 (en) * | 2004-01-12 | 2005-08-11 | Toshikazu Kobayashi | Thermally conductive thermoplastic resin compositions |
US20060230553A1 (en) * | 2005-04-14 | 2006-10-19 | Helmut Thullen | Process for tinting, dyeing or doping of moulded components made of transparent (co)polyamides in aqueous dye bath |
US8007885B2 (en) * | 2005-09-14 | 2011-08-30 | Georgios Topoulos | Light-emitting diode assembly housing comprising poly(cyclohexanedimethanol terephthalate) compositions |
-
2006
- 2006-09-07 US US11/517,110 patent/US8007885B2/en not_active Expired - Fee Related
- 2006-09-12 WO PCT/US2006/035410 patent/WO2007033129A2/en active Application Filing
- 2006-09-12 EP EP20120160247 patent/EP2472603A1/en not_active Withdrawn
- 2006-09-12 JP JP2008531234A patent/JP5254018B2/en not_active Expired - Fee Related
- 2006-09-12 EP EP06803382A patent/EP1925038A2/en not_active Withdrawn
-
2011
- 2011-08-30 US US13/221,189 patent/US20110310622A1/en not_active Abandoned
-
2012
- 2012-03-23 JP JP2012067633A patent/JP5592425B2/en not_active Expired - Fee Related
- 2012-12-03 US US13/692,419 patent/US20130158184A1/en not_active Abandoned
-
2016
- 2016-08-31 US US15/253,049 patent/US20170084801A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5207967A (en) * | 1992-03-02 | 1993-05-04 | Eastman Kodak Company | Multicomponent polyester/polycarbonate blends with improved impact strength and processability |
US20030109629A1 (en) * | 2001-10-19 | 2003-06-12 | Pierre Jean R. | UV stabilized, impact modified polyester/polycarbonate blends, articles, and methods of manufacture thereof |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9163140B2 (en) | 2010-12-14 | 2015-10-20 | Lanxess Deutschland Gmbh | Polyester compositions |
US9562666B2 (en) | 2011-04-14 | 2017-02-07 | Ticona Llc | Molded reflectors for light-emitting diode assemblies |
US9062198B2 (en) | 2011-04-14 | 2015-06-23 | Ticona Llc | Reflectors for light-emitting diode assemblies containing a white pigment |
US9284448B2 (en) | 2011-04-14 | 2016-03-15 | Ticona Llc | Molded reflectors for light-emitting diode assemblies |
US9346933B2 (en) | 2011-04-14 | 2016-05-24 | Ticona Llc | Reflectors for light-emitting diode assemblies containing a white pigment |
US9453119B2 (en) | 2011-04-14 | 2016-09-27 | Ticona Llc | Polymer composition for producing articles with light reflective properties |
US9153757B2 (en) | 2011-08-01 | 2015-10-06 | Mitsui Chemicals, Inc. | Thermoplastic resin composition for reflective material, reflective plate, and light-emitting diode element |
US9187621B2 (en) | 2011-12-30 | 2015-11-17 | Ticona Llc | Reflector for light-emitting devices |
US9240537B2 (en) | 2012-11-09 | 2016-01-19 | Toyoda Gosei Co., Ltd. | Light-emitting device including case and sealant |
US9567460B2 (en) | 2012-12-18 | 2017-02-14 | Ticona Llc | Molded reflectors for light-emitting diode assemblies |
US10301449B2 (en) | 2013-11-29 | 2019-05-28 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having excellent light stability at high temperature |
US10822490B2 (en) | 2013-12-30 | 2020-11-03 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having excellent shock resistance and light resistance |
US10636951B2 (en) | 2014-06-27 | 2020-04-28 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having excellent reflectivity |
US11355683B2 (en) | 2014-06-27 | 2022-06-07 | Lotte Chemical Corporation | Thermoplastic resin composition having excellent reflectivity |
EP3163332A4 (en) * | 2014-06-30 | 2018-01-17 | Mitsui Chemicals, Inc. | Resin composition for reflective material, and reflective panel including same |
US9840610B2 (en) | 2014-09-30 | 2017-12-12 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition and molded article using the same |
US10508190B2 (en) | 2014-12-17 | 2019-12-17 | Lotte Advanced Materials Co., Ltd. | Polyester resin composition and molded article manufactured therefrom |
CN104650547A (en) * | 2015-01-21 | 2015-05-27 | 金发科技股份有限公司 | Polyester composition for reflecting plate |
US10131785B2 (en) | 2015-06-30 | 2018-11-20 | Lotte Advanced Materials Co., Ltd. | Polyester resin composition with excellent impact resistance and light reliability and molded article using the same |
US10538661B2 (en) | 2015-06-30 | 2020-01-21 | Lotte Advanced Materials Co., Ltd. | Polyester resin composition with excellent impact resistance and light reliability and molded article using the same |
US11384220B2 (en) | 2016-10-17 | 2022-07-12 | Shiraishi Kogyo Kaisha, Ltd. | White resin composition |
Also Published As
Publication number | Publication date |
---|---|
WO2007033129A2 (en) | 2007-03-22 |
JP5254018B2 (en) | 2013-08-07 |
US20070213458A1 (en) | 2007-09-13 |
JP2009507990A (en) | 2009-02-26 |
JP5592425B2 (en) | 2014-09-17 |
EP2472603A1 (en) | 2012-07-04 |
WO2007033129A3 (en) | 2007-06-14 |
US20170084801A1 (en) | 2017-03-23 |
US20110310622A1 (en) | 2011-12-22 |
JP2012136710A (en) | 2012-07-19 |
US8007885B2 (en) | 2011-08-30 |
EP1925038A2 (en) | 2008-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8007885B2 (en) | Light-emitting diode assembly housing comprising poly(cyclohexanedimethanol terephthalate) compositions | |
US9562666B2 (en) | Molded reflectors for light-emitting diode assemblies | |
US9567460B2 (en) | Molded reflectors for light-emitting diode assemblies | |
US9187621B2 (en) | Reflector for light-emitting devices | |
US20060293435A1 (en) | Light-emitting diode assembly housing comprising high temperature polyamide compositions | |
US9346933B2 (en) | Reflectors for light-emitting diode assemblies containing a white pigment | |
US11355683B2 (en) | Thermoplastic resin composition having excellent reflectivity | |
US9453119B2 (en) | Polymer composition for producing articles with light reflective properties | |
KR101798711B1 (en) | Thermoplastic resin composition having excellent reflectivity | |
KR101786192B1 (en) | Thermoplastic resin composition and molded article using the same | |
US9899580B2 (en) | Polyester resin composition having improved mechanical properties and anti-discoloration | |
JPH1154189A (en) | Polypropylene terephthalate resin connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |