US20130150613A1 - Synthesis of half esters - Google Patents
Synthesis of half esters Download PDFInfo
- Publication number
- US20130150613A1 US20130150613A1 US13/679,411 US201213679411A US2013150613A1 US 20130150613 A1 US20130150613 A1 US 20130150613A1 US 201213679411 A US201213679411 A US 201213679411A US 2013150613 A1 US2013150613 A1 US 2013150613A1
- Authority
- US
- United States
- Prior art keywords
- compound
- base
- ester
- reaction
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000002148 esters Chemical class 0.000 title claims abstract description 82
- 230000015572 biosynthetic process Effects 0.000 title description 22
- 238000003786 synthesis reaction Methods 0.000 title description 22
- 238000000034 method Methods 0.000 claims abstract description 49
- 150000001875 compounds Chemical class 0.000 claims abstract description 29
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 6
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 120
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 111
- 238000006243 chemical reaction Methods 0.000 claims description 53
- 230000035484 reaction time Effects 0.000 claims description 29
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 17
- -1 bicyclic compound Chemical class 0.000 claims description 11
- WFKWXJMEUOLYOS-UHFFFAOYSA-N dimethyl bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate Chemical compound C1C2C(C(=O)OC)=C(C(=O)OC)C1C=C2 WFKWXJMEUOLYOS-UHFFFAOYSA-N 0.000 claims description 6
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 239000012736 aqueous medium Substances 0.000 claims description 3
- 230000020477 pH reduction Effects 0.000 claims description 3
- 125000002619 bicyclic group Chemical group 0.000 claims 1
- 150000001923 cyclic compounds Chemical class 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 11
- 229940126062 Compound A Drugs 0.000 abstract description 4
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 abstract description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 100
- 150000005690 diesters Chemical class 0.000 description 57
- 239000002585 base Substances 0.000 description 55
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 41
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 40
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 36
- 239000011541 reaction mixture Substances 0.000 description 35
- 239000000243 solution Substances 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 28
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 27
- 239000005457 ice water Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 15
- PBVZQAXFSQKDKK-UHFFFAOYSA-N 3-Methoxy-3-oxopropanoic acid Chemical compound COC(=O)CC(O)=O PBVZQAXFSQKDKK-UHFFFAOYSA-N 0.000 description 14
- 229920006395 saturated elastomer Polymers 0.000 description 14
- 239000011780 sodium chloride Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 239000006184 cosolvent Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 11
- 239000012429 reaction media Substances 0.000 description 11
- 238000010898 silica gel chromatography Methods 0.000 description 10
- 229910052938 sodium sulfate Inorganic materials 0.000 description 10
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 9
- 239000007832 Na2SO4 Substances 0.000 description 9
- 125000004185 ester group Chemical group 0.000 description 9
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- HGINADPHJQTSKN-UHFFFAOYSA-M 3-ethoxy-3-oxopropanoate Chemical compound CCOC(=O)CC([O-])=O HGINADPHJQTSKN-UHFFFAOYSA-M 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 150000002690 malonic acid derivatives Chemical class 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- HDXXKLJVUKAUHH-UHFFFAOYSA-N 3-oxo-3-propoxypropanoic acid Chemical compound CCCOC(=O)CC(O)=O HDXXKLJVUKAUHH-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 150000004692 metal hydroxides Chemical class 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- KAJRUHJCBCZULP-UHFFFAOYSA-N 1-cyclohepta-1,3-dien-1-ylcyclohepta-1,3-diene Chemical compound C1CCC=CC=C1C1=CC=CCCC1 KAJRUHJCBCZULP-UHFFFAOYSA-N 0.000 description 2
- DGEOCCNLLMOSEN-UHFFFAOYSA-N 2-methyl-3-oxo-3-propoxypropanoic acid Chemical compound CCCOC(=O)C(C)C(O)=O DGEOCCNLLMOSEN-UHFFFAOYSA-N 0.000 description 2
- REGOCDRDNZNRMC-UHFFFAOYSA-N 3-ethoxy-2-methyl-3-oxopropanoic acid Chemical compound CCOC(=O)C(C)C(O)=O REGOCDRDNZNRMC-UHFFFAOYSA-N 0.000 description 2
- INQWZSLKTMTMSK-UHFFFAOYSA-N 3-ethoxy-3-oxo-2-phenylpropanoic acid Chemical compound CCOC(=O)C(C(O)=O)C1=CC=CC=C1 INQWZSLKTMTMSK-UHFFFAOYSA-N 0.000 description 2
- LROWQPBZDXWPJW-UHFFFAOYSA-N 3-methoxy-2-methyl-3-oxopropanoic acid Chemical compound COC(=O)C(C)C(O)=O LROWQPBZDXWPJW-UHFFFAOYSA-N 0.000 description 2
- QBXKTDAUPNBKRD-UHFFFAOYSA-N 3-methoxy-3-oxo-2-phenylpropanoic acid Chemical compound COC(=O)C(C(O)=O)C1=CC=CC=C1 QBXKTDAUPNBKRD-UHFFFAOYSA-N 0.000 description 2
- WHARCRYQBWJBQV-UHFFFAOYSA-N 3-oxo-2-phenyl-3-propoxypropanoic acid Chemical compound CCCOC(=O)C(C(O)=O)C1=CC=CC=C1 WHARCRYQBWJBQV-UHFFFAOYSA-N 0.000 description 2
- XWTUIDWAWWNRKQ-UHFFFAOYSA-N CCCOC(=O)C(C(C)=O)C1=CC=CC=C1 Chemical compound CCCOC(=O)C(C(C)=O)C1=CC=CC=C1 XWTUIDWAWWNRKQ-UHFFFAOYSA-N 0.000 description 2
- UJMJTAJSYSSLGA-UHFFFAOYSA-N CCCOC(=O)C(C)C(C)=O Chemical compound CCCOC(=O)C(C)C(C)=O UJMJTAJSYSSLGA-UHFFFAOYSA-N 0.000 description 2
- DHGFMVMDBNLMKT-UHFFFAOYSA-N CCCOC(=O)CC(C)=O Chemical compound CCCOC(=O)CC(C)=O DHGFMVMDBNLMKT-UHFFFAOYSA-N 0.000 description 2
- PWRUKIPYVGHRFL-UHFFFAOYSA-N CCOC(=O)C(C(C)=O)C1=CC=CC=C1 Chemical compound CCOC(=O)C(C(C)=O)C1=CC=CC=C1 PWRUKIPYVGHRFL-UHFFFAOYSA-N 0.000 description 2
- FNENWZWNOPCZGK-UHFFFAOYSA-N CCOC(=O)C(C)C(C)=O Chemical compound CCOC(=O)C(C)C(C)=O FNENWZWNOPCZGK-UHFFFAOYSA-N 0.000 description 2
- XYIBRDXRRQCHLP-UHFFFAOYSA-N CCOC(=O)CC(C)=O Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 2
- CYSACHQWYQYLIG-UHFFFAOYSA-N COC(=O)C(C(C)=O)C1=CC=CC=C1 Chemical compound COC(=O)C(C(C)=O)C1=CC=CC=C1 CYSACHQWYQYLIG-UHFFFAOYSA-N 0.000 description 2
- NDTWZHURUDSPQV-UHFFFAOYSA-N COC(=O)C(C)C(C)=O Chemical compound COC(=O)C(C)C(C)=O NDTWZHURUDSPQV-UHFFFAOYSA-N 0.000 description 2
- AUGVTOGDRVMPOO-UHFFFAOYSA-N COC(=O)C1=C(C(=O)O)C2C=CC1C2.COC(=O)C1=C(C(=O)OC)C2C=CC1C2 Chemical compound COC(=O)C1=C(C(=O)O)C2C=CC1C2.COC(=O)C1=C(C(=O)OC)C2C=CC1C2 AUGVTOGDRVMPOO-UHFFFAOYSA-N 0.000 description 2
- BKZVFVVFJGIIIL-UHFFFAOYSA-O COC(=O)CC(=O)O.COC(=O)CC(=O)OC.[H+] Chemical compound COC(=O)CC(=O)O.COC(=O)CC(=O)OC.[H+] BKZVFVVFJGIIIL-UHFFFAOYSA-O 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 0 [1*]OC(=O)*C(=O)O[2*].[2*]OC(=O)*C(=O)O.[OH-].[OH3+] Chemical compound [1*]OC(=O)*C(=O)O[2*].[2*]OC(=O)*C(=O)O.[OH-].[OH3+] 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000012230 colorless oil Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- FGDCQTFHGBAVJX-UHFFFAOYSA-N dimethyl 2-phenylpropanedioate Chemical compound COC(=O)C(C(=O)OC)C1=CC=CC=C1 FGDCQTFHGBAVJX-UHFFFAOYSA-N 0.000 description 2
- BHSJBEHTUUYEJT-UHFFFAOYSA-N dipropyl 2-phenylpropanedioate Chemical compound CCCOC(=O)C(C(=O)OCCC)C1=CC=CC=C1 BHSJBEHTUUYEJT-UHFFFAOYSA-N 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- QGBPKJFJAVDUNC-UHFFFAOYSA-N methyl 4-methoxy-3-oxobutanoate Chemical compound COCC(=O)CC(=O)OC QGBPKJFJAVDUNC-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000003880 polar aprotic solvent Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- GVISTWYZTBOUJA-UHFFFAOYSA-N 3-butoxy-3-oxopropanoic acid Chemical compound CCCCOC(=O)CC(O)=O GVISTWYZTBOUJA-UHFFFAOYSA-N 0.000 description 1
- PIFLWFAJRBNDOM-UHFFFAOYSA-N 3-methoxy-3-oxopropanoic acid;propanedioic acid Chemical compound OC(=O)CC(O)=O.COC(=O)CC(O)=O PIFLWFAJRBNDOM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- CPWDQURORXLNPG-UHFFFAOYSA-N CCCCOC(=O)CC(=O)O.CCCOC(=O)CC(=O)O.CCOC(=O)CC(=O)O.COC(=O)CC(=O)O.COC(=O)CC(=O)OC.O=C(O)CC(=O)O.[OH3+] Chemical compound CCCCOC(=O)CC(=O)O.CCCOC(=O)CC(=O)O.CCOC(=O)CC(=O)O.COC(=O)CC(=O)O.COC(=O)CC(=O)OC.O=C(O)CC(=O)O.[OH3+] CPWDQURORXLNPG-UHFFFAOYSA-N 0.000 description 1
- AXMOXWYUNLFLHZ-UHFFFAOYSA-N COC(=O)CCCC(=O)O.COC(=O)CCCC(=O)OC.O=C(O)CCCC(=O)O Chemical compound COC(=O)CCCC(=O)O.COC(=O)CCCC(=O)OC.O=C(O)CCCC(=O)O AXMOXWYUNLFLHZ-UHFFFAOYSA-N 0.000 description 1
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 238000007309 Fischer-Speier esterification reaction Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N O=CO.[OH3+] Chemical compound O=CO.[OH3+] BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000010596 desymmetrization reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- UPQZOUHVTJNGFK-UHFFFAOYSA-N diethyl 2-methylpropanedioate Chemical compound CCOC(=O)C(C)C(=O)OCC UPQZOUHVTJNGFK-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LRBPFPZTIZSOGG-UHFFFAOYSA-N dimethyl 2-methylpropanedioate Chemical compound COC(=O)C(C)C(=O)OC LRBPFPZTIZSOGG-UHFFFAOYSA-N 0.000 description 1
- XYTCGJMKSLBRMP-UHFFFAOYSA-N dipropyl 2-methylpropanedioate Chemical compound CCCOC(=O)C(C)C(=O)OCCC XYTCGJMKSLBRMP-UHFFFAOYSA-N 0.000 description 1
- LWIWFCDNJNZEKB-UHFFFAOYSA-N dipropyl propanedioate Chemical compound CCCOC(=O)CC(=O)OCCC LWIWFCDNJNZEKB-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/24—Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/36—Systems containing two condensed rings the rings having more than two atoms in common
- C07C2602/42—Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
Definitions
- the present disclosure relates generally to the chemical synthesis of esters, and more particularly to the synthesis of half esters from diesters.
- Half esters are highly versatile building blocks in chemical synthesis, where they provide useful intermediaries to a wide variety of end products.
- Half esters themselves may be conveniently produced by the selective monohydrolysis of symmetric diesters. Since many symmetric diesters may be readily prepared from inexpensive sources or are commercially available in a variety of grades at commodity prices, synthetic routes based on half ester intermediates provide the additional advantages of economy and versatility.
- FIG. 1 is a graph of the time dependence of the monohydrolysis of a diester.
- FIG. 2 is a graph of the time dependence of the monohydrolysis of a diester.
- a method for hydrolyzing diesters or polyesters to produce half esters or other compounds having both carboxyl and ester moieties.
- a compound A which has first and second ester moieties.
- the compound A is reacted in a liquid medium with a base having the formula M a X b , such that the first ester moiety is converted to a carboxyl moiety and the second ester moiety remains, wherein the ratio [X k ⁇ ]:[A] in the liquid medium or the number of equivalents of X to A is no greater than 1.6, and wherein k>0, where k is the valency of anion X.
- a method for hydrolyzing an ester comprises providing a compound having first and second ester moieties, and reacting the compound with a base such that the ratio of the number of molar equivalents of base to the number of molar equivalents of the compound is no greater than 1.6.
- a method for hydrolyzing an ester comprises providing a compound having first and second ester moieties, and reacting the compound with a base in an aqueous medium comprising greater than 93% water by volume.
- a method for hydrolyzing an ester comprising (a) providing a first compound having first and second ester moieties; (b) reacting the compound with a base in an aqueous medium such that the ratio of the number of molar equivalents of base to the number of molar equivalents of the first compound is greater than 3; and (c) quenching the reaction such that the total reaction time is no greater than 90 minutes.
- the yield of certain monoesters in the foregoing synthetic route may be significantly increased by adjusting the ratio of starting diester to base in the reaction solution and, in particular, by increasing the ratio of the number of equivalents (or concentration) of starting diester to the number of equivalents (or concentration) of base in the solution.
- monomethyl malonate the corresponding half ester of dimethyl malonate
- yields may be even further improved by parameter optimization.
- a compound A which has first and second ester moieties.
- the compound is reacted in a liquid medium with a base having the formula M a X b , such that the first ester moiety is converted to a carboxyl moiety and the second ester moiety remains.
- the ratio [X k ⁇ ]:[A] (or, as the case may be, the number of equivalents of base to A) in the liquid medium is typically no greater than 1.6 (at least in the case of linear diesters), and k>0. This reaction is followed by acidification to yield the monoester.
- the methodology is generally applicable to compounds having first and second ester groups, and may be used to convert one of the ester groups to a carboxylic acid group.
- the first and second ester groups may be the same or different.
- R 1 and R 2 may be the same or different, and may be independently selected, for example, from the group consisting of substituted or unsubstituted alkyl, aryl or alkylaryl groups.
- the starting ester may have more than two ester groups.
- half esters are particularly useful in creating half esters from symmetric diesters since, as noted above, conventional methods for preparing half esters typically suffer from low yields when applied to symmetric diesters, due in part to the difficulty in chemically distinguishing between the two ester groups in such materials.
- Such half esters include, for example, monoalkyl malonates such as monoethyl malonate, monopropyl malonate, and monobutyl malonate, as well as monoalkyl adipates.
- the linking group L may be of various chain lengths and, in some embodiments, may contain one or more hetero atoms, such as, for example, N, O, or S.
- the linking group may also contain various functional groups, aromatic groups, or unsaturated bonds, which may be incorporated into the backbone of the linking group or which may replace one or more hydrogen atoms in an organic linking group.
- L may be a cyclic or polycyclic moiety. In other embodiments, L may be a linear moiety.
- L is a linking group which contains 1 to 10 carbon atoms, or is a linking group having the structure [CH 2 ] n —, where n is an integer.
- n may be quite large and may, for example, be greater than 100, or greater than 1000.
- n is in the range of 1 to about 50.
- n is in the range of 1 to about 20, more preferably n is in the range of 1 to about 10, and most preferably, n is in the range of 1 to 5.
- the base used in the methodologies disclosed herein preferably contains one or more hydroxyl groups, and more preferably is a metal hydroxide.
- the base is an alkali metal hydroxide, such as sodium hydroxide, potassium hydroxide, lithium hydroxide or cesium hydroxide.
- alkali metal hydroxide such as sodium hydroxide, potassium hydroxide, lithium hydroxide or cesium hydroxide.
- divalent or polyvalent metal hydroxides may also be used, such as, for example, calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, or the like.
- non-metal hydroxides may be used, such as ammonium hydroxide or certain organic hydroxides.
- the base is preferably added to the reaction solution in small portions. This may be achieved by adding the base in discrete and multiple batches, by adding the base dropwise in a continuous manner, or by slowly injecting the base into the reaction vessel with a syringe or other such device.
- the reaction solution is stirred continuously during addition of the base, as through the use of a magnetic stir bar, with a solution agitator, or by other suitable means.
- the ratio [X k ⁇ ]:[A] (or, as the case may be, the number of equivalents of base to A) in the liquid medium is typically no greater than 1.6, at least in the case of linear diesters. Typically, this ratio is within the range of about 0.7 to about 1.5, more preferably, this ratio is within the range of about 0.8 to about 1.4, even more preferably, this ratio is within the range of about 0.9 to about 1.3, and most preferably, this ratio is within the range of about 1.0 to about 1.2.
- cyclic esters or esters in which rotation about a carbon-carbon bond is prevented or is sterically hindered (especially when ester moieties are bonded to adjacent carbon atoms in such a bond), or in other cases where the half ester or partially hydrolyzed ester is relatively stable in the presence of base
- larger amounts of base may be utilized in the hydrolysis reaction.
- the ratio of the number of molar equivalents of base to the number of molar equivalents of the starting ester or diester may be larger than is the case with linear diesters.
- the preferred amount of base to use in such embodiments may depend on such factors as the identity of the base, the reaction rate, the relative stability of the half ester or partially hydrolyzed ester in the presence of the base, the reaction medium, the temperature of the reaction medium, and other such factors.
- the ratio of the number of molar equivalents of base to the number of molar equivalents of the starting ester or diester may be, for example, greater than 3, greater than 5, greater than 7, or greater than about 10.
- the reaction time may also vary depending on a number of factors such as, for example, the identity of the base, the reaction rate, the relative stability of the half ester or partially hydrolyzed ester in the presence of the base, the reaction medium, the temperature of the reaction medium, and other such factors, and the reaction may be quenched after the desired amount of time has passed.
- the reaction time is no greater than 90 minutes, and preferably, the reaction time is no greater than about 60 minutes. More preferably, the reaction time is within the range of about 10 minutes to about 60 minutes, and most preferably, the reaction time is within the range of about 20 minutes to about 60 minutes.
- the reaction solution is preferably cooled, either during addition of the base or shortly thereafter. This may be accomplished, for example, by submerging the reaction vessel in a cooled bath, such as an ice bath.
- the reaction solution is cooled to a temperature below room temperature, preferably below 15° C., more preferably below 10° C., and even more preferably below 5° C.
- the reaction solution is cooled to a temperature within the range of about ⁇ 15° C. to about 15° C., more preferably to a temperature within the range of about ⁇ 10° C. to about 10° C., and even more preferably to a temperature within the range of about ⁇ 5° C. to about 5° C.
- the reaction solution is cooled to about 0° C.
- the optimal temperature in a particular case may depend on such factors as the reactants, the choice of solvent system or liquid media, the desired product, and other such factors.
- the reaction solution preferably comprises mixtures of aqueous solutions of base with THF.
- other solvents, co-solvents, or liquid media may be used in place of, or in combination with, the foregoing mixtures.
- the reaction may be implemented in a liquid medium comprising THF, CH 3 CN, CH 2 Cl 2 , methanol, ethanol, 1-propanol, 2-propanol, DMSO, and various mixtures of the foregoing.
- water may be the only solvent or liquid medium employed, and such embodiments may be particularly desirable in applications where green chemistry is preferred.
- the reaction medium will comprise at least 70% water by volume.
- the reaction medium will comprise at least 80% water by volume, more preferably, the reaction medium will comprise at least 90% water by volume, and most preferably, the reaction medium will comprise at least about 93% water by volume.
- the volume of water may be even higher; in such embodiments, the reaction medium may comprise at least about 97% water by volume, at least about 99% water by volume, or essentially 100% water by volume.
- the solution is acidified. This is preferably achieved with HCl, although various other acids may also be used for this purpose in various embodiments of the methodologies described herein.
- Such other acids may include, without limitation, sulfuric acid, nitric acid, and various carboxylic acids.
- reaction media One significant difference between classical saponification and the preferred embodiment of the monohydrolysis reaction disclosed herein is the reaction media.
- the use in the preferred embodiment of aqueous NaOH or KOH solution in an aqueous THF media at 0° C. is found to produce a substantially cleaner reaction mixture.
- EXAMPLE 37 was prepared by the following procedure (SCHEME 7). In a 1 L-sized one-necked flask, equipped with a magnetic stirrer, was placed 158.33 g (1.2 mol) of dimethyl malonate, and 10 mL of acetonitrile was added to dissolve the dimethyl malonate. After the solution was stirred for one minute, the reaction mixture was cooled to 0° C. with an ice-water bath. To this mixture, 100 mL of water was added and stirred for 30 minutes.
- the reaction mixture was acidified with 150 mL of 12 M aqueous HCl solution in the ice-water bath, saturated with NaCl, and extracted with five 500 mL portions of ethyl acetate with a 1 L reparatory funnel. The extract was washed with 500 mL of a saturated aqueous NaCl solution. The ethyl acetate extract was dried over approximately 100 g of anhydrous sodium sulfate. After the drying agent was removed by gravity filtration, the ethyl acetate solution was concentrated by a rotary evaporator, and distilled under a reduced pressure at 2.5 mmHg. The fraction showing a boiling point of 91-92° C. was collected to yield monomethyl malonate as a colorless oil. The yield was 114.77 g (81%) was recovered at 45° C. and 4% of dimethyl malonate and 1% of malonic acid were found.
- EXAMPLES 26-36 were prepared using the general procedure of EXAMPLE 37 and using the modified reaction conditions noted in TABLE 4 below.
- EXAMPLE 1 was repeated using the various diesters depicted in TABLE 5. The results are summarized in TABLE 5. Most of these diesters are commercially available. Some diesters were prepared by the standard Fischer esterification.
- KOH tends to be more reactive and slightly more selective than NaOH, as was observed in the results depicted in TABLE 5. This tendency may be best illustrated in the monohydrolysis of diethyl phenymalonate (EXAMPLES 50-51), which showed enhanced reactivity and selectivity with the use of KOH, compared to the results previously obtained with the use of NaOH for monohydrolysis of the same diester (see Id.).
- This example illustrates the synthesis of monomethyl malonate.
- the reaction mixture was acidified with 30 mL of 6 M aqueous HCl solution in the ice-water bath, saturated with NaCl, and extracted with five 50 mL portions of ethyl acetate with a 250 mL reparatory funnel. The extract was washed with 50 mL of a saturated aqueous NaCl solution. The ethy acetate extract was dried over approximately 10 g of anhydrous sodium sulfate. After the drying agent was removed by gravity filtration, the ethyl acetate solution was concentrated by a rotary evaporator, and distilled under a reduced pressure at 2.5 mmHg. The fraction showing a boiling point of 91-92° C. was collected to yield monomethyl malonate as a colorless oil. The yield was 82%.
- This example illustrates the synthesis of monoethyl malonate.
- This example illustrates the synthesis of monopropyl malonate.
- Dipropyl malonate (226 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the indicated equivalent of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for 30 minutes to one hour, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na 2 SO 4 . This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monopropyl malonate.
- This example illustrates the synthesis of monomethyl methylmalonate.
- This example illustrates the synthesis of monoethyl methylmalonate.
- This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monoethyl methylmalonate.
- This example illustrates the synthesis of monopropyl methylmalonate.
- This example illustrates the synthesis of monomethyl phenylmalonate.
- This example illustrates the synthesis of monoethyl phenylmalonate.
- This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monoethyl phenylmalonate.
- This example illustrates the synthesis of monopropyl phenylmalonate.
- This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monopropyl phenylmalonate.
- This example illustrates the time dependence of the monohydrolysis of cyclic diesters.
- EXAMPLE 82 was repeated, except that dimethyl adipate was substituted for dimethyl bicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylate, and four different equivalents of base (0.7, 1.0, 1.2 and 1.5) were utilized. The peaks corresponding to the diester, half-ester, and diacid were monitored by HPLC, and the corresponding ratios were plotted as shown in FIG. 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A method for hydrolyzing an ester is provided. In accordance with the method, a compound A is provided which has first and second ester moieties. The compound is reacted in a liquid medium with a base having the formula MaXb, such that the first ester moiety is converted to a carboxyl moiety and the second ester moiety remains, wherein the ratio [Xk−]:[A] in the liquid medium is no greater than 1.6, and wherein k>0.
Description
- This application is a divisional application of U.S. patent application Ser. No. 12/156,448, filed May 20, 2008, having the same inventor, and the same title, and which is incorporated herein by reference in its entirety; which application claims the benefit of provisional application No. 60/932,629, filed May 31, 2007, having the same inventor, and the same title, and which is incorporated herein by reference in its entirety.
- This invention was prepared with the assistance of the National Science Foundation through Contract Number CHE-0443265. The government may have rights to this invention.
- The present disclosure relates generally to the chemical synthesis of esters, and more particularly to the synthesis of half esters from diesters.
- Half esters are highly versatile building blocks in chemical synthesis, where they provide useful intermediaries to a wide variety of end products. Half esters themselves may be conveniently produced by the selective monohydrolysis of symmetric diesters. Since many symmetric diesters may be readily prepared from inexpensive sources or are commercially available in a variety of grades at commodity prices, synthetic routes based on half ester intermediates provide the additional advantages of economy and versatility.
- Saponification or alkaline hydrolysis are both established methods for producing half esters from diesters. However, the application of these approaches to the formation of half esters from symmetric diesters is complicated by the difficulty in chemically distinguishing between the two identical functional groups in the starting diester. Consequently, this approach typically results in a complex mixture of dicarboxylic acids, monocarboxylic acids, and the starting diester. Aside from the obvious yield loss attendant to the formation of dicarboxylic acids and other reaction byproducts, the target half ester is difficult to separate from these reaction byproducts, due to their chemical similarity. Indeed, until recently, the only effective method reported in the literature for the synthesis of half esters from symmetrical diesters involved the use of enzymes. However, such a synthetic route is undesirable in that, among other things, it provides no basis for predictions of reactivity.
- More recently, a new synthetic route has been disclosed for the production of half esters from symmetric diesters. This route, which involves the selective hydrolysis and subsequent acidification of the diester, affords the half ester in relatively high yields in a solution that is relatively free of byproducts (see S. Niwayama, “Highly Efficient Selective Monohydrolysis of Symmetric Diesters”, J. Org. Chem. 2000, p 5834). This approach is summarized in SCHEME 1 below:
-
FIG. 1 is a graph of the time dependence of the monohydrolysis of a diester. -
FIG. 2 is a graph of the time dependence of the monohydrolysis of a diester. - In one aspect, a method is provided for hydrolyzing diesters or polyesters to produce half esters or other compounds having both carboxyl and ester moieties. In accordance with the method, a compound A is provided which has first and second ester moieties. The compound A is reacted in a liquid medium with a base having the formula MaXb, such that the first ester moiety is converted to a carboxyl moiety and the second ester moiety remains, wherein the ratio [Xk−]:[A] in the liquid medium or the number of equivalents of X to A is no greater than 1.6, and wherein k>0, where k is the valency of anion X.
- In another aspect, a method for hydrolyzing an ester is provided which comprises providing a compound having first and second ester moieties, and reacting the compound with a base such that the ratio of the number of molar equivalents of base to the number of molar equivalents of the compound is no greater than 1.6.
- In a further aspect, a method for hydrolyzing an ester is provided which comprises providing a compound having first and second ester moieties, and reacting the compound with a base in an aqueous medium comprising greater than 93% water by volume.
- In yet another aspect, a method for hydrolyzing an ester is provided which comprises (a) providing a first compound having first and second ester moieties; (b) reacting the compound with a base in an aqueous medium such that the ratio of the number of molar equivalents of base to the number of molar equivalents of the first compound is greater than 3; and (c) quenching the reaction such that the total reaction time is no greater than 90 minutes.
- While the approach summarized in SCHEME 1 is a highly efficient route for producing a variety of half esters from symmetric diesters, it has been found that this approach, as implemented in the above noted reference, produces sub-optimal yields for certain half esters. For example, while the aforementioned reference reports a yield of greater than 99% for the production of the half ester of bicycloheptadiene dimethylcarboxylate and bicycloheptadiene diethylcarboxylate, the reference reports a yield of the monoester formed by the monohydrolysis of dimethyl succinate of only 70%. Far lower yields are obtained when the approach, as implemented in the above noted reference, is applied to the synthesis of certain other half esters, such as monomethyl malonate malonate, where the yield is only 22%.
- It has now been found that the yield of certain monoesters in the foregoing synthetic route may be significantly increased by adjusting the ratio of starting diester to base in the reaction solution and, in particular, by increasing the ratio of the number of equivalents (or concentration) of starting diester to the number of equivalents (or concentration) of base in the solution. Thus, for example, by using this approach, monomethyl malonate, the corresponding half ester of dimethyl malonate, has been obtained in substantially higher yields (84% in THF and 85% in acetonitrile) than those afforded by the approach summarized in SCHEME 1. It is expected that these yields may be even further improved by parameter optimization.
- It has also been found that, in some cases, the synthetic methodologies taught herein may achieve the target compound in a more stable form than is otherwise obtainable. Thus, for example, while both monomethyl malonate and monoethyl malonate are reported in the literature as being unstable (indeed, monomethyl malonate is often sold commercially as the corresponding potassium salt), it has been surprisingly found that these compounds, when synthesized in accordance with the methodologies described herein, exhibit substantially improved stability.
- The methodologies disclosed herein may be appreciated with respect to SCHEME 2 below. As seen therein, a compound A is provided which has first and second ester moieties. The compound is reacted in a liquid medium with a base having the formula MaXb, such that the first ester moiety is converted to a carboxyl moiety and the second ester moiety remains. The ratio [Xk−]:[A] (or, as the case may be, the number of equivalents of base to A) in the liquid medium is typically no greater than 1.6 (at least in the case of linear diesters), and k>0. This reaction is followed by acidification to yield the monoester.
- The methodology is generally applicable to compounds having first and second ester groups, and may be used to convert one of the ester groups to a carboxylic acid group. The first and second ester groups may be the same or different. Hence, R1 and R2 may be the same or different, and may be independently selected, for example, from the group consisting of substituted or unsubstituted alkyl, aryl or alkylaryl groups. In some embodiments, the starting ester may have more than two ester groups. However, it will be appreciated that the methodology described herein is particularly useful in creating half esters from symmetric diesters since, as noted above, conventional methods for preparing half esters typically suffer from low yields when applied to symmetric diesters, due in part to the difficulty in chemically distinguishing between the two ester groups in such materials. Such half esters include, for example, monoalkyl malonates such as monoethyl malonate, monopropyl malonate, and monobutyl malonate, as well as monoalkyl adipates.
- The linking group L may be of various chain lengths and, in some embodiments, may contain one or more hetero atoms, such as, for example, N, O, or S. The linking group may also contain various functional groups, aromatic groups, or unsaturated bonds, which may be incorporated into the backbone of the linking group or which may replace one or more hydrogen atoms in an organic linking group. In some embodiments, L may be a cyclic or polycyclic moiety. In other embodiments, L may be a linear moiety.
- Preferably, L is a linking group which contains 1 to 10 carbon atoms, or is a linking group having the structure [CH2]n—, where n is an integer. In some embodiments, n may be quite large and may, for example, be greater than 100, or greater than 1000. Typically, however, n is in the range of 1 to about 50. Preferably, n is in the range of 1 to about 20, more preferably n is in the range of 1 to about 10, and most preferably, n is in the range of 1 to 5.
- The base used in the methodologies disclosed herein preferably contains one or more hydroxyl groups, and more preferably is a metal hydroxide. Most preferably, the base is an alkali metal hydroxide, such as sodium hydroxide, potassium hydroxide, lithium hydroxide or cesium hydroxide. However, in some embodiments, divalent or polyvalent metal hydroxides may also be used, such as, for example, calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, or the like. In other embodiments, non-metal hydroxides may be used, such as ammonium hydroxide or certain organic hydroxides.
- The base is preferably added to the reaction solution in small portions. This may be achieved by adding the base in discrete and multiple batches, by adding the base dropwise in a continuous manner, or by slowly injecting the base into the reaction vessel with a syringe or other such device. Preferably, the reaction solution is stirred continuously during addition of the base, as through the use of a magnetic stir bar, with a solution agitator, or by other suitable means.
- As noted above, the ratio [Xk−]:[A] (or, as the case may be, the number of equivalents of base to A) in the liquid medium is typically no greater than 1.6, at least in the case of linear diesters. Typically, this ratio is within the range of about 0.7 to about 1.5, more preferably, this ratio is within the range of about 0.8 to about 1.4, even more preferably, this ratio is within the range of about 0.9 to about 1.3, and most preferably, this ratio is within the range of about 1.0 to about 1.2.
- In the case of cyclic esters, or esters in which rotation about a carbon-carbon bond is prevented or is sterically hindered (especially when ester moieties are bonded to adjacent carbon atoms in such a bond), or in other cases where the half ester or partially hydrolyzed ester is relatively stable in the presence of base, larger amounts of base may be utilized in the hydrolysis reaction. In such embodiments, the ratio of the number of molar equivalents of base to the number of molar equivalents of the starting ester or diester may be larger than is the case with linear diesters. The preferred amount of base to use in such embodiments may depend on such factors as the identity of the base, the reaction rate, the relative stability of the half ester or partially hydrolyzed ester in the presence of the base, the reaction medium, the temperature of the reaction medium, and other such factors. However, in some cases, the ratio of the number of molar equivalents of base to the number of molar equivalents of the starting ester or diester may be, for example, greater than 3, greater than 5, greater than 7, or greater than about 10.
- The reaction time may also vary depending on a number of factors such as, for example, the identity of the base, the reaction rate, the relative stability of the half ester or partially hydrolyzed ester in the presence of the base, the reaction medium, the temperature of the reaction medium, and other such factors, and the reaction may be quenched after the desired amount of time has passed. Typically, however, the reaction time is no greater than 90 minutes, and preferably, the reaction time is no greater than about 60 minutes. More preferably, the reaction time is within the range of about 10 minutes to about 60 minutes, and most preferably, the reaction time is within the range of about 20 minutes to about 60 minutes.
- The reaction solution is preferably cooled, either during addition of the base or shortly thereafter. This may be accomplished, for example, by submerging the reaction vessel in a cooled bath, such as an ice bath. Typically, the reaction solution is cooled to a temperature below room temperature, preferably below 15° C., more preferably below 10° C., and even more preferably below 5° C. Preferably, the reaction solution is cooled to a temperature within the range of about −15° C. to about 15° C., more preferably to a temperature within the range of about −10° C. to about 10° C., and even more preferably to a temperature within the range of about −5° C. to about 5° C. Most preferably, the reaction solution is cooled to about 0° C. However, it will be appreciated that the optimal temperature in a particular case may depend on such factors as the reactants, the choice of solvent system or liquid media, the desired product, and other such factors.
- The reaction solution preferably comprises mixtures of aqueous solutions of base with THF. However, it will be appreciated that other solvents, co-solvents, or liquid media may be used in place of, or in combination with, the foregoing mixtures. Thus, for example, the reaction may be implemented in a liquid medium comprising THF, CH3CN, CH2Cl2, methanol, ethanol, 1-propanol, 2-propanol, DMSO, and various mixtures of the foregoing. In some embodiments, water may be the only solvent or liquid medium employed, and such embodiments may be particularly desirable in applications where green chemistry is preferred. Typically, the reaction medium will comprise at least 70% water by volume. Preferably, the reaction medium will comprise at least 80% water by volume, more preferably, the reaction medium will comprise at least 90% water by volume, and most preferably, the reaction medium will comprise at least about 93% water by volume. However, in some embodiments, the volume of water may be even higher; in such embodiments, the reaction medium may comprise at least about 97% water by volume, at least about 99% water by volume, or essentially 100% water by volume.
- After reaction with the base is completed, the solution is acidified. This is preferably achieved with HCl, although various other acids may also be used for this purpose in various embodiments of the methodologies described herein. Such other acids may include, without limitation, sulfuric acid, nitric acid, and various carboxylic acids.
- Although not limited to the preparation of these materials, the methodologies disclosed herein are especially useful for the preparation of monoesters of malonic acid, adipic acid, succinic acid, glutaric acid, and other linear diesters. SCHEME 3 below illustrates the synthesis of monomethyl malonate in accordance with the methodologies taught herein, and also depicts the chemical structures of other monoesters of malonic acid which may be made by analogous routes.
- The following specific, non-limiting examples further illustrate some of the features of the methodologies disclosed herein.
- This example illustrates the synthesis of monomethyl malonate in accordance with the methodology reported in S. Niwayama, “Highly Efficient Selective Monohydrolysis of Symmetric Diesters”, J. Org. Chem. 2000, 65, 5834-5836.
- Dimethyl malonate (1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was immersed in an ice-water bath and cooled to 0° C. To this reaction mixture, 8 mL of 0.25 M NaOH was added in small portions with stirring until the consumption of the starting diester was detected by thin-layer chromatography. The reaction was stirred at the same temperature for about 30-60 minutes, and the reaction mixture was acidified with 1 M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate three to four times, and dried with sodium sulfate. This extract was evaporated in vacuo and purified by silica gel column chromatography, using ethyl acetate as the eluent, to afford the half ester, monomethyl malonate, at 22% yield.
- This example illustrates the synthesis of monomethyl malonate in accordance with the methodologies described herein, and the attendant improvement in reaction yield as compared to COMPARATIVE EXAMPLE 1.
- Dimethyl malonate (159 mg, 1.20 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the equivalent of a 0.25 M aqueous NaOH, KOH or LiOH solution indicated in TABLE 3. In each case, the base was added dropwise with stirring. The reaction mixture was stirred for 30-60 minutes, acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography with hexane:ethyl acetate (3:1) and then ethyl acetate as typical eluents to afford monomethyl malonate. The yield was 119 mg (84%), a 62% improvement over the yield obtained in COMPARATIVE EXAMPLE 1.
- These examples illustrate the influence of solvent systems in the synthesis of monoesters in accordance with the teachings herein, and in particular, illustrate the effect that changes in the proportion of THF have on reaction yield.
- One significant difference between classical saponification and the preferred embodiment of the monohydrolysis reaction disclosed herein is the reaction media. In particular, the use in the preferred embodiment of aqueous NaOH or KOH solution in an aqueous THF media at 0° C., as opposed to the conventional use of a solid base and an alcohol medium, is found to produce a substantially cleaner reaction mixture.
- In light of the foregoing, the influence of solvents in this reaction system has been studied by changing the proportion of THF. In particular, in the selective monohydrolysis of dimethyl bicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylate (SCHEME 4), the general conditions previously reported in S. Niwayama, J. Org. Chem. 2000, 65, 5834-5836 were followed, with the proportion of THF as the co-solvent modified as noted in TABLE 1 below.
- The results in TABLE 1 clearly indicate that decreasing the proportion of THF to below 7% does not influence the reaction rates significantly. On the other hand, increasing the proportion of THF greatly diminishes the reaction rates, and reduces the yield. Without wishing to be bound by theory, this result is believed to reflect the solubility of THF in water, with the increased proportion of THF decreasing the exposure of the carbomethoxy group to the aqueous NaOH.
-
TABLE 1 Effect of Volume of THF in the Monohydrolysis of a Cyclic Diester Volume in mL Reaction EXAM- of THF Yield rate constant PLE (% by volume) Time (%)a,b (L · mol−1 · s−1)c 2 22 (73%) 8 h 88 (0) 3.26 ± 0.02 × 10−3 3 18 (60%) 6 h 30 min81 (1.2) 6.06 ± 0.12 × 10−3 4 14 (47%) 5 h 20 min84 (0.4) 1.10 ± 0.02 × 10−2 5 10 (33%) 3 h 90 (1.6) 2.06 ± 0.23 × 10−2 6 6 (20%) 70 min 94 (1.2) 2.56 ± 0.06 × 10−2 7 2d (7%) 70 min >99 (0) 4.70 ± 0.02 × 10−2 8 1 (3%) 70 min >99 (0) 4.81 ± 0.10 × 10−2 9 0 (0%) 70 min >99 (0) 4.59 ± 0.07 × 10−2 aIsolated yield of half ester. Recovered diester is shown in parenthesis. bObtained by procedure B in the experimental section. cObtained by procedure C in the experimental section. dThe same conditions reported in S. Niwayama, J. Org. Chem. 2000, 65, 5834. - These examples illustrate the influence of solvent systems on the synthesis of monoesters in accordance with the teachings herein, and in particular, illustrate the effect that changes in co-solvents have on yield and reaction rate.
- A variety of co-solvents were employed in the selective monohydrolysis of dimethyl bicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylate (SCHEME 5), using the same general conditions of 7% co-solvent and reaction temperature as in EXAMPLE 7 above. The results are summarized in TABLE 2 below.
- From these results, it is apparent that methylene chloride, which has little miscibility with water, decreases the reaction rate significantly, a result again believed to be due to the reduced exposure of the carboalkoxy group to the aqueous NaOH. This result is similar to the cases in which large percentages of THF are applied as shown in TABLE 1. On the other hand, other co-solvents investigated that are water-miscible to a small or great extent do not appear to change the reaction rate significantly. The isolated yields of half ester appear to be the highest when THF, acetonitrile, or no co-solvent is used, and slightly decrease when an alcohol is used as a co-solvent. These results indicate that the decreased yields may be due to the formation of the small amount of the corresponding diacid, and/or to the difficulty of extracting the product. Overall, THF and acetonitrile appear to be the best co-solvents among the solvents tested in this study for this selective monohydrolysis reaction.
- Without wishing to be bound by theory, the foregoing results, coupled with the results of EXAMPLES 2-9, appear to suggest that (a) in the reaction mixture, the small amount of THF or acetonitrile is dissolved in the larger amount of water, making one aqueous phase; (b) that the diester participates in the reaction as the second phase; and (c) that the monohydrolysis occurs at the interface between the aqueous phase and the diester. The major role of THF or acetonitrile as a co-solvent is likely that of dispersing the starting diesters more smoothly throughout the reaction medium. This role is particularly advantageous when the starting diester is a solid.
- This solvent effect has also been applied to selective monohydrolysis of diesters of molanic acid derivatives. There, it was found that the use of acetonitrile, instead of THF, improved the yields of the half esters to some extent.
- Recently, water-mediated reactions have become important as environmentally friendly reactions in green chemistry. The reaction described here is believed to be among the first examples of water-mediated reactions being applied to desymmetrization.
-
TABLE 2 Effects of Co-solvents in the Monohydrolysis of Dimethyl Malonate Reaction rate constant EXAMPLE Co-Solvent Yield (%)a,b (L · mol−1 · s−1)c 10 THFd >99 (0) 4.70 ± 0.02 × 10−2 11 CH3CN >99 (0) 4.85 ± 0.40 × 10−2 12 methanol 90 (0.8) 3.73 ± 0.50 × 10−2 13 ethanol 86 (0) 3.48 ± 0.06 × 10−2 14 2-propanol 88 (0.8) 3.29 ± 0.02 × 10−2 15 CH2Cl2 9 (89) 8.60 ± 0.27 × 10−4 16 None >99 (0) 4.59 ± 0.07 × 10−2 aIsolated yield of half ester. Recovered diester is shown in parenthesis. bObtained by procedure B in the experimental section. cObtained by procedure C in the experimental section. dThe same conditions reported in S. Niwayama, J. Org. Chem. 2000, 65, 5834. - These examples illustrate the effect on yield of different bases at different equivalents in monohydrolysis reactions of the type described herein.
- When selective monohydrolysis of dimethylmalonate was conducted according to the conditions reported in S. Niwayama, J. Org. Chem. 2000, 65, 5834-5836, only 22% of the corresponding half ester was obtained. Without wishing to be bound by theory, this result is thought to be possibly due to decarboxylation and overuse of the base, as well as lack of the ideal conformation of the starting diester. Consequently, the effect on reaction yield of various alkali metal hydroxides in varying amounts (1.2, 1.0, or 0.8 equivalent) was explored in the monohydrolysis of dimethyl malonate. The procedures are the same as those we reported before. Id. TABLE 3 is a summary of the type of base, the equivalent, and the reaction times.
-
TABLE 3 Effect Of Base On Yield Time Half Ester Example Base Equivalent (hr) (%)a 17 LiOH 0.8 1 61 (13) 18 NaOH 0.8 0.5 62 (3) 19 KOH 0.8 1 84 20 LiOH 1.0 1 80 (10) 21 NaOH 1.0 1 82 (10) 22 KOH 1.0 1 83 (3) 23 LiOH 1.2 1 75 (10) 24 NaOH 1.2 1 83 (5) 25 KOH 1.2 1 74 aIsolated yield of the half ester. The amount of recovered diester is indicated in parenthesis (%). - As these results indicate, the reactivity slightly increased with the use of KOH over NaOH with comparable selectivity, while LiOH slightly decreased the selectivity and reactivity. In these reactions, the isolated yields of the half ester and diester indicated that, although a small amount of diacid (malonic acid) possibly formed, it was not extracted during the work-up procedures. This result, may have been due to the small hydrophobic portion of this compound, demonstrates one of the advantages of this reaction. The product in this monohydrolysis reaction, monomethyl malonate (see EXAMPLE 54), is among those most frequently applied to organic synthesis. This route appears to allow the highly practical synthesis of monomethyl malonate with a reaction time of only about one hour, which illustrates the synthetic utility of this monohydrolysis.
- These examples illustrate the effect of co-solvent and the type and number of equivalents of base on the monohydrolysis of dimethyl malonate on a more highly concentrated scale.
- EXAMPLE 37 was prepared by the following procedure (SCHEME 7). In a 1 L-sized one-necked flask, equipped with a magnetic stirrer, was placed 158.33 g (1.2 mol) of dimethyl malonate, and 10 mL of acetonitrile was added to dissolve the dimethyl malonate. After the solution was stirred for one minute, the reaction mixture was cooled to 0° C. with an ice-water bath. To this mixture, 100 mL of water was added and stirred for 30 minutes. To this reaction mixture was added 240 mL of 5M aqueous KOH solution (1.2 mol) dropwise with stirring for a period of 15 minutes using an additional funnel (the 5M KOH solution was titrated with 20 mL of 0.5 M oxalic acid, which was purchased from the Mallinckrodt Company, Hazelwood, Mo.). When the addition was completed, the reaction mixture was stirred for an additional 60 minutes, during which it was covered with a stopper and held in the ice-water bath.
- The reaction mixture was acidified with 150 mL of 12 M aqueous HCl solution in the ice-water bath, saturated with NaCl, and extracted with five 500 mL portions of ethyl acetate with a 1 L reparatory funnel. The extract was washed with 500 mL of a saturated aqueous NaCl solution. The ethyl acetate extract was dried over approximately 100 g of anhydrous sodium sulfate. After the drying agent was removed by gravity filtration, the ethyl acetate solution was concentrated by a rotary evaporator, and distilled under a reduced pressure at 2.5 mmHg. The fraction showing a boiling point of 91-92° C. was collected to yield monomethyl malonate as a colorless oil. The yield was 114.77 g (81%) was recovered at 45° C. and 4% of dimethyl malonate and 1% of malonic acid were found.
- EXAMPLES 26-36 were prepared using the general procedure of EXAMPLE 37 and using the modified reaction conditions noted in TABLE 4 below.
-
TABLE 4 Hydrolysis of Dimethyl Malonate At More Concentrated Scale Recovered Half ester Diester EXAMPLE Base Eq. Co-solvent Time (%) (%) 26 NaOH 0.8 THF 1 h 67.1 24.5 27 NaOH 1.0 THF 1 h 81.9 7.0 28 NaOH 1.2 THF 1 h 67.4 1.7 29 NaOH 0.8 CH3CN 1 h 69.0 23.9 30 NaOH 1.0 CH3CN 1 h 82.1 6.6 31 NaOH 1.2 CH3CN 1 h 71.3 0 32 KOH 0.8 THF 1 h 75.0 20.9 33 KOH 1.0 THF 1 h 83.1 3.4 34 KOH 1.2 THF 1 h 72.4 0 35 KOH 0.8 CH3CN 1 h 75.7 16.3 36 KOH 1.0 CH3CN 1 h 84.5 0 37 KOH 1.2 CH3CN 1 h 69.1 0 - These examples illustrate the application of the methodologies described herein to a wide range of dialkyl malonates and their derivatives using aqueous NaOH or KOH as a base.
- EXAMPLE 1 was repeated using the various diesters depicted in TABLE 5. The results are summarized in TABLE 5. Most of these diesters are commercially available. Some diesters were prepared by the standard Fischer esterification.
- Unlike classical monosaponification, which tends to yield a complex yellowish reaction mixture, in all cases in these reactions, only pure half esters, starting diesters, and (in rare cases) diacids, if extant, were isolated. In some cases, based on the percentage of the yield of the half ester and recovered diester, a small amount of the diacid appeared to have formed. However, these diacids were not extracted when the reaction mixture was worked up. All the obtained half esters had excellent purity, giving sharp elemental analysis data. No decarboxylated products were detected in any of the monohydrolysis reactions.
- Overall, KOH tends to be more reactive and slightly more selective than NaOH, as was observed in the results depicted in TABLE 5. This tendency may be best illustrated in the monohydrolysis of diethyl phenymalonate (EXAMPLES 50-51), which showed enhanced reactivity and selectivity with the use of KOH, compared to the results previously obtained with the use of NaOH for monohydrolysis of the same diester (see Id.).
- The results in TABLE 5 suggest that selectivity may increase with the hydrophobicity of the molecule. For example, the yields of the half ester increase with ester groups that are more hydrophobic in comparison to the monohydrolysis of diesters (see TABLE 5, EXAMPLES 50-53). The yields of half esters become even higher when the additional methyl or phenyl group is introduced (EXAMPLES 42-53). Without wishing to be bound by theory, it is believed that, in this monohydrolysis reaction, upon the monohydrolysis of the two identical ester groups, inter- and/or intramolecular hydrophobic attractive interactions within the remaining portion of the molecule may play an important role for this high selectivity, as such aggregates may be protected from further hydrolysis. Therefore, this trend may explain such potential hydrophobic interaction.
- The only noted exception to the foregoing observation is in the monohydrolysis of dipropyl phenylmalonate (EXAMPLES 52 and 53). This result may be due to the extended period of the reaction time, which also sometimes allowed isolation of a visible amount of the corresponding diacid. Here, the use of acetonitrile (another slightly polar aprotic solvent that is slightly miscible with water) instead of THF as a co-solvent helped accelerate the reaction time to some extent, increasing the yield of the half ester by about 10%. Previously, the influence of the co-solvent in this monohydrolysis was studied and it was found that a slightly polar aprotic solvent with a small degree of miscibility with water appears to be an effective co-solvent. It may also be possible that the introduction of several bulky groups prohibited adoption of a preferable conformation for this selectivity.
-
TABLE 5 Hydrolysis of Diesters Time Half ester EXAMPLE Diester Base Equivalents (hr) (%)a 38 KOH 0.8 1 90 39 NaOH 1.0 1 86 (3) 40 KOH 0.8 1 91 (8) 41 NaOH 1.0 0.5 92 (8) 42 KOH 1.2 1.5 94 (2) 43 NaOH 1.2 1.5 93 (6) 44 KOH 1.2 1.5 96 (2) 45 NaOH 1.2 1.5 96 (4) 46 KOH 1.2 1.75 97 (3) 47 NaOH 1.2 1.75 98 (2) 48 KOH 1.2 1 95 (5) 49 NaOH 1.2 1 95 (5) 50 KOH 1.2 5 94 (4) 51 NaOH 1.2 5 86 (13) 52 KOH 0.8 33 77 (22) 53 NaOH 0.8 33 68 (32) aIsolated yield of the half ester. The amount of recovered diester is indicated in parenthesis (%). bAcetonitrile was used instead of THF as co-solvent. - In summary, highly practical conditions have been found with aqueous KOH or NaOH with THF or acetonitrile as a co-solvent at 0° C. to selectively monohydrolyze a series of dialkyl malonates and their derivatives. The yields here are the highest among the yields reported previously (Id.). All the half esters prepared showed excellent purity and were stable over a long period of time. It was also found that the selectivity generally increases as the hydrophobicity of the ester group increases. Such tendencies suggest that hydrophobic attractive interaction may play an important role in this selectivity.
- This example illustrates the synthesis of monomethyl malonate.
- In a 100 mL-sized one-necked flask, equipped with a magnetic stirrer, was placed 15.833 g (0.12 mol) of dimethyl malonate (purchased from ACROSS chemicals), and 1 mL of THF was added to dissolve this dimethyl malonate. After the solution was stirred for one minute, the reaction mixture was cooled to 0° C. with an ice-water bath. To this mixture, 10 mL of water was added and stirred for 30 minutes. To this reaction mixture was added 26.4 mL (1.1 equivalents) of 5M aqueous NaOH solution (97% minimum assay obtained from EMD Chemicals Inc., Gibbstown, N.J.). This solution was added dropwise with stirring over a period of 5 minutes. When the addition was completed, the reaction mixture was stirred for an additional 30 minutes, during which it was covered with a stopper and kept in the ice-water bath.
- The reaction mixture was acidified with 30 mL of 6 M aqueous HCl solution in the ice-water bath, saturated with NaCl, and extracted with five 50 mL portions of ethyl acetate with a 250 mL reparatory funnel. The extract was washed with 50 mL of a saturated aqueous NaCl solution. The ethy acetate extract was dried over approximately 10 g of anhydrous sodium sulfate. After the drying agent was removed by gravity filtration, the ethyl acetate solution was concentrated by a rotary evaporator, and distilled under a reduced pressure at 2.5 mmHg. The fraction showing a boiling point of 91-92° C. was collected to yield monomethyl malonate as a colorless oil. The yield was 82%.
- Monomethyl malonate. Oil. 1H NMR (300 MHz, CDCl3) δ=3.47 (2H, s), 3.79 (3H, s), 11.4 (1H, br. s); 13C NMR (75 MHz, CDCl3) δ=40.50, 52.50, 167.03, 171.46; IR (neat, cm−1) 1741, 1746, 2960-3185; Anal. Calcd for C4H6O4: C, 40.68; H, 5.12. Found: C, 40.51; H, 5.34.
- This example illustrates the synthesis of monoethyl malonate.
- Diethyl malonate (192 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the indicated equivalent of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for one hour, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monoethyl malonate.
- Monoethyl malonate. Oil. 1H NMR (300 MHz, CDCl3) δ=1.31 (3H, t, J=7.2), 3.44 (2H, s), 4.25 (2H, q, J=7.2), 10.62 (1H, br. s); 13C NMR (75 MHz, CDCl3) δ=13.90, 40.78, 61.90, 166.87, 171.48; IR (neat, cm−1) 1736, 1741, 2914-3182; Anal. Calcd for C5H8O4: C, 45.46; H, 6.10. Found: C, 45.83; H, 6.30.
- This example illustrates the synthesis of monopropyl malonate.
- Dipropyl malonate (226 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the indicated equivalent of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for 30 minutes to one hour, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monopropyl malonate.
- Oil. 1H NMR (300 MHz, CDCl3) δ=0.96 (3H, t, J=7.7), 1.70 (2H, m), 3.46 (2H, s), 4.15 (2H, q, J=7.2), 10.18 (1H, br. s); 13C NMR (75 MHz, CDCl3) δ=10.12, 21.69, 40.89, 67.42, 166.81, 171.74; IR (neat, cm−1) 1723, 1740, 2883-3181; Anal. Calcd for C6H10O4: C, 49.31; H, 6.90. Found: C, 49.43; H, 7.14.
- This example illustrates the synthesis of monomethyl methylmalonate.
- Dimethyl methylmalonate (175 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the 1.2 equivalents of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for 1.5 hours, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monomethyl methylmalonate.
- Oil. 1H NMR (300 MHz, CDCl3) δ=1.43 (3H, d, J=7.2), 3.47 (1H, q, J=7.2), 3.73 (3H, s), 9.42 (1H, br. s); 13C NMR (75 MHz, CDCl3) δ=13.08, 45.45, 52.39, 170.16, 175.38; IR (neat, cm−1) 1721, 1739, 2956-3202; Anal. Calcd for C5H8O4: C, 45.46; H, 6.10. Found: C, 45.65; H, 5.94.
- This example illustrates the synthesis of monoethyl methylmalonate.
- Diethyl methylmalonate (209 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the 1.2 equivalents of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for 1.5 hours, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monoethyl methylmalonate.
- Oil. 1H NMR (300 MHz, CDCl3) δ=1.24 (3H, t, J=7.2), 1.40 (3H, d, J=7.5), 3.44 (1H, q, J=7.2), 4.18 (2H, q, J=7.2), 11.21 (1H, br, s); 13C NMR (75 MHz, CDCl3) δ=13.44, 13.90, 45.93, 61.70, 169.83, 176.00; IR (neat, cm−1) 1722, 1735, 2946-3200; Anal. Calcd for C6H10O4: C, 49.31; H, 6.90. Found: C, 49.68; H, 6.75.
- This example illustrates the synthesis of monopropyl methylmalonate.
- Dipropyl methylmalonate, 7, (243 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the 1.2 equivalents of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for one hour and 45 minutes, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monopropyl methylmalonate.
- Oil. 1H NMR (300 MHz, CDCl3) δ=0.90 (3H, t, J=7.5), 1.42 (3H, d, J=7.2), 1.64 (2H, m), 3.46 (1H, q, J=7.2), 4.09 (2H, q, J=7.2), 10.62 (1H, br, s); 13C NMR (75 MHz, CDCl3) δ=10.17, 13.51, 21.77, 45.94, 67.24, 169.93, 175.96; IR (neat, cm−1) 1717, 1739, 2883-2971; Anal. Calcd for C7H12O4: C, 52.49; H, 7.55. Found: C, 52.74; H, 7.49.
- This example illustrates the synthesis of monomethyl phenylmalonate.
- Dimethyl phenylmalonate (250 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the 1.2 equivalents of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for one hour, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monomethyl phenylmalonate.
- White solid; m.p. 92-93° C.; 1H NMR (300 MHz, CDCl3) δ=3.75 (3H, s), 4.65 (2H, s), 7.4 (5H, m), 9.0 (1H, br. s); 13C NMR (75 MHz, CDCl3) δ=53.06, 57.33, 128.55, 128.77, 129.15, 131.96, 168.59, 173.25; IR (neat, cm−1) 1717, 1740, 2956-3212; Anal. Calcd for C10H10O4: C, 61.85; H, 5.19. Found: C, 61.92; H, 5.40.
- This example illustrates the synthesis of monoethyl phenylmalonate.
- Dimethyl phenylmalonate (284 mg, 1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath. To this mixture was added the 1.2 equivalents of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for five hours, and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monoethyl phenylmalonate.
- White solid; m.p. 74° C. (lit 76-77° C.)3a; 1H NMR (300 MHz, CDCl3) δ=1.25 (3H, t, J=7.2), 4.24 (2H, q, J=7.2), 4.64 (1H, s), 7.4 (5H, m), 9.78 (1H, br, s); 13C NMR (75 MHz, CDCl3) δ=13.81, 57.51, 62.10, 128.39, 128.62, 129.13, 132.01, 167.95, 173.84; IR (neat, cm−1) 1717, 1737, 2941-3190; Anal. Calcd for C11H12O4: C, 63.45; H, 5.81. Found: C, 63.30; H, 5.80.
- This example illustrates the synthesis of monopropyl phenylmalonate.
- Dipropyl phenylmalonate (317 mg, 1.2 mmol) was dissolved in 2 mL of acetonitrile, and 20 mL of water was added. The reaction mixture was cooled to 0° C. in an ice-water bath in a cold room. To this mixture was added the 0.8 equivalents of a 0.25 M aqueous NaOH, or KOH solution dropwise with stirring. The reaction mixture was stirred for 33 hours in a cold room maintained at around 4° C., and acidified with 1M HCl at 0° C., saturated with NaCl, extracted with ethyl acetate (X4), and dried over Na2SO4. This extract was concentrated in vacuo and purified by silica gel column chromatography, first with hexane:ethyl acetate (3:1) and then with ethyl acetate, to afford monopropyl phenylmalonate.
- Oil. 1H NMR (300 MHz, CDCl3) δ=0.87 (3H, t, J=7.5), 1.64 (2H, m, J=7.2), 4.11 (2H, m), 4.64 (1H, s), 7.4 (5H, m), 8.02 (1H, br, s); 13C NMR (75 MHz, CDCl3) δ=10.15, 21.74, 57.47, 67.72, 128.48, 128.74, 129.12, 132.21, 168.41, 173.07; IR (neat, cm−1) 1717, 1736, 2881-3067; Anal. Calcd for C12H14O4: C, 64.85; H, 6.35. Found: C, 65.17; H, 6.61.
- These examples illustrate the effect that the hydrophobicity of the ester groups can have on reaction time.
- Using the general reaction conditions indicated below, a series of half esters having increasingly hydrophobic alkyl groups were prepared (SCHEME 8), and the reaction times for the analogs were noted. The results are set forth in TABLE 6 below.
-
TABLE 6 Effect of the Hydrophobicity of the Carboxyl Groups Yield Reaction Time Rate Constant EXAMPLE R (%) (min) (L · mol−1 · s−1) 63 —CH3 >99 70 2.70 × 10−2 64 —CH2CH3 98 210 1.10 × 10−2 65 —CH(CH3)2 96 1140 - As these results indicate, increasing the hydrophobicity of the alkyl group R produced a corresponding increase in reaction time. In the case of cyclic diesters of the type utilized in this reaction, it was found that reaction times could be reduced through the use of additional base, without a significant decrease in product yield (see EXAMPLE 82 below). By contrast, the use of additional base was observed to give rise to reduced product yield in the case of the hydrolysis of linear diesters such as, for example, dialkyl malonates and dialkyl adipates.
- These examples illustrate the effect that reaction time and choice of base has on the ratio of half ester to diacid.
- Various bases were utilized in the hydrolysis reaction depicted in SCHEME 9 below. The ratio of half ester to diacid was determined by 1H NMR spectroscopy, and is set forth in TABLES 7-10 below.
-
TABLE 7 Reaction Time Using LiOH As Base Reaction Time a b EXAMPLE (min.) (%) (%) a:b 66 20 66.2 33.8 1.96 67 25 61.1 38.9 1.57 68 30 59.2 40.8 1.45 69 35 55.9 44.1 1.27 -
TABLE 8 Reaction Time Using NaOH As Base Reaction Time a b EXAMPLE (min.) (%) (%) a:b 70 20 67.8 32.2 2.11 71 25 67.4 32.6 2.07 72 30 61.4 38.6 1.59 73 35 60.9 39.1 1.56 -
TABLE 9 Reaction Time Using KOH As Base Reaction Time a b EXAMPLE (min.) (%) (%) a:b 74 10 86.8 13.2 6.58 75 15 74.5 25.5 2.92 76 20 69.0 31.0 2.23 77 25 67.9 32.1 2.12 -
TABLE 10 Reaction Time Using CsOH As Base Reaction Time a b EXAMPLE (min.) (%) (%) a:b 78 10 82.2 17.8 4.62 79 15 67.8 32.2 2.11 80 20 64.6 35.4 1.82 81 25 51.9 48.1 1.08 - As these results indicate, in the case of the particular linear diester being studied, as reaction time increases beyond a certain point, the amount of half ester decreases, and the amount of diacid increases. This result was observed for all four bases.
- This example illustrates the time dependence of the monohydrolysis of cyclic diesters.
- Dimethyl bicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylate (1.2 mmol) was dissolved in 2 mL of THF, and 20 mL of water was added. The reaction mixture was immersed in an ice-water bath and cooled to 0° C. To this reaction mixture, 8 mL of 0.25 M NaOH was added in small portions with stirring. The mixture was periodically quenched, and the products were monitored by 1H NMR. From the integral curves corresponding to certain peaks assigned to the diester, the half-ester and the diacid, the molar ratios of diester, half-ester and diacid were determined. The results are plotted in
FIG. 1 . - As seen therein, in the case of the hydrolysis of dimethyl bicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylate, after the reaction was essentially complete (as indicated by the remaining amount of diester), the amount of half ester decreased only slightly over time, and the amount of diacid increased only slightly over time. Similar results were observed with other cyclic diesters. These results suggest that half esters of this type are relatively stable to base.
- These examples illustrate the time dependence of the monohydrolysis of linear diesters.
- EXAMPLE 82 was repeated, except that dimethyl adipate was substituted for dimethyl bicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylate, and four different equivalents of base (0.7, 1.0, 1.2 and 1.5) were utilized. The peaks corresponding to the diester, half-ester, and diacid were monitored by HPLC, and the corresponding ratios were plotted as shown in
FIG. 2 . - As seen therein, as the amount of base increased, the yield of diacid also increased. Similar results were observed in the monohydrolysis of other linear diesters. These results suggest that half esters of this type are less stable to base than cyclic diesters of the type investigated in EXAMPLE 82. Hence, while the reaction rate of such cyclic diesters may be increased through the addition of more base without producing a significant adverse effect in product yield, such is not the case for linear diesters.
- The above description of the present invention is illustrative, and is not intended to be limiting. It will thus be appreciated that various additions, substitutions and modifications may be made to the above described embodiments without departing from the scope of the present invention. Accordingly, the scope of the present invention should be construed in reference to the appended claims.
Claims (21)
1-55. (canceled)
56. A method for hydrolyzing an ester, comprising:
providing a first symmetric compound having first and second ester moieties;
reacting the compound with a base in an aqueous medium to form a first product such that the ratio of the number of molar equivalents of base to the number of molar equivalents of the first compound is greater than 3; and
quenching the reaction through acidification to form a second product such that the total reaction time is no greater than 90 minutes.
57. The method of claim 56 , the ratio of the number of molar equivalents of base to the number of molar equivalents of the first compound is greater than 5.
58. The method of claim 56 , the ratio of the number of molar equivalents of base to the number of molar equivalents of the first compound is greater than 7.
59. The method of claim 56 , the ratio of the number of molar equivalents of base to the number of molar equivalents of the first compound is greater than 10.
60. The method of claim 56 , wherein the first compound is a cyclic compound.
61. The method of claim 56 , wherein the first compound is a bicyclic compound.
62. The method of claim 61 , wherein the first compound is a bicyclic diene.
63. The method of claim 56 , wherein the first compound is a cyclic diester.
64. The method of claim 56 , wherein the total reaction time is no greater than 60 minutes.
65. The method of claim 56 , wherein the total reaction time is within the range of about 10 minutes to about 60 minutes.
66. The method of claim 56 , wherein the total reaction time is within the range of about 20 minutes to about 60 minutes.
67. The method of claim 56 , wherein the reaction produces a second compound, and wherein the second compound is a half ester.
68. The method of claim 56 , wherein the first and second ester moieties are bonded to first and second adjacent carbon atoms, and wherein said first and second carbon atoms are bonded to each other by a double bond.
69. The method of claim 68 , wherein said first and second carbon atoms are part of a ring.
70. The method of claim 69 , wherein said ring is part of a bicyclic structure.
71. The method of claim 56 , wherein the first compound is dimethyl bicyclo[2.2.1]hept-2,5-diene-2,3-dicarboxylate.
72. The method of claim 56 , wherein the second product is a half ester.
73. The method of claim 56 , wherein the base has the formula MaXb, wherein the first ester moiety is converted, through the reacting and quenching steps, to a carboxyl moiety, and wherein the second ester moiety is still an ester moiety after the reacting and quenching steps.
74. The method of claim 56 , wherein the base is selected from the group consisting of LiOH, NaOH, KOH and CsOH.
75. The method of claim 56 , wherein the first compound is reacted with the base at a temperature T, and wherein −15° C.<T<15° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/679,411 US20130150613A1 (en) | 2007-05-31 | 2012-11-16 | Synthesis of half esters |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93262907P | 2007-05-31 | 2007-05-31 | |
US12/156,448 US8338635B2 (en) | 2007-05-31 | 2008-05-30 | Synthesis of half esters |
US13/679,411 US20130150613A1 (en) | 2007-05-31 | 2012-11-16 | Synthesis of half esters |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/156,448 Division US8338635B2 (en) | 2007-05-31 | 2008-05-30 | Synthesis of half esters |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130150613A1 true US20130150613A1 (en) | 2013-06-13 |
Family
ID=40094335
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/156,448 Expired - Fee Related US8338635B2 (en) | 2007-05-31 | 2008-05-30 | Synthesis of half esters |
US13/679,411 Abandoned US20130150613A1 (en) | 2007-05-31 | 2012-11-16 | Synthesis of half esters |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/156,448 Expired - Fee Related US8338635B2 (en) | 2007-05-31 | 2008-05-30 | Synthesis of half esters |
Country Status (3)
Country | Link |
---|---|
US (2) | US8338635B2 (en) |
JP (2) | JP2010533644A (en) |
WO (1) | WO2008150487A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101873082B1 (en) | 2011-03-03 | 2018-06-29 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | Process for preparing sodium salts or potassium salts of 4-hydroxy-2-oxo-2,5-dihydrofuran-3-carboxylate |
DK2880022T3 (en) | 2012-08-01 | 2016-08-15 | Bayer Cropscience Ag | MULTI-STEP PROCEDURE FOR PREPARING ALKALIMETAL SALTS OF SPECIAL 4-HYDROXY-2-OXO-2,5-DIHYDROFURAN-3-CARBOXYL ACID ESTERS |
JP5668887B1 (en) | 2013-08-23 | 2015-02-12 | ダイキン工業株式会社 | Perfluoro (poly) ether group-containing bifunctional compound, composition containing perfluoro (poly) ether group-containing bifunctional compound, and methods for producing them |
CN106278895B (en) * | 2015-05-15 | 2021-07-09 | Dic株式会社 | Carboxylic acid compound, method for producing the same, and liquid crystal composition using the compound |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3150165A (en) * | 1962-02-23 | 1964-09-22 | Texaco Inc | Non-catalytic hydrolysis of diesters of dicarboxylic acids to the monoesters |
US4220708A (en) * | 1977-07-22 | 1980-09-02 | Heller Harold G | Photochromic compounds |
US4267087A (en) * | 1977-08-29 | 1981-05-12 | Ciba-Geigy Corporation | Perfluoroalkyl substituted anhydrides and polyacids, and derivatives thereof |
US4254111A (en) * | 1978-07-05 | 1981-03-03 | Roecar Holdings (Netherlands Antilles) Nv | Sterolin products |
DE3034538A1 (en) * | 1980-09-12 | 1982-05-06 | Hoechst Ag, 6000 Frankfurt | -FLUORSULFATO-PERFLUORCARBONIC ACID DERIVATIVES AND PROCESS FOR THEIR PRODUCTION |
DE3106819A1 (en) * | 1981-02-24 | 1982-09-09 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING 1,4-BUTANDIOL |
US4728466A (en) * | 1985-10-18 | 1988-03-01 | Rhone-Poulenc Nederland B.V. | Process for the production of aliphatic phosphonic acids |
US5123951A (en) * | 1986-03-31 | 1992-06-23 | Rhone-Poulenc Nederland B.V. | Synergistic plant growth regulator compositions |
SK278455B6 (en) * | 1986-03-31 | 1997-06-04 | Rhone Poulenc Bv | Agent for growth regulation of plants |
JPH0285232A (en) * | 1988-09-22 | 1990-03-26 | Nippon Mining Co Ltd | Production of long-chain dibasic monoester salt |
US5047574A (en) * | 1988-12-14 | 1991-09-10 | Shionogi & Co., Ltd. | Certain optically active mono esters of dicarboxylic acids |
US5302305A (en) * | 1989-02-09 | 1994-04-12 | The Lubrizol Corporation | Carboxylic esters, liquid compositions containing said carboxylic esters and methods of lubricating metal parts |
EP0451790A1 (en) * | 1990-04-12 | 1991-10-16 | Hoechst Aktiengesellschaft | 3,5-disubstituted 2-isoxazolines and isoxazoles, process for their preparation, medicines containing them and their use |
JPH0429959A (en) * | 1990-05-24 | 1992-01-31 | Sanken Kako Kk | Production of high-purity dicarboxylic acid monoester |
US5597555A (en) * | 1992-04-02 | 1997-01-28 | Croda, Inc. | Fatty alkoxylate esters of aliphatic and aromatic dicarboxylic acids |
US5773261A (en) * | 1996-08-26 | 1998-06-30 | The Nutrasweet Company | Regioselective α-hydrolysis of amino acid diesters using pig liver esterase |
JPH11130728A (en) * | 1997-10-23 | 1999-05-18 | Mitsubishi Rayon Co Ltd | Method for producing mono-tertiary alkyl malonate |
DE19817101A1 (en) * | 1998-04-17 | 1999-10-21 | Degussa | Process for the preparation of potassium monoethyl malonate |
DE19934165A1 (en) * | 1999-07-21 | 2001-01-25 | Degussa | Process for the preparation of alkali metal salts of malonic acid monoalkyl esters |
CN100436552C (en) | 2001-10-17 | 2008-11-26 | 西巴特殊化学品控股有限公司 | Levelling agent and anti-cratering agent |
US7217424B2 (en) * | 2001-10-17 | 2007-05-15 | Croda, Inc. | Compositions containing esters of aromatic alkoxylated alcohols and fatty carboxylic acids |
US7611725B2 (en) * | 2002-01-31 | 2009-11-03 | Croda, Inc. | Additives and products including oligoesters |
US6833471B2 (en) * | 2002-09-09 | 2004-12-21 | Biocatalytics, Inc. | Methods for producing hydroxy amino acids and derivatives thereof |
US7301031B2 (en) * | 2002-09-09 | 2007-11-27 | Biocatalytics, Inc. | Methods for producing hydroxy amino acids, esters, and derivatives thereof |
US7459460B2 (en) * | 2003-05-28 | 2008-12-02 | Bristol-Myers Squibb Company | Trisubstituted heteroaromatic compounds as calcium sensing receptor modulators |
US7307183B2 (en) * | 2003-07-29 | 2007-12-11 | Great Lakes Chemical Corporation | Process for producing tetrabromobenzoate esters |
JP2005170803A (en) * | 2003-12-08 | 2005-06-30 | Daicel Chem Ind Ltd | Novel monomethyl malonate derivatives and their production |
US8021650B2 (en) * | 2006-02-24 | 2011-09-20 | Lubrizol Advanced Materials, Inc. | Polymers containing silicone copolyol macromers and personal care compositions containing same |
JP5157154B2 (en) * | 2006-12-20 | 2013-03-06 | Dic株式会社 | 4 '-(alkoxycarbonyl) bicyclohexyl-4-ylcarboxylic acid and process for producing the same |
-
2008
- 2008-05-30 US US12/156,448 patent/US8338635B2/en not_active Expired - Fee Related
- 2008-05-30 JP JP2010510367A patent/JP2010533644A/en active Pending
- 2008-05-30 WO PCT/US2008/006907 patent/WO2008150487A2/en active Application Filing
-
2012
- 2012-11-16 US US13/679,411 patent/US20130150613A1/en not_active Abandoned
-
2013
- 2013-08-07 JP JP2013163978A patent/JP2013227345A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2013227345A (en) | 2013-11-07 |
WO2008150487A3 (en) | 2009-02-12 |
WO2008150487A2 (en) | 2008-12-11 |
US8338635B2 (en) | 2012-12-25 |
JP2010533644A (en) | 2010-10-28 |
US20090023945A1 (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130150613A1 (en) | Synthesis of half esters | |
KR100313668B1 (en) | A process for preparing (R)-4-cyano-3-hydroxybutyric acid ester | |
WO2011086570A1 (en) | Process for preparation of cyanoalkylpropionate derivatives | |
JPH082821B2 (en) | 1,4,5,8-Tetrakis (hydroxymethyl) naphthalene derivative and method for producing the same | |
JP2003500465A (en) | Method for producing alkoxy cinnamate | |
CA1056848A (en) | Process for the preparation of 3-alkyl-cyclopentane-1,2-diones, and intermediates therefor | |
US4656309A (en) | Preparation of alpha-pivaloyl-substituted acetic acid esters | |
US20030105349A1 (en) | Preparation of beta-ketonitriles | |
JPH08245508A (en) | Unsaturated carboxylic acid ester and its production | |
JPH0142254B2 (en) | ||
US6509493B1 (en) | Method for producing atropic acid ethyl ester | |
US6175024B1 (en) | Synthesis of functionalized esters | |
JPH0229664B2 (en) | ||
KR20230154213A (en) | Process for producing alkyl-4-oxotetrahydrofuran-2-carboxylate | |
JPS63154643A (en) | Production of lower carboxylic acid ester | |
JP3254746B2 (en) | Terminal acetylene compound and method for producing the same | |
EP0970952B1 (en) | Processes for preparing 2-omega-alkoxycarbonylalkanoyl)-4-butanolides, omega-hydroxy-omega-3)-keto fatty esters, and derivatives thereof | |
JP3993427B2 (en) | Method for producing alicyclic hydroxycarboxylic acid | |
US6600070B2 (en) | Methods for making 2-(ω-alkoxycarbonylalkanoyl)-4-butanolide, ester of ω-hydroxy-(ω-3)-ketoaliphatic acid, and derivatives thereof | |
JPH09278746A (en) | Production of optically active 2-aralkyl-3-acylthiopropionate ester | |
WO1998016495A1 (en) | Processes for the preparation of dicarboxylic acid monoesters | |
WO2013038931A1 (en) | Method of producing 2-oxo-2h-cyclohepta[b]furan analogue | |
JP3304638B2 (en) | Alicyclic dicarboxylic acids and their esters, and methods for their production | |
JPH07149692A (en) | Preparation of pimelic acid ester | |
JP2000281624A (en) | Method for producing α-hydroxy acid esters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIWAYAMA, SATOMI, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEXAS TECH UNIVERSITY SYSTEM, OFFICE OF TECHNOLOGY COMMERCIALIZATION;REEL/FRAME:029314/0322 Effective date: 20091120 |
|
AS | Assignment |
Owner name: TIMES THREE WIRELESS, INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIWAYAMA, SATOMI;REEL/FRAME:030208/0997 Effective date: 20130412 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |