US20130140067A1 - Wafer or circuit board and joining structure of wafer or circuit board - Google Patents
Wafer or circuit board and joining structure of wafer or circuit board Download PDFInfo
- Publication number
- US20130140067A1 US20130140067A1 US13/683,252 US201213683252A US2013140067A1 US 20130140067 A1 US20130140067 A1 US 20130140067A1 US 201213683252 A US201213683252 A US 201213683252A US 2013140067 A1 US2013140067 A1 US 2013140067A1
- Authority
- US
- United States
- Prior art keywords
- melting point
- metal
- protrusion
- conductive film
- joining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0296—Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
- H05K3/3436—Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/039—Methods of manufacturing bonding areas involving a specific sequence of method steps
- H01L2224/03912—Methods of manufacturing bonding areas involving a specific sequence of method steps the bump being used as a mask for patterning the bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/1147—Manufacturing methods using a lift-off mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/119—Methods of manufacturing bump connectors involving a specific sequence of method steps
- H01L2224/11901—Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/119—Methods of manufacturing bump connectors involving a specific sequence of method steps
- H01L2224/11901—Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
- H01L2224/11902—Multiple masking steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/25—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
- H01L2224/251—Disposition
- H01L2224/2518—Disposition being disposed on at least two different sides of the body, e.g. dual array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81193—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/90—Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/90—Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01011—Sodium [Na]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01024—Chromium [Cr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0364—Conductor shape
- H05K2201/0367—Metallic bump or raised conductor not used as solder bump
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10674—Flip chip
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a wafer or a circuit board, each of which is used to perform three-dimensional mounting by being joined to each other, and relates to a joining structure of the wafer or the circuit board.
- the thinning and miniaturization of an electronic apparatus have been achieved by the miniaturization of components mounted to the electronic apparatus.
- the miniaturization technique of the components has been largely dependent upon the microfabrication technology of LSI.
- enormous installation investment is required to introduce a finer microfabrication technology of LSI, and hence the introduction of such a technique cannot satisfy the need to reduce product costs.
- the problem can be solved in such a way that a through-electrode perpendicularly penetrating through the surface of a wafer (silicon and a compound semiconductor) is formed, that electrodes are formed on the front and rear surfaces of the wafer, and that the electrodes of each of the wafers are connected to each other by laminating the wafers. Accordingly, a technique to change conventional planar mounting (two-dimensional mounting) into spatial mounting (three-dimensional mounting) has been developed.
- Japanese Patent Laid-Open No. 11-204939 there is proposed, as a method for laminating the wafers, a method in which after bumps are formed on the wafers, the wafers, with an adhesive applied thereon, are stuck to each other. Further, in the patent document, there is disclosed a method in which metals on the surface, to which the adhesive is applied, are connected to each other by forcing out the adhesive from between the metals. In the patent document, tin-plated terminals, on which the adhesive is applied, are joined to each other while being pressed together. Thereby, the adhesive is forced out from between the metal joining portions, so that the metals are electrically connected to each other. However, a large force is required at the time of pressing the terminals together, and hence the method is unsuitable for minute bumps which are the object of the present invention.
- Japanese Patent Laid-Open No. 10-308415 there is described, as a method for connecting a solder protrusion to a connection electrode on a wiring board without using flux, a method of using a solder protrusion formed by a first protrusion and a second protrusion.
- a solder protrusion having a two-stage structure formed by the first protrusion and the second protrusion is formed such that the melting temperature of the first protrusion is higher than that of the second protrusion and that the surface area of the first protrusion is two times or more larger than the surface area of the second protrusion.
- connection electrode on the wiring board and the solder protrusion are made to face each other, and are heated at a temperature which is equal to or lower than the melting temperature of the first protrusion and which is equal to or higher than the melting temperature of the second protrusion, while an electronic component is pressed. Since only the second protrusion is melted at the soldering temperature, the second protrusion can be expanded between the first protrusion and the connection electrode on the wiring board by the application of a slight pressing force. Thereby, as described in the patent document, the oxide film on the surface of the second protrusion is broken to expose the intrinsic layer in the second protrusion, so that a desired joining state can be obtained.
- first protrusion electrode 15 of first LSI chip 16 is a Sn-3.5 Ag solder protrusion containing 96.5% of Tin (Sn) and 3.5% of silver (Ag), and that second protrusion electrode 19 is a protrusion made of nickel (Ni).
- second protrusion electrode 19 of second LSI chip 20 which has a small diameter and high hardness, is made to bite into first protrusion electrode 15 of first LSI chip 16 , to allow bump 19 of second LSI chip 20 to break through the oxide film formed on the surface of first protrusion electrode 15 of first LSI chip 16 , so that first LSI chip 16 and second LSI chip 19 are joined to each other.
- the melting point can be made low, and thereby the processing temperature for joining respective bumps can be set to a low level.
- the role of the protrusion is limited, as described above, and does not play the role of a spacer.
- Japanese Patent Laid-Open No. 2006-59957 there is described a method of using a protrusion, as a method of manufacturing a semiconductor package structure and a semiconductor package, and this method features excellent productivity, and a capability for making thinner and more miniaturized products, and has higher performance.
- the object of the protrusion is to break through a resin layer, and the protrusion does not play the role of a spacer. Further, a low melting point metal is not formed so as to cover the protrusion.
- the followings are also disclosed about joining particles. The joining particles are arranged and joined at predetermined positions on the surface of a circuit conductor.
- the joining of the joining particles is performed by a method of ultrasonic welding, welding, soldering, applying a conductive resin, or the like. Then, the surface on which the joining particles are arranged, and a resin layer on which a conductor metal is provided, are arranged so as to face each other.
- a hot press apparatus the resin layer on which the conductor metal is provided is heated at a predetermined temperature so as to be softened and then heat pressed. Thereby, the joining particles are embedded into the softened resin layer.
- the joining particles, and the conductor metal which is another conductor layer are brought into contact and joined with each other.
- the present invention seeks to solve one or more of the above problems, or to improve upon those problems at least in part.
- a wafer or a circuit board is used to perform three-dimensional mounting by being joined to each other, the wafer or the circuit board including:
- FIGS. 1A and 1B show a three-dimensional mounting process (No. 1 );
- FIG. 2 is a figure showing a three-dimensional mounting process (No. 2 );
- FIG. 3A through 3C show a three-dimensional mounting process (No. 3 );
- FIGS. 4A and 4B show a three-dimensional mounting process (No. 4 );
- FIG. 5A through 5F show a method for forming a joining metal terminal ( 1 );
- FIG. 6A through 6C show a method for forming a joining metal terminal ( 2 );
- FIG. 7A through 7G show a method for forming a joining metal terminal ( 3 );
- FIG. 8A through 8E show a method for forming a joining metal terminal ( 4 );
- FIG. 9A through 9D show a joining metal terminal
- FIG. 10 is a figure showing combinations (table) of the joining metal terminals
- FIG. 11A through 11E show combinations (joining structures) that are used to join metal terminals together
- FIGS. 12A and 12B show a method for manufacturing a joining structure (a) of wafers.
- FIGS. 13A and 13B show a method for manufacturing a joining structure (b) of wafers.
- the invention will be described by taking three-dimensional mounting as an effective application example.
- exemplary embodiments of three-dimensional mounting of wafers will be described, but the same effect can also be obtained by using electronic circuit boards instead of wafers.
- FIG. 1A through FIG. 4B show an outline of three-dimensional mounting processes.
- FIG. 1A [ FIG. 1A ]
- conductor 2 made of a poly-silicon or a metal is filled in the hole.
- different dimensions are used depending upon the semiconductor pre-process and a semiconductor element to be manufactured.
- conductor 2 has a diameter of about 3 to 50 microns and a depth of about 20 to 100 microns. The interval between conductors 2 is about 20 to 100 microns. It is preferred that aluminum be arranged on conductor 2 so as to seal the conductor (not shown).
- FIG. 1B [ FIG. 1B ]
- Insulating film 4 is formed in a region on the surface of wafer 1 in which conductors 2 are embedded, other than in the region where a terminal of conductor 2 is arranged.
- Wiring layer 3 is formed on insulating film 4 by using a semiconductor pre-process.
- the terminal of conductor 2 is connected to wiring 41 leading to a semiconductor element.
- Insulating film 4 is also formed on the surface of wiring layer 3 .
- FIG. 2 [ FIG. 2 ]
- Joining metals 51 are formed. The details of this process are shown in FIG. 5A through 5F and FIG. 7A through 7G .
- Joining metal 51 is connected to wiring 41 leading to the semiconductor element via pad 42 which is formed by a semiconductor process. Further, as shown in the enlarged view, insulating film 4 is formed in the peripheral portion of pad 42 which is formed by the semiconductor process.
- FIG. 3A [ FIG. 3A ]
- Adhesive 6 is applied on joining metals 51 (in the figure, a state where joining metals 51 are mounted on interposer 8 is shown, and hence the upper and lower sides of joining metals 51 are shown in reversed position).
- Joining metals 52 are formed on interposer 8 .
- joining metals 52 which are formed on interposer 8 , can also be formed on a wafer in which other elements are formed, by the same process. Further, in the process here, the formation of joining metals 52 is started from the portion on interposer 8 , but can also be started from the portion on another wafer (that is, from a portion configured only by a wafer in which elements are formed, without using the interposer).
- the joining portions After being aligned, the joining portions are brought into contact with each other and heated at the same temperature or a temperature that is higher than the melting point of joining metal 51 . At this time, adhesive 6 between joining metal 51 and joining metal 52 is forced out, so that joining metal 51 and joining metal 52 are connected to each other. Further, at this time, in the case where a thermosetting adhesive is used, the adhesive can be cured simultaneously with the time when joining metal 51 and joining metal 52 are connected to each other.
- joining metals 52 ′ are formed by the same process as that shown in FIG. 3A .
- Another wafer 1 ′ is produced by the process shown in FIGS. 1A and 1B and FIG. 2 (the upper side and the lower side of the wafer are shown in reversed position in the figure), and adhesive 6 ′ is applied on joining metal 51 ′ of wafer 1 ′.
- the joining portions After being aligned, the joining portions are brought into contact with each other and heated at the same temperature or a temperature that is higher than the melting point of joining metal 51 ′.
- adhesive 6 ′ between joining metal 51 ′ and joining metal 52 ′ is forced out, so that joining metal 51 ′ and joining metal 52 ′ are connected to each other.
- the adhesive can be cured simultaneously with the time when joining metal 51 ′ and joining metal 52 ′ are connected to each other.
- FIG. 4A [ FIG. 4A ]
- joining metals 52 ′′ are formed by the same process as that shown in FIG. 3A .
- FIG. 4B is an overall view of a laminated semiconductor device according to the present exemplary embodiment.
- Laminated semiconductor elements 9 and chip 10 which controls semiconductor elements 9 are mounted on interposer 8 .
- control chip 10 is arranged on laminated semiconductor elements 9 , but may be arranged at any place.
- control chip 10 can also be arranged on interposer 8 or under interposer 8 .
- bumps 11 used for connection with an external circuit are formed under interposer 8 .
- FIG. 5A through 5F and FIG. 7A through 7G respectively show forming methods of joining together metal terminals of the exemplary embodiments according to the present invention.
- FIG. 6A through 6C and FIG. 8A through 8E respectively show manufacturing methods of joining together metal terminals which are connected to the joining metal terminals of the present exemplary embodiments formed by the methods shown in FIG. 5A through 5F and FIG. 7A through 7G .
- FIG. 5A through 5F show a method of forming joining metal terminal ( 1 ) of exemplary embodiment 1 according to the present invention.
- a protrusion which plays the role of a spacer is formed in the joining metal terminal of the present exemplary embodiment.
- FIG. 5A [ FIG. 5A ]
- Power feeding film 12 for electroplating which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed on wafer 1 .
- the function of titanium is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown as wafer 1 in the figure, but in an actual semiconductor element, is SiO 2 , SiN or polyimide, formed on the surface of the wafer).
- the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like.
- a chromium film can also be used instead of the titanium film used in the present exemplary embodiment.
- the film thickness of copper is preferably set to the minimum film thickness set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process.
- the film thickness at which the film thickness distribution is prevented from being induced is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like.
- the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, so as to lower the production efficiency.
- etching needs to be performed for a long time at the time when power feeding film 12 is removed by etching in the subsequent process. As a result, the side etching of copper 14 under the nickel is increased.
- a pattern of a protrusion is formed at the position where the metal terminal is joined together by using resist 7 .
- Protrusion 20 is formed by using electroplating.
- electroplating it is possible to use gold, silver, copper, nickel, and the like, but copper, on the surface of which a plating film is easily formed in the subsequent process, is used.
- FIG. 5D [ FIG. 5D ]
- the resist formed in FIG. 5B is peeled one time. Then, the resist is again applied and patterned, so that a pattern of the joining metal terminal is formed. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member.
- Nickel 21 is formed in the pattern formed in FIG. 5D by using electro-nickel plating.
- pure nickel is used, but a material in which a trace of silver and copper is mixed into nickel, may also be used in order to improve wettability with a low melting point material.
- copper can also be used as a material forming the joining metal terminal, but nickel is preferably used for securing the reliability.
- the resist formed in FIG. 5D is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member.
- power feeding film 12 formed in FIG. 5A is removed by etching.
- Etching solutions such as a ferric chloride etching solution and an alkali based etching solution, can be used for etching copper 14 , but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used.
- the etching when the time period during which the etching is performed is shorter than ten seconds, the etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching.
- the etching solution and the etching conditions are suitably determined by experiment.
- An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion of titanium 13 of the power feeding film.
- any etching solution can be used, as long as the solution does not remarkably dissolve the formed member.
- chromium is used for power feeding film 12
- a mixed solution of potassium permanganate and sodium metasilicate is used.
- FIG. 6A through 6C show a method of forming joining metal terminal ( 2 ) connected to the joining metal terminal of the exemplary embodiment according to the present invention.
- FIG. 6A [ FIG. 6A ]
- Power feeding film 12 for electroplating which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed on wafer 1 .
- the function of titanium is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown as wafer 1 in the figure, but in an actual semiconductor element, is SiO 2 , SiN or polyimide, formed on the surface of the wafer).
- the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like.
- chromium film can also be used instead of the titanium film used in the present exemplary embodiment.
- the film thickness of copper is preferably set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process.
- the film thickness at which the film thickness distribution is prevented from being induced is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like.
- the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, which lowers production efficiency.
- etching needs to be performed for a long time at the time when power feeding film 12 is removed by etching in the subsequent process. As a result, side etching of copper 14 under the nickel is increased.
- a pattern of a joining metal is formed by using resist 7 , and the joining metal is formed by using electroplating.
- copper can also be used, but nickel 21 is preferably used for securing reliability.
- a material in which a trace of silver and copper is mixed into nickel may also be used in order to improve wettability with a low melting point material.
- the resist formed in FIG. 6B is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member.
- power feeding film 12 formed in FIG. 6A is removed by etching.
- Etching solutions such as a ferric chloride etching solution and an alkali based etching solution, can be used for etching copper 14 , but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used.
- the etching when the time period during which the etching is performed is shorter than ten seconds, the etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching.
- the etching solution and the etching condition be suitably determined by experiment.
- An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion of titanium 13 of the power feeding film.
- any etching solution can be used, as long as the solution does not remarkably dissolve the formed member.
- chromium is used for power feeding film 12
- a mixed solution of potassium permanganate and sodium metasilicate is used.
- FIG. 7A through 7G show a method of forming joining metal terminal ( 3 ) of exemplary embodiment 2 according to the present invention.
- a protrusion which plays the role of a spacer, and a low melting point metal (tin in the exemplary embodiment) for electrically connecting wafers to each other.
- FIG. 7A [ FIG. 7A ]
- Power feeding film 12 for electroplating which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed on wafer 1 .
- the function of titanium is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown as wafer 1 in the figure, but in an actual semiconductor element, is SiO 2 , SiN or polyimide, formed on the surface of the wafer).
- the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like.
- a chromium film can also be used instead of the titanium film used in the present exemplary embodiment.
- the film thickness of copper is preferably set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process.
- the film thickness at which the film thickness distribution is prevented from being induced is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like.
- the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, which lowers the production efficiency.
- etching needs to be performed for a long time at the time when power feeding film 12 is removed by etching in the subsequent process. As a result, the side etching of copper 14 under nickel is increased.
- a pattern of a protrusion is formed at the position of the joining metal terminal by using resist 7 .
- Protrusion 20 is formed by using electroplating.
- electroplating it is possible to use gold, silver, copper, nickel, and the like, but copper, on the surface of which a plating film is easily formed in the subsequent process, is used.
- the resist formed in FIG. 7B is peeled one time. Then, the resist is again applied and patterned, so that a pattern of the joining metal terminal is formed. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member.
- Nickel 21 is formed in the pattern formed in FIG. 7D by using electro-nickel plating.
- pure nickel is used, but a material in which a trace of silver and copper is mixed into nickel, may also be used in order to improve wettability with a low melting point material.
- copper can also be used as a material for forming the joining metal terminal, but nickel 21 is preferably used for securing reliability.
- tin 15 is formed on nickel 21 by using electroplating.
- pure tin is used, but any material such as a tin silver plated material and a tin silver copper plated material can be used, as long as tin is used as a main component in the material.
- the resist formed in FIG. 7D is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member.
- power feeding film 12 formed in FIG. 7A is removed by etching.
- Etching solutions such as a ferric chloride etching solution and an alkali based etching solution, can be used for etching copper 14 , but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used.
- etching when the time period during which the etching is performed is shorter than ten seconds, etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching.
- the etching solution and the etching condition be suitably determined by experiment.
- An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion of titanium 13 of the power feeding film.
- any etching solution can be used, as long as the solution does not remarkably dissolve the formed member.
- chromium is used for power feeding film 12
- a mixed solution of potassium permanganate and sodium metasilicate is used.
- Tin is heated to its melting point temperature or higher, so as to be formed into a spherical shape.
- FIG. 8A through 8E show a method of forming joining metal terminal ( 4 ) connected to the joining metal terminal of the exemplary embodiment according to the present invention.
- FIG. 8A [ FIG. 8A ]
- Power feeding film 12 for electroplating which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed on wafer 1 .
- the function of titanium is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown as wafer 1 in the figure, but in an actual semiconductor element, is SiO 2 , SiN or polyimide).
- the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like.
- a chromium film can also be used instead of the titanium film used in the present exemplary embodiment.
- the film thickness of copper is preferably set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process.
- the film thickness at which the film thickness distribution is prevented from being induced is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like.
- the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, so as to lower the production efficiency.
- etching needs to be performed for a long time at the time when power feeding film 12 is removed by etching in the subsequent process. As a result, side etching of copper 14 under the nickel is increased.
- a pattern of a joining metal is formed by using resist 7 , and the joining metal is formed by using electroplating.
- pure nickel is used, but a material in which a trace of silver and copper is mixed into nickel, may also be used in order to improve wettability with a low melting point material.
- copper can also be used as a material for forming the joining metal terminal, but nickel 21 is preferably used for securing the reliability.
- tin 15 is formed on nickel 21 by using electroplating.
- pure tin is used, but any material such as a tin silver plated material and a tin silver copper plated material can be used, as long as tin is used as a main component in the material.
- the resist formed in FIG. 8B is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member.
- power feeding film 12 formed in FIG. 8A is removed by etching.
- Etching solutions such as a ferric chloride etching solution and an alkali based etching solution, can be used for etching copper 14 , but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used.
- the etching when the time period during which the etching is performed is shorter than ten seconds, the etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching.
- the etching solution and the etching condition be suitably determined by experiment.
- An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion of titanium 13 of the power feeding film.
- any etching solution can be used here, as long as the solution does not remarkably dissolve the formed member.
- chromium is used for power feeding film 12
- a mixed solution of potassium permanganate and sodium metasilicate is used.
- Tin is heated to its melting point temperature or to a higher temperature so as to be formed into a spherical shape.
- FIG. 9A through 9D show configurations of the joining metal terminals formed as shown in FIG. 5A to FIG. 8E .
- Joining metal terminal ( 1 ) shown in FIG. 9A is the joining metal terminal of exemplary embodiment 1 according to the present invention.
- Joining metal terminal ( 3 ) shown in FIG. 9C is the joining metal terminal of exemplary embodiment 2 according to the present invention.
- Joining metal terminal ( 2 ) shown in FIG. 9B is the joining metal terminal to be joined to joining metal terminal ( 1 ) shown in FIG. 9A .
- Joining metal terminal ( 4 ) shown in FIG. 9D is the joining metal terminal to be joined to joining metal terminal ( 3 ) shown in FIG. 9C .
- reference numeral 1 denotes a wafer.
- Reference numeral 13 denotes titanium, and reference numeral 14 denotes copper. Titanium 13 and copper 14 are the power feeding films for electroplating.
- Reference numeral 20 denotes a protrusion. Protrusion 20 is formed in a low melting point metal (tin in the exemplary embodiment) which electrically connects wafers to each other at the time when the wafers are joined to each other. Protrusion 20 is not deformed at the time when the low melting point metal is melted, so as to define an interval between the wafers.
- copper is used as the material of protrusion 20 , but a metal, such as gold, silver and nickel may also be used.
- Reference numeral 21 denotes a metal used as a barrier for the low melting point metal, and nickel is used in the exemplary embodiment according to the present invention. Instead of nickel, an alloy containing 90% or more of nickel, in which a trace of silver and copper is mixed, may also be used in order to improve wettability with the low melting point metal. It is possible to prevent diffusion of the low melting point metal by nickel 21 .
- Reference numeral 15 denotes the low melting point metal which is provided for electrically connecting the wafers to each other and which melts at a temperature of 400° C. or lower. Tin is used in the exemplary embodiment according to the present invention. In addition to pure tin, an alloy containing 90% or more of tin, such as tin silver and tin silver copper, may also be used.
- the diameter is 3 to 250 ⁇ m and the height is 3 to 250 ⁇ m.
- the diameter is 3 to 50 ⁇ m and the height is 3 to 50 ⁇ m.
- FIG. 10 shows a table representing combinations at the time when these joining metal terminals are used so that they can be joined to each other.
- the combination indicated by the mark “NO GOOD” is a combination in which the terminals cannot be joined to each other because the low melting point metal (tin or tin alloy) is not formed in each of the terminals.
- the combination indicated by the mark “DUPLICATED” is a duplicated combination.
- the combination indicated by the mark “GENERAL” is a combination generally used for the joining of metals to each other.
- the combination indicated by the mark “GOOD” is a combination of the joining metal terminals that are joined to each other and which feature the exemplary embodiment according to the present invention, and in at least one of which the protrusion is formed.
- reference characters (a) to (f) shown in the table correspond to the joining structures as will be described with reference to FIG. 11A through 11E .
- FIG. 11A through 11E show the joining structures. In the figure, only the portions of copper, tin and nickel are shown, and detailed portions of the conductor, and the like, in the wafer are not shown. Further, although not shown, an underfill material (adhesive) is filled between the wafer layers.
- an underfill material adheresive
- FIG. 11A shows a joining structure (a) in which joining metal terminal ( 1 ) having the protrusion is joined with joining metal terminal ( 3 ) having the protrusion and the low melting point metal.
- the wafers are electrically connected to each other by the low melting point metal of joining metal terminal ( 3 ).
- the interval between the wafers is defined by the protrusion of joining metal terminal ( 1 ) and the protrusion of joining metal terminal ( 3 ).
- FIG. 11B shows a joining structure (b) in which joining metal terminal ( 2 ) is joined with joining metal terminal ( 3 ) having the protrusion and the low melting point metal.
- the wafers are electrically connected to each other by the low melting point metal of joining metal terminal ( 3 ).
- the interval between the wafers is defined by the protrusion of joining metal terminal ( 3 ).
- FIG. 11C shows joining structure (c) in which joining metal terminals ( 3 ) having the protrusion and the low melting point metal are joined with each other.
- the wafers are electrically connected to each other by the low melting point metal of both joining metal terminals ( 3 ).
- the interval between the wafers is defined by the protrusion of both joining metal terminals ( 3 ).
- FIG. 11D shows joining structure (d) in which joining metal terminal ( 1 ) having the protrusion is joined with joining metal terminal ( 4 ) having the low melting point metal.
- the wafers are electrically connected to each other by the low melting point metal of joining metal terminal ( 4 ).
- the interval between the wafers is defined by the protrusion of joining metal terminal ( 1 ).
- FIG. 11E shows joining structure (e) in which joining metal terminal ( 3 ) having the protrusion and the low melting point metal is joined with joining metal terminal ( 4 ) having the low melting point metal.
- the wafers are electrically connected to each other by the low melting point metal of joining metal terminal ( 3 ) and the low melting point metal of joining metal terminal ( 4 ).
- the interval between the wafers is defined by the protrusion of joining metal terminal ( 3 ).
- FIGS. 12A and 12B show a manufacturing method of the joining structure (a) of the wafers in the case where the combination of the joining metal terminals shown in FIG. 11A is used.
- FIG. 12A shows a state just before the wafers are joined.
- FIG. 12B shows the joining structure (a) after the wafers are joined to each other.
- Reference numerals 61 and 62 denote two wafers to be joined.
- Reference numeral 71 denotes joining metal terminal ( 3 ) of exemplary embodiment 2 according to the present invention.
- Reference numeral 72 denotes joining metal terminal ( 1 ) of exemplary embodiment 1 according to the present invention.
- Reference numeral 60 denotes an adhesive.
- joining metal terminal ( 3 ) 71 is formed on wafer 61
- joining metal terminal ( 1 ) 72 is formed on wafer 62
- Joining metal terminal ( 3 ) 71 formed on wafer 61 has protrusion 20 and low melting point metal 15
- Joining metal terminal ( 1 ) 72 formed on wafer 62 has protrusion 20
- FIGS. 12A and 12B show the case where the joining metal terminal of each of the wafers has the protrusion.
- Adhesive 60 is applied to the surface of wafer 62 , which faces wafer 61 . Note that adhesive 60 may also be applied on wafer 61 .
- the wafers are brought into contact and joined with each other by being heated to the temperature of the melting point of low melting point metal 15 (tin in the exemplary embodiment) of joining metal terminal ( 3 ) 71 or to a higher temperature.
- adhesive 60 between joining metal terminal ( 3 ) 71 and joining metal terminal ( 1 ) 72 is pressed away, so that joining metal terminal ( 3 ) 71 and joining metal terminal ( 1 ) 72 are electrically connect to each other by low melting point metal 15 .
- protrusion 20 is made of copper, and hence protrusion 20 also contributes to the electrical connection.
- adhesive 60 can be cured simultaneously with the connection. In this way, the joining structure of the wafer in which protrusion 20 is formed in low melting point metal 15 , is produced.
- the interval between the wafers is defined by protrusion 20 of joining metal terminal ( 3 ) 71 and protrusion 20 of joining metal terminal ( 1 ) 72 . Since protrusions 20 are provided, the wafers can be joined to each other without adhesive 60 applied on the joining metal terminals being held between the joining metal terminals. Thereby, the electrical connection can be obtained between the electrode portions. Since protrusions 20 are not deformed at this time, it is possible to fix the interval between the wafers.
- the joining metal terminal of the exemplary embodiment according to the present invention has protrusion 20 , and hence the interval between the wafers is defined by protrusion 20 . Further, even when low melting point metal 15 is melted, protrusion 20 in low melting point metal 15 is not deformed. Thus, it is possible to obtain the electrical connection without adhesive 60 being held between joining metal terminals. Since protrusion 20 is not deformed, the wafers can be pressed together by a strong force when being joined to each other, and also the pressing force need not be adjusted. Further, the pressing force is concentrated on protrusion 20 when the wafers are pressed together, and adhesive 60 can be effectively forced out from between the wafers.
- FIGS. 12A and 12B the portion of the joining interface between two wafers is enlarged and emphasized, and the configuration in the wafer and the configuration on the surface of the opposite side of the wafer are not shown. Further, in FIGS. 12A and 12B , three joining metal terminals are provided for each wafer, but many joining metal terminals are actually provided for each wafer. Joining metal terminal ( 3 ) 71 and joining metal terminal ( 1 ) 72 shown in FIGS. 12A and 12B respectively correspond to joining metal 51 ′ and joining metal 52 ′ shown in FIG. 3C .
- FIGS. 13A and 13B show a method of manufacturing the joining structure (b) of the wafers in the case where a combination of the joining metal terminals shown in FIG. 11B is used.
- FIG. 13A shows a state just before the wafers are joined.
- FIG. 13B shows a state after the wafers are joined to each other.
- Reference numerals 61 and 62 denote two wafers to be joined.
- Reference numeral 71 denotes joining metal terminal ( 3 ) of exemplary embodiment 2 according to the present invention.
- Reference numeral 73 denotes joining metal terminal ( 2 ).
- Reference numeral 60 denotes an adhesive.
- FIGS. 13A and 13B are different from FIGS. 12A and 12B only in that joining metal terminal ( 2 ) 73 is provided on wafer 62 instead of joining metal terminal ( 1 ) 72 in FIGS. 12A and 12B . That is, in FIGS. 13A and 13B , among the two wafers to be joined to each other, only joining metal terminal of one wafer 61 has protrusion 20 . Therefore, the description of FIGS. 13A and 13B is the same as the description of FIGS. 12A and 12B except that the interval between the wafers is defined only by protrusion 20 of joining metal terminal ( 3 ) 71 .
- the method of manufacturing the joining structure of wafers in the case where a combination of joining metal terminals shown in FIG. 11C to FIG. 11E is used is the same as the manufacturing method as described with reference to FIGS. 12A and 12B and FIGS. 13A and 13B .
- the wafer described in this specification is not limited only to a circular wafer, but may be a wafer formed by cutting the circular wafer into an arbitrary shape (for example, a quadrangular shape).
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Wire Bonding (AREA)
Abstract
A wafer (or a circuit board), which is used to perform three-dimensional mounting, has protrusion 20 which is provided in low melting point metal 15 for electrically connecting mutually joined wafers 61 and 62, and which defines an interval between mutually joined wafers 61 and 62 without being deformed at the time when low melting point metal 15 is melted. A joining structure of wafers 61 and 62 is manufactured by using wafers 61 and 62, at least one of which has protrusion 20. In the manufactured joining structure of wafers 61 and 62, wafers 61 and 62 are electrically connected to each other by low melting point metal 15, and protrusion 20, which defines the interval between wafers 61 and 62 without being deformed at the time when low melting point metal 15 is melted, is provided in low melting point metal 15.
Description
- This application is a continuation application of U.S. patent application Ser. No. 12/285,222, filed on Sep. 30, 2008, now U.S. Pat. No. (tbd).
- This application is based upon and claims the benefit of priority from Japanese patent application No. 2007-266716, filed on Oct. 12, 2007, the disclosure of which is incorporated herein in its entirety by reference.
- 1. Field of the Invention
- The present invention relates to a wafer or a circuit board, each of which is used to perform three-dimensional mounting by being joined to each other, and relates to a joining structure of the wafer or the circuit board.
- 2. Description of the Related Art
- The thinning and miniaturization of an electronic apparatus have been achieved by the miniaturization of components mounted to the electronic apparatus. Conventionally, the miniaturization technique of the components has been largely dependent upon the microfabrication technology of LSI. However, enormous installation investment is required to introduce a finer microfabrication technology of LSI, and hence the introduction of such a technique cannot satisfy the need to reduce product costs. The problem can be solved in such a way that a through-electrode perpendicularly penetrating through the surface of a wafer (silicon and a compound semiconductor) is formed, that electrodes are formed on the front and rear surfaces of the wafer, and that the electrodes of each of the wafers are connected to each other by laminating the wafers. Accordingly, a technique to change conventional planar mounting (two-dimensional mounting) into spatial mounting (three-dimensional mounting) has been developed.
- In Japanese Patent Laid-Open No. 11-204939, there is proposed, as a method for laminating the wafers, a method in which after bumps are formed on the wafers, the wafers, with an adhesive applied thereon, are stuck to each other. Further, in the patent document, there is disclosed a method in which metals on the surface, to which the adhesive is applied, are connected to each other by forcing out the adhesive from between the metals. In the patent document, tin-plated terminals, on which the adhesive is applied, are joined to each other while being pressed together. Thereby, the adhesive is forced out from between the metal joining portions, so that the metals are electrically connected to each other. However, a large force is required at the time of pressing the terminals together, and hence the method is unsuitable for minute bumps which are the object of the present invention.
- In Japanese Patent Laid-Open No. 10-308415, there is described, as a method for connecting a solder protrusion to a connection electrode on a wiring board without using flux, a method of using a solder protrusion formed by a first protrusion and a second protrusion. In the patent document, a solder protrusion having a two-stage structure formed by the first protrusion and the second protrusion is formed such that the melting temperature of the first protrusion is higher than that of the second protrusion and that the surface area of the first protrusion is two times or more larger than the surface area of the second protrusion. In the method, the connection electrode on the wiring board and the solder protrusion are made to face each other, and are heated at a temperature which is equal to or lower than the melting temperature of the first protrusion and which is equal to or higher than the melting temperature of the second protrusion, while an electronic component is pressed. Since only the second protrusion is melted at the soldering temperature, the second protrusion can be expanded between the first protrusion and the connection electrode on the wiring board by the application of a slight pressing force. Thereby, as described in the patent document, the oxide film on the surface of the second protrusion is broken to expose the intrinsic layer in the second protrusion, so that a desired joining state can be obtained.
- In Japanese Patent Laid-Open No. 2002-198485, there is described that
first protrusion electrode 15 of first LSI chip 16 is a Sn-3.5 Ag solder protrusion containing 96.5% of Tin (Sn) and 3.5% of silver (Ag), and that second protrusion electrode 19 is a protrusion made of nickel (Ni). Thus, second protrusion electrode 19 ofsecond LSI chip 20, which has a small diameter and high hardness, is made to bite intofirst protrusion electrode 15 of first LSI chip 16, to allow bump 19 ofsecond LSI chip 20 to break through the oxide film formed on the surface offirst protrusion electrode 15 of first LSI chip 16, so that first LSI chip 16 and second LSI chip 19 are joined to each other. Thereby, as described in the patent document, there is obtained an advantage in which it is possible to realize a firm joining structure and possible to realize a semiconductor mounting assembly that has excellent temporal stability at high temperature. Further, as also described in the patent document, there is an advantage in which the melting point can be made low, and thereby the processing temperature for joining respective bumps can be set to a low level. However, the role of the protrusion is limited, as described above, and does not play the role of a spacer. - In Japanese Patent Laid-Open No. 2006-59957, there is described a method of using a protrusion, as a method of manufacturing a semiconductor package structure and a semiconductor package, and this method features excellent productivity, and a capability for making thinner and more miniaturized products, and has higher performance. However, the object of the protrusion is to break through a resin layer, and the protrusion does not play the role of a spacer. Further, a low melting point metal is not formed so as to cover the protrusion. Further, in the patent document, in addition to the above described protrusion, the followings are also disclosed about joining particles. The joining particles are arranged and joined at predetermined positions on the surface of a circuit conductor. The joining of the joining particles is performed by a method of ultrasonic welding, welding, soldering, applying a conductive resin, or the like. Then, the surface on which the joining particles are arranged, and a resin layer on which a conductor metal is provided, are arranged so as to face each other. By using a hot press apparatus, the resin layer on which the conductor metal is provided is heated at a predetermined temperature so as to be softened and then heat pressed. Thereby, the joining particles are embedded into the softened resin layer. When the resin layer is further heat pressed, the joining particles, and the conductor metal which is another conductor layer, are brought into contact and joined with each other.
- In the case where conventional planar mounting (two-dimensional mounting) is changed into spatial mounting (three-dimensional mounting), it is difficult to fill an adhesive between respective layers, by the conventionally proposed method in which (1) the formation of a connection electrode, (2) lamination and connection, and (3) the filling of the adhesive between the layers, are performed in this order. In particular, when wafers that are used as an ideal form of the three-dimensional mounting are joined to each other, it is difficult to make the adhesive flow uniformly between the layers of wafers of eight inches or more.
- On the other hand, it is difficult to control the heating and pressing conditions in the method in which an adhesive is applied to the surface of a metal and in which the metals are joined with each other by forcing out the adhesive from between the metals, that is, in the method in which (1) the formation of a connection electrode, (2) the application of adhesive, and (3) lamination and joining are performed in this order. That is, when the adhesive is applied beforehand between the layers of the wafers, and when the wafers are then heated and pressed, the joining portion is deformed, so that in some cases, the low melting point material used for the joining may be brought into contact with an adjacent joining portion.
- The present invention seeks to solve one or more of the above problems, or to improve upon those problems at least in part.
- In order to achieve the above object, a wafer or a circuit board is used to perform three-dimensional mounting by being joined to each other, the wafer or the circuit board including:
-
- a protrusion which is provided in the low melting point metal for mutually electrically connecting the mutually joined wafers or the mutually joined circuit boards, and which defines an interval between the mutually joined wafers or between the mutually joined circuit boards without being deformed at the time when the low melting point metal is melted.
- Further, In order to achieve the above object, there is a provided a joining structure including wafers or circuit boards, which are three-dimensionally mounted by being joined to each other,
-
- wherein the mutually joined wafers or the mutually joined circuit boards are electrically connected to each other via the low melting point metal, and wherein a protrusion, which defines an interval between the mutually joined wafers or between the mutually joined circuit boards without being deformed at the time when the low melting point metal is melted, is provided in the low melting point metal.
- The above features and advantages of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:
-
FIGS. 1A and 1B show a three-dimensional mounting process (No. 1); -
FIG. 2 is a figure showing a three-dimensional mounting process (No. 2); -
FIG. 3A through 3C show a three-dimensional mounting process (No. 3); -
FIGS. 4A and 4B show a three-dimensional mounting process (No. 4);FIG. 5A through 5F show a method for forming a joining metal terminal (1); -
FIG. 6A through 6C show a method for forming a joining metal terminal (2); -
FIG. 7A through 7G show a method for forming a joining metal terminal (3); -
FIG. 8A through 8E show a method for forming a joining metal terminal (4); -
FIG. 9A through 9D show a joining metal terminal; -
FIG. 10 is a figure showing combinations (table) of the joining metal terminals; -
FIG. 11A through 11E show combinations (joining structures) that are used to join metal terminals together; -
FIGS. 12A and 12B show a method for manufacturing a joining structure (a) of wafers; and -
FIGS. 13A and 13B show a method for manufacturing a joining structure (b) of wafers. - The invention will be now described herein with reference to illustrative embodiments. Those skilled in the art will recognize that many alternative embodiments can be accomplished using the teachings of the present invention and that the invention is not limited to the embodiments illustrated for explanatory purposes.
- In the following, exemplary embodiments will be described with reference to the accompanying drawings. Noted that in all the drawings, the same reference numerals denote the same portions, and hence a duplicate explanation will be omitted. Further, in order to facilitate explanation, the ratio between the respective portions is changed from the actual ratio.
- Here, the invention will be described by taking three-dimensional mounting as an effective application example. In the following, exemplary embodiments of three-dimensional mounting of wafers will be described, but the same effect can also be obtained by using electronic circuit boards instead of wafers.
-
FIG. 1A throughFIG. 4B show an outline of three-dimensional mounting processes. - [
FIG. 1A ] - Holes are formed by using a dry etching process for
wafer 1 made of silicon or a compound semiconductor, and the side wall of the hole is insulated (this process is not shown). Then,conductor 2 made of a poly-silicon or a metal is filled in the hole. Here, different dimensions are used depending upon the semiconductor pre-process and a semiconductor element to be manufactured. However, in the case where DRAM (Dynamic Random Access Memory) is assumed to be manufactured,conductor 2 has a diameter of about 3 to 50 microns and a depth of about 20 to 100 microns. The interval betweenconductors 2 is about 20 to 100 microns. It is preferred that aluminum be arranged onconductor 2 so as to seal the conductor (not shown). - [
FIG. 1B ] - Insulating
film 4 is formed in a region on the surface ofwafer 1 in whichconductors 2 are embedded, other than in the region where a terminal ofconductor 2 is arranged.Wiring layer 3 is formed on insulatingfilm 4 by using a semiconductor pre-process. The terminal ofconductor 2 is connected to wiring 41 leading to a semiconductor element. Insulatingfilm 4 is also formed on the surface ofwiring layer 3. - [
FIG. 2 ] - Joining
metals 51 are formed. The details of this process are shown inFIG. 5A through 5F andFIG. 7A through 7G . Joiningmetal 51 is connected to wiring 41 leading to the semiconductor element viapad 42 which is formed by a semiconductor process. Further, as shown in the enlarged view, insulatingfilm 4 is formed in the peripheral portion ofpad 42 which is formed by the semiconductor process. - [
FIG. 3A ] -
Adhesive 6 is applied on joining metals 51 (in the figure, a state where joiningmetals 51 are mounted oninterposer 8 is shown, and hence the upper and lower sides of joiningmetals 51 are shown in reversed position). Joiningmetals 52 are formed oninterposer 8. Here, joiningmetals 52, which are formed oninterposer 8, can also be formed on a wafer in which other elements are formed, by the same process. Further, in the process here, the formation of joiningmetals 52 is started from the portion oninterposer 8, but can also be started from the portion on another wafer (that is, from a portion configured only by a wafer in which elements are formed, without using the interposer). - After being aligned, the joining portions are brought into contact with each other and heated at the same temperature or a temperature that is higher than the melting point of joining
metal 51. At this time, adhesive 6 between joiningmetal 51 and joiningmetal 52 is forced out, so that joiningmetal 51 and joiningmetal 52 are connected to each other. Further, at this time, in the case where a thermosetting adhesive is used, the adhesive can be cured simultaneously with the time when joiningmetal 51 and joiningmetal 52 are connected to each other. - [
FIG. 3B ] - The surface opposite to the surface on the side of
wiring layer 3 ofwafer 1 in which semiconductor elements are formed, is polished to expose the terminal ofconductor 2. Then, joiningmetals 52′ are formed by the same process as that shown inFIG. 3A . - [
FIG. 3C ] - Another
wafer 1′ is produced by the process shown inFIGS. 1A and 1B andFIG. 2 (the upper side and the lower side of the wafer are shown in reversed position in the figure), and adhesive 6′ is applied on joiningmetal 51′ ofwafer 1′. After being aligned, the joining portions are brought into contact with each other and heated at the same temperature or a temperature that is higher than the melting point of joiningmetal 51′. At this time, adhesive 6′ between joiningmetal 51′ and joiningmetal 52′ is forced out, so that joiningmetal 51′ and joiningmetal 52′ are connected to each other. Further, at this time, in the case where a thermosetting adhesive is used, the adhesive can be cured simultaneously with the time when joiningmetal 51′ and joiningmetal 52′ are connected to each other. - [
FIG. 4A ] - The surface opposite to the surface on the side of
wiring layer 3′ ofwafer 1′ in whichwiring layer 3′ is formed, is polished to expose the terminal of the conductor. Then, joiningmetals 52″ are formed by the same process as that shown inFIG. 3A . - The above described processes are repeated, so that a wafer structure configured by laminating and connecting arbitrary number of sheets of wafers is manufactured.
- [
FIG. 4B ] -
FIG. 4B is an overall view of a laminated semiconductor device according to the present exemplary embodiment.Laminated semiconductor elements 9 andchip 10 which controlssemiconductor elements 9 are mounted oninterposer 8. Here,control chip 10 is arranged onlaminated semiconductor elements 9, but may be arranged at any place. For example,control chip 10 can also be arranged oninterposer 8 or underinterposer 8. Further, bumps 11 used for connection with an external circuit are formed underinterposer 8. -
FIG. 5A through 5F andFIG. 7A through 7G respectively show forming methods of joining together metal terminals of the exemplary embodiments according to the present invention. Further,FIG. 6A through 6C andFIG. 8A through 8E respectively show manufacturing methods of joining together metal terminals which are connected to the joining metal terminals of the present exemplary embodiments formed by the methods shown inFIG. 5A through 5F andFIG. 7A through 7G . -
FIG. 5A through 5F show a method of forming joining metal terminal (1) ofexemplary embodiment 1 according to the present invention. A protrusion which plays the role of a spacer is formed in the joining metal terminal of the present exemplary embodiment. - [
FIG. 5A ] -
Power feeding film 12 for electroplating, which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed onwafer 1. The function of titanium here is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown aswafer 1 in the figure, but in an actual semiconductor element, is SiO2, SiN or polyimide, formed on the surface of the wafer). Thus, the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like. Note that a chromium film can also be used instead of the titanium film used in the present exemplary embodiment. - On the other hand, the film thickness of copper is preferably set to the minimum film thickness set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process. The film thickness at which the film thickness distribution is prevented from being induced, is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like. When the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, so as to lower the production efficiency. Further, in addition to this problem, etching needs to be performed for a long time at the time when
power feeding film 12 is removed by etching in the subsequent process. As a result, the side etching ofcopper 14 under the nickel is increased. - [
FIG. 5B ] - A pattern of a protrusion is formed at the position where the metal terminal is joined together by using resist 7.
- [
FIG. 5C ] -
Protrusion 20 is formed by using electroplating. As a material of electroplating, it is possible to use gold, silver, copper, nickel, and the like, but copper, on the surface of which a plating film is easily formed in the subsequent process, is used. - [
FIG. 5D ] - The resist formed in
FIG. 5B is peeled one time. Then, the resist is again applied and patterned, so that a pattern of the joining metal terminal is formed. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member. - [
FIG. 5E ] -
Nickel 21 is formed in the pattern formed inFIG. 5D by using electro-nickel plating. Here, pure nickel is used, but a material in which a trace of silver and copper is mixed into nickel, may also be used in order to improve wettability with a low melting point material. Further, copper can also be used as a material forming the joining metal terminal, but nickel is preferably used for securing the reliability. - [
FIG. 5F ] - The resist formed in
FIG. 5D is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member. Subsequently,power feeding film 12 formed inFIG. 5A is removed by etching. Etching solutions, such as a ferric chloride etching solution and an alkali based etching solution, can be used for etchingcopper 14, but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used. In the etching here, when the time period during which the etching is performed is shorter than ten seconds, the etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching. However, in the case where the time period of etching is excessively long, for example, when the time period of etching exceeds five minutes, there are also caused problems in which the side etching is increased and in which the tact time is increased. Therefore, it is preferred that the etching solution and the etching conditions are suitably determined by experiment. An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion oftitanium 13 of the power feeding film. In any of the etching processes, any etching solution can be used, as long as the solution does not remarkably dissolve the formed member. Further, when chromium is used forpower feeding film 12, a mixed solution of potassium permanganate and sodium metasilicate is used. -
FIG. 6A through 6C show a method of forming joining metal terminal (2) connected to the joining metal terminal of the exemplary embodiment according to the present invention. - [
FIG. 6A ] -
Power feeding film 12 for electroplating, which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed onwafer 1. The function of titanium here is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown aswafer 1 in the figure, but in an actual semiconductor element, is SiO2, SiN or polyimide, formed on the surface of the wafer). Thus, the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like. Note that chromium film can also be used instead of the titanium film used in the present exemplary embodiment. - On the other hand, the film thickness of copper is preferably set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process. The film thickness at which the film thickness distribution is prevented from being induced, is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like. When the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, which lowers production efficiency. Further, in addition to this problem, etching needs to be performed for a long time at the time when
power feeding film 12 is removed by etching in the subsequent process. As a result, side etching ofcopper 14 under the nickel is increased. - [
FIG. 6B ] - A pattern of a joining metal is formed by using resist 7, and the joining metal is formed by using electroplating. Here, copper can also be used, but
nickel 21 is preferably used for securing reliability. Further, a material in which a trace of silver and copper is mixed into nickel, may also be used in order to improve wettability with a low melting point material. - [
FIG. 6C ] - The resist formed in
FIG. 6B is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member. Subsequently,power feeding film 12 formed inFIG. 6A is removed by etching. Etching solutions, such as a ferric chloride etching solution and an alkali based etching solution, can be used for etchingcopper 14, but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used. In the etching here, when the time period during which the etching is performed is shorter than ten seconds, the etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching. However, in the case where the time period of etching is excessively long, for example, when the time period of etching exceeds five minutes, there are also caused problems in which the side etching is increased and in which the tact time is increased. Therefore, it is preferred that the etching solution and the etching condition be suitably determined by experiment. An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion oftitanium 13 of the power feeding film. In any of the etching processes, any etching solution can be used, as long as the solution does not remarkably dissolve the formed member. Further, when chromium is used forpower feeding film 12, a mixed solution of potassium permanganate and sodium metasilicate is used. -
FIG. 7A through 7G show a method of forming joining metal terminal (3) ofexemplary embodiment 2 according to the present invention. In the present exemplary embodiment, there are formed a protrusion which plays the role of a spacer, and a low melting point metal (tin in the exemplary embodiment) for electrically connecting wafers to each other. - [
FIG. 7A ] -
Power feeding film 12 for electroplating, which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed onwafer 1. The function of titanium here is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown aswafer 1 in the figure, but in an actual semiconductor element, is SiO2, SiN or polyimide, formed on the surface of the wafer). Thus, the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like. Note that a chromium film can also be used instead of the titanium film used in the present exemplary embodiment. - On the other hand, the film thickness of copper is preferably set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process. The film thickness at which the film thickness distribution is prevented from being induced, is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like. When the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, which lowers the production efficiency. Further, in addition to this problem, etching needs to be performed for a long time at the time when
power feeding film 12 is removed by etching in the subsequent process. As a result, the side etching ofcopper 14 under nickel is increased. - [
FIG. 7B ] - A pattern of a protrusion is formed at the position of the joining metal terminal by using resist 7.
- [
FIG. 7C ] -
Protrusion 20 is formed by using electroplating. As a material of electroplating, it is possible to use gold, silver, copper, nickel, and the like, but copper, on the surface of which a plating film is easily formed in the subsequent process, is used. - [
FIG. 7D ] - The resist formed in
FIG. 7B is peeled one time. Then, the resist is again applied and patterned, so that a pattern of the joining metal terminal is formed. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member. - [
FIG. 7E ] -
Nickel 21 is formed in the pattern formed inFIG. 7D by using electro-nickel plating. Here, pure nickel is used, but a material in which a trace of silver and copper is mixed into nickel, may also be used in order to improve wettability with a low melting point material. Further, copper can also be used as a material for forming the joining metal terminal, butnickel 21 is preferably used for securing reliability. Further,tin 15 is formed onnickel 21 by using electroplating. Here, pure tin is used, but any material such as a tin silver plated material and a tin silver copper plated material can be used, as long as tin is used as a main component in the material. - [
FIG. 7F ] - The resist formed in
FIG. 7D is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member. Subsequently,power feeding film 12 formed inFIG. 7A is removed by etching. Etching solutions, such as a ferric chloride etching solution and an alkali based etching solution, can be used for etchingcopper 14, but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used. In the etching here, when the time period during which the etching is performed is shorter than ten seconds, etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching. However, in the case where the time period of etching is excessively long, for example, when the time period of etching exceeds five minutes, there are also caused problems in which the side etching is increased and in which the tact time is increased. Therefore, it is preferred that the etching solution and the etching condition be suitably determined by experiment. An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion oftitanium 13 of the power feeding film. In any of the etching processes, any etching solution can be used, as long as the solution does not remarkably dissolve the formed member. Further, when chromium is used forpower feeding film 12, a mixed solution of potassium permanganate and sodium metasilicate is used. - [
FIG. 7G ] - Tin is heated to its melting point temperature or higher, so as to be formed into a spherical shape.
-
FIG. 8A through 8E show a method of forming joining metal terminal (4) connected to the joining metal terminal of the exemplary embodiment according to the present invention. - [
FIG. 8A ] -
Power feeding film 12 for electroplating, which is made of multilayer films made of titanium 13 (50 nanometer)/copper 14 (0.5 micrometer), is formed onwafer 1. The function of titanium here is to mutually join copper and a base board, which are located on the upper and lower sides of titanium, in a desired state (the base board is shown aswafer 1 in the figure, but in an actual semiconductor element, is SiO2, SiN or polyimide). Thus, the film thickness of titanium may be the minimum film thickness required to ensure that copper and the base board remain joined together. The required film thickness is changed due to conditions of sputter etching and spattering, the film quality of titanium, and the like. Note that a chromium film can also be used instead of the titanium film used in the present exemplary embodiment. - On the other hand, the film thickness of copper is preferably set to a minimum film thickness which prevent an increase in the film thickness distribution at the time when electroplating is performed in the subsequent process. The film thickness at which the film thickness distribution is prevented from being induced, is determined in consideration of an amount of the film corroded in pickling, and the like, performed as a pretreatment of the plating, and the like. When the film thickness of copper is made thicker than needed, and, for example, when the film thickness exceeds 1 micrometer, the sputtering time is increased, so as to lower the production efficiency. Further, in addition to this problem, etching needs to be performed for a long time at the time when
power feeding film 12 is removed by etching in the subsequent process. As a result, side etching ofcopper 14 under the nickel is increased. - [
FIG. 8B ] - A pattern of a joining metal is formed by using resist 7, and the joining metal is formed by using electroplating. Here, pure nickel is used, but a material in which a trace of silver and copper is mixed into nickel, may also be used in order to improve wettability with a low melting point material. Further, copper can also be used as a material for forming the joining metal terminal, but
nickel 21 is preferably used for securing the reliability. - [
FIG. 8C ] - Further,
tin 15 is formed onnickel 21 by using electroplating. Here, pure tin is used, but any material such as a tin silver plated material and a tin silver copper plated material can be used, as long as tin is used as a main component in the material. - [
FIG. 8D ] - The resist formed in
FIG. 8B is peeled. Any peeling agent can be used here, as long as the agent dissolves the resist and does not remarkably dissolve the formed member. Subsequently,power feeding film 12 formed inFIG. 8A is removed by etching. Etching solutions, such as a ferric chloride etching solution and an alkali based etching solution, can be used for etchingcopper 14, but in the present exemplary embodiment, an alkali based etching solution containing ammonia is used. In the etching here, when the time period during which the etching is performed is shorter than ten seconds, the etching is disadvantageous from a practical viewpoint because of the difficulty in controlling the etching. However, in the case where the time period of etching is excessively long, for example, when the time period of etching exceeds five minutes, there are also caused problems in which the side etching is increased and in which the tact time is increased. Therefore, it is preferred that the etching solution and the etching condition be suitably determined by experiment. An etching solution using hydrogen peroxide as a main component is used for the subsequently performed etching of the portion oftitanium 13 of the power feeding film. In any of the etching processes, any etching solution can be used here, as long as the solution does not remarkably dissolve the formed member. Further, when chromium is used forpower feeding film 12, a mixed solution of potassium permanganate and sodium metasilicate is used. - [
FIG. 8E ] - Tin is heated to its melting point temperature or to a higher temperature so as to be formed into a spherical shape.
-
FIG. 9A through 9D show configurations of the joining metal terminals formed as shown inFIG. 5A toFIG. 8E . Joining metal terminal (1) shown inFIG. 9A is the joining metal terminal ofexemplary embodiment 1 according to the present invention. Joining metal terminal (3) shown inFIG. 9C is the joining metal terminal ofexemplary embodiment 2 according to the present invention. Joining metal terminal (2) shown inFIG. 9B is the joining metal terminal to be joined to joining metal terminal (1) shown inFIG. 9A . Joining metal terminal (4) shown inFIG. 9D is the joining metal terminal to be joined to joining metal terminal (3) shown inFIG. 9C . - In
FIG. 9A through 9D ,reference numeral 1 denotes a wafer.Reference numeral 13 denotes titanium, andreference numeral 14 denotes copper.Titanium 13 andcopper 14 are the power feeding films for electroplating.Reference numeral 20 denotes a protrusion.Protrusion 20 is formed in a low melting point metal (tin in the exemplary embodiment) which electrically connects wafers to each other at the time when the wafers are joined to each other.Protrusion 20 is not deformed at the time when the low melting point metal is melted, so as to define an interval between the wafers. In the exemplary embodiment according to the present invention, copper is used as the material ofprotrusion 20, but a metal, such as gold, silver and nickel may also be used.Reference numeral 21 denotes a metal used as a barrier for the low melting point metal, and nickel is used in the exemplary embodiment according to the present invention. Instead of nickel, an alloy containing 90% or more of nickel, in which a trace of silver and copper is mixed, may also be used in order to improve wettability with the low melting point metal. It is possible to prevent diffusion of the low melting point metal bynickel 21.Reference numeral 15 denotes the low melting point metal which is provided for electrically connecting the wafers to each other and which melts at a temperature of 400° C. or lower. Tin is used in the exemplary embodiment according to the present invention. In addition to pure tin, an alloy containing 90% or more of tin, such as tin silver and tin silver copper, may also be used. - As for the size of the joining metal terminal shown in
FIG. 9A toFIG. 9D , the diameter is 3 to 250 μm and the height is 3 to 250 μm. Preferably, the diameter is 3 to 50 μm and the height is 3 to 50 μm. -
FIG. 10 shows a table representing combinations at the time when these joining metal terminals are used so that they can be joined to each other. Here, the combination indicated by the mark “NO GOOD” is a combination in which the terminals cannot be joined to each other because the low melting point metal (tin or tin alloy) is not formed in each of the terminals. The combination indicated by the mark “DUPLICATED” is a duplicated combination. The combination indicated by the mark “GENERAL” is a combination generally used for the joining of metals to each other. The combination indicated by the mark “GOOD” is a combination of the joining metal terminals that are joined to each other and which feature the exemplary embodiment according to the present invention, and in at least one of which the protrusion is formed. Further, reference characters (a) to (f) shown in the table correspond to the joining structures as will be described with reference toFIG. 11A through 11E . -
FIG. 11A through 11E show the joining structures. In the figure, only the portions of copper, tin and nickel are shown, and detailed portions of the conductor, and the like, in the wafer are not shown. Further, although not shown, an underfill material (adhesive) is filled between the wafer layers. -
FIG. 11A shows a joining structure (a) in which joining metal terminal (1) having the protrusion is joined with joining metal terminal (3) having the protrusion and the low melting point metal. The wafers are electrically connected to each other by the low melting point metal of joining metal terminal (3). The interval between the wafers is defined by the protrusion of joining metal terminal (1) and the protrusion of joining metal terminal (3). -
FIG. 11B shows a joining structure (b) in which joining metal terminal (2) is joined with joining metal terminal (3) having the protrusion and the low melting point metal. The wafers are electrically connected to each other by the low melting point metal of joining metal terminal (3). The interval between the wafers is defined by the protrusion of joining metal terminal (3). -
FIG. 11C shows joining structure (c) in which joining metal terminals (3) having the protrusion and the low melting point metal are joined with each other. The wafers are electrically connected to each other by the low melting point metal of both joining metal terminals (3). The interval between the wafers is defined by the protrusion of both joining metal terminals (3). -
FIG. 11D shows joining structure (d) in which joining metal terminal (1) having the protrusion is joined with joining metal terminal (4) having the low melting point metal. The wafers are electrically connected to each other by the low melting point metal of joining metal terminal (4). The interval between the wafers is defined by the protrusion of joining metal terminal (1). -
FIG. 11E shows joining structure (e) in which joining metal terminal (3) having the protrusion and the low melting point metal is joined with joining metal terminal (4) having the low melting point metal. The wafers are electrically connected to each other by the low melting point metal of joining metal terminal (3) and the low melting point metal of joining metal terminal (4). The interval between the wafers is defined by the protrusion of joining metal terminal (3). -
FIGS. 12A and 12B show a manufacturing method of the joining structure (a) of the wafers in the case where the combination of the joining metal terminals shown inFIG. 11A is used.FIG. 12A shows a state just before the wafers are joined.FIG. 12B shows the joining structure (a) after the wafers are joined to each other.Reference numerals Reference numeral 71 denotes joining metal terminal (3) ofexemplary embodiment 2 according to the present invention.Reference numeral 72 denotes joining metal terminal (1) ofexemplary embodiment 1 according to the present invention.Reference numeral 60 denotes an adhesive. - As shown in
FIG. 12A , joining metal terminal (3) 71 is formed onwafer 61, and joining metal terminal (1) 72 is formed onwafer 62. Joining metal terminal (3) 71 formed onwafer 61 hasprotrusion 20 and lowmelting point metal 15. Joining metal terminal (1) 72 formed onwafer 62 hasprotrusion 20. That is,FIGS. 12A and 12B show the case where the joining metal terminal of each of the wafers has the protrusion.Adhesive 60 is applied to the surface ofwafer 62, which faceswafer 61. Note that adhesive 60 may also be applied onwafer 61. - As shown in
FIG. 12B , after being aligned to each other, the wafers are brought into contact and joined with each other by being heated to the temperature of the melting point of low melting point metal 15 (tin in the exemplary embodiment) of joining metal terminal (3) 71 or to a higher temperature. At this time, adhesive 60 between joining metal terminal (3) 71 and joining metal terminal (1) 72 is pressed away, so that joining metal terminal (3) 71 and joining metal terminal (1) 72 are electrically connect to each other by lowmelting point metal 15. Note that in the present exemplary embodiment,protrusion 20 is made of copper, and henceprotrusion 20 also contributes to the electrical connection. At this time, when a thermosetting adhesive is used, adhesive 60 can be cured simultaneously with the connection. In this way, the joining structure of the wafer in whichprotrusion 20 is formed in lowmelting point metal 15, is produced. - The interval between the wafers is defined by
protrusion 20 of joining metal terminal (3) 71 andprotrusion 20 of joining metal terminal (1) 72. Sinceprotrusions 20 are provided, the wafers can be joined to each other without adhesive 60 applied on the joining metal terminals being held between the joining metal terminals. Thereby, the electrical connection can be obtained between the electrode portions. Sinceprotrusions 20 are not deformed at this time, it is possible to fix the interval between the wafers. - In the case of the conventional joining metal terminal without the protrusion, when the wafers are heated and joined to each other, problems are caused in which the low melting point metal is deformed and thereby an appropriate interval between the wafers cannot be maintained, and in which the adhesive is held between the joining metal terminals and thereby the electrical connection cannot be obtained. Such problems are caused in particular when the size of the joining metal terminal is small.
- On the other hand, the joining metal terminal of the exemplary embodiment according to the present invention has
protrusion 20, and hence the interval between the wafers is defined byprotrusion 20. Further, even when lowmelting point metal 15 is melted,protrusion 20 in lowmelting point metal 15 is not deformed. Thus, it is possible to obtain the electrical connection without adhesive 60 being held between joining metal terminals. Sinceprotrusion 20 is not deformed, the wafers can be pressed together by a strong force when being joined to each other, and also the pressing force need not be adjusted. Further, the pressing force is concentrated onprotrusion 20 when the wafers are pressed together, and adhesive 60 can be effectively forced out from between the wafers. - Note that in
FIGS. 12A and 12B , the portion of the joining interface between two wafers is enlarged and emphasized, and the configuration in the wafer and the configuration on the surface of the opposite side of the wafer are not shown. Further, inFIGS. 12A and 12B , three joining metal terminals are provided for each wafer, but many joining metal terminals are actually provided for each wafer. Joining metal terminal (3) 71 and joining metal terminal (1) 72 shown inFIGS. 12A and 12B respectively correspond to joiningmetal 51′ and joiningmetal 52′ shown inFIG. 3C . -
FIGS. 13A and 13B show a method of manufacturing the joining structure (b) of the wafers in the case where a combination of the joining metal terminals shown inFIG. 11B is used.FIG. 13A shows a state just before the wafers are joined.FIG. 13B shows a state after the wafers are joined to each other.Reference numerals Reference numeral 71 denotes joining metal terminal (3) ofexemplary embodiment 2 according to the present invention.Reference numeral 73 denotes joining metal terminal (2).Reference numeral 60 denotes an adhesive. -
FIGS. 13A and 13B are different fromFIGS. 12A and 12B only in that joining metal terminal (2) 73 is provided onwafer 62 instead of joining metal terminal (1) 72 inFIGS. 12A and 12B . That is, inFIGS. 13A and 13B , among the two wafers to be joined to each other, only joining metal terminal of onewafer 61 hasprotrusion 20. Therefore, the description ofFIGS. 13A and 13B is the same as the description ofFIGS. 12A and 12B except that the interval between the wafers is defined only byprotrusion 20 of joining metal terminal (3) 71. - Further, the method of manufacturing the joining structure of wafers in the case where a combination of joining metal terminals shown in
FIG. 11C toFIG. 11E is used, is the same as the manufacturing method as described with reference toFIGS. 12A and 12B andFIGS. 13A and 13B . - Note that the wafer described in this specification is not limited only to a circular wafer, but may be a wafer formed by cutting the circular wafer into an arbitrary shape (for example, a quadrangular shape).
- Further, in the above, a wafer and a joining structure of the wafers are described, but the same description can be applied to a circuit board and a joining structure of the circuit boards.
- It is apparent that the present invention is not limited to the above embodiments, but may be modified and changed without departing from the scope and spirit of the invention.
Claims (22)
1. A device, comprising:
a first substrate;
a first conductor penetrating the first substrate;
a first conductive film disposed on a first surface of the first substrate and electrically connected to the first conductor;
a first protrusion disposed on the first conductive film; and
a low-melting point metal disposed over the first conductive film,
wherein the first protrusion has a melting point higher than a melting point of the low-melting point metal.
2. The device according to claim 1 , further comprising a first metal, wherein
the first metal covers an upper surface and a side surface of the first protrusion and a part of the first conductive film,
the first metal has a first top surface and a second top surface, and
the first top surface is higher than the second top surface from the first conductive film.
3. The device according to claim 2 , wherein the first metal has a melting point higher than the melting point of the low—melting point metal.
4. The device according to claim 1 , further comprising a second conductive film disposed on a second surface of the first substrate, the second surface being opposite to the first surface, and the second conductive film being electrically connected to the first conductor.
5. The device according to claim 1 , wherein the first conductor comprises at least one of a poly-silicon and a metal.
6. The device according to claim 1 , wherein a diameter of the first conductor is substantially equal or smaller than 50 μm and a depth of the first conductor is substantially equal or smaller than 100 μm.
7. The device according to claim 1 , wherein the first conductive film comprises titanium and copper.
8. The device according to claim 4 , further comprising a second metal on the second conductive film.
9. The device according to claim 8 , further comprising a first insulation film disposed on the second surface of the first substrate, a part of the first insulation film being covered with the second metal.
10. The device according to claim 1 , further comprising a second substrate, and a second conductive film disposed on a first surface of the second substrate,
wherein the first and second conductive films are electrically connected and the low melting point metal is disposed between the first and second conductive films.
11. The device according to claim 10 , further comprising a second conductor penetrating the second substrate and electrically connected to the second conductive film.
12. The device according to claim 10 , further comprising:
a first metal covering an upper surface and a side surface of the first protrusion and a part of the first conductive film; and
a second metal on the second conductive film,
wherein the first and the second metals are electrically connected, the first and the second metals are disposed between the first and second conductive films, and the low-melting point metal is disposed between the first metal and the second metal.
13. The device according to claim 11 , further comprising:
a third conductive film disposed on a second surface of the first substrate, the second surface being opposite to the first surface of the first substrate, and the third conductive film being electrically connected to the first conductor; and
a fourth conductive film disposed on a second surface of the second substrate, the second surface of the second substrate being opposite to the first surface of the second substrate, and the fourth conductive film being electrically connected to the second conductor.
14. The device according to claim 13 , further comprising a fourth metal on the fourth conductive film.
15. The device according to claim 12 , wherein the first metal has a melting point higher than the melting point of the low-melting point metal and the second metal has a melting point higher than the melting point of the low-melting point metal.
16. The device according to claim 11 , wherein an each diameter of the first and the second conductors is substantially equal or smaller than 50 μm, and a depth of each of the first and the second conductors is substantially equal or smaller than 100 μm.
17. The device according to claim 1 , further comprising:
a second substrate;
a second conductor penetrating the second substrate;
a second conductive film disposed on a first surface of the second substrate and electrically connected to the second conductor; and a second protrusion disposed on the second conductive film,
wherein the first and second conductive films are electrically connected and the low-melting point metal is disposed between the first and second conductive films, the low-melting point metal is disposed over the second conductive film, and the second protrusion has a melting point higher than the melting point of the low-melting metal.
18. The device according to claim 17 , further comprising:
a first metal covering an upper surface and a side surface of the first protrusion and a part of the first conductive film; and
a second metal covering an upper surface and a side surface of the second protrusion and part of the second conductive film,
wherein the first and the second metals are electrically connected and are disposed between the first and second conductive films, a part of the first metal and a part of the second metal are disposed between the first and second protrusions, and the low-melting point metal is disposed between the first and the second metals.
19. The device according to claim 18 , wherein
the first metal has a first top surface and a second top surface, the first top surface being higher than the second top surface from the first conductive film, and
the second metal has a third top surface and a fourth top surface, the third top surface being higher than the fourth top surface from the second conductive film.
20. The device according to claim 17 , further comprising:
a third conductive film disposed on a second surface of the first substrate, the second surface of the first substrate being opposite to the first surface of the first substrate, and the third conductive film being electrically connected to the first conductor; and
a fourth conductive film disposed on a second surface of the second substrate, the second surface of the second substrate being opposite of the first surface of the second substrate, and the fourth conductive film being electrically connected to the second conductor.
21. The device according to claim 20 , further comprising a fourth metal on the fourth conductive film.
22. The device according to claim 18 , wherein the second metal has a melting point higher than the melting point of the low-melting point metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/683,252 US20130140067A1 (en) | 2007-10-12 | 2012-11-21 | Wafer or circuit board and joining structure of wafer or circuit board |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007266716A JP2009099589A (en) | 2007-10-12 | 2007-10-12 | Wafer or circuit board and connection structure thereof |
JP2007-266716 | 2007-10-12 | ||
US12/285,222 US8334465B2 (en) | 2007-10-12 | 2008-09-30 | Wafer of circuit board and joining structure of wafer or circuit board |
US13/683,252 US20130140067A1 (en) | 2007-10-12 | 2012-11-21 | Wafer or circuit board and joining structure of wafer or circuit board |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/286,222 Continuation US8134616B2 (en) | 2008-03-12 | 2008-09-29 | Imaging apparatus and pixel defect compensation method implemented therein |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130140067A1 true US20130140067A1 (en) | 2013-06-06 |
Family
ID=40582535
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/285,222 Active 2030-06-06 US8334465B2 (en) | 2007-10-12 | 2008-09-30 | Wafer of circuit board and joining structure of wafer or circuit board |
US13/683,252 Abandoned US20130140067A1 (en) | 2007-10-12 | 2012-11-21 | Wafer or circuit board and joining structure of wafer or circuit board |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/285,222 Active 2030-06-06 US8334465B2 (en) | 2007-10-12 | 2008-09-30 | Wafer of circuit board and joining structure of wafer or circuit board |
Country Status (3)
Country | Link |
---|---|
US (2) | US8334465B2 (en) |
JP (1) | JP2009099589A (en) |
KR (1) | KR20090037819A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5316261B2 (en) * | 2009-06-30 | 2013-10-16 | 富士通株式会社 | Multichip module, printed circuit board unit and electronic device |
KR20150139190A (en) * | 2014-06-03 | 2015-12-11 | 삼성전기주식회사 | Device and device package |
CN205726641U (en) * | 2016-01-04 | 2016-11-23 | 奥特斯(中国)有限公司 | There is the parts carrier of different surface layer and the electronic equipment containing this parts carrier |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5872051A (en) * | 1995-08-02 | 1999-02-16 | International Business Machines Corporation | Process for transferring material to semiconductor chip conductive pads using a transfer substrate |
US20020121709A1 (en) * | 2000-12-28 | 2002-09-05 | Fujitsu Limited | External connection terminal and semiconductor device |
US6534723B1 (en) * | 1999-11-26 | 2003-03-18 | Ibiden Co., Ltd. | Multilayer printed-circuit board and semiconductor device |
US20030052409A1 (en) * | 2001-08-29 | 2003-03-20 | Mie Matsuo | Semiconductor device and method of manufacturing the same |
US20030096494A1 (en) * | 2001-11-15 | 2003-05-22 | Fujitsu Limited | Method of making semiconductor device |
US20040025333A1 (en) * | 1998-09-03 | 2004-02-12 | Ibiden Co., Ltd. | Multilayered printed circuit board and manufacturing method therefor |
US20040041243A1 (en) * | 2001-09-21 | 2004-03-04 | Tsuyoshi Ogawa | Thin film circuit board device and its manufacturing method |
US20040106232A1 (en) * | 2001-10-29 | 2004-06-03 | Fujitsu Limited | Method of making electrode-to-electrode bond structure and electrode-to-electrode bond structure made thereby |
US20040238927A1 (en) * | 2003-03-17 | 2004-12-02 | Ikuya Miyazawa | Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus |
US20040245623A1 (en) * | 2003-03-28 | 2004-12-09 | Kazumi Hara | Semiconductor device, circuit substrate and electronic instrument |
US20040257749A1 (en) * | 2003-06-20 | 2004-12-23 | Ngk Spark Plug Co., Ltd. | Capacitor, capacitor equipped semiconductor device assembly, capacitor equipped circuit substrate assembly and electronic unit including semiconductor device, capacitor and circuit substrate |
US20050003649A1 (en) * | 2003-06-09 | 2005-01-06 | Sanyo Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20050013088A1 (en) * | 2003-07-14 | 2005-01-20 | Yasuyoshi Horikawa | Capacitor device and method of manufacturing the same |
US20050037601A1 (en) * | 2003-08-13 | 2005-02-17 | Shih-Ping Hsu | Semiconductor package substrate having contact pad protective layer formed thereon and method for fabricating the same |
US20050073049A1 (en) * | 2002-07-17 | 2005-04-07 | Dai Nippon Printing Co., Ltd. | Semiconductor device and method of fabricating the same |
US20050087522A1 (en) * | 2003-10-24 | 2005-04-28 | Yunlong Sun | Laser processing of a locally heated target material |
US20050103636A1 (en) * | 2003-11-18 | 2005-05-19 | International Business Machines Corporation | Method for selective electroplating of semiconductor device i/o pads using a titanium-tungsten seed layer |
US20050150683A1 (en) * | 2004-01-12 | 2005-07-14 | Farnworth Warren M. | Methods of fabricating substrates and substrate precursor structures resulting therefrom |
US20050153546A1 (en) * | 2004-01-12 | 2005-07-14 | Carsten Ahrens | Method for fabrication of a contact structure |
US20060006422A1 (en) * | 2002-11-25 | 2006-01-12 | Chih-Liang Chu | Semiconductor package substrate having bonding pads with plated layer thereon and process of manufacturing the same |
US20060009009A1 (en) * | 2004-07-12 | 2006-01-12 | Kazumi Hara | Dicing sheet, manufacturing method thereof, and manufacturing method of semiconductor apparatus |
US20060055017A1 (en) * | 2004-09-10 | 2006-03-16 | Jeong-Hyeon Cho | Stacked board-on-chip package having mirroring structure and dual inline memory module on which the stacked board-on-chip package are mounted |
US7071424B1 (en) * | 1998-02-26 | 2006-07-04 | Ibiden Co., Ltd. | Multilayer printed wiring board having filled-via structure |
US20070045814A1 (en) * | 2005-09-01 | 2007-03-01 | Hiroshi Yamamoto | Wiring board and ceramic chip to be embedded |
US20080277674A1 (en) * | 2003-11-04 | 2008-11-13 | Hideo Nagai | Semiconductor Light Emitting Device, Lighting Module, Lighting Apparatus, and Manufacturing Method of Semiconductor Light Emitting Device |
US7547577B2 (en) * | 2006-11-14 | 2009-06-16 | Endicott Interconnect Technologies, Inc. | Method of making circuitized substrate with solder paste connections |
US8035214B1 (en) * | 1998-12-16 | 2011-10-11 | Ibiden Co., Ltd. | Conductive connecting pin for package substance |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5367765A (en) * | 1990-08-31 | 1994-11-29 | Nec Corporation | Method of fabricating integrated circuit chip package |
JP3378334B2 (en) * | 1994-01-26 | 2003-02-17 | 株式会社東芝 | Semiconductor device mounting structure |
JPH10308415A (en) | 1997-03-06 | 1998-11-17 | Toshiba Corp | Method for mounting electrode, electronic component, electronic device, and electronic component |
JPH11204939A (en) | 1998-01-08 | 1999-07-30 | Hitachi Ltd | Multilayer circuit board and method of manufacturing the same |
JP3444245B2 (en) * | 1999-09-03 | 2003-09-08 | 日本電気株式会社 | Soldering method to electroless nickel / gold plating, wiring structure, circuit device and manufacturing method thereof |
JP2001102409A (en) * | 1999-09-28 | 2001-04-13 | Matsushita Electronics Industry Corp | Semiconductor device and manufacturing method of the same |
JP2001223293A (en) * | 2000-02-09 | 2001-08-17 | Nec Corp | Semiconductor device and its manufacturing method |
JP2002198485A (en) | 2000-12-27 | 2002-07-12 | Matsushita Electric Ind Co Ltd | Semiconductor mounting body, semiconductor device using the same and manufacturing method therefor |
JP3660275B2 (en) * | 2001-06-14 | 2005-06-15 | シャープ株式会社 | Semiconductor device and manufacturing method thereof |
JP3692978B2 (en) * | 2001-07-24 | 2005-09-07 | 日立電線株式会社 | Wiring board manufacturing method |
JP4034107B2 (en) * | 2002-04-17 | 2008-01-16 | 株式会社ルネサステクノロジ | Semiconductor device |
JP4205613B2 (en) * | 2004-03-01 | 2009-01-07 | エルピーダメモリ株式会社 | Semiconductor device |
JP2007115922A (en) * | 2005-10-20 | 2007-05-10 | Nec Electronics Corp | Semiconductor device |
-
2007
- 2007-10-12 JP JP2007266716A patent/JP2009099589A/en active Pending
-
2008
- 2008-09-30 US US12/285,222 patent/US8334465B2/en active Active
- 2008-10-09 KR KR1020080099314A patent/KR20090037819A/en not_active Ceased
-
2012
- 2012-11-21 US US13/683,252 patent/US20130140067A1/en not_active Abandoned
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5872051A (en) * | 1995-08-02 | 1999-02-16 | International Business Machines Corporation | Process for transferring material to semiconductor chip conductive pads using a transfer substrate |
US7071424B1 (en) * | 1998-02-26 | 2006-07-04 | Ibiden Co., Ltd. | Multilayer printed wiring board having filled-via structure |
US20040025333A1 (en) * | 1998-09-03 | 2004-02-12 | Ibiden Co., Ltd. | Multilayered printed circuit board and manufacturing method therefor |
US8035214B1 (en) * | 1998-12-16 | 2011-10-11 | Ibiden Co., Ltd. | Conductive connecting pin for package substance |
US6534723B1 (en) * | 1999-11-26 | 2003-03-18 | Ibiden Co., Ltd. | Multilayer printed-circuit board and semiconductor device |
US20020121709A1 (en) * | 2000-12-28 | 2002-09-05 | Fujitsu Limited | External connection terminal and semiconductor device |
US20030052409A1 (en) * | 2001-08-29 | 2003-03-20 | Mie Matsuo | Semiconductor device and method of manufacturing the same |
US20050068748A1 (en) * | 2001-09-21 | 2005-03-31 | Tsuyoshi Ogawa | Thin film circuit board device and method for manufacturing the same |
US20040041243A1 (en) * | 2001-09-21 | 2004-03-04 | Tsuyoshi Ogawa | Thin film circuit board device and its manufacturing method |
US20040106232A1 (en) * | 2001-10-29 | 2004-06-03 | Fujitsu Limited | Method of making electrode-to-electrode bond structure and electrode-to-electrode bond structure made thereby |
US20030096494A1 (en) * | 2001-11-15 | 2003-05-22 | Fujitsu Limited | Method of making semiconductor device |
US6689639B2 (en) * | 2001-11-15 | 2004-02-10 | Fujitsu Limited | Method of making semiconductor device |
US20050073049A1 (en) * | 2002-07-17 | 2005-04-07 | Dai Nippon Printing Co., Ltd. | Semiconductor device and method of fabricating the same |
US20050167831A1 (en) * | 2002-07-17 | 2005-08-04 | Dai Nippon Printing Co., Ltd. | Semiconductor device and method of fabricating the same |
US20060006422A1 (en) * | 2002-11-25 | 2006-01-12 | Chih-Liang Chu | Semiconductor package substrate having bonding pads with plated layer thereon and process of manufacturing the same |
US20040238927A1 (en) * | 2003-03-17 | 2004-12-02 | Ikuya Miyazawa | Method of manufacturing semiconductor device, semiconductor device, circuit substrate and electronic apparatus |
US20040245623A1 (en) * | 2003-03-28 | 2004-12-09 | Kazumi Hara | Semiconductor device, circuit substrate and electronic instrument |
US20050003649A1 (en) * | 2003-06-09 | 2005-01-06 | Sanyo Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20040257749A1 (en) * | 2003-06-20 | 2004-12-23 | Ngk Spark Plug Co., Ltd. | Capacitor, capacitor equipped semiconductor device assembly, capacitor equipped circuit substrate assembly and electronic unit including semiconductor device, capacitor and circuit substrate |
US20050013088A1 (en) * | 2003-07-14 | 2005-01-20 | Yasuyoshi Horikawa | Capacitor device and method of manufacturing the same |
US20060223230A1 (en) * | 2003-08-13 | 2006-10-05 | Shih-Ping Hsu | Semiconductor package substrate having contact pad protective layer formed thereon and method for fabricating the same |
US20050037601A1 (en) * | 2003-08-13 | 2005-02-17 | Shih-Ping Hsu | Semiconductor package substrate having contact pad protective layer formed thereon and method for fabricating the same |
US20060226544A1 (en) * | 2003-08-13 | 2006-10-12 | Shih-Ping Hsu | Semiconductor package substrate having contact pad protective layer formed thereon and method for fabricating the same |
US20050087522A1 (en) * | 2003-10-24 | 2005-04-28 | Yunlong Sun | Laser processing of a locally heated target material |
US20080277674A1 (en) * | 2003-11-04 | 2008-11-13 | Hideo Nagai | Semiconductor Light Emitting Device, Lighting Module, Lighting Apparatus, and Manufacturing Method of Semiconductor Light Emitting Device |
US20050103636A1 (en) * | 2003-11-18 | 2005-05-19 | International Business Machines Corporation | Method for selective electroplating of semiconductor device i/o pads using a titanium-tungsten seed layer |
US20060254808A1 (en) * | 2004-01-12 | 2006-11-16 | Farnworth Warren M | Substrate precursor structures |
US20070169343A1 (en) * | 2004-01-12 | 2007-07-26 | Farnworth Warren M | Methods of fabricating substrates including one or more conductive vias |
US20050153546A1 (en) * | 2004-01-12 | 2005-07-14 | Carsten Ahrens | Method for fabrication of a contact structure |
US20050150683A1 (en) * | 2004-01-12 | 2005-07-14 | Farnworth Warren M. | Methods of fabricating substrates and substrate precursor structures resulting therefrom |
US20060009009A1 (en) * | 2004-07-12 | 2006-01-12 | Kazumi Hara | Dicing sheet, manufacturing method thereof, and manufacturing method of semiconductor apparatus |
US20060055017A1 (en) * | 2004-09-10 | 2006-03-16 | Jeong-Hyeon Cho | Stacked board-on-chip package having mirroring structure and dual inline memory module on which the stacked board-on-chip package are mounted |
US20070045814A1 (en) * | 2005-09-01 | 2007-03-01 | Hiroshi Yamamoto | Wiring board and ceramic chip to be embedded |
US7547577B2 (en) * | 2006-11-14 | 2009-06-16 | Endicott Interconnect Technologies, Inc. | Method of making circuitized substrate with solder paste connections |
Also Published As
Publication number | Publication date |
---|---|
JP2009099589A (en) | 2009-05-07 |
US8334465B2 (en) | 2012-12-18 |
KR20090037819A (en) | 2009-04-16 |
US20090109641A1 (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4345808B2 (en) | Manufacturing method of semiconductor device | |
EP2172089B1 (en) | Method for manufacturing a multilayer wiring element having pin interface | |
US6608374B1 (en) | Semiconductor chip assembly with bumped conductive trace | |
KR100488126B1 (en) | Semiconductor device and manufacturing method thereof | |
EP1005086B1 (en) | Metal foil having bumps, circuit substrate having the metal foil, and semiconductor device having the circuit substrate | |
US6576539B1 (en) | Semiconductor chip assembly with interlocked conductive trace | |
JP2009158593A (en) | Bump structure and method of manufacturing the same | |
US9293433B2 (en) | Intermetallic compound layer on a pillar between a chip and substrate | |
JP2000138313A (en) | Semiconductor device and its manufacture | |
JP2004343030A (en) | Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board | |
JP2005520333A (en) | Multilayer substrate stacking technology | |
TW200843064A (en) | Surface structure of a packaging substrate and a fabricating method thereof | |
TWI333250B (en) | ||
TW201246471A (en) | Wiring board and method for manufacturing the same | |
US20130140067A1 (en) | Wafer or circuit board and joining structure of wafer or circuit board | |
US6537851B1 (en) | Method of connecting a bumped compliant conductive trace to a semiconductor chip | |
JP2002368155A (en) | Wiring board, semiconductor device, and method of manufacturing wiring board | |
JPH05235102A (en) | Semiconductor device | |
JP3925752B2 (en) | Bumped wiring board and manufacturing method of semiconductor package | |
JP2002190544A (en) | Wiring board, semiconductor device, and method of manufacturing the same | |
JP2001223287A (en) | Method for manufacturing interposer | |
US6908788B1 (en) | Method of connecting a conductive trace to a semiconductor chip using a metal base | |
JP4002117B2 (en) | Multilayer substrate and manufacturing method thereof | |
JP2001332860A (en) | Multilayer wiring board, semiconductor device, electronic device, and manufacturing method thereof | |
TW200532879A (en) | Circuit substrate and method for mounting electronic element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ELPIDA MEMORY INC., JAPAN Free format text: SECURITY AGREEMENT;ASSIGNOR:PS4 LUXCO S.A.R.L.;REEL/FRAME:032414/0261 Effective date: 20130726 |
|
AS | Assignment |
Owner name: PS4 LUXCO S.A.R.L., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELPIDA MEMORY, INC.;REEL/FRAME:032898/0001 Effective date: 20130726 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |