US20130131536A1 - System And Method For Diagnosis Of Brainstem Disorders - Google Patents
System And Method For Diagnosis Of Brainstem Disorders Download PDFInfo
- Publication number
- US20130131536A1 US20130131536A1 US13/632,982 US201213632982A US2013131536A1 US 20130131536 A1 US20130131536 A1 US 20130131536A1 US 201213632982 A US201213632982 A US 201213632982A US 2013131536 A1 US2013131536 A1 US 2013131536A1
- Authority
- US
- United States
- Prior art keywords
- test
- subject
- sound stimuli
- brainstem
- sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 206010063292 Brain stem syndrome Diseases 0.000 title claims abstract description 14
- 238000003745 diagnosis Methods 0.000 title description 15
- 201000000980 schizophrenia Diseases 0.000 claims abstract description 28
- 210000000133 brain stem Anatomy 0.000 claims abstract description 21
- 230000004044 response Effects 0.000 claims abstract description 18
- 230000007177 brain activity Effects 0.000 claims abstract description 14
- 238000012076 audiometry Methods 0.000 claims abstract description 5
- 230000000704 physical effect Effects 0.000 claims abstract description 4
- 238000004891 communication Methods 0.000 claims abstract description 3
- 238000012360 testing method Methods 0.000 claims description 71
- 230000000873 masking effect Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 7
- 230000008447 perception Effects 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 claims description 4
- 108091081062 Repeated sequence (DNA) Proteins 0.000 claims description 2
- 238000012074 hearing test Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 3
- 210000000056 organ Anatomy 0.000 abstract 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 210000004556 brain Anatomy 0.000 description 8
- 201000010099 disease Diseases 0.000 description 6
- 230000000638 stimulation Effects 0.000 description 6
- 210000000653 nervous system Anatomy 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 4
- 208000014644 Brain disease Diseases 0.000 description 3
- 230000001149 cognitive effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 210000001652 frontal lobe Anatomy 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000003304 psychophysiological effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012956 testing procedure Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000002610 neuroimaging Methods 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000000698 schizophrenic effect Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000003478 temporal lobe Anatomy 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/377—Electroencephalography [EEG] using evoked responses
- A61B5/38—Acoustic or auditory stimuli
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/12—Audiometering
- A61B5/121—Audiometering evaluating hearing capacity
Definitions
- the present invention pertains to a system for diagnosis of brainstem disorders, such as schizophrenia, and particularly to a method of using said system in respect of diagnosis of brainstem disorders, such as schizophrenia.
- disorders of the nervous system are a growing concern.
- One area of nervous disorders are brainstem disorders.
- One such disorder is schizophrenia—a hereditary disease—which is a disruption in the nerve transmission within and between all systems in the nervous system which handle the electrical representation of the tactile sense, vision, hearing, thinking and motor functions. The origin of the disease is hitherto unknown.
- Diagnostic methods at hand today are very time consuming. Regarding forensic psychiatry a process of at least 30 working days and an investigation team comprising at least six professionals is needed to set a more reliable diagnosis. Admissions with months of observations and investigations are common procedure and sometimes the diagnosis can be established only after years of follow-ups in the non-institutional care. In conclusion, today diagnoses are established by means of traditional psychiatric observation, a time consuming process which leads to a much more severe disease. Thus, with today's diagnostic methods it is most frequently too late for efficient therapeutic treatment.
- Electrophysiology can give some information for example by means of P300.
- P300 is a positive wave in the electroencephalogram (EEG) which correlates with a large number of repeated stimuli presented through the hearing or visual modalities. It is claimed to be an expression of the nervous system's regulation of attentiveness. However, the variation within this measure obtained is far too large to obtain diagnostic reliability for schizophrenia and the need of more precise instruments for diagnostic purposes is acute. To obtain an objective measure on the early schizophrenia, specific stimulation and ascertained correlation between the results and other diagnostic measures of the disease are needed. The majority of patents regarding schizophrenia are based on biochemical and genetic models and practically oriented clinical test is not disclosed.
- patent WO-AI-03026500 a psycho-physiological test for diagnosis of schizophrenia is disclosed.
- the document describes a device and method for measurement of binochular rivalry.
- This psycho-physiological test demands the subject's active participation as reflected by decision-making and pushing a button, and thus it cannot be regarded being truly physiologically objective. This issue is of uttermost importance, since it might interfere with the perceptual process.
- the state of the art refers to the usage of simple sound stimulation, such as click trains, with identical click or pulse trains with isolated differing pulses, whereby the brain reaction to difference is recorded, to obtain electrophysiological brain (cortex) reading in respect of schizophrenia diagnosis.
- This is called MMN (MisMatch Negativity).
- the time span used in MMN is in the interval 80 to 300 ms.
- U.S. Pat. No. 5,954,667 discloses a device for derivation of acoustically evoked brain potentials.
- the triggering mentioned in U.S. Pat. No. 5,954,667 concerns the generation of a sequence of clicks when the device is activated by a finger operable switching action. Therefore, the measurement of brain activity occurs during a longer time and not simultaneously as the sound stimulation. Every click sound in U.S. Pat. No. 5,954,667 does not release a new reading of brain activity. Therefore, the device according to U.S. Pat. No. 5,954,667 is not capable of detecting, and diagnosing, brain disorders, such as schizophrenia, but only capable of controlling the hearing in subjects, such as a child, incapable of actively responding to sound stimuli.
- an improved system, and a method thereof, for diagnosis of brainstem disorders would be advantageous and in particular a system allowing for a testing procedure that does not rely on any cognitive effort from the subject would be advantageous. Also, specificity and reliability of the diagnosis should be more advantageous.
- the present invention preferably seeks to mitigate, alleviate or eliminate one or more of the above-identified deficiencies in the art and disadvantages such as the above-identified, but not limited to, singly or in any combination and solves the above mentioned issues such, but not exclusively limited to these issues, by providing systems, and methods according to the appended patent claims.
- FIG. 1 is a schematic illustration of a system according to one embodiment of the present invention
- FIG. 2 is a timing diagram that presents common features, as for instance for nine tests in one embodiment of the present invention.
- FIGS. 3 , 4 and 5 are schematic illustrations and diagrams that further illustrate the nine test's sound stimuli according to one embodiment of the present invention.
- the present invention comprises a system and a method intended for diagnosis and/or therapeutic control of brains stem disorders, such as schizophrenia.
- the system and method thereof comprise means of auditory brainstem audiometry.
- the present invention is not intended to be limited to diagnosis and/or control of schizophrenia, even though schizophrenia is mentioned in the embodiments of the present invention. Rather, the present invention includes the diagnosis and/or therapeutic control of all disorders assignable to brainstem related disorders.
- composition of the sound stimuli and the method of analyzing the schizophrenia-specific electrophysiological response pattern are new methodological concepts which makes identification of the early stages in brains stem related diseases, such as schizophrenia, possible, which in turn facilitates efficient treatment with adequate therapeutic resources in time.
- the present invention at hand does not rely on any cognitive effort from the subject during the testing procedure.
- the test is automated, and does not need the active contribution of the test object.
- the technique has never before been used for psychiatric diagnostic purposes.
- Audiometry has been used for examination and as a diagnostic instrument of organic conditions in the central nervous system, e.g. measurement of hearing thresholds in infants and for subjects who not are able to be tested with routine audiogram. However, it has not been use for diagnosing of brainstem related diseases. Brainstem audiometry is characterized by an electrophysiological imaging method of the brainstems coding during stimulation with different sound sequences.
- the system according to the present invention comprises an apparatus for generation of stimuli ( 1 ), such as a tone generator according to the present embodiment, by means of which the aforementioned sound stimuli are being presented, via a communication element ( 2 ), such as a plastic hose, cord or an electric cable, and a sound generating device ( 3 ), such as a hearing phone, to a subject ( 4 ).
- a communication element such as a plastic hose, cord or an electric cable
- a sound generating device ( 3 ) such as a hearing phone
- a trig-pulse is being emitted from the system for generation of stimuli ( 1 ) to a triggering device ( 5 ), such as a trig-box, and further on to an apparatus for analysis and storage of information ( 6 ), such as brainstem activity, in which registration of electrophysiological brain activity from electrodes ( 7 ) is initiated, whereafter the activity is imaged on an equipment ( 8 ), such as a computer equipment.
- a triggering device such as a trig-box
- information such as brainstem activity
- This system may, in one embodiment of the present invention, be used to perform a test-battery for schizophrenia consisting of nine tests, in which each test comprises presentation of stimuli to a subject and registration of the response elicited by mentioned sound stimuli.
- each test comprises presentation of stimuli to a subject and registration of the response elicited by mentioned sound stimuli.
- the nine tests are that the sound stimuli being presented to the subject are presented in repeated sequences; typically sound stimuli are repeated approximately 500-1500 times and the time between stimuli varies from approximately 150 to 500 ms.
- a complete test with high reliability is provided that takes some minutes, compared to weeks according to the prior art. Because of the fact that each stimulation is registered when the trig-pulse initiates the imaging apparatus, the brain activity caused by the stimulation appears more significantly on a continuous basis in relation to other brainstem activity. In this way the brainstems specific responses to stimuli are registered.
- the recorded electrophysiological responses from the subject are thereafter compared with standardized responses from a reference population
- the present invention differs among other things from the prior art in that the apparatus for generation of stimuli ( 1 ) is configured to transmit, or send, a triggering signal, via and/or through the triggering device ( 5 ), to the apparatus for analysis and storage of information ( 6 ) of the electrophysiological brain activity simultaneously as said sound stimuli is transmitted to the subject ( 4 ) from the apparatus for stimuli generation ( 1 ).
- the present invention uses according to some embodiments auditory brainstem response (ABR) to detect brain disorders, such as schizophrenia.
- ABR auditory brainstem response
- auditory brainstem response is commonly used to define electrophysiological measurement of the activity of the brainstem within a time span of 0 to approximately 10 ms. Of course this time span may vary somewhat, but not principally deviate from this time span, while still be inside the scope of the present invention, according to the appended claims.
- the present invention comprises triggering of brainstem reading in relation to complex sound sequences, which are specifically developed for diagnostic and detecting purposes regarding brain disorders, such as schizophrenia.
- the present invention comprises triggering in respect of sound experiencing mechanisms and not general neurological phenomena, such as detection of difference.
- the triggering according to the present invention is inseparable from the complex sound stimuli, presented herein.
- Some of the tests in the present invention are based on auditory masking.
- Masking is defined as the subjects reduced ability to hear one sound in the presence of another sound presented simultaneously, before or after the sound one are trying to hear. These processes are handled by general coding principles within the nervous system. Information is sorted and rudimentary parts of it are damped or filtered away. This is made out by feedback-mechanisms in the nervous system which facilitates or inhibits impulses. Said sorting is handled by priority or down-regulation between different mechanisms, working more or less independently of each other.
- directional hearing is investigated, which refers to the ability of spatial location of sounds. Both left/right-ability and coding of distance are investigated. Left/right-ability is most crucially determined by the time-difference between the sounds arrival to the left and right ears. Perception of distance is based on neural analysis of spectral cues, which thus comprises more complex handling.
- One group of tests examines how the neural coding of auditory input is influenced by time, amplitude and frequency. These tests aim at the different underlying structures in the brain that handle the specific aspects of stimuli. Time analysis for example demands involvement from the brains feedback system in the frontal lobes; analysis of amplitude and modulation comprises mechanisms in different loci in the brainstem and coding of frequency is based on at least three different systems for detection. It is to be understood that modifications and alterations of said tests are possible while still being inside the scope of the present invention. Therefore, these tests are to be interpreted as examples of possible tests, and not to limit the scope of protection of the present invention in any way.
- one group of tests or one example of a test battery are/is provided according to the tests 1 to 9 below.
- “Forward masking” ( 11 ) means the reduced ability to perceive one sound in the presence of another temporally preceding sound.
- the stimuli consist of a Butterworth-filtered white noise (b fbw) which masks a subsequent square-shaped sound pulse (sssp).
- “Backward masking” means the reduced ability to perceive one sound in the presence of another temporally following sound.
- the stimuli consist of a Butterworth-filtered white noise (b fbw) which masks a preceding square-shaped sound pulse (sssp).
- “Binaural forward masking” ( 13 ) is characterized by the reduced ability to perceive a sound in one ear in the presence of another temporally preceding sound presented in the other ear.
- the stimuli consist of a Butterworth-filtered white noise (b fbw) in one ear which masks a subsequent square-shaped sound pulse (sssp) in the other ear.
- the test “Perception of distance in sounds” consist of a number of subtests. In the first of these a pulse train consisting of square-shaped sound pulses (sssp) is used as stimulus (g). This subtest creates a reference value. In the second subtest (h) the square-shaped sound pulses have been altered through artificial treatment which makes them being perceived as originating from a distant location. In the following subtests the square-pulses in the pulse trains are even more modulated and thus are perceived as being more distantly located.
- the test “Pulse train 1” ( 16 ) is comprised by a number of subtests.
- the subtests consists of pulse trains with specific time intervals (t isi) between the included square-shaped pulses (fp). In the first subtest the time interval has a constant value. In the other subtests the mentioned time interval is modified.
- the test “Pulse train 2” ( 17 ) is comprised by a number of subtests.
- the included square-shaped pulses have specified constant amplitudes.
- this value is modified (a fp), and each subtests square-shaped pulses (fp) have their own specific constant amplitude.
- the test “Pulse train 3” ( 18 ) is comprised by a number of subtests.
- the included square-shaped pulses have specified constant frequencies.
- this value is modified (f fp), and each subtests square-shaped pulses (fp) have their own specific constant frequency.
- the frequencies of the square-shaped pulses are obtained through filtering with a Butterworth-filter.
- the test “Pulse train A” ( 19 ) is comprised by a number of subtests. In the first subtest the included square-shaped pulses have a specified constant duration. For the other subtests this value is modified (t fpd), and each subtests square-shaped pulses (fp) have their own specific constant duration.
- an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units. As such, the invention may be implemented in a single unit, or may be physically and functionally distributed between different units.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Neurology (AREA)
- Psychology (AREA)
- Acoustics & Sound (AREA)
- Psychiatry (AREA)
- Neurosurgery (AREA)
- Physiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
A system and method for detection of a brainstem disorder, such as schizophrenia, by means of brainstem audiometry is disclosed. A subject's (4) responses on the physical properties of sound; frequency, time and amplitude are being detected. Sound stimuli are being presented, via a communication element (2) through a hearing organ (3) to the subject. Elements (7) are attached to the subject (7) for measurement of the subject's electrophysiological brain activity. Simultaneously as the mentioned sound stimuli (1) are presented to the subject (4) a trig signal is sent out from the organ for generation of stimuli (1), via a trig box (5), further to an organ for registration (6) of the electro-physiological brain activity in the subject (4), whereafter mentioned electrophysiological brain activity is stored and imaged, in computer equipment (8) for determination of a brainstem disorder in the subject.
Description
- This application is a divisional of U.S. patent application Ser. No. 11/759,871 filed Jun. 7, 2007 entitled System And Method For Diagnosis Of Brainstem Disorders, which is the U.S. National Phase of and claims priority to International Application No. PCT/SE2005/001877 filed Dec. 8, 2005 entitled System And Method For Diagnosis Of Brainstem Disorders, and to Swedish Patent Application No. 0402998-9 filed Dec. 8, 2004 entitled Anordning Och Metod För Psykoakustisk Diagnostic Av Schizofreni, now Swedish Patent No. SE 527 967 C2, both of which are hereby incorporated by reference.
- The present invention pertains to a system for diagnosis of brainstem disorders, such as schizophrenia, and particularly to a method of using said system in respect of diagnosis of brainstem disorders, such as schizophrenia.
- Disorders of the nervous system are a growing concern. One area of nervous disorders are brainstem disorders. One such disorder is schizophrenia—a hereditary disease—which is a disruption in the nerve transmission within and between all systems in the nervous system which handle the electrical representation of the tactile sense, vision, hearing, thinking and motor functions. The origin of the disease is hitherto unknown.
- Today there are no established, objective measures for determining schizophrenia. Clinical diagnostics, which means clinical observation and evaluation of the patient's symptoms is most commonly used to diagnose schizophrenia.
- Psychological tests are being used, but these measure general functions which are not specific for schizophrenia. A vast number of visual and psychological tests of perception are described in the literature but these are solely of scientific interest and are not being used clinically. Furthermore, no tests available today have sufficiently predictive abilities regarding schizophrenia.
- By using several psychological functioning tests a prediction for schizophrenia at below 70% can be achieved. This means that in 70% of the cases the schizophrenic-typical test results leads to a diagnosis later. Thus the specificity is still rather uncertain.
- Diagnostic methods at hand today are very time consuming. Regarding forensic psychiatry a process of at least 30 working days and an investigation team comprising at least six professionals is needed to set a more reliable diagnosis. Admissions with months of observations and investigations are common procedure and sometimes the diagnosis can be established only after years of follow-ups in the non-institutional care. In conclusion, today diagnoses are established by means of traditional psychiatric observation, a time consuming process which leads to a much more severe disease. Thus, with today's diagnostic methods it is most frequently too late for efficient therapeutic treatment.
- Organic alterations, today measurable by means of neuro-imaging techniques, reflect late physiological effects of the disease. The psychological cognitive tests that are being used in diagnostics measure frontal lobe dysfunction and word-tests indicate temporal lobe dysfunction, which both are late processes too. Psychological tests are more aimed at diagnosing dementia than schizophrenia.
- Electrophysiology can give some information for example by means of P300. P300 is a positive wave in the electroencephalogram (EEG) which correlates with a large number of repeated stimuli presented through the hearing or visual modalities. It is claimed to be an expression of the nervous system's regulation of attentiveness. However, the variation within this measure obtained is far too large to obtain diagnostic reliability for schizophrenia and the need of more precise instruments for diagnostic purposes is acute. To obtain an objective measure on the early schizophrenia, specific stimulation and ascertained correlation between the results and other diagnostic measures of the disease are needed. The majority of patents regarding schizophrenia are based on biochemical and genetic models and practically oriented clinical test is not disclosed.
- In patent WO-AI-03026500 a psycho-physiological test for diagnosis of schizophrenia is disclosed. The document describes a device and method for measurement of binochular rivalry. This psycho-physiological test demands the subject's active participation as reflected by decision-making and pushing a button, and thus it cannot be regarded being truly physiologically objective. This issue is of uttermost importance, since it might interfere with the perceptual process.
- The state of the art refers to the usage of simple sound stimulation, such as click trains, with identical click or pulse trains with isolated differing pulses, whereby the brain reaction to difference is recorded, to obtain electrophysiological brain (cortex) reading in respect of schizophrenia diagnosis. This is called MMN (MisMatch Negativity). The time span used in MMN is in the interval 80 to 300 ms.
- U.S. Pat. No. 5,954,667 discloses a device for derivation of acoustically evoked brain potentials. The triggering mentioned in U.S. Pat. No. 5,954,667 concerns the generation of a sequence of clicks when the device is activated by a finger operable switching action. Therefore, the measurement of brain activity occurs during a longer time and not simultaneously as the sound stimulation. Every click sound in U.S. Pat. No. 5,954,667 does not release a new reading of brain activity. Therefore, the device according to U.S. Pat. No. 5,954,667 is not capable of detecting, and diagnosing, brain disorders, such as schizophrenia, but only capable of controlling the hearing in subjects, such as a child, incapable of actively responding to sound stimuli.
- Other documents disclosing the state of the art are the two articles; “Novelty-elicited mismatch negativity in patients with schizophrenia on admission and discharge”, Journal of Psychiatry & Neuroscience, vol. 26, nr. 3, 2001, pages 235 to 246; and Nisad, Schizophrenia Research, Research News, March 2003.
- Hence, an improved system, and a method thereof, for diagnosis of brainstem disorders, such as schizophrenia, would be advantageous and in particular a system allowing for a testing procedure that does not rely on any cognitive effort from the subject would be advantageous. Also, specificity and reliability of the diagnosis should be more advantageous.
- Accordingly, the present invention preferably seeks to mitigate, alleviate or eliminate one or more of the above-identified deficiencies in the art and disadvantages such as the above-identified, but not limited to, singly or in any combination and solves the above mentioned issues such, but not exclusively limited to these issues, by providing systems, and methods according to the appended patent claims.
- These and other aspects, features and advantages of which the invention is capable of will be apparent and elucidated from the following description of exemplary embodiments of the present invention, reference being made to the accompanying drawings in which
-
FIG. 1 is a schematic illustration of a system according to one embodiment of the present invention, -
FIG. 2 is a timing diagram that presents common features, as for instance for nine tests in one embodiment of the present invention, and -
FIGS. 3 , 4 and 5 are schematic illustrations and diagrams that further illustrate the nine test's sound stimuli according to one embodiment of the present invention. - Abbreviations used in
FIGS. 1 to 5 : -
- A=The amplitude of the sound stimuli
- U=The voltage of the trigger pulse
- Tt=Time between the trig pulses
- Ts=The duration of sound stimuli
- G=Number of repetitions of the stimuli for a test
- Sssp=square-shaped sound pulse (fp)
- B fbw=Butterworth filtered white noise
- T isi=Time between square-shaped sound pulses for
test 16 - A fp=The amplitude variation for the square-shaped sound pulses for
test 17 - f=The frequency for the reference square-shaped sound pulse for
test 18 - f fp=The frequency variation for the square-shaped sound pulse for
test 18 - t fpd=The duration variation for the square-shaped sound pulse for
test 19
- The present invention comprises a system and a method intended for diagnosis and/or therapeutic control of brains stem disorders, such as schizophrenia. In this aspect the system and method thereof, comprise means of auditory brainstem audiometry.
- The present invention is not intended to be limited to diagnosis and/or control of schizophrenia, even though schizophrenia is mentioned in the embodiments of the present invention. Rather, the present invention includes the diagnosis and/or therapeutic control of all disorders assignable to brainstem related disorders.
- By using the physical properties of sound; frequency, time and amplitude, and the knowledge that these three properties, or combinations of these, is treated in different networks in the brain, a number of specific subtests have been created, which have been proven to separate schizophrenic subjects from psychiatrically healthy reference subjects. More specifically this is achieved by letting the subject undergo a test, comprised of a number of subtests. During the test procedure electrophysiological signals from the brain stem are registered, which reflect the different sound stimuli and furthermore the results are stored, analyzed and interpreted. The final result is a profile of the brainstems audio-physiological functioning.
- Both the composition of the sound stimuli and the method of analyzing the schizophrenia-specific electrophysiological response pattern, are new methodological concepts which makes identification of the early stages in brains stem related diseases, such as schizophrenia, possible, which in turn facilitates efficient treatment with adequate therapeutic resources in time.
- The present invention at hand does not rely on any cognitive effort from the subject during the testing procedure. The test is automated, and does not need the active contribution of the test object. Furthermore, the technique has never before been used for psychiatric diagnostic purposes.
- Audiometry has been used for examination and as a diagnostic instrument of organic conditions in the central nervous system, e.g. measurement of hearing thresholds in infants and for subjects who not are able to be tested with routine audiogram. However, it has not been use for diagnosing of brainstem related diseases. Brainstem audiometry is characterized by an electrophysiological imaging method of the brainstems coding during stimulation with different sound sequences.
- In one embodiment, according to
FIG. 1 , the system according to the present invention comprises an apparatus for generation of stimuli (1), such as a tone generator according to the present embodiment, by means of which the aforementioned sound stimuli are being presented, via a communication element (2), such as a plastic hose, cord or an electric cable, and a sound generating device (3), such as a hearing phone, to a subject (4). A plastic hose has the advantage that it does not generate electromagnetic fields near the test subject, which may interfere with brainstem activity or the measurements thereof. - Simultaneously as the sound stimuli are being presented, a trig-pulse is being emitted from the system for generation of stimuli (1) to a triggering device (5), such as a trig-box, and further on to an apparatus for analysis and storage of information (6), such as brainstem activity, in which registration of electrophysiological brain activity from electrodes (7) is initiated, whereafter the activity is imaged on an equipment (8), such as a computer equipment. The triggering of registration is hence initiated by each start of a stimuli.
- This system may, in one embodiment of the present invention, be used to perform a test-battery for schizophrenia consisting of nine tests, in which each test comprises presentation of stimuli to a subject and registration of the response elicited by mentioned sound stimuli. Common features for the nine tests are that the sound stimuli being presented to the subject are presented in repeated sequences; typically sound stimuli are repeated approximately 500-1500 times and the time between stimuli varies from approximately 150 to 500 ms. Hence, a complete test with high reliability is provided that takes some minutes, compared to weeks according to the prior art. Because of the fact that each stimulation is registered when the trig-pulse initiates the imaging apparatus, the brain activity caused by the stimulation appears more significantly on a continuous basis in relation to other brainstem activity. In this way the brainstems specific responses to stimuli are registered. The recorded electrophysiological responses from the subject are thereafter compared with standardized responses from a reference population.
- The present invention differs among other things from the prior art in that the apparatus for generation of stimuli (1) is configured to transmit, or send, a triggering signal, via and/or through the triggering device (5), to the apparatus for analysis and storage of information (6) of the electrophysiological brain activity simultaneously as said sound stimuli is transmitted to the subject (4) from the apparatus for stimuli generation (1).
- Therefore, the present invention uses according to some embodiments auditory brainstem response (ABR) to detect brain disorders, such as schizophrenia.
- The term “auditory brainstem response” is commonly used to define electrophysiological measurement of the activity of the brainstem within a time span of 0 to approximately 10 ms. Of course this time span may vary somewhat, but not principally deviate from this time span, while still be inside the scope of the present invention, according to the appended claims.
- The present invention comprises triggering of brainstem reading in relation to complex sound sequences, which are specifically developed for diagnostic and detecting purposes regarding brain disorders, such as schizophrenia. Hereby, the present invention comprises triggering in respect of sound experiencing mechanisms and not general neurological phenomena, such as detection of difference. Thus, the triggering according to the present invention is inseparable from the complex sound stimuli, presented herein.
- Some of the tests in the present invention are based on auditory masking. Masking is defined as the subjects reduced ability to hear one sound in the presence of another sound presented simultaneously, before or after the sound one are trying to hear. These processes are handled by general coding principles within the nervous system. Information is sorted and rudimentary parts of it are damped or filtered away. This is made out by feedback-mechanisms in the nervous system which facilitates or inhibits impulses. Said sorting is handled by priority or down-regulation between different mechanisms, working more or less independently of each other.
- Furthermore, directional hearing is investigated, which refers to the ability of spatial location of sounds. Both left/right-ability and coding of distance are investigated. Left/right-ability is most crucially determined by the time-difference between the sounds arrival to the left and right ears. Perception of distance is based on neural analysis of spectral cues, which thus comprises more complex handling.
- One group of tests examines how the neural coding of auditory input is influenced by time, amplitude and frequency. These tests aim at the different underlying structures in the brain that handle the specific aspects of stimuli. Time analysis for example demands involvement from the brains feedback system in the frontal lobes; analysis of amplitude and modulation comprises mechanisms in different loci in the brainstem and coding of frequency is based on at least three different systems for detection. It is to be understood that modifications and alterations of said tests are possible while still being inside the scope of the present invention. Therefore, these tests are to be interpreted as examples of possible tests, and not to limit the scope of protection of the present invention in any way.
- Thus, in one embodiment of the present invention one group of tests or one example of a test battery are/is provided according to the
tests 1 to 9 below. - “Forward masking” (11) means the reduced ability to perceive one sound in the presence of another temporally preceding sound. In this test the stimuli consist of a Butterworth-filtered white noise (b fbw) which masks a subsequent square-shaped sound pulse (sssp).
- “Backward masking” (12) means the reduced ability to perceive one sound in the presence of another temporally following sound. In this test the stimuli consist of a Butterworth-filtered white noise (b fbw) which masks a preceding square-shaped sound pulse (sssp).
- “Binaural forward masking” (13) is characterized by the reduced ability to perceive a sound in one ear in the presence of another temporally preceding sound presented in the other ear. In this test the stimuli consist of a Butterworth-filtered white noise (b fbw) in one ear which masks a subsequent square-shaped sound pulse (sssp) in the other ear.
- In the test “Directional hearing” (14) square-shaped sound pulses (sssp) are presented in separate steps from left to right in equidistant angle-steps. This test consists of five subtests, each with its own specific angle (a-e). In the first subtest the sound originates completely from left (e). In subtest number two the pulse train are presented from an angle of 45° left (d). Subtest number three consists of a pulse train from the front (c). In the fourth subtest the pulse train are presented from 45° right (b) and finally subtest number five 90° right (a).
- The test “Perception of distance in sounds” (15) consist of a number of subtests. In the first of these a pulse train consisting of square-shaped sound pulses (sssp) is used as stimulus (g). This subtest creates a reference value. In the second subtest (h) the square-shaped sound pulses have been altered through artificial treatment which makes them being perceived as originating from a distant location. In the following subtests the square-pulses in the pulse trains are even more modulated and thus are perceived as being more distantly located.
- The test “
Pulse train 1” (16) is comprised by a number of subtests. The subtests consists of pulse trains with specific time intervals (t isi) between the included square-shaped pulses (fp). In the first subtest the time interval has a constant value. In the other subtests the mentioned time interval is modified. - The test “
Pulse train 2” (17) is comprised by a number of subtests. In the first subtest the included square-shaped pulses have specified constant amplitudes. For the other subtests this value is modified (a fp), and each subtests square-shaped pulses (fp) have their own specific constant amplitude. - The test “
Pulse train 3” (18) is comprised by a number of subtests. In the first subtest the included square-shaped pulses have specified constant frequencies. For the other subtests this value is modified (f fp), and each subtests square-shaped pulses (fp) have their own specific constant frequency. The frequencies of the square-shaped pulses are obtained through filtering with a Butterworth-filter. - The test “Pulse train A” (19) is comprised by a number of subtests. In the first subtest the included square-shaped pulses have a specified constant duration. For the other subtests this value is modified (t fpd), and each subtests square-shaped pulses (fp) have their own specific constant duration.
- The elements and components of an embodiment of the invention may be physically, functionally and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units or as part of other functional units. As such, the invention may be implemented in a single unit, or may be physically and functionally distributed between different units.
- Although the present invention has been described above with reference to specific embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the invention is limited only by the accompanying claims and, other embodiments than the specific above are equally possible within the scope of these appended claims.
- In the claims and description above, the term “comprises/comprising” does not exclude the presence of other elements or steps. Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented. Additionally, although individual features may be included in different claims, these may possibly advantageously be combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. The terms “a”, “an”, “first”, “second” etc do not preclude a plurality. Reference signs in the claims are provided merely as a clarifying example and shall not be construed as limiting the scope of the claims in any way.
- Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
Claims (14)
1. A method of detecting brainstem disorders in a subject comprising:
generating a sound stimuli;
communicating said sound stimuli to the subject;
recording an electrophysiological brain activity response from said subject substantially simultaneously to the communication of said sound stimuli to said subject;
comparing said electrophysiological brain activity response to standardized responses from a reference population; and,
determining whether the subject has a brainstem disorder based upon said comparison.
2. The method according to claim 1 , further comprising imaging said electrophysiological brain activity response.
3. The method according to claim 1 , wherein the recording of the electrophysiological brain activity response comprises measuring an auditory brainstem response.
4. The method according to claim 3 , wherein said measuring of an auditory brainstem response comprises measuring brainstem activity within a time span of approximately 0 to 10 ms after the generating of said sound stimuli.
5. The method according to claim 1 , wherein the generating a sound stimuli comprises generating a sequence of sound stimuli tests.
6. The method according to claim 5 , wherein said sequence of sound stimuli tests comprises:
a forward masking test;
a backward masking test;
a binaural forward masking test;
a directional hearing test;
a perception of distance in sounds test;
a pulse train 1 test;
a pulse train 2 test;
a pulse train 3 test; and
a pulse train 4 test.
7. The method according to claim 5 , wherein each sound stimuli test comprises the repetition of said sound stimuli approximately 500-1500 times and where a time between each repetition is approximately 150 to 500 ms.
8. The method according to claim 1 , wherein said sound stimuli having defined physical properties in frequency, time and amplitude.
9. The method according to claim 1 , further comprising triggering said recording of the electrophysiological brain activity simultaneously as said sound stimuli is communicated to the subject.
10. The method according to claim 9 , further comprising imaging said electrophysiological brain activity response when said triggering is made.
11. The method according to claim 1 , further comprising conducting a test battery for detecting said brainstem disorder, wherein said test battery comprises nine tests, wherein each test consists of presentation of said sound stimuli to the subject and registration of the electrophysiological responses to mentioned sound stimuli, wherein said sound stimuli are presented in repeated sequences.
12. The method according to claim 1 , further comprising reproducing and storing said electrophysiological activity on a computer equipment.
13. The method according to claim 8 , further comprising detecting said brainstem disorders by means of auditory brain stem audiometry, wherein the subject's response to the physical properties of sound, namely frequency, time and amplitude is detected by conducting a test comprising at least three subtests
14. The method according to claim 1 , wherein said brainstem disorder is schizophrenia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/632,982 US20170325703A9 (en) | 2004-12-08 | 2012-10-01 | System And Method For Diagnosis Of Brainstem Disorders |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0402998A SE527967C2 (en) | 2004-12-08 | 2004-12-08 | A system for detecting schizophrenia in a person |
SESE0402998-9 | 2004-12-08 | ||
SE0402998-9 | 2004-12-08 | ||
PCT/SE2005/001877 WO2006062480A1 (en) | 2004-12-08 | 2005-12-08 | System and method for diagnosis of brainstem disorders |
US11/759,871 US8292823B2 (en) | 2004-12-08 | 2007-06-07 | System and method for diagnosis of brainstem disorders |
US13/632,982 US20170325703A9 (en) | 2004-12-08 | 2012-10-01 | System And Method For Diagnosis Of Brainstem Disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/759,871 Division US8292823B2 (en) | 2004-12-08 | 2007-06-07 | System and method for diagnosis of brainstem disorders |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130131536A1 true US20130131536A1 (en) | 2013-05-23 |
US20170325703A9 US20170325703A9 (en) | 2017-11-16 |
Family
ID=33550620
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/759,871 Active 2030-08-11 US8292823B2 (en) | 2004-12-08 | 2007-06-07 | System and method for diagnosis of brainstem disorders |
US13/632,982 Abandoned US20170325703A9 (en) | 2004-12-08 | 2012-10-01 | System And Method For Diagnosis Of Brainstem Disorders |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/759,871 Active 2030-08-11 US8292823B2 (en) | 2004-12-08 | 2007-06-07 | System and method for diagnosis of brainstem disorders |
Country Status (16)
Country | Link |
---|---|
US (2) | US8292823B2 (en) |
EP (2) | EP1824384B1 (en) |
JP (1) | JP4997115B2 (en) |
CN (1) | CN100542481C (en) |
AU (1) | AU2005314669B2 (en) |
BR (1) | BRPI0517142A (en) |
CA (1) | CA2588027C (en) |
DK (1) | DK1824384T3 (en) |
ES (1) | ES2599129T3 (en) |
HK (1) | HK1111876A1 (en) |
MX (1) | MX2007006859A (en) |
PL (1) | PL1824384T3 (en) |
RU (1) | RU2428110C2 (en) |
SE (1) | SE527967C2 (en) |
WO (1) | WO2006062480A1 (en) |
ZA (1) | ZA200705502B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150073293A1 (en) * | 2012-03-05 | 2015-03-12 | Sensodetect Ab | System And Method For Improved Determination Of A Brain Response State |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008034913A2 (en) * | 2006-09-22 | 2008-03-27 | Sensodetect Ab | Medical devices with access control |
CA2681559C (en) * | 2007-03-23 | 2013-08-06 | Widex A/S | System and method for the objective measurement of hearing ability of an individual |
RU2369328C1 (en) * | 2008-04-28 | 2009-10-10 | Федеральное государственное учреждение "Российский научный центр "Восстановительная травматология и ортопедия" им. акад. Г.А. Илизарова Федерального агентства по высокотехнологичной медицинской помощи" | Method of complex evaluation of blood flow of spinal cord diametre in patients with spine-cerebrospinal injury |
NL2002717C2 (en) * | 2009-04-06 | 2010-10-07 | Stichting Katholieke Univ | Method and system for training of perceptual skills using neurofeedback. |
US8364255B2 (en) | 2010-03-10 | 2013-01-29 | Brainscope Company, Inc. | Method and device for removing EEG artifacts |
US8700141B2 (en) * | 2010-03-10 | 2014-04-15 | Brainscope Company, Inc. | Method and apparatus for automatic evoked potentials assessment |
EP2425769A1 (en) * | 2010-09-03 | 2012-03-07 | Sensodetect AB | System and method for determination of a brainstem response state development |
SG192045A1 (en) * | 2011-01-20 | 2013-08-30 | Widex As | Personal eeg monitoring device with electrode validation |
WO2014033588A1 (en) | 2012-09-03 | 2014-03-06 | Norometrika Medikal Tip Teknolojileri Saglik Yazilim Donanim Ve Danismanlik Sanayi Ve Ticaret Limited Sirketi | Stimulation and response monitoring in functional magnetic resonance imaging |
EP2945535B1 (en) * | 2013-01-17 | 2020-03-25 | Sensodetect AB | Method and system for monitoring depth of anaesthesia and sensory functioning |
CN103654773B (en) * | 2013-12-20 | 2016-02-03 | 北京飞宇星电子科技有限公司 | Electroencephalo experimental teaching unit |
CN105193410A (en) * | 2015-09-14 | 2015-12-30 | 武汉智普天创科技有限公司 | EEG (electroencephalogram) signal amplifying system |
RU2725746C2 (en) * | 2016-08-12 | 2020-07-03 | Интеракустикс А/С | System and method for generating and recording stable auditory responses by speech-like stimulus |
RU192690U1 (en) * | 2018-09-14 | 2019-09-26 | Ооо "Эмра Технология" | PORTABLE DEVICE FOR FORENSIC JUDGMENT OF BRAIN ELECTRIC ACTIVITY |
CN116115241A (en) * | 2022-12-26 | 2023-05-16 | 中国人民解放军总医院第一医学中心 | A wide-spectrum short-term signal masking method for bone conduction auditory evoked potential test |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4493327A (en) * | 1982-07-20 | 1985-01-15 | Neurometrics, Inc. | Automatic evoked potential detection |
US20030144601A1 (en) * | 2000-11-20 | 2003-07-31 | Prichep Leslie S. | System and method for fetal brain monitoring |
US20030203482A1 (en) * | 1998-02-23 | 2003-10-30 | Otogene Ag | Stimulation of cellular regeneration and differentiation tn the inner ear |
US20050085744A1 (en) * | 2003-10-20 | 2005-04-21 | Stmicroelectronics S.R.I. | Man-machine interfaces system and method, for instance applications in the area of rehabilitation |
US20080194984A1 (en) * | 2005-03-16 | 2008-08-14 | Sonicom, Inc. | Test Battery System and Method for Assessment of Auditory Function |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4421122A (en) * | 1981-05-15 | 1983-12-20 | The Children's Medical Center Corporation | Brain electrical activity mapping |
DE3219469A1 (en) * | 1982-05-24 | 1983-11-24 | Stecker, Matthias, Dr.-Ing., 8000 München | Simultaneous determination of the brainstem responses of both ears |
JPH02128754A (en) * | 1988-11-09 | 1990-05-17 | Masami Takami | Method and apparatus for detecting v-wave latent time of abr |
US5003986A (en) * | 1988-11-17 | 1991-04-02 | Kenneth D. Pool, Jr. | Hierarchial analysis for processing brain stem signals to define a prominent wave |
US5370126A (en) * | 1992-01-22 | 1994-12-06 | Neurotech, Inc. | Method and apparatus for three-dimensional mapping of evoked potentials |
SE510256C2 (en) * | 1995-03-28 | 1999-05-03 | Biolin Medical Ab | Method and apparatus for determining and monitoring the degree of anesthesia in a human |
US5755230A (en) * | 1995-09-18 | 1998-05-26 | Cleveland Medical Devices Inc. | Wireless EEG system for effective auditory evoked response |
JP2842409B2 (en) * | 1996-09-06 | 1999-01-06 | 日本電気株式会社 | Evoked waveform calculator |
DE29615656U1 (en) * | 1996-09-07 | 1997-01-02 | Finkenzeller, Peter, Prof. Dr.rer.nat., 91054 Erlangen | Device for the derivation of acoustically evoked brain potentials |
US6200273B1 (en) * | 1999-04-26 | 2001-03-13 | House Ear Institute | Power-optimized cumulative, sequential statistical method for detection of auditory evoked potentials |
JP3313101B2 (en) * | 2000-04-28 | 2002-08-12 | 琢己 生田 | Wavelet / neuro waveform diagnosis method and apparatus |
ATE311813T1 (en) * | 2001-03-09 | 2005-12-15 | Maico Diagnostic Gmbh | DEVICE FOR DETERMINING ACOUSTICALLY EVOCATED BRAIN POTENTIALS AND PADDING THEREFOR |
RU2234245C2 (en) * | 2002-03-13 | 2004-08-20 | Главный пограничный клинический военный госпиталь ФСБ России | Method for determining objective estimation of deafness and high degree hearing loss by means of computer-assisted phonography |
UA54271A (en) | 2002-07-09 | 2003-02-17 | Донецький Державний Медичний Університет Ім. М. Горького | Method for diagnosing vegeto-vascular hypotensive dysfunction in adolescents |
EP1638458B1 (en) * | 2003-06-19 | 2011-11-02 | Neuronetrix Solutions, LLC | Device and method for an automated e.e.g. system for auditory evoked responses |
-
2004
- 2004-12-08 SE SE0402998A patent/SE527967C2/en not_active IP Right Cessation
-
2005
- 2005-12-08 WO PCT/SE2005/001877 patent/WO2006062480A1/en active Application Filing
- 2005-12-08 CN CNB2005800420543A patent/CN100542481C/en active Active
- 2005-12-08 ES ES05813532.8T patent/ES2599129T3/en active Active
- 2005-12-08 CA CA2588027A patent/CA2588027C/en active Active
- 2005-12-08 BR BRPI0517142-3A patent/BRPI0517142A/en not_active Application Discontinuation
- 2005-12-08 PL PL05813532T patent/PL1824384T3/en unknown
- 2005-12-08 DK DK05813532.8T patent/DK1824384T3/en active
- 2005-12-08 RU RU2007125657/14A patent/RU2428110C2/en active
- 2005-12-08 MX MX2007006859A patent/MX2007006859A/en active IP Right Grant
- 2005-12-08 JP JP2007545423A patent/JP4997115B2/en active Active
- 2005-12-08 ZA ZA200705502A patent/ZA200705502B/en unknown
- 2005-12-08 AU AU2005314669A patent/AU2005314669B2/en not_active Ceased
- 2005-12-08 EP EP05813532.8A patent/EP1824384B1/en not_active Not-in-force
- 2005-12-08 EP EP16177669.5A patent/EP3111836A1/en not_active Withdrawn
-
2007
- 2007-06-07 US US11/759,871 patent/US8292823B2/en active Active
-
2008
- 2008-06-23 HK HK08106948.2A patent/HK1111876A1/xx unknown
-
2012
- 2012-10-01 US US13/632,982 patent/US20170325703A9/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4493327A (en) * | 1982-07-20 | 1985-01-15 | Neurometrics, Inc. | Automatic evoked potential detection |
US20030203482A1 (en) * | 1998-02-23 | 2003-10-30 | Otogene Ag | Stimulation of cellular regeneration and differentiation tn the inner ear |
US20030144601A1 (en) * | 2000-11-20 | 2003-07-31 | Prichep Leslie S. | System and method for fetal brain monitoring |
US20050085744A1 (en) * | 2003-10-20 | 2005-04-21 | Stmicroelectronics S.R.I. | Man-machine interfaces system and method, for instance applications in the area of rehabilitation |
US20080194984A1 (en) * | 2005-03-16 | 2008-08-14 | Sonicom, Inc. | Test Battery System and Method for Assessment of Auditory Function |
Non-Patent Citations (2)
Title |
---|
Fadem US Patent Application Publication no 2007/0106169 * |
Prichep US Patent Application Publication no 2003/0144601 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150073293A1 (en) * | 2012-03-05 | 2015-03-12 | Sensodetect Ab | System And Method For Improved Determination Of A Brain Response State |
US10098562B2 (en) * | 2012-03-05 | 2018-10-16 | Sensodetect Ab | System and method for improved determination of a brain response state |
Also Published As
Publication number | Publication date |
---|---|
CN101094608A (en) | 2007-12-26 |
DK1824384T3 (en) | 2016-11-28 |
AU2005314669A1 (en) | 2006-06-15 |
US20170325703A9 (en) | 2017-11-16 |
CA2588027A1 (en) | 2006-06-15 |
WO2006062480A1 (en) | 2006-06-15 |
US20070299359A1 (en) | 2007-12-27 |
PL1824384T3 (en) | 2017-05-31 |
JP2008522713A (en) | 2008-07-03 |
EP1824384B1 (en) | 2016-07-27 |
MX2007006859A (en) | 2007-10-19 |
ZA200705502B (en) | 2009-03-25 |
EP1824384A1 (en) | 2007-08-29 |
RU2007125657A (en) | 2009-01-20 |
AU2005314669B2 (en) | 2011-03-10 |
BRPI0517142A (en) | 2008-09-30 |
RU2011126437A (en) | 2013-01-10 |
CN100542481C (en) | 2009-09-23 |
EP1824384A4 (en) | 2010-08-04 |
SE527967C2 (en) | 2006-07-25 |
SE0402998D0 (en) | 2004-12-08 |
SE0402998L (en) | 2006-06-09 |
HK1111876A1 (en) | 2008-08-22 |
JP4997115B2 (en) | 2012-08-08 |
CA2588027C (en) | 2017-02-14 |
US8292823B2 (en) | 2012-10-23 |
EP3111836A1 (en) | 2017-01-04 |
ES2599129T3 (en) | 2017-01-31 |
RU2428110C2 (en) | 2011-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8292823B2 (en) | System and method for diagnosis of brainstem disorders | |
US8313441B2 (en) | Neuroaudiological central auditory test apparatus and method of differentiation of the neural correlates in PTSD, TBI, autism, ADHD, et al | |
JP2015533547A (en) | Apparatus and method for examining phase distributions used to determine pathological interactions between different regions of the brain | |
Vasuki et al. | Statistical learning and auditory processing in children with music training: An ERP study | |
Rosenhamer | Observations on Electric Brain-Stem Responses in Retrocochlear Hearing Loss A Preliminary Report | |
Picton | The neurophysiological evaluation of auditory discrimination | |
Bharadwaj et al. | An exploratory study of visual sequential processing in children with cochlear implants | |
RU2565372C2 (en) | Method of determining functional state of brain | |
JP2018175530A (en) | Autism spectrum disorder diagnosis support apparatus, autism spectrum disorder diagnosis support method and program | |
CN113545792A (en) | TMS-EEG-based neural biomarker detection method | |
RU2575052C2 (en) | Diagnostic system and technique for brain stem disorders | |
Singh | Auditory tracking and scene analysis-perceptual timescales and neural correlates | |
Delphi et al. | Audio and vestibular analyses in patient with multiple sclerosis: a case–control study | |
De Tommaso et al. | Early modifications of auditory event-related potentials in carriers of the Huntington's disease gene | |
Galigani | A multisensory account of bodily-self recognition in normal, pathological, and developmental brain | |
Verschooten et al. | Assessment of Contralateral Efferent Effects in Human Via ECochG | |
Parčiauskaitė | Gamma range auditory-steady state responses as correlates of individual cognitive performance | |
Lucas | Familiality of auditory evoked potentials: preliminary investigation of the auditory brainstem response and late latency cortical response | |
Hoppe et al. | Auditory evoked potentials during speech perception | |
Paprika | The importance of stimuli and paradigms in auditory evoked potentials | |
Cansino et al. | Cortical plasticity when learning an auditory discrimination task | |
Pei et al. | Electrophysiological measures of low-level vision reveal spatial processing | |
Giuliano | Where the Heart Meets the Mind's Eye: Associations Between Cardiac Measures of Autonomic Activity and Selective Attention in Children and Adults | |
Ibraheem et al. | Brief Overview about Central auditory processing disorders | |
Chen | Electrophysiological measurement of temporal integration in listeners with normal hearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |