US20130155912A1 - Multiple-Input Multiple-Output Wireless Communications with Full Duplex Radios - Google Patents
Multiple-Input Multiple-Output Wireless Communications with Full Duplex Radios Download PDFInfo
- Publication number
- US20130155912A1 US20130155912A1 US13/588,466 US201213588466A US2013155912A1 US 20130155912 A1 US20130155912 A1 US 20130155912A1 US 201213588466 A US201213588466 A US 201213588466A US 2013155912 A1 US2013155912 A1 US 2013155912A1
- Authority
- US
- United States
- Prior art keywords
- group
- antennas
- full duplex
- downlink
- user equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H04W72/0413—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/063—Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0691—Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/0874—Hybrid systems, i.e. switching and combining using subgroups of receive antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
- H04L5/0025—Spatial division following the spatial signature of the channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0062—Avoidance of ingress interference, e.g. ham radio channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H04W72/042—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0802—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
Definitions
- the present invention relates to multiple-input multiple-output (MIMO) wireless communications and more particularly to MIMO wireless communications with full duplex radios.
- MIMO multiple-input multiple-output
- a practical system may address (1) how many antennas should be assigned for reception and transmission, respectively, (2) in OFDM (Orthogonal Frequency Division Multiplexing) systems how the assignment of the uplink and downlink should be performed, (3) in a single cell MIMO systems how the base station should schedule the uplink and downlink users and what should be the power split, and (4) finally in asynchronous single cell systems how should the MAC layer be designed to exploit the full potential of the full duplex access point as well as the full duplex clients.
- OFDM Orthogonal Frequency Division Multiplexing
- the base station or the access point can admit a new uplink communication while a downlink communication is in progress or it may initiate a new downlink transmission when an uplink transmission is already in session.
- An objective of the present invention is to simultaneously send in the uplink and downlink by enabling full duplex communication.
- An aspect of the present invention includes an apparatus used in a full duplex MIMO wireless communications system.
- the apparatus includes a plurality of antennas, each of which is connected to a combination of at least a TX (transmit) RF (radio frequency) chain and an RX (receive) RF chain.
- the plurality of antennas are split into one or more transmit antennas and one or more receive antennas, and the apparatus communicates with another apparatus.
- Another aspect of the present invention includes a method implemented in a base station used in a full duplex MIMO wireless communications system.
- the method includes dividing a set of OFDM tones into a first group for uplink and a second group for downlink, scheduling a first user equipment in a first group and a second user equipment in the second group, receiving, from the second user equipment, information about interference on an OFDM tones in the first group, and scheduling one or more downlink users in the first group according to the information.
- Still another aspect of the present invention includes a method implemented in a base station used in a full duplex MIMO wireless communications system.
- the method includes dividing a set of OFDM tones into a first group for uplink and a second group for downlink, scheduling a first user equipment in a first group and a second user equipment in the second group, measuring downlink enhancement, and allocating one or more OFDM tones in the second group to uplink according to the downlink enhancement.
- Still another aspect of the present invention includes a method implemented in a base station used in a full duplex MIMO wireless communications system.
- the method includes scheduling one or more user equipment in an OFDM tone used for full duplex communications, according to a prior schedule and an achieved rate.
- FIG. 1 depicts full duplex communications.
- FIG. 2 depicts strong self interference signals in comparison to weak received signals from an intended transmitter.
- FIG. 3 depicts antenna deployment scenarios with the same number of antennas and with the same number of transmit and receive RF chains.
- FIG. 4 depicts FD (full-duplex) gain with outage capacity as a measure.
- FIG. 6 depicts FD gain (half-duplex clients, breaking the antennas at the AP (access point)) a) for different number of antennas at the AP, and b) for different number of clients.
- FIG. 7 depicts FD gain a) for different number of antennas at the AP and b) for different number of clients.
- FIG. 8 depicts FD gain (full-duplex clients) a) for different number of antennas at the AP and b) for different number of clients.
- the main challenge of the full duplex communication is to cancel the self interference that is orders of magnitude stronger than the received signal from the intended transmitters.
- This interference is partly known due to the fact that the transmitter exactly knows its own transmitted signal, though the exact channel between the transmit and receive antennas at the base station is not known. It would be even worse if this channel is time varying or fading because we then need to estimate this channel more frequently.
- FIG. 2 shows the strong self interference in comparison to the weak received signal from a mobile station or user.
- Both systems may have marginal pros or cons in half duplex systems.
- We may use one antenna per RF chain for full duplex communication because it does not change the system complexity. However, the cost associated with using more physical antennas well worth the possible gain that can be achieved by this deployment scenario. In the sequel, we address how to allocate the antennas for either transmit or receive if this deployment scenario is used.
- antennas can be split into one or more transmit antennas and one or more receive antennas.
- the antenna splitting between the transmit and receive antennas is very critical.
- the antenna splitting may be based on the channel condition.
- the system may perform the antenna splitting so that capacity gain is increased. If the system cannot dynamically change the antenna selection for full duplex communication very fast, then we may set the antenna splitting that will work in average. We show that the average capacity gain of full duplex with respect to half duplex is given by the following formula:
- G FD is the capacity gain
- ⁇ ⁇ is the expectation operator or statistical average
- ⁇ represents the average SNR (signal to noise ratio)
- M and N are the numbers of antennas at node 1 and 2 , respectively
- M 1 and N 1 are the numbers of transmit antennas at node 1 and node 2 , respectively.
- one problem is how to find the splits between the OFDM tones into three groups where either one of uplink, downlink or simultaneous FD transmission is used.
- One strategy is to dynamically let the system finds the splits between these three groups. Since initiation of a full duplex communication in a single tone requires the knowledge of the interference in that tone on the downlink users, it is critical to have this information before scheduling any user in the downlink in that particular tone. In time varying environment it is important to periodically have this information before the scheduling. Therefore, the system begins the operation by dividing the set of OFDM tones into two groups: one for the uplink and the other one for the downlink. We assume that within a group of frames, e.g. a super frame, the channel does not change.
- the users in the downlink measure the interference on one or multiple OFDM tones that are in the uplink group.
- the downlink user then report a free channel signal in case that this interference is below a certain threshold.
- This threshold may be fixed or set periodically by BS (base station) or MS (mobile station). The initiation of the feedback of this information could be by the base station or by the MS. There may also be a fixed schedule when a downlink user may feedback this information.
- the BS may select one or more downlink users to be scheduled in the same set of tones as some uplink users.
- This procedure allows for allocating some of the uplink tones to full duplex operation. This operation can only boost the downlink throughput.
- the scheduling of the users for the simultaneous uplink and downlink is based on an optimization of a system utility such as weighted sum rate where the weight itself changes in time based on the past operation of the systems and channel condition. The entire operation is discussed in the further system details.
- a system utility such as weighted sum rate where the weight itself changes in time based on the past operation of the systems and channel condition. The entire operation is discussed in the further system details.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 61/531,057, entitled, “Methods and apparatus for single cell and single link full duplex communications,” filed Sep. 5, 2011, the contents of which are incorporated herein by reference.
- The present invention relates to multiple-input multiple-output (MIMO) wireless communications and more particularly to MIMO wireless communications with full duplex radios.
- Realization of the full duplex communication systems requires overcoming multiple implementation challenges. In particular it is very important to realize a system that can use full duplex communication without sacrificing the benefits of multiple antenna technologies. A practical system may address (1) how many antennas should be assigned for reception and transmission, respectively, (2) in OFDM (Orthogonal Frequency Division Multiplexing) systems how the assignment of the uplink and downlink should be performed, (3) in a single cell MIMO systems how the base station should schedule the uplink and downlink users and what should be the power split, and (4) finally in asynchronous single cell systems how should the MAC layer be designed to exploit the full potential of the full duplex access point as well as the full duplex clients.
- Some prior works have considered the design of full duplex communication systems:
- [1] M. Jain, J. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” 2011.
- [2] A. Sahai, G. Patel, and A. Sabharwal, “Pushing the limits of full-duplex: Design and real-time implementation,” Arxiv preprint arXiv:1107.0607, 2011.
- [3] B. Radunovic, D. Gunawardena, A. Proutiere, N. Singh, V. Balan, and P. Key, “Efficiency and fairness in distributed wireless networks through self-interference cancellation and scheduling,” Tech. Rep. MSR-TR-2009-27, Microsoft Research, March 2009, http://research. microsoft. com/apps/pubs/default. aspx, Tech. Rep.
- [4] S. Rangarajan, X. Zhang, S. Barghi, M. A. Khojastepour, and K. Sundaresan, “The case for antenna cancellation for scalable full-duplex wireless communications,” Tech. Rep. 2011-TR074, NEC Laboratories America, Inc., Tech. Rep.
- [5] W. Pradeep Chathuranga, C. Marian, L. Matti, and E. Anthony, “On the effect of self-interference cancelation in multihop wireless networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2010, 2010.
- In [2] the authors estimate the channel and reconstruct the self-interference from digital samples. By using an extra transmit antennas the authors in [1] create a null at a single receive antenna. A digital noise cancellation algorithm known as active noise cancelation is used in [1]. The implementation of the active noise cancellation is performed through the use of QHx220 chip. In prior work [4], the authors have proposed the use of two copies of the self-interference signal in which case we need an extra Receive antenna for each original receive antennas.
- In this specification, we address schemes and methods that address all the four problems described above. In particular, we provide guidelines on how to split the antennas between the transmit and receive RF (radio frequency) chains. We also provide method of allocating different tones in OFDM systems to uplink, downlink or full duplex (simultaneous uplink downlink) transmission. We also address the problem of user scheduling for full duplex communication in single cell. The full duplex scheduling is challenging due to the interferences that the uplink users will cause on the downlink users. The proposed scheduling algorithm depends on the number of transmit antennas and the number of active users and their channel gains. For a single cell systems when the scheduling is not possible and random access scheme is used, we also propose a method by which the base station or the access point can admit a new uplink communication while a downlink communication is in progress or it may initiate a new downlink transmission when an uplink transmission is already in session.
- An objective of the present invention is to simultaneously send in the uplink and downlink by enabling full duplex communication.
- An aspect of the present invention includes an apparatus used in a full duplex MIMO wireless communications system. The apparatus includes a plurality of antennas, each of which is connected to a combination of at least a TX (transmit) RF (radio frequency) chain and an RX (receive) RF chain. The plurality of antennas are split into one or more transmit antennas and one or more receive antennas, and the apparatus communicates with another apparatus.
- Another aspect of the present invention includes a method implemented in a base station used in a full duplex MIMO wireless communications system. The method includes dividing a set of OFDM tones into a first group for uplink and a second group for downlink, scheduling a first user equipment in a first group and a second user equipment in the second group, receiving, from the second user equipment, information about interference on an OFDM tones in the first group, and scheduling one or more downlink users in the first group according to the information.
- Still another aspect of the present invention includes a method implemented in a base station used in a full duplex MIMO wireless communications system. The method includes dividing a set of OFDM tones into a first group for uplink and a second group for downlink, scheduling a first user equipment in a first group and a second user equipment in the second group, measuring downlink enhancement, and allocating one or more OFDM tones in the second group to uplink according to the downlink enhancement.
- Still another aspect of the present invention includes a method implemented in a base station used in a full duplex MIMO wireless communications system. The method includes scheduling one or more user equipment in an OFDM tone used for full duplex communications, according to a prior schedule and an achieved rate.
-
FIG. 1 depicts full duplex communications. -
FIG. 2 depicts strong self interference signals in comparison to weak received signals from an intended transmitter. -
FIG. 3 depicts antenna deployment scenarios with the same number of antennas and with the same number of transmit and receive RF chains. -
FIG. 4 depicts FD (full-duplex) gain with outage capacity as a measure. -
FIG. 5 depicts average gain of using FD radio with different antenna breakages, for N=8, M=4. -
FIG. 6 depicts FD gain (half-duplex clients, breaking the antennas at the AP (access point)) a) for different number of antennas at the AP, and b) for different number of clients. -
FIG. 7 depicts FD gain a) for different number of antennas at the AP and b) for different number of clients. -
FIG. 8 depicts FD gain (full-duplex clients) a) for different number of antennas at the AP and b) for different number of clients. - By enabling full duplex communication we can simultaneously send in the uplink and downlink and it could mean doubling the use of spectrum (
FIG. 1 ). In half-duplex systems we either receive or transmit in time TDD (time-division duplex) or in frequency FDD (frequency-division duplex), so it may be thought that we waste half of the resources. - The main challenge of the full duplex communication is to cancel the self interference that is orders of magnitude stronger than the received signal from the intended transmitters. This interference is partly known due to the fact that the transmitter exactly knows its own transmitted signal, though the exact channel between the transmit and receive antennas at the base station is not known. It would be even worse if this channel is time varying or fading because we then need to estimate this channel more frequently.
FIG. 2 shows the strong self interference in comparison to the weak received signal from a mobile station or user. - There are two possible deployment of the full duplex communication with respect to a fixed number of transmit and receive
RF chains 302, 304, 306, and 308. In practice the main complexity involved with the use ofmultiple antennas antenna 330 for each pair of transmitRF chain 322 and receiveRF chain 324 or if we use twoantennas FIG. 3 . - Both systems may have marginal pros or cons in half duplex systems. We may use one antenna per RF chain for full duplex communication because it does not change the system complexity. However, the cost associated with using more physical antennas well worth the possible gain that can be achieved by this deployment scenario. In the sequel, we address how to allocate the antennas for either transmit or receive if this deployment scenario is used.
- 1) In single link system, if both links have one transmit antenna per RF chain there is no need for antenna splitting and the average gain of FD with respect to HD (half-duplex) transmission would be 2. However, for particular realization of the channel this gain could be different. If one antenna is used for a pair of TX (transmit) and RX (receive) RF chain, antennas can be split into one or more transmit antennas and one or more receive antennas. The antenna splitting between the transmit and receive antennas is very critical. The antenna splitting may be based on the channel condition. The system may perform the antenna splitting so that capacity gain is increased. If the system cannot dynamically change the antenna selection for full duplex communication very fast, then we may set the antenna splitting that will work in average. We show that the average capacity gain of full duplex with respect to half duplex is given by the following formula:
-
- where GFD is the capacity gain, ε{ } is the expectation operator or statistical average, ρ represents the average SNR (signal to noise ratio), M and N are the numbers of antennas at
node node 1 andnode 2, respectively. - From the above formula, it can be the best to set N1 and M1 to one regardless of the number of antennas N and M. This means that each node selects only one antenna for transmission and uses all the other antennas for reception. At high SNR, the split can be almost equal between the number of transmit and receive antennas at each node. In particular, if N=M, then M1=N1=M/2 maximizes the gain. If N<M then the solution is to set N1=N/2. However, M1 can take different values as long as M>M1+N1>N. M/2 and N/2 can be M/2±1/2 and N/2±1/2 when M and N are odd, respectively.
- 2) When OFDM system is used, one problem is how to find the splits between the OFDM tones into three groups where either one of uplink, downlink or simultaneous FD transmission is used. One strategy is to dynamically let the system finds the splits between these three groups. Since initiation of a full duplex communication in a single tone requires the knowledge of the interference in that tone on the downlink users, it is critical to have this information before scheduling any user in the downlink in that particular tone. In time varying environment it is important to periodically have this information before the scheduling. Therefore, the system begins the operation by dividing the set of OFDM tones into two groups: one for the uplink and the other one for the downlink. We assume that within a group of frames, e.g. a super frame, the channel does not change. While the system is in operation, the users in the downlink measure the interference on one or multiple OFDM tones that are in the uplink group. The downlink user then report a free channel signal in case that this interference is below a certain threshold. This threshold may be fixed or set periodically by BS (base station) or MS (mobile station). The initiation of the feedback of this information could be by the base station or by the MS. There may also be a fixed schedule when a downlink user may feedback this information.
- Based on this information, the BS then may select one or more downlink users to be scheduled in the same set of tones as some uplink users. This procedure allows for allocating some of the uplink tones to full duplex operation. This operation can only boost the downlink throughput. In order to allow for enhancement in the uplink, we can also have a secondary method in place. Over multiple super frames we measure the downlink enhancement and then we allocate some of the downlink tones to uplink. The enhancement may be measured in terms of the throughput, other quality of service or system utility measures. This reassignment of downlink tones to uplink would be dependent on the enhancement that we have received over a group of past superframes. By having both methods in place, it is then possible to exchange some of the enhancement received in the downlink for enhancement in the system utility for the uplink.
- 3) The scheduling of the users for the simultaneous uplink and downlink is based on an optimization of a system utility such as weighted sum rate where the weight itself changes in time based on the past operation of the systems and channel condition. The entire operation is discussed in the further system details.
- 4) Simultaneous uplink and downlink operation in the CSMA (carrier sense multiple access) single cell network also requires a modified MAC (media access control) layer.
- The foregoing is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that those skilled in the art may implement various modifications without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
Claims (18)
M>+N 1>N,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/588,466 US9137788B2 (en) | 2011-09-05 | 2012-08-17 | Multiple-input multiple-output wireless communications with full duplex radios |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161531057P | 2011-09-05 | 2011-09-05 | |
US13/588,466 US9137788B2 (en) | 2011-09-05 | 2012-08-17 | Multiple-input multiple-output wireless communications with full duplex radios |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130155912A1 true US20130155912A1 (en) | 2013-06-20 |
US9137788B2 US9137788B2 (en) | 2015-09-15 |
Family
ID=48610045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/588,466 Expired - Fee Related US9137788B2 (en) | 2011-09-05 | 2012-08-17 | Multiple-input multiple-output wireless communications with full duplex radios |
Country Status (1)
Country | Link |
---|---|
US (1) | US9137788B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140078940A1 (en) * | 2012-09-14 | 2014-03-20 | At&T Intellectual Property I, L.P. | System and method for full-duplex media access control using request-to-send signaling |
US20140273914A1 (en) * | 2013-03-14 | 2014-09-18 | Mobilesphere Holdings II LLC | Panic messaging in an ofdm communication system |
WO2015122732A1 (en) * | 2014-02-16 | 2015-08-20 | 엘지전자 주식회사 | Resource allocation method and device in wireless access system supporting fdr transmission |
US20150280887A1 (en) * | 2012-12-11 | 2015-10-01 | Lg Electronics Inc. | Method for transceiving signal in wireless communication system, and apparatus therefor |
US20160156423A1 (en) * | 2013-07-19 | 2016-06-02 | Lg Electronics Inc. | User equipment comprising a transceiver capable of removing self-interference and method therefor |
WO2016161646A1 (en) * | 2015-04-10 | 2016-10-13 | 华为技术有限公司 | Data transmission method and device, and transceiver |
US20160323830A1 (en) * | 2013-12-24 | 2016-11-03 | Lg Electronics Inc. | Method for terminal for transmitting uplink data in fdr communication environment |
US9647823B2 (en) | 2015-05-19 | 2017-05-09 | Qualcomm Incorporated | Enhanced scheduling procedure for full duplex access point |
US9793967B2 (en) | 2013-11-21 | 2017-10-17 | The Hong Kong University Of Science And Technology | Weighted sum data rate maximization using linear transceivers in a full-duplex multi-user MIMO system |
US9826552B2 (en) | 2012-07-13 | 2017-11-21 | At&T Intellectual Property I, L.P. | System and method for medium access control enabling both full-duplex and half-duplex communications |
US9825753B2 (en) | 2012-07-13 | 2017-11-21 | At&T Intellectual Property I, L.P. | System and method for full duplex cancellation |
US10050767B2 (en) | 2015-09-18 | 2018-08-14 | Huawei Technologies Canada Co., Ltd. | System and method for multiple-input and multiple-output (MIMO) full-duplex precoding algorithms |
US10200167B2 (en) * | 2014-04-25 | 2019-02-05 | Alcatel Lucent | Full-duplex communication over a shared transmission medium |
US10396969B2 (en) | 2012-09-07 | 2019-08-27 | At&T Intellectual Property I, L.P. | System and method for full duplex MAC designs based on backoff in frequency domain |
CN114158077A (en) * | 2017-09-11 | 2022-03-08 | 美光科技公司 | Full-duplex device-to-device cooperative communication |
US11329707B1 (en) * | 2020-08-28 | 2022-05-10 | Tarana Wireless, Inc. | Communication systems, devices, and methods for multicarrier frequency division duplexing |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030003880A1 (en) * | 2001-03-23 | 2003-01-02 | Fuyun Ling | Method and apparatus for utilizing channel state information in a wireless communication system |
US20030031279A1 (en) * | 2001-08-08 | 2003-02-13 | Viasat, Inc. | Method and apparatus for relayed communication using band-pass signals for self-interference cancellation |
US6912195B2 (en) * | 2001-12-28 | 2005-06-28 | Motorola, Inc. | Frequency-domain MIMO processing method and system |
US20060209755A1 (en) * | 2005-03-18 | 2006-09-21 | Samsung Electronics Co., Ltd. | Method and system for dynamically allocating sub-carriers in an orthogonal frequency division multiplexing network |
US20070242763A1 (en) * | 2006-04-14 | 2007-10-18 | Junyi Li | Methods and apparatus for using tones in a wireless communication system |
US20080125154A1 (en) * | 2005-05-25 | 2008-05-29 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method for reducing interference in a radio communication system |
US20080170523A1 (en) * | 2007-01-12 | 2008-07-17 | Samsung Electronics Co., Ltd. | Method and apparatus for feedback information transmitting/receiving in mobile telecommunication using multiple input multiple output |
US20080260051A1 (en) * | 2007-04-23 | 2008-10-23 | Federico Boccardi | Method and apparatus for transmitting information simultaneously to multiple destinations over shared wireless resources |
US20090016372A1 (en) * | 2007-07-13 | 2009-01-15 | Zhifeng Tao | Signaling and Training for Antenna Selection in OFDMA Networks |
US7526038B2 (en) * | 2004-02-27 | 2009-04-28 | Kabushiki Kaisha Toshiba | Communications system, method and device |
US7564910B2 (en) * | 2006-04-17 | 2009-07-21 | Zoran Kostic | Method and system for communications with reduced complexity receivers |
US20090316803A1 (en) * | 2005-12-14 | 2009-12-24 | Nxp B.V. | Mimo receiver |
US20100130150A1 (en) * | 2006-11-29 | 2010-05-27 | D Amico Valeria | Switched beam antenna with digitally controlled weighted radio frequency combining |
US20100272005A1 (en) * | 2006-07-03 | 2010-10-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Multi-antenna relay with self-interference cancellation |
US20100298016A1 (en) * | 2009-05-22 | 2010-11-25 | Qualcomm Incorporated | Systems, apparatus and methods for interference management on downlink channels in wireless communication systems |
US20110116393A1 (en) * | 2009-08-10 | 2011-05-19 | Electronics And Telecommunications Research Institute | Method and apparatus for spatial reuse by assistance of distributed devices over wireless system using directional antennas |
US20110199913A1 (en) * | 2010-02-17 | 2011-08-18 | Nec Laboratories America, Inc. | Multicast scheduling systems and methods for leveraging cooperation gains in relay networks |
US8050697B2 (en) * | 2006-08-22 | 2011-11-01 | Nortel Networks Limited | Multi-antenna scheduling system and method |
US8094743B2 (en) * | 2006-07-11 | 2012-01-10 | Samsung Electronics Co., Ltd. | Spatial modulation method and transmitting and receiving apparatuses using the same in a multiple input multiple output system |
US8111709B2 (en) * | 2007-10-19 | 2012-02-07 | Fujitsu Limited | MIMO wireless communication system |
US20120058794A1 (en) * | 2010-09-06 | 2012-03-08 | Telefonaktiebolaget L M Ericsson (Publ) | Systems and Methods for Enabling Non-Cognitive Radio Devices to Function as Cognitive Radios |
US8194798B2 (en) * | 2008-12-30 | 2012-06-05 | Intel Corporation | MIMO symbol decoder and method for decoding spatially multiplexed symbols using combined linear equalization and maximum likelihood decoding |
US8204504B2 (en) * | 2001-10-26 | 2012-06-19 | Rockstar Bidco Llp | Wireless communications system and method |
US20120257664A1 (en) * | 2011-04-06 | 2012-10-11 | Nec Laboratories America, Inc. | Method for Improving Multiuser MIMO Downlink Transmissions |
US8483310B2 (en) * | 2008-02-25 | 2013-07-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Method of and a device for precoding transmit data signals in a wireless MIMO communication system |
US8515435B2 (en) * | 2004-02-13 | 2013-08-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive MIMO architecture |
US8724743B2 (en) * | 2010-07-20 | 2014-05-13 | Ntt Docomo, Inc. | Apparatus and method for calculating receive parameters for an MIMO system |
US8867495B2 (en) * | 2009-03-20 | 2014-10-21 | Qualcomm Incorporated | Feedback mechanisms for beamforming operation |
US20150016291A1 (en) * | 2013-07-10 | 2015-01-15 | Samsung Electronics Co., Ltd. | Method and apparatus for measuring mu-mimo interference in mobile communication system |
US8942082B2 (en) * | 2002-05-14 | 2015-01-27 | Genghiscomm Holdings, LLC | Cooperative subspace multiplexing in content delivery networks |
US8948289B2 (en) * | 2010-01-12 | 2015-02-03 | Lg Electronics Inc. | Method and device for codebook generation and downlink signal transmission in a wireless communication system supporting multiple antennas |
-
2012
- 2012-08-17 US US13/588,466 patent/US9137788B2/en not_active Expired - Fee Related
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030003880A1 (en) * | 2001-03-23 | 2003-01-02 | Fuyun Ling | Method and apparatus for utilizing channel state information in a wireless communication system |
US20030031279A1 (en) * | 2001-08-08 | 2003-02-13 | Viasat, Inc. | Method and apparatus for relayed communication using band-pass signals for self-interference cancellation |
US8204504B2 (en) * | 2001-10-26 | 2012-06-19 | Rockstar Bidco Llp | Wireless communications system and method |
US6912195B2 (en) * | 2001-12-28 | 2005-06-28 | Motorola, Inc. | Frequency-domain MIMO processing method and system |
US8942082B2 (en) * | 2002-05-14 | 2015-01-27 | Genghiscomm Holdings, LLC | Cooperative subspace multiplexing in content delivery networks |
US8515435B2 (en) * | 2004-02-13 | 2013-08-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive MIMO architecture |
US7526038B2 (en) * | 2004-02-27 | 2009-04-28 | Kabushiki Kaisha Toshiba | Communications system, method and device |
US20060209755A1 (en) * | 2005-03-18 | 2006-09-21 | Samsung Electronics Co., Ltd. | Method and system for dynamically allocating sub-carriers in an orthogonal frequency division multiplexing network |
US20080125154A1 (en) * | 2005-05-25 | 2008-05-29 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method for reducing interference in a radio communication system |
US20090316803A1 (en) * | 2005-12-14 | 2009-12-24 | Nxp B.V. | Mimo receiver |
US20070242763A1 (en) * | 2006-04-14 | 2007-10-18 | Junyi Li | Methods and apparatus for using tones in a wireless communication system |
US7564910B2 (en) * | 2006-04-17 | 2009-07-21 | Zoran Kostic | Method and system for communications with reduced complexity receivers |
US20100272005A1 (en) * | 2006-07-03 | 2010-10-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Multi-antenna relay with self-interference cancellation |
US8094743B2 (en) * | 2006-07-11 | 2012-01-10 | Samsung Electronics Co., Ltd. | Spatial modulation method and transmitting and receiving apparatuses using the same in a multiple input multiple output system |
US8050697B2 (en) * | 2006-08-22 | 2011-11-01 | Nortel Networks Limited | Multi-antenna scheduling system and method |
US20100130150A1 (en) * | 2006-11-29 | 2010-05-27 | D Amico Valeria | Switched beam antenna with digitally controlled weighted radio frequency combining |
US20080170523A1 (en) * | 2007-01-12 | 2008-07-17 | Samsung Electronics Co., Ltd. | Method and apparatus for feedback information transmitting/receiving in mobile telecommunication using multiple input multiple output |
US20080260051A1 (en) * | 2007-04-23 | 2008-10-23 | Federico Boccardi | Method and apparatus for transmitting information simultaneously to multiple destinations over shared wireless resources |
US20090016372A1 (en) * | 2007-07-13 | 2009-01-15 | Zhifeng Tao | Signaling and Training for Antenna Selection in OFDMA Networks |
US8111709B2 (en) * | 2007-10-19 | 2012-02-07 | Fujitsu Limited | MIMO wireless communication system |
US8483310B2 (en) * | 2008-02-25 | 2013-07-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Method of and a device for precoding transmit data signals in a wireless MIMO communication system |
US8194798B2 (en) * | 2008-12-30 | 2012-06-05 | Intel Corporation | MIMO symbol decoder and method for decoding spatially multiplexed symbols using combined linear equalization and maximum likelihood decoding |
US8867495B2 (en) * | 2009-03-20 | 2014-10-21 | Qualcomm Incorporated | Feedback mechanisms for beamforming operation |
US20100298016A1 (en) * | 2009-05-22 | 2010-11-25 | Qualcomm Incorporated | Systems, apparatus and methods for interference management on downlink channels in wireless communication systems |
US20110116393A1 (en) * | 2009-08-10 | 2011-05-19 | Electronics And Telecommunications Research Institute | Method and apparatus for spatial reuse by assistance of distributed devices over wireless system using directional antennas |
US8948289B2 (en) * | 2010-01-12 | 2015-02-03 | Lg Electronics Inc. | Method and device for codebook generation and downlink signal transmission in a wireless communication system supporting multiple antennas |
US20110199913A1 (en) * | 2010-02-17 | 2011-08-18 | Nec Laboratories America, Inc. | Multicast scheduling systems and methods for leveraging cooperation gains in relay networks |
US8724743B2 (en) * | 2010-07-20 | 2014-05-13 | Ntt Docomo, Inc. | Apparatus and method for calculating receive parameters for an MIMO system |
US20120058794A1 (en) * | 2010-09-06 | 2012-03-08 | Telefonaktiebolaget L M Ericsson (Publ) | Systems and Methods for Enabling Non-Cognitive Radio Devices to Function as Cognitive Radios |
US20120257664A1 (en) * | 2011-04-06 | 2012-10-11 | Nec Laboratories America, Inc. | Method for Improving Multiuser MIMO Downlink Transmissions |
US20150016291A1 (en) * | 2013-07-10 | 2015-01-15 | Samsung Electronics Co., Ltd. | Method and apparatus for measuring mu-mimo interference in mobile communication system |
Non-Patent Citations (1)
Title |
---|
Choi, et al.; Achieving Single Channel, Full Duplex Wireless Communication}, Sep 20-24, 2010; ACM; MobiCom '10, p1-12, * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9826552B2 (en) | 2012-07-13 | 2017-11-21 | At&T Intellectual Property I, L.P. | System and method for medium access control enabling both full-duplex and half-duplex communications |
US10924256B2 (en) | 2012-07-13 | 2021-02-16 | At&T Intellectual Property I, L.P. | System and method for full duplex cancellation |
US10477583B2 (en) | 2012-07-13 | 2019-11-12 | At&T Intellectual Property I, L.P. | System and method for medium access control enabling both full-duplex and half-duplex communications |
US9825753B2 (en) | 2012-07-13 | 2017-11-21 | At&T Intellectual Property I, L.P. | System and method for full duplex cancellation |
US11044069B2 (en) | 2012-09-07 | 2021-06-22 | At&T Intellectual Property I, L.P. | System and method for full duplex MAC designs based on backoff in frequency domain |
US10396969B2 (en) | 2012-09-07 | 2019-08-27 | At&T Intellectual Property I, L.P. | System and method for full duplex MAC designs based on backoff in frequency domain |
US11658843B2 (en) | 2012-09-14 | 2023-05-23 | At&T Intellectual Property I, L.P. | System and method for full-duplex media access control using request-to-send signaling |
US11128488B2 (en) | 2012-09-14 | 2021-09-21 | At&T Intellectual Property I, L.P. | System and method for full-duplex media access control using request-to-send signaling |
US10447495B2 (en) | 2012-09-14 | 2019-10-15 | At&T Intellectual Property I, L.P. | System and method for full-duplex media access control using request-to-send signaling |
US20140078940A1 (en) * | 2012-09-14 | 2014-03-20 | At&T Intellectual Property I, L.P. | System and method for full-duplex media access control using request-to-send signaling |
US9935785B2 (en) * | 2012-09-14 | 2018-04-03 | At&T Intellectual Property I, L.P. | System and method for full-duplex media access control using Request-to-Send signaling |
US9584294B2 (en) | 2012-12-11 | 2017-02-28 | Lg Electronics Inc. | Method for transceiving signal in wireless communication system, and apparatus therefor |
US9641309B2 (en) * | 2012-12-11 | 2017-05-02 | Lg Electronics Inc. | Method for transceiving signal in wireless communication system, and apparatus therefor |
US20150280887A1 (en) * | 2012-12-11 | 2015-10-01 | Lg Electronics Inc. | Method for transceiving signal in wireless communication system, and apparatus therefor |
US20140273914A1 (en) * | 2013-03-14 | 2014-09-18 | Mobilesphere Holdings II LLC | Panic messaging in an ofdm communication system |
US9948406B2 (en) * | 2013-07-19 | 2018-04-17 | Lg Electronics Inc. | User equipment comprising a transceiver capable of removing self-interference and method therefor |
US20160156423A1 (en) * | 2013-07-19 | 2016-06-02 | Lg Electronics Inc. | User equipment comprising a transceiver capable of removing self-interference and method therefor |
US9793967B2 (en) | 2013-11-21 | 2017-10-17 | The Hong Kong University Of Science And Technology | Weighted sum data rate maximization using linear transceivers in a full-duplex multi-user MIMO system |
US10985898B2 (en) | 2013-12-24 | 2021-04-20 | Lg Electronics Inc. | Method for mitigating self-interference in FDR communication environment |
US10382185B2 (en) | 2013-12-24 | 2019-08-13 | Lg Electronics Inc. | Method for mitigating self-interference in FDR communication environment |
US20160323830A1 (en) * | 2013-12-24 | 2016-11-03 | Lg Electronics Inc. | Method for terminal for transmitting uplink data in fdr communication environment |
US10110364B2 (en) * | 2013-12-24 | 2018-10-23 | Lg Electronics Inc. | Method for terminal for transmitting uplink data in FDR communication environment |
US10064177B2 (en) | 2014-02-16 | 2018-08-28 | Lg Electronics Inc. | Resource allocation method and device in wireless access system supporting FDR transmission |
WO2015122732A1 (en) * | 2014-02-16 | 2015-08-20 | 엘지전자 주식회사 | Resource allocation method and device in wireless access system supporting fdr transmission |
US10200167B2 (en) * | 2014-04-25 | 2019-02-05 | Alcatel Lucent | Full-duplex communication over a shared transmission medium |
WO2016161646A1 (en) * | 2015-04-10 | 2016-10-13 | 华为技术有限公司 | Data transmission method and device, and transceiver |
US9647823B2 (en) | 2015-05-19 | 2017-05-09 | Qualcomm Incorporated | Enhanced scheduling procedure for full duplex access point |
US10050767B2 (en) | 2015-09-18 | 2018-08-14 | Huawei Technologies Canada Co., Ltd. | System and method for multiple-input and multiple-output (MIMO) full-duplex precoding algorithms |
CN114158077A (en) * | 2017-09-11 | 2022-03-08 | 美光科技公司 | Full-duplex device-to-device cooperative communication |
US12177167B2 (en) | 2017-09-11 | 2024-12-24 | Micron Technology, Inc. | Full duplex device-to-device cooperative communication |
US11329707B1 (en) * | 2020-08-28 | 2022-05-10 | Tarana Wireless, Inc. | Communication systems, devices, and methods for multicarrier frequency division duplexing |
Also Published As
Publication number | Publication date |
---|---|
US9137788B2 (en) | 2015-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9137788B2 (en) | Multiple-input multiple-output wireless communications with full duplex radios | |
Zhang et al. | Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks | |
TWI685222B (en) | System and methods for coping with doppler effects in distributed-input distributed-output wireless systems | |
KR102208941B1 (en) | Exploiting inter-cell multiplexing gain in wireless cellular systems | |
TWI651956B (en) | System and method for utilizing coherent regions in a wireless system | |
US8849353B2 (en) | Method of grouping users to reduce interference in MIMO-based wireless network | |
US8077802B2 (en) | Device, system, and method of resource allocation in a wireless network | |
US10200170B2 (en) | Method and apparatus for a multi-cell full-dimension MIMO system | |
US9667330B2 (en) | Massive MIMO multi-user beamforming and single channel full duplex for wireless networks | |
CN103392375B (en) | Wireless network node and method therein | |
US10044592B2 (en) | Method and apparatus for device to device communication in a wireless communication system and related apparatus using the same | |
JP2016513940A (en) | System and method for utilizing inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology | |
US11438915B2 (en) | SDMA carrier sharing | |
TW201132024A (en) | Interference-cognitive transmission | |
WO2012065278A1 (en) | Two-dimensional ue pairing in mimo systems | |
KR20100005650A (en) | A collaborative mimo using a sounding channel in a multi-cell environment | |
US20100177670A1 (en) | Resource allocation in a communication system | |
CN104954058A (en) | Electronic device and wireless communication method | |
Cirik et al. | A subcarrier and power allocation algorithm for OFDMA full-duplex systems | |
Du et al. | SAMU: Design and implementation of selectivity-aware MU-MIMO for wideband WiFi | |
KR20150134520A (en) | Apparatus for processing transmission/reception signal for interference alignment in a mu-mimo interference broadcasting channel and method thereof | |
US20170331526A1 (en) | Massive mimo multi-user beamforming and single channel full duplex for wireless networks | |
US20240163058A1 (en) | Full duplex reference signal configuration | |
WO2022169513A1 (en) | Iterative precoder computation and coordination for improved sidelink and uplink coverages | |
US20240333462A1 (en) | User equipment capability signaling for scheduling to avoid symbol blanking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC LABORATORIES AMERICA, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHOJASTEPOUR, MOHAMMAD A.;BARGHI, SANAZ;SUNDARESAN, KARTHIKEYAN;AND OTHERS;REEL/FRAME:028806/0153 Effective date: 20120817 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC LABORATORIES AMERICA, INC.;REEL/FRAME:037961/0612 Effective date: 20160301 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230915 |