US20130131447A1 - Endoscopic system for optimized visualization - Google Patents
Endoscopic system for optimized visualization Download PDFInfo
- Publication number
- US20130131447A1 US20130131447A1 US13/682,548 US201213682548A US2013131447A1 US 20130131447 A1 US20130131447 A1 US 20130131447A1 US 201213682548 A US201213682548 A US 201213682548A US 2013131447 A1 US2013131447 A1 US 2013131447A1
- Authority
- US
- United States
- Prior art keywords
- cap
- distal end
- illumination
- endoscopic
- elongate member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012800 visualization Methods 0.000 title description 6
- 238000005286 illumination Methods 0.000 claims abstract description 79
- 238000003384 imaging method Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 21
- 239000000835 fiber Substances 0.000 claims description 12
- 230000003213 activating effect Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 description 7
- 230000002262 irrigation Effects 0.000 description 7
- 238000003973 irrigation Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000004033 plastic Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- RYTYSMSQNNBZDP-UHFFFAOYSA-N cobalt copper Chemical compound [Co].[Cu] RYTYSMSQNNBZDP-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00131—Accessories for endoscopes
- A61B1/00137—End pieces at either end of the endoscope, e.g. caps, seals or forceps plugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00096—Optical elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00101—Insertion part of the endoscope body characterised by distal tip features the distal tip features being detachable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0655—Control therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0661—Endoscope light sources
- A61B1/0676—Endoscope light sources at distal tip of an endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/12—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
- A61B1/128—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/04—Force
- F04C2270/041—Controlled or regulated
Definitions
- Embodiments of the present disclosure relate to an endoscopic system.
- exemplary embodiments of the present disclosure relate to endoscopic devices of the endoscopic system for optimized visualization.
- Embodiments of the present disclosure also cover methods of using such devices.
- An endoscope is a flexible device introduced into the body for diagnostic and/or therapeutic purposes.
- these devices are inserted into the body through an opening (a natural opening or an incision), and are delivered to a work site inside the body through a body cavity.
- such devices include an illumination device to illuminate a field of view at the work site, and an imaging device to allow a surgeon to see the work site from outside the body and remotely operate the endoscope to perform a desired diagnostic/therapeutic procedure at the work site.
- a diffusing lens may be provided with the Illumination device at the distal end of the endoscope to project light evenly over the entire visualization field. Due to the differences in proximities, and other light reflecting characteristics of different locations within the field of view of the work site (such as, for example, differences in reflectivity of muscle and tissue), these different locations may appear to be Illuminated differently. For instance, some of these locations may appear to be oversaturated with light while other locations may appear to be insufficiently illuminated. The variation in illumination may make visualization of the work site difficult, and may therefore be undesirable. With small bore endoscopes, the cost of implementing a diffusing lens for even distribution of light may be high.
- the present disclosure is directed to systems and methods to optimize visualization by controlling distribution of light in a field of view within the body from outside the body.
- Embodiments of the present disclosure are directed to endoscopic systems, devices, and methods that obviate one or more of the limitations discussed above.
- the endoscopic device may include an elongate member having a distal end, and a cap positioned at the distal end.
- the cap may have a proximal end and a distal end.
- the proximal end may define at least one recess that does not extend through the cap to the distal end of the cap.
- the endoscopic device may also include at least one illumination device disposed in the at least one recess.
- the endoscopic device may include one or more of the following additional features: wherein the cap includes a translucent material; wherein the cap is filled with material configured to scatter light; wherein the at least one illumination device is an optical fiber; wherein the cap includes an opening extending from the proximal end of the cap to the distal end of the cap, and wherein a lighting device is disposed in the opening; wherein the lighting device is an optic fiber configured to provide down field illumination; further including an imaging device at the distal end of the elongate member; wherein the imaging device is received in a viewing port of the cap; and wherein the cap includes a rim that extends over the distal end of the elongate member.
- the cap may include a body defining a lumen extending through the body from a proximal end of the body to a distal end of the body.
- the cap may further include at least one recess extending into the body from a proximal end to a position within the body.
- the cap may include one or more of the following additional features: wherein the body is filled with material so as to diffuse light; wherein the body is translucent; wherein the at least one recess is arranged at a periphery of the body; wherein the at least one recess has a diameter that is smaller than a diameter of the lumen; further including at least one cooling channel; further including a viewing port extending from the proximal end of the body to the distal end of the body.
- the method may include inserting a distal portion of an endoscopic device into a body.
- the endoscopic device may include an elongate member having a distal end.
- a cap may be positioned at the distal end of the elongate member.
- the cap may have a proximal end and a distal end.
- the proximal end may define one or more recesses that do not extend through the cap to the distal end.
- One or more illumination devices may be disposed in the one or more recesses.
- the method may also include positioning the distal portion of the endoscopic device proximate a work site within the body and activating the one or more illumination devices to provide diffused illumination at the worksite.
- the method may include one or more of the following additional features: wherein the endoscopic device further includes a lighting device disposed in an opening of the cap to provide down field illumination; wherein the cap is filled with material configured to scatter light; wherein the cap is translucent; wherein the endoscopic device further includes an imaging device, and further including activating the imaging device to view the work site.
- FIG. 1 illustrates an endoscopic system including an endoscopic device, according to an embodiment of the disclosure
- FIG. 2 is an exploded view of a distal portion of the endoscopic device having a cap, according to a first embodiment of the disclosure
- FIG. 3A is a distal end view of the cap, according to a first embodiment of the disclosure.
- FIG. 38 is a proximal end view of the cap, according to a first embodiment of the disclosure.
- FIG. 4A is a perspective view of the distal portion of the endoscopic device, according to a first embodiment of the disclosure
- FIG. 48 is a longitudinal cross-section of the distal portion, according to a first embodiment of the disclosure.
- FIG. 5 is a schematic view of an embodiment of the endoscopic device during an exemplary endoscopic procedure
- FIG. 6 is an exploded view of a distal portion of the endoscopic device having a cap, according to a second embodiment of the disclosure
- FIG. 7A is a distal end view of the cap, according to a second embodiment of the disclosure.
- FIG. 78 is a proximal end view of the cap, according to a second embodiment of the disclosure.
- FIG. 8A is a perspective view of the distal portion of the endoscopic device, according to a second embodiment of the disclosure.
- FIG. 8B is a longitudinal cross-section of the distal portion, according to a second embodiment of the disclosure.
- FIG. 1 illustrates an exemplary endoscopic system 10 and related components.
- the exemplary endoscopic system 10 may be used for therapeutic and/or diagnostic endoscopic procedures.
- the phrase “endoscopic procedure” is broadly used to indicate any medical procedure that may be performed by inserting an endoscope, laparoscope, guide tube, catheter, or any such medical device into the body through any natural, surgical, percutaneous, or other opening in the body.
- the term “endoscopic system” is also used broadly to include all components and systems that may be used for the endoscopic procedure.
- the components of endoscopic system 10 may include a control device 12 , a display 14 which may be connected to control device 12 , an illumination control system 16 , a fluid and/or vacuum source 17 , and an endoscopic device 18 .
- Control device 12 and fluid source 17 may be connected to endoscopic device 18 by way of a wire or a cable 20 a, and fluid conduit 19 , respectively.
- Illumination control system 16 may be connected to endoscopic device 18 by way of a lighting device 22 and one or more illumination devices 23 .
- Endoscopic device 18 may have a distal portion 25 configured to be positioned at a worksite in a body cavity.
- Endoscopic device 18 may include an elongate member 24 having a proximal end 26 and a distal end 28 .
- proximal refers to the end closer to the device operator during use
- distal refers to the end further from the device operator during use.
- a handle portion 30 may be disposed at proximal end 26 of elongate member 24
- a cap 32 may be positioned at distal end 28 of elongate member 24 .
- Handle portion 30 may be any known, suitable handle.
- Cap 32 may provide diffused illumination at the worksite.
- FIG. 2 is an exploded view of distal portion 25 of endoscopic device 18 .
- Elongate member 24 may be a flexible tube, made from any suitable biocompatible material known to one of ordinary skilled in the art having sufficient flexibility to traverse a body cavity. Such materials may include, but are not limited to, rubber, silicon, synthetic plastic, stainless steel, metal-polymer composites, and metal alloys of nickel, titanium, copper cobalt, vanadium, chromium, and iron.
- the material forming elongate member 24 may be a superelastic material such as nitinol, which is a nickel-titanium alloy.
- elongate member 24 may include layers of different materials and reinforcements.
- Elongate member 24 may have any cross-sectional shape and/or configuration and may be any desired dimension that can be received in a body cavity.
- elongate member 24 may be made of, or coated with, a polymeric or lubricious material to enable endoscopic device 18 to pass through a body cavity with ease. It is contemplated that endoscopic device and/or elongate member 24 may be steerable and may have areas of different flexibility or stiffness (e.g., to promote steerability).
- Elongate member 24 may include one or more lumens extending proximally from distal end 28 to proximal end 26 . It is to be understood that lumens may have any size, cross-sectional area, shape, and/or configuration. In some embodiments, lumens may be extruded in elongate member 24 . Lumens may provide access to instruments at proximal end 26 that may aid in performing desire medical procedures at a worksite within a body cavity. These lumens may include one or more of, among others, a working lumen 34 , an irrigation lumen 36 , and an aspiration lumen 38 . In addition, elongate member 24 may include a first lumen 40 and a second lumen 42 . First lumen 40 may be configured to receive lighting device 22 , and second lumen 42 may be configured to receive illumination device 23 .
- Imaging device 20 may be embedded into elongated member 24 and mounted on distal end 28 of elongate member 24 .
- Imaging device 20 may include a camera, lens, digital imaging chip, or other image receiving device, which may transmit signals using wire or cable 20 a (fiber optic or another type of cable) within elongate member 24 .
- image signals from imaging device 20 may be processed by control device 14 before being directed to display device 16 .
- control device 14 may also direct a control signal to imaging device 20 to control various aspects of its operation.
- a second imaging device may be delivered to distal end 28 through working lumen 34 of elongate member 24 . In those embodiments, the second imaging device may be movable relative to elongate member 24 .
- Cap 32 may be positioned at distal end 28 of elongate member 24 , and coupled to distal end 28 of elongate member 24 .
- cap 32 may be integral with distal end 28 of elongate member 24 , while in other embodiments, cap 32 may be a part separate from distal end 28 of elongate member 24 .
- cap 32 may be secured to distal end 28 of elongate member 24 by, for example, an interference fit, a snap fit, threads, or any other securing device known to those skilled in the art.
- Cap 32 may have any useful shape to aid with procedures, delivering of light, and/or diffusing light.
- cap 32 may be cylindrical, bulbous, and may have angled surfaces.
- An outer rim 44 of cap 32 may extend over distal end 28 of elongate member 24 .
- rim 44 may be rounded or have beveled edges to provide increased patient comfort and to reduce the chance of injury to the patient.
- Cap 32 may be made of a translucent plastic material by any suitable method including, for example, injection molding, machining, or lithography.
- cap 32 may be made an acrylic polymer filled with TiO2. The acrylic material may create a scatter effect to light that enters cap 32 . Scattering may be facilitated in any number of other ways known in the art, including fillers, opaque materials, bubbles, diffusing or opaque coatings, or surface treatments or patterns.
- Cap 32 may have a distal end 46 and a proximal end 48 .
- FIG. 3A illustrates distal end 46 of cap 32
- FIG. 3B illustrates proximal end 48 of cap 32 .
- cap 32 may define a plurality of ports extending through proximal end 48 and distal end 46 of cap 32 .
- Ports may have any size, cross-sectional area, shape, and/or configuration.
- ports may include one or more of, among others, a working port 34 a, an irrigation port 36 a, an aspiration port 38 a, a viewing port 50 , and a light port 40 a.
- Proximal end 48 of cap 32 may also include a recess 52 formed in cap 32 . Recess 52 may terminate within cap 32 and may not extend through to distal end 46 .
- working port 34 a may be in communication with working lumen 34 , and may be configured to deliver an endoscopic instrument or device (not shown) to the work site.
- the endoscopic instrument may include any tool that is configured to perform a desired function at the work site while being remotely controlled by an actuation device from outside the body.
- the endoscopic instrument may be configured as an end effector attached at a distal end of an endoscopic instrument.
- Irrigation port 36 a may be in communication with irrigation lumen 36 , and may be configured to deliver fluids from fluid source 17 to the worksite.
- Aspiration port 38 a may be in communication with aspiration lumen 38 , and may be configured to facilitate suction and/or fluid flow at the worksite.
- Viewing port 50 may be aligned with imaging device 20 .
- Imaging device 20 may be adjacent to, flush with, or protruding from viewing port 50 .
- imaging device 20 may move relative to viewing portion 50 .
- Lighting device 22 may be disposed within first lumen 40 of elongate member 24 , and may be adjacent to, flush with, or protruding from light port 40 a of cap 32 .
- lighting device 22 may be movable relative to first lumen 40 and light port 40 a of cap 32 .
- Illumination device 23 may be disposed within second lumen 42 of elongate member 24 . Illumination device 23 may terminate in recess 52 of cap 32 ( FIG. 4B ).
- Illumination device 23 may be movable relative to second lumen 42 so that illumination device 23 may be positioned at the distal end 28 of elongate member 24 or in recess 52 of cap 32 . It is contemplated that cap 32 may accommodate multiple light sources, imaging source, etc.
- lighting device 22 and/or illumination device 23 may comprise (glass or plastic) fiber optic cables, which extend from distal end 28 of elongate member-to proximal end 26 of elongate member 24 .
- lighting device 22 or illumination device 23 may comprise a light source such as, for example, a bulb, an LED, or a light guide.
- lighting may be provided as a combination of sources (e.g., illumination device may comprise a light fiber and lighting device may comprise an LED). While a single lighting device 22 and illumination device 23 are discussed, it is contemplated that any number of lighting or illumination devices may be used.
- Lighting device 22 and illumination device 23 may direct light to cap 32 from illumination control system 16 ( FIG. 1 ).
- Illumination control system 16 may include light source, control electronics, and associated control algorithms that operate cooperatively to modulate the amount of light directed to lighting device 22 and illumination device 23 .
- illumination control system 16 may include a single light source with individual lenses, irises, and/or filters to modulate the amount of light directed to lighting device 22 and illumination device 23 . Any optical arrangement known in the art may be used to split the light from the single light source into multiple beams having different characteristics and direct each beam through the individual illumination devices.
- illumination control system 16 may include different light sources for lighting device 22 and illumination device 23 .
- the light sources may be, for example, a LED, a Xenon lamp, or another known light source.
- illumination control system 16 may include a control algorithm to adjust the illumination at the work site automatically.
- This control algorithm may include software codes that analyze the images from imaging device 20 and automatically control the intensity of light in each of lighting device 22 and illumination device 23 .
- the illumination control system 16 may be configured to “learn” from each illumination adjustment operation and improve over time.
- illumination control system 16 may form the capital equipment that may be used along with a disposable endoscope. Since the illumination control system 16 may be reused with different disposable endoscopes, the sensitivity of cost of the illumination control system 16 to the application may be low.
- endoscopic device 18 may be inserted into a body cavity and positioned adjacent a work site.
- endoscopic device 18 may be inserted into stomach 60 through the esophagus 62 , and positioned in stomach 60 such that distal end 23 of endoscopic device 18 may be positioned proximate a work site 64 on stomach wall 66 .
- a proximal end 26 (not shown in FIG. 5 ) of elongate member 24 of endoscopic device 18 may extend out of the body of the patient and may be controlled to perform the desired operations at the distal end 28 of elongate member 24 .
- the medical procedure illustrated in FIG. 5 is exemplary only, and that endoscopes of the current disclosure may be applied to any endoscopic application known in the art.
- imaging device 20 may be activated so that a user may view work site 64 .
- Lighting device 22 positioned in illumination port 40 a, may then be activated to emit a distally directed path of light and provide distal field illumination.
- Illumination device 23 (not shown in FIG. 5 ) may be activated to emit light into cap 32 .
- Cap 32 may made from a translucent material such as, for example, an acrylic filled with TiO2 that may scatter light as light enters cap 32 , causing cap 32 to glow. In this manner, cap 32 may provide diffused, near field illumination.
- cap 32 may further comprise cooling channels in addition to or in place of irrigation lumen 36 and aspiration lumen 38 to help offset any heat created by lighting device 22 , illumination device 23 , and/or imaging device 20 . Fluid may be directed through the cooling channels in cap 32 and out may be expelled either distally of cap 32 or at proximal end 26 of elongate member 24 .
- a user may control light directed through lighting device 22 and illumination device 23 independently via illumination control system 16 to optimize visualization.
- a user may also independently control the characteristics of the light directed to each of lighting device 22 and illumination device 23 .
- the characteristics may include intensity, wavelength, polarization, color, frequency, phase or any other characteristic that can vary the level of illumination directed through each of lighting device 22 and illumination device 23 .
- FIG. 6 illustrates a distal portion 25 b of endoscopic device 18 , in accordance with another embodiment of the present disclosure.
- Elongate member 24 b may include one or more lumens extending proximally through distal end 28 b and its proximal end (not shown). Like FIG. 2 , these lumens may include one or more of, among others, a working lumen 34 , an irrigation lumen 36 , an aspiration lumen 38 , and a first lumen 40 . In addition, elongate member 24 b may include one or more second lumens 42 .
- elongate member 24 b may include four second lumens 42 a, 42 b, 42 c, and 42 d that receive four illumination devices 23 a, 23 b, 23 c, and 23 d, respectively. It is contemplated that a greater or lesser number of illumination devices 23 may be provided.
- Cap 32 b may be positioned at distal end 28 b of elongate member 24 b, and extend distally from distal end 28 b of elongate member 24 b.
- Cap 32 b may be made of a translucent plastic material by any suitable method including, for example, injection molding or machining.
- cap 32 b may be made an acrylic polymer filled with TiO 2 . The acrylic material may create a scatter effect to light that enters cap 32 b. Scattering, however, may be facilitated in any number of other ways known in the art, including fillers, opaque materials, bubbles, diffusing or opaque coatings, surface treatments or patterns.
- Cap 32 b may have a distal end 46 b and a proximal end 48 b.
- FIG. 7A illustrates distal end 46 b of cap 32 b
- FIG. 7B illustrates proximal end 48 b of cap 32 b.
- cap 32 b may define a plurality of ports extending through proximal end 48 b and distal end 46 b of cap 32 b.
- cap 32 b may include a working port 34 a, an irrigation port 36 a, an aspiration port 38 a, a viewing port 50 , and a light port 40 a.
- proximal end 48 b of cap 32 b may have one or more recesses 52 formed in cap 32 that terminate within cap 32 and do not extend through to distal end 46 .
- cap 32 b has four recesses 52 a, 52 b, 52 c, and 52 d that are arranged on the periphery of cap 32 .
- Recesses 52 a, 52 b, 52 c, and 52 may form any arrangement on proximal end 48 b of cap 32 b. It is to be understood that the number of recesses may correspond to the number of illumination devices.
- lighting device 22 may be disposed within first lumen 40 of elongate member 24 b and may be adjacent to, flush with, or protruding from light port 40 a. Lighting device 22 may be configured to emit a distally directed path of light to provide down field illumination. Illumination devices 23 a, 23 b, 23 c, and 23 d may be disposed within second lumens 42 a, 42 b, 42 c, and 42 d of elongate member 24 b, and may terminate in recesses 52 a, 52 b, 52 c, and 52 d formed in cap 32 b. Illumination devices 23 a, 23 b, 23 c, and 23 d may be configured to emit light into cap 32 b. In this manner, cap 32 b may provide diffused, near field illumination.
- lighting device 22 and illumination devices 23 a, 23 b, 23 c, and 23 d may be optic fibers.
- Illumination devices 23 a, 23 b, 23 c, and 23 d may be smaller fibers and lighting device 22 may be a larger optic fiber.
- Characteristics of the light emitted by illumination devices 23 a, 23 b, 23 c, and 23 d may be individually varied by illumination control system 16 .
- the intensity of the light emitted by each of illumination devices 23 a, 23 b, 23 c, and 23 d may be varied individually by illumination control system 16 .
- the characteristic of light that is varied by illumination control system 16 may include a wavelength of the light directed through each of illumination devices 23 a, 23 b, 23 c, and 23 d.
- lighting device 22 may be operatively coupled with an adjustable diffusing lens or other adjustable lens membranes.
- a characteristic of the light emitted by lighting device 22 may be changed by selectively activating the diffusing lens or lens membrane associated with that lighting device 22 .
- the diffusing lens or lens membrane may be selectively activated by any means, such as, for example, a pressure may be applied to the lens membrane to change its optical properties, and therefore, a characteristic of light passing through the membrane.
- a pressure may be applied to the lens membrane by applying an electric current to the membrane.
- the lenses may be independently controlled to aim light at or away from a particular point, direct, focus, obscure, and/or change a characteristic of the light (for example, frequency, etc.).
- a lens or another optical member associated with an illumination device may be biased to provide more (or less) illumination to a region of work site 64 illuminated by that lighting device 22 .
- the illumination control system 16 may vary a cant or tilt of an optic fiber (or another illumination device) relative to a longitudinal axis of the endoscopic device 18 to vary a characteristic of light delivered to work site 64 through that fiber. The cant of the fiber optic may be changed by advancing or retracting wedges or other positioning mechanisms associated with that fiber.
- the cap may have angled ports to direct light device outward or inward.
- one or more light sensors could be used in addition to, or as, cameras. These light sensors may assist in automatically or manually adjusting the illumination effect.
- the cap may have any number of lumens and recesses.
- the cap may, alternatively, opaque and may include one or more portions that are transparent or translucent.
- the cap may be entirely opaque and include one or more transparent or translucent lenses or windows formed therein relatively adjacent one or more of the lumens in the elongate member.
- the cap may include a transparent or translucent lens or window within the recess such that light emitted from an illumination device disposed within the recess of the cap may pass through the lens or window and thus through cap and may illuminate a work space.
- the cap may be translucent and/or may include material configured to scatter light, and may additionally include one or more transparent portions, e.g., lenses or windows to selectively allow emitted light to pass through the cap.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
This invention may be directed to an endoscopic device. The endoscopic device comprising an elongate member having a distal end, and a cap positioned at the distal end. The cap may have a proximal end and a distal end. The proximal end may define at least one recess that does not extend through the cap to the distal end of the cap. The endoscopic device may further include at least one illumination device disposed in the at least one recess.
Description
- This application claims the benefit of priority from U.S. Provisional Application No. 61/562,142, filed Nov. 21, 2011, which is herein incorporated in its entirety.
- Embodiments of the present disclosure relate to an endoscopic system. In particular, exemplary embodiments of the present disclosure relate to endoscopic devices of the endoscopic system for optimized visualization. Embodiments of the present disclosure also cover methods of using such devices.
- An endoscope is a flexible device introduced into the body for diagnostic and/or therapeutic purposes. Typically, these devices are inserted into the body through an opening (a natural opening or an incision), and are delivered to a work site inside the body through a body cavity. Generally, such devices include an illumination device to illuminate a field of view at the work site, and an imaging device to allow a surgeon to see the work site from outside the body and remotely operate the endoscope to perform a desired diagnostic/therapeutic procedure at the work site.
- In reusable endoscopes, a diffusing lens may be provided with the Illumination device at the distal end of the endoscope to project light evenly over the entire visualization field. Due to the differences in proximities, and other light reflecting characteristics of different locations within the field of view of the work site (such as, for example, differences in reflectivity of muscle and tissue), these different locations may appear to be Illuminated differently. For instance, some of these locations may appear to be oversaturated with light while other locations may appear to be insufficiently illuminated. The variation in illumination may make visualization of the work site difficult, and may therefore be undesirable. With small bore endoscopes, the cost of implementing a diffusing lens for even distribution of light may be high. While this cost may be less of an issue with reusable endoscopes where the cost can be amortized due to repeated usage, this cost may be prohibitively high in the case of disposable endoscopes. Therefore, the present disclosure is directed to systems and methods to optimize visualization by controlling distribution of light in a field of view within the body from outside the body.
- Embodiments of the present disclosure are directed to endoscopic systems, devices, and methods that obviate one or more of the limitations discussed above.
- One embodiment of the disclosure is directed to an endoscopic device. The endoscopic device may include an elongate member having a distal end, and a cap positioned at the distal end. The cap may have a proximal end and a distal end. The proximal end may define at least one recess that does not extend through the cap to the distal end of the cap. The endoscopic device may also include at least one illumination device disposed in the at least one recess.
- In various embodiments, the endoscopic device may include one or more of the following additional features: wherein the cap includes a translucent material; wherein the cap is filled with material configured to scatter light; wherein the at least one illumination device is an optical fiber; wherein the cap includes an opening extending from the proximal end of the cap to the distal end of the cap, and wherein a lighting device is disposed in the opening; wherein the lighting device is an optic fiber configured to provide down field illumination; further including an imaging device at the distal end of the elongate member; wherein the imaging device is received in a viewing port of the cap; and wherein the cap includes a rim that extends over the distal end of the elongate member.
- Another embodiment of the disclosure is directed to a cap for an endoscopic device. The cap may include a body defining a lumen extending through the body from a proximal end of the body to a distal end of the body. The cap may further include at least one recess extending into the body from a proximal end to a position within the body.
- In various embodiments, the cap may include one or more of the following additional features: wherein the body is filled with material so as to diffuse light; wherein the body is translucent; wherein the at least one recess is arranged at a periphery of the body; wherein the at least one recess has a diameter that is smaller than a diameter of the lumen; further including at least one cooling channel; further including a viewing port extending from the proximal end of the body to the distal end of the body.
- Another embodiment of the disclosure is directed to a method of using an endoscopic device. The method may include inserting a distal portion of an endoscopic device into a body. The endoscopic device may include an elongate member having a distal end. A cap may be positioned at the distal end of the elongate member. The cap may have a proximal end and a distal end. The proximal end may define one or more recesses that do not extend through the cap to the distal end. One or more illumination devices may be disposed in the one or more recesses. The method may also include positioning the distal portion of the endoscopic device proximate a work site within the body and activating the one or more illumination devices to provide diffused illumination at the worksite.
- In various embodiments, the method may include one or more of the following additional features: wherein the endoscopic device further includes a lighting device disposed in an opening of the cap to provide down field illumination; wherein the cap is filled with material configured to scatter light; wherein the cap is translucent; wherein the endoscopic device further includes an imaging device, and further including activating the imaging device to view the work site.
- Additional objects and advantages of the disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure. The objects and advantages of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and together with the description, serve to explain the principles of the disclosure.
-
FIG. 1 illustrates an endoscopic system including an endoscopic device, according to an embodiment of the disclosure; -
FIG. 2 is an exploded view of a distal portion of the endoscopic device having a cap, according to a first embodiment of the disclosure; -
FIG. 3A is a distal end view of the cap, according to a first embodiment of the disclosure; -
FIG. 38 is a proximal end view of the cap, according to a first embodiment of the disclosure; -
FIG. 4A is a perspective view of the distal portion of the endoscopic device, according to a first embodiment of the disclosure; -
FIG. 48 is a longitudinal cross-section of the distal portion, according to a first embodiment of the disclosure; -
FIG. 5 is a schematic view of an embodiment of the endoscopic device during an exemplary endoscopic procedure; -
FIG. 6 is an exploded view of a distal portion of the endoscopic device having a cap, according to a second embodiment of the disclosure; -
FIG. 7A is a distal end view of the cap, according to a second embodiment of the disclosure; -
FIG. 78 is a proximal end view of the cap, according to a second embodiment of the disclosure; -
FIG. 8A is a perspective view of the distal portion of the endoscopic device, according to a second embodiment of the disclosure; and -
FIG. 8B is a longitudinal cross-section of the distal portion, according to a second embodiment of the disclosure. - Reference will now be made in detail to exemplary embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to same or like parts.
-
FIG. 1 illustrates an exemplaryendoscopic system 10 and related components. The exemplaryendoscopic system 10 may be used for therapeutic and/or diagnostic endoscopic procedures. The phrase “endoscopic procedure” is broadly used to indicate any medical procedure that may be performed by inserting an endoscope, laparoscope, guide tube, catheter, or any such medical device into the body through any natural, surgical, percutaneous, or other opening in the body. The term “endoscopic system” is also used broadly to include all components and systems that may be used for the endoscopic procedure. In the exemplary embodiment, the components ofendoscopic system 10 may include acontrol device 12, adisplay 14 which may be connected to controldevice 12, anillumination control system 16, a fluid and/or vacuum source 17, and anendoscopic device 18.Control device 12 and fluid source 17 may be connected toendoscopic device 18 by way of a wire or acable 20 a, andfluid conduit 19, respectively.Illumination control system 16 may be connected toendoscopic device 18 by way of alighting device 22 and one ormore illumination devices 23.Endoscopic device 18 may have adistal portion 25 configured to be positioned at a worksite in a body cavity. -
Endoscopic device 18 may include anelongate member 24 having aproximal end 26 and adistal end 28. For purposes of this disclosure, “proximal” refers to the end closer to the device operator during use, and “distal” refers to the end further from the device operator during use. Ahandle portion 30 may be disposed atproximal end 26 ofelongate member 24, and acap 32 may be positioned atdistal end 28 ofelongate member 24.Handle portion 30 may be any known, suitable handle.Cap 32 may provide diffused illumination at the worksite. -
FIG. 2 is an exploded view ofdistal portion 25 ofendoscopic device 18.Elongate member 24 may be a flexible tube, made from any suitable biocompatible material known to one of ordinary skilled in the art having sufficient flexibility to traverse a body cavity. Such materials may include, but are not limited to, rubber, silicon, synthetic plastic, stainless steel, metal-polymer composites, and metal alloys of nickel, titanium, copper cobalt, vanadium, chromium, and iron. In one embodiment, the material formingelongate member 24 may be a superelastic material such as nitinol, which is a nickel-titanium alloy. In some embodiments,elongate member 24 may include layers of different materials and reinforcements.Elongate member 24 may have any cross-sectional shape and/or configuration and may be any desired dimension that can be received in a body cavity. In some embodiments,elongate member 24 may be made of, or coated with, a polymeric or lubricious material to enableendoscopic device 18 to pass through a body cavity with ease. It is contemplated that endoscopic device and/or elongatemember 24 may be steerable and may have areas of different flexibility or stiffness (e.g., to promote steerability). -
Elongate member 24 may include one or more lumens extending proximally fromdistal end 28 toproximal end 26. It is to be understood that lumens may have any size, cross-sectional area, shape, and/or configuration. In some embodiments, lumens may be extruded inelongate member 24. Lumens may provide access to instruments atproximal end 26 that may aid in performing desire medical procedures at a worksite within a body cavity. These lumens may include one or more of, among others, a workinglumen 34, anirrigation lumen 36, and anaspiration lumen 38. In addition,elongate member 24 may include afirst lumen 40 and asecond lumen 42.First lumen 40 may be configured to receivelighting device 22, andsecond lumen 42 may be configured to receiveillumination device 23. - An
imaging device 20 may be embedded intoelongated member 24 and mounted ondistal end 28 ofelongate member 24.Imaging device 20 may include a camera, lens, digital imaging chip, or other image receiving device, which may transmit signals using wire orcable 20 a (fiber optic or another type of cable) withinelongate member 24. In some embodiments, image signals fromimaging device 20 may be processed bycontrol device 14 before being directed to displaydevice 16. It is also contemplated that, in some systems,control device 14 may also direct a control signal toimaging device 20 to control various aspects of its operation. In some embodiments, in addition to, or in place ofimaging device 20 fixed todistal end 28, a second imaging device may be delivered todistal end 28 through workinglumen 34 ofelongate member 24. In those embodiments, the second imaging device may be movable relative to elongatemember 24. -
Cap 32 may be positioned atdistal end 28 ofelongate member 24, and coupled todistal end 28 ofelongate member 24. In some embodiments,cap 32 may be integral withdistal end 28 ofelongate member 24, while in other embodiments,cap 32 may be a part separate fromdistal end 28 ofelongate member 24. In those embodiments,cap 32 may be secured todistal end 28 ofelongate member 24 by, for example, an interference fit, a snap fit, threads, or any other securing device known to those skilled in the art.Cap 32 may have any useful shape to aid with procedures, delivering of light, and/or diffusing light. For example, cap 32 may be cylindrical, bulbous, and may have angled surfaces. Anouter rim 44 ofcap 32 may extend overdistal end 28 ofelongate member 24. In some embodiments, rim 44 may be rounded or have beveled edges to provide increased patient comfort and to reduce the chance of injury to the patient.Cap 32 may be made of a translucent plastic material by any suitable method including, for example, injection molding, machining, or lithography. In one embodiment,cap 32 may be made an acrylic polymer filled with TiO2. The acrylic material may create a scatter effect to light that enterscap 32. Scattering may be facilitated in any number of other ways known in the art, including fillers, opaque materials, bubbles, diffusing or opaque coatings, or surface treatments or patterns. -
Cap 32 may have adistal end 46 and aproximal end 48.FIG. 3A illustratesdistal end 46 ofcap 32, andFIG. 3B illustratesproximal end 48 ofcap 32. As shown inFIGS. 3A and 3B ,cap 32 may define a plurality of ports extending throughproximal end 48 anddistal end 46 ofcap 32. Ports may have any size, cross-sectional area, shape, and/or configuration. In the exemplary embodiment, ports may include one or more of, among others, a workingport 34 a, anirrigation port 36 a, anaspiration port 38 a, aviewing port 50, and alight port 40 a.Proximal end 48 ofcap 32 may also include arecess 52 formed incap 32.Recess 52 may terminate withincap 32 and may not extend through todistal end 46. - Referring to
FIGS. 4A and 4B , workingport 34 a may be in communication with workinglumen 34, and may be configured to deliver an endoscopic instrument or device (not shown) to the work site. The endoscopic instrument may include any tool that is configured to perform a desired function at the work site while being remotely controlled by an actuation device from outside the body. The endoscopic instrument may be configured as an end effector attached at a distal end of an endoscopic instrument.Irrigation port 36 a may be in communication withirrigation lumen 36, and may be configured to deliver fluids from fluid source 17 to the worksite.Aspiration port 38 a may be in communication withaspiration lumen 38, and may be configured to facilitate suction and/or fluid flow at the worksite. - Viewing
port 50 may be aligned withimaging device 20.Imaging device 20 may be adjacent to, flush with, or protruding from viewingport 50. In some embodiments,imaging device 20 may move relative to viewingportion 50.Lighting device 22 may be disposed withinfirst lumen 40 ofelongate member 24, and may be adjacent to, flush with, or protruding fromlight port 40 a ofcap 32. In some embodiments,lighting device 22 may be movable relative tofirst lumen 40 andlight port 40 a ofcap 32.Illumination device 23 may be disposed withinsecond lumen 42 ofelongate member 24.Illumination device 23 may terminate inrecess 52 of cap 32 (FIG. 4B ).Illumination device 23 may be movable relative tosecond lumen 42 so thatillumination device 23 may be positioned at thedistal end 28 ofelongate member 24 or inrecess 52 ofcap 32. It is contemplated thatcap 32 may accommodate multiple light sources, imaging source, etc. - In some embodiments,
lighting device 22 and/orillumination device 23 may comprise (glass or plastic) fiber optic cables, which extend fromdistal end 28 of elongate member-toproximal end 26 ofelongate member 24. In other embodiments,lighting device 22 orillumination device 23 may comprise a light source such as, for example, a bulb, an LED, or a light guide. In yet other embodiments, lighting may be provided as a combination of sources (e.g., illumination device may comprise a light fiber and lighting device may comprise an LED). While asingle lighting device 22 andillumination device 23 are discussed, it is contemplated that any number of lighting or illumination devices may be used. -
Lighting device 22 andillumination device 23 may direct light to cap 32 from illumination control system 16 (FIG. 1 ).Illumination control system 16 may include light source, control electronics, and associated control algorithms that operate cooperatively to modulate the amount of light directed tolighting device 22 andillumination device 23. In one embodiment,illumination control system 16 may include a single light source with individual lenses, irises, and/or filters to modulate the amount of light directed tolighting device 22 andillumination device 23. Any optical arrangement known in the art may be used to split the light from the single light source into multiple beams having different characteristics and direct each beam through the individual illumination devices. In other embodiments,illumination control system 16 may include different light sources forlighting device 22 andillumination device 23. The light sources may be, for example, a LED, a Xenon lamp, or another known light source. - In some embodiments,
illumination control system 16 may include a control algorithm to adjust the illumination at the work site automatically. This control algorithm may include software codes that analyze the images fromimaging device 20 and automatically control the intensity of light in each oflighting device 22 andillumination device 23. In some embodiments, theillumination control system 16 may be configured to “learn” from each illumination adjustment operation and improve over time. - In applications involving disposable endoscopes,
illumination control system 16 may form the capital equipment that may be used along with a disposable endoscope. Since theillumination control system 16 may be reused with different disposable endoscopes, the sensitivity of cost of theillumination control system 16 to the application may be low. - Referring to
FIG. 5 ,endoscopic device 18 may be inserted into a body cavity and positioned adjacent a work site. In the illustrated embodiment,endoscopic device 18 may be inserted intostomach 60 through the esophagus 62, and positioned instomach 60 such thatdistal end 23 ofendoscopic device 18 may be positioned proximate a work site 64 onstomach wall 66. A proximal end 26 (not shown inFIG. 5 ) ofelongate member 24 ofendoscopic device 18 may extend out of the body of the patient and may be controlled to perform the desired operations at thedistal end 28 ofelongate member 24. It should be emphasized that the medical procedure illustrated inFIG. 5 is exemplary only, and that endoscopes of the current disclosure may be applied to any endoscopic application known in the art. - After
distal portion 25 is disposed at worksite 64,imaging device 20 may be activated so that a user may view work site 64.Lighting device 22, positioned inillumination port 40 a, may then be activated to emit a distally directed path of light and provide distal field illumination. Illumination device 23 (not shown inFIG. 5 ) may be activated to emit light intocap 32.Cap 32 may made from a translucent material such as, for example, an acrylic filled with TiO2 that may scatter light as light enterscap 32, causingcap 32 to glow. In this manner, cap 32 may provide diffused, near field illumination. - It is contemplated that, in all embodiments,
cap 32 may further comprise cooling channels in addition to or in place ofirrigation lumen 36 andaspiration lumen 38 to help offset any heat created bylighting device 22,illumination device 23, and/orimaging device 20. Fluid may be directed through the cooling channels incap 32 and out may be expelled either distally ofcap 32 or atproximal end 26 ofelongate member 24. - A user may control light directed through
lighting device 22 andillumination device 23 independently viaillumination control system 16 to optimize visualization. A user may also independently control the characteristics of the light directed to each oflighting device 22 andillumination device 23. The characteristics may include intensity, wavelength, polarization, color, frequency, phase or any other characteristic that can vary the level of illumination directed through each oflighting device 22 andillumination device 23. -
FIG. 6 illustrates adistal portion 25 b ofendoscopic device 18, in accordance with another embodiment of the present disclosure.Elongate member 24 b may include one or more lumens extending proximally throughdistal end 28 b and its proximal end (not shown). LikeFIG. 2 , these lumens may include one or more of, among others, a workinglumen 34, anirrigation lumen 36, anaspiration lumen 38, and afirst lumen 40. In addition,elongate member 24 b may include one or moresecond lumens 42. In the exemplary embodiment,elongate member 24 b may include foursecond lumens illumination devices illumination devices 23 may be provided. -
Cap 32 b may be positioned atdistal end 28 b ofelongate member 24 b, and extend distally fromdistal end 28 b ofelongate member 24 b.Cap 32 b may be made of a translucent plastic material by any suitable method including, for example, injection molding or machining. In one embodiment, cap 32 b may be made an acrylic polymer filled with TiO2. The acrylic material may create a scatter effect to light that enterscap 32 b. Scattering, however, may be facilitated in any number of other ways known in the art, including fillers, opaque materials, bubbles, diffusing or opaque coatings, surface treatments or patterns. -
Cap 32 b may have adistal end 46 b and aproximal end 48 b.FIG. 7A illustratesdistal end 46 b ofcap 32 b, andFIG. 7B illustratesproximal end 48 b ofcap 32 b. As shown inFIGS. 7A and 7B , cap 32 b may define a plurality of ports extending throughproximal end 48 b anddistal end 46 b ofcap 32 b. Likecap 32,cap 32 b may include a workingport 34 a, anirrigation port 36 a, anaspiration port 38 a, aviewing port 50, and alight port 40 a. In this embodiment, however,proximal end 48 b ofcap 32 b may have one ormore recesses 52 formed incap 32 that terminate withincap 32 and do not extend through todistal end 46. In the exemplary embodiment, cap 32 b has fourrecesses cap 32.Recesses proximal end 48 b ofcap 32 b. It is to be understood that the number of recesses may correspond to the number of illumination devices. - Referring to
FIGS. 8A and 8B ,lighting device 22 may be disposed withinfirst lumen 40 ofelongate member 24 b and may be adjacent to, flush with, or protruding fromlight port 40 a.Lighting device 22 may be configured to emit a distally directed path of light to provide down field illumination.Illumination devices second lumens elongate member 24 b, and may terminate inrecesses cap 32 b.Illumination devices cap 32 b. In this manner, cap 32 b may provide diffused, near field illumination. - In this embodiment,
lighting device 22 andillumination devices Illumination devices lighting device 22 may be a larger optic fiber. Characteristics of the light emitted byillumination devices illumination control system 16. For instance, the intensity of the light emitted by each ofillumination devices illumination control system 16. In other embodiments, the characteristic of light that is varied byillumination control system 16 may include a wavelength of the light directed through each ofillumination devices - In some additional and/or alternative embodiments,
lighting device 22 may be operatively coupled with an adjustable diffusing lens or other adjustable lens membranes. In these embodiments, a characteristic of the light emitted bylighting device 22 may be changed by selectively activating the diffusing lens or lens membrane associated with thatlighting device 22. The diffusing lens or lens membrane may be selectively activated by any means, such as, for example, a pressure may be applied to the lens membrane to change its optical properties, and therefore, a characteristic of light passing through the membrane. A pressure may be applied to the lens membrane by applying an electric current to the membrane. - In some embodiments, the lenses may be independently controlled to aim light at or away from a particular point, direct, focus, obscure, and/or change a characteristic of the light (for example, frequency, etc.). In some embodiments, a lens or another optical member associated with an illumination device may be biased to provide more (or less) illumination to a region of work site 64 illuminated by that
lighting device 22. In some embodiments, theillumination control system 16 may vary a cant or tilt of an optic fiber (or another illumination device) relative to a longitudinal axis of theendoscopic device 18 to vary a characteristic of light delivered to work site 64 through that fiber. The cant of the fiber optic may be changed by advancing or retracting wedges or other positioning mechanisms associated with that fiber. Alternatively, the cap may have angled ports to direct light device outward or inward. In some embodiments, one or more light sensors could be used in addition to, or as, cameras. These light sensors may assist in automatically or manually adjusting the illumination effect. In these embodiments, the cap may have any number of lumens and recesses. - It is contemplated that in any of the embodiments described above, the cap may, alternatively, opaque and may include one or more portions that are transparent or translucent. For example, the cap may be entirely opaque and include one or more transparent or translucent lenses or windows formed therein relatively adjacent one or more of the lumens in the elongate member. For example, it is contemplated that the cap may include a transparent or translucent lens or window within the recess such that light emitted from an illumination device disposed within the recess of the cap may pass through the lens or window and thus through cap and may illuminate a work space. Alternatively, the cap may be translucent and/or may include material configured to scatter light, and may additionally include one or more transparent portions, e.g., lenses or windows to selectively allow emitted light to pass through the cap.
- Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (20)
1. An endoscopic device comprising:
an elongate member having a distal end;
a cap positioned at the distal end, the cap having a proximal end and a distal end, the proximal end defining at least one recess that does not extend through the cap to the distal end of the cap; and
at least one illumination device disposed in the at least one recess.
2. The device of claim 1 , wherein the cap includes a translucent material.
3. The device of claim 1 , wherein the cap is filled with material configured to scatter light.
4. The device of claim 1 , wherein the cap is opaque and includes a transparent portion in the recess.
5. The device of claim 1 , wherein the cap includes an opening extending from the proximal end of the cap to the distal end of the cap, and wherein a lighting device is disposed in the opening.
6. The device of claim 5 , wherein the lighting device is an optic fiber configured to provide down field illumination.
7. The device of claim 1 , further including an imaging device at the distal end of the elongate member, wherein the imaging device is received in a viewing port of the cap.
8. The device of claim 1 , wherein the cap includes a rim that extends over the distal end of the elongate member.
9. A cap for an endoscopic device, comprising:
a body defining a lumen extending through the body from a proximal end of the body to a distal end of the body; and
at least one recess extending into the body from a proximal end to a position within the body.
10. The cap of claim 9 , wherein the body is filled with material so as to diffuse light.
11. The cap of claim 9 , wherein the body is translucent.
12. The cap of claim 9 , wherein the at least one recess is arranged at a periphery of the body.
13. The cap of claim 9 , wherein the at least one recess has a diameter that is smaller than a diameter of the lumen.
14. The cap of claim 9 , further including at least one cooling channel.
15. The cap of claim 9 , further including a viewing port extending from the proximal end of the body to the distal end of the body.
16. A method of using an endoscopic device, comprising:
inserting a distal portion of an endoscopic device into a body, the endoscopic device including:
an elongate member having a distal end;
a cap positioned at the distal end of the elongate member, the cap having a proximal end and a distal end, the proximal end defining at least one recess that does not extend through the cap to the distal end; and
at least one illumination device disposed in the at least one recess;
positioning the distal portion of the endoscopic device proximate a work site within the body; and
activating the at least one illumination device to provide diffused illumination at the worksite.
17. The method of claim 16 , wherein the endoscopic device further includes a lighting device disposed in an opening of the cap to provide down field illumination.
18. The method of claim 17 , wherein the cap is filled with material configured to scatter light.
19. The method of claim 17 , wherein the cap is translucent.
20. The method of claim 17 , wherein the endoscopic device further includes an imaging device, and further including activating the imaging device to view the work site.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/682,548 US20130131447A1 (en) | 2011-11-21 | 2012-11-20 | Endoscopic system for optimized visualization |
US16/249,951 US10750934B2 (en) | 2011-11-21 | 2019-01-17 | Endoscopic system for optimized visualization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161562142P | 2011-11-21 | 2011-11-21 | |
US13/682,548 US20130131447A1 (en) | 2011-11-21 | 2012-11-20 | Endoscopic system for optimized visualization |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/249,951 Continuation US10750934B2 (en) | 2011-11-21 | 2019-01-17 | Endoscopic system for optimized visualization |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130131447A1 true US20130131447A1 (en) | 2013-05-23 |
Family
ID=47279143
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/682,548 Abandoned US20130131447A1 (en) | 2011-11-21 | 2012-11-20 | Endoscopic system for optimized visualization |
US16/249,951 Expired - Fee Related US10750934B2 (en) | 2011-11-21 | 2019-01-17 | Endoscopic system for optimized visualization |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/249,951 Expired - Fee Related US10750934B2 (en) | 2011-11-21 | 2019-01-17 | Endoscopic system for optimized visualization |
Country Status (5)
Country | Link |
---|---|
US (2) | US20130131447A1 (en) |
EP (2) | EP2782491B1 (en) |
JP (2) | JP6456691B2 (en) |
CA (1) | CA2855703A1 (en) |
WO (1) | WO2013078246A1 (en) |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140330081A1 (en) * | 2012-07-19 | 2014-11-06 | Olympus Medical Systems Corp. | Distal end rigid section of insertion portion of endoscope and endoscope |
US8926502B2 (en) | 2011-03-07 | 2015-01-06 | Endochoice, Inc. | Multi camera endoscope having a side service channel |
US9101268B2 (en) | 2009-06-18 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US9101287B2 (en) | 2011-03-07 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi camera endoscope assembly having multiple working channels |
US9101266B2 (en) | 2011-02-07 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi-element cover for a multi-camera endoscope |
WO2015171732A1 (en) * | 2014-05-07 | 2015-11-12 | Endochoice, Inc. | Endoscope illumination with multiple viewing elements and illuminators |
CN105105700A (en) * | 2015-09-15 | 2015-12-02 | 李安 | Electronic endoscope and illumination structure and method thereof |
US20160030693A1 (en) * | 2013-03-28 | 2016-02-04 | Fujikura Ltd. | Tracheal tube |
US9314147B2 (en) | 2011-12-13 | 2016-04-19 | Endochoice Innovation Center Ltd. | Rotatable connector for an endoscope |
US9320419B2 (en) | 2010-12-09 | 2016-04-26 | Endochoice Innovation Center Ltd. | Fluid channeling component of a multi-camera endoscope |
US9402533B2 (en) | 2011-03-07 | 2016-08-02 | Endochoice Innovation Center Ltd. | Endoscope circuit board assembly |
US9474440B2 (en) | 2009-06-18 | 2016-10-25 | Endochoice, Inc. | Endoscope tip position visual indicator and heat management system |
US9492063B2 (en) | 2009-06-18 | 2016-11-15 | Endochoice Innovation Center Ltd. | Multi-viewing element endoscope |
US20160370294A1 (en) * | 2015-06-17 | 2016-12-22 | Becton, Dickinson And Company | Optical detector scatter cap assembly having a removable scatter bar and methods of using the same |
US9554692B2 (en) | 2009-06-18 | 2017-01-31 | EndoChoice Innovation Ctr. Ltd. | Multi-camera endoscope |
US9560954B2 (en) | 2012-07-24 | 2017-02-07 | Endochoice, Inc. | Connector for use with endoscope |
US9560953B2 (en) | 2010-09-20 | 2017-02-07 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
US9642513B2 (en) | 2009-06-18 | 2017-05-09 | Endochoice Inc. | Compact multi-viewing element endoscope system |
US9655502B2 (en) | 2011-12-13 | 2017-05-23 | EndoChoice Innovation Center, Ltd. | Removable tip endoscope |
US9667935B2 (en) | 2013-05-07 | 2017-05-30 | Endochoice, Inc. | White balance enclosure for use with a multi-viewing elements endoscope |
US9706903B2 (en) | 2009-06-18 | 2017-07-18 | Endochoice, Inc. | Multiple viewing elements endoscope system with modular imaging units |
US9706908B2 (en) | 2010-10-28 | 2017-07-18 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
US9713417B2 (en) | 2009-06-18 | 2017-07-25 | Endochoice, Inc. | Image capture assembly for use in a multi-viewing elements endoscope |
US9814374B2 (en) | 2010-12-09 | 2017-11-14 | Endochoice Innovation Center Ltd. | Flexible electronic circuit board for a multi-camera endoscope |
US9872609B2 (en) | 2009-06-18 | 2018-01-23 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US9901244B2 (en) | 2009-06-18 | 2018-02-27 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
US9943218B2 (en) | 2013-10-01 | 2018-04-17 | Endochoice, Inc. | Endoscope having a supply cable attached thereto |
KR20180041140A (en) * | 2015-07-21 | 2018-04-23 | 지아이 사이언티픽, 엘엘씨 | Endoscope accessory with angle adjustable exhaust port |
US9949623B2 (en) | 2013-05-17 | 2018-04-24 | Endochoice, Inc. | Endoscope control unit with braking system |
US9968242B2 (en) | 2013-12-18 | 2018-05-15 | Endochoice, Inc. | Suction control unit for an endoscope having two working channels |
US9986899B2 (en) | 2013-03-28 | 2018-06-05 | Endochoice, Inc. | Manifold for a multiple viewing elements endoscope |
US9993142B2 (en) | 2013-03-28 | 2018-06-12 | Endochoice, Inc. | Fluid distribution device for a multiple viewing elements endoscope |
US10064541B2 (en) | 2013-08-12 | 2018-09-04 | Endochoice, Inc. | Endoscope connector cover detection and warning system |
US10078207B2 (en) | 2015-03-18 | 2018-09-18 | Endochoice, Inc. | Systems and methods for image magnification using relative movement between an image sensor and a lens assembly |
US10080486B2 (en) | 2010-09-20 | 2018-09-25 | Endochoice Innovation Center Ltd. | Multi-camera endoscope having fluid channels |
US10105039B2 (en) | 2013-06-28 | 2018-10-23 | Endochoice, Inc. | Multi-jet distributor for an endoscope |
US20180317755A1 (en) * | 2015-07-10 | 2018-11-08 | Sharp Kabushiki Kaisha | In-body image capturing device and in-body monitoring camera system |
US10123684B2 (en) | 2014-12-18 | 2018-11-13 | Endochoice, Inc. | System and method for processing video images generated by a multiple viewing elements endoscope |
US10130246B2 (en) | 2009-06-18 | 2018-11-20 | Endochoice, Inc. | Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope |
US10136803B1 (en) * | 2018-04-26 | 2018-11-27 | InnovaQuartz LLC | Ring illuminated surgical camera |
US10165929B2 (en) | 2009-06-18 | 2019-01-01 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US10203493B2 (en) | 2010-10-28 | 2019-02-12 | Endochoice Innovation Center Ltd. | Optical systems for multi-sensor endoscopes |
US10258222B2 (en) | 2014-07-21 | 2019-04-16 | Endochoice, Inc. | Multi-focal, multi-camera endoscope systems |
US10271713B2 (en) | 2015-01-05 | 2019-04-30 | Endochoice, Inc. | Tubed manifold of a multiple viewing elements endoscope |
US10292570B2 (en) | 2016-03-14 | 2019-05-21 | Endochoice, Inc. | System and method for guiding and tracking a region of interest using an endoscope |
US10376181B2 (en) | 2015-02-17 | 2019-08-13 | Endochoice, Inc. | System for detecting the location of an endoscopic device during a medical procedure |
US10401611B2 (en) | 2015-04-27 | 2019-09-03 | Endochoice, Inc. | Endoscope with integrated measurement of distance to objects of interest |
US10488648B2 (en) | 2016-02-24 | 2019-11-26 | Endochoice, Inc. | Circuit board assembly for a multiple viewing element endoscope using CMOS sensors |
US10499794B2 (en) | 2013-05-09 | 2019-12-10 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
US10516865B2 (en) | 2015-05-17 | 2019-12-24 | Endochoice, Inc. | Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor |
US10517464B2 (en) | 2011-02-07 | 2019-12-31 | Endochoice, Inc. | Multi-element cover for a multi-camera endoscope |
US10524645B2 (en) | 2009-06-18 | 2020-01-07 | Endochoice, Inc. | Method and system for eliminating image motion blur in a multiple viewing elements endoscope |
US10542877B2 (en) | 2014-08-29 | 2020-01-28 | Endochoice, Inc. | Systems and methods for varying stiffness of an endoscopic insertion tube |
US10595714B2 (en) | 2013-03-28 | 2020-03-24 | Endochoice, Inc. | Multi-jet controller for an endoscope |
US10663714B2 (en) | 2010-10-28 | 2020-05-26 | Endochoice, Inc. | Optical system for an endoscope |
US10743756B2 (en) | 2018-10-11 | 2020-08-18 | InnovaQuartz LLC | Multi-spectrum ring illuminated surgical camera |
US10898062B2 (en) | 2015-11-24 | 2021-01-26 | Endochoice, Inc. | Disposable air/water and suction valves for an endoscope |
US20210076920A1 (en) * | 2018-06-05 | 2021-03-18 | Olympus Corporation | Endoscope |
US20210100434A1 (en) * | 2018-07-19 | 2021-04-08 | Olympus Corporation | Distal end hood and endoscope system |
US10993605B2 (en) | 2016-06-21 | 2021-05-04 | Endochoice, Inc. | Endoscope system with multiple connection interfaces to interface with different video data signal sources |
US11082598B2 (en) | 2014-01-22 | 2021-08-03 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
US11234581B2 (en) | 2014-05-02 | 2022-02-01 | Endochoice, Inc. | Elevator for directing medical tool |
US20220031150A1 (en) * | 2020-07-30 | 2022-02-03 | Schölly Fiberoptic GmbH | Cover for an endoscope tip and endoscope |
US11278190B2 (en) | 2009-06-18 | 2022-03-22 | Endochoice, Inc. | Multi-viewing element endoscope |
US11330970B2 (en) * | 2016-08-17 | 2022-05-17 | Synaptive Medical Inc. | Flexible high resolution endoscope |
US11346762B2 (en) | 2018-01-23 | 2022-05-31 | Becton, Dickinson And Company | Systems for dynamic light detection obscuration and methods for using thereof |
US11382490B2 (en) * | 2018-08-24 | 2022-07-12 | Ambu A/S | Tip part for a vision device |
US20220354350A1 (en) * | 2021-05-06 | 2022-11-10 | Karl Storz Endovision, Inc. | Endoscope Heads With Light-Permeable Housing and Method of Manufacturing Endoscope Heads |
US11529197B2 (en) | 2015-10-28 | 2022-12-20 | Endochoice, Inc. | Device and method for tracking the position of an endoscope within a patient's body |
US11547275B2 (en) | 2009-06-18 | 2023-01-10 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US11712151B2 (en) | 2018-08-24 | 2023-08-01 | Ambu A/S | Tip part for a vision device |
US11864734B2 (en) | 2009-06-18 | 2024-01-09 | Endochoice, Inc. | Multi-camera endoscope |
US11889986B2 (en) | 2010-12-09 | 2024-02-06 | Endochoice, Inc. | Flexible electronic circuit board for a multi-camera endoscope |
US12137873B2 (en) | 2009-06-18 | 2024-11-12 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US12204087B2 (en) | 2010-10-28 | 2025-01-21 | Endochoice, Inc. | Optical systems for multi-sensor endoscopes |
US12207796B2 (en) | 2013-03-28 | 2025-01-28 | Endochoice Inc. | Multi-jet controller for an endoscope |
US12220105B2 (en) | 2010-06-16 | 2025-02-11 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112017003629T5 (en) * | 2016-07-19 | 2019-04-11 | Hoya Corporation | Endoscope cap, endoscope and method of making an endoscope cap |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010025174A1 (en) * | 1996-03-29 | 2001-09-27 | Daniel Steven A. | Viewing surgical scope for minimally invasive procedures |
US20060111612A1 (en) * | 2003-05-30 | 2006-05-25 | Kazutaka Matsumoto | Endoscope and endoscope tip forming member |
US20070066869A1 (en) * | 2005-09-21 | 2007-03-22 | David Hoffman | Endoscopic assembly including cap and sheath |
US20070249907A1 (en) * | 2006-04-20 | 2007-10-25 | Boulais Dennis R | Imaging assembly with transparent distal cap |
US20080021274A1 (en) * | 2005-01-05 | 2008-01-24 | Avantis Medical Systems, Inc. | Endoscopic medical device with locking mechanism and method |
US20100286475A1 (en) * | 2009-05-08 | 2010-11-11 | Boston Scientific Scimed, Inc. | Endoscope with distal tip having encased optical components and display orientation capabilities |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001008892A (en) * | 1999-06-28 | 2001-01-16 | Asahi Optical Co Ltd | Light source device and endoscope system |
US20060199999A1 (en) * | 2001-06-29 | 2006-09-07 | Intuitive Surgical Inc. | Cardiac tissue ablation instrument with flexible wrist |
JP2003190091A (en) * | 2001-12-26 | 2003-07-08 | Pentax Corp | Illumination probe for fluorescence observation, electronic endoscope system, and electronic endoscope |
JP4764417B2 (en) * | 2004-03-23 | 2011-09-07 | ボストン サイエンティフィック リミテッド | In vivo visualization system |
JP2007021084A (en) * | 2005-07-21 | 2007-02-01 | Olympus Medical Systems Corp | Endoscope |
JP5000129B2 (en) * | 2005-12-01 | 2012-08-15 | オリンパスメディカルシステムズ株式会社 | Endoscope |
WO2009021030A1 (en) * | 2007-08-08 | 2009-02-12 | Wilson-Cook Medical Inc. | Distal tip for an endoscope |
US8314835B2 (en) * | 2009-01-23 | 2012-11-20 | Olympus Corporation | Endoscope adapter including light emitting diode, and adapter type endoscope |
US8659835B2 (en) * | 2009-03-13 | 2014-02-25 | Optotune Ag | Lens systems and method |
-
2012
- 2012-11-20 WO PCT/US2012/066143 patent/WO2013078246A1/en active Application Filing
- 2012-11-20 EP EP12795288.5A patent/EP2782491B1/en not_active Not-in-force
- 2012-11-20 US US13/682,548 patent/US20130131447A1/en not_active Abandoned
- 2012-11-20 CA CA2855703A patent/CA2855703A1/en not_active Abandoned
- 2012-11-20 JP JP2014542578A patent/JP6456691B2/en not_active Expired - Fee Related
- 2012-11-20 EP EP19161842.0A patent/EP3517018A1/en not_active Withdrawn
-
2017
- 2017-08-04 JP JP2017151831A patent/JP2017200621A/en not_active Ceased
-
2019
- 2019-01-17 US US16/249,951 patent/US10750934B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010025174A1 (en) * | 1996-03-29 | 2001-09-27 | Daniel Steven A. | Viewing surgical scope for minimally invasive procedures |
US20060111612A1 (en) * | 2003-05-30 | 2006-05-25 | Kazutaka Matsumoto | Endoscope and endoscope tip forming member |
US20080021274A1 (en) * | 2005-01-05 | 2008-01-24 | Avantis Medical Systems, Inc. | Endoscopic medical device with locking mechanism and method |
US20070066869A1 (en) * | 2005-09-21 | 2007-03-22 | David Hoffman | Endoscopic assembly including cap and sheath |
US20070249907A1 (en) * | 2006-04-20 | 2007-10-25 | Boulais Dennis R | Imaging assembly with transparent distal cap |
US20100286475A1 (en) * | 2009-05-08 | 2010-11-11 | Boston Scientific Scimed, Inc. | Endoscope with distal tip having encased optical components and display orientation capabilities |
Cited By (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11471028B2 (en) | 2009-06-18 | 2022-10-18 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
US11534056B2 (en) | 2009-06-18 | 2022-12-27 | Endochoice, Inc. | Multi-camera endoscope |
US9101268B2 (en) | 2009-06-18 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US10905320B2 (en) | 2009-06-18 | 2021-02-02 | Endochoice, Inc. | Multi-camera endoscope |
US10799095B2 (en) | 2009-06-18 | 2020-10-13 | Endochoice, Inc. | Multi-viewing element endoscope |
US10791909B2 (en) | 2009-06-18 | 2020-10-06 | Endochoice, Inc. | Image capture assembly for use in a multi-viewing elements endoscope |
US9901244B2 (en) | 2009-06-18 | 2018-02-27 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
US10791910B2 (en) | 2009-06-18 | 2020-10-06 | Endochoice, Inc. | Multiple viewing elements endoscope system with modular imaging units |
US9907462B2 (en) | 2009-06-18 | 2018-03-06 | Endochoice, Inc. | Endoscope tip position visual indicator and heat management system |
US11278190B2 (en) | 2009-06-18 | 2022-03-22 | Endochoice, Inc. | Multi-viewing element endoscope |
US10638922B2 (en) | 2009-06-18 | 2020-05-05 | Endochoice, Inc. | Multi-camera endoscope |
US10561308B2 (en) | 2009-06-18 | 2020-02-18 | Endochoice, Inc. | Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope |
US9474440B2 (en) | 2009-06-18 | 2016-10-25 | Endochoice, Inc. | Endoscope tip position visual indicator and heat management system |
US9492063B2 (en) | 2009-06-18 | 2016-11-15 | Endochoice Innovation Center Ltd. | Multi-viewing element endoscope |
US10912454B2 (en) | 2009-06-18 | 2021-02-09 | Endochoice, Inc. | Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope |
US10524645B2 (en) | 2009-06-18 | 2020-01-07 | Endochoice, Inc. | Method and system for eliminating image motion blur in a multiple viewing elements endoscope |
US10765305B2 (en) | 2009-06-18 | 2020-09-08 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
US9554692B2 (en) | 2009-06-18 | 2017-01-31 | EndoChoice Innovation Ctr. Ltd. | Multi-camera endoscope |
US9642513B2 (en) | 2009-06-18 | 2017-05-09 | Endochoice Inc. | Compact multi-viewing element endoscope system |
US11547275B2 (en) | 2009-06-18 | 2023-01-10 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US11864734B2 (en) | 2009-06-18 | 2024-01-09 | Endochoice, Inc. | Multi-camera endoscope |
US9706903B2 (en) | 2009-06-18 | 2017-07-18 | Endochoice, Inc. | Multiple viewing elements endoscope system with modular imaging units |
US10165929B2 (en) | 2009-06-18 | 2019-01-01 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US9706905B2 (en) | 2009-06-18 | 2017-07-18 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US9713417B2 (en) | 2009-06-18 | 2017-07-25 | Endochoice, Inc. | Image capture assembly for use in a multi-viewing elements endoscope |
US10130246B2 (en) | 2009-06-18 | 2018-11-20 | Endochoice, Inc. | Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope |
US10092167B2 (en) | 2009-06-18 | 2018-10-09 | Endochoice, Inc. | Multiple viewing elements endoscope system with modular imaging units |
US10912445B2 (en) | 2009-06-18 | 2021-02-09 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US11986155B2 (en) | 2009-06-18 | 2024-05-21 | Endochoice, Inc. | Multi-viewing element endoscope |
US12137873B2 (en) | 2009-06-18 | 2024-11-12 | Endochoice, Inc. | Compact multi-viewing element endoscope system |
US9872609B2 (en) | 2009-06-18 | 2018-01-23 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US12220105B2 (en) | 2010-06-16 | 2025-02-11 | Endochoice, Inc. | Circuit board assembly of a multiple viewing elements endoscope |
US10080486B2 (en) | 2010-09-20 | 2018-09-25 | Endochoice Innovation Center Ltd. | Multi-camera endoscope having fluid channels |
US9560953B2 (en) | 2010-09-20 | 2017-02-07 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
US9986892B2 (en) | 2010-09-20 | 2018-06-05 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
US12204087B2 (en) | 2010-10-28 | 2025-01-21 | Endochoice, Inc. | Optical systems for multi-sensor endoscopes |
US10663714B2 (en) | 2010-10-28 | 2020-05-26 | Endochoice, Inc. | Optical system for an endoscope |
US10412290B2 (en) | 2010-10-28 | 2019-09-10 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
US11543646B2 (en) | 2010-10-28 | 2023-01-03 | Endochoice, Inc. | Optical systems for multi-sensor endoscopes |
US10203493B2 (en) | 2010-10-28 | 2019-02-12 | Endochoice Innovation Center Ltd. | Optical systems for multi-sensor endoscopes |
US9706908B2 (en) | 2010-10-28 | 2017-07-18 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
US11966040B2 (en) | 2010-10-28 | 2024-04-23 | Endochoice, Inc. | Optical system for an endoscope |
US9320419B2 (en) | 2010-12-09 | 2016-04-26 | Endochoice Innovation Center Ltd. | Fluid channeling component of a multi-camera endoscope |
US11889986B2 (en) | 2010-12-09 | 2024-02-06 | Endochoice, Inc. | Flexible electronic circuit board for a multi-camera endoscope |
US9814374B2 (en) | 2010-12-09 | 2017-11-14 | Endochoice Innovation Center Ltd. | Flexible electronic circuit board for a multi-camera endoscope |
US11497388B2 (en) | 2010-12-09 | 2022-11-15 | Endochoice, Inc. | Flexible electronic circuit board for a multi-camera endoscope |
US10182707B2 (en) | 2010-12-09 | 2019-01-22 | Endochoice Innovation Center Ltd. | Fluid channeling component of a multi-camera endoscope |
US10898063B2 (en) | 2010-12-09 | 2021-01-26 | Endochoice, Inc. | Flexible electronic circuit board for a multi camera endoscope |
US10779707B2 (en) | 2011-02-07 | 2020-09-22 | Endochoice, Inc. | Multi-element cover for a multi-camera endoscope |
US10070774B2 (en) | 2011-02-07 | 2018-09-11 | Endochoice Innovation Center Ltd. | Multi-element cover for a multi-camera endoscope |
US9101266B2 (en) | 2011-02-07 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi-element cover for a multi-camera endoscope |
US9351629B2 (en) | 2011-02-07 | 2016-05-31 | Endochoice Innovation Center Ltd. | Multi-element cover for a multi-camera endoscope |
US10517464B2 (en) | 2011-02-07 | 2019-12-31 | Endochoice, Inc. | Multi-element cover for a multi-camera endoscope |
US9402533B2 (en) | 2011-03-07 | 2016-08-02 | Endochoice Innovation Center Ltd. | Endoscope circuit board assembly |
US11026566B2 (en) | 2011-03-07 | 2021-06-08 | Endochoice, Inc. | Multi camera endoscope assembly having multiple working channels |
US10292578B2 (en) | 2011-03-07 | 2019-05-21 | Endochoice Innovation Center Ltd. | Multi camera endoscope assembly having multiple working channels |
US8926502B2 (en) | 2011-03-07 | 2015-01-06 | Endochoice, Inc. | Multi camera endoscope having a side service channel |
US9101287B2 (en) | 2011-03-07 | 2015-08-11 | Endochoice Innovation Center Ltd. | Multi camera endoscope assembly having multiple working channels |
US9854959B2 (en) | 2011-03-07 | 2018-01-02 | Endochoice Innovation Center Ltd. | Multi camera endoscope assembly having multiple working channels |
US9713415B2 (en) | 2011-03-07 | 2017-07-25 | Endochoice Innovation Center Ltd. | Multi camera endoscope having a side service channel |
US11291357B2 (en) | 2011-12-13 | 2022-04-05 | Endochoice, Inc. | Removable tip endoscope |
US9655502B2 (en) | 2011-12-13 | 2017-05-23 | EndoChoice Innovation Center, Ltd. | Removable tip endoscope |
US9314147B2 (en) | 2011-12-13 | 2016-04-19 | Endochoice Innovation Center Ltd. | Rotatable connector for an endoscope |
US10470649B2 (en) | 2011-12-13 | 2019-11-12 | Endochoice, Inc. | Removable tip endoscope |
US20140330081A1 (en) * | 2012-07-19 | 2014-11-06 | Olympus Medical Systems Corp. | Distal end rigid section of insertion portion of endoscope and endoscope |
US9757011B2 (en) * | 2012-07-19 | 2017-09-12 | Olympus Corporation | Distal end rigid section of insertion portion of endoscope and endoscope |
US9560954B2 (en) | 2012-07-24 | 2017-02-07 | Endochoice, Inc. | Connector for use with endoscope |
US10925471B2 (en) | 2013-03-28 | 2021-02-23 | Endochoice, Inc. | Fluid distribution device for a multiple viewing elements endoscope |
US12232699B2 (en) | 2013-03-28 | 2025-02-25 | Endochoice, Inc. | Manifold for a multiple viewing elements endoscope |
US11375885B2 (en) | 2013-03-28 | 2022-07-05 | Endochoice Inc. | Multi-jet controller for an endoscope |
US20160030693A1 (en) * | 2013-03-28 | 2016-02-04 | Fujikura Ltd. | Tracheal tube |
US10595714B2 (en) | 2013-03-28 | 2020-03-24 | Endochoice, Inc. | Multi-jet controller for an endoscope |
US10905315B2 (en) | 2013-03-28 | 2021-02-02 | Endochoice, Inc. | Manifold for a multiple viewing elements endoscope |
US11925323B2 (en) | 2013-03-28 | 2024-03-12 | Endochoice, Inc. | Fluid distribution device for a multiple viewing elements endoscope |
US11793393B2 (en) | 2013-03-28 | 2023-10-24 | Endochoice, Inc. | Manifold for a multiple viewing elements endoscope |
US10682047B2 (en) * | 2013-03-28 | 2020-06-16 | Fujikura Ltd. | Tracheal tube |
US9993142B2 (en) | 2013-03-28 | 2018-06-12 | Endochoice, Inc. | Fluid distribution device for a multiple viewing elements endoscope |
US12207796B2 (en) | 2013-03-28 | 2025-01-28 | Endochoice Inc. | Multi-jet controller for an endoscope |
US9986899B2 (en) | 2013-03-28 | 2018-06-05 | Endochoice, Inc. | Manifold for a multiple viewing elements endoscope |
US10205925B2 (en) | 2013-05-07 | 2019-02-12 | Endochoice, Inc. | White balance enclosure for use with a multi-viewing elements endoscope |
US9667935B2 (en) | 2013-05-07 | 2017-05-30 | Endochoice, Inc. | White balance enclosure for use with a multi-viewing elements endoscope |
US10499794B2 (en) | 2013-05-09 | 2019-12-10 | Endochoice, Inc. | Operational interface in a multi-viewing element endoscope |
US11229351B2 (en) | 2013-05-17 | 2022-01-25 | Endochoice, Inc. | Endoscope control unit with braking system |
US10433715B2 (en) | 2013-05-17 | 2019-10-08 | Endochoice, Inc. | Endoscope control unit with braking system |
US9949623B2 (en) | 2013-05-17 | 2018-04-24 | Endochoice, Inc. | Endoscope control unit with braking system |
US11957311B2 (en) | 2013-05-17 | 2024-04-16 | Endochoice, Inc. | Endoscope control unit with braking system |
US10105039B2 (en) | 2013-06-28 | 2018-10-23 | Endochoice, Inc. | Multi-jet distributor for an endoscope |
US10064541B2 (en) | 2013-08-12 | 2018-09-04 | Endochoice, Inc. | Endoscope connector cover detection and warning system |
US9943218B2 (en) | 2013-10-01 | 2018-04-17 | Endochoice, Inc. | Endoscope having a supply cable attached thereto |
US9968242B2 (en) | 2013-12-18 | 2018-05-15 | Endochoice, Inc. | Suction control unit for an endoscope having two working channels |
US11082598B2 (en) | 2014-01-22 | 2021-08-03 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
US11234581B2 (en) | 2014-05-02 | 2022-02-01 | Endochoice, Inc. | Elevator for directing medical tool |
US12053155B2 (en) | 2014-05-02 | 2024-08-06 | Endochoice, Inc. | Elevator for directing medical tool |
WO2015171732A1 (en) * | 2014-05-07 | 2015-11-12 | Endochoice, Inc. | Endoscope illumination with multiple viewing elements and illuminators |
US11883004B2 (en) | 2014-07-21 | 2024-01-30 | Endochoice, Inc. | Multi-focal, multi-camera endoscope systems |
US10258222B2 (en) | 2014-07-21 | 2019-04-16 | Endochoice, Inc. | Multi-focal, multi-camera endoscope systems |
US11229348B2 (en) | 2014-07-21 | 2022-01-25 | Endochoice, Inc. | Multi-focal, multi-camera endoscope systems |
US11771310B2 (en) | 2014-08-29 | 2023-10-03 | Endochoice, Inc. | Systems and methods for varying stiffness of an endoscopic insertion tube |
US10542877B2 (en) | 2014-08-29 | 2020-01-28 | Endochoice, Inc. | Systems and methods for varying stiffness of an endoscopic insertion tube |
US10123684B2 (en) | 2014-12-18 | 2018-11-13 | Endochoice, Inc. | System and method for processing video images generated by a multiple viewing elements endoscope |
US10271713B2 (en) | 2015-01-05 | 2019-04-30 | Endochoice, Inc. | Tubed manifold of a multiple viewing elements endoscope |
US11147469B2 (en) | 2015-02-17 | 2021-10-19 | Endochoice, Inc. | System for detecting the location of an endoscopic device during a medical procedure |
US10376181B2 (en) | 2015-02-17 | 2019-08-13 | Endochoice, Inc. | System for detecting the location of an endoscopic device during a medical procedure |
US11194151B2 (en) | 2015-03-18 | 2021-12-07 | Endochoice, Inc. | Systems and methods for image magnification using relative movement between an image sensor and a lens assembly |
US10634900B2 (en) | 2015-03-18 | 2020-04-28 | Endochoice, Inc. | Systems and methods for image magnification using relative movement between an image sensor and a lens assembly |
US10078207B2 (en) | 2015-03-18 | 2018-09-18 | Endochoice, Inc. | Systems and methods for image magnification using relative movement between an image sensor and a lens assembly |
US12038572B2 (en) | 2015-03-18 | 2024-07-16 | Endochoice, Inc. | Systems and methods for image magnification using relative movement between an image sensor and a lens assembly |
US10401611B2 (en) | 2015-04-27 | 2019-09-03 | Endochoice, Inc. | Endoscope with integrated measurement of distance to objects of interest |
US11555997B2 (en) | 2015-04-27 | 2023-01-17 | Endochoice, Inc. | Endoscope with integrated measurement of distance to objects of interest |
US11330238B2 (en) | 2015-05-17 | 2022-05-10 | Endochoice, Inc. | Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor |
US12231829B2 (en) | 2015-05-17 | 2025-02-18 | Endochoice, Inc. | Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor |
US10791308B2 (en) | 2015-05-17 | 2020-09-29 | Endochoice, Inc. | Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor |
US10516865B2 (en) | 2015-05-17 | 2019-12-24 | Endochoice, Inc. | Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor |
US11750782B2 (en) | 2015-05-17 | 2023-09-05 | Endochoice, Inc. | Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor |
US20160370294A1 (en) * | 2015-06-17 | 2016-12-22 | Becton, Dickinson And Company | Optical detector scatter cap assembly having a removable scatter bar and methods of using the same |
US9733176B2 (en) * | 2015-06-17 | 2017-08-15 | Becton, Dickinson And Company | Optical detector scatter cap assembly having a removable scatter bar and methods of using the same |
US20180317755A1 (en) * | 2015-07-10 | 2018-11-08 | Sharp Kabushiki Kaisha | In-body image capturing device and in-body monitoring camera system |
KR102717618B1 (en) * | 2015-07-21 | 2024-10-16 | 지아이 사이언티픽, 엘엘씨 | Endoscopic accessory with angle-adjustable discharge portal |
KR20180041140A (en) * | 2015-07-21 | 2018-04-23 | 지아이 사이언티픽, 엘엘씨 | Endoscope accessory with angle adjustable exhaust port |
CN105105700A (en) * | 2015-09-15 | 2015-12-02 | 李安 | Electronic endoscope and illumination structure and method thereof |
US11529197B2 (en) | 2015-10-28 | 2022-12-20 | Endochoice, Inc. | Device and method for tracking the position of an endoscope within a patient's body |
US11311181B2 (en) | 2015-11-24 | 2022-04-26 | Endochoice, Inc. | Disposable air/water and suction valves for an endoscope |
US10898062B2 (en) | 2015-11-24 | 2021-01-26 | Endochoice, Inc. | Disposable air/water and suction valves for an endoscope |
US10488648B2 (en) | 2016-02-24 | 2019-11-26 | Endochoice, Inc. | Circuit board assembly for a multiple viewing element endoscope using CMOS sensors |
US10908407B2 (en) | 2016-02-24 | 2021-02-02 | Endochoice, Inc. | Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors |
US11782259B2 (en) | 2016-02-24 | 2023-10-10 | Endochoice, Inc. | Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors |
US10292570B2 (en) | 2016-03-14 | 2019-05-21 | Endochoice, Inc. | System and method for guiding and tracking a region of interest using an endoscope |
US10993605B2 (en) | 2016-06-21 | 2021-05-04 | Endochoice, Inc. | Endoscope system with multiple connection interfaces to interface with different video data signal sources |
US11672407B2 (en) | 2016-06-21 | 2023-06-13 | Endochoice, Inc. | Endoscope system with multiple connection interfaces to interface with different video data signal sources |
US11330970B2 (en) * | 2016-08-17 | 2022-05-17 | Synaptive Medical Inc. | Flexible high resolution endoscope |
US11346762B2 (en) | 2018-01-23 | 2022-05-31 | Becton, Dickinson And Company | Systems for dynamic light detection obscuration and methods for using thereof |
US10136803B1 (en) * | 2018-04-26 | 2018-11-27 | InnovaQuartz LLC | Ring illuminated surgical camera |
US10413166B1 (en) | 2018-04-26 | 2019-09-17 | Innovaquartz Inc. | Ring illuminated surgical camera |
US20210076920A1 (en) * | 2018-06-05 | 2021-03-18 | Olympus Corporation | Endoscope |
US20210100434A1 (en) * | 2018-07-19 | 2021-04-08 | Olympus Corporation | Distal end hood and endoscope system |
US11712151B2 (en) | 2018-08-24 | 2023-08-01 | Ambu A/S | Tip part for a vision device |
US11382490B2 (en) * | 2018-08-24 | 2022-07-12 | Ambu A/S | Tip part for a vision device |
US10743756B2 (en) | 2018-10-11 | 2020-08-18 | InnovaQuartz LLC | Multi-spectrum ring illuminated surgical camera |
US10743755B1 (en) | 2018-10-11 | 2020-08-18 | InnovaQuartz LLC | Multi-spectrum ring illuminated surgical camera |
US20220031150A1 (en) * | 2020-07-30 | 2022-02-03 | Schölly Fiberoptic GmbH | Cover for an endoscope tip and endoscope |
US12207793B2 (en) * | 2020-07-30 | 2025-01-28 | Schölly Fiberoptic GmbH | Cover for an endoscope tip and endoscope |
US20220354350A1 (en) * | 2021-05-06 | 2022-11-10 | Karl Storz Endovision, Inc. | Endoscope Heads With Light-Permeable Housing and Method of Manufacturing Endoscope Heads |
Also Published As
Publication number | Publication date |
---|---|
CA2855703A1 (en) | 2013-05-30 |
US10750934B2 (en) | 2020-08-25 |
JP6456691B2 (en) | 2019-01-23 |
EP3517018A1 (en) | 2019-07-31 |
EP2782491B1 (en) | 2019-03-27 |
JP2017200621A (en) | 2017-11-09 |
US20190142248A1 (en) | 2019-05-16 |
JP2014533561A (en) | 2014-12-15 |
EP2782491A1 (en) | 2014-10-01 |
WO2013078246A1 (en) | 2013-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10750934B2 (en) | Endoscopic system for optimized visualization | |
US11944274B2 (en) | Endoscopic system for enhanced visualization | |
US10667677B2 (en) | Medical device visualization system | |
US11793546B2 (en) | Surgical visualization systems and related methods | |
US11950766B2 (en) | Surgical visualization systems and related methods | |
JP2010519974A (en) | Endoscope assembly for endoscope | |
CA2653713A1 (en) | Illuminated surgical access system including a surgical access device and integrated light emitter | |
US20130053645A1 (en) | Disposable sheath with lighting | |
EP3749168B1 (en) | Surgical visualization systems | |
KR101613271B1 (en) | Catheter | |
US20160287348A1 (en) | Malleable waveguide | |
US20110112369A1 (en) | Endoscope set | |
KR20200059556A (en) | Catheter Assembly for Endoscope | |
KR20150043258A (en) | Catheter | |
ITTO20100410A1 (en) | ENDOSCOPIC DEVICE, PARTICULARLY FOR SPINAL ENDOSCOPY | |
JP2014200336A (en) | Medical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENNING, CHRISTOPHER;AQUILINO, PAUL;HUTCHINS, JOHN;AND OTHERS;REEL/FRAME:029354/0559 Effective date: 20121114 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |