US20130149766A1 - Production of bio-based materials using photobioreactors with binary cultures - Google Patents
Production of bio-based materials using photobioreactors with binary cultures Download PDFInfo
- Publication number
- US20130149766A1 US20130149766A1 US13/817,075 US201113817075A US2013149766A1 US 20130149766 A1 US20130149766 A1 US 20130149766A1 US 201113817075 A US201113817075 A US 201113817075A US 2013149766 A1 US2013149766 A1 US 2013149766A1
- Authority
- US
- United States
- Prior art keywords
- culture
- light
- synechococcus
- growth
- photobioreactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000000463 material Substances 0.000 title description 14
- 238000000034 method Methods 0.000 claims abstract description 46
- 241000192707 Synechococcus Species 0.000 claims description 44
- 239000002028 Biomass Substances 0.000 claims description 39
- 238000003501 co-culture Methods 0.000 claims description 38
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 13
- 244000005700 microbiome Species 0.000 claims description 12
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 11
- 235000015097 nutrients Nutrition 0.000 claims description 11
- 241001472016 Methylomicrobium alcaliphilum 20Z Species 0.000 claims description 9
- 241000894007 species Species 0.000 claims description 7
- 241000192560 Synechococcus sp. Species 0.000 claims description 6
- 239000007003 mineral medium Substances 0.000 claims description 6
- 241000168517 Haematococcus lacustris Species 0.000 claims description 5
- 239000002551 biofuel Substances 0.000 claims description 5
- 239000002351 wastewater Substances 0.000 claims description 5
- 244000063299 Bacillus subtilis Species 0.000 claims description 4
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 4
- 229920002472 Starch Polymers 0.000 claims description 4
- 244000059217 heterotrophic organism Species 0.000 claims description 4
- 238000004064 recycling Methods 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 235000021466 carotenoid Nutrition 0.000 claims description 2
- 150000001747 carotenoids Chemical class 0.000 claims description 2
- 241001533203 Methylomicrobium Species 0.000 claims 1
- 238000011534 incubation Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 14
- 239000002699 waste material Substances 0.000 abstract description 8
- 239000002243 precursor Substances 0.000 abstract description 7
- 230000006872 improvement Effects 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract description 2
- 230000012010 growth Effects 0.000 description 49
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 47
- 229910002092 carbon dioxide Inorganic materials 0.000 description 44
- 241000863430 Shewanella Species 0.000 description 43
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 27
- 239000000047 product Substances 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 20
- 238000002474 experimental method Methods 0.000 description 20
- 238000013019 agitation Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 241000894006 Bacteria Species 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000007792 addition Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000005273 aeration Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 238000005286 illumination Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 150000002894 organic compounds Chemical class 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 description 5
- 241000159506 Cyanothece Species 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 description 5
- 235000013793 astaxanthin Nutrition 0.000 description 5
- 229940022405 astaxanthin Drugs 0.000 description 5
- 239000001168 astaxanthin Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000029553 photosynthesis Effects 0.000 description 5
- 238000010672 photosynthesis Methods 0.000 description 5
- 241000192700 Cyanobacteria Species 0.000 description 4
- 241000409693 Methylomicrobium alcaliphilum Species 0.000 description 4
- 241000490596 Shewanella sp. Species 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000003225 biodiesel Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000000243 photosynthetic effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241000195628 Chlorophyta Species 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000005587 bubbling Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012737 fresh medium Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000010012 metabolic coupling Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 241001464430 Cyanobacterium Species 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- 241000694540 Pluvialis Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241001453313 Synechococcus sp. PCC 7002 Species 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 230000004941 influx Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 244000059219 photoautotrophic organism Species 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- JVGPVVUTUMQJKL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl thiocyanate Chemical compound CCCCOCCOCCSC#N JVGPVVUTUMQJKL-UHFFFAOYSA-N 0.000 description 1
- 108010092060 Acetate kinase Proteins 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 241000192542 Anabaena Species 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241001495180 Arthrospira Species 0.000 description 1
- 240000002900 Arthrospira platensis Species 0.000 description 1
- 235000016425 Arthrospira platensis Nutrition 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 241000186226 Corynebacterium glutamicum Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000159509 Cyanothece sp. ATCC 51142 Species 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910004619 Na2MoO4 Inorganic materials 0.000 description 1
- 241000192656 Nostoc Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 1
- 241001538194 Shewanella oneidensis MR-1 Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000192584 Synechocystis Species 0.000 description 1
- 241000192118 Trichodesmium Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- FPGXTJOGZVURDF-UHFFFAOYSA-J [C+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O Chemical compound [C+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O FPGXTJOGZVURDF-UHFFFAOYSA-J 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 101150006213 ackA gene Proteins 0.000 description 1
- 230000004103 aerobic respiration Effects 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000003816 axenic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940116871 l-lactate Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000005789 organism growth Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 229940082787 spirulina Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/06—Tubular
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M31/00—Means for providing, directing, scattering or concentrating light
- C12M31/10—Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/08—Chemical, biochemical or biological means, e.g. plasma jet, co-culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P39/00—Processes involving microorganisms of different genera in the same process, simultaneously
Definitions
- Cultivation of photoautotrophic microorganisms for metabolite and/or biomass production can be accomplished in various types of cultivation systems including open ponds and enclosed bioreactors.
- Each system has various advantages and limitations Open ponds, for example, are designed to utilize natural sunlight while most of the enclosed bioreactor systems do require artificial illumination which results in additional energy expenditures. Open pond systems, however, are more prone to fouling y external contamination and are not suited to grow genetically modified organisms.
- enclosed bioreactors provide highly controlled conditions, protection against external contamination, and higher growth rates and biomass/products yields while allowing use of genetically modified strains.
- Cultivation of photosynthetic organisms is also associated with several general problems which arise from the necessity to deliver CO 2 into liquid medium and remove excess O 2 produced as a result of photosynthesis in order to maintain desired growth conditions.
- the current practice is to continuously or periodically purge the system which adds significantly to the operating costs and results in frequent changes of cultivation conditions and reduction in efficiency. Removal of O 2 by most other known methods such as by chemical catalysis is typically prohibitively costly. What is needed therefore is a solution that enables continuous operation under controlled conditions such as within an enclosed bioreactor without the need for venting as is required by the prior art.
- the present invention meets this need.
- the present invention is a method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors.
- the principal features of the present invention include a method wherein a culture consisting of two microorganisms (binary culture), is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product.
- a variety of other aspects including the particular systems and devices which enable the method of the present invention to be performed are also described and disclosed herein.
- the binary culture includes at least one oxygenic photoautotroph and at least one aerobic or facultative anaerobic chemoheterotroph.
- the pairings may include any set of organisms appropriately combined so that the rates of the growth of the two strains of organisms are maintained in an appropriate ha lance and the internal environment is maintained in a desired condition. This includes but is not limited to pairings of various strains of bacteria, algae, fungi and plant species and combinations thereof. Examples could include but are not limited to pairings of facultative aerobic and anaerobic organisms to produce a self-sustaining oxygen/carbon dioxide balance, as well as other combinations wherein the two organisms produce desired or required nutrients or growth enhancing materials.
- the binary cultures are incubated in a closed chamber and artificially illuminated by variously placed light emitting diodes which are controlled by a control mechanism based upon interaction with a plurality of sensors within the chamber.
- the present invention may utilize natural sunlight or ambient light or combinations of ambient and directed light in order to obtain a desired effect.
- the system is completely artificially lighted and the emissions from the light emitting sources are coordinated by interaction between a these light emitting sources preferably (light emitting diodes) having selected characteristics such as wavelength, frequency, intensity or other features and at least one sensor (preferably a plurality of sensors are utilized) that is located within the Chamber by a computer program.
- the temperature of the internal contents of the chamber can also be variously monitored and controlled to provide an optimal temperature for growth.
- a heat sink enables excess or unwanted heat to be removed from the chamber, while the light inside the chamber typically provides the heating means for raising the internal temperature to a desired value.
- the heat sink is an integrated part of the cylindrical chamber, in other embodiments additional heat sinks may be attached to the cylinder in order to obtain a desired result.
- a cylinder having a height to width aspect ratio of at least 2 is considered optimal in such circumstances.
- the binary culture includes at least one photoautotroph and at least one chemoheterotroph.
- this may be selected from any of a variety species including but not limited to Shewanella species, Cyanothece species, Synechococcus species and other species appropriate for the particular necessities of a user.
- This method of cultivation does not need purging of a closed bioreactor with a defined gas phase.
- the proposed approach accomplishes these tasks simultaneously by inclusion of a compatible heterotrophic microorganism.
- This method of cultivation does not require sparging of a closed bioreactor with air or other gas mixture/vigorous mixing to deliver CO 2 /remove produced O 2 from liquid medium.
- This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape to ensure optimal photoautotrophic culture illumination and space usage which will ultimately result in designing more efficient processes with substantial increases in biomass production and/or product generation.
- use of highly reduced organic compounds will help to consume externally added CO 2 or a salt of carbonic acid without necessity to remove O 2 .
- the present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material. For example, biosludge produced from sewage water treatment plants or glycerol, a major dead-end by-product in biodiesel production can be utilized. in addition the present invention can be utilized for the production of microalgae biomass as feedstock for high-quality biofuels (biodiesel and biocrude) that require a minimum of post-production processing. The present invention also enables the design of light-driven processes for bio-H 2 production and the production of organic fertilizers, animal feed, and other commodities including but not limited to vitamins, amino acids, antibiotics, or enzymes.
- the present invention solves the problems associated with the prior art by utilizing binary cultures of paired organism to produce self-sustaining interdependencies that foster the continued growth and development of the organism producing the desired biomass material within the closed system wherein the growth environment can be carefully monitored and maintained. Additionally, more than two cultures may be grown together as necessary. Such an approach provides a cost-efficient way to eliminate problems associated with the prior art methodologies.
- the paired binary cultures are configured to provide CO 2 delivery and O 2 removal while creating high-value products by utilizing sun light artificial light or their combination and organic matter (waste or renewables).
- a photoautotrophic organism such as a microalga or a cyanobacterium is paired with an aerobic or facultative anaerobic heterotrophic bacterium.
- the phototrophic oxygenic microorganisms can produce biofuels at a much higher productivity than land plants and can be cultivated in aquatic environments, including seawater, so as to not compete for resources with conventional agriculture.
- FIG. 1 is a schematic view of the system and process of the present invention.
- FIG. 2 a is an exemplary view of one embodiment of a reactor system of the present invention.
- FIG. 2 b is an exemplary view of another embodiment of the reactor system of the present invention.
- FIGS. 3 and 4 are charts showing the independent growth phases of Synechococcus and Shewanella examples as compared to the binary culture.
- FIGS. 5 a and 5 b shows the efficiency of the use of lactate in the various tested cultures.
- FIG. 6 shows the results of light testing of the Synechococcus culture.
- FIGS. 7 and 8 show the quantity of electricity used for agitation and gas sparging per unit biomass.
- FIGS. 9 and 10 show the results of astaxanthin production and nutrient reduction in one example of the invention.
- FIG. 11 shows the growth of a M. alcaliphilum and Synechococcus co-culture growth.
- a binary culture of a photoautotrophic organism Cyanothece sp. strain ATCC 51142 was cultured hi association with a facultative anaerobic heterotrophic bacterium Shewanella sp. strain W3-18-1 on defined mineral medium which was not supplemented with CO 2 or bicarbonate salts as source of carbon.
- the mineral medium was supplemented with lactate as source of carbon and reducing equivalents to remove the O 2 .
- both organisms in this binary culture were dependent on the metabolism of the other: Shewanella sp. W3-18-consumed lactate and O 2 and produced CO 2 and Cyanothece sp.
- ATCC 51142 incorporated the CO 2 into the biomass and produced O 2 . During this process both cultures in the photobioreactor grew without air sparging or addition of supplemental CO 2 . In the presence of Shewanella sp. W3-18-1, Cyanothece sp. ATCC 51142 was able to grow at higher rates when compared to single-organism culture under identical conditions with sparging with CO 2 and N 2 .
- FIG. 1 In another embodiment of the invention an approach was utilized wherein binary photoautotroph-heterotroph cultures were used to spatially separate the processes of photosynthesis and photosynthate conversion into useful products ( FIG. 1 ).
- This in particular allows for the cultivation of readily-engineered heterotrophic strains for major biotechnology products using CO 2 and light instead commodities such as glucose, sucrose, or other agricultural or synthetic feedstocks.
- phototrophic oxygenic microorganisms that have been genetically or otherwise modified to produce and excrete a soluble organic compound(s) such as glycerol, lactate, pyruvate, acetate or any other organic compound that can be used by heterotrophic organism as the sole source of carbon and energy to grow and/or synthesize a product of interest.
- O 2 as well as carbon and energy source(s) for the heterotrophic organism will be uniformly produced in the liquid culture by phototrophic component of a binary culture, ensuring absence of shock by periodic excess or deficiency of nutrients and oxidants that conventional types of cultivation usually suffer.
- An aerobic or facultative anaerobic heterotrophic organism will consume O 2 produced as the result of photosynthesis, thus dramatically decreasing mass transfer energy expenditure and simplifying photobioreactor design and operation.
- Additional CO 2 produced by heterotroph will be again recycled by phototroph thus ensuring efficient utilization of carbon source(s).
- the binary culture approach also allows the utilization of various carbon sources ranging from CO 2 from power plants to municipal wastes. Because of the robustness of the phototroph-heterotroph association, the binary cultivation provides a novel platform for the development of consolidated bio-processing methods leading to production of carbon-neutral products at reduced economic and energetic costs.
- a New Brunswick Scientific BioFlo 3000 bioreactor with a custom 7.5 Liter vessel was used with a 5.5 Liter working volume.
- the pH was held at 7.4 with 2 M NaOH and 2 M HCl when necessary.
- the temperature for all experiments was 30° C.
- the high agitation experiments were done with 250 rpm, and the low agitation with 50 rpm. Sparging was done with pure air at 2.8 L/min (optimal condition) for the Shewanella cultures, with 99% N 2 and 1% CO 2 for Synechococcus sp.
- This photobioreactor 10 includes a vessel 12 comprised of an outer cylinder 14 made of black anodized aluminum and an inner cylinder 16 made from borosilicate glass.
- the total height of the vessel 12 in this embodiment was set out at 19.5 inches.
- the inner diameter was 5.274 inches.
- the outer diameter (at the flange) was 6.5 inches. While these dimensions were provided in this instance, it is to be distinctly understood that the invention is not limited thereto. However, in the present embodiment it was found that a higher aspect ratio of height to diameter was more effective for enhancing growth within the chamber due to the enhanced ability to allow light to penetrate into the center of the chamber.
- the bioreactor in this case had no additional ports placed upon the vessel 12 .
- the anodized aluminum shell 14 acts as a mounting point for light emitting diodes (LED) 18 as a heat sink, and as a light shield for ambient light.
- Thehack anodized coating of the aluminum absorbs reflected light and acts as an efficient heat-transfer material.
- a door 20 on the aluminum shell permits the user to view the inner workings of the photobioreactor 10 as needed.
- Rubber fasteners 22 securely close the door during normal operation to prevent light from entering or exiting the photobioreactor.
- Foam rubber seals 24 and rubber gaskets 26 are used on mating surfaces of the photobioreactor 10 to keep it light-tight.
- the headplate 28 for the photobioreactor is configured to allow probes (to monitor various factors such as pH, DO, level/foaming, and temperature) 30 , tubing 32 and an impeller shaft 34 for an agitator to reach the bottom of the vessel. (In this particular example an additional port was added for a CO 2 probe for testing purposes but such an addition is not required to allow for proper functioning of the photobioreactor.
- Electronic circuitry 38 directs power from a power supply 40 to the bioreactor 10 .
- a custom control software called Biolume (developed by Arthur Hopkins of PNNL) interacts with sensors 40 within photobioreactor and the interactive electronic circuitry to regulate the desired levels of light provided to the photobioreactor.
- the software controls maintains a specified light pattern by coordinating the flow of electricity to light sources (LEDs) based upon input from sensors 40 and a preselected program included within the device. This allows for light intensities to be varied over periods of time on as to provide lighting cycles that best enhance the growth for materials that are included therein.
- light intensity and characteristics are adjusted over time to replicate the diurnal fluctuation in light intensity which occurs in natural environments. Depending upon the individual needs of the user any of a variety of characteristics may be varied to achieve the desired results. This alterations and fluctuation may include changes in intensity, wavelength, frequency, composition and other features as desired by a particular user.
- a self calibrating program enables the light output to be appropriately moderated so as to ensure that an appropriate desired result is obtained. For example, in one embodiment of the invention input from various sensors is compared to a desired output from a table of light intensities that outline a specified pattern. If the received information is not aligned with the targeted amount, modification is made so as to bring the light intensity within the system in line with the targeted values.
- This feedback loop with a self-calibrating feature also allows the electrical flow into the LEDs to be altered so as to compensate for wear and degradation of the LEDs over time.
- the light control system was tuned to deliver an identical current to each LED in the system.
- lighting for the photobioreactor is provided by 16 extremely high output illuminators at 630 nm, and 16 at 680 nm.
- Each illuminator contains 60 high efficiency InGaAlP diode chips (light emitting diodes) made by Marubeni Corporation (Japan).
- a total of 1,920 light emitting diodes are mounted to the inner wall of the aluminum shell.
- Each high output illuminator was positioned to be equidistant to adjacent illuminators. The cone of light emitted from each illuminator overlaps with adjacent illuminators to provide even lighting to the reactor surface.
- the wavelengths of the LEDs were modified so that half we e blue and half were red, the integration of the light control module with the sensors in that application allowed for optimal growth conditions to be established and provided.
- the light control software Biolume allows Proportional Integral Derivative (PID) control of incident or transmitted light intensity.
- PID Proportional Integral Derivative
- the lighting can respond to a manual set point, or automatically adjust power levels to the LEDs to maintain a set point.
- light intensity measurements are made by cycling power to just the 630 nm LEDs, then to the 680 nm LEDs, then to both 630 and 680 nm LEDs.
- Sampling duration and frequency can be adjusted by the user of BioLume. Control of light-intensity can be done from a large table of values allowing the user to reproduce “real outdoor” lighting intensities and timing or create custom lighting schemes. Lights can be turned on, off, or intensity corrected at any time. In the described application a 1 minute light sampling interval (with about 3 seconds total for light measurements) was demonstrated. PID control of light intensities allows the system to predict the future based on the pas behavior.
- the six quantum sensors were calibrated using a LI-250A light Meter Quantum/Radiometer/Photometer made by LI-COR Biosciences.
- the reference light sensor was randomly moved along the inner glass wall of the photobioreactor for 15 seconds while the light meter averaged the light intensities seen during the 15 seconds.
- the 15 second moving-average light intensities were plotted against the signal produced by the light sensors at varying light intensities to produce a correlation plot.
- the least-squares best-fit equation was used to translate sensor-signal to light-intensity in ⁇ Einsteins/m 2 /sec.
- A+ medium was used to support organism growth for these experiments and supplemented with lactate as needed.
- A+ medium contained the following components (concentrations in mM): Tris (8.255 mM). Na 2 EDTA (0.0806 mM), KCl (8.0483 mM), CaCl 2 *2H 2 O ( 1.8120 mM), MgSO 4*7.
- H 2 O (20.2860 mM), KH 2 PO 4 (0.3670 mM) NaCl (308.0082 mM) NH 4 Cl (11.7540 mM-20.0 mM), Vitamin B12 (2.95 ⁇ 10 ⁇ 6 mM), H 3 BO 3 (0.5547 mM), MnCl 2 *4H 2 O (0.0218 mM), ZnCl 2 (0.0023 mM), CoCl 2 *6H 2 O (0.00018 mM), Na 2 MoO 4 *2H 2 O (0.00018 mM), CuSO 4 *5H 2 O (0.000012 mM).
- the pure Shewanella cultures were given 45 mM lactate and consumed at most 27 mM of the lactate when grown to the highest density.
- Shewanella W3-18-1 was grown in a 5.5 L batch at 250 rpm with 2.8 L/min sparging with air. Most of the culture was removed and replaced with fresh medium before growing the cells to the same final optical density. Reproducibility of the duplicate batches was shown before decreasing the agitation speed to 50 rpm. Growth rates and biomass yields were analyzed at the lower agitation speed.
- Synechococcus sp. PCC 7002 was grown in batch phase for three replicate batches at 250 rpm and 2.8 L/min sparging rate with 99% N 2 and 1% CO 2 . Reproducibility of replicate cultures was evaluated and then the agitation. was decreased to 50 rpm for replicate batches. The effects of 50 rpm agitation on growth-rate and biomass yield were evaluated and then the culture was allowed to grow to late log-phase for replicate hatches using 0.5 L/min bubbling. The late log-phase batches were done to show that all other samples were considered mid-log phase. The biomass yield and growth-rate were determined and then the culture was diluted with fresh medium in preparation for co-culture growth with Shewanella W3-18-1. Lactate was added to the medium to act as a source of carbon and energy for Shewanella and carbon for Synechococcus.
- Shewanella W3-18-1 and Synechococcus 7002 were grown together in batch-phase. Shewanella W3-18-1 used lactate to produce CO 2 needed by Synechococcus 7002. In turn, Synechococcus produced O 2 needed by Shewanella W3-18-1 to oxidize lactate. After diluting the culture with fresh medium, the dissolved CO 2 concentration in the medium was very low as measured by a dissolved CO 2 probe. To speed up growth of the co-culture on the 1 st batch after inoculation of both species, a small amount of sodium bicarbonate was added (about 0.5 mM). Subsequent batches of co-culture did not require supplementation with bicarbonate.
- the maximum growth-rate of pure Synechococcus was nearly the same as the co-culture of Synechococcus and Shewanella. This is because the co-culture is rate-limited by the growth of Synechococcus as the result of both strains tight metabolic coupling.
- the lag phase of growth of Synechococcus was longer than the lag phase for the co-culture (see FIG. 3 ), and Shewanella W3-18-1 grew faster than the co-culture or pure Synechococcus (see FIG. 4 ) as cyanobacteria generally has lower growth rates than aerobically grown heterotrophs under optimal conditions.
- Shewanella did not use lactate as efficiently as the co-culture (see FIG. 5 a ).
- Shewanella grew much better than expected at lower agitation (50 rpm). Again, tins is due to the unusually high aspect ratio of the used biorector.
- the 50 rpm culture did become O 2 -limited as was indicated by the red color of the culture due to the production and extracellular localization of cytochromes and accumulation of acetate.
- the biomass yield of the 50 rpm culture of Shewanella was much lower than the 250 rpm culture by ash-free dry weight. Shewanella produced about 0.8 g/L of ash-free dry weight in a 12 hour growth period with 250 rpm (see FIG. 3 ). This biomass concentration exceeded what was produced by the co-culture or Synechococcus in 30 hours ( FIG. 3 )
- the co-culture of Shewanella and Synechococcus grew at about the same maximum growth rate as pure Synechococcus (on an ash-free dry weight basis).
- the co-culture used light 2.5 times more effectively than the pure Synechococcus culture (see FIG. 6 ).
- the biomass yield as ash-free dry weight for a given amount of light was 2.5 times as high for the co-culture as the pure Synechococcus culture.
- the growth rate of the coculture was limited by growth rate of Synechococcus as the result of tight metabolic coupling of two species.
- the packed cell volume analysis showed that a co-culture of Shewanella and Synechococcus had a stable ratio of about 1:1 by cell volume.
- the amount of Synechococcus was always slightly higher that Shewanella, with Synechococcus to Shewanella ratios from 1.03:1 to 1.3:1.
- a packed cell volume sample that was 43.45% (+/ ⁇ 0.76) Shewanella and 56.55% (+/ ⁇ 0.76) Synechococcus by volume was shown to have a percen by mass of 43.51% Shewanella and 56.49% Synechococcus. This means that the density of the cell pellets in g/L is equal for Synechococcus and Shewanella.
- Biomass yield of co-culture was 6 times higher than yield of pure Shewanella produced in controlled aerated bioreactor (see FIG. 3 a ) and was 40 g of ash-free dry weight/mol of lactate carbon.
- Toward the end of active growth of binary culture most of the cells precipitated and formed a pellet on the bottom of the Roux bottle. This precipitation can be used as the way to concentrate biomass in the process of growth by proper cultivation chambers design without necessity to centrifuge whole fermentation broth, therefore potentially leading to significant additional energy savings on downstream processing.
- Roux bottles were filled with 960 ml of media. These experiments yielded no growth for pure Synechococcus and Shewanella cultures; result for binary culture was comparable with those obtained in photobioreactor experiments.
- the overall binary culture growth limitation with O 2 caused by higher Shewanella growth rate and incomplete lactate oxidation can be overcome as follow.
- (1) Our previous experiments with Shewanella showed that deletion of ackA gene encoding for acetate kinase abolished incomplete lactate oxidation and acetate excretion under O 2 limitation. All lactate was converted into CO 2 and biomass, their ratio depended on the level of O 2 supply.
- the graph of electricity used (KWhrs) for illumination, sparging, and agitation per gram of ash-free dry weight shows that Synechococcus required the greatest investment for the smallest return; whereas, Shewanella produced the greatest amount of biomass for the smallest input of electricity. This is because Shewanella did not require illumination, which was one of the costliest expenditures for electricity in this experiment. Use of sunlight will significantly reduce energy expenditures on binary culture illumination as well as optimization of lighting conditions and overall process design.
- the amount of electricity used for agitation and sparging per unit biomass (grams of ash-free dry weight) was highest for pure Synechococcus and lowest for the co-culture ⁇ 57 lower; (see FIG. 7 ).
- the proposed approach accomplishes CO 2 delivery/O 2 removal simultaneously with the process of biomass/product biosynthesis.
- This method of cultivation does not need sparging of a closed bioreactor with air or other gas mixture/vigorous mixing to deliver CO 2 /remove produced O 2 from liquid medium.
- This improvement leads to significant savings on energy consumption to accomplish these tasks.
- It also allows designing photobioreactors of any desired shape to ensure optimal illumination and space usage.
- Use of highly reduced organic compounds for example wasted fats
- waste materials for example biosludge produced from sewage water treatment plants or starch solutions generated as the result of industrial food processing that are typically wasted. Some of these materials may also be a cheap source of other nutrients such as N, P, and S sources.
- Other examples include microalgae: e.g. Haematococcus pluvialis, Clamydomonas etc., as well as various genetically modified strains.
- Any heterotrophic obligatively aerobic or facultative anaerobic microorganism, belonging to archaea bacteria, or eukaryotes that are able to oxidize organic compounds to CO 2 using O 2 as electron acceptor, and use organic compounds for growth and/or biosynthesis of product of interest may also be utilized examples of such materials include: E. coli, Corynebacterium glutamicum, Saccharomyces cerevisiae and the like.
- FIG. 2B Another embodiment of a photobioreactor is shown in FIG. 2B .
- the photobioreactor has several alterations and modifications over the design previously discussed.
- this new design is made through an extruded process which allows for a more cost effective design and allows for enhanced efficiencies related to both cost and function.
- this new design also includes integral heat sinks and ports for making the various lighting and harnesses for the lighting.
- This new design also offers space for twice as many LEDs as the previous design because less space is used for the round heat-sinks. Cooling fans are automatically controlled by a temperature dependant programmable logic controller to increase the longevity of LEDs.
- the present invention core forms an economically attractive way to create a variety of biobased products including but not limited to biomass; H 2 ; organic fertilizers; biodiesel and biocrude oil; ethanol; amino acids; vitamins; antibiotics; polysaccharides and fine chemicals, for example D- and L-lactate as polylactates precursor.
- biomass H 2
- organic fertilizers biodiesel and biocrude oil
- ethanol amino acids
- vitamins antibiotics
- polysaccharides and fine chemicals for example D- and L-lactate as polylactates precursor.
- D- and L-lactate as polylactates precursor.
- These methodolgies may also be utilized in a variety of other different ways including but not limited to biosludge and other organic wastes utilization in economically sound way.
- other embodiments may provide other possibilities and potentials such as the ability to regulate CO 2 production/O 2 removal or CO 2 consumption/O 2 removal at desired rates.
- wastewater generated from a food processing facility was treated with a binary culture in a co-cultivation approach to simultaneously remove of C/N/P nutrients and produce a high-value biomass.
- This technology has the potential to significantly reduce operating expenses in waste treatment while also generating revenue through high-value products.
- starch-containing wastewater was passed through a co-cultivation of a green alga ( Haematococcus pluvialis ) and a heterotrophic bacterium ( Bacillus subtilis ).
- Bacillus subtilis degraded the organic carbon (starch) present in the in wastewater to CO 2 and low molecular organic acids (e.g., acetate, lactate).
- the resulting products i.e., CO 2 , organic acids a d other nutrient (N/P) are subsequently used by Haematococcus pluvialis to synthesize biomass which contains high-value carotenoid product (astaxanthin).
- a closed co-culture technique was utilized to produce value-added commodities by co-culturing oxygenic phototrophic and heterotrophic microorganisms.
- a methane-oxidizing bacteria MOB
- PCC 7002 were co-cultured in illuminated batches containing mineral medium and lethane (CH 4 ) as the sole source of carbon for both strains. Since MOB cannot grow by oxidizing CH 4 without O 2 and cyanobacteria cannot utilize CH 4 as carbon source, the growth of the binary culture occurred due to tight metabolic coupling of these bacteria. Synechococcus sp.
- PCC 7002 consumed CO 2 produced by MOB and generated O 2 , which was consumed by M. alcaliphilum 20Z and resulted in CO 2 production CH 4 is the most reduced organic compound and therefore to be used for biomass synthesis it typically has to be oxidized by O 2 to the level of formaldehyde. Since MOB spend more than 50% of CH 4 carbon for biomass synthesis, providing additional CO 2 would be advantageous to balance co-culture growth and maintain growth rate at maximum level. To prove this, batches of pure M. alcaliphilum 20Z and binary M. alcaliphilum 20Z- Synechococcus PCC7002 cultures were grown using LED-illuminated photobioreactor described above. In addition the enclosed system was modified to allow for gas consumption measurements. We found that M.
- alcaliphilum 20Z and Synechococcus PCC7002 can be successfully grown in a co-culture at pH 8.3 with recycling of headspace gases starting with pure methane (see FIG.11 ).
- supplying the co-culture with pure CH 4 leads to growth limitation with O 2 due to CH 4 and CO 2 consumption stoichiometry.
- the M. alcaliphilum 20Z- Synechococcus PCC7002 co-culture grew slower than the pure M. alcaliphilum 20Z and produced less biomass.
- bicarbonate addition substantially improves the growth of M. aicaliphilum 20Z- Synechococcus PCC7002 co-culture.
- the co-culture, grown on CH 4 the presence of bicarbonate generated 3.75-fold more biomass than axenic M. alcaliphilum 20Z grown on a 1:1 mix of CH 4 /air with the same agitation and gas flow rate.
- Application of bicarbonate also significantly improved the efficiency of methane assimilation during the headspace recycling.
- Bicarbonate additions to the bioreactor confirmed its positive effect on the co-culture growth at the same level of mass-transfer as the exhaustion of bicarbonate in the medium led to almost immediate growth rate decrease.
- FIG. 11 shows a growth chart of M.
- alcaliphilum 20Z and Synechococcus PCC7002 co-culture growth in LED-PBR were grown in A+ mineral medium at agitation 150 rpm, pH 8.3, and gas flow rate at 0.127 L/L/min. Light control was set to keep transmitted light at 10 ⁇ Einsteins/m 2 /sec.
- this application of binary cultivation eliminated the necessity to use highly explosive CH 4 /air mixes by substitution of O 2 with CO 2 or bicarbonate.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Botany (AREA)
- Physiology (AREA)
- Clinical Laboratory Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.
Description
- This application claims priority from U.S. patent application Ser. No. 12/858,338 filed 17 Aug. 2010, which is a continuation in part of U.S. patent application Ser. No. 12/555,631 filed 8 Sep. 2009, which incorporates and claims priority to provisional patent application Nos. 61/095,413 filed 9 Sep. 2008 and 61/099,380 filed 23 Sep. 2008. The present application also claims priority from Provisional Patent Application 61/467,608 filed 25 Mar., 2011.
- This invention was made with Government support under Contract DE-AC0576RLO1830 awarded by the U.S. Department of Energy. The Government has certain rights in the invention.
- Rising fuel prices and global climate change concerns have revived the interest in renewable sources of energy. Using solar energy grow photosynthetic microorganisms is one of the most attractive ways to produce transportation fuels. Successful implementation of biodiesel via seed crops is one example of employing plant-based photosynthesis for fuel production. However, recent assessments of crop-based fuel economy showed that it can lead to food stock deficiency and drive lifecycle emissions of greenhouse gases up through increased land usage. Utilization of photosynthetic microorganisms for primary biomass production has many advantages over growing crops. In particular, arid regions of the western U.S., for example, could be used for large-scale production excluding the competition with food-producing agriculture.
- Cultivation of photoautotrophic microorganisms for metabolite and/or biomass production can be accomplished in various types of cultivation systems including open ponds and enclosed bioreactors. Each system has various advantages and limitations Open ponds, for example, are designed to utilize natural sunlight while most of the enclosed bioreactor systems do require artificial illumination which results in additional energy expenditures. Open pond systems, however, are more prone to fouling y external contamination and are not suited to grow genetically modified organisms. In contrast, enclosed bioreactors provide highly controlled conditions, protection against external contamination, and higher growth rates and biomass/products yields while allowing use of genetically modified strains. Cultivation of photosynthetic organisms is also associated with several general problems which arise from the necessity to deliver CO2 into liquid medium and remove excess O2 produced as a result of photosynthesis in order to maintain desired growth conditions. The current practice is to continuously or periodically purge the system which adds significantly to the operating costs and results in frequent changes of cultivation conditions and reduction in efficiency. Removal of O2 by most other known methods such as by chemical catalysis is typically prohibitively costly. What is needed therefore is a solution that enables continuous operation under controlled conditions such as within an enclosed bioreactor without the need for venting as is required by the prior art. The present invention meets this need.
- The present invention is a method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors. The principal features of the present invention include a method wherein a culture consisting of two microorganisms (binary culture), is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. However, a variety of other aspects including the particular systems and devices which enable the method of the present invention to be performed are also described and disclosed herein.
- In some embodiments the binary culture includes at least one oxygenic photoautotroph and at least one aerobic or facultative anaerobic chemoheterotroph. In other embodiments the pairings may include any set of organisms appropriately combined so that the rates of the growth of the two strains of organisms are maintained in an appropriate ha lance and the internal environment is maintained in a desired condition. This includes but is not limited to pairings of various strains of bacteria, algae, fungi and plant species and combinations thereof. Examples could include but are not limited to pairings of facultative aerobic and anaerobic organisms to produce a self-sustaining oxygen/carbon dioxide balance, as well as other combinations wherein the two organisms produce desired or required nutrients or growth enhancing materials.
- In some embodiments the binary cultures are incubated in a closed chamber and artificially illuminated by variously placed light emitting diodes which are controlled by a control mechanism based upon interaction with a plurality of sensors within the chamber. In other applications the present invention may utilize natural sunlight or ambient light or combinations of ambient and directed light in order to obtain a desired effect. In one embodiment of the invention, the system is completely artificially lighted and the emissions from the light emitting sources are coordinated by interaction between a these light emitting sources preferably (light emitting diodes) having selected characteristics such as wavelength, frequency, intensity or other features and at least one sensor (preferably a plurality of sensors are utilized) that is located within the Chamber by a computer program. In addition to the maintaining of optimal lighting conditions within the chamber, the temperature of the internal contents of the chamber can also be variously monitored and controlled to provide an optimal temperature for growth. A heat sink enables excess or unwanted heat to be removed from the chamber, while the light inside the chamber typically provides the heating means for raising the internal temperature to a desired value. In one embodiment of the invention, the heat sink is an integrated part of the cylindrical chamber, in other embodiments additional heat sinks may be attached to the cylinder in order to obtain a desired result. Preferably a cylinder having a height to width aspect ratio of at least 2 is considered optimal in such circumstances.
- In one embodiment of the invention the binary culture includes at least one photoautotroph and at least one chemoheterotroph. In one example this may be selected from any of a variety species including but not limited to Shewanella species, Cyanothece species, Synechococcus species and other species appropriate for the particular necessities of a user. One of the advantages that the present invention provides is that unlike previously used methods for O2 removal/CO2 delivery, this method of cultivation does not need purging of a closed bioreactor with a defined gas phase. In contrast to most prior art practices for O2 removal/CO2 delivery required for microalgae cultivation, the proposed approach accomplishes these tasks simultaneously by inclusion of a compatible heterotrophic microorganism. This method of cultivation does not require sparging of a closed bioreactor with air or other gas mixture/vigorous mixing to deliver CO2/remove produced O2 from liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape to ensure optimal photoautotrophic culture illumination and space usage which will ultimately result in designing more efficient processes with substantial increases in biomass production and/or product generation. Additionally, use of highly reduced organic compounds will help to consume externally added CO2 or a salt of carbonic acid without necessity to remove O2.
- The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material. For example, biosludge produced from sewage water treatment plants or glycerol, a major dead-end by-product in biodiesel production can be utilized. in addition the present invention can be utilized for the production of microalgae biomass as feedstock for high-quality biofuels (biodiesel and biocrude) that require a minimum of post-production processing. The present invention also enables the design of light-driven processes for bio-H2 production and the production of organic fertilizers, animal feed, and other commodities including but not limited to vitamins, amino acids, antibiotics, or enzymes. The present invention solves the problems associated with the prior art by utilizing binary cultures of paired organism to produce self-sustaining interdependencies that foster the continued growth and development of the organism producing the desired biomass material within the closed system wherein the growth environment can be carefully monitored and maintained. Additionally, more than two cultures may be grown together as necessary. Such an approach provides a cost-efficient way to eliminate problems associated with the prior art methodologies.
- In one embodiment of the invention the paired binary cultures are configured to provide CO2 delivery and O2 removal while creating high-value products by utilizing sun light artificial light or their combination and organic matter (waste or renewables). In one exemplary embodiment a photoautotrophic organism such as a microalga or a cyanobacterium is paired with an aerobic or facultative anaerobic heterotrophic bacterium. The phototrophic oxygenic microorganisms can produce biofuels at a much higher productivity than land plants and can be cultivated in aquatic environments, including seawater, so as to not compete for resources with conventional agriculture. In most prior art systems high costs associated with increasing the mass transfer and by-product (O2) removal limit its use, however in the present embodiment these materials are consumed by an aerobic or a facultative anaerobic heterotrophic bacteria and the desired level of homeostasis within the closed chamber is maintained. This method can be employed by a variety of systems wherein binary cultures of paired organisms cooperatively co-exist to maintain a desired growth environment depending upon the particular needs and necessities of a user.
- The purpose of the foregoing abstract is to enable the United States Patent and Trademark Office and the public generally, especially the scientists, engineers, and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by he claims, nor is it intended to be limiting as to the scope of the invention in any way.
- Various advantages and novel features of the present invention are described herein and ill become further readily apparent to those skilled in this art from the following detailed description. In the preceding and following descriptions We have shown and described only the preferred embodiment of the invention, by way of illustration of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of modification in various respects without departing from the invention. Accordingly, the drawings and description of the preferred embodiment set forth hereafter are to be regarded as illustrative in nature, and not as restrictive.
-
FIG. 1 is a schematic view of the system and process of the present invention. -
FIG. 2 a is an exemplary view of one embodiment of a reactor system of the present invention. -
FIG. 2 b is an exemplary view of another embodiment of the reactor system of the present invention. -
FIGS. 3 and 4 are charts showing the independent growth phases of Synechococcus and Shewanella examples as compared to the binary culture. -
FIGS. 5 a and 5 b shows the efficiency of the use of lactate in the various tested cultures. -
FIG. 6 shows the results of light testing of the Synechococcus culture. -
FIGS. 7 and 8 show the quantity of electricity used for agitation and gas sparging per unit biomass. -
FIGS. 9 and 10 show the results of astaxanthin production and nutrient reduction in one example of the invention. -
FIG. 11 shows the growth of a M. alcaliphilum and Synechococcus co-culture growth. - The following description includes various preferred mode of various embodiments of the present invention. It will be dear from this description of the invention that the invention is not limited to these illustrated embodiments but that the invention also includes a variety of modifications and embodiments thereto. Therefore, the present description should be seen as illustrative and not limiting. While the invention is susceptible of various modifications and alternative constructions, it should be understood, that there is no intention to limit the invention to the specific form disclosed, but, on the contrary, the invention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention as defined in the claims.
- As a proof of principle, we have used a binary culture of a photoautotrophic oxygenic cyanobacterium and a heterotrophic facultative anaerobic bacterium and cultivated them in a non-aerated photobioreactor with addition of organic carbon. During this process, the binary culture produced higher amounts of microalgal biomass without gas sparging (to remove O2 produced during photosynthesis) or additional CO2 injections While specific examples are described hereafter and provided herein it is to be distinctly understood that the invention is not limited to these described configurations but that a variety of additional configurations and embodiments may be variously and alternatively configured according to the particular needs and necessities of the user. These binary culture systems of phototrophic organisms allow for efficient design and cost effective production processes for directing carbon and nutrients flow from CO2 and waste towards of biofuels: lipids, hydrocarbons and other preselected materials. The examples and descriptions provided herein should therefore be seen as illustrative in nature and not limiting.
- To prove this concept various experiments were performed. In one embodiment of the invention a binary culture of a photoautotrophic organism Cyanothece sp. strain ATCC 51142 was cultured hi association with a facultative anaerobic heterotrophic bacterium Shewanella sp. strain W3-18-1 on defined mineral medium which was not supplemented with CO2 or bicarbonate salts as source of carbon. The mineral medium was supplemented with lactate as source of carbon and reducing equivalents to remove the O2. During this process, both organisms in this binary culture were dependent on the metabolism of the other: Shewanella sp. W3-18-consumed lactate and O2 and produced CO2 and Cyanothece sp. ATCC 51142 incorporated the CO2 into the biomass and produced O2. During this process both cultures in the photobioreactor grew without air sparging or addition of supplemental CO2. In the presence of Shewanella sp. W3-18-1, Cyanothece sp. ATCC 51142 was able to grow at higher rates when compared to single-organism culture under identical conditions with sparging with CO2 and N2.
- In another embodiment of the invention an approach was utilized wherein binary photoautotroph-heterotroph cultures were used to spatially separate the processes of photosynthesis and photosynthate conversion into useful products (
FIG. 1 ). This in particular allows for the cultivation of readily-engineered heterotrophic strains for major biotechnology products using CO2 and light instead commodities such as glucose, sucrose, or other agricultural or synthetic feedstocks. Particularly, phototrophic oxygenic microorganisms that have been genetically or otherwise modified to produce and excrete a soluble organic compound(s) such as glycerol, lactate, pyruvate, acetate or any other organic compound that can be used by heterotrophic organism as the sole source of carbon and energy to grow and/or synthesize a product of interest. Moreover, O2 as well as carbon and energy source(s) for the heterotrophic organism will be uniformly produced in the liquid culture by phototrophic component of a binary culture, ensuring absence of shock by periodic excess or deficiency of nutrients and oxidants that conventional types of cultivation usually suffer. An aerobic or facultative anaerobic heterotrophic organism will consume O2 produced as the result of photosynthesis, thus dramatically decreasing mass transfer energy expenditure and simplifying photobioreactor design and operation. Additional CO2 produced by heterotroph will be again recycled by phototroph thus ensuring efficient utilization of carbon source(s). The binary culture approach also allows the utilization of various carbon sources ranging from CO2 from power plants to municipal wastes. Because of the robustness of the phototroph-heterotroph association, the binary cultivation provides a novel platform for the development of consolidated bio-processing methods leading to production of carbon-neutral products at reduced economic and energetic costs. - In one set of experiments one embodiment of the system, device and method of the present invention was compared against a prior art system, device and method. A description follows:
- Bioreactor:
- A New Brunswick Scientific BioFlo 3000 bioreactor with a custom 7.5 Liter vessel was used with a 5.5 Liter working volume. The pH was held at 7.4 with 2 M NaOH and 2 M HCl when necessary. The temperature for all experiments was 30° C. The high agitation experiments were done with 250 rpm, and the low agitation with 50 rpm. Sparging was done with pure air at 2.8 L/min (optimal condition) for the Shewanella cultures, with 99% N2 and 1% CO2 for Synechococcus sp. PCC 7002 cultures, or with no bubbling for the Synechococcus 7002/Shewanella W3-18-1 co-cultures. Batches at 50 rpm agitation and 2.8 L/min aeration were also done with pure cultures of Synechococcus or Shewanella to show effects of low mass-transfer on a pure culture (suboptimal condition 1). Two batches at 50 rpm and 0.5 L/min aeration were done with Synechococcus (suboptimal condition 2).
- Photobioreactor:
- A custom photobioreactor enclosure (developed by Pacific Northwest National Laboratory and shown in
FIG. 2 ) was used for these experiments. Thisphotobioreactor 10 includes avessel 12 comprised of anouter cylinder 14 made of black anodized aluminum and aninner cylinder 16 made from borosilicate glass. The total height of thevessel 12 in this embodiment was set out at 19.5 inches. The inner diameter was 5.274 inches. The outer diameter (at the flange) was 6.5 inches. While these dimensions were provided in this instance, it is to be distinctly understood that the invention is not limited thereto. However, in the present embodiment it was found that a higher aspect ratio of height to diameter was more effective for enhancing growth within the chamber due to the enhanced ability to allow light to penetrate into the center of the chamber. The bioreactor in this case had no additional ports placed upon thevessel 12. The anodizedaluminum shell 14 acts as a mounting point for light emitting diodes (LED) 18 as a heat sink, and as a light shield for ambient light. The Hack anodized coating of the aluminum absorbs reflected light and acts as an efficient heat-transfer material. - A
door 20 on the aluminum shell permits the user to view the inner workings of thephotobioreactor 10 as needed.Rubber fasteners 22 securely close the door during normal operation to prevent light from entering or exiting the photobioreactor. Foam rubber seals 24 and rubber gaskets 26 are used on mating surfaces of thephotobioreactor 10 to keep it light-tight. Theheadplate 28 for the photobioreactor is configured to allow probes (to monitor various factors such as pH, DO, level/foaming, and temperature) 30,tubing 32 and animpeller shaft 34 for an agitator to reach the bottom of the vessel. (In this particular example an additional port was added for a CO2 probe for testing purposes but such an addition is not required to allow for proper functioning of the photobioreactor. Similarly an exhaust condenser was included on this embodiment of the application (for testing purposes). In other applicationsvarious heat sinks 36 may be added. This is the only photobioreactor design that combines a large working volume, thorough mixing in one common chamber, optimal light delivery, LED lighting, selectable wavelength light, real-time light-intensity measurement and control, modeling of real outdoor lighting patterns and intensities, shielding from ambient room light pH control, dissolved oxygen control, temperature control, level or foam control, gas mix control, off-gas monitoring, aseptic culturing conditions, and continuous-culture capability in one photobioreactor. This embodiment also provides various advantages in regulating mixed binary cultures to ensure that appropriate conditions are maintained to support desired rates of growth and preserve and foster desired growth and/or material conversions within said system. -
Electronic circuitry 38 directs power from apower supply 40 to thebioreactor 10. A custom control software called Biolume (developed by Derek Hopkins of PNNL) interacts withsensors 40 within photobioreactor and the interactive electronic circuitry to regulate the desired levels of light provided to the photobioreactor. For example in one embodiment of the invention the software controls maintains a specified light pattern by coordinating the flow of electricity to light sources (LEDs) based upon input fromsensors 40 and a preselected program included within the device. This allows for light intensities to be varied over periods of time on as to provide lighting cycles that best enhance the growth for materials that are included therein. For example, in one embodiment of the invention light intensity and characteristics are adjusted over time to replicate the diurnal fluctuation in light intensity which occurs in natural environments. Depending upon the individual needs of the user any of a variety of characteristics may be varied to achieve the desired results. This alterations and fluctuation may include changes in intensity, wavelength, frequency, composition and other features as desired by a particular user. - To ensure that appropriate lighting conditions are maintained input from he sensors are correlated against a desired standard and a self calibrating program enables the light output to be appropriately moderated so as to ensure that an appropriate desired result is obtained. For example, in one embodiment of the invention input from various sensors is compared to a desired output from a table of light intensities that outline a specified pattern. If the received information is not aligned with the targeted amount, modification is made so as to bring the light intensity within the system in line with the targeted values. This feedback loop with a self-calibrating feature also allows the electrical flow into the LEDs to be altered so as to compensate for wear and degradation of the LEDs over time.
- In the experiments described below, the light control system was tuned to deliver an identical current to each LED in the system. In the demonstrated embodiment lighting for the photobioreactor is provided by 16 extremely high output illuminators at 630 nm, and 16 at 680 nm. Each illuminator contains 60 high efficiency InGaAlP diode chips (light emitting diodes) made by Marubeni Corporation (Japan). A total of 1,920 light emitting diodes are mounted to the inner wall of the aluminum shell. Each high output illuminator was positioned to be equidistant to adjacent illuminators. The cone of light emitted from each illuminator overlaps with adjacent illuminators to provide even lighting to the reactor surface. In other applications the wavelengths of the LEDs were modified so that half we e blue and half were red, the integration of the light control module with the sensors in that application allowed for optimal growth conditions to be established and provided.
- Six LI-COR Biosciences quantum sensors (for measuring photosynthetically active radiation) were used to measure light intensities within the photobioreactor. Three sensors measured incident light, and three measured transmitted light. The incident light sensors were mounted facing the LEDs, while the transmitted light sensors were mounted facing the center of the bioreactor. The light control software Biolume allows Proportional Integral Derivative (PID) control of incident or transmitted light intensity. The lighting can respond to a manual set point, or automatically adjust power levels to the LEDs to maintain a set point. In one application light intensity measurements are made by cycling power to just the 630 nm LEDs, then to the 680 nm LEDs, then to both 630 and 680 nm LEDs. Sampling duration and frequency can be adjusted by the user of BioLume. Control of light-intensity can be done from a large table of values allowing the user to reproduce “real outdoor” lighting intensities and timing or create custom lighting schemes. Lights can be turned on, off, or intensity corrected at any time. In the described application a 1 minute light sampling interval (with about 3 seconds total for light measurements) was demonstrated. PID control of light intensities allows the system to predict the future based on the pas behavior.
- The six quantum sensors were calibrated using a LI-250A light Meter Quantum/Radiometer/Photometer made by LI-COR Biosciences. The reference light sensor was randomly moved along the inner glass wall of the photobioreactor for 15 seconds while the light meter averaged the light intensities seen during the 15 seconds. The 15 second moving-average light intensities were plotted against the signal produced by the light sensors at varying light intensities to produce a correlation plot. The least-squares best-fit equation was used to translate sensor-signal to light-intensity in μEinsteins/m2/sec.
- A+ medium was used to support organism growth for these experiments and supplemented with lactate as needed. A+ medium contained the following components (concentrations in mM): Tris (8.255 mM). Na2EDTA (0.0806 mM), KCl (8.0483 mM), CaCl2*2H2O (1.8120 mM), MgSO 4*7.H2O (20.2860 mM), KH2PO4 (0.3670 mM) NaCl (308.0082 mM) NH4Cl (11.7540 mM-20.0 mM), Vitamin B12 (2.95×10−6 mM), H3BO3 (0.5547 mM), MnCl2*4H2O (0.0218 mM), ZnCl2 (0.0023 mM), CoCl2*6H2O (0.00018 mM), Na2MoO4*2H2O (0.00018 mM), CuSO4*5H2O (0.000012 mM). The pure Shewanella cultures were given 45 mM lactate and consumed at most 27 mM of the lactate when grown to the highest density. Subsequent hatches of co-culture were given 25 mM lactate to avoid having excess lactate in the medium and were grown to lower biomass concentrations as measured by optical density. No lactate was added for batches of pure Synechococcus because preliminary experiments showed that lactate neither was consumed by Synechococcus nor affected its growth otherwise.
- Shewanella W3-18-1 was grown in a 5.5 L batch at 250 rpm with 2.8 L/min sparging with air. Most of the culture was removed and replaced with fresh medium before growing the cells to the same final optical density. Reproducibility of the duplicate batches was shown before decreasing the agitation speed to 50 rpm. Growth rates and biomass yields were analyzed at the lower agitation speed.
- Synechococcus sp. PCC 7002 was grown in batch phase for three replicate batches at 250 rpm and 2.8 L/min sparging rate with 99% N2 and 1% CO2. Reproducibility of replicate cultures was evaluated and then the agitation. was decreased to 50 rpm for replicate batches. The effects of 50 rpm agitation on growth-rate and biomass yield were evaluated and then the culture was allowed to grow to late log-phase for replicate hatches using 0.5 L/min bubbling. The late log-phase batches were done to show that all other samples were considered mid-log phase. The biomass yield and growth-rate were determined and then the culture was diluted with fresh medium in preparation for co-culture growth with Shewanella W3-18-1. Lactate was added to the medium to act as a source of carbon and energy for Shewanella and carbon for Synechococcus.
- Shewanella W3-18-1 and Synechococcus 7002 were grown together in batch-phase. Shewanella W3-18-1 used lactate to produce CO2 needed by Synechococcus 7002. In turn, Synechococcus produced O2 needed by Shewanella W3-18-1 to oxidize lactate. After diluting the culture with fresh medium, the dissolved CO2 concentration in the medium was very low as measured by a dissolved CO2 probe. To speed up growth of the co-culture on the 1st batch after inoculation of both species, a small amount of sodium bicarbonate was added (about 0.5 mM). Subsequent batches of co-culture did not require supplementation with bicarbonate.
- Synechococcus grew at the same rate at 250 rpm and at 50 rpm agitation as long as 2.8 L/min gas-addition was used. However, the growth-rate decreased slightly when 50 rpm agitation and only 0.5 L/min aeration was used. Mass transfer through the high-aspect-ratio reactor (described in paragraph 23) was much more efficient than would be expected of a lower aspect ratio reactor with a shorter path-length for gas-exchange. The impact of mass transfer Changes (agitation and aeration) have been much m re obvious in a lower aspect ratio reactor as our previous experiments with Shewanella showed. The maximum growth-rate of pure Synechococcus was nearly the same as the co-culture of Synechococcus and Shewanella. This is because the co-culture is rate-limited by the growth of Synechococcus as the result of both strains tight metabolic coupling. The lag phase of growth of Synechococcus was longer than the lag phase for the co-culture (see
FIG. 3 ), and Shewanella W3-18-1 grew faster than the co-culture or pure Synechococcus (seeFIG. 4 ) as cyanobacteria generally has lower growth rates than aerobically grown heterotrophs under optimal conditions. However, Shewanella did not use lactate as efficiently as the co-culture (seeFIG. 5 a). The co-culture usedlactate 25% more efficiently than Shewanella alone because Synechococcus used CO2 that was produced by pure Shewanella cultures. Analysis of culture filtrates for organic acids revealed that lactate was not used fully by coculture. Acetate and sometimes formate (products of partial lactate oxidation by Shewanella) were found in the coculture environment. When growth yield was calculated per mole of carbon used we found that co-culture converts carbon to biomass 3.2 times better than the pure Shewanella culture (seeFIG. 5 b). - Shewanella grew much better than expected at lower agitation (50 rpm). Again, tins is due to the unusually high aspect ratio of the used biorector. The 50 rpm culture did become O2-limited as was indicated by the red color of the culture due to the production and extracellular localization of cytochromes and accumulation of acetate. The biomass yield of the 50 rpm culture of Shewanella was much lower than the 250 rpm culture by ash-free dry weight. Shewanella produced about 0.8 g/L of ash-free dry weight in a 12 hour growth period with 250 rpm (see
FIG. 3 ). This biomass concentration exceeded what was produced by the co-culture or Synechococcus in 30 hours (FIG. 3 ) - The co-culture of Shewanella and Synechococcus grew at about the same maximum growth rate as pure Synechococcus (on an ash-free dry weight basis). However, the co-culture used light 2.5 times more effectively than the pure Synechococcus culture (see
FIG. 6 ). In other words, the biomass yield as ash-free dry weight for a given amount of light was 2.5 times as high for the co-culture as the pure Synechococcus culture. Obviously, the growth rate of the coculture was limited by growth rate of Synechococcus as the result of tight metabolic coupling of two species. - The packed cell volume analysis showed that a co-culture of Shewanella and Synechococcus had a stable ratio of about 1:1 by cell volume. The amount of Synechococcus was always slightly higher that Shewanella, with Synechococcus to Shewanella ratios from 1.03:1 to 1.3:1. A packed cell volume sample that was 43.45% (+/−0.76) Shewanella and 56.55% (+/−0.76)Synechococcus by volume was shown to have a percen by mass of 43.51% Shewanella and 56.49% Synechococcus. This means that the density of the cell pellets in g/L is equal for Synechococcus and Shewanella. We can therefore relate the packed cell volume analysis directly to cell mass (ash free dry weight) by multiplying the fractional-share of the cell-volume by the combined ash-free dry weight.
- The presence of products of incomplete lactate oxidation described above was the consequence of Shewanella growing faster than Synechococcus and therefore it exhausted O2 faster than Synechococcus could produce it. As the result, Shewanella growth was limited b O2. Under O2 limitation Shewanella is known to convert part of lactate into acetate and additionally can accumulate some formate; both these compounds cannot be used by Synechococcus, therefore decreasing its growth and O2 production rate. Hence, the process may become self-fading unless some external O2 or CO2/bicarbonate is added. This conclusion is supported by the following experiments. Uncontrolled batches of Shewanella, Synechococcus, and binary co-cultures of these bacteria were grown at room temperature (23-24° C.) in sterile Roux bottles (total volume 1 L) without gas sparging and mixing of cultural liquid. Bottles were illuminated with cool white light at 55 μEinsteins/m2/sec, in the first set of experiments 0.6 L of A+ medium (supplemented with 9 mM lactate in case of pure Shewanella or binary cultures) was added, therefore leaving 0.4 l of air present in the headspace. Both pure cultures did not produce significant growth for more than 250 hours, whereas binary culture fully used lactate for 120 hours. Biomass yield of co-culture was 6 times higher than yield of pure Shewanella produced in controlled aerated bioreactor (see
FIG. 3 a) and was 40 g of ash-free dry weight/mol of lactate carbon. Toward the end of active growth of binary culture most of the cells precipitated and formed a pellet on the bottom of the Roux bottle. This precipitation can be used as the way to concentrate biomass in the process of growth by proper cultivation chambers design without necessity to centrifuge whole fermentation broth, therefore potentially leading to significant additional energy savings on downstream processing. Additionally, packed cell volume analysis showed that co-culture of Synechococcus and Shewanella grown with additional O2 influx from the bottle headspace had a ratio 5:1 by cell volume, which means that Synechococcus made 5 times more biomass per lactate used that it did in binary culture bioreactor runs without external O2 influx. - In the second set of experiments the Roux bottles were filled with 960 ml of media. These experiments yielded no growth for pure Synechococcus and Shewanella cultures; result for binary culture was comparable with those obtained in photobioreactor experiments. The overall binary culture growth limitation with O2 caused by higher Shewanella growth rate and incomplete lactate oxidation can be overcome as follow. (1) Our previous experiments with Shewanella showed that deletion of ackA gene encoding for acetate kinase abolished incomplete lactate oxidation and acetate excretion under O2 limitation. All lactate was converted into CO2 and biomass, their ratio depended on the level of O2 supply. (2) Alternatively, addition of CO2 or bicarbonate will enhance specific rate of O2 production by cyanobacteria in the initial stage of cultivation and as the result increase robustness of binary culture and final biomass production, yield, and degree of organic carbon source assimilation by the binary culture.
- The graph of electricity used (KWhrs) for illumination, sparging, and agitation per gram of ash-free dry weight (see
FIG. 6 ) shows that Synechococcus required the greatest investment for the smallest return; whereas, Shewanella produced the greatest amount of biomass for the smallest input of electricity. This is because Shewanella did not require illumination, which was one of the costliest expenditures for electricity in this experiment. Use of sunlight will significantly reduce energy expenditures on binary culture illumination as well as optimization of lighting conditions and overall process design. The amount of electricity used for agitation and sparging per unit biomass (grams of ash-free dry weight) was highest for pure Synechococcus and lowest for the co-culture {57 lower; (seeFIG. 7 ). It should be noted that experiments conducted in Roux bottles used neither sparging nor mixing therefore potentially driving energy expenditures for these purposes almost to nothing. Since Shewanella required both bubbling and agitation, it required 7 times more electricity per unit biomass as the co-culture. Thus, binary cultures not only provide advantage in relation to efficiency because venting or sparging is no longer needed. There are also substantial cost improvements because there is no need for aerating the mixtures and off-gas purification, the last absolutely necessary in the industrial environments. - Unlike other methods described in the prior art the proposed approach accomplishes CO2 delivery/O2 removal simultaneously with the process of biomass/product biosynthesis. This method of cultivation does not need sparging of a closed bioreactor with air or other gas mixture/vigorous mixing to deliver CO2/remove produced O2 from liquid medium. This improvement leads to significant savings on energy consumption to accomplish these tasks. It also allows designing photobioreactors of any desired shape to ensure optimal illumination and space usage. Use of highly reduced organic compounds (for example wasted fats) in some cases will help to consume externally added CO2 or bicarbonate without necessity to remove O2 As source of organic matter many types of waste materials can be used., for example biosludge produced from sewage water treatment plants or starch solutions generated as the result of industrial food processing that are typically wasted. Some of these materials may also be a cheap source of other nutrients such as N, P, and S sources.
- In addition to the organisms previously described, a variety of other organism pairings are envisioned. These include pairs of Synechococcus sp. PCC6038+ Shewanella oneidensis MR-1 and Cyanothece ATCC 51142+ Shewanella sp. W3-18-1. Other possible candidates from phototrophic side include microorganisms that are able to grow autotrophically by using CO2 as the source of carbon, light as the source of energy, and water as source of electron, i.e. carry water splitting and produce oxygen: Examples of such organism include but are not limited to various types of cyanobacteria: nitrogen fixing, both single cell (e,g. Cyanothece, some species belonging to Synechococcus) and filamentous (e.g. Trichodesmium, Anabaena, Nostoc), and non-nitrogen fixing belonging to single cell (e.g. Synechocystis, some species belonging to Synechococcus) and filamentous e.g. Arthrospira (former Spirulina) as well as various genetically modified strains of these organisms. Other examples include microalgae: e.g. Haematococcus pluvialis, Clamydomonas etc., as well as various genetically modified strains. Any heterotrophic obligatively aerobic or facultative anaerobic microorganism, belonging to archaea bacteria, or eukaryotes that are able to oxidize organic compounds to CO2 using O2 as electron acceptor, and use organic compounds for growth and/or biosynthesis of product of interest may also be utilized examples of such materials include: E. coli, Corynebacterium glutamicum, Saccharomyces cerevisiae and the like.
- Another embodiment of a photobioreactor is shown in
FIG. 2B . In this embodiment the photobioreactor has several alterations and modifications over the design previously discussed. First, this new design is made through an extruded process which allows for a more cost effective design and allows for enhanced efficiencies related to both cost and function. In addition, this new design also includes integral heat sinks and ports for making the various lighting and harnesses for the lighting. This new design also offers space for twice as many LEDs as the previous design because less space is used for the round heat-sinks. Cooling fans are automatically controlled by a temperature dependant programmable logic controller to increase the longevity of LEDs. - The present invention core forms an economically attractive way to create a variety of biobased products including but not limited to biomass; H2; organic fertilizers; biodiesel and biocrude oil; ethanol; amino acids; vitamins; antibiotics; polysaccharides and fine chemicals, for example D- and L-lactate as polylactates precursor. These methodolgies may also be utilized in a variety of other different ways including but not limited to biosludge and other organic wastes utilization in economically sound way. In addition other embodiments may provide other possibilities and potentials such as the ability to regulate CO2 production/O2 removal or CO2 consumption/O2 removal at desired rates.
- In other applications and embodiments the methods and materials described herein have been combined to create value added products in a variety of ways. In one embodiment of the invention wastewater generated from a food processing facility was treated with a binary culture in a co-cultivation approach to simultaneously remove of C/N/P nutrients and produce a high-value biomass. This technology has the potential to significantly reduce operating expenses in waste treatment while also generating revenue through high-value products. In this set of experiments., starch-containing wastewater was passed through a co-cultivation of a green alga (Haematococcus pluvialis) and a heterotrophic bacterium (Bacillus subtilis). In this process, Bacillus subtilis degraded the organic carbon (starch) present in the in wastewater to CO2 and low molecular organic acids (e.g., acetate, lactate). The resulting products (i.e., CO2, organic acids a d other nutrient (N/P) are subsequently used by Haematococcus pluvialis to synthesize biomass which contains high-value carotenoid product (astaxanthin).
- This co-cultivation process is an innovative yet simple solution. While heterotrophic bacteria (Bacillus subtilis) still degrade and consume available carbohydrates, the necessary oxygen for this aerobic respiration is provided by green algae (Haemtococcus pluvialis). In turn, the green algae consume the carbon dioxide produced, and they also remove nutrients like nitrogen and phosphorus from the wastewater and incorporate them into their algal biomass This exchange of vital biological gases (O2, CO2) reduces the mass transfer requirements (aeration and agitation) for cultivation of either organism separately. The cost savings would be significant—mass transfer (aeration and agitation) accounts for ˜50% of cultivation electric costs), Furthermore, some green algae (e,g, Haemtococcus pluvialis) naturally accumulate high-value products (e.g., astaxanthin) in their biomass. This high-value biomass was then harvested following wastewater treatment, resulting in a source of revenue for the process. In this set of experiments the previously described co-culture was grown for 1.4 days under constant illumination and without aeration. In that period of time, over 70% of the COD and 33% of the Total N & P were removed under non-optimized conditions. The final biomass density was 2.2 g/L, 63% of which was H. pluvialis, and the astaxanthin content was 0.6% under non-optimized conditions. Based on these results, a techno-economic analysis estimated that the payback period was between 1-3 years for a full-scale process, depending on the performance at scale. Examples of these production charts showing astaxanthin production and nutrient reduction are shown in
FIGS. 9 and 10 . - In another embodiment of the invention a closed co-culture technique was utilized to produce value-added commodities by co-culturing oxygenic phototrophic and heterotrophic microorganisms. In this embodiment of the invention a methane-oxidizing bacteria (MOB) Methylomicrobium alcaliphilum 20Z and cyanobacteria Synechococcus sp. PCC 7002 were co-cultured in illuminated batches containing mineral medium and lethane (CH4) as the sole source of carbon for both strains. Since MOB cannot grow by oxidizing CH4 without O2 and cyanobacteria cannot utilize CH4 as carbon source, the growth of the binary culture occurred due to tight metabolic coupling of these bacteria. Synechococcus sp. PCC 7002 consumed CO2 produced by MOB and generated O2, which was consumed by M. alcaliphilum 20Z and resulted in CO2 production CH4 is the most reduced organic compound and therefore to be used for biomass synthesis it typically has to be oxidized by O2 to the level of formaldehyde. Since MOB spend more than 50% of CH4 carbon for biomass synthesis, providing additional CO2 would be advantageous to balance co-culture growth and maintain growth rate at maximum level. To prove this, batches of pure M. alcaliphilum 20Z and binary M. alcaliphilum 20Z-Synechococcus PCC7002 cultures were grown using LED-illuminated photobioreactor described above. In addition the enclosed system was modified to allow for gas consumption measurements. We found that M. alcaliphilum 20Z and Synechococcus PCC7002 can be successfully grown in a co-culture at pH 8.3 with recycling of headspace gases starting with pure methane (see
FIG.11 ). However, supplying the co-culture with pure CH4 leads to growth limitation with O2 due to CH4 and CO2 consumption stoichiometry. As a result, the M. alcaliphilum 20Z-Synechococcus PCC7002 co-culture grew slower than the pure M. alcaliphilum 20Z and produced less biomass. - The follow-up experiments revealed that bicarbonate addition substantially improves the growth of M. aicaliphilum 20Z-Synechococcus PCC7002 co-culture. In particular, the co-culture, grown on CH4 the presence of bicarbonate, generated 3.75-fold more biomass than axenic M. alcaliphilum 20Z grown on a 1:1 mix of CH4/air with the same agitation and gas flow rate. Application of bicarbonate also significantly improved the efficiency of methane assimilation during the headspace recycling. Bicarbonate additions to the bioreactor confirmed its positive effect on the co-culture growth at the same level of mass-transfer as the exhaustion of bicarbonate in the medium led to almost immediate growth rate decrease.
FIG. 11 shows a growth chart of M. alcaliphilum 20Z and Synechococcus PCC7002 co-culture growth in LED-PBR. Cultures were grown in A+ mineral medium at agitation 150 rpm, pH 8.3, and gas flow rate at 0.127 L/L/min. Light control was set to keep transmitted light at 10 μEinsteins/m2/sec. M. alcaliphilum 20Z-Synechococcus PCC7002 binary culture sustained active bacterial growth significantly longer than pure M. alcaliphilum 20Z culture when gas recycling was applied. In contrast to most prior art practices for MOB production, this application of binary cultivation eliminated the necessity to use highly explosive CH4/air mixes by substitution of O2 with CO2 or bicarbonate. Addition of inorganic carbon increased overall growth and biomass production rates in the binary cultures through stimulation of photosynthetic O2 evolution, which occurs throughout the entire reactor space, therefore eliminating dissolved O2 irregularities. Obtained results can be used to calculate and build an illuminated air-lift column bioreactor system which allows for complete gas utilization and results in almost zero greenhouse gas emission. Finally, given the growth stimulation by CO2, these results allow developing a robust and easily controlled process for co-cultivation of MOB and oxygenic phototrophs for production of biofuels, feed protein and other value-added commodities - This configuration provides a variety of advantages over the prior art methodologies particularly in regard to systems which utilize methane as a carbon source. Methane is an abundant component in both natural gas and biogas streams. Furthermore, utilization of biogas made from agricultural, municipal, and landfill wastes would produce a benefit by generating a useful material from a feedstock of uncertain and variable composition. In the past, large-scale production of materials using MOBs was hampered because of (i) high gas mass-transfer energy spending to dissolve CH4 and. O2 in media, (ii) explosiveness of CH4/O2 mixes, and (iii) need for sophisticated controls to keep dissolved CH4 and O2 at ratios favorable for microbial growth. However, the present invention provides a means for overcoming these issues and establishes a credible methodology for moving forward in the future. In the preceding descriptions we have shown and described only several preferred embodiments of the invention, by way of illustration of the modes contemplated for carrying out the invention. As will he realized, the invention is capable of modification in various respects without departing from the invention. Accordingly, the drawings and description of the preferred embodiment set forth hereafter are to be regarded as illustrative in nature, and not as restrictive.
- While various preferred embodiments of the invention are shown and described, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the invention as defined by the following claims.
Claims (12)
1. A photobioreactor system for obtaining biotechnology products comprising a binary culture made up of a combination of a phototrophic organism and a heterotrophic organism said photobioreactor having a chamber with a height to diameter ration greater than two, an integrated heat sink and an artificial lighting system comprised of light emitting diodes (LEDs) arranged in a spaced configuration.
2. The photobioreactor system of claim 1 wherein light emitted from said LEDs is the only light within said system.
3. The photobioreactor system of claim 2 wherein said LED's are controlled by a system based upon inputs from sensors surrounding said chamber.
4. A method for simultaneously generating algal biomass carotenoids and reducing nutrient loads in starch wastewater characterized by incubation of said nutrient loads with a co-culture of at least two heretogenous organisms in a closed photobioreactor system bioreactor.
5. The method of claim 4 wherein said heterogeneous organisms are Bacillus subtilis and Haematococcus pluvialis.
6. The method of claim 4 wherein said closed photobioreactor system has a chamber with a height to diameter ration greater than two and lit by an artificial lighting system comprised of light emitting diodes (LEDs) arranged in a spaced configuration.
7. A method for producing a biofuel characterized by the step of:
incubating a co-culture of a methane-oxidizing phototrophic microorganism and a heterotrophic microorganism in a controlled illuminated environment containing a mineral medium sparged by methane (CH4).
8. The method of claim 7 wherein said mineral medium contains bicarbonate.
9. The method of claim 7 wherein the co-culture comprise a methylomicrobium bacteria (MOB) species and a cyanobacteria Synechococcus
10. The method of claim 9 wherein the co-culture comprise Methylomicrobium alcaliphilum 20Z and cyanobacteria Synechococcus sp. PCC 7002.
11. The method of claim 10 wherein the co-culture is incubated at a pH of 8.3.
12. The method of claim 11 , further comprising the step of recycling headspace gasses.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/817,075 US20130149766A1 (en) | 2008-09-09 | 2011-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9541308P | 2008-09-09 | 2008-09-09 | |
US9938008P | 2008-09-23 | 2008-09-23 | |
US12/555,631 US8518690B2 (en) | 2008-09-09 | 2009-09-08 | Production of bio-based materials using photobioreactors with binary cultures |
USPCT/US09/56351 | 2009-09-09 | ||
PCT/US2009/056351 WO2010030658A2 (en) | 2008-09-09 | 2009-09-09 | Production of bio-based materials using photobioreactors with binary cultures |
US12/858,338 US9556456B2 (en) | 2008-09-09 | 2010-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
US201161467608P | 2011-03-25 | 2011-03-25 | |
PCT/US2011/048093 WO2012024406A1 (en) | 2010-08-17 | 2011-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
US13/817,075 US20130149766A1 (en) | 2008-09-09 | 2011-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/858,338 Continuation US9556456B2 (en) | 2008-09-09 | 2010-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130149766A1 true US20130149766A1 (en) | 2013-06-13 |
Family
ID=43301039
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/858,338 Active 2031-02-19 US9556456B2 (en) | 2008-09-09 | 2010-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
US13/817,075 Abandoned US20130149766A1 (en) | 2008-09-09 | 2011-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/858,338 Active 2031-02-19 US9556456B2 (en) | 2008-09-09 | 2010-08-17 | Production of bio-based materials using photobioreactors with binary cultures |
Country Status (1)
Country | Link |
---|---|
US (2) | US9556456B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130126425A1 (en) * | 2010-06-23 | 2013-05-23 | AlgEvolve, LLC | Advanced Biologic Water Treatment Using Algae |
US20130244310A1 (en) * | 2012-03-19 | 2013-09-19 | Geronimos Dimitrelos | System and Method for Producing Algae |
WO2018227184A1 (en) * | 2017-06-09 | 2018-12-13 | C16, Llc | Methods of producing lipids |
USRE48523E1 (en) * | 2012-03-19 | 2021-04-20 | Algae To Omega Holdings, Inc. | System and method for producing algae |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120329089A1 (en) | 2010-03-11 | 2012-12-27 | Jacob Edrei | Methods of generating hydrogen |
WO2013063075A2 (en) * | 2011-10-24 | 2013-05-02 | Heliae Development Llc | Systems and methods for growing photosynthetic organisms |
US9200236B2 (en) | 2011-11-17 | 2015-12-01 | Heliae Development, Llc | Omega 7 rich compositions and methods of isolating omega 7 fatty acids |
CN102517210B (en) * | 2011-12-08 | 2014-05-14 | 湖北民族学院 | Biological reactor with full-wavelength controllable light sources |
FR3004724B1 (en) * | 2013-04-22 | 2015-05-22 | Fermentalg | REACTOR WITH INTEGRATED LIGHTING |
EP3665263A4 (en) * | 2017-08-08 | 2021-05-12 | Forelight, Inc. | Photosynthetic bioreactor for the conversion of electricity and fertilizer into biomass |
DE102018108323B4 (en) | 2018-04-09 | 2020-07-09 | Schott Ag | Device for holding an image-capturing device on a bioreactor, bioreactor with device for holding an image-capturing device and method for propagating or cultivating biological material |
US12172108B2 (en) | 2018-08-16 | 2024-12-24 | Emd Millipore Corporation | Closed bioprocessing device |
CN110423675B (en) * | 2019-09-11 | 2024-08-23 | 宁波大学 | Large-scale haematococcus pluvialis cultivation device manufactured by using ecological niche principle |
CN110684644B (en) * | 2019-11-08 | 2020-11-24 | 安徽德宝生物科技有限公司 | Photobioreactor for algae cultivation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332904A (en) * | 1976-12-25 | 1982-06-01 | Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry | Biochemical treatment by microorganic method |
US20050266518A1 (en) * | 2001-06-06 | 2005-12-01 | Dsm Ip Assets B.V. | Isoprenoid production |
US20060035370A1 (en) * | 2003-12-16 | 2006-02-16 | Choul-Gyun Lee | Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same |
US20100062483A1 (en) * | 2008-09-09 | 2010-03-11 | Battelle Memorial Institute | Production of bio-based materials using photobioreactors with binary cultures |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4455374A (en) * | 1979-11-09 | 1984-06-19 | Schwartz David M | Solar fermentation and distillation process |
US4473970A (en) * | 1982-07-21 | 1984-10-02 | Hills Christopher B | Method for growing a biomass in a closed tubular system |
US5958761A (en) * | 1994-01-12 | 1999-09-28 | Yeda Research And Developement Co. Ltd. | Bioreactor and system for improved productivity of photosynthetic algae |
US6818424B2 (en) | 2000-09-01 | 2004-11-16 | E. I. Du Pont De Nemours And Company | Production of cyclic terpenoids |
US7201884B2 (en) | 2001-12-26 | 2007-04-10 | E. I. Du Pont De Nemours And Company | Process and apparatus for performing a gas-sparged reaction |
US7176024B2 (en) * | 2003-05-30 | 2007-02-13 | Biolex, Inc. | Bioreactor for growing biological materials supported on a liquid surface |
DE102004019234B3 (en) * | 2004-04-16 | 2005-11-24 | Sartorius Ag | Bioreactor for the cultivation of microorganisms |
EP1801197A1 (en) | 2005-12-22 | 2007-06-27 | Mikrobiologisch-analytisches Labor GmbH | Process for the valorization of gaseous sources of carbon and a photobioreactor |
US8415142B2 (en) * | 2006-06-14 | 2013-04-09 | Malcolm Glen Kertz | Method and apparatus for CO2 sequestration |
IL184971A0 (en) * | 2006-08-01 | 2008-12-29 | Brightsource Energy Inc | High density bioreactor system, devices and methods |
NZ578330A (en) * | 2006-12-11 | 2011-10-28 | Ralf Salvetzki | Process for the biological generation of methane |
WO2008097845A1 (en) * | 2007-02-06 | 2008-08-14 | Emission Science Llc | Photobioreactor and method for processing polluted air |
AU2008268669A1 (en) * | 2007-06-22 | 2008-12-31 | Algaedyne Corporation | Bioreactor |
BE1017763A5 (en) * | 2007-09-24 | 2009-06-02 | Proviron Holding | BORE ACTOR. |
WO2009142765A2 (en) | 2008-05-23 | 2009-11-26 | Orginoil, Inc. | Apparatus and methods for photosynthetic growth of microorganisms in a photobioreactor |
ES2653848T3 (en) * | 2008-06-20 | 2018-02-09 | Stroiazzo-Mougin, Bernard A. J. | Continuous procedure for the generation of a product of high nutritional value and energy resources |
US20100034050A1 (en) * | 2008-08-11 | 2010-02-11 | Gary Erb | Apparatus and Method for Cultivating Algae |
US8569050B1 (en) * | 2009-05-04 | 2013-10-29 | John D. Ericsson | Enclosed bioreactor system and methods associated therewith |
-
2010
- 2010-08-17 US US12/858,338 patent/US9556456B2/en active Active
-
2011
- 2011-08-17 US US13/817,075 patent/US20130149766A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332904A (en) * | 1976-12-25 | 1982-06-01 | Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry | Biochemical treatment by microorganic method |
US20050266518A1 (en) * | 2001-06-06 | 2005-12-01 | Dsm Ip Assets B.V. | Isoprenoid production |
US20060035370A1 (en) * | 2003-12-16 | 2006-02-16 | Choul-Gyun Lee | Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same |
US20100062483A1 (en) * | 2008-09-09 | 2010-03-11 | Battelle Memorial Institute | Production of bio-based materials using photobioreactors with binary cultures |
US8518690B2 (en) * | 2008-09-09 | 2013-08-27 | Battelle Memorial Institute | Production of bio-based materials using photobioreactors with binary cultures |
Non-Patent Citations (5)
Title |
---|
Dong et al., 2004, Catalysis Today, 98, 537-544 * |
English language translation of "Niu et al., 2010, Chinese Journal of Environmental Engineering, 2010-08, pp. 1819-1822", 17 pages * |
Niu et al., 2004, Chinese Journal of Environmental Engineering, 2010-08, ABSTRACT ONLY CITED * |
Niu et al., 2010, Chinese Journal of Environmental Engineering, 2010-08, pp. 1819-1822 * |
Zheng et al., 2004, Acta Scientiae Circumstantiae, 24, 1128-1134, ABSTRACT ONLY CITED * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130126425A1 (en) * | 2010-06-23 | 2013-05-23 | AlgEvolve, LLC | Advanced Biologic Water Treatment Using Algae |
US20130244310A1 (en) * | 2012-03-19 | 2013-09-19 | Geronimos Dimitrelos | System and Method for Producing Algae |
US9243219B2 (en) * | 2012-03-19 | 2016-01-26 | Geronimos Dimitrelos | System and method for producing algae |
USRE48523E1 (en) * | 2012-03-19 | 2021-04-20 | Algae To Omega Holdings, Inc. | System and method for producing algae |
WO2018227184A1 (en) * | 2017-06-09 | 2018-12-13 | C16, Llc | Methods of producing lipids |
Also Published As
Publication number | Publication date |
---|---|
US20100311156A1 (en) | 2010-12-09 |
US9556456B2 (en) | 2017-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8518690B2 (en) | Production of bio-based materials using photobioreactors with binary cultures | |
US9556456B2 (en) | Production of bio-based materials using photobioreactors with binary cultures | |
Dutta et al. | Hydrogen production by cyanobacteria | |
Chanquia et al. | Photobioreactors for cultivation and synthesis: Specifications, challenges, and perspectives | |
Grobbelaar | Physiological and technological considerations for optimising mass algal cultures | |
Chang et al. | Photobioreactors | |
Suh et al. | Photobioreactor engineering: design and performance | |
Jacob-Lopes et al. | Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors | |
Jacob-Lopes et al. | Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor | |
Doucha et al. | Production of high-density Chlorella culture grown in fermenters | |
Lizárraga | Considerations for photobioreactor design and operation for mass cultivation of microalgae | |
Carlozzi et al. | Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency | |
Kang et al. | Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. | |
Kim et al. | Nutrient acquisition and limitation for the photoautotrophic growth of Synechocystis sp. PCC6803 as a renewable biomass source | |
WO2009134114A1 (en) | An apparatus for mass cultivation of micro algae and a method for cultivating the same | |
Bezerra et al. | Effects of light intensity and dilution rate on the semicontinuous cultivation of Arthrospira (Spirulina) platensis. A kinetic Monod-type approach | |
Zarei et al. | A review of bioreactor configurations for hydrogen production by cyanobacteria and microalgae | |
KR102229628B1 (en) | System for Biofuel production and Manufacturing method thereof | |
Magdaong et al. | Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor | |
Rather et al. | A study on biohydrogen production based on biophotolysis from cyanobacteria | |
Yang et al. | Optimizing gas transfer to improve growth rate of Haematococcus pluvialis in a raceway pond with chute and oscillating baffles | |
WO2012024406A1 (en) | Production of bio-based materials using photobioreactors with binary cultures | |
US12012581B2 (en) | Method and system for heterotrophic and mixotrophic cultivation of microalgae | |
Debowski et al. | Microalgae–cultivation methods | |
Rodríguez‐Zuñiga et al. | Microalgae as cell factories for biofuel and bioenergetic precursor molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |