US20130158106A1 - Tocopherol derivatives and methods of use - Google Patents
Tocopherol derivatives and methods of use Download PDFInfo
- Publication number
- US20130158106A1 US20130158106A1 US13/701,630 US201113701630A US2013158106A1 US 20130158106 A1 US20130158106 A1 US 20130158106A1 US 201113701630 A US201113701630 A US 201113701630A US 2013158106 A1 US2013158106 A1 US 2013158106A1
- Authority
- US
- United States
- Prior art keywords
- compound
- carbon
- carbons
- hydrocarbon tail
- unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 10
- 150000003611 tocopherol derivatives Chemical class 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 93
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 51
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 50
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 50
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract description 31
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 12
- -1 Tocol derivative compounds Chemical class 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229920006395 saturated elastomer Polymers 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 10
- VZWXIQHBIQLMPN-UHFFFAOYSA-N chromane Chemical group C1=CC=C2CCCOC2=C1 VZWXIQHBIQLMPN-UHFFFAOYSA-N 0.000 claims description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 claims description 8
- 150000002148 esters Chemical group 0.000 claims description 8
- 201000010099 disease Diseases 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 7
- 206010073306 Exposure to radiation Diseases 0.000 claims description 6
- 125000002837 carbocyclic group Chemical group 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 102000004895 Lipoproteins Human genes 0.000 claims description 5
- 108090001030 Lipoproteins Proteins 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 4
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 claims description 4
- 239000003963 antioxidant agent Substances 0.000 claims description 4
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 claims description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 208000024827 Alzheimer disease Diseases 0.000 claims description 3
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 3
- 208000002177 Cataract Diseases 0.000 claims description 3
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 claims description 3
- 208000000094 Chronic Pain Diseases 0.000 claims description 3
- 208000010412 Glaucoma Diseases 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 3
- 206010030113 Oedema Diseases 0.000 claims description 3
- 208000002193 Pain Diseases 0.000 claims description 3
- 206010037660 Pyrexia Diseases 0.000 claims description 3
- 206010040070 Septic Shock Diseases 0.000 claims description 3
- 206010064930 age-related macular degeneration Diseases 0.000 claims description 3
- 230000032683 aging Effects 0.000 claims description 3
- 230000000489 anti-atherogenic effect Effects 0.000 claims description 3
- 201000011510 cancer Diseases 0.000 claims description 3
- 208000029078 coronary artery disease Diseases 0.000 claims description 3
- 206010012601 diabetes mellitus Diseases 0.000 claims description 3
- 208000002780 macular degeneration Diseases 0.000 claims description 3
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 230000036303 septic shock Effects 0.000 claims description 3
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 claims description 2
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 claims description 2
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 2
- 239000003529 anticholesteremic agent Substances 0.000 claims description 2
- 125000004030 farnesyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 230000005764 inhibitory process Effects 0.000 claims description 2
- 150000003626 triacylglycerols Chemical class 0.000 claims description 2
- DFUSDJMZWQVQSF-XLGIIRLISA-N (2r)-2-methyl-2-[(4r,8r)-4,8,12-trimethyltridecyl]-3,4-dihydrochromen-6-ol Chemical class OC1=CC=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1 DFUSDJMZWQVQSF-XLGIIRLISA-N 0.000 abstract description 25
- 229930003799 tocopherol Natural products 0.000 abstract description 19
- 239000011732 tocopherol Substances 0.000 abstract description 19
- 229930003802 tocotrienol Natural products 0.000 abstract description 16
- 239000011731 tocotrienol Substances 0.000 abstract description 16
- 235000019148 tocotrienols Nutrition 0.000 abstract description 16
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 abstract description 11
- 229940068778 tocotrienols Drugs 0.000 abstract description 11
- 125000002640 tocopherol group Chemical class 0.000 abstract description 8
- 235000019149 tocopherols Nutrition 0.000 abstract description 8
- 229930195735 unsaturated hydrocarbon Natural products 0.000 abstract description 5
- 102100031663 Alpha-tocopherol transfer protein Human genes 0.000 abstract description 4
- 108010078068 alpha-tocopherol transfer protein Proteins 0.000 abstract description 4
- 230000003993 interaction Effects 0.000 abstract description 4
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 17
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 17
- 125000004432 carbon atom Chemical group C* 0.000 description 13
- 102000005962 receptors Human genes 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- 235000010384 tocopherol Nutrition 0.000 description 11
- 229960001295 tocopherol Drugs 0.000 description 11
- 0 [1*]C1=C2CCC([5*])(C)[Y]C2=C([4*])C([3*])=C1[2*] Chemical compound [1*]C1=C2CCC([5*])(C)[Y]C2=C([4*])C([3*])=C1[2*] 0.000 description 10
- 239000008280 blood Substances 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 125000005842 heteroatom Chemical group 0.000 description 7
- 230000037396 body weight Effects 0.000 description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 description 6
- GJJVAFUKOBZPCB-UHFFFAOYSA-N 2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000003442 weekly effect Effects 0.000 description 5
- RZFHLOLGZPDCHJ-DLQZEEBKSA-N alpha-Tocotrienol Natural products Oc1c(C)c(C)c2O[C@@](CC/C=C(/CC/C=C(\CC/C=C(\C)/C)/C)\C)(C)CCc2c1C RZFHLOLGZPDCHJ-DLQZEEBKSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 235000004835 α-tocopherol Nutrition 0.000 description 4
- 239000002076 α-tocopherol Substances 0.000 description 4
- 229930003427 Vitamin E Natural products 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229940064063 alpha tocotrienol Drugs 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 3
- 230000008821 health effect Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 150000003612 tocotrienol derivatives Chemical class 0.000 description 3
- 235000019165 vitamin E Nutrition 0.000 description 3
- 239000011709 vitamin E Substances 0.000 description 3
- 229940046009 vitamin E Drugs 0.000 description 3
- RZFHLOLGZPDCHJ-XZXLULOTSA-N α-Tocotrienol Chemical compound OC1=C(C)C(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1C RZFHLOLGZPDCHJ-XZXLULOTSA-N 0.000 description 3
- 235000019145 α-tocotrienol Nutrition 0.000 description 3
- 239000011730 α-tocotrienol Substances 0.000 description 3
- OTXNTMVVOOBZCV-UHFFFAOYSA-N 2R-gamma-tocotrienol Natural products OC1=C(C)C(C)=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 OTXNTMVVOOBZCV-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229940087168 alpha tocopherol Drugs 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 230000004957 immunoregulator effect Effects 0.000 description 2
- 238000012405 in silico analysis Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 125000003003 spiro group Chemical group 0.000 description 2
- 229960000984 tocofersolan Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 208000001395 Acute radiation syndrome Diseases 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- VIEFSMFBCIDJII-HMQOFEPLSA-N B.C.C.C/C=C(\C)CCCC(C)CCC=C(C)C.CC(C)=CCCC(C)CCC/C(C)=C/CO.CC(C)=CCCC(C)CCO.CC1=C(C)C(C)=C(O)C=C1.CC1=C(C)C(C)=C2OC(C)(C)CCC2=C1.CC1=C(O)C=C2CCC(C)(CO)OC2=C1C.CC1=C(O)C=C2CC[C@@](C)(CO)OC2=C1C.CC1=C(O)C=CC(O)=C1C.CCCC(C)CCC=C(C)C.CCCCCC(C)CCC=C(C)C.CC[C@]1(C)CCC2=CC(C)=C(C)C(C)=C2O1.O.[2HH] Chemical compound B.C.C.C/C=C(\C)CCCC(C)CCC=C(C)C.CC(C)=CCCC(C)CCC/C(C)=C/CO.CC(C)=CCCC(C)CCO.CC1=C(C)C(C)=C(O)C=C1.CC1=C(C)C(C)=C2OC(C)(C)CCC2=C1.CC1=C(O)C=C2CCC(C)(CO)OC2=C1C.CC1=C(O)C=C2CC[C@@](C)(CO)OC2=C1C.CC1=C(O)C=CC(O)=C1C.CCCC(C)CCC=C(C)C.CCCCCC(C)CCC=C(C)C.CC[C@]1(C)CCC2=CC(C)=C(C)C(C)=C2O1.O.[2HH] VIEFSMFBCIDJII-HMQOFEPLSA-N 0.000 description 1
- FSSNXDBJZQZYTN-CBIUGAAKSA-N CC(C)=CCCC(C)CCCC(C)CCC[C@]1(C)CCC2=CC(O)=C(C)C(C)=C2O1 Chemical compound CC(C)=CCCC(C)CCCC(C)CCC[C@]1(C)CCC2=CC(O)=C(C)C(C)=C2O1 FSSNXDBJZQZYTN-CBIUGAAKSA-N 0.000 description 1
- FPTGGZGLFFELIC-QQQNLONFSA-N CC(C)=CCC[C@@H](C)CCC/C(C)=C/CC[C@]1(C)CCC2=CC(O)=C(C)C(C)=C2O1 Chemical compound CC(C)=CCC[C@@H](C)CCC/C(C)=C/CC[C@]1(C)CCC2=CC(O)=C(C)C(C)=C2O1 FPTGGZGLFFELIC-QQQNLONFSA-N 0.000 description 1
- IHEAOMWAKYDBRP-UIMTZWSHSA-N CC/C=C(\C)CCCC(C)CCC=C(C)C.CC/C=C(\C)CCCC(C)CCC=C(C)C.CC/C=C(\C)CCCC(C)CCC=C(C)C.CC[C@]1(C)CCC2=CC(C)=C(C)C(C)=C2O1 Chemical compound CC/C=C(\C)CCCC(C)CCC=C(C)C.CC/C=C(\C)CCCC(C)CCC=C(C)C.CC/C=C(\C)CCCC(C)CCC=C(C)C.CC[C@]1(C)CCC2=CC(C)=C(C)C(C)=C2O1 IHEAOMWAKYDBRP-UIMTZWSHSA-N 0.000 description 1
- ITRSGFJPYJDMAP-RYKYADOVSA-N CCC/C=C(\C)CC1CC1(C)CCCC=C(C)C.CCC/C=C(\C)CCC1CC1(C)CCC=C(C)C Chemical compound CCC/C=C(\C)CC1CC1(C)CCCC=C(C)C.CCC/C=C(\C)CCC1CC1(C)CCC=C(C)C ITRSGFJPYJDMAP-RYKYADOVSA-N 0.000 description 1
- NWYSIZYGZBZKSC-CNCNLBFHSA-N CCC/C=C(\C)CCC1CC1(C)CCC=C(C)C.CCCC/C=C(\C)CC1CC1(C)CCCC=C(C)C Chemical compound CCC/C=C(\C)CCC1CC1(C)CCC=C(C)C.CCCC/C=C(\C)CC1CC1(C)CCCC=C(C)C NWYSIZYGZBZKSC-CNCNLBFHSA-N 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- MSPCIZMDDUQPGJ-UHFFFAOYSA-N N-methyl-N-(trimethylsilyl)trifluoroacetamide Chemical compound C[Si](C)(C)N(C)C(=O)C(F)(F)F MSPCIZMDDUQPGJ-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 206010068142 Radiation sickness syndrome Diseases 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 125000002527 bicyclic carbocyclic group Chemical group 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003021 clonogenic effect Effects 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- OTXNTMVVOOBZCV-YMCDKREISA-N gamma-Tocotrienol Natural products Oc1c(C)c(C)c2O[C@@](CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)(C)CCc2c1 OTXNTMVVOOBZCV-YMCDKREISA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000000871 hypocholesterolemic effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 125000001620 monocyclic carbocycle group Chemical group 0.000 description 1
- 125000002911 monocyclic heterocycle group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 239000000718 radiation-protective agent Substances 0.000 description 1
- 229940124554 radiomitigator Drugs 0.000 description 1
- 230000001950 radioprotection Effects 0.000 description 1
- 230000003537 radioprotector Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 238000001877 single-ion monitoring Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002723 toxicity assay Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 150000003712 vitamin E derivatives Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 235000019150 γ-tocotrienol Nutrition 0.000 description 1
- 239000011722 γ-tocotrienol Substances 0.000 description 1
- OTXNTMVVOOBZCV-WAZJVIJMSA-N γ-tocotrienol Chemical compound OC1=C(C)C(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 OTXNTMVVOOBZCV-WAZJVIJMSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/58—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
- C07D311/70—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6
- C07D311/72—3,4-Dihydro derivatives having in position 2 at least one methyl radical and in position 6 one oxygen atom, e.g. tocopherols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/58—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
Definitions
- Vitamin E is composed of eight naturally occurring tocols. Four are tocopherols, which possess a saturated hydrocarbon tail, and four are tocotrienols, which possess three trans double bonds in the hydrocarbon tail.
- the tocols are known to have beneficial health effects when provided as a dietary supplement. Efficient transport out of the liver is necessary for the tocols to deliver the beneficial health effects.
- the tocols are transported out of the liver and into the blood stream by a protein called ⁇ TTP (tocopherol transfer protein).
- ⁇ TTP tocopherol transfer protein
- the tocotrienols have recently been shown to have some beneficial health effects not seen with the tocopherols.
- tocol derivatives with modifications to the hydrocarbon tail to allow more efficient binding and uptake of tocols with unsaturated hydrocarbon tails by the ⁇ TTP receptor.
- the derivatives are called tocoflexols to indicate the increased flexibility of the hydrocarbon tail as compared to tocotrienols and differentiate this class of compounds from the tocopherols and tocotrienols.
- Tocopherol and tocotrienol derivatives with one to three double bonds in the hydrocarbon tail are described herein.
- tocol derivative compounds with a chroman group and a hydrocarbon tail having three isoprene units are described herein.
- the hydrocarbon tail is distinct from that of tocopherol and tocotrienol in that at least one isoprene unit is unsaturated, suitably between carbon 2 and 3 of the isoprene unit and the second isoprene unit in the hydrocarbon tail does not include a trans carbon carbon double bond.
- R 1 , R 3 , R 4 and R 5 are each independently —H, halogen, —OH, —OCH 3 , or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C 1 -C 20 alkyl;
- R 2 is an ester, —OH, —NHR 6 , —CO 2 H, C(R 6 ) 2 CO 2 H or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C 1 -C 6 alkyl;
- R 6 is —H, halogen, —OH, or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C 1 -C 20 alkyl;
- Y is O, S or NH; and
- Z is a hydrocarbon side chain having 1 to 3 carbon-carbon double bonds represented by formula (II):
- the numerals represent the numbering of the carbons in the chain, wherein the dotted lines between carbons 1′, 2′, 3′, 4′ and 16′, and between 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ represent a position for an optional carbon-carbon bond and the dotted line between carbons 7′ and 8′ represent a single bond, a cis carbon-carbon double bond or a cyclopropyl group including carbon 7′ and 8′ and a third carbon that is not shown in the formula.
- the compounds have a chroman head group of any of the tocol derivatives and a partially unsaturated hydrocarbon tail with a carbon-carbon double bond between carbons 11′ and 12′ or alternatively between any of the carbons in the third isoprene unit.
- the compounds have a hydrocarbon tail with two carbon-carbon double bonds.
- the carbon-carbon double bonds are between carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ and at least one of carbons 1′-2′, 2′-3′,3′-4′, ′-8′ and 4′-16′.
- the compounds have a hydrocarbon tail with three carbon-carbon double bonds.
- the carbon-carbon double bonds are between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ and between carbons 7′ and 8′ and one of carbons 2′-3′, 3′-4′, and 4′-16′.
- the hydrocarbon tail has a double bond between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ and between one of carbons 1′-2′, 2′-3′,3′-4′, and 4′-16′ and contains a cyclopropyl group including carbons 7′ and 8′ and a carbon 17′ not shown in formula II.
- methods of treating a subject with a condition include administering an effective amount of at least one of the described compounds to the subject to ameliorate the condition.
- the subject may be in need of treatment with an antioxidant, an anti-inflammatory agent, an immunoregulatory agent, an anti-thromobotic agent, an anti-atherogenic agent, a hypocholesterolemic agent or an HMG-CoA reductase inhibitor.
- the subject may have a condition selected from radiation exposure, cancer, cardiovascular disease including but not limited to coronary artery disease, decreasing lipoprotein levels, decreasing cholesterol levels, decreasing triglycerides, age-related macular degeneration, cataracts, glaucoma, chronic pain, chronic fatigue syndrome, fever, edema, diabetes mellitus, signs of aging, rheumatoid diseases, septic shock, and Alzheimer's disease.
- cardiovascular disease including but not limited to coronary artery disease, decreasing lipoprotein levels, decreasing cholesterol levels, decreasing triglycerides, age-related macular degeneration, cataracts, glaucoma, chronic pain, chronic fatigue syndrome, fever, edema, diabetes mellitus, signs of aging, rheumatoid diseases, septic shock, and Alzheimer's disease.
- FIG. 1 is a schematic of RRR- ⁇ -tocopherol as it would appear when bound to the ⁇ -TTP receptor.
- FIG. 2 is a schematic of the in silico analysis of the Torsion angles A and B for tocopherol, tocotrienol and the RS and RR configuration of tocoflexol compounds of the invention.
- the circle represents a key contact between the TTP receptor and the tocol.
- FIG. 3 is a synthetic scheme for producing a compound of the invention.
- FIG. 4 is a graph showing the results of a gas chromatography-mass spectrometry experiment demonstrating the ability to detect and differentiate tocol compounds in plasma.
- tocol derivatives with modifications to the hydrocarbon tail to allow more efficient binding and uptake by the ⁇ TTP receptor and methods of using these compounds.
- the derivatives are called tocoflexols to indicate the increased flexibility of the hydrocarbon tail relative to the tocotrienols and differentiate this class of compounds from the tocopherols and tocotrienols.
- Tocopherol and tocotrienol derivatives with one to three double bonds in the hydrocarbon tail are described herein.
- Tocol derivative compounds with a chroman group and a hydrocarbon tail having three isoprene units are described herein.
- the chroman group has the basic structure shown in formula I. Many alterations to the chroman head group of the tocols have been described elsewhere and are known to those of skill in the art.
- the chroman head group of any tocol may be used to generate the compounds descried herein.
- the hydrocarbon tail is distinct from that of tocopherol in that at least one isoprene unit is unsaturated. Suitably the double bond is between carbon 2 and 3 of the isoprene unit as shown below.
- the hydrocarbon tail is also distinct from that of the tocotrienols because the second (middle) isoprene unit in the hydrocarbon tail does not include a trans carbon-carbon double bond.
- the isoprene units has a double bond.
- the double bond is between carbons 2 and 3 of the isoprene unit as shown by the dotted line in the formula above.
- the third isoprene unit (the farthest from the chroman head group) has a carbon-carbon double bond between carbon 2 and 3.
- the hydrocarbon tail has a cis carbon-carbon double bond between carbons 2 and 3 of the second or middle isoprene unit.
- the compound has a carbon-carbon double bond between carbon 2 and 3 of the third isoprene unit and a cis carbon-carbon double bond between carbons 2 and 3 of the second or middle isoprene unit.
- the compound may have a cyclopropyl group involving carbons 2 and 3 of the second or middle isoprene unit and an additional carbon that is not part of the basic isoprene unit.
- This compound may also have a carbon-carbon double bond between carbons 2 and 3 of the third isoprene unit.
- the second isoprene unit of the hydrocarbon tail may be saturated and the first or first and third isoprene units may be unsaturated.
- the hydrocarbon tail of tocols must be flexible and able to fold and bend. Tocotrienols, because of the unsaturated hydrocarbon tail, do not bind as efficiently to ⁇ TTP and have lower bioavailability than tocopherols.
- the hydrocarbon tail of the tocoflexols of the present invention may be folded such that the Torsion angle between carbon 4 of the first isoprene unit and carbons 1, 2, and 3 of the second isoprene unit is about 61.0° and the Torsion angle between carbons 1, 2, 3, and 4 of the second isoprene unit is about 58.4°.
- the hydrocarbon tail is flexible and can adopt conformations with Torsion angles between 30° and 90°, suitably between 45° and 75°, suitably between 50° and 70°, suitably between 53° and 65° at these positions.
- Tocopherol and tocotrienol derivatives having one to three unsaturated carbon-carbon bonds on the hydrocarbon tail are provided herein.
- the compounds provided herein may have the following structural formula:
- R 1 , R 3 , R 4 and R 5 are each independently —H, halogen, —OH, —OCH 3 , or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C 1 -C 20 alkyl;
- R 2 is an ester, —OH, —NHR 6 , —CO 2 H, —C(R 6 ) 2 CO 2 H or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C 1 -C 6 alkyl or hydroxyalkyl;
- R 6 is —H, halogen, —OH, or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C 1 -C 20 alkyl;
- Y is O, S or NH; and
- Z is a hydrocarbon side chain having 1 to 3 carbon-carbon double bonds represented by formula (II).
- the numerals represent the numbering of the carbons in the chain.
- the dotted lines between carbons 1′, 2′, 3′, 4′ and 16′, and between 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ represent a position for an optional carbon-carbon double bond and the dotted line between carbon 7′ and 8′ represent a single bond, an optional cis carbon-carbon double bond or a cyclopropyl group including both carbon 7′ and 8′ and an additional carbon 17′ not shown in this formula.
- the compound may have the Torsion angles described above such that the Torsion A angle between carbons 5′, 6′, 7′, and 8 ′ of the hydrocarbon tail of formula II is about 61.0° and the Torsion B angle between carbons 6′, 7′, 8′, and 9′ of the hydrocarbon tail of formula II is about 58.4°.
- the hydrocarbon tail is flexible and can adopt conformations with Torsion angles between 30° and 90°, suitably between 45° and 75°, suitably between 50° and 70°, suitably between 53° and 65° at these positions.
- a tocol compound having these torsion angles is depicted in FIG. 1 . In a straight line drawing the torsion angles are depicted as follows:
- the compounds have a hydrocarbon tail with a carbon-carbon double bond.
- the double bond may be between one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably the double bond is between carbons 11′ and 12′.
- the compounds may have a hydrocarbon tail with two or three carbon-carbon double bonds.
- the carbon-carbon double bonds may be between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′ and at least one of carbons 1′-2′, 2′-3′,3′-4′, 4′-16′, 8′-15′, 8′-9′ or 9′-10′.
- the hydrocarbon tails do not have a carbon-carbon double bond between carbons 5′-6′, 6′-7′ or 7′-8′ in the trans configuration.
- the compounds have a hydrocarbon tail with two carbon-carbon double bonds.
- the carbon-carbon double bonds are between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′ and at least one of carbons 1′-2′, 2′-3′,3′-4′, 7′-8′ (in cis) and 4′-16′.
- the compounds have a hydrocarbon tail with three carbon-carbon double bonds.
- the carbon-carbon double bonds are between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′, and 7′-8′ (in cis) and one of carbons 1′-2′, 2′-3′,3′-4′, and 4′-16′.
- the hydrocarbon tail has a double bond between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′ and between one of carbons 1′-2′, 2′-3′,3′-4′, and 4′-16′ and contains a cyclopropyl group including carbons 7′ and 8′ and a carbon 17′ not shown in formula II.
- the hydrocarbon tail with the optional cyclopropyl group may have one of the following configurations with the carbon-double bond shown between carbons 3′ and 4′ as an optional double bond:
- the hydrocarbon tails described herein may have at least one stereocenter.
- the compounds of the invention may be present as a racemic mixture of compounds or stereoisomers.
- certain isomers may be more effective in terms of binding and transport by the ⁇ TTP receptor or may have different or distinct bioactivity, bioavailability or pharmacokinetics.
- the RS configuration is expected to bind and be transported more efficiently than other isomers. Thus preparation and isolation of the most effective stereoisomers may result in relative pure preparations. If either isomer is in enantiomeric excess of over 50%, the compound is suitably over 80% in the RS structure. Suitably, the compound is over 80%, 85%, 90%, 95%, 98%, 99% a single stereoisomer, such as the RS stereoisomer.
- R 2 is an —OH.
- R 2 is an ester. If R 2 is an ester it may be an ester selected from —O(CO)CH 3 , —O(CO)heterocyclic, O(CO)carbocyclic, —O(CO)(R 7 )COOH, —O(CO)R 8 , wherein R 7 is selected from a branched or unbranched, saturated or unsaturated, substituted or unsubstituted C 1 -C 20 alkyl and R 8 is selected from —H, and a branched or unbranched, saturated or unsaturated, substituted or unsubstituted C 1 -C 20 alkyl.
- R 2 is —NHR 6 , —CO 2 H, —C(R 6 ) 2 CO 2 H or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C 1 -C 6 alkyl or hydroxyalkyl.
- R 6 is suitably a —H, —OH or —CH 3 .
- Y is an —O—.
- R 5 is suitably either a —H or a —CH 3 .
- R 1 , R 3 and R 4 are suitably a C 1 -C 6 branched or unbranched, saturated or unsaturated, substituted or unsubstituted alkyl.
- R 1 , R 3 , R 4 and R 5 are selected from —H and —CH 3 , R 2 is —OH or an ester, Y is —O—, and the hydrocarbon tail (Z) has at least a double bond between carbons 11′ and 12′.
- R 5 is —H.
- R 1 , R 3 and R 4 are all CH 3 .
- R 3 and R 4 are CH 3 and R 1 is H. In another embodiment, R′ and R 4 are CH 3 and R 3 is H. In another embodiment, R 1 , R 3 and R 4 are H.
- Each R group is independently selected and may be combined in any manner and with any of the hydrocarbon tails described herein.
- One exemplary embodiment of the compounds of the invention is as shown below:
- “Substituted” means that one or more of the hydrogen atoms bonded to carbon atoms in the chain or ring have been replaced with other substituents. Suitable substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups. “Unsubstituted” means that the carbon chain or ring contains no other substituents other than carbon and hydrogen.
- Branched means that the carbon chain is not simply a linear chain. “Unbranched” means that the carbon chain is a linear carbon chain.
- “Saturated” means that the carbon chain or ring does not contain any double or triple bonds. “Unsaturated” means that the carbon chain or ring contains at least one double bond. An unsaturated carbon chain or ring may include more than one double bond.
- Heterogeneous group means a saturated or unsaturated chain of non-hydrogen member atoms comprising carbon atoms and at least one heteroatom.
- Hydrocarbon group means a chain of 1 to 25 carbon atoms, suitably 1 to 12 carbon atoms, more suitably 1 to 10 carbon atoms, and most suitably 1 to 8 carbon atoms. Hydrocarbon groups may have a linear or branched chain structure. Suitably the hydrocarbon groups have one branch.
- Carbocyclic group means a saturated or unsaturated hydrocarbon ring. Carbocyclic groups are not aromatic. Carbocyclic groups are monocyclic or polycyclic. Polycyclic carbocyclic groups can be fused, spiro, or bridged ring systems. Monocyclic carbocyclic groups contain 4 to 10 carbon atoms, suitably 4 to 7 carbon atoms, and more suitably 5 to 6 carbon atoms in the ring. Bicyclic carbocyclic groups contain 8 to 12 carbon atoms, preferably 9 to 10 carbon atoms in the rings.
- Heteroatom means an atom other than carbon e.g., in the ring of a heterocyclic group or the chain of a heterogeneous group.
- heteroatoms are selected from the group consisting of sulfur, phosphorous, nitrogen and oxygen atoms.
- Groups containing more than one heteroatom may contain different heteroatoms.
- Heterocyclic group means a saturated or unsaturated ring structure containing carbon atoms and 1 or more heteroatoms in the ring. Heterocyclic groups are not aromatic. Heterocyclic groups are monocyclic or polycyclic. Polycyclic heteroaromatic groups can be fused, spiro, or bridged ring systems. Monocyclic heterocyclic groups contain 4 to 10 member atoms (i.e., including both carbon atoms and at least 1 heteroatom), suitably 4 to 7, and more suitably 5 to 6 in the ring. Bicyclic heterocyclic groups contain 8 to 18 member atoms, suitably 9 or 10 in the rings.
- salts of the compounds described herein are also provided.
- the salts are pharmaceutically acceptable.
- Acceptable salts of the compounds include, but are not limited to hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate.
- the compounds described have enhanced binding to the ⁇ -TTP receptor and enhanced transport out of the liver and into the circulation after administration to a subject.
- the enhanced transport is expected to lead to enhanced biological activity of the compounds as compared to tocotrienol after administration to a subject.
- the elimination half-life from the subject is also expected to be enhanced.
- This enhancement of uptake into the blood stream combined with decreased clearance from the body may result in increased effectiveness of administration of the compound or may allow for the therapeutically effective dose of the compounds described herein to be lower than that of tocotrienol or other tocols.
- the subject may be any mammal, including but not limited to a human, mouse, or domesticated animal.
- the compounds may have other activities in addition to increased receptor mediated uptake into the blood stream.
- the hydrocarbon tail may allow farnesyl recognition or confer HMGCoA reductase inhibition activity.
- the hydrocarbon tail composition may also affect the bioactivity of the compound.
- compositions comprising the compound of formula (I) or any of the compounds described above and a pharmaceutically acceptable carrier are provided.
- a pharmaceutically acceptable carrier is any carrier suitable for in vivo administration. Examples of pharmaceutically acceptable carriers suitable for use in the composition include, but are not limited to, water, buffered solutions, glucose solutions, oil-based or bacterial culture fluids. Additional components of the compositions may suitably include, for example, excipients such as stabilizers, preservatives, diluents, emulsifiers and lubricants.
- Examples of pharmaceutically acceptable carriers or diluents include stabilizers such as carbohydrates (e.g., sorbitol, mannitol, starch, sucrose, glucose, dextran), proteins such as albumin or casein, protein-containing agents such as bovine serum or skimmed milk and buffers (e.g., phosphate buffer). Especially when such stabilizers are added to the compositions, the composition is suitable for freeze-drying or spray-drying. The composition may also be emulsified.
- carbohydrates e.g., sorbitol, mannitol, starch, sucrose, glucose, dextran
- proteins such as albumin or casein
- protein-containing agents such as bovine serum or skimmed milk
- buffers e.g., phosphate buffer
- the compounds described herein may be used to treat a subject with a condition selected from radiation exposure, cancer, cardiovascular disease including but not limited to coronary artery disease, decreasing lipoprotein levels, decreasing cholesterol levels, decrease triglyceride levels and the like, age-related macular degeneration, cataracts, glaucoma, chronic pain, chronic fatigue syndrome, fever, edema, diabetes mellitus, signs of aging, rheumatoid diseases, septic shock, or Alzheimer's disease.
- the compounds may be delivered as a radioprotective agent to a subject prior to potential exposure to radiation, such as to a patient receiving radiation therapy, or a person working with or cleaning up radiation.
- the compounds may also be given after radiation exposure as a radiomitigator, such as after an accident involving the release of radiation.
- Treatment of a condition includes but is not limited to, prophylaxis of symptoms or indicators of the condition, reduction in disease severity, or reversal, reduction or slowing in disease progression as compared to an untreated subject.
- the compounds described herein may be used to treat subjects in need of treatment with an antioxidant, an anti-inflammatory, immunoregulatory, antithromobotic, antiatherogenic, hypocholesterolemic or an HMG-CoA reductase inhibitor.
- the compounds may be useful to increase the feed conversion efficiency of domesticated animals including livestock.
- Combination therapy with a known antioxidant, anti-inflammatory or HMG-CoA reductase inhibitor may result in increased effectiveness of the combination treatment as compared to treatment with either compound alone.
- the compounds described herein may be administered by any means known to those skilled in the art, including, but not limited to, oral, topical, intranasal, intraperitoneal, parenteral, intravenous, intramuscular, or subcutaneous.
- the compounds may be formulated as an ingestable, injectable, topical or suppository formulation.
- the compounds may also be delivered with in a liposomal or time-release vehicle.
- Administration of the compounds to a subject in accordance with the invention appears to exhibit beneficial effects in a dose-dependent manner. Thus, within broad limits, administration of larger quantities of the compounds is expected to achieve increased beneficial biological effects than administration of a smaller amount. Moreover, efficacy is also contemplated at dosages below the level at which toxicity is seen.
- the specific dosage administered in any given case will be adjusted in accordance with the compound or compounds being administered, the disease to be treated or inhibited, the condition of the subject, and other relevant medical factors that may modify the activity of the compound or the response of the subject, as is well known by those skilled in the art.
- the specific dose for a particular subject depends on age, body weight, general state of health, diet, the timing and mode of administration, the rate of excretion, medicaments used in combination and the severity of the particular disorder to which the therapy is applied.
- Dosages for a given patient can be determined using conventional considerations, e.g., by customary comparison of the differential activities of the compound of the invention and of a known agent such as tocopherol, such as by means of an appropriate conventional pharmacological or prophylactic protocol.
- the maximal dosage for a subject is the highest dosage that does not cause undesirable or intolerable side effects.
- the number of variables in regard to an individual prophylactic or treatment regimen is large, and a considerable range of doses is expected.
- the route of administration will also impact the dosage requirements. It is anticipated that dosages of the compound will reduce symptoms of the condition at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% compared to pre-treatment symptoms or symptoms is left untreated. It is specifically contemplated that pharmaceutical preparations and compositions may palliate or alleviate symptoms of the disease without providing a cure, or, in some embodiments, may be used to cure the disease or disorder.
- Suitable effective dosage amounts for administering the compounds may be determined by those of skill in the art, but typically range from about 1 microgram to about 100,000 micrograms per kilogram of body weight weekly, although they are typically about 1,000 micrograms or less per kilogram of body weight weekly. Like other vitamin E compounds, large doses may be required for therapeutic effect and toxicity of the compounds is likely low. In some embodiments, the effective dosage amount ranges from about 10 to about 10,000 micrograms per kilogram of body weight weekly. In another embodiment, the effective dosage amount ranges from about 50 to about 5,000 micrograms per kilogram of body weight weekly. In another embodiment, the effective dosage amount ranges from about 75 to about 1,000 micrograms per kilogram of body weight weekly.
- the effective dosage amounts described herein refer to total amounts administered, that is, if more than one compound is administered, the effective dosage amounts correspond to the total amount administered.
- the compound can be administered as a single dose or as divided doses.
- the composition may be administered two or more times separated by 4 hours, 6 hours, 8 hours, 12 hours, a day, two days, three days, four days, one week, two weeks, or by three or more weeks.
- FIG. 1 demonstrates that the hydrocarbon tail must fold at two torsion points. Torsion angle A is suitably about 61° and Torsion B is suitably at about 58.4°. Thus tocols with a flexible tail capable of conforming to these angles are contemplated. The central location of the torsion is shown in the drawing below.
- the heat map of the interaction between various tocols and the ⁇ TTP receptor is shown in FIG. 2 .
- the circled area on the heat map shows the key interaction distinction between RRR- ⁇ -tocopherol and R- ⁇ -tocotrienol.
- the heat map for RS- ⁇ -tocoflexol is quite similar to that of tocopherol and thus binding to ⁇ TTP receptor is expected to be similar to that of tocopherol.
- the heat map for RR- ⁇ -tocoflexol lacks this key predicted interaction and thus is expected to bind ⁇ TTP less efficiently.
- Compound 1 is synthesized by a reaction between a chiral chromanyl group and C15 alkyl chain built as shown below.
- FIG. 3 An alternative synthesis scheme to make the compounds of formula I is depicted in FIG. 3 .
- GC/MS Gas chromatography-mass spectrometry
- the ability of the compounds described herein to bind ⁇ -TTP will be measured as described in Panagabko et al, 2003 Biochemistry 42:6467-74.
- the Vitamin E activity of the compounds will be assessed by the method of Leth et al, 1977 J. Nutr. 107:2236-43. Specific activity, for example, as radioprotectors, will be assessed in vitro and in vivo using standard assays.
- the compounds will be used in the following assays: in vitro radiation toxicity assays (clonogenic cell survival, cytogenetics, and measurement of oxidative stress) and in vivo studies (hematopoietic, gastrointestinal, pulmonary, cutaneous, and neurovascular subsyndromes of the acute radiation syndrome).
- in vitro radiation toxicity assays clonogenic cell survival, cytogenetics, and measurement of oxidative stress
- in vivo studies hematopoietic, gastrointestinal, pulmonary, cutaneous, and neurovascular subsyndromes of
- the compounds described herein and ⁇ -tocopherol and ⁇ -tocotrienol will be combined with food or provided in tablet form to subjects over a period of four weeks. At various times post-administration blood samples will be harvested from the subjects and the amount of the compound present in the blood will be compared. Subjects will be tested for blood lipoprotein levels prior to receiving the compounds and after 4 weeks of treatment. After 4 weeks of treatment we expect the compounds of the invention will cause a significant reduction in the levels of lipoproteins in the blood of treated individuals as compared to untreated controls and as compared to those treated with ⁇ -tocopherol or ⁇ -tocotrienol.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This patent application claims the benefit of priority of U.S. Provisional Patent Application No. 61/350,740, filed Jun. 2, 2010, which is incorporated herein by reference in its entirety.
- Vitamin E is composed of eight naturally occurring tocols. Four are tocopherols, which possess a saturated hydrocarbon tail, and four are tocotrienols, which possess three trans double bonds in the hydrocarbon tail. The tocols are known to have beneficial health effects when provided as a dietary supplement. Efficient transport out of the liver is necessary for the tocols to deliver the beneficial health effects. The tocols are transported out of the liver and into the blood stream by a protein called αTTP (tocopherol transfer protein). Some tocols, specifically the tocopherols, are more efficiently transported out of the liver and into the blood stream than the tocotrienols and have a longer half-life in the body which allows for decreased doses and possibly increased biological activity.
- The tocotrienols have recently been shown to have some beneficial health effects not seen with the tocopherols. Provided herein are tocol derivatives with modifications to the hydrocarbon tail to allow more efficient binding and uptake of tocols with unsaturated hydrocarbon tails by the αTTP receptor. The derivatives are called tocoflexols to indicate the increased flexibility of the hydrocarbon tail as compared to tocotrienols and differentiate this class of compounds from the tocopherols and tocotrienols. Tocopherol and tocotrienol derivatives with one to three double bonds in the hydrocarbon tail are described herein.
- In one aspect, tocol derivative compounds with a chroman group and a hydrocarbon tail having three isoprene units are described herein. The hydrocarbon tail is distinct from that of tocopherol and tocotrienol in that at least one isoprene unit is unsaturated, suitably between
carbon - In another aspect, the compounds described herein have formula (I):
- or a salt thereof, wherein R1, R3, R4 and R5 are each independently —H, halogen, —OH, —OCH3, or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl; R2 is an ester, —OH, —NHR6, —CO2H, C(R6)2CO2H or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C1-C6 alkyl; R6 is —H, halogen, —OH, or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl; Y is O, S or NH; and Z is a hydrocarbon side chain having 1 to 3 carbon-carbon double bonds represented by formula (II):
- wherein the numerals represent the numbering of the carbons in the chain, wherein the dotted lines between
carbons 1′, 2′, 3′, 4′ and 16′, and between 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ represent a position for an optional carbon-carbon bond and the dotted line betweencarbons 7′ and 8′ represent a single bond, a cis carbon-carbon double bond or a cyclopropylgroup including carbon 7′ and 8′ and a third carbon that is not shown in the formula. - In one aspect, the compounds have a chroman head group of any of the tocol derivatives and a partially unsaturated hydrocarbon tail with a carbon-carbon double bond between carbons 11′ and 12′ or alternatively between any of the carbons in the third isoprene unit. In another aspect, the compounds have a hydrocarbon tail with two carbon-carbon double bonds. In one embodiment, the carbon-carbon double bonds are between carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ and at least one of
carbons 1′-2′, 2′-3′,3′-4′, ′-8′ and 4′-16′. In yet another aspect, the compounds have a hydrocarbon tail with three carbon-carbon double bonds. In one embodiment, the carbon-carbon double bonds are between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ and betweencarbons 7′ and 8′ and one ofcarbons 2′-3′, 3′-4′, and 4′-16′. In still another embodiment, the hydrocarbon tail has a double bond between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ and between one ofcarbons 1′-2′, 2′-3′,3′-4′, and 4′-16′ and contains a cyclopropylgroup including carbons 7′ and 8′ and a carbon 17′ not shown in formula II. - In still another aspect, methods of treating a subject with a condition are provided. The methods include administering an effective amount of at least one of the described compounds to the subject to ameliorate the condition. The subject may be in need of treatment with an antioxidant, an anti-inflammatory agent, an immunoregulatory agent, an anti-thromobotic agent, an anti-atherogenic agent, a hypocholesterolemic agent or an HMG-CoA reductase inhibitor. The subject may have a condition selected from radiation exposure, cancer, cardiovascular disease including but not limited to coronary artery disease, decreasing lipoprotein levels, decreasing cholesterol levels, decreasing triglycerides, age-related macular degeneration, cataracts, glaucoma, chronic pain, chronic fatigue syndrome, fever, edema, diabetes mellitus, signs of aging, rheumatoid diseases, septic shock, and Alzheimer's disease.
-
FIG. 1 is a schematic of RRR-α-tocopherol as it would appear when bound to the α-TTP receptor. -
FIG. 2 is a schematic of the in silico analysis of the Torsion angles A and B for tocopherol, tocotrienol and the RS and RR configuration of tocoflexol compounds of the invention. The circle represents a key contact between the TTP receptor and the tocol. -
FIG. 3 is a synthetic scheme for producing a compound of the invention. -
FIG. 4 is a graph showing the results of a gas chromatography-mass spectrometry experiment demonstrating the ability to detect and differentiate tocol compounds in plasma. - Provided herein are tocol derivatives with modifications to the hydrocarbon tail to allow more efficient binding and uptake by the αTTP receptor and methods of using these compounds. The derivatives are called tocoflexols to indicate the increased flexibility of the hydrocarbon tail relative to the tocotrienols and differentiate this class of compounds from the tocopherols and tocotrienols. Tocopherol and tocotrienol derivatives with one to three double bonds in the hydrocarbon tail are described herein.
- Tocol derivative compounds with a chroman group and a hydrocarbon tail having three isoprene units are described herein. The chroman group has the basic structure shown in formula I. Many alterations to the chroman head group of the tocols have been described elsewhere and are known to those of skill in the art. The chroman head group of any tocol may be used to generate the compounds descried herein. The hydrocarbon tail is distinct from that of tocopherol in that at least one isoprene unit is unsaturated. Suitably the double bond is between
carbon - Suitably, at least one of the isoprene units has a double bond. Suitably, the double bond is between
carbons carbon carbons carbon carbons group involving carbons carbons - As described in the Examples, the inventors found that in order to efficiently bind to the αTTP receptor the hydrocarbon tail of tocols must be flexible and able to fold and bend. Tocotrienols, because of the unsaturated hydrocarbon tail, do not bind as efficiently to αTTP and have lower bioavailability than tocopherols. The hydrocarbon tail of the tocoflexols of the present invention may be folded such that the Torsion angle between
carbon 4 of the first isoprene unit andcarbons carbons - Tocopherol and tocotrienol derivatives having one to three unsaturated carbon-carbon bonds on the hydrocarbon tail are provided herein. The compounds provided herein may have the following structural formula:
- or a salt thereof, wherein R1, R3, R4 and R5 are each independently —H, halogen, —OH, —OCH3, or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl; R2 is an ester, —OH, —NHR6, —CO2H, —C(R6)2CO2H or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C1-C6 alkyl or hydroxyalkyl; R6 is —H, halogen, —OH, or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C1-C20 alkyl; Y is O, S or NH; and Z is a hydrocarbon side chain having 1 to 3 carbon-carbon double bonds represented by formula (II).
- The numerals represent the numbering of the carbons in the chain. The dotted lines between
carbons 1′, 2′, 3′, 4′ and 16′, and between 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′ represent a position for an optional carbon-carbon double bond and the dotted line betweencarbon 7′ and 8′ represent a single bond, an optional cis carbon-carbon double bond or a cyclopropyl group including bothcarbon 7′ and 8′ and an additional carbon 17′ not shown in this formula. - The compound may have the Torsion angles described above such that the Torsion A angle between carbons 5′, 6′, 7′, and 8′ of the hydrocarbon tail of formula II is about 61.0° and the Torsion B angle between carbons 6′, 7′, 8′, and 9′ of the hydrocarbon tail of formula II is about 58.4°. Suitably the hydrocarbon tail is flexible and can adopt conformations with Torsion angles between 30° and 90°, suitably between 45° and 75°, suitably between 50° and 70°, suitably between 53° and 65° at these positions. A tocol compound having these torsion angles is depicted in
FIG. 1 . In a straight line drawing the torsion angles are depicted as follows: - The compounds have a hydrocarbon tail with a carbon-carbon double bond. The double bond may be between one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably the double bond is between carbons 11′ and 12′. The compounds may have a hydrocarbon tail with two or three carbon-carbon double bonds. The carbon-carbon double bonds may be between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′ and at least one of carbons 1′-2′, 2′-3′,3′-4′, 4′-16′, 8′-15′, 8′-9′ or 9′-10′. The hydrocarbon tails do not have a carbon-carbon double bond between carbons 5′-6′, 6′-7′ or 7′-8′ in the trans configuration. In another aspect, the compounds have a hydrocarbon tail with two carbon-carbon double bonds. In one embodiment, the carbon-carbon double bonds are between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′ and at least one of carbons 1′-2′, 2′-3′,3′-4′, 7′-8′ (in cis) and 4′-16′. In yet another aspect, the compounds have a hydrocarbon tail with three carbon-carbon double bonds. In one embodiment, the carbon-carbon double bonds are between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′, and 7′-8′ (in cis) and one of carbons 1′-2′, 2′-3′,3′-4′, and 4′-16′. In still another embodiment, the hydrocarbon tail has a double bond between at least one of carbons 15′, 8′, 9′, 10′, 11′, 12′, 13′, and 14′, suitably carbons 11′ and 12′ and between one of carbons 1′-2′, 2′-3′,3′-4′, and 4′-16′ and contains a cyclopropyl group including carbons 7′ and 8′ and a carbon 17′ not shown in formula II. The hydrocarbon tail with the optional cyclopropyl group may have one of the following configurations with the carbon-double bond shown between carbons 3′ and 4′ as an optional double bond:
- The hydrocarbon tails described herein may have at least one stereocenter. Thus the compounds of the invention may be present as a racemic mixture of compounds or stereoisomers. As shown in
FIG. 2 and described further in the examples, certain isomers may be more effective in terms of binding and transport by the αTTP receptor or may have different or distinct bioactivity, bioavailability or pharmacokinetics. The RS configuration is expected to bind and be transported more efficiently than other isomers. Thus preparation and isolation of the most effective stereoisomers may result in relative pure preparations. If either isomer is in enantiomeric excess of over 50%, the compound is suitably over 80% in the RS structure. Suitably, the compound is over 80%, 85%, 90%, 95%, 98%, 99% a single stereoisomer, such as the RS stereoisomer. - The chroman head group of the tocols of formula I may be any of those known or readily available to those of skill in the art. In some embodiments, R2 is an —OH. In other embodiments R2 is an ester. If R2 is an ester it may be an ester selected from —O(CO)CH3, —O(CO)heterocyclic, O(CO)carbocyclic, —O(CO)(R7)COOH, —O(CO)R8, wherein R7 is selected from a branched or unbranched, saturated or unsaturated, substituted or unsubstituted C1-C20 alkyl and R8 is selected from —H, and a branched or unbranched, saturated or unsaturated, substituted or unsubstituted C1-C20 alkyl. Suitably R2 is —NHR6, —CO2H, —C(R6)2CO2H or a branched or unbranched, substituted or unsubstituted, saturated or unsaturated C1-C6 alkyl or hydroxyalkyl. R6 is suitably a —H, —OH or —CH3.
- In other embodiments, Y is an —O—. R5 is suitably either a —H or a —CH3. R1, R3 and R4 are suitably a C1-C6 branched or unbranched, saturated or unsaturated, substituted or unsubstituted alkyl. In one embodiment, R1, R3, R4 and R5 are selected from —H and —CH3, R2 is —OH or an ester, Y is —O—, and the hydrocarbon tail (Z) has at least a double bond between carbons 11′ and 12′. In one embodiment, R5 is —H. In one embodiment, R1, R3 and R4 are all CH3. In one embodiment, R3 and R4 are CH3 and R1 is H. In another embodiment, R′ and R4 are CH3 and R3 is H. In another embodiment, R1, R3 and R4 are H. Each R group is independently selected and may be combined in any manner and with any of the hydrocarbon tails described herein. One exemplary embodiment of the compounds of the invention is as shown below:
- “Substituted” means that one or more of the hydrogen atoms bonded to carbon atoms in the chain or ring have been replaced with other substituents. Suitable substituents include monovalent hydrocarbon groups including alkyl groups such as methyl groups and monovalent heterogeneous groups including alkoxy groups such as methoxy groups. “Unsubstituted” means that the carbon chain or ring contains no other substituents other than carbon and hydrogen.
- “Branched” means that the carbon chain is not simply a linear chain. “Unbranched” means that the carbon chain is a linear carbon chain.
- “Saturated” means that the carbon chain or ring does not contain any double or triple bonds. “Unsaturated” means that the carbon chain or ring contains at least one double bond. An unsaturated carbon chain or ring may include more than one double bond.
- “Heterogeneous group” means a saturated or unsaturated chain of non-hydrogen member atoms comprising carbon atoms and at least one heteroatom.
- “Hydrocarbon group” means a chain of 1 to 25 carbon atoms, suitably 1 to 12 carbon atoms, more suitably 1 to 10 carbon atoms, and most suitably 1 to 8 carbon atoms. Hydrocarbon groups may have a linear or branched chain structure. Suitably the hydrocarbon groups have one branch.
- “Carbocyclic group” means a saturated or unsaturated hydrocarbon ring. Carbocyclic groups are not aromatic. Carbocyclic groups are monocyclic or polycyclic. Polycyclic carbocyclic groups can be fused, spiro, or bridged ring systems. Monocyclic carbocyclic groups contain 4 to 10 carbon atoms, suitably 4 to 7 carbon atoms, and more suitably 5 to 6 carbon atoms in the ring. Bicyclic carbocyclic groups contain 8 to 12 carbon atoms, preferably 9 to 10 carbon atoms in the rings.
- “Heteroatom” means an atom other than carbon e.g., in the ring of a heterocyclic group or the chain of a heterogeneous group. Preferably, heteroatoms are selected from the group consisting of sulfur, phosphorous, nitrogen and oxygen atoms. Groups containing more than one heteroatom may contain different heteroatoms.
- “Heterocyclic group” means a saturated or unsaturated ring structure containing carbon atoms and 1 or more heteroatoms in the ring. Heterocyclic groups are not aromatic. Heterocyclic groups are monocyclic or polycyclic. Polycyclic heteroaromatic groups can be fused, spiro, or bridged ring systems. Monocyclic heterocyclic groups contain 4 to 10 member atoms (i.e., including both carbon atoms and at least 1 heteroatom), suitably 4 to 7, and more suitably 5 to 6 in the ring. Bicyclic heterocyclic groups contain 8 to 18 member atoms, suitably 9 or 10 in the rings.
- Methods of making the compounds described herein are provided in the Examples. The compounds may be synthesized using conventional chemical technologies available to those skilled in the art. Salts of the compounds described herein are also provided. Suitably the salts are pharmaceutically acceptable. Acceptable salts of the compounds include, but are not limited to hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate.
- The compounds described have enhanced binding to the α-TTP receptor and enhanced transport out of the liver and into the circulation after administration to a subject. The enhanced transport is expected to lead to enhanced biological activity of the compounds as compared to tocotrienol after administration to a subject. The elimination half-life from the subject is also expected to be enhanced. This enhancement of uptake into the blood stream combined with decreased clearance from the body may result in increased effectiveness of administration of the compound or may allow for the therapeutically effective dose of the compounds described herein to be lower than that of tocotrienol or other tocols. The subject may be any mammal, including but not limited to a human, mouse, or domesticated animal.
- In addition, the compounds may have other activities in addition to increased receptor mediated uptake into the blood stream. For example the hydrocarbon tail may allow farnesyl recognition or confer HMGCoA reductase inhibition activity. Thus the hydrocarbon tail composition may also affect the bioactivity of the compound.
- The compounds may be used to make pharmaceutical compositions. Pharmaceutical compositions comprising the compound of formula (I) or any of the compounds described above and a pharmaceutically acceptable carrier are provided. A pharmaceutically acceptable carrier is any carrier suitable for in vivo administration. Examples of pharmaceutically acceptable carriers suitable for use in the composition include, but are not limited to, water, buffered solutions, glucose solutions, oil-based or bacterial culture fluids. Additional components of the compositions may suitably include, for example, excipients such as stabilizers, preservatives, diluents, emulsifiers and lubricants. Examples of pharmaceutically acceptable carriers or diluents include stabilizers such as carbohydrates (e.g., sorbitol, mannitol, starch, sucrose, glucose, dextran), proteins such as albumin or casein, protein-containing agents such as bovine serum or skimmed milk and buffers (e.g., phosphate buffer). Especially when such stabilizers are added to the compositions, the composition is suitable for freeze-drying or spray-drying. The composition may also be emulsified.
- The compounds described herein may be used to treat a subject with a condition selected from radiation exposure, cancer, cardiovascular disease including but not limited to coronary artery disease, decreasing lipoprotein levels, decreasing cholesterol levels, decrease triglyceride levels and the like, age-related macular degeneration, cataracts, glaucoma, chronic pain, chronic fatigue syndrome, fever, edema, diabetes mellitus, signs of aging, rheumatoid diseases, septic shock, or Alzheimer's disease. In the case of radiation exposure, the compounds may be delivered as a radioprotective agent to a subject prior to potential exposure to radiation, such as to a patient receiving radiation therapy, or a person working with or cleaning up radiation. The compounds may also be given after radiation exposure as a radiomitigator, such as after an accident involving the release of radiation.
- Treatment of a condition includes but is not limited to, prophylaxis of symptoms or indicators of the condition, reduction in disease severity, or reversal, reduction or slowing in disease progression as compared to an untreated subject. The compounds described herein may be used to treat subjects in need of treatment with an antioxidant, an anti-inflammatory, immunoregulatory, antithromobotic, antiatherogenic, hypocholesterolemic or an HMG-CoA reductase inhibitor.
- In addition, the compounds may be useful to increase the feed conversion efficiency of domesticated animals including livestock. Combination therapy with a known antioxidant, anti-inflammatory or HMG-CoA reductase inhibitor may result in increased effectiveness of the combination treatment as compared to treatment with either compound alone.
- The compounds described herein may be administered by any means known to those skilled in the art, including, but not limited to, oral, topical, intranasal, intraperitoneal, parenteral, intravenous, intramuscular, or subcutaneous. Thus the compounds may be formulated as an ingestable, injectable, topical or suppository formulation. The compounds may also be delivered with in a liposomal or time-release vehicle. Administration of the compounds to a subject in accordance with the invention appears to exhibit beneficial effects in a dose-dependent manner. Thus, within broad limits, administration of larger quantities of the compounds is expected to achieve increased beneficial biological effects than administration of a smaller amount. Moreover, efficacy is also contemplated at dosages below the level at which toxicity is seen.
- It will be appreciated that the specific dosage administered in any given case will be adjusted in accordance with the compound or compounds being administered, the disease to be treated or inhibited, the condition of the subject, and other relevant medical factors that may modify the activity of the compound or the response of the subject, as is well known by those skilled in the art. For example, the specific dose for a particular subject depends on age, body weight, general state of health, diet, the timing and mode of administration, the rate of excretion, medicaments used in combination and the severity of the particular disorder to which the therapy is applied. Dosages for a given patient can be determined using conventional considerations, e.g., by customary comparison of the differential activities of the compound of the invention and of a known agent such as tocopherol, such as by means of an appropriate conventional pharmacological or prophylactic protocol.
- The maximal dosage for a subject is the highest dosage that does not cause undesirable or intolerable side effects. The number of variables in regard to an individual prophylactic or treatment regimen is large, and a considerable range of doses is expected. The route of administration will also impact the dosage requirements. It is anticipated that dosages of the compound will reduce symptoms of the condition at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% compared to pre-treatment symptoms or symptoms is left untreated. It is specifically contemplated that pharmaceutical preparations and compositions may palliate or alleviate symptoms of the disease without providing a cure, or, in some embodiments, may be used to cure the disease or disorder.
- Suitable effective dosage amounts for administering the compounds may be determined by those of skill in the art, but typically range from about 1 microgram to about 100,000 micrograms per kilogram of body weight weekly, although they are typically about 1,000 micrograms or less per kilogram of body weight weekly. Like other vitamin E compounds, large doses may be required for therapeutic effect and toxicity of the compounds is likely low. In some embodiments, the effective dosage amount ranges from about 10 to about 10,000 micrograms per kilogram of body weight weekly. In another embodiment, the effective dosage amount ranges from about 50 to about 5,000 micrograms per kilogram of body weight weekly. In another embodiment, the effective dosage amount ranges from about 75 to about 1,000 micrograms per kilogram of body weight weekly. The effective dosage amounts described herein refer to total amounts administered, that is, if more than one compound is administered, the effective dosage amounts correspond to the total amount administered. The compound can be administered as a single dose or as divided doses. For example, the composition may be administered two or more times separated by 4 hours, 6 hours, 8 hours, 12 hours, a day, two days, three days, four days, one week, two weeks, or by three or more weeks.
- The following examples are meant only to be illustrative and are not meant as limitations on the scope of the invention or of the appended claims. All references cited herein are hereby incorporated by reference in their entireties.
- In silico analysis of the αTTP receptor interaction with αTTP demonstrated that the hydrocarbon tail of tocopherol folds over in order to efficiently bind the receptor as shown in
FIG. 1 .FIG. 1 demonstrates that the hydrocarbon tail must fold at two torsion points. Torsion angle A is suitably about 61° and Torsion B is suitably at about 58.4°. Thus tocols with a flexible tail capable of conforming to these angles are contemplated. The central location of the torsion is shown in the drawing below. - The heat map of the interaction between various tocols and the αTTP receptor is shown in
FIG. 2 . The circled area on the heat map shows the key interaction distinction between RRR-α-tocopherol and R-γ-tocotrienol. The heat map for RS-γ-tocoflexol is quite similar to that of tocopherol and thus binding to αTTP receptor is expected to be similar to that of tocopherol. The heat map for RR-γ-tocoflexol lacks this key predicted interaction and thus is expected to bind αTTP less efficiently. -
-
Compound 1 is synthesized by a reaction between a chiral chromanyl group and C15 alkyl chain built as shown below. - An alternative synthesis scheme to make the compounds of formula I is depicted in
FIG. 3 . - Gas chromatography-mass spectrometry (GC/MS) will be used to monitor tocol in plasma and other tissues of subjects treated with or administered tocols. The tracings shown in
FIG. 4 demonstrate our ability to use GC/MS to differentiate and determine the presence, pharmacokinetics and bioavailability of tocols. In the top tracing γ-tocotrienol was detected and in the bottom tracing α-tocotrienol was detected. In both cases standard methods for GC/MS were used based on single-ion monitoring under electron impact conditions after the samples were derivatized using MSTFA (N-methyltrimethylsilytrifluoracetamide) as the Silylation reagent. - The ability of the compounds described herein to bind α-TTP will be measured as described in Panagabko et al, 2003 Biochemistry 42:6467-74. The Vitamin E activity of the compounds will be assessed by the method of Leth et al, 1977 J. Nutr. 107:2236-43. Specific activity, for example, as radioprotectors, will be assessed in vitro and in vivo using standard assays. For example, the compounds will be used in the following assays: in vitro radiation toxicity assays (clonogenic cell survival, cytogenetics, and measurement of oxidative stress) and in vivo studies (hematopoietic, gastrointestinal, pulmonary, cutaneous, and neurovascular subsyndromes of the acute radiation syndrome). We expect the compounds will offer greater radioprotection, greater Vitamin E activity and have higher affinity for αTTP as compared to tocotrienol.
- The compounds described herein and α-tocopherol and α-tocotrienol will be combined with food or provided in tablet form to subjects over a period of four weeks. At various times post-administration blood samples will be harvested from the subjects and the amount of the compound present in the blood will be compared. Subjects will be tested for blood lipoprotein levels prior to receiving the compounds and after 4 weeks of treatment. After 4 weeks of treatment we expect the compounds of the invention will cause a significant reduction in the levels of lipoproteins in the blood of treated individuals as compared to untreated controls and as compared to those treated with α-tocopherol or α-tocotrienol.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/701,630 US20130158106A1 (en) | 2010-06-02 | 2011-06-02 | Tocopherol derivatives and methods of use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35074010P | 2010-06-02 | 2010-06-02 | |
PCT/US2011/038933 WO2011153353A1 (en) | 2010-06-02 | 2011-06-02 | Tocopherol derivatives and methods of use |
US13/701,630 US20130158106A1 (en) | 2010-06-02 | 2011-06-02 | Tocopherol derivatives and methods of use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/038933 A-371-Of-International WO2011153353A1 (en) | 2010-06-02 | 2011-06-02 | Tocopherol derivatives and methods of use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/969,601 Continuation US20180244641A1 (en) | 2010-06-02 | 2018-05-02 | Tocopherol derivatives and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130158106A1 true US20130158106A1 (en) | 2013-06-20 |
Family
ID=45067073
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/701,630 Abandoned US20130158106A1 (en) | 2010-06-02 | 2011-06-02 | Tocopherol derivatives and methods of use |
US15/969,601 Abandoned US20180244641A1 (en) | 2010-06-02 | 2018-05-02 | Tocopherol derivatives and methods of use |
US17/857,879 Pending US20220332692A1 (en) | 2010-06-02 | 2022-07-05 | Tocopherol derivatives and methods of use |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/969,601 Abandoned US20180244641A1 (en) | 2010-06-02 | 2018-05-02 | Tocopherol derivatives and methods of use |
US17/857,879 Pending US20220332692A1 (en) | 2010-06-02 | 2022-07-05 | Tocopherol derivatives and methods of use |
Country Status (2)
Country | Link |
---|---|
US (3) | US20130158106A1 (en) |
WO (1) | WO2011153353A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016190852A1 (en) * | 2015-05-26 | 2016-12-01 | Stealth Peptides International, Inc. | Therapeutic compositions including chromanyl compounds, variants and analogues thereof, and uses thereof |
US11116746B2 (en) | 2015-05-05 | 2021-09-14 | Tocol Pharmaceuticals, Llc | Use of rice bran oil distillate extract for prevention and mitigation of the effects of radiation |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2874583C (en) * | 2012-05-22 | 2018-10-02 | The Board Of Trustees Of The University Of Arkansas | Methods for making tocoflexols and analogues thereof |
MX379061B (en) | 2013-09-13 | 2025-03-04 | Bioventures Llc | PREPARATION AND USE OF A COMPOSITION FOR THE PREVENTION AND MITIGATION OF THE EFFECTS OF RADIATION. |
US11447459B2 (en) | 2018-03-29 | 2022-09-20 | Dsm Ip Assets B.V. | Use of substituted chroman-6-ols with extended lipophilic side chains |
CN112898162A (en) * | 2021-01-22 | 2021-06-04 | 江西农业大学 | Synthesis method of hydrogenated citral tertiary amine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6350453B1 (en) * | 1999-05-24 | 2002-02-26 | American River Nutrition, Inc. | Tocotrienols and geranylgeraniol from Bixa orellana byproducts |
US20090041870A1 (en) * | 2003-04-10 | 2009-02-12 | Barrie Tan | Annatto Extract Compositions Including Tocotrienols and Tocopherols and Methods of Use |
US20100036079A1 (en) * | 2007-03-12 | 2010-02-11 | Emilia Tiitinen | Use of tocopherol |
US20150087033A1 (en) * | 2012-05-22 | 2015-03-26 | The Board Of Trustees Of The University Of Arkansas | Methods for making tocoflexols and analogues thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050037102A1 (en) * | 2003-07-18 | 2005-02-17 | Barrie Tan | Annatto extract compositions including tocotrienols and tocopherols and methods of use |
CN102171335A (en) * | 2008-04-23 | 2011-08-31 | 丹尼斯科美国公司 | Isoprene synthase variants for improved microbial production of isoprene |
-
2011
- 2011-06-02 WO PCT/US2011/038933 patent/WO2011153353A1/en active Application Filing
- 2011-06-02 US US13/701,630 patent/US20130158106A1/en not_active Abandoned
-
2018
- 2018-05-02 US US15/969,601 patent/US20180244641A1/en not_active Abandoned
-
2022
- 2022-07-05 US US17/857,879 patent/US20220332692A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6350453B1 (en) * | 1999-05-24 | 2002-02-26 | American River Nutrition, Inc. | Tocotrienols and geranylgeraniol from Bixa orellana byproducts |
US20090041870A1 (en) * | 2003-04-10 | 2009-02-12 | Barrie Tan | Annatto Extract Compositions Including Tocotrienols and Tocopherols and Methods of Use |
US20100036079A1 (en) * | 2007-03-12 | 2010-02-11 | Emilia Tiitinen | Use of tocopherol |
US8044161B2 (en) * | 2007-03-12 | 2011-10-25 | Bayer Shering Pharma Oy | Use of tocopherol |
US20150087033A1 (en) * | 2012-05-22 | 2015-03-26 | The Board Of Trustees Of The University Of Arkansas | Methods for making tocoflexols and analogues thereof |
US9309547B2 (en) * | 2012-05-22 | 2016-04-12 | The Board Of Trustees Of The University Of Arkansas | Methods for making tocoflexols and analogues thereof |
Non-Patent Citations (4)
Title |
---|
Axel Wolfgang Buss (Diastereoselective synthesis of alpha-tocopherol, Inauguraldissertation, Basel November 11, 2008) * |
Odinokov et al. (ARKIVOC, 2003 (xiii) 101-118) * |
Puah et al. (Accession number 2007:570983, CAPLUS, DN 147:425926, The effect of physical refining on palm vitamin E (tocopherol, tocotrienol and tocomonoenol, American Journal of Applied Sciences (2007), 4(6) 374-377). * |
Rammell et al. (AN 1985:467656, CAPLUS, DN 103:67656, ORIGINAL REFERENCE NO.: 103:10829a, 10832a, Separation of tocols by HPLC on an amino-cyano polar phase column, Journal of Liquid Chromatography (1985), 8(4), 707-17). * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11116746B2 (en) | 2015-05-05 | 2021-09-14 | Tocol Pharmaceuticals, Llc | Use of rice bran oil distillate extract for prevention and mitigation of the effects of radiation |
WO2016190852A1 (en) * | 2015-05-26 | 2016-12-01 | Stealth Peptides International, Inc. | Therapeutic compositions including chromanyl compounds, variants and analogues thereof, and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
US20180244641A1 (en) | 2018-08-30 |
US20220332692A1 (en) | 2022-10-20 |
WO2011153353A1 (en) | 2011-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220332692A1 (en) | Tocopherol derivatives and methods of use | |
US20230293458A1 (en) | Multibiotic agents and methods of using the same | |
US6054486A (en) | Use of 9-Deoxy-2',9-α-methano-3-oxa-4,5,6-trinor-3,7-(1',3'-interphenylen e)-13,14-dihydro-prostaglandin f1 to treat peripheral vascular disease | |
EP3087064B1 (en) | Prodrugs of urolitihns and uses thereof | |
US9603828B2 (en) | Sulforaphane isolation and purification | |
KR20050086954A (en) | Compounds having anti-proliferative properties | |
JP2019038819A (en) | Preparation and use of composition for protection from effects of radiation and for mitigation of effects of radiation | |
US20040229908A1 (en) | Compositions and methods for the treatment of Parkinson's disease and tardive dyskinesias | |
US9060967B2 (en) | Stable aqueous formulation of (E)-4-carboxystyryl-4-chlorobenzyl sulfone | |
US20100173983A1 (en) | Method for inducing autophagy | |
US20050227930A1 (en) | Cholesterol lowering combination | |
JP2834328B2 (en) | Cancer treatment | |
US9314438B2 (en) | Elevation of the plasma HDL-cholesterol level | |
KR20100136494A (en) | Apoequarine-containing compositions and methods of use thereof | |
US20060035963A1 (en) | Quinone prodrug compositions and methods of use | |
JP2024175025A (en) | Inositol phosphate compounds for use in increasing tissue perfusion - Patents.com | |
CN110087646A (en) | Monomer bimetallic hydroxycitrate acid compound and its preparation and application | |
EP0427518B1 (en) | NMDA-Blocking compounds, pharmaceutical compositions, their preparation and use | |
CA2915104A1 (en) | Non-agglomerating bioconjugates of amylin-mimetic compounds and polyethylene glycol | |
CA2531810A1 (en) | Compositions and methods for the treatment of parkinson's disease and tardive dyskinesias | |
US10052305B2 (en) | Lipoic acid and derivatives thereof for the treatment of cystinuria | |
CN103260614B (en) | Conjoint therapy | |
US11292759B2 (en) | Hydroxycitric acid metal heterocyclic compounds with covalent characteristics | |
EP4504211A2 (en) | Prodrugs for cancer treatment | |
JP2023141229A (en) | Pharmaceutical composition used for treatment of hyperphosphatemia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COMPADRE, CESAR;BREEN, PHILIP J.;HAUER-JENSEN, MARTIN;AND OTHERS;SIGNING DATES FROM 20120611 TO 20120808;REEL/FRAME:030626/0625 Owner name: UNITED STATES OF AMERICA, AS REPRESENTED BY THE DE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAUER-JENSEN, MARTIN;REEL/FRAME:030626/0728 Effective date: 20120612 |
|
AS | Assignment |
Owner name: BIOVENTURES, LLC, ARKANSAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS;REEL/FRAME:042336/0049 Effective date: 20170309 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |