US20130153584A1 - Cooler ice net - Google Patents
Cooler ice net Download PDFInfo
- Publication number
- US20130153584A1 US20130153584A1 US13/332,186 US201113332186A US2013153584A1 US 20130153584 A1 US20130153584 A1 US 20130153584A1 US 201113332186 A US201113332186 A US 201113332186A US 2013153584 A1 US2013153584 A1 US 2013153584A1
- Authority
- US
- United States
- Prior art keywords
- cooler
- ice
- net
- upper rim
- ice net
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/02—Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
- F25D3/06—Movable containers
- F25D3/08—Movable containers portable, i.e. adapted to be carried personally
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/081—Devices using cold storage material, i.e. ice or other freezable liquid using ice cubes or crushed ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/084—Position of the cold storage material in relationship to a product to be cooled
- F25D2303/0844—Position of the cold storage material in relationship to a product to be cooled above the product
Definitions
- the present invention relates generally to ice nets for use in portable insulated coolers.
- Portable coolers are typically used to keep beverages, perishable food items, and similar cooler articles chilled or otherwise stored below ambient temperature.
- Water ice is typically used as a cooling medium, with cubed ice often used because it facilitates having ice in contact with or in close proximity to the cooler articles in order to keep them chilled.
- Block ice is sometimes used because it tends to last longer in a cooler.
- one of the qualities that allows block ice to last longer is its lower surface area to volume ratio compared to cubed ice, which also makes it less effective at chilling cooler articles.
- An ability of cubed ice to flow or settle around cooler articles makes the cubed ice relatively effective at chilling the cooler articles, but also creates problems with finding and identifying cooler articles disposed among the ice cubes, and with retrieving the cooler articles therefrom.
- a user must frequently rummage in a cooler, attempting to find cooler articles by sense of touch, where the cooler articles are fully or partially buried in the cubed ice.
- the user's hands can become uncomfortably chilled during such searching, and the search is prone to error, where searched for article is present in the cooler, but the user concludes otherwise because of the difficulty or discomfort of the search.
- Dry ice is sometimes used to chill cooler articles.
- the dry ice can be even more problematic because merely touching the dry ice can cause tissue damage for a user. Accordingly, an ability to remove cooler articles without even touching the dry ice is desirable.
- FIG. 1 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention.
- FIG. 2 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention.
- FIG. 3 is a side, cross section view of an ice cooler net according to one embodiment of the present invention.
- FIG. 4 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention.
- FIG. 5 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention.
- Embodiments of the present invention comprise a cooler ice net that resides inside a cooler and contains cubed ice.
- the cooler ice net enables the cubed ice to effectively chill cooler articles by allowing the cubed ice to disperse among or bury the cooler articles, and to also be readily separable from the cooler articles and removable from the cooler.
- a mesh barrier portion of the cooler ice net is typically supple, allowing the mesh barrier to drape about and conform to the cooler articles. Accordingly, ice cubes residing within a mesh barrier cavity, whose lower portion is surrounded by the mesh barrier, also conform to the cooler articles.
- Embodiments of the cooler ice net include handles that facilitate ready removal of the cooler ice net, along with cubed ice contained therein, from within the cooler.
- cooler articles can be placed in the cooler ice net to prevent the cooler articles from sitting in ice water that accumulates in a bottom of the cooler.
- the cooler ice net is typically, but not necessarily, installed inside a portable cooler having a volume of 155 quarts or less.
- references in the specification to “one embodiment”, “an embodiment”, “another embodiment”, “a preferred embodiment”, “an alternative embodiment”, “one variation”, “a variation” and similar phrases mean that a particular feature, structure, or characteristic described in connection with the embodiment or variation, is included in at least an embodiment or variation of the invention.
- the phrase “in one embodiment”, “in one variation” or similar phrases, as used in various places in the specification, are not necessarily meant to refer to the same embodiment or the same variation.
- Couple or “coupled” as used in this specification and appended claims refers to an indirect or direct physical connection between the identified elements, components, or objects. Often the manner of the coupling will be related specifically to the manner in which the two coupled elements interact.
- directly coupled or “coupled directly,” as used in this specification and appended claims, refers to a physical connection between identified elements, components, or objects, in which no other element, component, or object resides between those identified as being directly coupled.
- chill refers to reducing the temperature of a cooler article in a cooler, or preventing or impeding warming of the cooler article in the cooler. Cooling is typically achieved by placing ice in the cooler along with the cooler articles.
- Ice cube refers to ice formed into relatively small cubes or other shapes familiar to persons skilled in the art. Crushed ice and shaved ice are included within this definition for the purposes of this specification and appended claims. Ice cubes are distinguished from “block ice” by comprising multiple discreet pieces of ice that are substantially smaller than a block of ice. Block ice typically has a volume of greater than 700 cubic centimeters per block.
- ice refers to water ice, except where used with the terms “dry ice” or “carbon dioxide ice,” which refer to frozen, solid carbon dioxide familiar to persons skilled in the art.
- supply refers to pliant or flexible material that yields, folds, or bends with little resistance and without breaking. Supple material typically yields, folds, or bends without deforming permanently.
- Portable cooler refers to coolers designed and adapted to be carried by one or two persons.
- Portable coolers are not designed and adapted to be permanently installed in a building, structure, or vehicle.
- Portable coolers are 155 quarts or less in volume.
- a 155 quart cooler is an exceptionally large for a portable cooler.
- a medium size portable cooler having a volume of about 36 quarts is typical, and small portable coolers with a volume of 5 quarts are common.
- Portable coolers can be substantially rigid or soft-sided.
- removable refers to structures that can be uncoupled from an adjoining structure or otherwise uninstalled with relative ease (i.e., non-destructively and without a complicated or time-consuming process) and that can also be readily reattached to or reinstalled in the previously adjoining structure.
- full volume refers to the volume of a mesh barrier cavity obtained when the cooler ice net resides outside a cooler and is full of cubed ice. So configured, the mesh barrier is not draped about or conforming to cooler articles, and the mesh barrier cavity thus attains about its maximum possible volume.
- resilient refers to a structure or material that has a definite shape and a tendency to resist deformation and to return to its original shape when slightly deformed. Accordingly, a supple mesh barrier is generally not resilient and an aluminum upper rim typically is resilient. A resilient aluminum rim can be deformed to an extent beyond which it will not return to its original shape or dimension.
- a first embodiment cooler ice net 100 is illustrated in FIGS. 1-5 , along with a cooler 180 and cooler articles 185 residing within the cooler.
- the first embodiment cooler ice net comprises an upper rim 105 , a mesh barrier 110 residing below the upper rim and partially surrounding a cavity, and handles 115 , the mesh barrier and the handles being coupled directly to the upper rim.
- the upper rim of the first embodiment is resilient and typically comprises aluminum.
- Other embodiments include polymers, epoxides, fiber-glass, wood, metals and metal alloys, and composites including carbon fiber/resin composites.
- the first embodiment mesh barrier 110 is supple, enabling the barrier to drape over and conform about cooler articles 185 .
- the supple mesh allows ice cubes 120 contained in the cooler ice net to also conform about the cooler articles. The ice cubes can therefore cool the articles effectively because the cubes reside in contact with or close proximity to the cooler articles.
- the cooler articles 185 are typically placed in the cooler 180 with the cooler ice net 100 absent from within the cooler.
- the cooler ice net is then placed in the cooler, allowing the mesh barrier 110 to drape over and conform to shapes of cooler articles.
- cubed ice 120 is then added to the cooler ice net.
- FIGS. 2 and 3 illustrate the supple mesh barrier conforming to shapes of cooler articles, and FIG. 3 best illustrates how this feature enables cubed ice contained in the cooler ice net to also conform to the cooler articles.
- the cooler ice net 100 facilitates ready access to, identification of, and retrieval of, cooler articles 185 that are buried in the cubed ice 120 , by enabling facile removal of the cooler ice from within the cooler 180 ; the cooler ice net is removed from within the cooler with the ice cubes contained within the cavity 112 formed by the mesh barrier 110 .
- the mesh barrier cavity has a full volume that is preferably >50% of the cooler volume, more preferably >70% of the cooler volume, still more preferably >85% of the cooler volume. In some embodiments, the mesh barrier cavity has a full volume that is equal to or greater than 100% of the cooler volume. Cooler volume refers to a volume of space residing inside the cooler.
- the cooler ice net allows a user to spend less time searching for and retrieving the cooler articles.
- the cooler lid is therefore open for less time, which helps maintain the internal temperature of the cooler, and thus slows melting of ice in the cooler. Accordingly, ice tends to last longer in a cooler system that includes a cooler ice net.
- the cooler ice net helps keep ice clean because ice retained in the cooler ice net cavity is not free to mix with debris and dirty water that tends to collect in the bottom of a cooler, and a user's dirty hands are not rummaging in the ice to locate or remove cooler articles.
- the cooler ice net therefore helps maintain clean ice that can be used in a beverage glass or similar vessel in order for a user to enjoy an iced beverage.
- the mesh barrier 110 of the first embodiment cooler ice net 100 comprises square pores or openings about 4 mm per side.
- the mesh barrier comprises other pore sizes or pore shapes, and variations include a fabric having effective pore size of less than 0.0625 square millimeters.
- Embodiments include woven fabric comprising hydrophobic natural or synthetic polymers. Natural polymers include, but are not limited to, silk.
- Synthetic polymers include, but are not limited to, nylon, polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate (PET), polyetheretherketone (PEEK), polyimide, polycarbonate, polyaniline, acrylate or methacrylate polymers, fluorinated polymers such as polytetrafluoroethylene or polyfluoroethylenepropylene, and polyolefins such as polyethylene (PE), polypropylene (PP) or polybutylene (PB).
- PVC polyvinyl chloride
- ABS acrylonitrile butadiene styrene
- PET polyethylene terephthalate
- PEEK polyetheretherketone
- polyimide polycarbonate
- polyaniline acrylate or methacrylate polymers
- fluorinated polymers such as polytetrafluoroethylene or polyfluoroethylenepropylene
- polyolefins such as polyethylene (PE
- Mesh pore size is preferably less than 64 cm 2 , more preferably less than 16 cm 2 , still more preferably less than 64 mm 2 , and most preferably between 0.0625 mm 2 and 36 mm 2 .
- Embodiments include mesh barriers comprising food grade materials.
- the cooler 180 of the first embodiment includes a narrow inside shelf 182 molded into the cooler interior surface.
- the narrow shelf 182 is about 6.5 mm deep.
- FIG. 3 shows the upper rim 105 of the cooler ice net 100 residing on and being supported by the narrow shelf.
- the upper rim 105 is thus impeded or prevented from dropping into the cooler interior.
- the cooler opening through which cooler contents, including but not limited to cooler articles and the cooler ice net, is approximately rectangular, having dimensions of about 30 cm ⁇ 56 cm.
- the upper rim of the cooler ice net is about the same shape, and is slightly smaller, having dimensions of about 29.2 cm ⁇ 55.2 cm.
- the area circumscribed by the upper rim is therefore about 96% of the cooler opening area.
- the upper rim 105 therefore fits within the cooler opening, but does not readily drop below the narrow shelf, which is about 28.7 cm ⁇ 54.7 cm.
- the cooler rim is substantially smaller than the cooler opening.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
Abstract
A cooler ice net adapted to reside inside a cooler is described. The cooler ice net typically contains cubed ice dispersed among or burying the cooler articles, and also enables the cubed ice to be readily separable from the cooler articles and removable from the cooler. A mesh barrier portion of the cooler ice net is typically supple, allowing the mesh barrier to drape about and conform to the cooler articles. Accordingly, ice cubes residing within a mesh barrier cavity, whose lower portion is surrounded by the mesh barrier, also conform to the cooler articles. Embodiments of the cooler ice net include handles that facilitate ready removal of the cooler ice net, along with cubed ice contained therein, from within the cooler.
Description
- The present invention relates generally to ice nets for use in portable insulated coolers.
- Portable coolers are typically used to keep beverages, perishable food items, and similar cooler articles chilled or otherwise stored below ambient temperature. Water ice is typically used as a cooling medium, with cubed ice often used because it facilitates having ice in contact with or in close proximity to the cooler articles in order to keep them chilled. Block ice is sometimes used because it tends to last longer in a cooler. However, one of the qualities that allows block ice to last longer is its lower surface area to volume ratio compared to cubed ice, which also makes it less effective at chilling cooler articles.
- An ability of cubed ice to flow or settle around cooler articles makes the cubed ice relatively effective at chilling the cooler articles, but also creates problems with finding and identifying cooler articles disposed among the ice cubes, and with retrieving the cooler articles therefrom. A user must frequently rummage in a cooler, attempting to find cooler articles by sense of touch, where the cooler articles are fully or partially buried in the cubed ice. The user's hands can become uncomfortably chilled during such searching, and the search is prone to error, where searched for article is present in the cooler, but the user concludes otherwise because of the difficulty or discomfort of the search.
- Dry ice is sometimes used to chill cooler articles. The dry ice can be even more problematic because merely touching the dry ice can cause tissue damage for a user. Accordingly, an ability to remove cooler articles without even touching the dry ice is desirable.
-
FIG. 1 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention. -
FIG. 2 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention. -
FIG. 3 is a side, cross section view of an ice cooler net according to one embodiment of the present invention. -
FIG. 4 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention. -
FIG. 5 is an isometric, perspective view of a cooler ice net according to one embodiment of the present invention. - Embodiments of the present invention comprise a cooler ice net that resides inside a cooler and contains cubed ice. The cooler ice net enables the cubed ice to effectively chill cooler articles by allowing the cubed ice to disperse among or bury the cooler articles, and to also be readily separable from the cooler articles and removable from the cooler. A mesh barrier portion of the cooler ice net is typically supple, allowing the mesh barrier to drape about and conform to the cooler articles. Accordingly, ice cubes residing within a mesh barrier cavity, whose lower portion is surrounded by the mesh barrier, also conform to the cooler articles.
- Embodiments of the cooler ice net include handles that facilitate ready removal of the cooler ice net, along with cubed ice contained therein, from within the cooler. In some embodiments, cooler articles can be placed in the cooler ice net to prevent the cooler articles from sitting in ice water that accumulates in a bottom of the cooler.
- The cooler ice net is typically, but not necessarily, installed inside a portable cooler having a volume of 155 quarts or less.
- The terms and phrases as indicated in quotation marks (“ ”) in this section are intended to have the meaning ascribed to them in this Terminology section applied to them throughout this document, including in the claims, unless clearly indicated otherwise in context. Further, as applicable, the stated definitions are to apply, regardless of the word or phrase's case, to the singular and plural variations of the defined word or phrase.
- The term “or” as used in this specification and the appended claims is not meant to be exclusive; rather the term is inclusive, meaning either or both.
- References in the specification to “one embodiment”, “an embodiment”, “another embodiment”, “a preferred embodiment”, “an alternative embodiment”, “one variation”, “a variation” and similar phrases mean that a particular feature, structure, or characteristic described in connection with the embodiment or variation, is included in at least an embodiment or variation of the invention. The phrase “in one embodiment”, “in one variation” or similar phrases, as used in various places in the specification, are not necessarily meant to refer to the same embodiment or the same variation.
- The term “couple” or “coupled” as used in this specification and appended claims refers to an indirect or direct physical connection between the identified elements, components, or objects. Often the manner of the coupling will be related specifically to the manner in which the two coupled elements interact.
- The term “directly coupled” or “coupled directly,” as used in this specification and appended claims, refers to a physical connection between identified elements, components, or objects, in which no other element, component, or object resides between those identified as being directly coupled.
- The term “approximately,” as used in this specification and appended claims, refers to plus or minus 10% of the value given.
- The term “about,” as used in this specification and appended claims, refers to plus or minus 20% of the value given.
- The terms “generally” and “substantially,” as used in this specification and appended claims, mean mostly, or for the most part.
- Directional or relational terms such as “top,” “bottom,” “upwardly,” “downwardly,” “above,” “below,” “inside,” “outside,” “upper,” “lower,” and “horizontal,” as used in this specification and appended claims, refer to relative positions of identified elements, components or objects, when a cooler ice net or cooler is oriented sitting upright as normally used.
- The term “chill,” “chilled,” “cooling,” “cooled,” and similar terms, as used in this specification and appended claims, refers to reducing the temperature of a cooler article in a cooler, or preventing or impeding warming of the cooler article in the cooler. Cooling is typically achieved by placing ice in the cooler along with the cooler articles.
- The terms “ice cube,” “ice cubes,” “cubed ice,” and similar terms, as used in this specification and appended claims, refers to ice formed into relatively small cubes or other shapes familiar to persons skilled in the art. Crushed ice and shaved ice are included within this definition for the purposes of this specification and appended claims. Ice cubes are distinguished from “block ice” by comprising multiple discreet pieces of ice that are substantially smaller than a block of ice. Block ice typically has a volume of greater than 700 cubic centimeters per block.
- The term “ice,” as used in this specification and appended claims, refers to water ice, except where used with the terms “dry ice” or “carbon dioxide ice,” which refer to frozen, solid carbon dioxide familiar to persons skilled in the art.
- The terms “supple,” “substantially supple,” “supple material,” and similar terms, as used in this specification and appended claims, refer to pliant or flexible material that yields, folds, or bends with little resistance and without breaking. Supple material typically yields, folds, or bends without deforming permanently.
- The term “portable cooler,” as used in this specification and appended claims, refers to coolers designed and adapted to be carried by one or two persons. Portable coolers are not designed and adapted to be permanently installed in a building, structure, or vehicle. Portable coolers are 155 quarts or less in volume. A 155 quart cooler is an exceptionally large for a portable cooler. A medium size portable cooler having a volume of about 36 quarts is typical, and small portable coolers with a volume of 5 quarts are common. Portable coolers can be substantially rigid or soft-sided.
- The terms “removable,” “removably coupled,” “readily removable,” “readily detachable,” and similar terms, as used in this specification and appended claims, refer to structures that can be uncoupled from an adjoining structure or otherwise uninstalled with relative ease (i.e., non-destructively and without a complicated or time-consuming process) and that can also be readily reattached to or reinstalled in the previously adjoining structure.
- The term “full volume,” as used in this specification and appended claims, refers to the volume of a mesh barrier cavity obtained when the cooler ice net resides outside a cooler and is full of cubed ice. So configured, the mesh barrier is not draped about or conforming to cooler articles, and the mesh barrier cavity thus attains about its maximum possible volume.
- The term “resilient,” as used in this specification and appended claims, refers to a structure or material that has a definite shape and a tendency to resist deformation and to return to its original shape when slightly deformed. Accordingly, a supple mesh barrier is generally not resilient and an aluminum upper rim typically is resilient. A resilient aluminum rim can be deformed to an extent beyond which it will not return to its original shape or dimension.
- A first embodiment
cooler ice net 100 is illustrated inFIGS. 1-5 , along with a cooler 180 andcooler articles 185 residing within the cooler. The first embodiment cooler ice net comprises anupper rim 105, amesh barrier 110 residing below the upper rim and partially surrounding a cavity, and handles 115, the mesh barrier and the handles being coupled directly to the upper rim. The upper rim of the first embodiment is resilient and typically comprises aluminum. Other embodiments include polymers, epoxides, fiber-glass, wood, metals and metal alloys, and composites including carbon fiber/resin composites. - As best illustrated in
FIGS. 2 and 3 , the firstembodiment mesh barrier 110 is supple, enabling the barrier to drape over and conform aboutcooler articles 185. By conforming about the cooler articles, the supple mesh allowsice cubes 120 contained in the cooler ice net to also conform about the cooler articles. The ice cubes can therefore cool the articles effectively because the cubes reside in contact with or close proximity to the cooler articles. - As best shown in
FIG. 1 , thecooler articles 185 are typically placed in the cooler 180 with thecooler ice net 100 absent from within the cooler. As best shown inFIG. 2 , the cooler ice net is then placed in the cooler, allowing themesh barrier 110 to drape over and conform to shapes of cooler articles. As best shown inFIGS. 3 and 4 ,cubed ice 120 is then added to the cooler ice net.FIGS. 2 and 3 illustrate the supple mesh barrier conforming to shapes of cooler articles, andFIG. 3 best illustrates how this feature enables cubed ice contained in the cooler ice net to also conform to the cooler articles. - As best shown in
FIG. 5 , thecooler ice net 100 facilitates ready access to, identification of, and retrieval of,cooler articles 185 that are buried in thecubed ice 120, by enabling facile removal of the cooler ice from within the cooler 180; the cooler ice net is removed from within the cooler with the ice cubes contained within thecavity 112 formed by themesh barrier 110. The mesh barrier cavity has a full volume that is preferably >50% of the cooler volume, more preferably >70% of the cooler volume, still more preferably >85% of the cooler volume. In some embodiments, the mesh barrier cavity has a full volume that is equal to or greater than 100% of the cooler volume. Cooler volume refers to a volume of space residing inside the cooler. - By enabling facile removal of cooler ice from within the cooler and thus ready access to cooler articles, the cooler ice net allows a user to spend less time searching for and retrieving the cooler articles. The cooler lid is therefore open for less time, which helps maintain the internal temperature of the cooler, and thus slows melting of ice in the cooler. Accordingly, ice tends to last longer in a cooler system that includes a cooler ice net. In addition, the cooler ice net helps keep ice clean because ice retained in the cooler ice net cavity is not free to mix with debris and dirty water that tends to collect in the bottom of a cooler, and a user's dirty hands are not rummaging in the ice to locate or remove cooler articles. The cooler ice net therefore helps maintain clean ice that can be used in a beverage glass or similar vessel in order for a user to enjoy an iced beverage.
- The
mesh barrier 110 of the first embodimentcooler ice net 100 comprises square pores or openings about 4 mm per side. In some embodiments, the mesh barrier comprises other pore sizes or pore shapes, and variations include a fabric having effective pore size of less than 0.0625 square millimeters. Embodiments include woven fabric comprising hydrophobic natural or synthetic polymers. Natural polymers include, but are not limited to, silk. Synthetic polymers include, but are not limited to, nylon, polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate (PET), polyetheretherketone (PEEK), polyimide, polycarbonate, polyaniline, acrylate or methacrylate polymers, fluorinated polymers such as polytetrafluoroethylene or polyfluoroethylenepropylene, and polyolefins such as polyethylene (PE), polypropylene (PP) or polybutylene (PB). Mesh pore size is preferably less than 64 cm2, more preferably less than 16 cm2, still more preferably less than 64 mm2, and most preferably between 0.0625 mm2 and 36 mm2. Embodiments include mesh barriers comprising food grade materials. - As best shown in
FIGS. 1 , 3, and 5, the cooler 180 of the first embodiment includes a narrow insideshelf 182 molded into the cooler interior surface. Thenarrow shelf 182 is about 6.5 mm deep.FIG. 3 shows theupper rim 105 of thecooler ice net 100 residing on and being supported by the narrow shelf. Theupper rim 105 is thus impeded or prevented from dropping into the cooler interior. The cooler opening, through which cooler contents, including but not limited to cooler articles and the cooler ice net, is approximately rectangular, having dimensions of about 30 cm×56 cm. The upper rim of the cooler ice net is about the same shape, and is slightly smaller, having dimensions of about 29.2 cm×55.2 cm. The area circumscribed by the upper rim is therefore about 96% of the cooler opening area. Theupper rim 105 therefore fits within the cooler opening, but does not readily drop below the narrow shelf, which is about 28.7 cm×54.7 cm. In some embodiments, the cooler rim is substantially smaller than the cooler opening. - The various embodiments and variations thereof, illustrated in the accompanying Figures and/or described above, are merely exemplary and are not meant to limit the scope of the invention. It is to be appreciated that numerous other variations of the invention have been contemplated, as would be obvious to one of ordinary skill in the art, given the benefit of this disclosure. All variations of the invention that read upon appended claims are intended and contemplated to be within the scope of the invention.
Claims (20)
1. A cooler ice net system comprising:
a cooler having a cooler volume;
a cooler ice net residing inside the cooler, the cooler ice net including;
an upper rim;
a mesh barrier disposed below and coupled to the upper rim, the supple mesh barrier and upper rim defining a cavity having a full volume greater than 50% of the cooler volume.
2. The cooler ice net system of claim 1 , wherein the mesh barrier is supple.
3. The cooler ice net system of claim 2 , wherein the cooler is a portable cooler and the cooler volume is 155 quarts or less.
4. The cooler ice net system of claim 3 , wherein the upper rim is resilient.
5. The cooler ice net system of claim 4 , wherein the cooler ice net further comprises a handle coupled to the upper rim.
6. The cooler ice net system of claim 5 , wherein the handle is coupled directly to the upper rim.
7. A method of using the cooler ice net system of claim 6 comprising:
removing the cooler ice net from inside the cooler;
placing cooler articles inside the cooler;
replacing the cooler ice net inside the cooler;
placing ice cubes in the cavity.
8. The method of claim 7 , wherein the mesh barrier drapes about and conforms to the cooler articles.
9. The method of claim 8 , further comprising:
grasping the cooler ice net by the handle;
lifting the cooler ice net from inside the cooler with the ice cubes remaining in the cavity; and
removing a cooler article from inside the cooler.
10. The method of claim 9 , further comprising replacing the cooler ice net inside the cooler with the ice cubes remaining in the cavity.
11. A cooler combination comprising:
a portable cooler having a cooler volume;
a cooler ice net residing inside the cooler, the cooler ice net including;
a resilient upper rim;
a handle coupled directly to the resilient upper rim;
a mesh barrier disposed below and coupled to the upper rim, the mesh barrier being supple and adapted to draping over and conforming to cooler articles residing inside the cooler; and
a cavity residing within the mesh barrier.
12. The cooler combination of claim 11 , wherein the cavity has a full volume greater than 70% of the cooler volume.
13. The cooler combination of claim 12 , wherein the cavity has a full volume greater than 85% of the cooler volume.
14. A method of using the cooler combination of claim 12 comprising:
removing the cooler ice net from inside the cooler;
placing cooler articles inside the cooler;
replacing the cooler ice net inside the cooler;
placing ice cubes in the cavity.
15. The method of claim 14 , wherein the mesh barrier drapes about and conforms to the cooler articles.
16. The method of claim 15 , further comprising:
grasping the cooler ice net by the handle;
lifting the cooler ice net from inside the cooler with the ice cubes remaining in the cavity; and
removing a cooler article from inside the cooler.
17. The method of claim 16 , further comprising replacing the cooler ice net inside the cooler with the ice cubes remaining in the cavity.
18. The method of claim 17 , wherein the cooler comprises a narrow inside shelf molded into a cooler inside surface and adapted to support the upper rim.
19. The method of claim 18 , further comprising supporting the upper rim on the narrow inside shelf.
20. A method of making a cooler combination comprising:
providing a cooler;
installing a cooler ice net inside the cooler; the cooler ice net including;
a resilient upper rim;
a handle coupled to the resilient upper rim;
a supple mesh barrier disposed below and coupled to the upper rim, the supple mesh barrier and upper rim defining a cavity.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/332,186 US20130153584A1 (en) | 2011-12-20 | 2011-12-20 | Cooler ice net |
US14/281,547 US20140250926A1 (en) | 2011-12-20 | 2014-05-19 | Cooler ice net |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/332,186 US20130153584A1 (en) | 2011-12-20 | 2011-12-20 | Cooler ice net |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/281,547 Division US20140250926A1 (en) | 2011-12-20 | 2014-05-19 | Cooler ice net |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130153584A1 true US20130153584A1 (en) | 2013-06-20 |
Family
ID=48609090
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/332,186 Abandoned US20130153584A1 (en) | 2011-12-20 | 2011-12-20 | Cooler ice net |
US14/281,547 Abandoned US20140250926A1 (en) | 2011-12-20 | 2014-05-19 | Cooler ice net |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/281,547 Abandoned US20140250926A1 (en) | 2011-12-20 | 2014-05-19 | Cooler ice net |
Country Status (1)
Country | Link |
---|---|
US (2) | US20130153584A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140252009A1 (en) * | 2013-03-09 | 2014-09-11 | Brian Andrew Robinson | Cooler Web |
US20150176889A1 (en) * | 2012-06-08 | 2015-06-25 | Tina Ting-Yuan Wang | Storage Systems for Milk Bags |
USD779283S1 (en) | 2014-10-13 | 2017-02-21 | Sovaro Coolers, LLC | Cork-lined container |
US20170254578A1 (en) * | 2016-03-07 | 2017-09-07 | Roger Mark Kriesel | Retractable ice cooler |
US9896259B2 (en) | 2015-01-18 | 2018-02-20 | David Soules | Ice chest suspension device |
USD817112S1 (en) * | 2015-12-14 | 2018-05-08 | Cambro Manufacturing Company. | Food storage box |
USD893265S1 (en) | 2019-01-18 | 2020-08-18 | Harvey P. Insler | Ice bucket wine bottle sleeve |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058479A (en) * | 1975-05-12 | 1977-11-15 | Aerojet-General Corporation | Filter-lined container for hazardous solids |
US4603558A (en) * | 1983-03-31 | 1986-08-05 | Mcadams Michael James | Receptacle for mounting in a freezer for assisting in the defrosting thereof |
US4642934A (en) * | 1985-04-12 | 1987-02-17 | Carlson Joseph D | Transportable live well liner |
US4697380A (en) * | 1986-04-14 | 1987-10-06 | Dale Fenske | Bait container |
US4804470A (en) * | 1986-10-08 | 1989-02-14 | Calvillo Carlos P | Paint strainer |
US5135787A (en) * | 1990-08-14 | 1992-08-04 | E. I. Du Pont De Nemours And Company | Iced food shipping container with aqueous liquid absorbing pad |
US5156291A (en) * | 1990-12-21 | 1992-10-20 | Arthur Mielke | Hinged cover with auxiliary door |
US5186828A (en) * | 1992-02-14 | 1993-02-16 | Mankin Gary L | Paint strainer kit |
US5833336A (en) * | 1997-08-18 | 1998-11-10 | Dean; W. Anthony | Partitioned stylish hamper |
US6067745A (en) * | 1996-04-09 | 2000-05-30 | Adams; Robert S. | Fisherman's cooler insert |
US6168043B1 (en) * | 1999-04-23 | 2001-01-02 | Wen-Li Yen | Ice separation device |
US6193097B1 (en) * | 2000-02-25 | 2001-02-27 | Miguel Angel Martin Perianes | Portable cooler |
US6436286B1 (en) * | 2000-02-17 | 2002-08-20 | William J. Scott | Paint strainer for use with paint sprayers |
US20040069009A1 (en) * | 2002-06-15 | 2004-04-15 | Tedder Carl Kenneth | Stackable cooler shelving system |
JP2004321070A (en) * | 2003-04-24 | 2004-11-18 | Shimano Inc | Fish-holding instrument for cooler |
US20050086851A1 (en) * | 2003-10-23 | 2005-04-28 | Carden Michael F.Jr. | Mesh liner for live bait containers |
US20050252234A1 (en) * | 2004-05-13 | 2005-11-17 | Ik-Sub Kim | Ice cooler |
US20070053616A1 (en) * | 2005-09-02 | 2007-03-08 | Plouff Rockey J | Bag attachment for cooler |
US20080237153A1 (en) * | 2007-04-02 | 2008-10-02 | Nicastle Larry P | Particulate collector for liquid containment system |
US20090169756A1 (en) * | 2007-12-28 | 2009-07-02 | Joosten Darrel J | Paint Strainer System and Method |
US8127956B2 (en) * | 1998-07-01 | 2012-03-06 | Bajer Design & Marketing, Inc. | Collapsible structure |
US20120261422A1 (en) * | 2011-04-14 | 2012-10-18 | Gina Matthews | Disposable liner for a cooler |
US20130247606A1 (en) * | 2012-03-21 | 2013-09-26 | Glen R. Suchecki | Insulated container and insert |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4565074A (en) * | 1982-01-18 | 1986-01-21 | Morgan Marshall M | Ice tray for use with a portable ice chest |
-
2011
- 2011-12-20 US US13/332,186 patent/US20130153584A1/en not_active Abandoned
-
2014
- 2014-05-19 US US14/281,547 patent/US20140250926A1/en not_active Abandoned
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058479A (en) * | 1975-05-12 | 1977-11-15 | Aerojet-General Corporation | Filter-lined container for hazardous solids |
US4603558A (en) * | 1983-03-31 | 1986-08-05 | Mcadams Michael James | Receptacle for mounting in a freezer for assisting in the defrosting thereof |
US4642934A (en) * | 1985-04-12 | 1987-02-17 | Carlson Joseph D | Transportable live well liner |
US4697380A (en) * | 1986-04-14 | 1987-10-06 | Dale Fenske | Bait container |
US4804470A (en) * | 1986-10-08 | 1989-02-14 | Calvillo Carlos P | Paint strainer |
US5135787A (en) * | 1990-08-14 | 1992-08-04 | E. I. Du Pont De Nemours And Company | Iced food shipping container with aqueous liquid absorbing pad |
US5156291A (en) * | 1990-12-21 | 1992-10-20 | Arthur Mielke | Hinged cover with auxiliary door |
US5186828A (en) * | 1992-02-14 | 1993-02-16 | Mankin Gary L | Paint strainer kit |
US6067745A (en) * | 1996-04-09 | 2000-05-30 | Adams; Robert S. | Fisherman's cooler insert |
US5833336A (en) * | 1997-08-18 | 1998-11-10 | Dean; W. Anthony | Partitioned stylish hamper |
US8127956B2 (en) * | 1998-07-01 | 2012-03-06 | Bajer Design & Marketing, Inc. | Collapsible structure |
US6168043B1 (en) * | 1999-04-23 | 2001-01-02 | Wen-Li Yen | Ice separation device |
US6436286B1 (en) * | 2000-02-17 | 2002-08-20 | William J. Scott | Paint strainer for use with paint sprayers |
US6193097B1 (en) * | 2000-02-25 | 2001-02-27 | Miguel Angel Martin Perianes | Portable cooler |
US20040069009A1 (en) * | 2002-06-15 | 2004-04-15 | Tedder Carl Kenneth | Stackable cooler shelving system |
JP2004321070A (en) * | 2003-04-24 | 2004-11-18 | Shimano Inc | Fish-holding instrument for cooler |
US20050086851A1 (en) * | 2003-10-23 | 2005-04-28 | Carden Michael F.Jr. | Mesh liner for live bait containers |
US20050252234A1 (en) * | 2004-05-13 | 2005-11-17 | Ik-Sub Kim | Ice cooler |
US20070053616A1 (en) * | 2005-09-02 | 2007-03-08 | Plouff Rockey J | Bag attachment for cooler |
US20080237153A1 (en) * | 2007-04-02 | 2008-10-02 | Nicastle Larry P | Particulate collector for liquid containment system |
US8205575B2 (en) * | 2007-04-02 | 2012-06-26 | Nicastle Larry P | Particulate collector for liquid containment system |
US20090169756A1 (en) * | 2007-12-28 | 2009-07-02 | Joosten Darrel J | Paint Strainer System and Method |
US20120261422A1 (en) * | 2011-04-14 | 2012-10-18 | Gina Matthews | Disposable liner for a cooler |
US20130247606A1 (en) * | 2012-03-21 | 2013-09-26 | Glen R. Suchecki | Insulated container and insert |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150176889A1 (en) * | 2012-06-08 | 2015-06-25 | Tina Ting-Yuan Wang | Storage Systems for Milk Bags |
US9279610B2 (en) * | 2012-06-08 | 2016-03-08 | Tina Ting-Yuan Wang | Storage systems for milk bags |
US20140252009A1 (en) * | 2013-03-09 | 2014-09-11 | Brian Andrew Robinson | Cooler Web |
USD779283S1 (en) | 2014-10-13 | 2017-02-21 | Sovaro Coolers, LLC | Cork-lined container |
US9896259B2 (en) | 2015-01-18 | 2018-02-20 | David Soules | Ice chest suspension device |
US10131485B2 (en) * | 2015-01-18 | 2018-11-20 | David Soules | Ice chest suspension device |
US10625924B2 (en) | 2015-01-18 | 2020-04-21 | David Soules | Ice chest suspension device |
USD817112S1 (en) * | 2015-12-14 | 2018-05-08 | Cambro Manufacturing Company. | Food storage box |
US20170254578A1 (en) * | 2016-03-07 | 2017-09-07 | Roger Mark Kriesel | Retractable ice cooler |
US10352609B2 (en) * | 2016-03-07 | 2019-07-16 | Roger Mark Kriesel | Retractable ice cooler |
USD893265S1 (en) | 2019-01-18 | 2020-08-18 | Harvey P. Insler | Ice bucket wine bottle sleeve |
Also Published As
Publication number | Publication date |
---|---|
US20140250926A1 (en) | 2014-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140250926A1 (en) | Cooler ice net | |
US6357253B1 (en) | Wine bottle cooling device | |
US7178673B1 (en) | Beach cooler system | |
US20130062356A1 (en) | Heavy Duty Cooler | |
US20160023837A1 (en) | Transportable Transparent Cork-Insulated Cooler | |
US6481014B1 (en) | Cooler with integral beverage retainers | |
US5727857A (en) | Portable knockdown food display apparatus | |
CA2894314C (en) | Lunch box with working surface | |
US9108790B2 (en) | Divider and cutting board | |
US20110226785A1 (en) | Sportsman's box portable cooler | |
US20160091239A1 (en) | Front opening portable cooler with top utility surface | |
US6574983B2 (en) | All purpose portable ice chest | |
US20130247606A1 (en) | Insulated container and insert | |
US5524761A (en) | Picnic cooler | |
US9051084B2 (en) | Internal liquid drainage and removal container liner | |
US5953931A (en) | Portable upright cooler | |
US20170251781A1 (en) | Chiller sport bag system and method | |
US20230022893A1 (en) | Ice chest liner | |
KR101455700B1 (en) | Ice-Box Having A Separated Room For Fluid of Thawed Coolant | |
US7100393B2 (en) | Beverage cooler with adjustable platform | |
US20170341838A1 (en) | Removable Can Holding Refrigerator Container | |
US20220007628A1 (en) | Fishing storage box assembly | |
US20080006639A1 (en) | Partitioned beverage cooler | |
US20140208778A1 (en) | Retrieval Apparatus and Methods of Use Thereof | |
US20070182113A1 (en) | Portable recreational storage unit and kitchen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |