US20130143313A1 - Separative harvesting device - Google Patents
Separative harvesting device Download PDFInfo
- Publication number
- US20130143313A1 US20130143313A1 US13/754,167 US201313754167A US2013143313A1 US 20130143313 A1 US20130143313 A1 US 20130143313A1 US 201313754167 A US201313754167 A US 201313754167A US 2013143313 A1 US2013143313 A1 US 2013143313A1
- Authority
- US
- United States
- Prior art keywords
- resin
- biological product
- harvesting device
- biological
- bioreactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003306 harvesting Methods 0.000 title claims abstract description 26
- 239000011347 resin Substances 0.000 claims abstract description 167
- 229920005989 resin Polymers 0.000 claims abstract description 167
- 210000004027 cell Anatomy 0.000 claims abstract description 89
- 235000015097 nutrients Nutrition 0.000 claims abstract description 43
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 42
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 39
- 230000027455 binding Effects 0.000 claims abstract description 31
- 210000003000 inclusion body Anatomy 0.000 claims abstract description 29
- -1 metallic mesh Substances 0.000 claims description 13
- 241000894006 Bacteria Species 0.000 claims description 12
- 239000003446 ligand Substances 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 8
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 108010049003 Fibrinogen Proteins 0.000 claims description 5
- 102000008946 Fibrinogen Human genes 0.000 claims description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 5
- 239000011324 bead Substances 0.000 claims description 5
- 229940012952 fibrinogen Drugs 0.000 claims description 5
- 239000000122 growth hormone Substances 0.000 claims description 5
- 229940088597 hormone Drugs 0.000 claims description 5
- 239000005556 hormone Substances 0.000 claims description 5
- 108010051696 Growth Hormone Proteins 0.000 claims description 4
- 239000012501 chromatography medium Substances 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 108010035532 Collagen Proteins 0.000 claims description 3
- 102000008186 Collagen Human genes 0.000 claims description 3
- 108090001061 Insulin Proteins 0.000 claims description 3
- 102000004877 Insulin Human genes 0.000 claims description 3
- 108090000467 Interferon-beta Proteins 0.000 claims description 3
- 108010074328 Interferon-gamma Proteins 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 3
- 101710120037 Toxin CcdB Proteins 0.000 claims description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 3
- 229920001436 collagen Polymers 0.000 claims description 3
- 229940125396 insulin Drugs 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 2
- 241000282836 Camelus dromedarius Species 0.000 claims description 2
- 102000004127 Cytokines Human genes 0.000 claims description 2
- 108090000695 Cytokines Proteins 0.000 claims description 2
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 2
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 2
- 108090000637 alpha-Amylases Proteins 0.000 claims description 2
- 102000004139 alpha-Amylases Human genes 0.000 claims description 2
- 229940024171 alpha-amylase Drugs 0.000 claims description 2
- 210000004102 animal cell Anatomy 0.000 claims description 2
- 238000004185 countercurrent chromatography Methods 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims description 2
- 210000004962 mammalian cell Anatomy 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920001184 polypeptide Polymers 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 229940045847 receptor mimetic Drugs 0.000 claims description 2
- 239000002594 sorbent Substances 0.000 claims description 2
- 239000000979 synthetic dye Substances 0.000 claims description 2
- 241000701447 unidentified baculovirus Species 0.000 claims description 2
- 108010049870 Bone Morphogenetic Protein 7 Proteins 0.000 claims 3
- 102100022544 Bone morphogenetic protein 7 Human genes 0.000 claims 3
- VBAOEVKQBLGWTH-UHFFFAOYSA-N 2-pyridin-4-ylethanethiol Chemical compound SCCC1=CC=NC=C1 VBAOEVKQBLGWTH-UHFFFAOYSA-N 0.000 claims 2
- 102000004067 Osteocalcin Human genes 0.000 claims 2
- 108090000573 Osteocalcin Proteins 0.000 claims 2
- 102000004264 Osteopontin Human genes 0.000 claims 2
- 108010081689 Osteopontin Proteins 0.000 claims 2
- 102000008108 Osteoprotegerin Human genes 0.000 claims 2
- 108010035042 Osteoprotegerin Proteins 0.000 claims 2
- 102100038803 Somatotropin Human genes 0.000 claims 2
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 claims 2
- 101710154747 60S ribosomal protein L23a Proteins 0.000 claims 1
- 102100040409 Ameloblastin Human genes 0.000 claims 1
- 102000015427 Angiotensins Human genes 0.000 claims 1
- 108010064733 Angiotensins Proteins 0.000 claims 1
- 108010081589 Becaplermin Proteins 0.000 claims 1
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 claims 1
- 108010049951 Bone Morphogenetic Protein 3 Proteins 0.000 claims 1
- 108010049955 Bone Morphogenetic Protein 4 Proteins 0.000 claims 1
- 108010049974 Bone Morphogenetic Protein 6 Proteins 0.000 claims 1
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 claims 1
- 102100024504 Bone morphogenetic protein 3 Human genes 0.000 claims 1
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 claims 1
- 102100022525 Bone morphogenetic protein 6 Human genes 0.000 claims 1
- 102000055006 Calcitonin Human genes 0.000 claims 1
- 108060001064 Calcitonin Proteins 0.000 claims 1
- 102100021809 Chorionic somatomammotropin hormone 1 Human genes 0.000 claims 1
- 101800000414 Corticotropin Proteins 0.000 claims 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 claims 1
- 108010092674 Enkephalins Proteins 0.000 claims 1
- 108010071289 Factor XIII Proteins 0.000 claims 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 claims 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 claims 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims 1
- 102000016359 Fibronectins Human genes 0.000 claims 1
- 108010067306 Fibronectins Proteins 0.000 claims 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 claims 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 claims 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 claims 1
- 102100026720 Interferon beta Human genes 0.000 claims 1
- 102100037850 Interferon gamma Human genes 0.000 claims 1
- 102000006992 Interferon-alpha Human genes 0.000 claims 1
- 108010047761 Interferon-alpha Proteins 0.000 claims 1
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 claims 1
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 claims 1
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 claims 1
- 102000015336 Nerve Growth Factor Human genes 0.000 claims 1
- 108010025020 Nerve Growth Factor Proteins 0.000 claims 1
- 102000009890 Osteonectin Human genes 0.000 claims 1
- 108010077077 Osteonectin Proteins 0.000 claims 1
- 108010058846 Ovalbumin Proteins 0.000 claims 1
- 108090000445 Parathyroid hormone Proteins 0.000 claims 1
- 108010003044 Placental Lactogen Proteins 0.000 claims 1
- 239000000381 Placental Lactogen Substances 0.000 claims 1
- 101710098940 Pro-epidermal growth factor Proteins 0.000 claims 1
- 102100027467 Pro-opiomelanocortin Human genes 0.000 claims 1
- 102100036829 Probable peptidyl-tRNA hydrolase Human genes 0.000 claims 1
- 108010057464 Prolactin Proteins 0.000 claims 1
- 102100024819 Prolactin Human genes 0.000 claims 1
- 108090000190 Thrombin Proteins 0.000 claims 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 claims 1
- 108010061174 Thyrotropin Proteins 0.000 claims 1
- 102000011923 Thyrotropin Human genes 0.000 claims 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 claims 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 claims 1
- 108700040099 Xylose isomerases Proteins 0.000 claims 1
- 229940098773 bovine serum albumin Drugs 0.000 claims 1
- 229960004015 calcitonin Drugs 0.000 claims 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 claims 1
- 229960000258 corticotropin Drugs 0.000 claims 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 claims 1
- 108010074702 enamel matrix proteins Proteins 0.000 claims 1
- 229940012444 factor xiii Drugs 0.000 claims 1
- 102000037865 fusion proteins Human genes 0.000 claims 1
- 108020001507 fusion proteins Proteins 0.000 claims 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 claims 1
- 229940092253 ovalbumin Drugs 0.000 claims 1
- 239000000199 parathyroid hormone Substances 0.000 claims 1
- 108010000685 platelet-derived growth factor AB Proteins 0.000 claims 1
- 229940097325 prolactin Drugs 0.000 claims 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims 1
- 229960004072 thrombin Drugs 0.000 claims 1
- 239000005495 thyroid hormone Substances 0.000 claims 1
- 229940036555 thyroid hormone Drugs 0.000 claims 1
- 229960000874 thyrotropin Drugs 0.000 claims 1
- 230000001748 thyrotropin Effects 0.000 claims 1
- 239000011647 vitamin D3 Substances 0.000 claims 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 91
- 230000008569 process Effects 0.000 abstract description 44
- 238000000746 purification Methods 0.000 abstract description 32
- 238000000926 separation method Methods 0.000 abstract description 13
- 238000011068 loading method Methods 0.000 abstract description 9
- 230000010412 perfusion Effects 0.000 abstract description 8
- 231100000331 toxic Toxicity 0.000 abstract description 6
- 230000002588 toxic effect Effects 0.000 abstract description 6
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 abstract description 2
- 238000003259 recombinant expression Methods 0.000 abstract description 2
- 238000011146 sterile filtration Methods 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 218
- 238000004519 manufacturing process Methods 0.000 description 38
- 239000002609 medium Substances 0.000 description 37
- 239000012528 membrane Substances 0.000 description 36
- 235000018102 proteins Nutrition 0.000 description 31
- 238000001914 filtration Methods 0.000 description 27
- 239000000243 solution Substances 0.000 description 26
- 235000012431 wafers Nutrition 0.000 description 26
- 239000001963 growth medium Substances 0.000 description 25
- 239000007787 solid Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 238000009296 electrodeionization Methods 0.000 description 15
- 238000005342 ion exchange Methods 0.000 description 15
- 239000003011 anion exchange membrane Substances 0.000 description 13
- 238000013461 design Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 239000000872 buffer Substances 0.000 description 12
- 230000009089 cytolysis Effects 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 239000003456 ion exchange resin Substances 0.000 description 11
- 229920003303 ion-exchange polymer Polymers 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 241000588724 Escherichia coli Species 0.000 description 9
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 9
- 238000011143 downstream manufacturing Methods 0.000 description 9
- 230000032050 esterification Effects 0.000 description 9
- 238000005886 esterification reaction Methods 0.000 description 9
- 150000007524 organic acids Chemical class 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 231100000419 toxicity Toxicity 0.000 description 9
- 230000001988 toxicity Effects 0.000 description 9
- 108010014251 Muramidase Proteins 0.000 description 8
- 102000016943 Muramidase Human genes 0.000 description 8
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 8
- 230000006037 cell lysis Effects 0.000 description 8
- 238000009295 crossflow filtration Methods 0.000 description 8
- 239000004325 lysozyme Substances 0.000 description 8
- 229960000274 lysozyme Drugs 0.000 description 8
- 235000010335 lysozyme Nutrition 0.000 description 8
- 210000002421 cell wall Anatomy 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 244000061176 Nicotiana tabacum Species 0.000 description 5
- 240000007594 Oryza sativa Species 0.000 description 5
- 235000007164 Oryza sativa Nutrition 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005341 cation exchange Methods 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 210000002950 fibroblast Anatomy 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 150000002895 organic esters Chemical class 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000007928 solubilization Effects 0.000 description 5
- 238000005063 solubilization Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 229960005486 vaccine Drugs 0.000 description 5
- 102000016918 Complement C3 Human genes 0.000 description 4
- 108010028780 Complement C3 Proteins 0.000 description 4
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 4
- 108010013639 Peptidoglycan Proteins 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000005273 aeration Methods 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 4
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 229920000249 biocompatible polymer Polymers 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 208000002672 hepatitis B Diseases 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 201000000050 myeloid neoplasm Diseases 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000000527 sonication Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 102000004506 Blood Proteins Human genes 0.000 description 3
- 108010017384 Blood Proteins Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 208000000474 Poliomyelitis Diseases 0.000 description 3
- 102100031269 Putative peripheral benzodiazepine receptor-related protein Human genes 0.000 description 3
- 206010037742 Rabies Diseases 0.000 description 3
- 240000003768 Solanum lycopersicum Species 0.000 description 3
- 102000004338 Transferrin Human genes 0.000 description 3
- 108090000901 Transferrin Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000011067 equilibration Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012554 master batch record Methods 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003381 solubilizing effect Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 239000012581 transferrin Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 102100033312 Alpha-2-macroglobulin Human genes 0.000 description 2
- 108090000935 Antithrombin III Proteins 0.000 description 2
- 102000004411 Antithrombin III Human genes 0.000 description 2
- 108010039627 Aprotinin Proteins 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000009016 Cholera Toxin Human genes 0.000 description 2
- 108010049048 Cholera Toxin Proteins 0.000 description 2
- 102100026735 Coagulation factor VIII Human genes 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101710146739 Enterotoxin Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000018997 Growth Hormone Human genes 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000003996 Interferon-beta Human genes 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 201000005505 Measles Diseases 0.000 description 2
- 208000005647 Mumps Diseases 0.000 description 2
- 201000005702 Pertussis Diseases 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- 108010015078 Pregnancy-Associated alpha 2-Macroglobulins Proteins 0.000 description 2
- 108010094028 Prothrombin Proteins 0.000 description 2
- 102100027378 Prothrombin Human genes 0.000 description 2
- 241000702670 Rotavirus Species 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 208000003152 Yellow Fever Diseases 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229960005348 antithrombin iii Drugs 0.000 description 2
- 229960004405 aprotinin Drugs 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011942 biocatalyst Substances 0.000 description 2
- 238000010364 biochemical engineering Methods 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 239000012539 chromatography resin Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 231100000655 enterotoxin Toxicity 0.000 description 2
- 239000000147 enterotoxin Substances 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 229960000301 factor viii Drugs 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229940044627 gamma-interferon Drugs 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 208000005252 hepatitis A Diseases 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 208000010805 mumps infectious disease Diseases 0.000 description 2
- 210000001178 neural stem cell Anatomy 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011165 process development Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000030788 protein refolding Effects 0.000 description 2
- 229940039716 prothrombin Drugs 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000011012 sanitization Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- BEOUGZFCUMNGOU-UHFFFAOYSA-N tuberculostearic acid Chemical compound CCCCCCCCC(C)CCCCCCCCC(O)=O BEOUGZFCUMNGOU-UHFFFAOYSA-N 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- NLMKTBGFQGKQEV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hexadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO NLMKTBGFQGKQEV-UHFFFAOYSA-N 0.000 description 1
- FBUKMFOXMZRGRB-YFHOEESVSA-N 9(10)-EpOME Chemical compound CCCCC\C=C/CC1OC1CCCCCCCC(O)=O FBUKMFOXMZRGRB-YFHOEESVSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 241000588810 Alcaligenes sp. Species 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- NEZONWMXZKDMKF-JTQLQIEISA-N Alkannin Chemical compound C1=CC(O)=C2C(=O)C([C@@H](O)CC=C(C)C)=CC(=O)C2=C1O NEZONWMXZKDMKF-JTQLQIEISA-N 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 101100074137 Arabidopsis thaliana IRX12 gene Proteins 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000228136 Aspergillus shirousami Species 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 102000051485 Bcl-2 family Human genes 0.000 description 1
- 108700038897 Bcl-2 family Proteins 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 102100024775 Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase Human genes 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 101000914103 Bos taurus Chymosin Proteins 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 101100435266 Caenorhabditis elegans arf-1.1 gene Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 201000006082 Chickenpox Diseases 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- FBUKMFOXMZRGRB-UHFFFAOYSA-N Coronaric acid Natural products CCCCCC=CCC1OC1CCCCCCCC(O)=O FBUKMFOXMZRGRB-UHFFFAOYSA-N 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 229940122858 Elastase inhibitor Drugs 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 101000925662 Enterobacteria phage PRD1 Endolysin Proteins 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 201000003542 Factor VIII deficiency Diseases 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 208000007212 Foot-and-Mouth Disease Diseases 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102000004547 Glucosylceramidase Human genes 0.000 description 1
- 108010017544 Glucosylceramidase Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 101001002709 Homo sapiens Interleukin-4 Proteins 0.000 description 1
- 101000975003 Homo sapiens Kallistatin Proteins 0.000 description 1
- 101001018100 Homo sapiens Lysozyme C Proteins 0.000 description 1
- 101001077723 Homo sapiens Serine protease inhibitor Kazal-type 6 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 241000700723 Ictalurid herpesvirus 1 Species 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 229940122920 Kallikrein inhibitor Drugs 0.000 description 1
- 102100023012 Kallistatin Human genes 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 101150022713 LAC4 gene Proteins 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 241000255777 Lepidoptera Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241001071917 Lithospermum Species 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 241000252067 Megalops atlanticus Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010027202 Meningitis bacterial Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 208000010359 Newcastle Disease Diseases 0.000 description 1
- 241000714209 Norwalk virus Species 0.000 description 1
- 101900322896 Norwalk virus Capsid protein VP1 Proteins 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 208000025174 PANDAS Diseases 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 208000009362 Pneumococcal Pneumonia Diseases 0.000 description 1
- 206010035728 Pneumonia pneumococcal Diseases 0.000 description 1
- 101710182846 Polyhedrin Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 101900083372 Rabies virus Glycoprotein Proteins 0.000 description 1
- 241000702263 Reovirus sp. Species 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000724205 Rice stripe tenuivirus Species 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000235072 Saccharomyces bayanus Species 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000235060 Scheffersomyces stipitis Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241001123650 Schwanniomyces occidentalis Species 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 241001591005 Siga Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 235000002560 Solanum lycopersicum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000194019 Streptococcus mutans Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 241000711484 Transmissible gastroenteritis virus Species 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 208000037386 Typhoid Diseases 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 206010046980 Varicella Diseases 0.000 description 1
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002293 adipogenic effect Effects 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 238000003450 affinity purification method Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- UNNKKUDWEASWDN-UHFFFAOYSA-N alkannin Natural products CC(=CCC(O)c1cc(O)c2C(=O)C=CC(=O)c2c1O)C UNNKKUDWEASWDN-UHFFFAOYSA-N 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 101150050389 arl6 gene Proteins 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 201000009904 bacterial meningitis Diseases 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 1
- 108010087667 beta-1,4-mannosyl-glycoprotein beta-1,4-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 229940019700 blood coagulation factors Drugs 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 238000009566 cancer vaccine Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000004037 cervical canal epithelial cell Anatomy 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002648 chondrogenic effect Effects 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000011210 chromatographic step Methods 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000006240 deamidation Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000013400 design of experiment Methods 0.000 description 1
- 108010073652 desirudin Proteins 0.000 description 1
- 229960000296 desirudin Drugs 0.000 description 1
- XYWBJDRHGNULKG-OUMQNGNKSA-N desirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 XYWBJDRHGNULKG-OUMQNGNKSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229960005097 diphtheria vaccines Drugs 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000007905 drug manufacturing Methods 0.000 description 1
- 230000001516 effect on protein Effects 0.000 description 1
- 239000003602 elastase inhibitor Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000000688 enterotoxigenic effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002185 fatty acyl-CoAs Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 210000005255 gram-positive cell Anatomy 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 108010037896 heparin-binding hemagglutinin Proteins 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000007446 host cell death Effects 0.000 description 1
- 102000055277 human IL2 Human genes 0.000 description 1
- 102000055229 human IL4 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 210000001985 kidney epithelial cell Anatomy 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 238000011140 membrane chromatography Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- 210000003757 neuroblast Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229940127285 new chemical entity Drugs 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 1
- 230000002188 osteogenic effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 238000001799 protein solubilization Methods 0.000 description 1
- 230000007925 protein solubilization Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012508 resin bead Substances 0.000 description 1
- 201000006845 reticulosarcoma Diseases 0.000 description 1
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 208000022218 streptococcal pneumonia Diseases 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical group 0.000 description 1
- 229960002766 tetanus vaccines Drugs 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 201000008297 typhoid fever Diseases 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 229940005267 urate oxidase Drugs 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical class C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/04—Ventilation with ducting systems, e.g. by double walls; with natural circulation
- F24F7/06—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/14—Bags
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/14—Scaffolds; Matrices
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/16—Vibrating; Shaking; Tilting
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/06—Nozzles; Sprayers; Spargers; Diffusers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/32—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/10—Separation or concentration of fermentation products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q3/00—Condition responsive control processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
Definitions
- the instant invention relates to a bioreactor design intended to capture and purify biological products within the bioreactor.
- the present invention relates to a novel bioreactor design for expressing and separating a biological product from other components in a bioreaction borth, which combines the step of expressing and separating within the bioreactor by binding the biological product with a resin within a bioreactor, discarding the nutrient medium and eluting the biological product as a concentrated solution; this allows elimination at least two steps in the separation and purification of biological products—filtration or centrifugation to remove cell culture and ultrafiltration for volume reduction—and possibly three steps, including loading of biological products on the purification columns.
- the instant invention allows cell lysis, inclusion body solubilization and protein refolding within the bioreactor.
- the instant invention significantly reduces the process time and cost while enhancing the yield by reducing degradation of biological products during manufacturing. Additional benefits of the instant invention include avoiding perfusion process and reducing toxicity of the expressed biological products to cell culture. No such invention exists in the prior art of bioreactors.
- Downstream processing involves steps for cleaning up crude biological products to yield high purity products. Traditionally, these steps involve using chromatography columns packed with highly specialized resings to capture and purify the desired biological products by the process of elution. With an exponential rise in the number of biological products being developed and marketed, there have been remarkable developments in the field of downstream processing. These developments have however not caught up with the developments in the upstream processing. A few years ago, an yield of 0.25 G of biological product per liter expressed by CHO cells was considered very high. Today, we are hovering yields around 10 G/L making it possible to accumulate a very large quantity of biological products, particularly as the sizes of bioreactors have increased to thousands of liters.
- the culture media must be filtered using fine filters (e.g., 0.22 microns) to remove cells (CHO cells have average size of 5 microns).
- This step utilizes an array of filters since the cells are likely to choke the filter surface easily and also require installing vessels that would receive the filtrate. This requires vessels of thousands of liters of capacity to match the size of the bioreactors.
- the next step is the reduction of the volume of filtrate since it is not possible to load such large volumes on columns that have limited flow rate. This is the stage where most often a cross-flow type filtration is used, again with a large bank of filters to complete the concentration process as quickly as possible.
- the third step is to load the concentrated solution in a chromatography column containing a binding media, a specific resin with affinity for the target biological product. Even though the volume of liquid has been reduced considerably at this stage, the loading steps, nevertheless, take substantial time to complete the loading.
- Bioreactors used in the upstream processing are vessels that allow growth of cell culture to express biological products and for reasons historic and traditional, a clear demarcation line exists between the expression of biological product and its purification. For this reason, no innovations have been made to add additional functions to the design of bioreactors while they do provide a large investment in a vessel that could possibly have multiple uses.
- the instant invention discloses an innovative bioreactor design that accomplishes this goal and is applicable universally to all types of bioreaction applications.
- biological products expressed in nutrient medium are separated form the medium by first removing the biological culture by a process of centrifugation or filtration. This step is followed by reducing the volume of medium to about 1/10 to 1/20 to make it possible to load the liquid within a reasonable time on purification columns. While these process steps have been widely validated and function very well, the practicality of using these steps becomes very difficult when large volumes of medium is handled.
- the key to the instant invention lies in following a contrarian teaching. While all manufacturers follow the path described above involving removal of components from a broth ready for purification, it would be prudent to examine the utility of first removing the target biological product instead and discarding what is not needed, instead of removing step by step what is not needed, as currently practiced.
- the instant invention capitalizes on the recent availability of many resins that are capable of binding biological products in large quantities. Most modern resins would bind between 20-125 mg of biological product per mL of resin. Many of these resins are highly specific to the biological products and many of them can be combined to remove any type and quantity of a biological product from a solution by a simple process of physicochemical binding that is strong enough to retain the biological products attached to the resin while the culture medium is removed from the bioreactor.
- the art has also advanced significantly in the field of biological product purification wherein we now have a much better ability to elute these bound biological products from resins by adjusting the pH, the ionic strength or other characteristics of the eluting buffer to break the binding between the resin and the biological product. This allows removal of biological products from a bioreactor as a highly concentrated solution that is ready for further purification and in some instances it can even be the final product for use.
- the bioreactor design of the instant invention is novel, and overcomes the most significant hurdles in the namufacture of biological products by applying a contrarian teaching in the current method of the manufacture of these products.
- FIG. 1 depicts a flexible two-dimensional disposable bioreactor displaying the installation of the pouch used for adding resin to the bioreactor to separate the biological products form the bioreactor.
- Affinity Chromatography is a separation techinque based upon molecular conformation, which frequently utilizes application specific resins. These resins have ligands attached to their surfaces, which are specific for the compounds to be separated. Most frequently, these ligands function in a fashion similar to that of antibody-antigen interactions. This “lock and key” fit between the ligand and its target compound makes it highly specific.
- membrane proteins are glycobiological products and can be purified by lectin affinity chromatography.
- Detergent-solubilized proteins can be allowed to bind to a chromatography resin that has been modified to have a covalently attached lectin.
- Immunoaffinity chromatography resin employs the specific binding of an antibody to the target biological product to selectively purify the biological product. The procedure involves immobilizing an antibody to a column material, which then selectively binds the biological product, while everything else flow through.
- Inclusion bodies upon solubilization exposes hydrophobic groups while there remain chemical groups on denatured proteins capable of binding to resin (singh and Panda, 2005), allowed separation of these proteins during the stages of refolding to native state.
- one embodiment of the invention may be practiced by using the least expensive resins to generically bind all soluble organic components and then elute them instantly using a buffer without any concern for the profile of elution to separate these components.
- Such generic resins are very inexpensive and may not even have to be reused.
- the instant invention offers four methods of biological product manufacturing and purification.
- the first method is the separation of a biological product at the end of the bioreaction cycle;
- the second method is the removal of biological product continuously while the resin remains inside the bioreactor and the third method involved periodically removing the resin and processing it outside the bioreactor.
- the fourth method the cells are lysed to expose inclusion bodies, which are then solubilized prior to contacting them with resin.
- the first method would be the most commonly practiced art; the second method would be needed to obviate the toxic effects of expressed biological products and to replace a perfusion bioreaction method and the third method would be practiced when the biological product may not be stable in the complex stage or where it is desired to re-use the resin (particularly where the cost of the resin is high).
- the fourth method would be useful for bacterial expressions that involve formation of inclusion bodies and while newer constructs allow expression of soluble products, there remain a large number of existing methods that inevitably require handing inclusion bodies.
- the instant invention introduces a concept of filtering out biological culture used in the bioreaction. Most bacteria would be about 8 ⁇ in diameter and the Chinese Hamster Ovary cells about 5 ⁇ in diameter.
- the binding resin is separated from the culture broth by a container device (pouch) that is porous and the porosity of the walls of the container is kept at below 5 ⁇ to prevent entry of any organism or cell into cnad contacting the resin. This prevents any physical adsorption of cells or organisms on the resin and fouling it. Additionally, during the drain cycle, when the liquid content of the bioreactor is drained, this removes all cells and organisms.
- the invention adds an optional step of filtering the buffer eluted through a sterilizing filter to remove any remaining cells that might elute along with the biological product and those that may have remained attached to the resin during the wash cycle.
- the very nature of the recombinant product makes it unstable.
- the instability of a recombinant biological product can be either physical or chemical. Physical instability can be related to such things as denaturation of the secondary and tertiary structure of the biological porduct, adsorption of the biological product onto interfaces or excipients, and aggregation and precipitation of the biological product.
- Chemical instability of a biological product results in the formation of a new chemical entity by cleavage or by new bond formation. Examples of this type of instability would be deamidation, proteolysis and reacmization. Any changes to the manufacturing process that reduce the cycle of production, exposure to harsh conditions such as high pressures across membranes in cross-flow and sterile filtration, etc., would increase the stability and the fianl yield of production.
- the biological products are harvested at the end of the cycle that might be as long as several weeks of continuous expression. While many biological products would survive the 37° C. environment for that length of time, a few would degrade over that period of time.
- the stability of and thus the yield of production can be increased since in the complex stage, the molecules are immobilized and thus less likely to degrade. While many biological products may degrade by adsorbing to various surfaces, the interaction between a resin and biological product is of a different nature as evidenced by the use of resins in the purification of biological products whereby high degree of stability is maintained when eluting from a resin column.
- the resin may be placed inside the pouch from the very beginning of the reaction process and as biological product is expressed, it is instantly captured by the resin removing from direct contact with the cell lines increasing their productivity and the longevity of expression cycle, decreasing the production costs substantially.
- a particular biological product is expressed only in a specific subcellular location, tissue or cell type, during a defined time period, and at a particular quantity level. This is the spatial, temporal, and quantitative expression.
- Recombinant biological product expression often introduces a foreign biological product in a host cell and expresses the biological product at levels significantly higher than the physiological level of the biological product in its native host and at the time the biological product is not needed.
- the over-expressed recombinant biological product will perform certain function in the host cell if the biological product is expressed soluble and functional.
- the function of the expressed recombinant biological product is often net needed by the host cell. In fact the function of the biological product may be detrimental to the proliferation and differentiation of the host cell.
- the observed phenotypes of the host cells are slow growth rate and low ecll density.
- the recombinant biological product causes death of the host cell. These phenomena are described as biological product toxicity. These recombinant biological products are called toxic biological products.
- Biological product toxicity is a commonly observed phenomenon. All active biological products will perform certain functions. The host cells need all of these functions with few exceptions and therefore, they interfere with cellular proliferation and fifferentiation. The appeared phenotype of the effects of these biological products to the host cells is their “toxicity.” It is estimated that about 80% of all soluble biological products have certain degree of toxicity to their hosts. About 10% of all biological products are highly toxic to host cells. The completely insoluble or dysfunctional biological products will not be toxic to the host cell, though they may drain the cellular energy to produce them when over-expressed. Biological product over-expression creates metabolic burden for the host cell, but this burden is not toxicity to the cell. Some low solubility or partially functional biological products may still be toxic to the host.
- the instant invention allows for provisions to keep the bioreaction going at its optimal conditions by replenishing any nutrients lost to the binding resin. This may happen when the resins used have non-specific binding characteristics. Where highly specific affinity binding resins are used, this step may be obviated or reduced in its frequency.
- yet another advantage of the disclosed method is that the final resin-biological product conjugate can be loaded directly column and eluted accordingly to specified protocols without firts flushing it out with a buffer to break the bonding between the resin and the biological product. This will save substantial time and material savings.
- E. coli has been most widely used for the production of recombinant proteins that do not require posttranslational modifications such as glycosylation for bioactivity.
- a typical process involves, harvesting bacteria by a process of centrifugation, to collect the cell paste.
- the cells are lysed, most commonly by a sonication process and the inclusion bodies solubilized (by the use of a high concentration of denaturants such as urea or guanidine hydrochloride, along with reducing agents such as beta-mercaptoethanol), refolded (by slow removal of the denaturant in the presence of oxidizing agent) and purified to recover functionality of the active product.
- Protein solubilization from the inclusion body using high concentration of chaotropic reagents results in the loss of secondary structure leading to the random coil formation of the protein structure and exposure of hydrophobic surface, a feature that is of significant inportance in the instant invention.
- One embodiment of the instant invention combines several procedures of cell lysis, solubilization and refolding into one continuous operation that can all be completed within the bioreactor, obviating the need for multiple vessels, handing large volumes of liquids and reducing process time and cost of manufacturing.
- Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their diruption, or lysis, to release the expressed proteins.
- One of the most crucial steps to be optimized in the protein production process is bacterial cell lysis.
- bacterial cell lysis does not influence protein expression, it can have an effect on protein solubility by affecting the physicochemical properties of the protein.
- chemical lysis can be achieved by using different buffer composition, lysozyme, or commercially available detergent reagents.
- Cell lysis can also include a combination of the mechanical and chemical lysis, e.g., lysozyme with freeze-thaw cycles.
- the preferred method, or “gold standard”, for bacterial lysis on the small or standard laboratory scale production is sonication. It relies on the mechanical disruption of the bacterial cell wall. Any solubilizing lysis agents, like detergents, that can affect solubility or stability, do not affect the expressed protein. Sonication becomes more problematic when handling large volumes of culture media. For these reasons, many high throughput laboratories choose to optimize lysis conditions by chemical means.
- Chemical lysis includes the treatment of cells with alkali, enzyme, or detergents. Chemical lysis methods minimize denaturation and expose the inner, cytoplastmic membrane by degrading the peptidoglycan cell wall of bacteria.
- the cell wall of Gram-positive bacteria is thick, containing several interconnecting layers of peptidoglycan (60-90% of the cell wall).
- the cell wall of Gram-negative bacteria appears thin, containing two or three layers of peptigoglycan (10-20%) of the cell wall).
- Gram-negative bacteria contain an outer membrane composed of lipopolysaccharide, phospholipids, and lipoprotein.
- Lysozyme a commercial lytic enzyme, is widely used to lyse Gram-positive cells in the presence of EDTA and detergent Brij 58. Lysozyme hydrolyzes N-acetylmuramide linkages, resulting in degradation of bacterial cell walls. The activity of lysozyme is optimal in the pH range of 6.7 to 8.6.
- gram-negative bacteria are less susceptible to lysozyme and detergents due to the presence of asymmetric lipid bilayer.
- the outer membrane of the peptidoglycan acts as a permeability barrier to large molecules, and so the outer membrane needs to be permeabilized to expose the peptidoglycan layer for successful enzymatic lysis.
- the permeability barrier is, in part, due to the presence of polyanionic lipopolysaccharide that provide a network interaction in the presence of divalent cations, such as Mg2+.
- the chelators of divalent carions e.g., EDTA
- polycationic species e.g., Tris
- small molecules e.g., Tris
- Chemical cell lysis can be performed using lysis solution containing either lysozyme (Sigma-Aldrich, St. Louis, Mo.). SoluLyse® in Tris buffer (Genlantis, San Diego, Calif.) or Bugbuster® protein extraction reagent (Novagen, EMD Chemicals Inc., San Diego, Calif.) The amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyse® well correlates with sonication. Compositions and protocols for chemical lysis are widely available through commercial suppliers of chemical lysis products. The quantity of various chemicals used, the time of exposure and determination of the end point are readily established for any specific process.
- Solubilizing the lysed cell product would yield a denatured protein with large hydrophobic and ionic surfaces that can be readily bound to resins like cationic, anionic or hydrophobic resins; in some instances, certain solution characteristics like the pH, ionic strength of polarity may have to be adjusted to achieve optimal binding to the resin introduced in the pouch. This will allow discarding of the large volume of liquid culture medium and cell debris; it is noteworthy that the pore size of the pouch would generally be small enough to exclude cell lysis debris to contact the resin.
- solubilized proteins bound to resins can then be removed from the binding and a solution of protein allowed to refold inside the bioreactor and again once the refolding has been completed, binding the proteins to resin and discarding the refolding solution obviating the need for expensive and time consuming cross-flow filtration operations.
- the concentrated solutions of refolded proteins are then subjected to further purification.
- the instant invention taking a contrarian approach, is targeted to modify the existing designs of bioreactors to include a step of performing biological product harvesting or biological product capturing prior to purification chromatography steps to increase the throughput of manufacturing processing without adding expensive and technically challenging modifications.
- the key component of the instant invention lies in a feature added to a traditional bioreactor, whether a hard-walled system or a flexible disposable system.
- a pouch made of a porous material likely a polymeric or metallic mesh
- porosity that is smaller than the size of resin used to capture biological products is used to allow contacting of the resin with the biological product.
- Most resins come in sizes ranging from 50 microns and up; some have smaller particle size as well.
- it is possible to design a pouch, a bag or a container form a polymeric material such as nylon that would keep the resin within the bag and not allow it to enter to the culture medium when the pouch is placed inside a bioreactor.
- a significant advancement in the art of biological product capture is provided here by disclosing that a mixture of resins can be used to obviate the binding of sites on the resin by other functional groups found in the culture media.
- the ultimate goal is to design a mixture of resins that would always capture the all of the biological products in the culture medium within the shortest period of time. Once used, the resins can be cleansed, sanitized and readied for the next use. It is important to know that there is no need for sterilizing these resins as long as they are treated chemically to reduce the microbial load.
- the instant invention can be automated by installing such sensors and more particularly a sensor to determine concentration of the biological product so that the resin can be added to the pouch at a certain time when the concentration of the biological product in culture media has reached a pre-determined high level and allowing it to equilibrate until such time that the concentration in the culture media decreases to a certain pre-determined low level, most likely below 1% of the highest level prior to the treatment with resin.
- the instant invention proposes a bioreactor capable of growing all types of cells and organisms and additionally provides a ready means of harvesting of biological products in a bioreactor.
- the instant invention employs a mechanical device, which in one step combines several steps or biological product harvesting.
- the method of the present invention presents a novel procedural step for simultaneously extracting and concentrating a biological product of interest from a host cell, at the same time removing practically all, or at least the majority, of the host cell biological products.
- the present invention relates to a bioreactor that contains a resin capable of binding target biological products but kept separate from the culture medium by placing it inside a pouch that has porous walls with pores small enough to hold the resin inside the pouch yet allow the culture media containing target biological product to freely equilibrate with the resin.
- a bioreactor that contains a resin capable of binding target biological products but kept separate from the culture medium by placing it inside a pouch that has porous walls with pores small enough to hold the resin inside the pouch yet allow the culture media containing target biological product to freely equilibrate with the resin.
- a goal of this invention is to reverse the process and instead of removing the host cells and organisms, remove the biological product first. This modification also eliminates the need to reduce the volume of filtrate received after removing the host cells and organisms in the traditional process prior to purification.
- the bioreactor contains a pouch that is filled with a resin when the process is ready for harvesting, allowing equilibration of the binding process and the draining out the culture media along with host cells and organisms.
- the drainage is best accomplished by allowing the culture media to flow down under gravity, thus obviating any steps that might take a long time like peristaltic pumping of the culture medium out of the bioreactors.
- the biological product is eluted using a buffer that causes breakdown of the association between the biological product and the resin and collecting a concentrated solution.
- the complex Prior to contacting the resin-biological product complex with a buffer, the complex can be washed if necessary with fluids that would not break down the resin-biological product complex but remove other components bound to resin that may have come from the metabolic products in the culture media. Just in case there are any host cells remaining, this solution, which would be about 2-5% of the volume of the culture media, can be easily filtered through a sterilizing filter.
- the instant invention obviates the need for costly cross-flow filtration processes used in every type of manufacturing of biological products as in almost all instances a concentration step is involved to reduce the volume of liquid that is loaded onto purification column.
- the purification of biological therapeutics generally involves the use of cross flow filtration (tangential flow filtration), normal flow filtration (dead ended filtration) combined with chromatographic separations.
- Cross flow filtration and normal flow filtration retain matter through size exclusion and are complementary to chromatography's selectivity. For processes where volumes are large such as into thousands of liters, the cost of equipment for filtration is into hundreds of thousands of dollars with expensive filters all adding to a cost that represents a major fraction of the total cost of manufacturing of recombinant drugs.
- the instant invention provides a means of continuously removing expressed biological product from a culture media to enhance the level of expression that may be depressed because of the higher concentration of biological product in the mixture.
- the instant invention allows maintenance of a sink condition for the concentration of the biological product at all times.
- the instant invention provides a means of continuously removing expressed biological product from a culture media to reduce the toxicity of the expressed biological product to host cells and thus prologning the cycles of expression substantially increasing the yields of production.
- the instant invention provides a means of increasing the chemical stability of expressed biological product by binding it to a resin as soon as it is expressed as the chemicals are always less stable in a solution form than in a solid form or in this case a complex form. this would substantially improve the yield of production.
- the instant invention provides a means of substantially reducing the cost of recombinant drug manufacturing by eliminating some of the most costly and time consuming steps.
- the cost of using a non-specific resin is minimal as this can be used repeatedly, unlike the resin used in the downstream purification where it must be replaced periodically as it loses its power to resolve the separation. Until the resin reaks down or is physically damaged, it can be used continuously and even when the efficiency of adsorption is reduced, it can be mixed with fresh resin to give it a very long useful life.
- the instant invention combines several steps of upstream and downstream bioprocessing.
- the resin-biological product complex can be directly treated with buffers to begin the first stage of purification and where the resin is carefully and artfully selected, lead to high purity of a biological product in one step.
- the resin-biological product complex is ready for downstream processing without the need to load a column intended for downstream processing and this can save substantial time for loading.
- the prolonged delay in loading columns as currently practiced is often detrimental to the stability of target biological product. This can be avoided using the instant invention.
- the instant invention offers to eliminate a very laborious and expensive step of first stage filtration or other means of separating the biological product harvested.
- a pouch to contain the resin, all steps generally required to remove resin such as decanting, centrifugation (low speed), filtration (coarse) can be avoided altogether.
- the pouches can be stringed together so that these are simply removed by picking up the end of the string at one end.
- the pouches can also, then, be packed directly in a column for elution as if this were loose resin. Since the pouches containing the resin can be pre-washed to remove the resin of particle size smaller than the porosity of the filter that forms the pouch, the losses of bound biological product to resin will be eliminated.
- the pouches can be washed and re-used, perhaps requiring a sterilization step if these are used during the bioreaction cycle, a chemical can achieve the sterilization similar to what is used in the sanitization of the chromatography column. This method of holding the resin in a pouch further reduces any loss of resin and saves additional costs.
- the instant invention describes a novel method of biological product purification wherein all those steps which are expensive and time consuming are obviated;
- the method of biological product purification involves adding to a solution of biological product ready for purification, a resin contained in a pouch that is the first resin to be used in the process of purification. Once the biological product binds completely to the resin, the resin is packed into a purification column.
- This method of loading the biological product in a purification column is more efficient than the traditional method of calculating the capacity of binding of resin and thus determining the volume of resin used.
- miscalculations since the binding of the biological product to the resin is dependent on many factors, e.g., the physicochemical characteristics of the liquid loaded.
- the instant invention allows for a perfect match of the binding capacity to the quantity of the biological product bound, as it is possible to monitor the concentration of the unbound concentration of the biological product. Once the quantity of resin used is such that the concentration of the biological product in the nutrient medium is reduced to a pre-determined level, it is assumed that all protein has been bound.
- the instant invention provides a method of extraction of solubilized inclusion bodies by lysing the cells in the bioreactor, solubilizing the inclusion bodies and capturing them with a resin to remove them from the bioreactor.
- This application substantially reduces the cost of manufacturing of proteins, which are expressed as inclusion bodies.
- the instant invention offers a solution to replace all of these steps with a single short step with a time savings of at least 50% in the overall process time and material savings of about 30% and improved yields of about 20%.
- FIG. 1 A first figure.
- FIG. 1 shows a preferred embodiment of the invention.
- the bioreactor consists of a two dimensional disposable flexible bag ( 1 ) resting on a support surface ( 10 ), which is capable of being tilted and further resting on a frame ( 9 ), a means of gassing consisting of a gas inlet ( 2 ), a gas filter ( 3 ) and a sparging tube ( 4 ).
- the flexible bag ( 1 ) further contains a gas outlet ( 5 ), a nutrient medium inlet ( 6 ), a liquid drain ( 14 ) controllable by a stopcock ( 13 ), a means of heating ( 8 ) the support surface ( 10 ) a means of agitating the nutrient medium comprising a flapper ( 7 ) that compresses on the flexible bag ( 1 ) intermittently; also provided in the preferred embodiment of the invention is a pouch ( 12 ) with a resin inlet/outlet ( 11 ) to add or remove the resin.
- the above-preferred embodiment of a bioreactor design would be useful in the manufacture of all types of biological products using all types of cells and organisms.
- the bioreactor is operated by first adding a fixed volume of a nutrient medium to the flexible bag, which would generally be supplied, pre-sterilized by gamma radiation.
- the nutrient medium may be sterile filtered directly into the bag for convenience.
- the bag would rest on a supportive surface that can be tilted if needed. Generally, for bag sizes of up to 36 inches, this may not be necessary; otherwise the support surface can be raised on one side by an angle of 0.1 to 5 degrees.
- This slight tilt of the supportive surface adds potential energy to the nutrient medium and causes it to draw more towards the flapper ( 7 ).
- the flapper mechanism is turned on resulting in the flapper compressing on the flexile bag at one end of the bag. This compression produces a wave inside the bag that travels to the other end of the bag and then resturns after stricking the other end of the bag; a slight tilt, if utilized, assures that there is no accumulation of unmixed media at the other end of the bag opposite to the end of bag being compressed periodically.
- the flapper would generally be operated at a rate of 25-60 rpm depending on the volume of nutrient medium, and the size of the bag used. Generally, the flexible bag would be filled to about 60% of the capacity.
- the heating element ( 8 ) is turned on to achieve a desire temperature inside the bag. Sensors may be attached to the bag to record the temperature and connect these sensors to a feedback heating mechanism that would assure maintenance of an appropriate temperature such as 37 C. These sensors are not shown in FIG. 1 as they are customary and generically available. Alternately, a sample of nutrient medium may be drawn to measure its characteristics. Once the temperature reaches the desired level, a biological culture of a recombinant organism such as Chinese Hamster Ovary cell or E. coli would be added to the nutrient medium through the nutrient medium inlet and the bag allowed mixing. Alternately, the biological culture may be added at any time, even before adding the nutrient medium. The gas is turned on to begin sparging of the nutrient medium at a rate predetermined to be suitable for the specific process.
- the flow rate would be approximately 0.8 to 1 vvm of compressed air.
- the key to achieving best aeration and the highest KLA value is to allow the bag to inflate only slightly, to allow sufficient surface for the sparged air to escape, yet not cause pressurization of the bag. It is for this reason that the air outlet is carefully controlled for the outlet rate.
- optical density of bacterial culture or the cell density, dissolved oxygen and pH can be carefully monitored to assure the optimal condition for the expression of biological products in the nutrient medium. While the preferred embodiment would function only when the biological product is present in a solution form in nutrient medium, the biological processes that produce an inclusion body can also benefit from the instant invention if the cells are chemically lysed and the inclusion bodies solubilized.
- solubilized inclusion bodies can be loaded onto resin columns to perform refolding of proteins and thus there exist a large number of resins that would quickly and efficiently bind solubilized inclusion bodies.
- the instant invention is applicable to bacterial production even if they do not directly express soluble proteins.
- the process of manufacture of the biological products would invelve a chemical treatment to lyse the cells and then chemically solubilize the inclusion bodies prior to moving to the resin-binding step.
- the next step is to calculate the amount of resin needed to bind the biological product based on the concentration of the biological product in the nutrient medium.
- the resin is first prepared by removing resin particles that would be smaller than the pore size of the pouch (which would generally be about pb 3 ⁇ ).
- the sized resin is then introduced directly into the pouch through the pouch inlet and the nutrient medium allowed to agitate while the gassing is turned off. [It is expected that more than 99.9% of all resins used would have particle size larger than 3 ⁇ and thus no bleeding of resin will take place back into bioreactor ⁇ . Samples of nutrient medium are taken periodically to ascertain when the majority of the biological product has become bound to the resin inside the pouch.
- the drain port is operated by opening the stopcock and the culture media along with cells or organisms is allowed to flow out under gravity force.
- gravity flow is a major energy and time saving feature. In those instances where thousands of liters of nutrient media is used, any mechanical process for moving or handling nutrient media would be an inefficient process compared to gravity flow resulting in discarding of nutrient media.
- the manufacturer would have two options, one is to fill the bag with a buffer that would not cause the breaking of the binding between the biological product and the resin but would be generally effective in removing other smaller molecular weight components that might have become attached to the resin.
- the bag would then be agitated for a brief period of time and the buffer (which may even be water) drained out again by turning on the stopcock in the drain port. This would be the washing step.
- This step can be skipped and the bag filled with a buffer solution that would cause the breakdwon of the binding between the biological product and the resin. This would generally require a pH adjustment, a polarity adjustment and an electrolyte adjustment.
- the bioreactor is operated as provided in the embodiment above, except that the resin is added in the beginning of the bioreaction cycle to bind the biological product as it is expressed in the nutrient medium.
- This technique would then not be applicable to situations where the biological product is expressed as inclusion bodies. Smaller portions of resins are added periodically to the pouch in quantities just enough to bind the expressed biological product. This is necessary to prevent blockage of binding sites on the resin by other adsorbable materials in the nutrient medium, and to minimize the losses of nutrient elements to the resin, which should be replenished periodically.
- This method would be analogous to a traditional perfusion system except that the steps to replace the media, filtering it and replacing media with fresh media are obviated.
- This method is also a useful method to reduce the toxicity of the biological product to the host cells expressing the biological product. This method would work well for those biological products that can stay stab le when bound to resin as the complex between the biological product and the resin is kept in the pouch until the end of the bioreaction cycle.
- a further improvement is made in the preceding embodiment where the resin is added periodically.
- the resin is first removed that has become equilibrated with the biological product prior to adding fresh resin. This allows the removal of biological products bound to resin and avoids any instability problems due to keeping the conjugate of biological product and resin in the bioreactor for a prolonged time.
- the resin is removed readily by inserting a tube from the inlet/outlet to the pouch, which would generally be of a cylindrical shape and aspirating the resin, using vacuum. It is noteworthy that the size of the tube inserted is such that it fits snugly inside the tubular (cylindrical) pouch pushing the resin as the tube goes down and forcing the resin into the tube by mechanical displacement. Once the tube has settled down deep into the pouch, a vacuum is applied carefully avoiding aspirating any substantial quantities of the nutrient medium.
- the resin collected periodically can be kept at a more suitable temperature and combined at an appropriate time or processed individually.
- a further application is provided to bioreaction systems wherein the biological product is expressed inside the cell as an inclusion body.
- the bioreactor is operated as described above but instead of monitoring the concentration of biological product, the optical density of the biological culture is monitored. When a predetermined optical density is reached, the bioreaction process is stopped, the cells lysed chemically and the resultant inclusion bodies solubilized, all inside the bioreactor. Once a suitable solubilization of the inclusion body has been achieved, an appropriate mixture of resins is added to bind the solubilized inclusion bodies.
- the rest of the method is then followed for the separation of the nutrient medium, detachment of solubilized inclusion bodies from the resin and further purification. It is further noted that there may not be a need for further filtration to remove cells, as they would all have been lysed.
- the protein can be refolded within the bioreactor using appropriate refolding buffer after detaching the solubilized inclusion bodies from the resin.
- the bioreactor container offers a remarkable opportunity to extend the use to refold proteins eliminating the need for operating another vessel. It is almost ironic that in general practice, the volume of the refolding solution is generally equal to the nutrient medium, making the bioreactor and ideal choice for protein refolding.
- a further utility of the instant invention is provided wherein the operation of bioreactor as described above produces a mixture of the biological product and the resin and this complex can be directly loaded into chromatography purification columns avoiding another cumbersome and time-consuming step.
- the invention provides bioreactors and methods, which are universal in the sense that the invention is suitable and adaptable for processing a variety of compositions, including both biologic and non-biologic components.
- an inventive bioreactor designed for use with mammalian cells for example, may be used for culturing bacteria, allowing ease of manufacturing.
- liquid is intended to encompass compositions, which include biologic components as described herein.
- compositions comprising non-biologic components include, but are not limited to, those which comprise microcarriers (e.g., polymer spheres, solid spheres, gelatinous particles, microbeads, and microdisks that can be porous or non-porous), cross-linked beads (e.g., dextran) charged with specific chemical groups (e.g., tertiary amine groups), 2D microcarriers including cells trapped in nonporous polymer fibers, 3D carriers (e.g., carrier fibers, hollow fibers, multicartridge reactors, and semi-permeable membranes that can comprising porous fibers), microcarriers having reduced ion exchange capacity, cells, capillaries, and aggregates (e.g., aggregates of cells).
- microcarriers e.g., polymer spheres, solid spheres, gelatinous particles, microbeads, and microdisks that can be porous or non-porous
- cross-linked beads e.
- the biological components that may be processed in accordance with the invention include, but are not limited to, cell cultures derived from sources such as animals (e.g., hamsters, mice, pigs, rabbits, dogs, fish, shrimp, nematodes, and humans), insects (e.g., moths and butterflies), plants (e.g., algae, corn, tomato, rice, wheat, barley, alfalfa, sugarcane, soybean, potato, lettuce, lupine, tobacco, reapeseed (canola), sunflower, turnip, beet cane molasses, seeds, safflower, and peanuts), bacteria, fungi, and yeast.
- animals e.g., hamsters, mice, pigs, rabbits, dogs, fish, shrimp, nematodes, and humans
- insects e.g., moths and butterflies
- plants e.g., algae, corn, tomato, rice, wheat, barley, alfalfa, sugarcane, soybean, potato,
- Illustrative animal cells include Chinese hamster ovary (CHO), mouse myeloma, M0035 (NSO cell line), hybridomas (e.g., B-lymphocyte cells fused with myeloma tumor cells), baby hamster kidney (BHK), monkey COS, African green monkey kidney epithelial (VERO), mouse embryo fibroblasts (NIH-3T3), mouse connective tissue fibroblasts (L929), bovine aorta endothelial (BAE-1), mouse myeloma lymphoblastoid-like (NSO), mouse B-cell lymphoma lymphoblastoid (WEHI 231), mouse lymphoma lymphoblastoid (YAC 1), mouse fibroblast (LS), hepatic mouse (e.g., MC/9, NCTC clone 1469), and hepatic rat cells (e.g., ARL-6, BRL3A, H4S, Phi 1 (from Fu5 cells)).
- Illustrative human cells include retinal cells (PER-C6), embryonic kidney cells (HEK-293), lung fibroblasts (MRC-5), cervix epithelial cells (HELA), diploid fibroblasts (WI38), kidney epithelial cells (HEK 293), liver epithelial cells (HEPG2), lymphoma lymphoblastoid cells (Namalwa), leukemia lymphoblastoid-like cells (HL60), myeloma lymphoblastoid cells (U 266B1), neuroblastoma neuroblasts (SH-SY5Y), diploid cell strain cells (e.g., propagation of poliomyelitis virus), pancreatic islet cells, embryonic stem cells (hES), human mesenchymal stem cells (MSCs, which can be differentiated to osteogenic, chondrogenic, tenogenic, myogenic, adipogenic, and marrow stromal lineages, for example), human neural stem cells (NSC), human histioc
- Cells from insects e.g., baculovirus and Spodoptera frugiperda ovary (Sf21 cells produce Sf9 line)
- cells from plants or food may also be cultured in accordance with the invention.
- Cells from sources such as rice (e.g., Oryza sativa, Oryza sativa cv Bengal callus culture, and Oryza sativa cv Taipei 309), soybean (e.g., Clycine max cv Williams 82), tomato ( Lycopersicum esculentum cv Seokwang), and tobacco leaves (e.g., Agrobacterium tumefaciens including Bright Yellow 2 (BY-2), Nicotiana tabacum cv NT-1, N. tabacum cv BY-2, and N. tabacum cv Petite Havana SR-1) are illustrative examples.
- Bacteria, fungi, or yeast may also be cultured in accordance with the invention.
- Illustrative bacteria include Salmonella, Escherichia coli, Vibrio cholerae, Bacillus subtilis, Streptomyces, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas sp, Rhodococcus sp, Streptomyces sp, and Alcaligenes sp.
- Fungal cells can be cultured from species such as Aspergillus niger and Trichoderma reesei
- yeast cells can include cells from Hansenula polymorpha, Pichia pastoris, Saccharomyces cerevisiae, S.
- Illustrative products include proteins (e.g., antibodies and enzymes), vaccines, viral products, hormones, immunoregulators, metabilites, fatty acids, vitamins, drugs, antibiotics, cells, and tissues.
- Non-limiting examples of proteins include human tissue plasminogen activators (tPA), blood coagulation factors, growth factors (e.g., cytokines, including interferons and chemokines), adhesion molecules, Bcl-2 family of proteins, polyhedrin proteins, huyman serum albumin, scFv antibody fragment, huyman erythropoietin, mouse monoclonal heavy chain 7, mouse IgG 2b/k , mouse IgG1, heavy chain mAb, Bryondin 1, human interleukin-2, human interleukin-4, ricin, human ⁇ 1-antitrypisin, biscFv antibody fragment, immunoglobulins, human granulocyte, stimulating factor (hGM-CSF), hepatitis B surface antigen (HBsAg), human lysozyme, IL-12, and mAb against HBsAg.
- tPA tissue plasminogen activators
- blood coagulation factors e.g.,
- plasma proteins include fibrinogen, alpha-fetoprotein, transferrin, albumin, complement C3 and alpha-2-macroglobulin, prothrombin, antithrombin III, alpha-fetoprotein, complement C3 and fibrinogen, insulin, hepatitis B surface antigen, urate oxidase, glucagon, granulocyte-macrophage colony stimulating factor, hirudin/desirudin, angiostatin, elastase inhibitor, endostatin, epidermal growth factor analog, insulin-like growth factor-1, kallikrein inhibitor, ⁇ 1-antitrypsin, tumor necrosis factor, collagen protein domains (but not whole collagen glycoproteins), proteins without metabolic byproducts, human albumin, bovine albumin, thrombomodulin, transferrin, factor VIII for hemophilia A (i.e., from CHO or secreted alkaline phosphatase, aprotinin, histamine, leukot
- Enzymes may be produced from a variety of sources using the invention.
- Non-limiting examples of such ensymes include YepACT-AMY-ACT-X24 hybrid ensyme from yeast, Aspergillus oryzae ⁇ -amylase, xylanases, urokinase, tissue plasminogen activator (rt-PA), bovine chymosin, glucocerebrosidase (therapeutic enzyme for Gaucher's disease, from CHO), lactase, trypsin, aprotinin, huyman lactoferrin, lysozyme, and oleosines.
- Vaccines also may be produced using the invention.
- Non-limiting examples include vaccines for prostate cancer, human papilloma virus, viral influenza, trivalent hemagglutinin influenze, AIDS, HIV, malaria, anthrax, bacterial meningitis, chicken pox, cholera, diphtheria, haemophilus influenze type B, hepatitis A, hepatitis B, pertussis, plague, pneumococcal pneumonia, polio, rabies, human-rabies, tetanus, typhoid fever, yellow fever, veterinary-FMD, New Castle's Disease, foot and mouth disease, DNA, Venezuelan equine encephalitis virus, cancer (colon cancer) vaccines (i.e., prophylactic or therapeutic), MMR (measles, mumps, rubells), yellow fever, Haemophilus influenzae (Hib), DTP (diphtheria and tetanus vaccines, with per
- Recombinant subunit vaccines also may be produced, such as hepatitis B virus envelope protein, rabies virus glycoprotein, E. coli heat labile enterotoxin, Norwalk virus capsid protein, diabetes autoantigen, cholera toxin B subunit, cholera toxin B and dA2 subunits, rotavirus enterotoxin and enterotoxigenic E. coli , fimbrial antigen fusion, and porcine transmissible gastroenteritis virus glycoprotein S.
- Viral products also may be produced.
- Non-limiting examples of viral products include Sindbis, VSV, oncoma, hepatitis A, channel cat fish virus, RSV, corona virus, FMDV, rabies, polio, reo virus, measles, and mumps.
- Hormones also may be produced using the invention.
- hormones include growth hormone (e.g., human growth hormone (hGH) and bvine growth hormone), growth factors, beta and gamma interferon, vascular endothelial growth factor (VEGF), somatostatin, platelet-derived growth factor (PDGF), follicle stimulating hormone (FSH), luteinizing hormone, human chorionic hormone, and erythropoietin.
- growth hormone e.g., human growth hormone (hGH) and bvine growth hormone
- growth factors e.g., human growth hormone (hGH) and bvine growth hormone
- growth factors e.g., human growth hormone (hGH) and bvine growth hormone
- VEGF vascular endothelial growth factor
- PDGF platelet-derived growth factor
- FSH follicle stimulating hormone
- luteinizing hormone luteinizing hormone
- human chorionic hormone erythropoietin.
- Immunoregulators also may be produced.
- immunoregulators include interferons (e.g., beta-interferon (for multiple sclerosis), alpha-interferon, and gamma-interferon) and interleukins (such as IL-2).
- Metabolites e.g., shikonin and paclitaxel
- fatty acids i.e., including straight-chain (e.g., adipic acid, Azelaic acid, 2-hydroxy acids), branched-chain (e.g., 10-methyl octadecanoic acid and retinoic acid), ring-including fatty acids (e.g., coronaric acid and lipoic acid), and complex fatty acids (e.g., fatty acyl-CoA)) also may be produced.
- straight-chain e.g., adipic acid, Azelaic acid, 2-hydroxy acids
- branched-chain e.g., 10-methyl octadecanoic acid and retinoic acid
- ring-including fatty acids e.g., coronaric acid and lipoic acid
- complex fatty acids e.g., fatty acyl-CoA
- the containers useful in the various embodiments of the invention may be of any size suitable for containing a liquid.
- the container may have a volume between 1-40 L, 40-100 L, 100-200 L, 200-300 L, 300-500 L, 500-750 L, 750-1,000 L, 1,000-2,000 L, 2,000-5,000 L, or 5,000-10,000 L.
- the container has a volume greater than 1 L, or in other instances, greater than 10 L, 20 L, 40 L, 100 L, 200 L, 500 L, or 1,000 L. Volumes greater than 10,000 L are also possible.
- the container volume will range between about 1 L and 1000 L, and more preferably between about 5 L and 500 L, and even more preferably between 5 L and 200 L.
- the components of the bioreactors and other devices described herein which come into contact with the culture medium or products provided thereby desirably comprise biocompatible materials, more desirably biocompatible polymers, and are preferably sterilizable.
- the containers desirably comprise flexible biocompatible polymer containers (such as collapsible bags), with the conduits also desirably comprising such biocompatible polymers.
- the flexible material is further desirably one that is USP Class VI certified, e.g., silicone, polycarbonate, polyethylene, and polypropylene.
- Non-limiting examples of flexible materials include polymers such as polyethylene (e.g., linear low density polyethylene and ultra low density polyethylene), polypropylene, polyvinylchloride, polyvinyldichloride, polyvinylidene chloride, ethylene vinyl acetate, polycarbonate, polymethacrylate, polyvinyl alcohol, nylon, silicone rubber, other synthetic rubbers and/or plastics.
- portions of the flexible container may comprise a substantially rigid material such as a rigid polymer (e.g., high density polyethylene), metal, and/or glass.
- the containers comprise biocompatible materials, more desirably biocompatible polymers.
- the container may be supported by or may line an inner surface of a support structure, e.g., the outer support housing having container-retaining sidewalls.
- a support structure e.g., the outer support housing having container-retaining sidewalls.
- the invention may be practiced using non-collapsible or rigid containers or conduits.
- the containers may have any thickness suitable for retaining the culture medium there within, and may be designed to have a certain resistance to puncturing during operation or while being handled.
- the walls of a container may have a total thickness of less than or equal to 250 mils (1 mil is 25.4 micrometers), less than or equal to 200 mils, less than or equal to 100 mils, less than or equal to 70 mils (1 mil is 25.4 micrometers), less than or equal to 50 mils, less than or equal to 25 mils, less than or equal to 15 mils, or less than or equal to 10 mils.
- the container may include more than one layer of material that may be laminated together or otherwise attached to one another to impart certain properties to the container. For instance, one layer may be formed of a material that is substantially oxygen impermeable. Another layer may be formed of a material to impart strength to the container. Yet another layer may be included to impart chemical resistance to fluid that may be contained in the container.
- a container may be formed of any suitable combinations of layers.
- the container e.g., collapsible bag
- the container may include, for example, 1 layer, greater than or equal to 2 layers, greater than or equal to 3 layers, or greater than equal to 5 layers of material(s).
- Each layer may have a thickness of, for example, less than or equal to 200 mils, less than or equal to 100 mils, less than or equal to 50 mils, less than or equal to 25 mils, less than or equal to 15 mils, less than or equal to 10 mils, less than or equal to 5 mils, or less than or equal to 3 mils, or combinations thereof.
- the container preferably is seamless in order to improve its strength and avoid deposition of growing cells in the media.
- All or portions of the container also are desirably translucent, or more desirably transparent, to allow viewing of contents inside the container. The latter is preferred when it is desirable to irradiate the culture medium within the container.
- the instant invention is a type of separative bioreactor.
- MBR membrane bioreactors
- the MBR process was introduced by the late 1960s, as soon as commercial scale ultrafiltration (UF) and microfiltration (MF) membranes were available.
- UF ultrafiltration
- MF microfiltration
- the original process was introduced by Dorr-Olivier Inc. and combined the use of an activated sludge bioreactor with a cross-flow membrane filtration loop.
- the flat sheet membranes used in this process were polymeric and featured pore sizes ranging from 0.003 to 0.01 ⁇ m.
- MBR transmembrane pressure
- side-stream MBR separation device located external to the reactor
- TMP transmembrane pressure
- submerged MBR systems are usually preferred to sidestream configuration, especially for domestic wastewater treatment.
- the submerged configuration relies on coarse bubble aeration to produce mixing and limit fouling.
- the energy demand of the submerged system can be up to 2 orders of magnitude lower than that of the sidestream systems and submerged systems operate at a lower flux, demanding more membrane area.
- aeration is considered as one of the major parameter on process performances both hydraulic and biological. Aeration maintains solids in suspension, scours the membrane surface and provides oxygen to the biomass, leading to a better biodegradability and cell synthesis.
- the side stream configuration can be installed at low level in a plant building. Membrane replacement can be undertaken without specialist equipment, and intensive cleaning of individual banks can be undertaken during normal operation of the other banks and without removing the membranes modules from the installation.
- Argonne scientists recently used electrical force to transport organic acids away from the biocatalyst across an ion-exchange membrane and into a concentrate chamber, very similar to normal metabolism processes for handling acids.
- EDI electrodeionization
- EDI is an established commercial technology for producing high-purity water.
- Argonne scientists modified EDI so that it could be used for desalination of chemical and agricultural products.
- researchers molded loose ion exchange resin beads into a porous resin wafer, enabling the capture of charge salts and acids at dilution levels with high-energy efficiency and significantly reduced waste streams compared to conventional processing. This became the basis for the Argonne's separative bioreactor.
- every type of membrane separative bioreactor disclosed utilized a similar principle of forcing a biological product across a membrane.
- the instant invention differs significantly by roviding a device capable of containing a resin capable of binding the target biological product, the membrane holding the resin has no specific function except to keep the resin separated form the bulk liquid in the bioreactors and also to prevent larger scale organisms or cells to contact the resin.
- the separation function in the instant invention is provided by a non-specific, non-electrically driven reaction.
- a separative bioreactor comprising an anode and a cathode, a plurality of reaction chambers each having an inlet and an outlet and each including a porous solid ion exchange wafer having ion-exchange resins, each of the reaction chambers being interleaved between a cation exchange membrane and an anion exchange membrane or between either a cation or an anion exchange membrane and a bipolar exchange membrane, a plurality of product chambers each having an inlet and an outlet and separated from one of the reaction chambers by either a cation or an anion exchange membrane, recirculation mechanism for transporting material between the reaction chamber inlets and outlets and for transporting product between the product chamber inlets and outlets, and mechanism for supplying an electric potential between the anode and the cathode causing ions to be transported between chambers, whereby counterions retained or produced in each of the reaction chambers during the production of an ionizable organic product including product ions combine with oppositely charged ions to form molecules
- the U.S. Pat. No. 7,306,934 issued 11 Dec. 2007 discloses a porous solid ion exchange wafer for immobilizing biomolecules, said wafer comprising a combination of an biomolecule capture-resin containing a transition metal cation of +2 valence and an ion-exchange resin.
- the patent further discloses a separative bioreactor, comprising an anode and a cathode, a plurality of reaction chambers at least some being formed from a porous solid ion exchange wafers having a combination of art biomolecule capture-resin and an ion-exchange resin and having a genetically engineered tagged biomolecule immobilized on said biomolecule capture resin, each of said porous solid ion exchange wafers being interleaved between a cation exchange membrane and an anion exchange membrane, and mechanism for supplying an electric potential between the anode and the cathode.
- the instant invention does not rely on any features disclosed in this patent, nor any features of the instant invention are recited in this patent.
- the U.S. Pat. No. 7,799,548 issued 21 Sep. 2010 is for a method of in situ stripping a genetically tagged biomolecule from a porous solid ion exchange wafer in a bioreactor, the wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within the wafer and having a genetically tagged biomolecule immobilized on said biomolecule capture-resin, comprising contacting the porous solid ion exchange wafer in the bioreactor with a stripping fluid at a temperature and for a time sufficient to strip at least some of the genetically tagged biomolecule therefrom.
- This patent additionally claims method of in situ stripping a genetically tagged biomolecule from a porous solid ion exchange wafer in a bioreactor and thereafter regenerating a genetically tagged biomolecule onto the porous solid ion exchange wafer, the wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within the wafer and having a genetically tagged biomolecule immobilized on said biomolecule capture-resin thereon, comprising contacting the porous solid ion exchange wafer in the bioreactor with a stripping fluid at a temperature and for a time sufficient to strip at least some of the genetically tagged biomolecules therefrom, and thereafter contacting the stripped porous solid ion exchange wafer in the bioreactor with an effective amount of a genetically tagged biomolecules at a temperature and for a time sufficient to immobilize genetically tagged biomolecules on the charged capture resin.
- the instant invention does not rely on any disclosures made in this patent nor
- the U.S. Pat. No. 7,141,154 issued 28 Nov. 2006 discloses a method of continuously making an organic ester from a lower alcohol and an organic acid, comprising, introducing an organic acid or an organic salt into and/or producing an organic acid or an organic salt in an electrodeionization (EDI) stack having an anode and a cathode and a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membrane, providing mechanism for establishing an electric potential between the EDI anode and cathode, wherein at least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt, whereby an organic acid or organic salt present in the EDI stack disassociates into a cation and an anion with the anion migrating into an associated esterification chamber through an ani
- the patent additionally discloses an apparatus for manufacturing an organic ester, comprising an electrodeionization (EDI) stack having an anode and a cathode and a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and either a cation exchange membrane or a bipolar membrane, mechanism for establishing an electrical potential between said EDI anode and said cathode, at least some of said reaction chambers being esterification chambers or esterification chambers separated from an adjacent bioreactor chamber by an anion exchange membrane and/or an acid/base capture chamber, said bioreactor chambers each containing an ion exchange resin wafer capable of froming an organic acid or salt from an ionizable fluid flowing therein, said esterification chambers each containing an ion exchange resin wafer capable of forming an organic ester and water from a lower alchol and an anion of an organic acid or salt, a source of anions supplied directly to said este
- porous solid ion exchange wafer for immobilizing biomolecules, said wafer comprising a combination of an biomolecule capture-resin containing a transition metal cation of +2 valence; it also teaches a separative bioreactor, comprising an anode and a cathode, a plurality of reaction chambers at least some being formed from a porous solid ion exchange wafers (above) having a combination of art biomolecule capture-resin and an ion-exchange resin and having a genetically engineered tagged biomolecule immobilized on said biomolecule capture resin, each of said porous solid ion exchange wafers being interleaved between a cation exchange membrane and an anion exchange membrane, and mechanism for supplying an electric potential between the anode and the cathode.
- the instant invention is significantly different from the separative bioreactor taught above.
- the instant invention does not require use of electrodes, or resins with a transition cation of +2 valence or immobilized metal ion affinity chromatography.
- EDI electrospray ionization
- specific use of tags and limited nature of solvents to remove the captured biological products, mainly enzymes makes this patent treaching distinctly different from the instant invention.
- the prior art can not be used with the preferred embodiment of the instant invention wherein flexible bioreactors are taught.
- the prior art requires additional hardware that adds substantial cost to the processing of manufacturing biological products while the instant invention combines several processes into one without adding any new cost element.
- the prior art is also specific to certain types of molecules while the instant invention is generic to every type of biological product.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Sustainable Development (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Clinical Laboratory Science (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Central Air Conditioning (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
A harvesting device for capturing a biological product directly by binding the secreted biological product with a resin, discarding the nutrient medium and eluting the biological product as a concentrated solution, eliminating the steps of sterile filtration and volume reduction, thus allowing one to combine the steps of recombinant expression and separation of a biological product. The method allows loading of resin for column-purification, eliminating all steps of perfusion process and maintaining a sink condition of a toxic product in nutrient medium to optimize productivity of host cells. The instant invention also allows harvesting of solubilized inclusion bodies after the cells have been lysed and refolding of proteins inside the bioreactor.
Description
- This application is a continuation of U.S. patent application Ser. No. 13/092,955, filed on Apr. 24, 2011, entitled SEPARATIVE BIOREACTOR, the entire contents of which is incorporated herein by reference.
- The instant invention relates to a bioreactor design intended to capture and purify biological products within the bioreactor.
- The present invention relates to a novel bioreactor design for expressing and separating a biological product from other components in a bioreaction borth, which combines the step of expressing and separating within the bioreactor by binding the biological product with a resin within a bioreactor, discarding the nutrient medium and eluting the biological product as a concentrated solution; this allows elimination at least two steps in the separation and purification of biological products—filtration or centrifugation to remove cell culture and ultrafiltration for volume reduction—and possibly three steps, including loading of biological products on the purification columns.
- For products which are expressed as inclusion bodies, the instant invention allows cell lysis, inclusion body solubilization and protein refolding within the bioreactor.
- The instant invention significantly reduces the process time and cost while enhancing the yield by reducing degradation of biological products during manufacturing. Additional benefits of the instant invention include avoiding perfusion process and reducing toxicity of the expressed biological products to cell culture. No such invention exists in the prior art of bioreactors.
- Downstream processing involves steps for cleaning up crude biological products to yield high purity products. Traditionally, these steps involve using chromatography columns packed with highly specialized resings to capture and purify the desired biological products by the process of elution. With an exponential rise in the number of biological products being developed and marketed, there have been remarkable developments in the field of downstream processing. These developments have however not caught up with the developments in the upstream processing. A few years ago, an yield of 0.25 G of biological product per liter expressed by CHO cells was considered very high. Today, we are hovering yields around 10 G/L making it possible to accumulate a very large quantity of biological products, particularly as the sizes of bioreactors have increased to thousands of liters.
- There are three steps that connect the upstream and downstream processing. First, the culture media must be filtered using fine filters (e.g., 0.22 microns) to remove cells (CHO cells have average size of 5 microns). This step utilizes an array of filters since the cells are likely to choke the filter surface easily and also require installing vessels that would receive the filtrate. This requires vessels of thousands of liters of capacity to match the size of the bioreactors. The next step is the reduction of the volume of filtrate since it is not possible to load such large volumes on columns that have limited flow rate. This is the stage where most often a cross-flow type filtration is used, again with a large bank of filters to complete the concentration process as quickly as possible.
- The mechanism of cross flow filtration places severe pressure on the solution and causes breakdown and precipitation of biological products resulting in losses of generally 10-20% at this stage. Both of these processes take a very long time and during this processing it is not possible to keep the biological product solution at a lower temperature resulting in the degradation of biological product as well.
- The third step is to load the concentrated solution in a chromatography column containing a binding media, a specific resin with affinity for the target biological product. Even though the volume of liquid has been reduced considerably at this stage, the loading steps, nevertheless, take substantial time to complete the loading.
- The time and cost-consuming steps of filtration, chromatography and purification slow down the manufacturing process and add substantial capital cost requirement to establish cGMP-grade manufacturing operations.
- Bioreactors used in the upstream processing are vessels that allow growth of cell culture to express biological products and for reasons historic and traditional, a clear demarcation line exists between the expression of biological product and its purification. For this reason, no innovations have been made to add additional functions to the design of bioreactors while they do provide a large investment in a vessel that could possibly have multiple uses.
- There is a large unmet need to stream line the entire process of biological manufacturing of products where the cost of manufacturing can be reduced substantially by combining several traditional steps in a single vessel, the bioreactor.
- The instant invention discloses an innovative bioreactor design that accomplishes this goal and is applicable universally to all types of bioreaction applications.
- There are two major types of recombinant expressions of biological products. One is the soluble form of biological product that is secreted into nutrient medium by the cells as most often seen in the use of Chinese Hamster Ovary cells and the other is the retention of biological product inside the cell forming an inclusion body, as most often seen in the case of using E. Coli for expression. Recent advances in genetic engineering have been able to encode the genes of bacteria that would secrete soluble proteins instead of retain them inside as inclusion bodies. This is to avoid the cumbersome process of cell-lysis and inclusion body solubilization.
- Historically, biological products expressed in nutrient medium are separated form the medium by first removing the biological culture by a process of centrifugation or filtration. This step is followed by reducing the volume of medium to about 1/10 to 1/20 to make it possible to load the liquid within a reasonable time on purification columns. While these process steps have been widely validated and function very well, the practicality of using these steps becomes very difficult when large volumes of medium is handled.
- Today, it is not uncommon to see bioreactors processing thousands and even hundreds of thousands of liters of medium at a time. To accommodate this, companies use very large-scale filtration and volume reduction methods that cost millions of dollars to install and millions more to operate and maintain. There is a very large unmet need to simplify these processes, reduce the cost of production and make the technology accessible to thousands of researchers and smaller companies who cannot afford such large investments. Circumventing these process hurdles would also make it possible to produce drugs based on these biological drugs cheaper to manufacture and thus increase their affordability to billions of people around the world who are not able to afford these drugs.
- The key to the instant invention lies in following a contrarian teaching. While all manufacturers follow the path described above involving removal of components from a broth ready for purification, it would be prudent to examine the utility of first removing the target biological product instead and discarding what is not needed, instead of removing step by step what is not needed, as currently practiced.
- The instant invention capitalizes on the recent availability of many resins that are capable of binding biological products in large quantities. Most modern resins would bind between 20-125 mg of biological product per mL of resin. Many of these resins are highly specific to the biological products and many of them can be combined to remove any type and quantity of a biological product from a solution by a simple process of physicochemical binding that is strong enough to retain the biological products attached to the resin while the culture medium is removed from the bioreactor. The art has also advanced significantly in the field of biological product purification wherein we now have a much better ability to elute these bound biological products from resins by adjusting the pH, the ionic strength or other characteristics of the eluting buffer to break the binding between the resin and the biological product. This allows removal of biological products from a bioreactor as a highly concentrated solution that is ready for further purification and in some instances it can even be the final product for use.
- The bioreactor design of the instant invention is novel, and overcomes the most significant hurdles in the namufacture of biological products by applying a contrarian teaching in the current method of the manufacture of these products.
-
FIG. 1 depicts a flexible two-dimensional disposable bioreactor displaying the installation of the pouch used for adding resin to the bioreactor to separate the biological products form the bioreactor. - Affinity Chromatography is a separation techinque based upon molecular conformation, which frequently utilizes application specific resins. These resins have ligands attached to their surfaces, which are specific for the compounds to be separated. Most frequently, these ligands function in a fashion similar to that of antibody-antigen interactions. This “lock and key” fit between the ligand and its target compound makes it highly specific.
- Many membrane proteins are glycobiological products and can be purified by lectin affinity chromatography. Detergent-solubilized proteins can be allowed to bind to a chromatography resin that has been modified to have a covalently attached lectin.
- Immunoaffinity chromatography resin employs the specific binding of an antibody to the target biological product to selectively purify the biological product. The procedure involves immobilizing an antibody to a column material, which then selectively binds the biological product, while everything else flow through.
- Inclusion bodies upon solubilization exposes hydrophobic groups while there remain chemical groups on denatured proteins capable of binding to resin (singh and Panda, 2005), allowed separation of these proteins during the stages of refolding to native state.
- Some of the state of the art resins binding technologies include:
-
- Novozymes's newly patented Dual Affinity Polypeptide technology platform replaces Protein A process steps with similar, but disposable, technology.
- Stimuli responsive polymers enable complexation and manipulation of biological products and allow for control of polymer and biological product complex solubility, which results in the direct capture of the product without centrifuges of Protein A media, from Millipore Corp.
- Mixed mode sorbents to replace traditional Protein A and ion exchange, for improved selectivity and capacity with shorter residence times. These media, with novel chemistries, include hydrophobic charge induction chromatography, such as MEP, and Q and S HyperCel from Pall Corp.
- Monoliths, involving chromatography medium as a single-piece homogeneous column, such as Convective Interaction Media monolithic columns from BIA Separations.
- Simulated moving beds, involving multicolumn countercurrent chromatography, such as BioSMB from Tarpon Biosystems.
- Protein G (multiple vendors).
- Single domain camel-derived (camelid) antibodies to IgG, such as CaptureSelect from BAC.
- New inorganic ligands, including synthetic dyes, such as Mabsorbent A1P and A2P from Prometic Biosciences.
- Expanded bed adsorption chromatography systems, such as the Rhobust platform from Upfront Chromatography.
- Ultra-durable zirconia oxide-bound affinity ligand chromatography media from ZirChrom Separations.
- Fe-receptor mimetic ligand from Tecnoge.
- ADSEPT (ADvanced SEParation Technology) from Nysa Membrane Technologies.
- Membrane affinity purification system from PurePharm Technologies.
- Custom-designed peptidic ligands for affinity chromatography from Prometic Biosciences, Dyax, and others.
- Protein A- and G-coated magnetic beads, such as from Invitrogen/Dynal.
- New affinity purification methods based on expression of biological products of MAbs as fusion biological products with removable portion (tag) having affinity for chromatography media, such as histidine) tages licensed by Roche (Genentech).
- Protein A alternatives in development, including reverse micelles (liposomes), liquid-liquid extraction systems, crystallization, immobilized metal affinity chromatography, and novel membrane chromatography systems.
- Plug-and-play solutions with disposable components (e.g., ReadyToProcess), process development ÄKTA with design of experiments capability, and multicolumn continuous capture, from GE Healthcare.
- It is surprising that while great advances have been made in the design of resins available to capture biological products, these have been only used in the downstream processing of purification. Adding resins to a crude mixture of biological products and host cells would be no different than the current process that simply concentrates the same medium and loads it onto columns. The only difference would be that when practiced at the end of the bioreaction cycle, this would require sufficient resin to bind almost the entire biological product. Assuming that a cell line produces G/L of protein and the binding capacity is 0.1 G/mL, this will require 10 L of resin when operating a 1000 L bioreactor. When operating the instant invention to replace a perfusion system or continuously remove the biological product, smaller quantities of resins are required as they can be removed from the bioreactor and reused. However, if we examine the lifecycle of resins, the total cost of resin use would still be the same. With the cost of resins dropping substantially and the possibility of using non-specific binding resins reduces the cost burden of processing the entire yield at one time. The cost savings in the instant invention comes in the reduced time of approximately 50% in processing, allowing manufacturers to prepare a larger number of batches reducing the cost or production. Additionally, one embodiment of the invention may be practiced by using the least expensive resins to generically bind all soluble organic components and then elute them instantly using a buffer without any concern for the profile of elution to separate these components. Such generic resins are very inexpensive and may not even have to be reused.
- The instant invention offers four methods of biological product manufacturing and purification. The first method is the separation of a biological product at the end of the bioreaction cycle; the second method is the removal of biological product continuously while the resin remains inside the bioreactor and the third method involved periodically removing the resin and processing it outside the bioreactor. In the fourth method, the cells are lysed to expose inclusion bodies, which are then solubilized prior to contacting them with resin.
- The first method would be the most commonly practiced art; the second method would be needed to obviate the toxic effects of expressed biological products and to replace a perfusion bioreaction method and the third method would be practiced when the biological product may not be stable in the complex stage or where it is desired to re-use the resin (particularly where the cost of the resin is high). The fourth method would be useful for bacterial expressions that involve formation of inclusion bodies and while newer constructs allow expression of soluble products, there remain a large number of existing methods that inevitably require handing inclusion bodies.
- One of the main objectives of the instant invention is to eliminate certain unit processes, which are cumbersome and expensive. The instant invention introduces a concept of filtering out biological culture used in the bioreaction. Most bacteria would be about 8μ in diameter and the Chinese Hamster Ovary cells about 5μ in diameter. The binding resin is separated from the culture broth by a container device (pouch) that is porous and the porosity of the walls of the container is kept at below 5μ to prevent entry of any organism or cell into cnad contacting the resin. This prevents any physical adsorption of cells or organisms on the resin and fouling it. Additionally, during the drain cycle, when the liquid content of the bioreactor is drained, this removes all cells and organisms. Of course, any components of lysed cells or organisms would indeed enter the pouch and contact with the resin and will be retained by the resin. But this too is a process that is common with the present practice. In some instances, it may be necessary to use the pouches with larger diameter of 30μ or higher and this may cause some deposition of cells on the resin. For such instances, the invention adds an optional step of filtering the buffer eluted through a sterilizing filter to remove any remaining cells that might elute along with the biological product and those that may have remained attached to the resin during the wash cycle. Buth this stage of filtration will be much less cumbersome as smaller volumes are filtered with essentially 95% or more reduction in the filtration load and the risk of clogging of the filter since most of the culture has already been drained. For example, instead of filtering a 2000 L culture media to remove CHO cells, this will require filtering about 100 L or less; the cost and time savings would still be high.
- It is noteworthy that downstream processes are required to remove host cell and DNA biological products effectively. Current methods start with a substantial load of these biological products despite the filtration of the cells, so the instant invention does not add any new burden on the complexity of downstream processing.
- Another most significant advantage of the methods disclosed comes in increased production yields. It is well established that the process of filtration, which is conducted under high pressure, inevitably decomposes biological products. By avoiding the filtration steps, it is envisioned that the product yields will improve substantially.
- The very nature of the recombinant product makes it unstable. The instability of a recombinant biological product can be either physical or chemical. Physical instability can be related to such things as denaturation of the secondary and tertiary structure of the biological porduct, adsorption of the biological product onto interfaces or excipients, and aggregation and precipitation of the biological product. Chemical instability of a biological product results in the formation of a new chemical entity by cleavage or by new bond formation. Examples of this type of instability would be deamidation, proteolysis and reacmization. Any changes to the manufacturing process that reduce the cycle of production, exposure to harsh conditions such as high pressures across membranes in cross-flow and sterile filtration, etc., would increase the stability and the fianl yield of production.
- In one method of batch processing, the biological products are harvested at the end of the cycle that might be as long as several weeks of continuous expression. While many biological products would survive the 37° C. environment for that length of time, a few would degrade over that period of time. By capturing the biological products through formation of resin-biological product complex, the stability of and thus the yield of production can be increased since in the complex stage, the molecules are immobilized and thus less likely to degrade. While many biological products may degrade by adsorbing to various surfaces, the interaction between a resin and biological product is of a different nature as evidenced by the use of resins in the purification of biological products whereby high degree of stability is maintained when eluting from a resin column.
- Another significant advantage of the methods disclosed here occurs in reducing the toxicity of the biological products expressed to the cell lines expressing them. The resin may be placed inside the pouch from the very beginning of the reaction process and as biological product is expressed, it is instantly captured by the resin removing from direct contact with the cell lines increasing their productivity and the longevity of expression cycle, decreasing the production costs substantially.
- In a biological system, a particular biological product is expressed only in a specific subcellular location, tissue or cell type, during a defined time period, and at a particular quantity level. This is the spatial, temporal, and quantitative expression. Recombinant biological product expression often introduces a foreign biological product in a host cell and expresses the biological product at levels significantly higher than the physiological level of the biological product in its native host and at the time the biological product is not needed. The over-expressed recombinant biological product will perform certain function in the host cell if the biological product is expressed soluble and functional. The function of the expressed recombinant biological product is often net needed by the host cell. In fact the function of the biological product may be detrimental to the proliferation and differentiation of the host cell. The observed phenotypes of the host cells are slow growth rate and low ecll density. In some cases, the recombinant biological product causes death of the host cell. These phenomena are described as biological product toxicity. These recombinant biological products are called toxic biological products.
- Biological product toxicity is a commonly observed phenomenon. All active biological products will perform certain functions. The host cells need all of these functions with few exceptions and therefore, they interfere with cellular proliferation and fifferentiation. The appeared phenotype of the effects of these biological products to the host cells is their “toxicity.” It is estimated that about 80% of all soluble biological products have certain degree of toxicity to their hosts. About 10% of all biological products are highly toxic to host cells. The completely insoluble or dysfunctional biological products will not be toxic to the host cell, though they may drain the cellular energy to produce them when over-expressed. Biological product over-expression creates metabolic burden for the host cell, but this burden is not toxicity to the cell. Some low solubility or partially functional biological products may still be toxic to the host. While the exposure of the host cell to biological product being expressed is inevitable and is only optimized through codon usage, once the biological product has been expressed, it would be prudent to transport it out of the cell as soon as possible and this diffusion reaction requires establishing a sink condition that is readily achieved if the expressed biological product in the surroundings of the host cell is removed from the solution such as in the case of the instant invention by binding to a resin.
- In another situation, where a perfusion system is used for the upstream production of recombinant biological products, a portion of culture media is replaced with fresh media and the media removed is filtered of host cells, reduced in volume and wither stored at a lower temperature or processed with downstream processing. Still another significant advantage of the method disclosed, comes in performing a perfusion bioreaction. The traditional process of perfusion can be replaced by simply removing the biological product from the solution by adding a resin to the pouch and replenishing any nutrients that may have been lost due to adsorption onto the resin. There is a substantial cost reduction in using this substitute method.
- It is noteworthy that the instant invention allows for provisions to keep the bioreaction going at its optimal conditions by replenishing any nutrients lost to the binding resin. This may happen when the resins used have non-specific binding characteristics. Where highly specific affinity binding resins are used, this step may be obviated or reduced in its frequency.
- And yet another advantage of the disclosed method is that the final resin-biological product conjugate can be loaded directly column and eluted accordingly to specified protocols without firts flushing it out with a buffer to break the bonding between the resin and the biological product. This will save substantial time and material savings.
- A remarkable application of the instant invention is made in the manufacturing of recombinant biological products using bacterial culture. E. coli has been most widely used for the production of recombinant proteins that do not require posttranslational modifications such as glycosylation for bioactivity. A typical process involves, harvesting bacteria by a process of centrifugation, to collect the cell paste. Since the high-level expression of recombinant proteins results in accumulation of protein as insoluble aggregates as inclusion bodies, the cells are lysed, most commonly by a sonication process and the inclusion bodies solubilized (by the use of a high concentration of denaturants such as urea or guanidine hydrochloride, along with reducing agents such as beta-mercaptoethanol), refolded (by slow removal of the denaturant in the presence of oxidizing agent) and purified to recover functionality of the active product. Protein solubilization from the inclusion body using high concentration of chaotropic reagents results in the loss of secondary structure leading to the random coil formation of the protein structure and exposure of hydrophobic surface, a feature that is of significant inportance in the instant invention.
- One embodiment of the instant invention combines several procedures of cell lysis, solubilization and refolding into one continuous operation that can all be completed within the bioreactor, obviating the need for multiple vessels, handing large volumes of liquids and reducing process time and cost of manufacturing.
- Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their diruption, or lysis, to release the expressed proteins. One of the most crucial steps to be optimized in the protein production process is bacterial cell lysis. Although bacterial cell lysis does not influence protein expression, it can have an effect on protein solubility by affecting the physicochemical properties of the protein. chemical lysis can be achieved by using different buffer composition, lysozyme, or commercially available detergent reagents. Cell lysis can also include a combination of the mechanical and chemical lysis, e.g., lysozyme with freeze-thaw cycles. The preferred method, or “gold standard”, for bacterial lysis on the small or standard laboratory scale production is sonication. It relies on the mechanical disruption of the bacterial cell wall. Any solubilizing lysis agents, like detergents, that can affect solubility or stability, do not affect the expressed protein. Sonication becomes more problematic when handling large volumes of culture media. For these reasons, many high throughput laboratories choose to optimize lysis conditions by chemical means.
- Chemical lysis includes the treatment of cells with alkali, enzyme, or detergents. Chemical lysis methods minimize denaturation and expose the inner, cytoplastmic membrane by degrading the peptidoglycan cell wall of bacteria. The cell wall of Gram-positive bacteria is thick, containing several interconnecting layers of peptidoglycan (60-90% of the cell wall). In contrast, the cell wall of Gram-negative bacteria appears thin, containing two or three layers of peptigoglycan (10-20%) of the cell wall). In addition to this, Gram-negative bacteria contain an outer membrane composed of lipopolysaccharide, phospholipids, and lipoprotein. Lysozyme, a commercial lytic enzyme, is widely used to lyse Gram-positive cells in the presence of EDTA and detergent Brij 58. Lysozyme hydrolyzes N-acetylmuramide linkages, resulting in degradation of bacterial cell walls. The activity of lysozyme is optimal in the pH range of 6.7 to 8.6.
- In contrast, gram-negative bacteria are less susceptible to lysozyme and detergents due to the presence of asymmetric lipid bilayer. The outer membrane of the peptidoglycan acts as a permeability barrier to large molecules, and so the outer membrane needs to be permeabilized to expose the peptidoglycan layer for successful enzymatic lysis. The permeability barrier is, in part, due to the presence of polyanionic lipopolysaccharide that provide a network interaction in the presence of divalent cations, such as Mg2+. The chelators of divalent carions (e.g., EDTA), polycationic species, and small molecules (e.g., Tris) are suitable for permeabilizing the membrane in order to release lipopolysachccharides.
- Chemical cell lysis can be performed using lysis solution containing either lysozyme (Sigma-Aldrich, St. Louis, Mo.). SoluLyse® in Tris buffer (Genlantis, San Diego, Calif.) or Bugbuster® protein extraction reagent (Novagen, EMD Chemicals Inc., San Diego, Calif.) The amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyse® well correlates with sonication. Compositions and protocols for chemical lysis are widely available through commercial suppliers of chemical lysis products. The quantity of various chemicals used, the time of exposure and determination of the end point are readily established for any specific process.
- Solubilizing the lysed cell product would yield a denatured protein with large hydrophobic and ionic surfaces that can be readily bound to resins like cationic, anionic or hydrophobic resins; in some instances, certain solution characteristics like the pH, ionic strength of polarity may have to be adjusted to achieve optimal binding to the resin introduced in the pouch. This will allow discarding of the large volume of liquid culture medium and cell debris; it is noteworthy that the pore size of the pouch would generally be small enough to exclude cell lysis debris to contact the resin.
- The solubilized proteins bound to resins can then be removed from the binding and a solution of protein allowed to refold inside the bioreactor and again once the refolding has been completed, binding the proteins to resin and discarding the refolding solution obviating the need for expensive and time consuming cross-flow filtration operations. The concentrated solutions of refolded proteins are then subjected to further purification.
- There remains a large unmet need to develop a technology wherein the target biological product is selectively or non-selectively removed from the culture media prior to subjecting it to customary purification processes. The instant invention, taking a contrarian approach, is targeted to modify the existing designs of bioreactors to include a step of performing biological product harvesting or biological product capturing prior to purification chromatography steps to increase the throughput of manufacturing processing without adding expensive and technically challenging modifications.
- The key component of the instant invention lies in a feature added to a traditional bioreactor, whether a hard-walled system or a flexible disposable system. A pouch made of a porous material (likely a polymeric or metallic mesh) with porosity that is smaller than the size of resin used to capture biological products is used to allow contacting of the resin with the biological product. Most resins come in sizes ranging from 50 microns and up; some have smaller particle size as well. However, it is possible to design a pouch, a bag or a container form a polymeric material such as nylon that would keep the resin within the bag and not allow it to enter to the culture medium when the pouch is placed inside a bioreactor. To make sure that smaller particles of the resin are not flushed out of the bag carrying biological products with them, it would be necessary to sort out the resin first by placing it in a similar bag as installed in a bioreactor and immersing it in water to flush out any smaller particles. It is noteworthy that the resins, though expensive, can be re-used numberous times without losing their efficacy of binding and even when they do, the method described here allows for adjusting the quantity of resin to achieve maximum capture of biological products.
- A significant advancement in the art of biological product capture is provided here by disclosing that a mixture of resins can be used to obviate the binding of sites on the resin by other functional groups found in the culture media. The ultimate goal is to design a mixture of resins that would always capture the all of the biological products in the culture medium within the shortest period of time. Once used, the resins can be cleansed, sanitized and readied for the next use. It is important to know that there is no need for sterilizing these resins as long as they are treated chemically to reduce the microbial load.
- Recent advances in the sensors available for bioreactors now make it possible to monitor many properties including dissolved oxygen, dissolved carbon dioxide, electrolyte conecntration, pH, turbidity, cell count, temperature, and also the concentration of dissolved biological products, all by using non-invasive methods. The instant invention can be automated by installing such sensors and more particularly a sensor to determine concentration of the biological product so that the resin can be added to the pouch at a certain time when the concentration of the biological product in culture media has reached a pre-determined high level and allowing it to equilibrate until such time that the concentration in the culture media decreases to a certain pre-determined low level, most likely below 1% of the highest level prior to the treatment with resin.
- In a first embodiment, the instant invention proposes a bioreactor capable of growing all types of cells and organisms and additionally provides a ready means of harvesting of biological products in a bioreactor. The instant invention employs a mechanical device, which in one step combines several steps or biological product harvesting. The method of the present invention presents a novel procedural step for simultaneously extracting and concentrating a biological product of interest from a host cell, at the same time removing practically all, or at least the majority, of the host cell biological products.
- In a second embodiment, the present invention relates to a bioreactor that contains a resin capable of binding target biological products but kept separate from the culture medium by placing it inside a pouch that has porous walls with pores small enough to hold the resin inside the pouch yet allow the culture media containing target biological product to freely equilibrate with the resin. By placing the resin in a pouch, several arduous steps in protein harvesting are avoided. It is the purpose of this invention to work the purification process in an opposite order to how the art is currently practiced universally. In all instances, upon the completion of the bioreaction, the dirst step is to remove the host cells or organisms by filtration or centrifugation. With the bioreactor volumes into thousands of liters, this process is extremely arduous, expensive and requires additional storage vessels of about the same size as the bioreactor making it difficult to accommodate these processis in smaller facilities. A goal of this invention is to reverse the process and instead of removing the host cells and organisms, remove the biological product first. This modification also eliminates the need to reduce the volume of filtrate received after removing the host cells and organisms in the traditional process prior to purification. To accomplish this, the bioreactor contains a pouch that is filled with a resin when the process is ready for harvesting, allowing equilibration of the binding process and the draining out the culture media along with host cells and organisms.
- The drainage is best accomplished by allowing the culture media to flow down under gravity, thus obviating any steps that might take a long time like peristaltic pumping of the culture medium out of the bioreactors. The biological product is eluted using a buffer that causes breakdown of the association between the biological product and the resin and collecting a concentrated solution. Prior to contacting the resin-biological product complex with a buffer, the complex can be washed if necessary with fluids that would not break down the resin-biological product complex but remove other components bound to resin that may have come from the metabolic products in the culture media. Just in case there are any host cells remaining, this solution, which would be about 2-5% of the volume of the culture media, can be easily filtered through a sterilizing filter.
- In a third embodiment, the instant invention obviates the need for costly cross-flow filtration processes used in every type of manufacturing of biological products as in almost all instances a concentration step is involved to reduce the volume of liquid that is loaded onto purification column. The purification of biological therapeutics generally involves the use of cross flow filtration (tangential flow filtration), normal flow filtration (dead ended filtration) combined with chromatographic separations. Cross flow filtration and normal flow filtration retain matter through size exclusion and are complementary to chromatography's selectivity. For processes where volumes are large such as into thousands of liters, the cost of equipment for filtration is into hundreds of thousands of dollars with expensive filters all adding to a cost that represents a major fraction of the total cost of manufacturing of recombinant drugs.
- In a fourth embodiment, the instant invention provides a means of continuously removing expressed biological product from a culture media to enhance the level of expression that may be depressed because of the higher concentration of biological product in the mixture. The instant invention allows maintenance of a sink condition for the concentration of the biological product at all times.
- In a fifth embodiment, the instant invention provides a means of continuously removing expressed biological product from a culture media to reduce the toxicity of the expressed biological product to host cells and thus prologning the cycles of expression substantially increasing the yields of production.
- In a sixth embodiment, the instant invention provides a means of increasing the chemical stability of expressed biological product by binding it to a resin as soon as it is expressed as the chemicals are always less stable in a solution form than in a solid form or in this case a complex form. this would substantially improve the yield of production.
- In a seventh embodiment, the instant invention provides a means of substantially reducing the cost of recombinant drug manufacturing by eliminating some of the most costly and time consuming steps. The cost of using a non-specific resin is minimal as this can be used repeatedly, unlike the resin used in the downstream purification where it must be replaced periodically as it loses its power to resolve the separation. Until the resin reaks down or is physically damaged, it can be used continuously and even when the efficiency of adsorption is reduced, it can be mixed with fresh resin to give it a very long useful life.
- In an eight embodiment, the instant invention combines several steps of upstream and downstream bioprocessing. In the harvesting process, the resin-biological product complex can be directly treated with buffers to begin the first stage of purification and where the resin is carefully and artfully selected, lead to high purity of a biological product in one step. The resin-biological product complex is ready for downstream processing without the need to load a column intended for downstream processing and this can save substantial time for loading. The prolonged delay in loading columns as currently practiced is often detrimental to the stability of target biological product. This can be avoided using the instant invention.
- In a ninth embodiment, the instant invention offers to eliminate a very laborious and expensive step of first stage filtration or other means of separating the biological product harvested. By using a pouch to contain the resin, all steps generally required to remove resin such as decanting, centrifugation (low speed), filtration (coarse) can be avoided altogether. The pouches can be stringed together so that these are simply removed by picking up the end of the string at one end. The pouches can also, then, be packed directly in a column for elution as if this were loose resin. Since the pouches containing the resin can be pre-washed to remove the resin of particle size smaller than the porosity of the filter that forms the pouch, the losses of bound biological product to resin will be eliminated. The pouches can be washed and re-used, perhaps requiring a sterilization step if these are used during the bioreaction cycle, a chemical can achieve the sterilization similar to what is used in the sanitization of the chromatography column. This method of holding the resin in a pouch further reduces any loss of resin and saves additional costs.
- In a tenth embodiment, the instant invention describes a novel method of biological product purification wherein all those steps which are expensive and time consuming are obviated; the method of biological product purification involves adding to a solution of biological product ready for purification, a resin contained in a pouch that is the first resin to be used in the process of purification. Once the biological product binds completely to the resin, the resin is packed into a purification column. This method of loading the biological product in a purification column is more efficient than the traditional method of calculating the capacity of binding of resin and thus determining the volume of resin used. There are always possibilities of miscalculations since the binding of the biological product to the resin is dependent on many factors, e.g., the physicochemical characteristics of the liquid loaded. These characteristics would vary in every batch; the calculations of the amount of resin required are at best good theoretical guesses. Loading too much protein would cause loss of protein and adding too little, add to the cost of resin. The instant invention allows for a perfect match of the binding capacity to the quantity of the biological product bound, as it is possible to monitor the concentration of the unbound concentration of the biological product. Once the quantity of resin used is such that the concentration of the biological product in the nutrient medium is reduced to a pre-determined level, it is assumed that all protein has been bound.
- In an eleventh embodiment, the instant invention provides a method of extraction of solubilized inclusion bodies by lysing the cells in the bioreactor, solubilizing the inclusion bodies and capturing them with a resin to remove them from the bioreactor. This application substantially reduces the cost of manufacturing of proteins, which are expressed as inclusion bodies.
- The overall impact of these embodiments is quantifiable in terms of the time it takes to make a biological product ready for purification; as a general guideline, if a 2000 L batch of a recombinant production is ready for processing, it will take about 10-12 hours to filter it through a 0.22μ micron filter to remove host cells such as Chinese Hamster Ovary Cells. This step would then be followed by a cross-flow filtration process that might take 12-24 hours to reduce the volume to 200-300 liters. This step is then followed by loading on the column, which may take another 6-24 hours depending on the size of the column used. While the batch is subjected to the above processes, the target biological product is undergoing degradation, both because of the effects of temperature as well as the strain exerted on biological products in the filtration process. The instant invention offers a solution to replace all of these steps with a single short step with a time savings of at least 50% in the overall process time and material savings of about 30% and improved yields of about 20%.
-
FIG. 1 -
FIG. 1 shows a preferred embodiment of the invention. The bioreactor consists of a two dimensional disposable flexible bag (1) resting on a support surface (10), which is capable of being tilted and further resting on a frame (9), a means of gassing consisting of a gas inlet (2), a gas filter (3) and a sparging tube (4). The flexible bag (1) further contains a gas outlet (5), a nutrient medium inlet (6), a liquid drain (14) controllable by a stopcock (13), a means of heating (8) the support surface (10) a means of agitating the nutrient medium comprising a flapper (7) that compresses on the flexible bag (1) intermittently; also provided in the preferred embodiment of the invention is a pouch (12) with a resin inlet/outlet (11) to add or remove the resin. - The above-preferred embodiment of a bioreactor design would be useful in the manufacture of all types of biological products using all types of cells and organisms. The bioreactor is operated by first adding a fixed volume of a nutrient medium to the flexible bag, which would generally be supplied, pre-sterilized by gamma radiation. The nutrient medium may be sterile filtered directly into the bag for convenience. The bag would rest on a supportive surface that can be tilted if needed. Generally, for bag sizes of up to 36 inches, this may not be necessary; otherwise the support surface can be raised on one side by an angle of 0.1 to 5 degrees.
- This slight tilt of the supportive surface adds potential energy to the nutrient medium and causes it to draw more towards the flapper (7). The flapper mechanism is turned on resulting in the flapper compressing on the flexile bag at one end of the bag. This compression produces a wave inside the bag that travels to the other end of the bag and then resturns after stricking the other end of the bag; a slight tilt, if utilized, assures that there is no accumulation of unmixed media at the other end of the bag opposite to the end of bag being compressed periodically. The flapper would generally be operated at a rate of 25-60 rpm depending on the volume of nutrient medium, and the size of the bag used. Generally, the flexible bag would be filled to about 60% of the capacity. Once the flapper mechanism has begun operating and the mixing seems adequate as evidenced by smooth moving of nutrient medium inside the bag, the heating element (8) is turned on to achieve a desire temperature inside the bag. Sensors may be attached to the bag to record the temperature and connect these sensors to a feedback heating mechanism that would assure maintenance of an appropriate temperature such as 37 C. These sensors are not shown in
FIG. 1 as they are customary and generically available. Alternately, a sample of nutrient medium may be drawn to measure its characteristics. Once the temperature reaches the desired level, a biological culture of a recombinant organism such as Chinese Hamster Ovary cell or E. coli would be added to the nutrient medium through the nutrient medium inlet and the bag allowed mixing. Alternately, the biological culture may be added at any time, even before adding the nutrient medium. The gas is turned on to begin sparging of the nutrient medium at a rate predetermined to be suitable for the specific process. - For an E. Coli expression experiment, the flow rate would be approximately 0.8 to 1 vvm of compressed air. The key to achieving best aeration and the highest KLA value is to allow the bag to inflate only slightly, to allow sufficient surface for the sparged air to escape, yet not cause pressurization of the bag. It is for this reason that the air outlet is carefully controlled for the outlet rate. Once a steady state of flow rate, bag pressurization and mixing dynamics is achieved, the bioreactor is allowed to run, such as overnight when using for bacterial fermentation or for several days when using Chinese Hamster Ovary cells. During this period, the nutrient medium may be fed with nutrients through the media inlet tube. The optical density of bacterial culture or the cell density, dissolved oxygen and pH can be carefully monitored to assure the optimal condition for the expression of biological products in the nutrient medium. While the preferred embodiment would function only when the biological product is present in a solution form in nutrient medium, the biological processes that produce an inclusion body can also benefit from the instant invention if the cells are chemically lysed and the inclusion bodies solubilized.
- It is now well established in prior art that solubilized inclusion bodies can be loaded onto resin columns to perform refolding of proteins and thus there exist a large number of resins that would quickly and efficiently bind solubilized inclusion bodies. Thus the instant invention is applicable to bacterial production even if they do not directly express soluble proteins. However, the process of manufacture of the biological products would invelve a chemical treatment to lyse the cells and then chemically solubilize the inclusion bodies prior to moving to the resin-binding step.
- The next step is to calculate the amount of resin needed to bind the biological product based on the concentration of the biological product in the nutrient medium. The resin is first prepared by removing resin particles that would be smaller than the pore size of the pouch (which would generally be about pb 3μ). The sized resin is then introduced directly into the pouch through the pouch inlet and the nutrient medium allowed to agitate while the gassing is turned off. [It is expected that more than 99.9% of all resins used would have particle size larger than 3μ and thus no bleeding of resin will take place back into bioreactor}. Samples of nutrient medium are taken periodically to ascertain when the majority of the biological product has become bound to the resin inside the pouch. Generally, this would be above 90% reduction in the concentration of the biological product in the nutrient medium. It may be necessary to add more resin if the concentration of the biological product does not reach a pre-determined low level within a pre-determined time. The time needed for such equilibration will be about 20-30 minutes however, specific binding rate studies would need to be conducted to assure that an optimal minimal time is allowed for such equilibration.
- Once it is determined that an optimal binding of the biological product has been achieved, the drain port is operated by opening the stopcock and the culture media along with cells or organisms is allowed to flow out under gravity force. For large-scale operations, it may be necessary to install the drain port towards one end of the bag and the bag tilted to force fast removal of the nutrient medium from the bag. The utilization of gravity flow is a major energy and time saving feature. In those instances where thousands of liters of nutrient media is used, any mechanical process for moving or handling nutrient media would be an inefficient process compared to gravity flow resulting in discarding of nutrient media. It is further emphasized that the NIH guidelines for LSGP (large scale good practice) allow many recombinant cells to be directly discarded into sewer without any treatment as they are not infectious. This is particularly true of the Chinese Hamster Ovary Cells that comprise the largest production engine in bioprocessing. Even some E. Coli bacteria are exempted from any decontamination step. In such situations, the most energy and cost efficient process is draining of nutrient media directly into sewer. The size of the drain would have to match with the flow rate desired and where large volumes are used, several drains can be installed in the bioreactor to quickly and efficiently remove nutrient medium. Once the nutrient medium has been drained out, the stopcock in the drain is closed. At this stage, the manufacturer would have two options, one is to fill the bag with a buffer that would not cause the breaking of the binding between the biological product and the resin but would be generally effective in removing other smaller molecular weight components that might have become attached to the resin. The bag would then be agitated for a brief period of time and the buffer (which may even be water) drained out again by turning on the stopcock in the drain port. This would be the washing step. This step can be skipped and the bag filled with a buffer solution that would cause the breakdwon of the binding between the biological product and the resin. This would generally require a pH adjustment, a polarity adjustment and an electrolyte adjustment.
- These conditions would have already been worked out in the early phases of process development. Once the breaking or eluting buffer is allowed to react within the bag, the biological product would be released into the buffer solution, which can be monitored for the concentration of the biological product to assure that a desirable recovery has been achieved. While the goal is to recover almost the entire biological product, it may at times be more useful to settle with a more practical level of recovery such as 90 to 95%. Once this stage has reachedm, turning on the stopcock again opens the drain port and the concentrated solution of the biological product is collected in a microbiologically clean vessel. Generally, the volume of the solution will be about 2-5% of the original nutrient medium. This concentrated solution would then be transferred to downstream purification columns. In most instances, it may be desirable to pass this concentrated solution through a sterilizing filter to remove any cells that might have been carried over to prevent the blocking of the purification columns. It is expected that the titer of cells at this stage will be very small allowing use of simpler and faster filtration methods and even if the solution is not filtered, the chance of blocking the purification column would be minimal. Smart manufacturing processes have the fewest steps involved. The manufacturers would be advised to consider eliminating this filtration step, if possible.
- In another preferred embodiment, the bioreactor is operated as provided in the embodiment above, except that the resin is added in the beginning of the bioreaction cycle to bind the biological product as it is expressed in the nutrient medium. This technique would then not be applicable to situations where the biological product is expressed as inclusion bodies. Smaller portions of resins are added periodically to the pouch in quantities just enough to bind the expressed biological product. This is necessary to prevent blockage of binding sites on the resin by other adsorbable materials in the nutrient medium, and to minimize the losses of nutrient elements to the resin, which should be replenished periodically. This method would be analogous to a traditional perfusion system except that the steps to replace the media, filtering it and replacing media with fresh media are obviated. This method is also a useful method to reduce the toxicity of the biological product to the host cells expressing the biological product. This method would work well for those biological products that can stay stab le when bound to resin as the complex between the biological product and the resin is kept in the pouch until the end of the bioreaction cycle.
- In another preferred embodiment, a further improvement is made in the preceding embodiment where the resin is added periodically. In this practice of the method, the resin is first removed that has become equilibrated with the biological product prior to adding fresh resin. This allows the removal of biological products bound to resin and avoids any instability problems due to keeping the conjugate of biological product and resin in the bioreactor for a prolonged time. The resin is removed readily by inserting a tube from the inlet/outlet to the pouch, which would generally be of a cylindrical shape and aspirating the resin, using vacuum. It is noteworthy that the size of the tube inserted is such that it fits snugly inside the tubular (cylindrical) pouch pushing the resin as the tube goes down and forcing the resin into the tube by mechanical displacement. Once the tube has settled down deep into the pouch, a vacuum is applied carefully avoiding aspirating any substantial quantities of the nutrient medium. The resin collected periodically can be kept at a more suitable temperature and combined at an appropriate time or processed individually.
- In another preferred embodiment, a further application is provided to bioreaction systems wherein the biological product is expressed inside the cell as an inclusion body. The bioreactor is operated as described above but instead of monitoring the concentration of biological product, the optical density of the biological culture is monitored. When a predetermined optical density is reached, the bioreaction process is stopped, the cells lysed chemically and the resultant inclusion bodies solubilized, all inside the bioreactor. Once a suitable solubilization of the inclusion body has been achieved, an appropriate mixture of resins is added to bind the solubilized inclusion bodies.
- The rest of the method is then followed for the separation of the nutrient medium, detachment of solubilized inclusion bodies from the resin and further purification. It is further noted that there may not be a need for further filtration to remove cells, as they would all have been lysed. In some instances, the protein can be refolded within the bioreactor using appropriate refolding buffer after detaching the solubilized inclusion bodies from the resin.
- The bioreactor container offers a remarkable opportunity to extend the use to refold proteins eliminating the need for operating another vessel. It is almost ironic that in general practice, the volume of the refolding solution is generally equal to the nutrient medium, making the bioreactor and ideal choice for protein refolding.
- In another preferred embodiment, a further utility of the instant invention is provided wherein the operation of bioreactor as described above produces a mixture of the biological product and the resin and this complex can be directly loaded into chromatography purification columns avoiding another cumbersome and time-consuming step.
- Generally, the invention provides bioreactors and methods, which are universal in the sense that the invention is suitable and adaptable for processing a variety of compositions, including both biologic and non-biologic components. Indeed, an inventive bioreactor designed for use with mammalian cells, for example, may be used for culturing bacteria, allowing ease of manufacturing.
- As used herein, the term “liquid” is intended to encompass compositions, which include biologic components as described herein.
- Compositions comprising non-biologic components include, but are not limited to, those which comprise microcarriers (e.g., polymer spheres, solid spheres, gelatinous particles, microbeads, and microdisks that can be porous or non-porous), cross-linked beads (e.g., dextran) charged with specific chemical groups (e.g., tertiary amine groups), 2D microcarriers including cells trapped in nonporous polymer fibers, 3D carriers (e.g., carrier fibers, hollow fibers, multicartridge reactors, and semi-permeable membranes that can comprising porous fibers), microcarriers having reduced ion exchange capacity, cells, capillaries, and aggregates (e.g., aggregates of cells).
- The biological components that may be processed in accordance with the invention are described in the paragraphs which follow and include, but are not limited to, cell cultures derived from sources such as animals (e.g., hamsters, mice, pigs, rabbits, dogs, fish, shrimp, nematodes, and humans), insects (e.g., moths and butterflies), plants (e.g., algae, corn, tomato, rice, wheat, barley, alfalfa, sugarcane, soybean, potato, lettuce, lupine, tobacco, reapeseed (canola), sunflower, turnip, beet cane molasses, seeds, safflower, and peanuts), bacteria, fungi, and yeast.
- Illustrative animal cells include Chinese hamster ovary (CHO), mouse myeloma, M0035 (NSO cell line), hybridomas (e.g., B-lymphocyte cells fused with myeloma tumor cells), baby hamster kidney (BHK), monkey COS, African green monkey kidney epithelial (VERO), mouse embryo fibroblasts (NIH-3T3), mouse connective tissue fibroblasts (L929), bovine aorta endothelial (BAE-1), mouse myeloma lymphoblastoid-like (NSO), mouse B-cell lymphoma lymphoblastoid (WEHI 231), mouse lymphoma lymphoblastoid (YAC 1), mouse fibroblast (LS), hepatic mouse (e.g., MC/9, NCTC clone 1469), and hepatic rat cells (e.g., ARL-6, BRL3A, H4S, Phi 1 (from Fu5 cells)).
- Illustrative human cells include retinal cells (PER-C6), embryonic kidney cells (HEK-293), lung fibroblasts (MRC-5), cervix epithelial cells (HELA), diploid fibroblasts (WI38), kidney epithelial cells (HEK 293), liver epithelial cells (HEPG2), lymphoma lymphoblastoid cells (Namalwa), leukemia lymphoblastoid-like cells (HL60), myeloma lymphoblastoid cells (U 266B1), neuroblastoma neuroblasts (SH-SY5Y), diploid cell strain cells (e.g., propagation of poliomyelitis virus), pancreatic islet cells, embryonic stem cells (hES), human mesenchymal stem cells (MSCs, which can be differentiated to osteogenic, chondrogenic, tenogenic, myogenic, adipogenic, and marrow stromal lineages, for example), human neural stem cells (NSC), human histiocytic lymphoma lymphoblastoid cells (U937), and human hepatic cells such as WRL68 (from embryo cells), PLC/PRF/5 (i.e., containing hepatitis B sequences), Hep3B (i.e., producing plasma proteins: fibrinogen, alpha-fetoprotein, transferrin, albumin, complement C3 and/or alpha-2-macroglobulin), and HepG2 (i.e., producing plasma proteins; prothrombin, antithrombin III, alpha-fetoprotein, complement C3, and/or fibrinogen).
- Cells from insects (e.g., baculovirus and Spodoptera frugiperda ovary (Sf21 cells produce Sf9 line)) and cells from plants or food, may also be cultured in accordance with the invention. Cells from sources such as rice (e.g., Oryza sativa, Oryza sativa cv Bengal callus culture, and Oryza sativa cv Taipei 309), soybean (e.g., Clycine max cv Williams 82), tomato (Lycopersicum esculentum cv Seokwang), and tobacco leaves (e.g., Agrobacterium tumefaciens including Bright Yellow 2 (BY-2), Nicotiana tabacum cv NT-1, N. tabacum cv BY-2, and N. tabacum cv Petite Havana SR-1) are illustrative examples.
- Bacteria, fungi, or yeast may also be cultured in accordance with the invention. Illustrative bacteria include Salmonella, Escherichia coli, Vibrio cholerae, Bacillus subtilis, Streptomyces, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas sp, Rhodococcus sp, Streptomyces sp, and Alcaligenes sp. Fungal cells can be cultured from species such as Aspergillus niger and Trichoderma reesei, and yeast cells can include cells from Hansenula polymorpha, Pichia pastoris, Saccharomyces cerevisiae, S. cerevisiae crossed with S. bayanus, S. cerevisiae crossed with LAC4 and LACI-2 genes from K. lactis, S. cerevisiae crossed with Aspergillus shirousamii, Bacillus subtilis, Saccharomyces diastasicus, Schwanniomyces occidentalis, S. cerevisiae with genes from Pichia stipitis, and Schizosaccharomyces pombe.
- A variety of different products may also be produced in accordance with the invention. Illustrative products include proteins (e.g., antibodies and enzymes), vaccines, viral products, hormones, immunoregulators, metabilites, fatty acids, vitamins, drugs, antibiotics, cells, and tissues. Non-limiting examples of proteins include human tissue plasminogen activators (tPA), blood coagulation factors, growth factors (e.g., cytokines, including interferons and chemokines), adhesion molecules, Bcl-2 family of proteins, polyhedrin proteins, huyman serum albumin, scFv antibody fragment, huyman erythropoietin, mouse monoclonal
heavy chain 7, mouse IgG2b/k, mouse IgG1, heavy chain mAb,Bryondin 1, human interleukin-2, human interleukin-4, ricin, human α1-antitrypisin, biscFv antibody fragment, immunoglobulins, human granulocyte, stimulating factor (hGM-CSF), hepatitis B surface antigen (HBsAg), human lysozyme, IL-12, and mAb against HBsAg. Examples of plasma proteins include fibrinogen, alpha-fetoprotein, transferrin, albumin, complement C3 and alpha-2-macroglobulin, prothrombin, antithrombin III, alpha-fetoprotein, complement C3 and fibrinogen, insulin, hepatitis B surface antigen, urate oxidase, glucagon, granulocyte-macrophage colony stimulating factor, hirudin/desirudin, angiostatin, elastase inhibitor, endostatin, epidermal growth factor analog, insulin-like growth factor-1, kallikrein inhibitor, α1-antitrypsin, tumor necrosis factor, collagen protein domains (but not whole collagen glycoproteins), proteins without metabolic byproducts, human albumin, bovine albumin, thrombomodulin, transferrin, factor VIII for hemophilia A (i.e., from CHO or secreted alkaline phosphatase, aprotinin, histamine, leukotrienes, IgE receptors, N-acetylglucosaminyltransferase-III, and antihemophilic factor VIII. - Enzymes may be produced from a variety of sources using the invention. Non-limiting examples of such ensymes include YepACT-AMY-ACT-X24 hybrid ensyme from yeast, Aspergillus oryzae α-amylase, xylanases, urokinase, tissue plasminogen activator (rt-PA), bovine chymosin, glucocerebrosidase (therapeutic enzyme for Gaucher's disease, from CHO), lactase, trypsin, aprotinin, huyman lactoferrin, lysozyme, and oleosines.
- Vaccines also may be produced using the invention. Non-limiting examples include vaccines for prostate cancer, human papilloma virus, viral influenza, trivalent hemagglutinin influenze, AIDS, HIV, malaria, anthrax, bacterial meningitis, chicken pox, cholera, diphtheria, haemophilus influenze type B, hepatitis A, hepatitis B, pertussis, plague, pneumococcal pneumonia, polio, rabies, human-rabies, tetanus, typhoid fever, yellow fever, veterinary-FMD, New Castle's Disease, foot and mouth disease, DNA, Venezuelan equine encephalitis virus, cancer (colon cancer) vaccines (i.e., prophylactic or therapeutic), MMR (measles, mumps, rubells), yellow fever, Haemophilus influenzae (Hib), DTP (diphtheria and tetanus vaccines, with pertussis subunit), vaccines linked to polysaccharides (e.g., Hib, Neisseria meningococcus), Staphylococcus pneumoniae, nicotine, multiple sclerosis, bovine spongiform encephalopathy (mad cow disease), IgGI (phosphonate ester), IgM (neuropeptide hapten), SIgA/G (Streptococcus mutans adhesin), scFv-bryodin 1 immunotoxin (CD-40), IgG (HSV), LSC(HSV), Norwalk virus, human cytomegalovirus, rotavirus, respiratory syncytial virus F, insulin-dependent autoimmune mellitus diabetes, diarrhea, rhinovirus, herpes simplex virus, and personalized cancer vaccines, e.g., for lymphoma treatment (i.e., in injectable, oral, or edible forms). Recombinant subunit vaccines also may be produced, such as hepatitis B virus envelope protein, rabies virus glycoprotein, E. coli heat labile enterotoxin, Norwalk virus capsid protein, diabetes autoantigen, cholera toxin B subunit, cholera toxin B and dA2 subunits, rotavirus enterotoxin and enterotoxigenic E. coli, fimbrial antigen fusion, and porcine transmissible gastroenteritis virus glycoprotein S.
- Viral products also may be produced. Non-limiting examples of viral products include sindbis, VSV, oncoma, hepatitis A, channel cat fish virus, RSV, corona virus, FMDV, rabies, polio, reo virus, measles, and mumps.
- Hormones also may be produced using the invention. Non-limiting examples of hormones include growth hormone (e.g., human growth hormone (hGH) and bvine growth hormone), growth factors, beta and gamma interferon, vascular endothelial growth factor (VEGF), somatostatin, platelet-derived growth factor (PDGF), follicle stimulating hormone (FSH), luteinizing hormone, human chorionic hormone, and erythropoietin.
- Immunoregulators also may be produced. Non-limiting examples of immunoregulators include interferons (e.g., beta-interferon (for multiple sclerosis), alpha-interferon, and gamma-interferon) and interleukins (such as IL-2).
- Metabolites (e.g., shikonin and paclitaxel) and fatty acids (i.e., including straight-chain (e.g., adipic acid, Azelaic acid, 2-hydroxy acids), branched-chain (e.g., 10-methyl octadecanoic acid and retinoic acid), ring-including fatty acids (e.g., coronaric acid and lipoic acid), and complex fatty acids (e.g., fatty acyl-CoA)) also may be produced.
- The containers useful in the various embodiments of the invention may be of any size suitable for containing a liquid. For example, the container may have a volume between 1-40 L, 40-100 L, 100-200 L, 200-300 L, 300-500 L, 500-750 L, 750-1,000 L, 1,000-2,000 L, 2,000-5,000 L, or 5,000-10,000 L. In some instances, the container has a volume greater than 1 L, or in other instances, greater than 10 L, 20 L, 40 L, 100 L, 200 L, 500 L, or 1,000 L. Volumes greater than 10,000 L are also possible. Preferably, the container volume will range between about 1 L and 1000 L, and more preferably between about 5 L and 500 L, and even more preferably between 5 L and 200 L.
- The components of the bioreactors and other devices described herein which come into contact with the culture medium or products provided thereby desirably comprise biocompatible materials, more desirably biocompatible polymers, and are preferably sterilizable.
- It should also be understood that many of the components described herein also are desirably flexible, e.g., the containers desirably comprise flexible biocompatible polymer containers (such as collapsible bags), with the conduits also desirably comprising such biocompatible polymers. The flexible material is further desirably one that is USP Class VI certified, e.g., silicone, polycarbonate, polyethylene, and polypropylene. Non-limiting examples of flexible materials include polymers such as polyethylene (e.g., linear low density polyethylene and ultra low density polyethylene), polypropylene, polyvinylchloride, polyvinyldichloride, polyvinylidene chloride, ethylene vinyl acetate, polycarbonate, polymethacrylate, polyvinyl alcohol, nylon, silicone rubber, other synthetic rubbers and/or plastics. If desired, portions of the flexible container may comprise a substantially rigid material such as a rigid polymer (e.g., high density polyethylene), metal, and/or glass.
- Desirably the containers comprise biocompatible materials, more desirably biocompatible polymers. When collapsible containers are selected for use, the container may be supported by or may line an inner surface of a support structure, e.g., the outer support housing having container-retaining sidewalls. However, the invention may be practiced using non-collapsible or rigid containers or conduits.
- The containers may have any thickness suitable for retaining the culture medium there within, and may be designed to have a certain resistance to puncturing during operation or while being handled. For example, the walls of a container may have a total thickness of less than or equal to 250 mils (1 mil is 25.4 micrometers), less than or equal to 200 mils, less than or equal to 100 mils, less than or equal to 70 mils (1 mil is 25.4 micrometers), less than or equal to 50 mils, less than or equal to 25 mils, less than or equal to 15 mils, or less than or equal to 10 mils. In certain embodiments, the container may include more than one layer of material that may be laminated together or otherwise attached to one another to impart certain properties to the container. For instance, one layer may be formed of a material that is substantially oxygen impermeable. Another layer may be formed of a material to impart strength to the container. Yet another layer may be included to impart chemical resistance to fluid that may be contained in the container.
- It thus should be understood that a container may be formed of any suitable combinations of layers. The container (e.g., collapsible bag) may include, for example, 1 layer, greater than or equal to 2 layers, greater than or equal to 3 layers, or greater than equal to 5 layers of material(s). Each layer may have a thickness of, for example, less than or equal to 200 mils, less than or equal to 100 mils, less than or equal to 50 mils, less than or equal to 25 mils, less than or equal to 15 mils, less than or equal to 10 mils, less than or equal to 5 mils, or less than or equal to 3 mils, or combinations thereof.
- In addition, the container preferably is seamless in order to improve its strength and avoid deposition of growing cells in the media.
- All or portions of the container also are desirably translucent, or more desirably transparent, to allow viewing of contents inside the container. The latter is preferred when it is desirable to irradiate the culture medium within the container.
- All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
- The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
- Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
- The instant invention is a type of separative bioreactor. In the past substantial progress has been made in membrane bioreactors (MBR) that had the ability to separate the products within the bioreactors. The MBR process was introduced by the late 1960s, as soon as commercial scale ultrafiltration (UF) and microfiltration (MF) membranes were available. The original process was introduced by Dorr-Olivier Inc. and combined the use of an activated sludge bioreactor with a cross-flow membrane filtration loop. The flat sheet membranes used in this process were polymeric and featured pore sizes ranging from 0.003 to 0.01 μm. Although the idea of replacing the settling tank of the conventional activated sludge process was attractive, it was difficult to justify the use of such a process because of the high cost of membranes, low economic value of the product (tertiary effluent) and the potential rapid loss of performance due to membrane fouling. As a result, the focus was on the attainment of high fluxes, and it was therefore necessary to pump the mixed liquor suspended solids (MLSS) at high cross-flow velocity at significant energy penalty (of the
order 10 kWh/m3 product) to reduce fouling. Due to the poor economics of the first generation MBRs, they only found applications in niche areas with special needs like isolated trailer parks or ski resorts for example. - The breakthrough for the MBR came in 1989 with the idea of Yamamoto and co-workers to submerge the membranes in the bioreactor. Until then, MBRs were designed with the separation device located external to the reactor (side-stream MBR) and relied on high transmembrane pressure (TMP) to maintain filtration. With the membrane directly immersed into the bioreactor, submerged MBR systems are usually preferred to sidestream configuration, especially for domestic wastewater treatment. The submerged configuration relies on coarse bubble aeration to produce mixing and limit fouling. The energy demand of the submerged system can be up to 2 orders of magnitude lower than that of the sidestream systems and submerged systems operate at a lower flux, demanding more membrane area. In submerged configurations, aeration is considered as one of the major parameter on process performances both hydraulic and biological. Aeration maintains solids in suspension, scours the membrane surface and provides oxygen to the biomass, leading to a better biodegradability and cell synthesis.
- The other key steps in the recent MBR development were the acceptance of modest fluxes (25% or less of those in the first generation), and the idea to use two-phase bubbly flow to control fouling. The lower operating cost obtained with the submerged configuration along with the steady decrease in the membrane cost encouraged an exponential increase in MBR plant installations from the mid 90s. Since then, further improvements in the MBR design and operation have been introduced and incorporated into larger plants. While early MBRs were operated at solid retention times (SRT) as high as 100 days with mixed liquor suspended solids up to 30 g/L, the recent trend is to apply lower solid retention times (around 10-20 days), resulting in more manageable mixed liquor suspended solids (MLSS) levels (10-15 g/L). Thanks to these new operating conditions, the oxygen transfer and the pumping cost in the MBR have tended to decrease and overall maintenance has been simplified. There is now a range of MBR systems commercially available, most of which use submerged membranes although some external modules are available; these external systems also use two-phase flow for fouling control. Typical hydraulic retention times (HRT) range between 3 and 10 hours. In terms of membrane configurations, mainly hollow fiber and flat sheet membranes are applied for MBR applications.
- Despite the more favorable energy usage of submerged membranes, there continued to be a market for the side stream configuration, particularly in industrial applications. For ease of maintenance the side stream configuration can be installed at low level in a plant building. Membrane replacement can be undertaken without specialist equipment, and intensive cleaning of individual banks can be undertaken during normal operation of the other banks and without removing the membranes modules from the installation.
- As a result research continued with the side stream configuration, during which time it was found that full-scale plants could be operated with higher fluxes. This has culminated in recent years with the development of low energy systems which incorporate more sophisticated control of the operating parameters coupled with periodic back washes, which enable sustainable operation at energy usage as low as 0.3 kWh/m3 product.
- Argonne scientists (www.anl.gov) recently used electrical force to transport organic acids away from the biocatalyst across an ion-exchange membrane and into a concentrate chamber, very similar to normal metabolism processes for handling acids. To provide the electricity in a cost efficient fashion, researchers turned to electrodeionization (EDI). EDI is an established commercial technology for producing high-purity water. Previously, Argonne scientists modified EDI so that it could be used for desalination of chemical and agricultural products. To accomplish this, researchers molded loose ion exchange resin beads into a porous resin wafer, enabling the capture of charge salts and acids at dilution levels with high-energy efficiency and significantly reduced waste streams compared to conventional processing. This became the basis for the Argonne's separative bioreactor.
- Researchers also realized that although direct enzyme immobilization on membranes provided excellent product separations, insufficient enzyme density limited the overall performance. In order to increase the density, the scientists integrated enzyme immobilization technology into the porous resin wafer and created a material that can efficiently produce and remove organic acids. As Argonne designed its separative bioreactor, researchers incorporated enzyme capture resin beads into the resin wafer. Sugars were converted by the immobilized biocatalyst to the target acids, and the product was electrically transported into a concentrate channel. This resulted in reactions occurring without buffering or neutralization. Argonne's immobilization technology also allows in-situ stripping and replacement of degraded enzymes without disassembling the system.
- However, every type of membrane separative bioreactor disclosed utilized a similar principle of forcing a biological product across a membrane. The instant invention differs significantly by roviding a device capable of containing a resin capable of binding the target biological product, the membrane holding the resin has no specific function except to keep the resin separated form the bulk liquid in the bioreactors and also to prevent larger scale organisms or cells to contact the resin. The separation function in the instant invention is provided by a non-specific, non-electrically driven reaction.
- The prior art on the design and operation of separative bioreactors is silent on the concept of instant invention. The main references to separative bioreactors of use in biological sciences appear as U.S. patent application Ser. No. 10/993,642 filed 19 Nov. 2004 wherein a separative bioreactor is disclosed. Accordingly, it is a separative bioreactor, comprising an anode and a cathode, a plurality of reaction chambers each having an inlet and an outlet and each including a porous solid ion exchange wafer having ion-exchange resins, each of the reaction chambers being interleaved between a cation exchange membrane and an anion exchange membrane or between either a cation or an anion exchange membrane and a bipolar exchange membrane, a plurality of product chambers each having an inlet and an outlet and separated from one of the reaction chambers by either a cation or an anion exchange membrane, recirculation mechanism for transporting material between the reaction chamber inlets and outlets and for transporting product between the product chamber inlets and outlets, and mechanism for supplying an electric potential between the anode and the cathode causing ions to be transported between chambers, whereby counterions retained or produced in each of the reaction chambers during the production of an ionizable organic product including product ions combine with oppositely charged ions to form molecules some or all of which are transported to reaction chamber inlets while product ions are transported into an adjacent product chamber to combine with oppositely charged ions to form product in a product stream exiting the product chamber outlets continuously recirculated to the product chamber inlets to increase the concentration of product in the product stream. None of the features described in this application are material to the instant invention and none of the essential features of the instant inventions are disclosed in this application.
- The U.S. Pat. No. 7,306,934 issued 11 Dec. 2007 discloses a porous solid ion exchange wafer for immobilizing biomolecules, said wafer comprising a combination of an biomolecule capture-resin containing a transition metal cation of +2 valence and an ion-exchange resin. The patent further discloses a separative bioreactor, comprising an anode and a cathode, a plurality of reaction chambers at least some being formed from a porous solid ion exchange wafers having a combination of art biomolecule capture-resin and an ion-exchange resin and having a genetically engineered tagged biomolecule immobilized on said biomolecule capture resin, each of said porous solid ion exchange wafers being interleaved between a cation exchange membrane and an anion exchange membrane, and mechanism for supplying an electric potential between the anode and the cathode. The instant invention does not rely on any features disclosed in this patent, nor any features of the instant invention are recited in this patent.
- The U.S. Pat. No. 7,799,548 issued 21 Sep. 2010 is for a method of in situ stripping a genetically tagged biomolecule from a porous solid ion exchange wafer in a bioreactor, the wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within the wafer and having a genetically tagged biomolecule immobilized on said biomolecule capture-resin, comprising contacting the porous solid ion exchange wafer in the bioreactor with a stripping fluid at a temperature and for a time sufficient to strip at least some of the genetically tagged biomolecule therefrom. This patent additionally claims method of in situ stripping a genetically tagged biomolecule from a porous solid ion exchange wafer in a bioreactor and thereafter regenerating a genetically tagged biomolecule onto the porous solid ion exchange wafer, the wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within the wafer and having a genetically tagged biomolecule immobilized on said biomolecule capture-resin thereon, comprising contacting the porous solid ion exchange wafer in the bioreactor with a stripping fluid at a temperature and for a time sufficient to strip at least some of the genetically tagged biomolecules therefrom, and thereafter contacting the stripped porous solid ion exchange wafer in the bioreactor with an effective amount of a genetically tagged biomolecules at a temperature and for a time sufficient to immobilize genetically tagged biomolecules on the charged capture resin. The instant invention does not rely on any disclosures made in this patent nor are any of the essential features of the instant invention disclosed in this patent.
- The U.S. Pat. No. 7,141,154 issued 28 Nov. 2006 discloses a method of continuously making an organic ester from a lower alcohol and an organic acid, comprising, introducing an organic acid or an organic salt into and/or producing an organic acid or an organic salt in an electrodeionization (EDI) stack having an anode and a cathode and a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membrane, providing mechanism for establishing an electric potential between the EDI anode and cathode, wherein at least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt, whereby an organic acid or organic salt present in the EDI stack disassociates into a cation and an anion with the anion migrating into an associated esterification chamber through an anion exchange membrane if required and reacting with a lower alcohol in the esterification chamber fo form an organic ester and water with at least some of the water splitting into a proton and a hydroxyl anion with at least some of the hydroxyl anion migrating to an adjacent chamber, said migration of ions being facilitated by establishing an electric potential across the EDI anode and cathode. The patent additionally discloses an apparatus for manufacturing an organic ester, comprising an electrodeionization (EDI) stack having an anode and a cathode and a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and either a cation exchange membrane or a bipolar membrane, mechanism for establishing an electrical potential between said EDI anode and said cathode, at least some of said reaction chambers being esterification chambers or esterification chambers separated from an adjacent bioreactor chamber by an anion exchange membrane and/or an acid/base capture chamber, said bioreactor chambers each containing an ion exchange resin wafer capable of froming an organic acid or salt from an ionizable fluid flowing therein, said esterification chambers each containing an ion exchange resin wafer capable of forming an organic ester and water from a lower alchol and an anion of an organic acid or salt, a source of anions supplied directly to said esterification chambers or supplied from adjacent chambers, and a supply of lower alcohol to said esterification chambers, whereby when a potential is established across said EDI anode and cathode at least some hydroxyl anions in said esterification chambers from water splitting migrate across said anion exchange membranes to adjacent chambers to drive the reaction to continuously produce an organic ester. None of the features disclosed in this patent are material to the instant invention and none of the essential features of the instant invention are disclosed or taught in this patent.
- In summary, the prior art disclosed above teaches the use of porous solid ion exchange wafer for immobilizing biomolecules, said wafer comprising a combination of an biomolecule capture-resin containing a transition metal cation of +2 valence; it also teaches a separative bioreactor, comprising an anode and a cathode, a plurality of reaction chambers at least some being formed from a porous solid ion exchange wafers (above) having a combination of art biomolecule capture-resin and an ion-exchange resin and having a genetically engineered tagged biomolecule immobilized on said biomolecule capture resin, each of said porous solid ion exchange wafers being interleaved between a cation exchange membrane and an anion exchange membrane, and mechanism for supplying an electric potential between the anode and the cathode.
- The instant invention is significantly different from the separative bioreactor taught above. First, the instant invention does not require use of electrodes, or resins with a transition cation of +2 valence or immobilized metal ion affinity chromatography. The use of EDI (electrodeionization) and specific use of tags and limited nature of solvents to remove the captured biological products, mainly enzymes, makes this patent treaching distinctly different from the instant invention. In addition, and most significantly, the prior art can not be used with the preferred embodiment of the instant invention wherein flexible bioreactors are taught.
- Moreover, the prior art requires additional hardware that adds substantial cost to the processing of manufacturing biological products while the instant invention combines several processes into one without adding any new cost element. The prior art is also specific to certain types of molecules while the instant invention is generic to every type of biological product.
Claims (14)
1. A harvesting device for capturing a biological product comprising at least one container with at least one external surface and an inner volume to hold at least one ligand or resin capable of binding a biological product and the surface having a plurality of pores.
2. The harvesting device according to claim 1 , wherein the container is a flexible pouch.
3. The harvesting device according to claim 1 , wherein the container comprises a plastic, nylon, metallic mesh, or a composite material.
4. The harvesting device according to claim 1 , wherein the size of pores is between 0.2 and 30 microns.
5. The harvesting device according to claim 1 , wherein the size of pores is between 1 and 5 microns.
6. The harvesting device according to claim 1 , wherein the resin or ligand is an ionic-exchange resin, a hydrophobic resin, a stimuli responsive polymer, an affinity resin, Protein A-coated magnetic beads, Protein-G magnetic beads, a dual affinity polypeptide, Q Hypercel sorbant, S Hypercel sorbent, 4-mercaptoethylpyridine (MEP), Protein G, countercurrent chromatography media, a peptide ligand, an Fe-receptor mimetic ligand, sn inorganic ligand, a synthetic dye, or a single-domain camel-derived anti-IgG antibody.
7. The harvesting device according to claim 1 , wherein the container comprises a plurality of resins.
8. The harvesting device according to claim 1 , wherein there is a plurality of containers.
9. The harvesting device according to claim 1 , wherein the harvesting device is disposed inside a bioreactor.
10. The harvesting device according to claim 9 , wherein the device is used at the end of a bioreactor operation cycle.
11. The harvesting device according to claim 9 , wherein the device is used during a bioreactor operation cycle.
12. The harvesting device according to claim 1 , wherein the device is used to capture a biological product from a nutrient media comprising a biological culture contained in a bioreactor.
13. The harvesting device according to claim 1 , wherein the biological product is produced using bacteria, yeast, hybrodomas, baculoviruses, animal cells, mammalian cells or plant cells.
14. The harvesting device according to claim 1 , wherein the biological product comprises solubilized inclusion bodies, small proteins, enamel matrix proteins, fusion proteins, tag proteins, hormones, parathyroid hormones, growth hormones, gonadotripins, insulin, ACTH, prolactin, placental lactogen, melanocyte stimulating hormone, thyrotropin, calcitonin, enkephalin, angiotensin, cytokines human serum albumin, bovine serum albumin, ovalbumin, glucose isomerase, α-amylase, endo-β-glucanase, growth hormone (GH), IGF-1, IGF-2, PTH, PGE2, TGF-β, TGF-α, bEGF, EGF, PDGF-AB, PDGF-BB, osteoprotegerin (OPG), osteopontin (OP), FGF-1, FGF-2, thyroid hormone, BMP-2, BMP-3, BMP-4, BMP-6, BMP-7, VEGF, L25(OH)2,vitamin D3, caclitonin, IFN-alpha, IFN-beta, IFN-gamma, OCN (osteocalcin), ON (osteonectin), OP-1 (osteogenic protein-1), NGF, collagen, fibronectin, fibrinogen, thrombin, factor XIII, a recombinant protein, a recombinant antibody, or a recombinant peptide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/754,167 US20130143313A1 (en) | 2011-04-24 | 2013-01-30 | Separative harvesting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/092,955 US8668886B2 (en) | 2011-04-24 | 2011-04-24 | Separative bioreactor |
US13/754,167 US20130143313A1 (en) | 2011-04-24 | 2013-01-30 | Separative harvesting device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/092,955 Continuation US8668886B2 (en) | 2011-04-24 | 2011-04-24 | Separative bioreactor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130143313A1 true US20130143313A1 (en) | 2013-06-06 |
Family
ID=44368908
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/092,955 Expired - Fee Related US8668886B2 (en) | 2011-04-24 | 2011-04-24 | Separative bioreactor |
US13/225,407 Expired - Fee Related US9500381B2 (en) | 2011-04-24 | 2011-09-03 | Multiuse reactors and related methods |
US13/236,523 Abandoned US20120006526A1 (en) | 2011-04-24 | 2011-09-19 | Single-container manufacturing of biological products |
US13/754,167 Abandoned US20130143313A1 (en) | 2011-04-24 | 2013-01-30 | Separative harvesting device |
US14/186,974 Expired - Fee Related US9200335B2 (en) | 2011-04-24 | 2014-02-21 | Separative bioreactor |
US14/717,900 Expired - Fee Related US9593859B2 (en) | 2011-04-24 | 2015-05-20 | Clean zone HVAC system |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/092,955 Expired - Fee Related US8668886B2 (en) | 2011-04-24 | 2011-04-24 | Separative bioreactor |
US13/225,407 Expired - Fee Related US9500381B2 (en) | 2011-04-24 | 2011-09-03 | Multiuse reactors and related methods |
US13/236,523 Abandoned US20120006526A1 (en) | 2011-04-24 | 2011-09-19 | Single-container manufacturing of biological products |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/186,974 Expired - Fee Related US9200335B2 (en) | 2011-04-24 | 2014-02-21 | Separative bioreactor |
US14/717,900 Expired - Fee Related US9593859B2 (en) | 2011-04-24 | 2015-05-20 | Clean zone HVAC system |
Country Status (2)
Country | Link |
---|---|
US (6) | US8668886B2 (en) |
WO (1) | WO2013043401A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120144904A1 (en) * | 2005-11-03 | 2012-06-14 | Maria Monica Santore | Nanopatterned surfaces and related methods for selective adhesion, sensing and separation |
WO2015038865A1 (en) * | 2013-09-13 | 2015-03-19 | University Of Florida Research Foundation, Inc. | Pluripotent tissue harvester and methods of manufacture thereof |
US20160115438A1 (en) * | 2014-10-24 | 2016-04-28 | Genzyme Corporation | Integrated Continuous Isolation of Fluid Streams From Sterile Process Vessels |
US20170101435A1 (en) * | 2015-10-13 | 2017-04-13 | Therapeutic Proteins International, LLC | Harvesting and perfusion apparatus |
US11008547B2 (en) | 2014-03-25 | 2021-05-18 | Terumo Bct, Inc. | Passive replacement of media |
US11104874B2 (en) | 2016-06-07 | 2021-08-31 | Terumo Bct, Inc. | Coating a bioreactor |
EP3563156B1 (en) * | 2016-12-28 | 2021-10-13 | Cytiva Sweden AB | A method for separating biomolecules |
US11608486B2 (en) | 2015-07-02 | 2023-03-21 | Terumo Bct, Inc. | Cell growth with mechanical stimuli |
US11613727B2 (en) | 2010-10-08 | 2023-03-28 | Terumo Bct, Inc. | Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
US11624046B2 (en) | 2017-03-31 | 2023-04-11 | Terumo Bct, Inc. | Cell expansion |
US11629332B2 (en) | 2017-03-31 | 2023-04-18 | Terumo Bct, Inc. | Cell expansion |
US11667876B2 (en) | 2013-11-16 | 2023-06-06 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
US11667881B2 (en) | 2014-09-26 | 2023-06-06 | Terumo Bct, Inc. | Scheduled feed |
US11685883B2 (en) | 2016-06-07 | 2023-06-27 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
US11965175B2 (en) | 2016-05-25 | 2024-04-23 | Terumo Bct, Inc. | Cell expansion |
US12043823B2 (en) | 2021-03-23 | 2024-07-23 | Terumo Bct, Inc. | Cell capture and expansion |
US12152699B2 (en) | 2022-02-28 | 2024-11-26 | Terumo Bct, Inc. | Multiple-tube pinch valve assembly |
US12234441B2 (en) | 2017-03-31 | 2025-02-25 | Terumo Bct, Inc. | Cell expansion |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9589686B2 (en) | 2006-11-16 | 2017-03-07 | General Electric Company | Apparatus for detecting contaminants in a liquid and a system for use thereof |
US10018613B2 (en) | 2006-11-16 | 2018-07-10 | General Electric Company | Sensing system and method for analyzing a fluid at an industrial site |
US10260388B2 (en) | 2006-11-16 | 2019-04-16 | General Electric Company | Sensing system and method |
US9536122B2 (en) | 2014-11-04 | 2017-01-03 | General Electric Company | Disposable multivariable sensing devices having radio frequency based sensors |
US9538657B2 (en) | 2012-06-29 | 2017-01-03 | General Electric Company | Resonant sensor and an associated sensing method |
US10914698B2 (en) | 2006-11-16 | 2021-02-09 | General Electric Company | Sensing method and system |
US9658178B2 (en) | 2012-09-28 | 2017-05-23 | General Electric Company | Sensor systems for measuring an interface level in a multi-phase fluid composition |
US8691145B2 (en) | 2009-11-16 | 2014-04-08 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for water purification |
US8455242B2 (en) | 2010-02-22 | 2013-06-04 | Hyclone Laboratories, Inc. | Mixing system with condenser |
US8542023B2 (en) | 2010-11-09 | 2013-09-24 | General Electric Company | Highly selective chemical and biological sensors |
US9078878B2 (en) | 2010-12-01 | 2015-07-14 | Alderbio Holdings Llc | Anti-NGF antibodies that selectively inhibit the association of NGF with TrkA, without affecting the association of NGF with p75 |
US9067988B2 (en) | 2010-12-01 | 2015-06-30 | Alderbio Holdings Llc | Methods of preventing or treating pain using anti-NGF antibodies |
US9539324B2 (en) | 2010-12-01 | 2017-01-10 | Alderbio Holdings, Llc | Methods of preventing inflammation and treating pain using anti-NGF compositions |
US9884909B2 (en) | 2010-12-01 | 2018-02-06 | Alderbio Holdings Llc | Anti-NGF compositions and use thereof |
EP3434691A1 (en) | 2010-12-01 | 2019-01-30 | AlderBio Holdings LLC | Anti-ngf compositions and use thereof |
US11214610B2 (en) | 2010-12-01 | 2022-01-04 | H. Lundbeck A/S | High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as Pichia pastoris |
EP3578522A1 (en) | 2010-12-06 | 2019-12-11 | Pall Corporation | Continuous processing methods for biological products |
US8506797B2 (en) * | 2011-04-10 | 2013-08-13 | Therapeutic Proteins International, LLC | Downstream bioprocessing device |
US9469671B2 (en) * | 2011-09-03 | 2016-10-18 | Therapeutic Proteins International, LLC | Closed bioreactor |
US8183035B1 (en) * | 2011-09-07 | 2012-05-22 | Therapeutic Proteins International, LLC | Single container manufacturing of biological product |
US9284346B2 (en) * | 2011-09-07 | 2016-03-15 | Therapeutic Proteins International, LLC | Preparative chromatography column and methods |
US9376655B2 (en) * | 2011-09-29 | 2016-06-28 | Life Technologies Corporation | Filter systems for separating microcarriers from cell culture solutions |
US8852435B2 (en) * | 2011-11-29 | 2014-10-07 | Therapeutics Proteins International, LLC | Purification and separation treatment assembly (PASTA) for biological products |
CN104220155B (en) | 2012-03-07 | 2019-09-24 | 通用电气医疗集团生物科学公司 | Valve and flexible container are abandoned for Pressed bio reactor |
US9752114B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc | Bioreactor using acoustic standing waves |
US9272234B2 (en) | 2012-03-15 | 2016-03-01 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US9752113B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9783775B2 (en) | 2012-03-15 | 2017-10-10 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US10370635B2 (en) | 2012-03-15 | 2019-08-06 | Flodesign Sonics, Inc. | Acoustic separation of T cells |
US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10967298B2 (en) | 2012-03-15 | 2021-04-06 | Flodesign Sonics, Inc. | Driver and control for variable impedence load |
US9458450B2 (en) | 2012-03-15 | 2016-10-04 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9796956B2 (en) | 2013-11-06 | 2017-10-24 | Flodesign Sonics, Inc. | Multi-stage acoustophoresis device |
US10689609B2 (en) | 2012-03-15 | 2020-06-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US10322949B2 (en) | 2012-03-15 | 2019-06-18 | Flodesign Sonics, Inc. | Transducer and reflector configurations for an acoustophoretic device |
US9950282B2 (en) | 2012-03-15 | 2018-04-24 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US9567559B2 (en) | 2012-03-15 | 2017-02-14 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US10953436B2 (en) | 2012-03-15 | 2021-03-23 | Flodesign Sonics, Inc. | Acoustophoretic device with piezoelectric transducer array |
WO2013149003A1 (en) * | 2012-03-28 | 2013-10-03 | Purdue Research Foundation | Methods and systems useful for foodborne pathogen detection |
KR101380406B1 (en) * | 2012-04-05 | 2014-04-10 | 주식회사 포스코 | Boron recovering device, method for recovering boron and boron recovering system |
US10737953B2 (en) | 2012-04-20 | 2020-08-11 | Flodesign Sonics, Inc. | Acoustophoretic method for use in bioreactors |
US9238789B2 (en) * | 2012-07-21 | 2016-01-19 | Therapeutic Proteins International, LLC | Baffled single use bioreactor |
JP6251270B2 (en) | 2012-08-22 | 2017-12-20 | ゼネラル・エレクトリック・カンパニイ | Wireless system and method for measuring the operating state of a machine |
US10598650B2 (en) | 2012-08-22 | 2020-03-24 | General Electric Company | System and method for measuring an operative condition of a machine |
US10684268B2 (en) | 2012-09-28 | 2020-06-16 | Bl Technologies, Inc. | Sensor systems for measuring an interface level in a multi-phase fluid composition |
ES2726820T3 (en) | 2013-01-31 | 2019-10-09 | Emd Millipore Corp | Disposable direct capture device |
WO2015005299A1 (en) * | 2013-07-09 | 2015-01-15 | ユニバーサル・バイオ・リサーチ株式会社 | Culture device, culture system, and culture method |
JPWO2015008849A1 (en) * | 2013-07-18 | 2017-03-02 | 持田製薬株式会社 | Self-emulsifying composition of ω3 fatty acid |
US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
WO2015105955A1 (en) | 2014-01-08 | 2015-07-16 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
BR112016018797A8 (en) * | 2014-02-17 | 2020-06-23 | Advantech Bioscience Farm Ltda | enhancement of recombinant protein expression using a membrane-based cell retention system |
KR102379781B1 (en) | 2014-03-21 | 2022-03-29 | 라이프 테크놀로지스 코포레이션 | Condenser systems for fluid processing systems |
KR102595363B1 (en) | 2014-03-21 | 2023-10-30 | 라이프 테크놀로지스 코포레이션 | Gas filter systems for fluid processing systems |
EP3125925A4 (en) | 2014-04-01 | 2017-12-06 | Advantech Bioscience Farmacêutica Ltda. | Stabilization of factor viii without calcium as an excipient |
WO2015149143A2 (en) | 2014-04-01 | 2015-10-08 | Advantech Bioscience Farmacêutica Ltda. | Stable factor viii formulations with low sugar-glycine |
US9744483B2 (en) | 2014-07-02 | 2017-08-29 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
US10617070B2 (en) | 2014-10-06 | 2020-04-14 | Life Technologies Corporation | Methods and systems for culturing microbial and cellular seed cultures |
ES2634695T3 (en) * | 2015-01-19 | 2017-09-28 | Halton Oy | Control of an indoor environmental condition |
US10106770B2 (en) | 2015-03-24 | 2018-10-23 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
RU2607883C1 (en) * | 2015-08-24 | 2017-01-20 | Акционерное общество "Центральный научно-исследовательский и проектно-экспериментальный институт промышленных зданий и сооружений - ЦНИИПромзданий" (АО "ЦНИИПромзданий") | Mechanical controlled ventilation system |
US9920292B2 (en) | 2015-08-31 | 2018-03-20 | General Electric Company | System and method for initiating a cell culture |
WO2017116910A1 (en) | 2015-12-29 | 2017-07-06 | Life Technologies Corporation | Flexible bioprocessing container with partial dividing partition |
WO2017123788A2 (en) * | 2016-01-12 | 2017-07-20 | Sarfaraz Niazi | Multipurpose bioreactor |
CN108472603A (en) * | 2016-01-22 | 2018-08-31 | 美国圣戈班性能塑料公司 | Fluid mixing system |
US10710006B2 (en) | 2016-04-25 | 2020-07-14 | Flodesign Sonics, Inc. | Piezoelectric transducer for generation of an acoustic standing wave |
CN109715124B (en) | 2016-05-03 | 2022-04-22 | 弗洛设计声能学公司 | Therapeutic cell washing, concentration and separation using acoustophoresis |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
DE202017002012U1 (en) * | 2016-05-17 | 2017-08-21 | Brand Gmbh + Co Kg | Housing for a laboratory device |
WO2018035182A1 (en) * | 2016-08-16 | 2018-02-22 | The Trustees Of Columbia University In The City Of New York | Storage and preservation of living tissue allografts |
US10933184B2 (en) * | 2016-09-30 | 2021-03-02 | Us Kidney Research Corporation | Dialysate free artificial kidney device |
GB201701576D0 (en) * | 2017-01-31 | 2017-03-15 | Ge Healthcare Bio Sciences Ab | Method and system for transferring separation resin |
CA3041517A1 (en) | 2016-10-19 | 2018-04-26 | Flodesign Sonics, Inc. | Affinity cell extraction by acoustics |
EP3532598B1 (en) * | 2016-10-28 | 2020-09-09 | Global Life Sciences Solutions USA LLC | Bioreactor tray |
TWI716501B (en) * | 2016-11-25 | 2021-01-21 | 承源環境科技企業有限公司 | Energy-saving air duct system |
TWI623707B (en) * | 2017-01-06 | 2018-05-11 | Energy-saving exhaust system | |
CN107301268A (en) * | 2017-05-18 | 2017-10-27 | 哈尔滨工程大学 | A kind of ship gas turbine variable stator vane angle compressor deflection angle optimization method |
US10760803B2 (en) | 2017-11-21 | 2020-09-01 | Emerson Climate Technologies, Inc. | Humidifier control systems and methods |
CN111587285B (en) * | 2017-11-30 | 2024-03-29 | 康宁股份有限公司 | Bag for batch chromatography |
AU2018385759B2 (en) | 2017-12-14 | 2021-10-21 | Flodesign Sonics, Inc. | Acoustic transducer driver and controller |
US11333589B2 (en) * | 2018-03-21 | 2022-05-17 | Smithsonian Institution | Gas-liquid falling film equilibration system and methods of use |
WO2019204792A1 (en) | 2018-04-20 | 2019-10-24 | Emerson Climate Technologies, Inc. | Coordinated control of standalone and building indoor air quality devices and systems |
WO2019204791A1 (en) | 2018-04-20 | 2019-10-24 | Emerson Climate Technologies, Inc. | Hvac filter usage analysis system |
WO2019204779A1 (en) | 2018-04-20 | 2019-10-24 | Emerson Climate Technologies, Inc. | Indoor air quality and occupant monitoring systems and methods |
US11371726B2 (en) | 2018-04-20 | 2022-06-28 | Emerson Climate Technologies, Inc. | Particulate-matter-size-based fan control system |
WO2019204789A1 (en) | 2018-04-20 | 2019-10-24 | Emerson Climate Technologies, Inc. | Indoor air quality sensor calibration systems and methods |
US12078373B2 (en) | 2018-04-20 | 2024-09-03 | Copeland Lp | Systems and methods for adjusting mitigation thresholds |
US11609004B2 (en) | 2018-04-20 | 2023-03-21 | Emerson Climate Technologies, Inc. | Systems and methods with variable mitigation thresholds |
US11486593B2 (en) | 2018-04-20 | 2022-11-01 | Emerson Climate Technologies, Inc. | Systems and methods with variable mitigation thresholds |
US12259148B2 (en) | 2018-04-20 | 2025-03-25 | Copeland Lp | Computerized HVAC filter evaluation system |
US11028124B2 (en) * | 2018-05-07 | 2021-06-08 | Repligen Corporation | Methods, devices and systems for 3-stage filtration |
EP3822337B1 (en) * | 2018-07-13 | 2022-05-04 | FUJIFILM Corporation | Cell culture device and cell culture method |
CN112752601B (en) | 2018-08-16 | 2023-11-07 | Emd密理博公司 | Enclosed biological processing device |
KR20210096095A (en) * | 2018-11-28 | 2021-08-04 | 글로벌 라이프 사이언시즈 솔루션즈 유에스에이 엘엘씨 | Bioreactor with filter |
US11364460B2 (en) * | 2018-12-14 | 2022-06-21 | Americair Corporation | HEPA air filtration with an air handling system |
EP3767402B1 (en) * | 2019-07-19 | 2023-08-23 | Siemens Schweiz AG | System for heating, ventilation, air-conditioning |
IL292409A (en) * | 2019-10-24 | 2022-06-01 | Octane Biotech Inc | A cell culture chamber with enhanced cell contact surfaces |
WO2021108239A1 (en) * | 2019-11-26 | 2021-06-03 | Merck Sharp & Dohme Corp. | A host-microbe co-culture perfusion bioreactor for discovery of secreted products and novel interactions at the human-microbiota interface |
US11580281B2 (en) * | 2020-02-19 | 2023-02-14 | Mitsubishi Electric Research Laboratories, Inc. | System and method for designing heating, ventilating, and air-conditioning (HVAC) systems |
US11885510B2 (en) * | 2020-09-16 | 2024-01-30 | Johnson Controls Tyco IP Holdings LLP | Systems and methods to mitigate infection risk using air purification |
US11299700B1 (en) | 2021-02-19 | 2022-04-12 | Acequia Biotechnology, Llc | Bioreactor containers and methods of growing hairy roots using the same |
US20220357058A1 (en) * | 2021-05-05 | 2022-11-10 | Germfree Laboratories INC | Fan filter unit with integrated heater |
US12252678B2 (en) | 2021-12-01 | 2025-03-18 | Microfluidx Ltd | Systems and methods for bioprocessing |
US12196505B2 (en) * | 2021-12-16 | 2025-01-14 | Saudi Arabian Oil Company | Ecological system for cooling towers algae control |
CN116136943B (en) * | 2023-04-20 | 2023-06-30 | 太原理工大学 | A Method for Optimizing Lamination Sequence of Composite Pressure Vessels |
CN116819103B (en) * | 2023-08-28 | 2023-11-07 | 成都大熊猫繁育研究基地 | Panda TSH enzyme-linked immunosorbent assay method and monoclonal antibody |
CN116966852B (en) * | 2023-08-30 | 2024-07-26 | 滁州昶旭电子材料有限公司 | Preparation system and preparation process of high-purity trimethylaluminum |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459069A (en) * | 1989-06-15 | 1995-10-17 | The Regents Of The University Of Michigan | Device for maintaining and growing human stem and/or hematopoietics cells |
US20070248957A1 (en) * | 1995-04-25 | 2007-10-25 | Nova Michael P | Encoded solid supports for biological processing and assays using same |
US20100317093A1 (en) * | 2009-06-10 | 2010-12-16 | Cynvenio Biosystems, Inc. | Flexible pouch and cartridge with fluidic circuits |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5582800A (en) * | 1994-12-28 | 1996-12-10 | Scientific Ecology Group | Method and system for removal of harmful heteroatoms in gaseous waste streams |
US5862982A (en) * | 1997-09-24 | 1999-01-26 | Johnson Service Company | Optimal ventilation control strategy |
US5997814A (en) * | 1997-12-23 | 1999-12-07 | Steris Corporation | Multi-compartment plastic woven mesh dry chemistry container |
CH697035A5 (en) | 1999-05-04 | 2008-03-31 | Marcel Roell | Bioreactor. |
US6544788B2 (en) * | 2001-02-15 | 2003-04-08 | Vijay Singh | Disposable perfusion bioreactor for cell culture |
US7306934B2 (en) | 2002-11-05 | 2007-12-11 | Uchicago Argonne, Llc | Porous solid ion exchange wafer for immobilizing biomolecules |
US7141154B2 (en) | 2003-03-06 | 2006-11-28 | Uchicago Argonne Llc | Single-stage separation and esterification of cation salt carboxylates using electrodeionization |
ES2612212T5 (en) * | 2004-06-04 | 2020-06-25 | Global Life Sciences Solutions Usa Llc | Disposable bioreactor systems and methods |
US20060065540A1 (en) | 2004-09-24 | 2006-03-30 | The University Of Chicago | Retention of counterions in the separative bioreactor |
US7682823B1 (en) * | 2005-01-04 | 2010-03-23 | Larry Runyon | Bioreactor systems |
US9677777B2 (en) * | 2005-05-06 | 2017-06-13 | HVAC MFG, Inc. | HVAC system and zone control unit |
US7421911B2 (en) * | 2005-12-20 | 2008-09-09 | Desrochers Eric M | Duct probe assembly system for multipoint air sampling |
US20100070092A1 (en) * | 2008-09-16 | 2010-03-18 | Williams Furnace Company | System and method for controlling a room environment |
PL2370748T3 (en) * | 2008-12-30 | 2017-05-31 | Zoner Llc | Automatically balancing register for hvac systems |
-
2011
- 2011-04-24 US US13/092,955 patent/US8668886B2/en not_active Expired - Fee Related
- 2011-09-03 US US13/225,407 patent/US9500381B2/en not_active Expired - Fee Related
- 2011-09-19 US US13/236,523 patent/US20120006526A1/en not_active Abandoned
-
2012
- 2012-09-10 WO PCT/US2012/054394 patent/WO2013043401A1/en active Application Filing
-
2013
- 2013-01-30 US US13/754,167 patent/US20130143313A1/en not_active Abandoned
-
2014
- 2014-02-21 US US14/186,974 patent/US9200335B2/en not_active Expired - Fee Related
-
2015
- 2015-05-20 US US14/717,900 patent/US9593859B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459069A (en) * | 1989-06-15 | 1995-10-17 | The Regents Of The University Of Michigan | Device for maintaining and growing human stem and/or hematopoietics cells |
US20070248957A1 (en) * | 1995-04-25 | 2007-10-25 | Nova Michael P | Encoded solid supports for biological processing and assays using same |
US20100317093A1 (en) * | 2009-06-10 | 2010-12-16 | Cynvenio Biosystems, Inc. | Flexible pouch and cartridge with fluidic circuits |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120144904A1 (en) * | 2005-11-03 | 2012-06-14 | Maria Monica Santore | Nanopatterned surfaces and related methods for selective adhesion, sensing and separation |
US11746319B2 (en) | 2010-10-08 | 2023-09-05 | Terumo Bct, Inc. | Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
US11773363B2 (en) | 2010-10-08 | 2023-10-03 | Terumo Bct, Inc. | Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
US11613727B2 (en) | 2010-10-08 | 2023-03-28 | Terumo Bct, Inc. | Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
US10160946B2 (en) | 2013-09-13 | 2018-12-25 | University Of Florida Research Foundation, Inc. | Pluripotent tissue harvester and methods of manufacture thereof |
WO2015038865A1 (en) * | 2013-09-13 | 2015-03-19 | University Of Florida Research Foundation, Inc. | Pluripotent tissue harvester and methods of manufacture thereof |
US11708554B2 (en) | 2013-11-16 | 2023-07-25 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
US11667876B2 (en) | 2013-11-16 | 2023-06-06 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
US11008547B2 (en) | 2014-03-25 | 2021-05-18 | Terumo Bct, Inc. | Passive replacement of media |
US11795432B2 (en) | 2014-03-25 | 2023-10-24 | Terumo Bct, Inc. | Passive replacement of media |
US12065637B2 (en) | 2014-09-26 | 2024-08-20 | Terumo Bct, Inc. | Scheduled feed |
US11667881B2 (en) | 2014-09-26 | 2023-06-06 | Terumo Bct, Inc. | Scheduled feed |
US11920120B2 (en) | 2014-10-24 | 2024-03-05 | Genzyme Corporation | Integrated continuous isolation of fluid streams from sterile process vessels |
US20160115438A1 (en) * | 2014-10-24 | 2016-04-28 | Genzyme Corporation | Integrated Continuous Isolation of Fluid Streams From Sterile Process Vessels |
US11608486B2 (en) | 2015-07-02 | 2023-03-21 | Terumo Bct, Inc. | Cell growth with mechanical stimuli |
US20170101435A1 (en) * | 2015-10-13 | 2017-04-13 | Therapeutic Proteins International, LLC | Harvesting and perfusion apparatus |
US11965175B2 (en) | 2016-05-25 | 2024-04-23 | Terumo Bct, Inc. | Cell expansion |
US11999929B2 (en) | 2016-06-07 | 2024-06-04 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
US11685883B2 (en) | 2016-06-07 | 2023-06-27 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
US11634677B2 (en) | 2016-06-07 | 2023-04-25 | Terumo Bct, Inc. | Coating a bioreactor in a cell expansion system |
US12077739B2 (en) | 2016-06-07 | 2024-09-03 | Terumo Bct, Inc. | Coating a bioreactor in a cell expansion system |
US11104874B2 (en) | 2016-06-07 | 2021-08-31 | Terumo Bct, Inc. | Coating a bioreactor |
US11686726B2 (en) | 2016-12-28 | 2023-06-27 | Cytiva Sweden Ab | Method and system for separating biomolecules |
US11846635B2 (en) | 2016-12-28 | 2023-12-19 | Cytiva Sweden Ab | Magnetic immunoglobulin-binding particles |
EP3563156B1 (en) * | 2016-12-28 | 2021-10-13 | Cytiva Sweden AB | A method for separating biomolecules |
US11624046B2 (en) | 2017-03-31 | 2023-04-11 | Terumo Bct, Inc. | Cell expansion |
US11702634B2 (en) | 2017-03-31 | 2023-07-18 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
US11629332B2 (en) | 2017-03-31 | 2023-04-18 | Terumo Bct, Inc. | Cell expansion |
US12234441B2 (en) | 2017-03-31 | 2025-02-25 | Terumo Bct, Inc. | Cell expansion |
US12043823B2 (en) | 2021-03-23 | 2024-07-23 | Terumo Bct, Inc. | Cell capture and expansion |
US12152699B2 (en) | 2022-02-28 | 2024-11-26 | Terumo Bct, Inc. | Multiple-tube pinch valve assembly |
US12209689B2 (en) | 2022-02-28 | 2025-01-28 | Terumo Kabushiki Kaisha | Multiple-tube pinch valve assembly |
Also Published As
Publication number | Publication date |
---|---|
US9593859B2 (en) | 2017-03-14 |
US20110198286A1 (en) | 2011-08-18 |
US20120006526A1 (en) | 2012-01-12 |
US8668886B2 (en) | 2014-03-11 |
US20140170635A1 (en) | 2014-06-19 |
US9200335B2 (en) | 2015-12-01 |
US20150253022A1 (en) | 2015-09-10 |
US9500381B2 (en) | 2016-11-22 |
US20120231504A1 (en) | 2012-09-13 |
WO2013043401A1 (en) | 2013-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9200335B2 (en) | Separative bioreactor | |
JP6066500B2 (en) | Closed bioreactor | |
Schügerl et al. | Integrated bioprocesses | |
US6214221B1 (en) | Method and apparatus for purification of biological substances | |
US8506797B2 (en) | Downstream bioprocessing device | |
US8852435B2 (en) | Purification and separation treatment assembly (PASTA) for biological products | |
EP1354941A1 (en) | Apparatus and method for a cell culture in a bioreactor at high cell concentration | |
EP1175931A1 (en) | Integration of high cell density bioreactor operation with ultra fast on-line downstream processing | |
JP6026539B2 (en) | Single container manufacturing of biological products | |
CN105164509A (en) | Method and kit for purifying nucleic acids | |
TW201709962A (en) | Methods for the continuous elution of a product from chromatography columns | |
US20160200761A1 (en) | Buoyant protein harvesting device | |
US9290732B2 (en) | Buoyant protein harvesting device | |
US20220389053A1 (en) | Purification process based on magnetic beads | |
Kadir et al. | Production and downstream processing of biotech compounds | |
US20170101435A1 (en) | Harvesting and perfusion apparatus | |
US20160097073A1 (en) | Purification and separation treatment assembly (pasta) for biological products | |
JP7524841B2 (en) | Solution processing devices for use in cell culture processes | |
CN1108375C (en) | Continuous producing method of recombined phage in biologicl film reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |