US20130123918A1 - Human implantable tissue expander - Google Patents
Human implantable tissue expander Download PDFInfo
- Publication number
- US20130123918A1 US20130123918A1 US13/463,530 US201213463530A US2013123918A1 US 20130123918 A1 US20130123918 A1 US 20130123918A1 US 201213463530 A US201213463530 A US 201213463530A US 2013123918 A1 US2013123918 A1 US 2013123918A1
- Authority
- US
- United States
- Prior art keywords
- skeleton element
- tissue expander
- skeleton
- human
- implanted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 claims abstract description 43
- 230000001133 acceleration Effects 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 22
- 229920001296 polysiloxane Polymers 0.000 claims description 14
- 238000003780 insertion Methods 0.000 claims description 11
- 230000037431 insertion Effects 0.000 claims description 11
- 229920002635 polyurethane Polymers 0.000 claims description 11
- 239000004814 polyurethane Substances 0.000 claims description 11
- 238000001746 injection moulding Methods 0.000 claims description 5
- 210000000481 breast Anatomy 0.000 description 61
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 229920003023 plastic Polymers 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 210000001217 buttock Anatomy 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000003351 stiffener Substances 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000560 biocompatible material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/50—Prostheses not implantable in the body
- A61F2/52—Mammary prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/12—Mammary prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/02—Devices for expanding tissue, e.g. skin tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0059—Cosmetic or alloplastic implants
Definitions
- the present invention relates to implantable tissue expanders.
- the present invention seeks to provide improved implantable tissue expanders.
- a human implantable tissue expander including a biocompatible implantable structural skeleton element having a predetermined overall three-dimensional shape and defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and being operative, when implanted in human tissue, to permit fluid flow through the apertures and to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the human implantable tissue expander also includes at least one cap associated with an exterior of the skeleton element, the skeleton element being operative to maintain the at least one cap in a predetermined three-dimensional configuration generally independently of its orientation relative to gravitational acceleration.
- the skeleton element is integrally formed with the at least one cap.
- the skeleton element and the cap are formed of the same material.
- the skeleton element includes a plurality of ribs.
- the skeleton element is operative when implanted in human tissue, to maintain a predetermined non-circularly symmetric three-dimensional configuration generally independently of its orientation relative to gravitational acceleration.
- the skeleton element is formed of one of polyurethane and silicone.
- the skeleton element is formed by injection molding. Additionally or alternatively, the skeleton element is resilient.
- the skeleton element is resiliently deformable to a deformed shape in which it has a substantially reduced minimum dimension, thereby to permit insertion of the skeleton element through an aperture in a cutaneous layer when the skeleton element is in the deformed shape and to allow the skeleton element, by virtue of its resiliency, to regain a desired original shape when placed at a desired location within the body.
- a human implantable tissue expander including a flexible enclosure for at least one material having at least one fluid flow characteristic and a flexible and resilient skeleton associated with the flexible enclosure and being operative to maintain the flexible enclosure in a predetermined three-dimensional configuration generally independently of its orientation relative to gravitational acceleration.
- the flexible and resilient skeleton is integrally formed with the flexible enclosure.
- the flexible and resilient skeleton and the flexible enclosure are formed of the same material.
- the flexible and resilient skeleton includes a plurality of ribs.
- the flexible and resilient skeleton is formed of one of polyurethane and silicone. Additionally or alternatively, the flexible and resilient skeleton is formed by injection molding.
- the flexible enclosure and the flexible and resilient skeleton are resiliently deformable to a deformed shape in which they have a substantially reduced overall minimum dimension, thereby to permit insertion of the flexible enclosure and the flexible and resilient skeleton through an aperture in a cutaneous layer when the flexible enclosure and the flexible and resilient skeleton are in the deformed shape and to allow the flexible enclosure and the flexible and resilient skeleton, by virtue of resiliency of the flexible and resilient skeleton, to regain a desired original shape when placed at a desired location within the body.
- the at least one material is a gas.
- the at least one material is a liquid.
- the at least one material is formed of particles.
- the flexible enclosure includes an injection port.
- the flexible enclosure contains the at least one material. Additionally or alternatively, the flexible enclosure does not contain the at least one material when the flexible enclosure is inserted through the aperture.
- FIGS. 1A and 1B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with a preferred embodiment of the present invention
- FIG. 1C is a simplified illustration showing deformation of the implantable breast tissue expander of FIGS. 1A and 1B to reduce the minimum dimension thereof;
- FIGS. 2A and 2B are respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 1A and 1B , implanted in a patient positioned in a standing orientation;
- FIGS. 3A and 3B are respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 1A and 1B , implanted in a patient positioned in a prone orientation;
- FIGS. 4A and 4B are respective top and bottom pictorial view illustrations of a gas filled implantable breast tissue expander constructed and operative in accordance with another preferred embodiment of the present invention.
- FIG. 4C is a simplified illustration showing deformation of the implantable breast tissue expander of FIGS. 4A and 4B to reduce the minimum dimension thereof;
- FIGS. 5A and 5B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 4A and 4B , implanted in a patient positioned in a standing orientation;
- FIG. 5C illustrates addition of fluid to the implantable breast tissue expander of FIGS. 4A-5B , thereby increasing the internal pressure thereof;
- FIGS. 6A and 6B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 4A and 4B , implanted in a patient positioned in a prone orientation;
- FIGS. 7A and 7B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention.
- FIG. 7C is a simplified illustration showing deformation of the implantable breast tissue expander of FIGS. 7A and 7B to reduce the minimum dimension thereof;
- FIGS. 8A and 8B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 7A and 7B , implanted in a patient positioned in a standing orientation;
- FIGS. 9A and 9B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 7A and 7B , implanted in a patient positioned in a prone orientation;
- FIGS. 10A and 10B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with yet another preferred embodiment of the present invention.
- FIG. 10C is a simplified illustration showing deformation of the implantable breast tissue expander of FIGS. 10A and 10B to reduce the minimum dimension thereof;
- FIGS. 11A and 11B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 10A and 10B , implanted in a patient positioned in a standing orientation;
- FIGS. 12A and 12B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 10A and 10B , implanted in a patient positioned in a prone orientation;
- FIGS. 13A and 13B are simplified respective top and bottom pictorial view illustrations of a fluid-filled implantable breast tissue expander constructed and operative in accordance with yet another preferred embodiment of the present invention
- FIG. 13C is a simplified illustration showing deformation of the implantable breast tissue expander of FIGS. 13A and 13B to reduce the minimum dimension thereof;
- FIGS. 14A and 14B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 13A and 13B , implanted in a patient positioned in a standing orientation;
- FIGS. 15A and 15B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 13A and 13B , implanted in a patient positioned in a prone orientation;
- FIGS. 16A and 16B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention.
- FIG. 16C is a simplified illustration showing deformation of the implantable breast tissue expander of FIGS. 16A and 16B to reduce the minimum dimension thereof;
- FIGS. 17A and 17B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 16A and 16B , implanted in a patient positioned in a standing orientation;
- FIGS. 18A and 18B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 16A and 16B , implanted in a patient positioned in a prone orientation;
- FIGS. 19A and 19B are simplified respective top and bottom pictorial view illustrations of a fluid-filled implantable breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention.
- FIG. 19C is a simplified illustration showing deformation of the implantable breast tissue expander of FIGS. 19A and 19B to reduce the minimum dimension thereof;
- FIGS. 20A and 20B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 19A and 19B , implanted in a patient positioned in a standing orientation;
- FIGS. 21A and 21B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander of FIGS. 19A and 19B , implanted in a patient positioned in a prone orientation;
- FIGS. 22A and 22B are simplified respective top and bottom pictorial view illustrations of an implantable tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention.
- FIG. 22C is a simplified illustration showing deformation of the implantable tissue expander of FIGS. 22A and 22B to reduce the minimum dimension thereof;
- FIGS. 23A , 23 B and 23 C are simplified pictorial illustrations of the implantable tissue expander of FIGS. 22A and 22B implanted in the buttocks of a patient.
- FIGS. 1A-3B illustrate a breast tissue expander constructed and operative in accordance with a preferred embodiment of the present invention.
- the breast tissue expander of FIGS. 1A-3B is generally characterized in that it comprises a biocompatible, preferably resilient, implantable structural skeleton element 100 having a predetermined overall three-dimensional shape, defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and being operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- skeleton element is used throughout to refer to an element which itself provides structural support and defines a predetermined three-dimensional shape, irrespective of whether and to what extent it is inflated or otherwise filled with a fluid or other material. It may thus be appreciated that a skeleton element is distinguished from prior art prostheses which comprise a flexible bag which is filled with a fluid or gel and whose three-dimensional shape is governed by the extent to which it is filled or is readily changeable in response to its orientation.
- the skeleton element of the present invention may be incorporated in or associated with a fluid-filled enclosure to define a tissue expander.
- the overall shape of the tissue expander is determined generally by the shape of the skeleton element rather than by the enclosure, the extent of its filling or its internal pressurization.
- the skeleton element 100 is typically in the shape of a truncated, generally conically-shaped coiled elongate element 102 having variously directed positioning barbs 104 located at base locations therealong.
- Elongate element 102 is preferably formed of a biocompatible plastic material, such as polyurethane or silicone.
- a suitable stiffener, such as a metal wire, may be incorporated in the elongate element 102 .
- Elongate element 102 preferably defines at least one wall portion 106 having formed therein apertures 108 , extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough.
- skeleton element 100 is resiliently deformable from its normal shape, as shown in FIGS. 1A and 1B and designated generally in FIG. 1C by reference numeral 110 , having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 112 , in which it has a substantially reduced minimum dimension L 2 , thereby to permit insertion of the skeleton element 100 , in its deformed shape 112 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 100 , by virtue of its resiliency, to regain its normal shape 110 when placed at a desired location within the body (not shown).
- FIGS. 2A and 2B which illustrate the tissue expander in the form of skeleton element 100 implanted in a breast
- the general three-dimensional configuration of the skeleton element 100 is maintained when the skeleton element 100 is implanted.
- FIGS. 3A and 3B it is appreciated that the general three-dimensional configuration of the skeleton element 100 , as it appears in FIGS. 1A and 1B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A in FIGS. 2B and 3B .
- FIGS. 4A-6B illustrate a breast tissue expander constructed and operative in accordance with another preferred embodiment of the present invention.
- the breast tissue expander of FIGS. 4A-6B is generally characterized in that it comprises a biocompatible resilient implantable structural skeleton element 150 entirely enclosed in a fluid enclosure 152 having a shape which is generally determined by the predetermined overall three-dimensional shape of the skeleton element 150 .
- the breast tissue expander of FIGS. 4A-6B is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the skeleton element 150 is typically in the shape of a truncated, generally conically-shaped coiled elongate element 154 and the fluid enclosure 152 has variously directed positioning barbs 156 located at base locations therealong.
- Elongate element 154 is preferably formed of a biocompatible plastic material, such as polyurethane or silicone.
- a suitable stiffener, such as a metal wire, may be incorporated in the elongate element 154 .
- the fluid enclosure 152 is preferably formed of an elastomer, such as silicone, and preferably includes a conventional injection port 158 .
- skeleton element 150 and fluid enclosure 152 are resiliently deformable from their normal shape, as shown in FIGS. 4A and 4B and designated generally in FIG. 4C by reference numeral 160 , having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 162 , in which they have a substantially reduced minimum dimension L 2 , thereby to permit insertion of the skeleton element 150 and the fluid enclosure 152 , in their deformed shape 162 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 150 and the fluid enclosure 152 , by virtue of the resiliency of the skeleton element, to regain their normal shape 160 when placed at a desired location within the body (not shown).
- the skeleton element 150 may be separate from the fluid enclosure 152 as illustrated in FIG. 4C .
- the skeleton element 150 may be wholly or partially
- FIGS. 5A and 5B which illustrate the tissue expander in the form of skeleton element 150 implanted in a breast
- the general three-dimensional configuration of the skeleton element 150 is maintained when the tissue expander is implanted.
- FIGS. 6A and 6B it is appreciated that the general three-dimensional configuration of the skeleton element 150 , as it appears in FIGS. 4A and 4B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A in FIGS. 5B and 6B .
- FIG. 5C schematically illustrates changing the pressurization inside fluid enclosure 152 , as by injection of a fluid into the interior of the enclosure 152 via injection port 158 .
- a material formed of particles which are preferably smaller in diameter than the diameter of the injection device, may be used to change the pressurization inside enclosure 152 .
- the change in pressurization may take place at any suitable time prior to or following implantation of the tissue expander.
- FIGS. 7A-9B illustrate a breast tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention.
- the breast tissue expander of FIGS. 7A-9B is generally characterized in that it comprises a biocompatible resilient implantable structural skeleton element 200 having associated therewith a flexible cap 202 having a shape which is generally determined by the predetermined overall three-dimensional shape of the skeleton element 200 .
- the breast tissue expander of FIGS. 7A-9B defines at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the skeleton element 200 is typically in the shape of a truncated, generally conically-shaped coiled elongate element 204 having variously directed positioning barbs 206 located at base locations therealong.
- Cap 202 and elongate element 204 are preferably formed of biocompatible plastic materials, such as polyurethane or silicone.
- a suitable stiffener, such as a metal wire, may be incorporated in the elongate element 204 .
- Elongate element 204 preferably defines at least one wall portion 208 having formed therein apertures 210 , extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough.
- skeleton element 200 is resiliently deformable from its normal shape, as shown in FIGS. 7A and 7B and designated generally in FIG. 7C by reference numeral 212 , having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 214 , in which, it has a substantially reduced minimum dimension L 2 , thereby to permit insertion of the skeleton element 200 , in its deformed shape 214 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 200 , by virtue of its resiliency, to regain its normal shape 212 when placed at a desired location within the body (not shown).
- FIGS. 8A and 8B which illustrate the tissue expander in the form of skeleton element 200 implanted in a breast
- the general three-dimensional configuration of the skeleton element 200 is maintained when the tissue expander is implanted.
- FIGS. 9A and 9B it is appreciated that the general three-dimensional configuration of the skeleton element 200 , as it appears in FIGS. 7A and 7B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A in FIGS. 8B and 9B .
- FIGS. 10A-12B illustrate a breast tissue expander constructed and operative in accordance with yet another preferred embodiment of the present invention.
- the breast tissue expander of FIGS. 10A-12B is generally characterized in that it comprises a biocompatible resilient implantable structural skeleton element 250 having a predetermined overall three-dimensional shape and being operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the skeleton element 250 has a generally conical shape having a generally hemispherical vertex 252 .
- Skeleton element 250 includes a plurality of generally circular discs 254 extending radially outward from a core 256 ( FIGS. 11B and 12B ) and additionally supported by ribs 258 , defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough.
- Skeleton element 250 preferably defines at least one wall portion 260 having formed therein apertures 262 , extending from an interior thereof to an exterior thereof. Variously directed positioning barbs 264 are located on a base disc 266 located at base locations therealong. Skeleton element 250 is preferably formed of a biocompatible plastic material as polyurethane or silicone.
- skeleton element 250 is resiliently deformable from its normal shape, as shown in FIGS. 10A and 10B and designated generally in FIG. 10C by reference numeral 268 , having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 270 , in which it has a substantially reduced minimum dimension 12 , thereby to permit insertion of the skeleton element 250 , in its deformed shape 270 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 250 , by virtue of its resiliency, to regain its normal shape 268 when placed at a desired location within the body (not shown).
- FIGS. 11A and 11B which illustrate the tissue expander in the form of skeleton element 250 implanted in a breast
- the general three-dimensional configuration of the skeleton element 250 is maintained when the skeleton element 250 is implanted.
- FIGS. 12A and 12B it is appreciated that the general three-dimensional configuration of the skeleton element 250 , as it appears in FIGS. 10A and 10B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A in FIGS. 11B and 12B .
- FIGS. 13A-15B illustrate a breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention.
- the breast tissue expander of FIGS. 13A-15B is generally characterized in that it comprises a biocompatible resilient implantable structural skeleton element 300 entirely enclosed in a fluid enclosure 302 having a shape which is generally determined by the predetermined overall three-dimensional shape of the skeleton element 300 .
- the breast tissue expander of FIGS. 13A-15B is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the skeleton element 300 has a generally conical shape having a generally hemispherical vertex 304
- Skeleton element 300 is formed of a plurality of generally circular discs 306 extending radially outward from a core 308 ( FIGS. 14B and 15B ) and additionally supported by ribs 310 .
- Variously directed positioning barbs 312 are located on a base disc 314 located at base locations therealong.
- Skeleton element 300 is preferably formed of a biocompatible plastic material, such as polyurethane or silicone.
- the fluid enclosure 302 is preferably formed of an elastomer, such as silicone, and preferably includes a conventional injection port 318 .
- skeleton element 300 and fluid enclosure 302 are resiliently deformable from their normal shape, as shown in FIGS. 13A and 13B and designated generally in FIG. 13C by reference numeral 320 , having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 322 , in which they have a substantially reduced minimum dimension L 2 , thereby to permit insertion of the skeleton element 300 and the fluid enclosure 302 , in their deformed shape 322 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 300 and the fluid enclosure 302 , by virtue of the resiliency of the skeleton element, to regain their normal shape 320 when placed at a desired location within the body (not shown).
- the skeleton element 300 may be separate from the fluid enclosure 302 as illustrated in FIG. 13C .
- the skeleton element 300 may be wholly
- FIGS. 14A and 14B which illustrate the tissue expander in the form of skeleton element 300 implanted in a breast
- the general three-dimensional configuration of the skeleton element 300 is maintained when the skeleton element 300 is implanted.
- FIGS. 15A and 15B it is appreciated that the general three-dimensional configuration of the skeleton element 300 , as it appears in FIGS. 13A and 13B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A in FIGS. 14B and 15B .
- the pressurization inside fluid enclosure 302 may be changed, as by injection of a gas or a liquid into the interior of the enclosure 302 via a suitable injection port, such as injection port 318 .
- a material formed of particles which are preferably smaller in diameter than the diameter of the injection device (not shown), may be used to change the pressurization inside enclosure 302 .
- Such a change in pressurization may take place at any suitable time prior to or following implantation of the tissue expander.
- FIGS. 16A-18B illustrate a breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention.
- the breast tissue expander of FIGS. 16A-18B is generally characterized in that it comprises a biocompatible resilient implantable structural skeleton element 350 having a predetermined overall three-dimensional shape and being operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the skeleton element 350 is typically in the shape of a cage formed of a generally parallel array of differently sized and shaped bent elongate elements 352 which are held together by one or more transverse elongate elements, here including a surrounding elongate element 354 and two other elongate elements, designated respectively by reference numerals 356 and 358 .
- Skeleton element 350 preferably defines at least one wall portion 360 having formed therein apertures 362 , extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough.
- the skeleton element 350 may be integrally formed, as by injection molding.
- the skeleton element 350 may include variously directed positioning barbs 363 located at base locations therealong, and is preferably formed of a biocompatible plastic material, such as polyurethane or silicone.
- skeleton element 350 is resiliently deformable from its normal shape, as shown in FIGS. 16A and 16B and designated generally, in FIG.
- reference numeral 364 having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 366 , in which it has a substantially reduced minimum dimension L 2 , thereby to permit insertion of the skeleton element 350 , in its deformed shape 366 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 350 , by virtue of its resiliency, to regain its normal shape 364 when placed at a desired location within the body (not shown).
- FIGS. 17A and 17B which illustrate the tissue expander in the form of skeleton element 350 implanted in a breast
- the general three-dimensional configuration of the skeleton element 350 is maintained when the skeleton element 350 is implanted.
- FIGS. 18A and 18B it is appreciated that the general three-dimensional configuration of the skeleton element 350 , as it appears in FIGS. 18A and 18B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A in FIGS. 17B and 18B .
- FIGS. 19A-21B illustrate a breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention.
- the breast tissue expander of FIGS. 19A-21B is generally characterized in that it comprises a biocompatible resilient implantable structural skeleton element 400 entirely enclosed in a fluid enclosure 402 having a shape which is generally determined by the predetermined overall three-dimensional shape of the skeleton element 400 .
- the breast tissue expander of FIGS. 19A-21B is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the skeleton element 400 is typically in the shape of a cage formed of a generally parallel array of differently sized and shaped bent elongate elements 404 which are held together by one or more transverse elongate elements, here including a surrounding elongate element 406 and two other elongate elements, designated respectively by reference numerals 408 and 410 . It is appreciated that one or more of the various bent elongate elements 404 , 406 , 408 and 410 may have differing mechanical characteristics such as stiffness and resiliency.
- the skeleton element 400 may be integrally formed, as by injection molding, and is preferably formed of a biocompatible plastic material, such as polyurethane or silicone.
- the fluid enclosure 402 may include variously directed positioning barbs 412 located at base locations therealong.
- the fluid enclosure 402 is preferably formed of an elastomer, such as silicone, and preferably includes a conventional injection port 414 .
- FIG. 19C which illustrates the breast tissue expander of FIGS. 19A and 19B rotated by approximately 45 degrees counter clockwise with respect to the orientation shown in FIG. 19A
- skeleton element 400 and fluid enclosure 402 are resiliently deformable from their normal shape, as shown in FIGS. 19A and 19B and designated generally in FIG.
- reference numeral 420 having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 422 , in which they have a substantially reduced minimum dimension L 2 , thereby to permit insertion of the skeleton element 400 and the fluid enclosure 402 , in their deformed shape 422 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 400 and the fluid enclosure 402 , by virtue of the resiliency of the skeleton element, to regain their normal shape 420 when placed at a desired location within the body (not shown).
- the skeleton element 400 may be separate from the fluid enclosure 402 as illustrated in FIG. 19C .
- the skeleton element 400 may be wholly or partially joined to the fluid enclosure 402 .
- FIGS. 20A and 20B which illustrate the tissue expander in the form of skeleton element 400 implanted in a breast
- the general three-dimensional configuration of the skeleton element 400 is maintained when the skeleton element 400 is implanted.
- FIGS. 21A and 21B it is appreciated that the general three-dimensional configuration of the skeleton element 400 , as it appears in FIGS. 19A and 19B , is maintained essentially unchanged irrespective of whether the patient is standing or lying, prone, as shown by distance A in FIGS. 20B and 21B .
- the pressurization inside fluid enclosure 402 may be changed, as by injection of a gas or a liquid into the interior of the enclosure 402 via a suitable injection port, such as injection port 414 .
- a material formed of particles which are preferably smaller in diameter than the diameter of the injection device (not shown), may be used to change the pressurization inside enclosure 402 .
- Such a change in pressurization may take place at any suitable time prior to or following implantation of the tissue expander.
- FIGS. 22A-22C illustrate a tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention.
- the tissue expander of FIGS. 22A-22C is generally characterized in that it comprises a biocompatible resilient implantable structural skeleton element 500 having associated therewith a flexible cap 502 having a shape, which is generally determined by the predetermined overall three-dimensional shape of the skeleton element 500 .
- the tissue expander of FIGS. 22A-22C defines at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- the skeleton element 500 is typically in the shape of a truncated, generally conically-shaped coiled elongate element 504 and the cap 502 is preferably formed with variously directed positioning barbs 506 located on a base 508 .
- Cap 502 and elongate element 504 are preferably formed of biocompatible plastic materials, such as polyurethane or silicone.
- a suitable stiffener, such as a metal wire, may be incorporated in the elongate element 504 .
- Elongate element 504 preferably defines at least one wall portion 510 having formed therein apertures 512 , extending from an interior thereof to an exterior thereof, which are operative, when the tissue expander is implanted, to permit fluid flow therethrough.
- skeleton element 500 is resiliently deformable from its normal shape, as shown in FIGS. 22A and 22 and designated generally in FIG. 22C by reference numeral 514 , having a minimum dimension L 1 , to a deformed shape, designated generally by reference numeral 516 , in which it has a substantially reduced minimum dimension L 2 , thereby to permit insertion of the skeleton element 500 , in its deformed shape 516 , through an aperture (not shown) in a cutaneous layer (not shown) and to allow the skeleton element 500 , by virtue of its resiliency, to regain its normal shape 514 when placed at a desired location within the body (not shown).
- FIGS. 23A , 23 B and 23 C are simplified pictorial illustrations of tissue expanders of the type shown in FIGS. 22A and 22B implanted in the buttocks of a patient.
- tissue expanders described hereinabove with reference to FIGS. 1A-23C are examples of various types of tissue expanders not limited in their application to breasts and buttocks. Similar tissue expanders may be utilized to expand any suitable human tissue.
- biocompatible materials employed in the tissue expanders described hereinabove may contain medicinal materials which may be released into the surrounding tissue or into the fluid enclosure at a desired rate.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Transplantation (AREA)
- Surgery (AREA)
- Dermatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Prostheses (AREA)
Abstract
A human implantable tissue expander including a biocompatible implantable structural skeleton element having a predetermined overall three-dimensional shape and defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and being operative, when implanted in human tissue, to permit fluid flow through the apertures and to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
Description
- Reference is made to U.S. Provisional Patent Application No. 60/695,028, entitled HUMAN IMPLANTABLE TISSUE EXPANDER, filed Jun. 28, 2005, the disclosure of which is hereby incorporated by reference and priority of which is hereby claimed pursuant to 37 CFR 1.78(a) (4) and (5)(i).
- The present invention relates to implantable tissue expanders.
- The following published patent documents are believed to represent the current state of the art:
- U.S. Pat. Nos. 6,315,796 and 6,605,116;
- French Patent Nos. 2,859,098 and 2,862,523; and
- U.S. Patent Application Publication Nos. 2001/0010024; 2003/0074084 and 2004/0148024.
- The present invention seeks to provide improved implantable tissue expanders.
- There is thus provided in accordance with a preferred embodiment of the present invention a human implantable tissue expander including a biocompatible implantable structural skeleton element having a predetermined overall three-dimensional shape and defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and being operative, when implanted in human tissue, to permit fluid flow through the apertures and to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
- In accordance with a preferred embodiment of the present invention the human implantable tissue expander also includes at least one cap associated with an exterior of the skeleton element, the skeleton element being operative to maintain the at least one cap in a predetermined three-dimensional configuration generally independently of its orientation relative to gravitational acceleration. Preferably, the skeleton element is integrally formed with the at least one cap. Alternatively or additionally, the skeleton element and the cap are formed of the same material.
- In accordance with another preferred embodiment of the present invention the skeleton element includes a plurality of ribs. Preferably, the skeleton element is operative when implanted in human tissue, to maintain a predetermined non-circularly symmetric three-dimensional configuration generally independently of its orientation relative to gravitational acceleration. Additionally or alternatively, the skeleton element is formed of one of polyurethane and silicone. Preferably, the skeleton element is formed by injection molding. Additionally or alternatively, the skeleton element is resilient.
- In accordance with yet another preferred embodiment of the present invention the skeleton element is resiliently deformable to a deformed shape in which it has a substantially reduced minimum dimension, thereby to permit insertion of the skeleton element through an aperture in a cutaneous layer when the skeleton element is in the deformed shape and to allow the skeleton element, by virtue of its resiliency, to regain a desired original shape when placed at a desired location within the body.
- There is also provided in accordance with another preferred embodiment of the present invention a human implantable tissue expander including a flexible enclosure for at least one material having at least one fluid flow characteristic and a flexible and resilient skeleton associated with the flexible enclosure and being operative to maintain the flexible enclosure in a predetermined three-dimensional configuration generally independently of its orientation relative to gravitational acceleration.
- In accordance with a preferred embodiment of the present invention the flexible and resilient skeleton is integrally formed with the flexible enclosure. Preferably, the flexible and resilient skeleton and the flexible enclosure are formed of the same material.
- In accordance with another preferred embodiment of the present invention the flexible and resilient skeleton includes a plurality of ribs. Preferably; the flexible and resilient skeleton is formed of one of polyurethane and silicone. Additionally or alternatively, the flexible and resilient skeleton is formed by injection molding.
- In accordance with still another preferred embodiment of the present invention the flexible enclosure and the flexible and resilient skeleton are resiliently deformable to a deformed shape in which they have a substantially reduced overall minimum dimension, thereby to permit insertion of the flexible enclosure and the flexible and resilient skeleton through an aperture in a cutaneous layer when the flexible enclosure and the flexible and resilient skeleton are in the deformed shape and to allow the flexible enclosure and the flexible and resilient skeleton, by virtue of resiliency of the flexible and resilient skeleton, to regain a desired original shape when placed at a desired location within the body.
- In accordance with yet another preferred embodiment of the present invention the at least one material is a gas. Alternatively, the at least one material is a liquid. As a further alternative, the at least one material is formed of particles.
- In accordance with a further preferred embodiment of the present invention the flexible enclosure includes an injection port. Preferably, the flexible enclosure contains the at least one material. Additionally or alternatively, the flexible enclosure does not contain the at least one material when the flexible enclosure is inserted through the aperture.
- The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
-
FIGS. 1A and 1B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with a preferred embodiment of the present invention; -
FIG. 1C is a simplified illustration showing deformation of the implantable breast tissue expander ofFIGS. 1A and 1B to reduce the minimum dimension thereof; -
FIGS. 2A and 2B are respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 1A and 1B , implanted in a patient positioned in a standing orientation; -
FIGS. 3A and 3B are respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 1A and 1B , implanted in a patient positioned in a prone orientation; -
FIGS. 4A and 4B are respective top and bottom pictorial view illustrations of a gas filled implantable breast tissue expander constructed and operative in accordance with another preferred embodiment of the present invention; -
FIG. 4C is a simplified illustration showing deformation of the implantable breast tissue expander ofFIGS. 4A and 4B to reduce the minimum dimension thereof; -
FIGS. 5A and 5B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 4A and 4B , implanted in a patient positioned in a standing orientation; -
FIG. 5C illustrates addition of fluid to the implantable breast tissue expander ofFIGS. 4A-5B , thereby increasing the internal pressure thereof; -
FIGS. 6A and 6B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 4A and 4B , implanted in a patient positioned in a prone orientation; -
FIGS. 7A and 7B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention; -
FIG. 7C is a simplified illustration showing deformation of the implantable breast tissue expander ofFIGS. 7A and 7B to reduce the minimum dimension thereof; -
FIGS. 8A and 8B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 7A and 7B , implanted in a patient positioned in a standing orientation; -
FIGS. 9A and 9B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 7A and 7B , implanted in a patient positioned in a prone orientation; -
FIGS. 10A and 10B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with yet another preferred embodiment of the present invention; -
FIG. 10C is a simplified illustration showing deformation of the implantable breast tissue expander ofFIGS. 10A and 10B to reduce the minimum dimension thereof; -
FIGS. 11A and 11B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 10A and 10B , implanted in a patient positioned in a standing orientation; -
FIGS. 12A and 12B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 10A and 10B , implanted in a patient positioned in a prone orientation; -
FIGS. 13A and 13B are simplified respective top and bottom pictorial view illustrations of a fluid-filled implantable breast tissue expander constructed and operative in accordance with yet another preferred embodiment of the present invention; -
FIG. 13C is a simplified illustration showing deformation of the implantable breast tissue expander ofFIGS. 13A and 13B to reduce the minimum dimension thereof; -
FIGS. 14A and 14B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 13A and 13B , implanted in a patient positioned in a standing orientation; -
FIGS. 15A and 15B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 13A and 13B , implanted in a patient positioned in a prone orientation; -
FIGS. 16A and 16B are simplified respective top and bottom pictorial view illustrations of an implantable breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention; -
FIG. 16C is a simplified illustration showing deformation of the implantable breast tissue expander ofFIGS. 16A and 16B to reduce the minimum dimension thereof; -
FIGS. 17A and 17B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 16A and 16B , implanted in a patient positioned in a standing orientation; -
FIGS. 18A and 18B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 16A and 16B , implanted in a patient positioned in a prone orientation; -
FIGS. 19A and 19B are simplified respective top and bottom pictorial view illustrations of a fluid-filled implantable breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention; -
FIG. 19C is a simplified illustration showing deformation of the implantable breast tissue expander ofFIGS. 19A and 19B to reduce the minimum dimension thereof; -
FIGS. 20A and 20B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 19A and 19B , implanted in a patient positioned in a standing orientation; -
FIGS. 21A and 21B are simplified respective pictorial and sectional illustrations of the implantable breast tissue expander ofFIGS. 19A and 19B , implanted in a patient positioned in a prone orientation; -
FIGS. 22A and 22B are simplified respective top and bottom pictorial view illustrations of an implantable tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention; -
FIG. 22C is a simplified illustration showing deformation of the implantable tissue expander ofFIGS. 22A and 22B to reduce the minimum dimension thereof; and -
FIGS. 23A , 23B and 23C are simplified pictorial illustrations of the implantable tissue expander ofFIGS. 22A and 22B implanted in the buttocks of a patient. - Reference is now made to
FIGS. 1A-3B , which illustrate a breast tissue expander constructed and operative in accordance with a preferred embodiment of the present invention. The breast tissue expander ofFIGS. 1A-3B is generally characterized in that it comprises a biocompatible, preferably resilient, implantablestructural skeleton element 100 having a predetermined overall three-dimensional shape, defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and being operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - The term “skeleton element” is used throughout to refer to an element which itself provides structural support and defines a predetermined three-dimensional shape, irrespective of whether and to what extent it is inflated or otherwise filled with a fluid or other material. It may thus be appreciated that a skeleton element is distinguished from prior art prostheses which comprise a flexible bag which is filled with a fluid or gel and whose three-dimensional shape is governed by the extent to which it is filled or is readily changeable in response to its orientation.
- The skeleton element of the present invention may be incorporated in or associated with a fluid-filled enclosure to define a tissue expander. In such a case, the overall shape of the tissue expander is determined generally by the shape of the skeleton element rather than by the enclosure, the extent of its filling or its internal pressurization.
- As seen in
FIGS. 1A and 1B , theskeleton element 100 is typically in the shape of a truncated, generally conically-shaped coiledelongate element 102 having variously directedpositioning barbs 104 located at base locations therealong.Elongate element 102 is preferably formed of a biocompatible plastic material, such as polyurethane or silicone. A suitable stiffener, such as a metal wire, may be incorporated in theelongate element 102.Elongate element 102 preferably defines at least onewall portion 106 having formed thereinapertures 108, extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough. - As illustrated in
FIG. 1C , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 100 is resiliently deformable from its normal shape, as shown inFIGS. 1A and 1B and designated generally inFIG. 1C byreference numeral 110, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 112, in which it has a substantially reduced minimum dimension L2, thereby to permit insertion of theskeleton element 100, in itsdeformed shape 112, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 100, by virtue of its resiliency, to regain itsnormal shape 110 when placed at a desired location within the body (not shown). - Turning to
FIGS. 2A and 2B , which illustrate the tissue expander in the form ofskeleton element 100 implanted in a breast, it is seen that the general three-dimensional configuration of theskeleton element 100, as it appears inFIGS. 1A and 1B , is maintained when theskeleton element 100 is implanted. Considering alsoFIGS. 3A and 3B , it is appreciated that the general three-dimensional configuration of theskeleton element 100, as it appears inFIGS. 1A and 1B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A inFIGS. 2B and 3B . - Reference is now made to
FIGS. 4A-6B , which illustrate a breast tissue expander constructed and operative in accordance with another preferred embodiment of the present invention. The breast tissue expander ofFIGS. 4A-6B is generally characterized in that it comprises a biocompatible resilient implantablestructural skeleton element 150 entirely enclosed in afluid enclosure 152 having a shape which is generally determined by the predetermined overall three-dimensional shape of theskeleton element 150. The breast tissue expander ofFIGS. 4A-6B is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - As seen in
FIGS. 4A and 4B , theskeleton element 150 is typically in the shape of a truncated, generally conically-shaped coiledelongate element 154 and thefluid enclosure 152 has variously directedpositioning barbs 156 located at base locations therealong.Elongate element 154 is preferably formed of a biocompatible plastic material, such as polyurethane or silicone. A suitable stiffener, such as a metal wire, may be incorporated in theelongate element 154. Thefluid enclosure 152 is preferably formed of an elastomer, such as silicone, and preferably includes aconventional injection port 158. - As illustrated in
FIG. 4C , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 150 andfluid enclosure 152 are resiliently deformable from their normal shape, as shown inFIGS. 4A and 4B and designated generally inFIG. 4C byreference numeral 160, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 162, in which they have a substantially reduced minimum dimension L2, thereby to permit insertion of theskeleton element 150 and thefluid enclosure 152, in theirdeformed shape 162, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 150 and thefluid enclosure 152, by virtue of the resiliency of the skeleton element, to regain theirnormal shape 160 when placed at a desired location within the body (not shown). It is appreciated that theskeleton element 150 may be separate from thefluid enclosure 152 as illustrated inFIG. 4C . Alternatively, theskeleton element 150 may be wholly or partially joined to thefluid enclosure 152. - Turning to
FIGS. 5A and 5B , which illustrate the tissue expander in the form ofskeleton element 150 implanted in a breast, it is seen that the general three-dimensional configuration of theskeleton element 150, as it appears inFIGS. 4A and 4B , is maintained when the tissue expander is implanted. Considering alsoFIGS. 6A and 6B , it is appreciated that the general three-dimensional configuration of theskeleton element 150, as it appears inFIGS. 4A and 4B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A inFIGS. 5B and 6B . -
FIG. 5C schematically illustrates changing the pressurization insidefluid enclosure 152, as by injection of a fluid into the interior of theenclosure 152 viainjection port 158. Alternatively, a material formed of particles, which are preferably smaller in diameter than the diameter of the injection device, may be used to change the pressurization insideenclosure 152. The change in pressurization may take place at any suitable time prior to or following implantation of the tissue expander. - Reference is now made to
FIGS. 7A-9B , which illustrate a breast tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention. The breast tissue expander ofFIGS. 7A-9B is generally characterized in that it comprises a biocompatible resilient implantablestructural skeleton element 200 having associated therewith aflexible cap 202 having a shape which is generally determined by the predetermined overall three-dimensional shape of theskeleton element 200. The breast tissue expander ofFIGS. 7A-9B defines at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - As seen in
FIGS. 7A and 7B , theskeleton element 200 is typically in the shape of a truncated, generally conically-shaped coiledelongate element 204 having variously directedpositioning barbs 206 located at base locations therealong.Cap 202 andelongate element 204 are preferably formed of biocompatible plastic materials, such as polyurethane or silicone. A suitable stiffener, such as a metal wire, may be incorporated in theelongate element 204.Elongate element 204 preferably defines at least onewall portion 208 having formed thereinapertures 210, extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough. - As illustrated in
FIG. 7C , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 200 is resiliently deformable from its normal shape, as shown inFIGS. 7A and 7B and designated generally inFIG. 7C byreference numeral 212, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 214, in which, it has a substantially reduced minimum dimension L2, thereby to permit insertion of theskeleton element 200, in itsdeformed shape 214, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 200, by virtue of its resiliency, to regain itsnormal shape 212 when placed at a desired location within the body (not shown). - Turning to
FIGS. 8A and 8B , which illustrate the tissue expander in the form ofskeleton element 200 implanted in a breast, it is seen that the general three-dimensional configuration of theskeleton element 200, as it appears inFIGS. 7A and 7B , is maintained when the tissue expander is implanted. Considering alsoFIGS. 9A and 9B , it is appreciated that the general three-dimensional configuration of theskeleton element 200, as it appears inFIGS. 7A and 7B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A inFIGS. 8B and 9B . - Reference is now made to
FIGS. 10A-12B , which illustrate a breast tissue expander constructed and operative in accordance with yet another preferred embodiment of the present invention. The breast tissue expander ofFIGS. 10A-12B is generally characterized in that it comprises a biocompatible resilient implantablestructural skeleton element 250 having a predetermined overall three-dimensional shape and being operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - As seen in
FIGS. 10A and 10B , theskeleton element 250 has a generally conical shape having a generallyhemispherical vertex 252.Skeleton element 250 includes a plurality of generallycircular discs 254 extending radially outward from a core 256 (FIGS. 11B and 12B ) and additionally supported byribs 258, defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough. -
Skeleton element 250 preferably defines at least onewall portion 260 having formed thereinapertures 262, extending from an interior thereof to an exterior thereof. Variously directedpositioning barbs 264 are located on abase disc 266 located at base locations therealong.Skeleton element 250 is preferably formed of a biocompatible plastic material as polyurethane or silicone. - As illustrated in
FIG. 10C , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 250 is resiliently deformable from its normal shape, as shown inFIGS. 10A and 10B and designated generally inFIG. 10C byreference numeral 268, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 270, in which it has a substantially reduced minimum dimension 12, thereby to permit insertion of theskeleton element 250, in itsdeformed shape 270, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 250, by virtue of its resiliency, to regain itsnormal shape 268 when placed at a desired location within the body (not shown). - Turning to
FIGS. 11A and 11B , which illustrate the tissue expander in the form ofskeleton element 250 implanted in a breast, it is seen that the general three-dimensional configuration of theskeleton element 250, as it appears inFIGS. 10A and 10B , is maintained when theskeleton element 250 is implanted. Considering alsoFIGS. 12A and 12B , it is appreciated that the general three-dimensional configuration of theskeleton element 250, as it appears inFIGS. 10A and 10B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A inFIGS. 11B and 12B . - Reference is now made to
FIGS. 13A-15B , which illustrate a breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention. The breast tissue expander ofFIGS. 13A-15B is generally characterized in that it comprises a biocompatible resilient implantablestructural skeleton element 300 entirely enclosed in afluid enclosure 302 having a shape which is generally determined by the predetermined overall three-dimensional shape of theskeleton element 300. The breast tissue expander ofFIGS. 13A-15B is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - As seen in
FIGS. 13A and 13B , theskeleton element 300 has a generally conical shape having a generallyhemispherical vertex 304,Skeleton element 300 is formed of a plurality of generallycircular discs 306 extending radially outward from a core 308 (FIGS. 14B and 15B ) and additionally supported byribs 310. Variously directedpositioning barbs 312 are located on abase disc 314 located at base locations therealong.Skeleton element 300 is preferably formed of a biocompatible plastic material, such as polyurethane or silicone. Thefluid enclosure 302 is preferably formed of an elastomer, such as silicone, and preferably includes aconventional injection port 318. - As illustrated in
FIG. 13C , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 300 andfluid enclosure 302 are resiliently deformable from their normal shape, as shown inFIGS. 13A and 13B and designated generally inFIG. 13C byreference numeral 320, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 322, in which they have a substantially reduced minimum dimension L2, thereby to permit insertion of theskeleton element 300 and thefluid enclosure 302, in theirdeformed shape 322, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 300 and thefluid enclosure 302, by virtue of the resiliency of the skeleton element, to regain theirnormal shape 320 when placed at a desired location within the body (not shown). It is appreciated that theskeleton element 300 may be separate from thefluid enclosure 302 as illustrated inFIG. 13C . Alternatively, theskeleton element 300 may be wholly or partially joined to thefluid enclosure 302. - Turning to
FIGS. 14A and 14B , which illustrate the tissue expander in the form ofskeleton element 300 implanted in a breast, it is seen that the general three-dimensional configuration of theskeleton element 300, as it appears inFIGS. 13A and 13B , is maintained when theskeleton element 300 is implanted. Considering alsoFIGS. 15A and 15B , it is appreciated that the general three-dimensional configuration of theskeleton element 300, as it appears inFIGS. 13A and 13B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A inFIGS. 14B and 15B . - It is appreciated that the pressurization inside
fluid enclosure 302 may be changed, as by injection of a gas or a liquid into the interior of theenclosure 302 via a suitable injection port, such asinjection port 318. Alternatively, a material formed of particles, which are preferably smaller in diameter than the diameter of the injection device (not shown), may be used to change the pressurization insideenclosure 302. Such a change in pressurization may take place at any suitable time prior to or following implantation of the tissue expander. - Reference is now made to
FIGS. 16A-18B , which illustrate a breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention. The breast tissue expander ofFIGS. 16A-18B is generally characterized in that it comprises a biocompatible resilient implantablestructural skeleton element 350 having a predetermined overall three-dimensional shape and being operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - As seen in
FIGS. 16A and 16B , theskeleton element 350 is typically in the shape of a cage formed of a generally parallel array of differently sized and shaped bentelongate elements 352 which are held together by one or more transverse elongate elements, here including a surroundingelongate element 354 and two other elongate elements, designated respectively byreference numerals Skeleton element 350 preferably defines at least onewall portion 360 having formed thereinapertures 362, extending from an interior thereof to an exterior thereof, which are operative, when the breast tissue expander is implanted, to permit fluid flow therethrough. - It is appreciated that one or more of the various bent
elongate elements skeleton element 350 may be integrally formed, as by injection molding. Theskeleton element 350 may include variously directedpositioning barbs 363 located at base locations therealong, and is preferably formed of a biocompatible plastic material, such as polyurethane or silicone. - As seen in
FIG. 16C , which illustrates the breast tissue expander ofFIGS. 16A and 16B rotated by approximately 45 degrees counter clockwise with respect to the orientation shown inFIG. 16A , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 350 is resiliently deformable from its normal shape, as shown inFIGS. 16A and 16B and designated generally, inFIG. 16C byreference numeral 364, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 366, in which it has a substantially reduced minimum dimension L2, thereby to permit insertion of theskeleton element 350, in itsdeformed shape 366, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 350, by virtue of its resiliency, to regain itsnormal shape 364 when placed at a desired location within the body (not shown). - Turning to
FIGS. 17A and 17B , which illustrate the tissue expander in the form ofskeleton element 350 implanted in a breast, it is seen that the general three-dimensional configuration of theskeleton element 350, as it appears inFIGS. 17A and 17B , is maintained when theskeleton element 350 is implanted. Considering alsoFIGS. 18A and 18B , it is appreciated that the general three-dimensional configuration of theskeleton element 350, as it appears inFIGS. 18A and 18B , is maintained essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A inFIGS. 17B and 18B . - Reference is now made to
FIGS. 19A-21B , which illustrate a breast tissue expander constructed and operative in accordance with still another preferred embodiment of the present invention. The breast tissue expander ofFIGS. 19A-21B is generally characterized in that it comprises a biocompatible resilient implantablestructural skeleton element 400 entirely enclosed in afluid enclosure 402 having a shape which is generally determined by the predetermined overall three-dimensional shape of theskeleton element 400. The breast tissue expander ofFIGS. 19A-21B is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - As seen in
FIGS. 19A and 19B , theskeleton element 400 is typically in the shape of a cage formed of a generally parallel array of differently sized and shaped bentelongate elements 404 which are held together by one or more transverse elongate elements, here including a surroundingelongate element 406 and two other elongate elements, designated respectively byreference numerals elongate elements skeleton element 400 may be integrally formed, as by injection molding, and is preferably formed of a biocompatible plastic material, such as polyurethane or silicone. - The
fluid enclosure 402 may include variously directedpositioning barbs 412 located at base locations therealong. Thefluid enclosure 402 is preferably formed of an elastomer, such as silicone, and preferably includes aconventional injection port 414. - As seen in
FIG. 19C , which illustrates the breast tissue expander ofFIGS. 19A and 19B rotated by approximately 45 degrees counter clockwise with respect to the orientation shown inFIG. 19A , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 400 andfluid enclosure 402 are resiliently deformable from their normal shape, as shown inFIGS. 19A and 19B and designated generally inFIG. 19C byreference numeral 420, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 422, in which they have a substantially reduced minimum dimension L2, thereby to permit insertion of theskeleton element 400 and thefluid enclosure 402, in theirdeformed shape 422, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 400 and thefluid enclosure 402, by virtue of the resiliency of the skeleton element, to regain theirnormal shape 420 when placed at a desired location within the body (not shown). It is appreciated that theskeleton element 400 may be separate from thefluid enclosure 402 as illustrated inFIG. 19C . Alternatively, theskeleton element 400 may be wholly or partially joined to thefluid enclosure 402. - Turning to
FIGS. 20A and 20B , which illustrate the tissue expander in the form ofskeleton element 400 implanted in a breast, it is seen that the general three-dimensional configuration of theskeleton element 400, as it appears inFIGS. 19A and 19B , is maintained when theskeleton element 400 is implanted. Considering alsoFIGS. 21A and 21B , it is appreciated that the general three-dimensional configuration of theskeleton element 400, as it appears inFIGS. 19A and 19B , is maintained essentially unchanged irrespective of whether the patient is standing or lying, prone, as shown by distance A inFIGS. 20B and 21B . - It is appreciated that the pressurization inside
fluid enclosure 402 may be changed, as by injection of a gas or a liquid into the interior of theenclosure 402 via a suitable injection port, such asinjection port 414. Alternatively, a material formed of particles, which are preferably smaller in diameter than the diameter of the injection device (not shown), may be used to change the pressurization insideenclosure 402. Such a change in pressurization may take place at any suitable time prior to or following implantation of the tissue expander. - Reference is now made to
FIGS. 22A-22C , which illustrate a tissue expander constructed and operative in accordance with a further preferred embodiment of the present invention. The tissue expander ofFIGS. 22A-22C is generally characterized in that it comprises a biocompatible resilient implantablestructural skeleton element 500 having associated therewith aflexible cap 502 having a shape, which is generally determined by the predetermined overall three-dimensional shape of theskeleton element 500. The tissue expander ofFIGS. 22A-22C defines at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and is operative, when implanted in human tissue, to generally maintain the predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration. - As seen in
FIGS. 22A and 22B , theskeleton element 500 is typically in the shape of a truncated, generally conically-shaped coiledelongate element 504 and thecap 502 is preferably formed with variously directedpositioning barbs 506 located on abase 508.Cap 502 andelongate element 504 are preferably formed of biocompatible plastic materials, such as polyurethane or silicone. A suitable stiffener, such as a metal wire, may be incorporated in theelongate element 504.Elongate element 504 preferably defines at least onewall portion 510 having formed thereinapertures 512, extending from an interior thereof to an exterior thereof, which are operative, when the tissue expander is implanted, to permit fluid flow therethrough. - As illustrated in
FIG. 22C , it is a particular feature of a preferred embodiment of the present invention thatskeleton element 500 is resiliently deformable from its normal shape, as shown inFIGS. 22A and 22 and designated generally inFIG. 22C byreference numeral 514, having a minimum dimension L1, to a deformed shape, designated generally byreference numeral 516, in which it has a substantially reduced minimum dimension L2, thereby to permit insertion of theskeleton element 500, in itsdeformed shape 516, through an aperture (not shown) in a cutaneous layer (not shown) and to allow theskeleton element 500, by virtue of its resiliency, to regain itsnormal shape 514 when placed at a desired location within the body (not shown). - Reference is now made to
FIGS. 23A , 23B and 23C, which are simplified pictorial illustrations of tissue expanders of the type shown inFIGS. 22A and 22B implanted in the buttocks of a patient. - It is seen that the general three-dimensional configuration of the
skeleton element 500 is maintained when the buttocks expander is implanted, and is essentially unchanged irrespective of whether the patient is standing or lying prone, as shown by distance A inFIGS. 23B and 23C . - It is appreciated that the tissue expanders described hereinabove with reference to
FIGS. 1A-23C are examples of various types of tissue expanders not limited in their application to breasts and buttocks. Similar tissue expanders may be utilized to expand any suitable human tissue. - It is appreciated that some or all of the biocompatible materials employed in the tissue expanders described hereinabove may contain medicinal materials which may be released into the surrounding tissue or into the fluid enclosure at a desired rate.
- It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove as well as modifications and variations thereof as would occur to a person of skill in the art upon reading the foregoing specification and which are not in the prior art.
Claims (11)
1. A human implantable tissue expander comprising:
a biocompatible implantable structural skeleton element having a predetermined overall three-dimensional shape and defining at least one wall portion having formed therein apertures extending from an interior thereof to an exterior thereof and being operative, when implanted in human tissue, to permit fluid flow through said apertures and to generally maintain said predetermined three-dimensional shape generally independently of its orientation relative to gravitational acceleration.
2. A human implantable tissue expander according to claim 1 and also comprising at least one cap associated with an exterior of said skeleton element, said skeleton element being operative to maintain said at least one cap in a predetermined three-dimensional configuration generally independently of its orientation relative to gravitational acceleration.
3. A human implantable tissue expander according to claim 2 and wherein said skeleton element is integrally formed with said at least one cap.
4. A human implantable tissue expander according to claim 2 and wherein said skeleton element and said cap are formed of the same material.
5. A human implantable tissue expander according to claim 2 and wherein said skeleton element comprises a plurality of ribs.
6. A human implantable tissue expander according to claim 1 and wherein said skeleton element is operative, when implanted in human tissue, to maintain a predetermined non-circularly symmetric three-dimensional configuration generally independently of its orientation relative to gravitational acceleration.
7. A human implantable tissue expander according to claim 1 and wherein said skeleton element is formed of one of polyurethane and silicone.
8. A human implantable tissue expander according to claim 1 and wherein said skeleton element is formed by injection molding.
9. A human implantable tissue expander according to claim 1 and wherein said skeleton element is resilient.
10. A human implantable tissue expander according to claim 1 and wherein said skeleton element is resiliently deformable to a deformed shape in which it has a substantially reduced minimum dimension, thereby to permit insertion of said skeleton element through an aperture in a cutaneous layer when said skeleton element is in said deformed shape and to allow said skeleton element, by virtue of its resiliency, to regain a desired original shape when placed at a desired location within the body.
11.-23. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/463,530 US20130123918A1 (en) | 2005-06-28 | 2012-05-03 | Human implantable tissue expander |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69502805P | 2005-06-28 | 2005-06-28 | |
WOWO2007/000756 | 2006-06-19 | ||
US91886108A | 2008-12-04 | 2008-12-04 | |
US13/463,530 US20130123918A1 (en) | 2005-06-28 | 2012-05-03 | Human implantable tissue expander |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US91886108A Division | 2005-06-28 | 2008-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130123918A1 true US20130123918A1 (en) | 2013-05-16 |
Family
ID=37595522
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/918,861 Expired - Fee Related US8192486B2 (en) | 2005-06-28 | 2006-06-19 | Human implantable tissue expander |
US13/463,530 Abandoned US20130123918A1 (en) | 2005-06-28 | 2012-05-03 | Human implantable tissue expander |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/918,861 Expired - Fee Related US8192486B2 (en) | 2005-06-28 | 2006-06-19 | Human implantable tissue expander |
Country Status (9)
Country | Link |
---|---|
US (2) | US8192486B2 (en) |
EP (1) | EP1895950A4 (en) |
JP (1) | JP2008546498A (en) |
KR (1) | KR20080018193A (en) |
CN (1) | CN101208060B (en) |
BR (1) | BRPI0612094A2 (en) |
CA (1) | CA2605811C (en) |
RU (1) | RU2405501C2 (en) |
WO (1) | WO2007000756A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031046A1 (en) * | 2018-08-10 | 2020-02-13 | Mentor Worldwide Llc | Systems, devices and methods of making mammary implants and tissue expanders having ribbed shells |
USD905855S1 (en) | 2019-08-01 | 2020-12-22 | Mentor Worldwide Llc | Implant shell having internal, circumferential ribs |
USD931460S1 (en) | 2019-08-01 | 2021-09-21 | Mentor Worldwide Llc | Implant shell having internal, global ribs |
KR20220060109A (en) * | 2020-11-04 | 2022-05-11 | 인제대학교 산학협력단 | Artificial bone piece for cranioplasty |
US11471268B2 (en) | 2020-04-25 | 2022-10-18 | Mentor Worldwide Llc | Implants having gel zones with higher levels of cohesiveness for eschewing scalloping, dimpling, and wrinkling |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8236054B2 (en) | 2006-02-08 | 2012-08-07 | Neosthetic, Llc | Breast implants and methods of manufacture |
US7625405B2 (en) * | 2006-02-08 | 2009-12-01 | Neosthetic, Llc | Breast implant and method of manufacture |
KR101484031B1 (en) * | 2007-01-03 | 2015-01-19 | 임플라이트 리미티드 | Human implantable tissue expanding device |
EP1997457B1 (en) * | 2007-06-01 | 2010-11-10 | Allergan, Inc. | Biological tissue growth support through induced tensile stress |
US8313527B2 (en) | 2007-11-05 | 2012-11-20 | Allergan, Inc. | Soft prosthesis shell texturing method |
US20090181104A1 (en) * | 2007-12-14 | 2009-07-16 | Gino Rigotti | Breast reconstruction or augmentation using computer-modeled deposition of processed adipose tissue |
US8506627B2 (en) | 2008-08-13 | 2013-08-13 | Allergan, Inc. | Soft filled prosthesis shell with discrete fixation surfaces |
US9050184B2 (en) | 2008-08-13 | 2015-06-09 | Allergan, Inc. | Dual plane breast implant |
ES2602361T3 (en) * | 2008-10-28 | 2017-02-20 | Implite Ltd | Breast reconstruction prosthesis |
US20100292790A1 (en) * | 2009-05-13 | 2010-11-18 | Allergan, Inc. | Implants and methods for manufacturing same |
US8986377B2 (en) | 2009-07-21 | 2015-03-24 | Lifecell Corporation | Graft materials for surgical breast procedures |
US20110093069A1 (en) * | 2009-10-16 | 2011-04-21 | Allergan, Inc. | Implants and methdos for manufacturing same |
CA2787824A1 (en) * | 2010-01-28 | 2011-08-04 | Allergan, Inc. | Open celled foams, implants including them and processes for making same |
US9044897B2 (en) | 2010-09-28 | 2015-06-02 | Allergan, Inc. | Porous materials, methods of making and uses |
US9138308B2 (en) | 2010-02-03 | 2015-09-22 | Apollo Endosurgery, Inc. | Mucosal tissue adhesion via textured surface |
US8877822B2 (en) | 2010-09-28 | 2014-11-04 | Allergan, Inc. | Porogen compositions, methods of making and uses |
US20110196488A1 (en) * | 2010-02-03 | 2011-08-11 | Allergan, Inc. | Degradation resistant implantable materials and methods |
US8889751B2 (en) | 2010-09-28 | 2014-11-18 | Allergan, Inc. | Porous materials, methods of making and uses |
US9138309B2 (en) | 2010-02-05 | 2015-09-22 | Allergan, Inc. | Porous materials, methods of making and uses |
CA2788265A1 (en) | 2010-02-05 | 2011-08-11 | Allergan, Inc. | Biocompatible structures and compositions |
US9205577B2 (en) | 2010-02-05 | 2015-12-08 | Allergan, Inc. | Porogen compositions, methods of making and uses |
AU2011245522A1 (en) | 2010-04-27 | 2012-12-06 | Allergan, Inc. | Foam-like materials and methods for producing same |
KR101854481B1 (en) | 2010-05-11 | 2018-05-03 | 알러간, 인코포레이티드 | Porogen compositions, methods of making and uses |
US11202853B2 (en) | 2010-05-11 | 2021-12-21 | Allergan, Inc. | Porogen compositions, methods of making and uses |
US8679279B2 (en) | 2010-11-16 | 2014-03-25 | Allergan, Inc. | Methods for creating foam-like texture |
US8546458B2 (en) | 2010-12-07 | 2013-10-01 | Allergan, Inc. | Process for texturing materials |
RU2465861C1 (en) * | 2011-05-25 | 2012-11-10 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный медико-стоматологический университет" Министерства здравоохранения и социального развития Российской Федерации | Ear expander |
US8801782B2 (en) | 2011-12-15 | 2014-08-12 | Allergan, Inc. | Surgical methods for breast reconstruction or augmentation |
EP3400900B1 (en) | 2012-01-13 | 2020-05-20 | LifeCell Corporation | Methods of manufacturing breast prostheses |
ES2647979T3 (en) * | 2012-06-21 | 2017-12-27 | Lifecell Corporation | Implantable prosthesis that has acellular tissue fixations |
EP2931490A1 (en) | 2012-12-13 | 2015-10-21 | Allergan, Inc. | Device and method for making a variable surface breast implant |
CA2898177A1 (en) | 2013-01-30 | 2014-08-07 | Implite Ltd. | Human implantable tissue expanders |
US9700405B2 (en) | 2014-03-31 | 2017-07-11 | Mentor Worldwide Llc | Directional tissue expander |
US9463087B2 (en) | 2014-03-31 | 2016-10-11 | Mentor Worldwide Llc | Directional tissue expander |
US10092392B2 (en) | 2014-05-16 | 2018-10-09 | Allergan, Inc. | Textured breast implant and methods of making same |
WO2015176014A1 (en) | 2014-05-16 | 2015-11-19 | Allergan, Inc. | Soft filled prosthesis shell with variable texture |
CN106456317B (en) * | 2014-05-20 | 2018-05-29 | 费克斯尼珀有限公司 | Nipple implantation material component and the method for forming nipple implantation material component |
EP3171820B1 (en) * | 2014-07-25 | 2022-11-16 | Hologic, Inc. | Implantable devices and techniques for oncoplastic surgery |
US20170360555A1 (en) * | 2014-12-07 | 2017-12-21 | Implite Ltd. | Breast implants |
WO2016132352A1 (en) * | 2015-02-17 | 2016-08-25 | Implite Ltd. | Breast implants |
AU2016310471B2 (en) | 2015-08-21 | 2021-05-20 | Lifecell Corporation | Breast treatment device |
EP3393372B1 (en) * | 2015-12-22 | 2024-06-19 | Prodeon Medical Corporation | System for increasing a cross-sectional area of a body lumen |
KR102746220B1 (en) | 2016-02-09 | 2024-12-26 | 이스타블리쉬먼트 렙스 에스.에이. | Transponders for implantable medical devices |
AU2017318580B2 (en) | 2016-08-31 | 2022-04-21 | Lifecell Corporation | Breast treatment device |
CN116327379A (en) | 2016-10-28 | 2023-06-27 | 制定实验室公司 | Tissue expander, method of manufacturing the same, and mold |
WO2020227095A1 (en) | 2019-05-03 | 2020-11-12 | Lifecell Corporation | Breast treatment device |
IT201900014196A1 (en) * | 2019-08-08 | 2021-02-08 | Gardelli Manuela | atraumatic self-retaining retractor medical device for breast reconstructive surgery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178643A (en) * | 1977-09-26 | 1979-12-18 | Cox James E Jr | Valve for inflatable prosthesis |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815612U (en) * | 1981-07-24 | 1983-01-31 | 日東電工株式会社 | Artificial orthopedic pads |
US4651717A (en) * | 1985-04-04 | 1987-03-24 | Dow Corning Corporation | Multiple envelope tissue expander device |
US6228116B1 (en) * | 1987-12-22 | 2001-05-08 | Walter J. Ledergerber | Tissue expander |
US5358521A (en) * | 1992-04-01 | 1994-10-25 | Fred Shane | Multiple-layer prosthesis implant with tissue tactility |
US5496367A (en) | 1993-01-13 | 1996-03-05 | Fisher; Jack | Breast implant with baffles |
CN2233730Y (en) * | 1995-01-06 | 1996-08-28 | 张建军 | Pollution proof mammary prostheses |
US5545217A (en) * | 1995-04-20 | 1996-08-13 | C.M. Offray & Son, Inc. | Breast implant |
CN1055206C (en) * | 1995-09-28 | 2000-08-09 | 张建军 | Breast prosthesis |
US5824081A (en) * | 1996-09-13 | 1998-10-20 | Lipomatrix Incorporated | Hydraulic foam tissue implant |
WO1999018886A1 (en) * | 1997-10-10 | 1999-04-22 | Corbitt John D Jr | Breast implant |
US6315796B1 (en) * | 1999-05-13 | 2001-11-13 | Board Of Trustees Of The University Of Arkansas | Flexible seamless memory tissue expanding implant |
US6432138B1 (en) * | 2000-03-07 | 2002-08-13 | Promatrx, Inc. | Controlled porosity 3-D fabric breast prosthesis |
GB0030635D0 (en) * | 2000-12-15 | 2001-01-31 | Aortech Internat Plc | Soft tissue implant |
US6605116B2 (en) * | 2001-04-03 | 2003-08-12 | Mentor Corporation | Reinforced radius mammary prostheses and soft tissue expanders |
US6755861B2 (en) * | 2001-10-16 | 2004-06-29 | Granit Medical Innovation, Inc. | Device for providing a portion of an organism with a desired shape |
JP4296399B2 (en) * | 2002-09-03 | 2009-07-15 | 真実 仁尾 | Breast mesh implant |
CN2624854Y (en) * | 2003-06-09 | 2004-07-14 | 邹大明 | Injection silicon rubber mammary prosthesis |
US6802861B1 (en) * | 2003-08-26 | 2004-10-12 | Rsh-Gs Trust | Structured breast implant |
ES2305685T3 (en) * | 2003-08-29 | 2008-11-01 | Perouse Plastie | MAMMARY HELMET. |
FR2862523B1 (en) | 2003-11-20 | 2007-11-16 | Perouse Plastie | IMPLANTABLE MAMMARY PROSTHESIS |
FR2859098B1 (en) * | 2003-08-29 | 2006-05-26 | Perouse Plastie | MAMMARY PROSTHESIS TEMPLESE |
JP4296405B2 (en) * | 2003-11-04 | 2009-07-15 | 真実 仁尾 | Breast mesh implant |
-
2006
- 2006-06-19 RU RU2008101636/14A patent/RU2405501C2/en not_active IP Right Cessation
- 2006-06-19 CN CN2006800230191A patent/CN101208060B/en not_active Expired - Fee Related
- 2006-06-19 WO PCT/IL2006/000707 patent/WO2007000756A2/en active Application Filing
- 2006-06-19 CA CA2605811A patent/CA2605811C/en not_active Expired - Fee Related
- 2006-06-19 EP EP06745149A patent/EP1895950A4/en not_active Withdrawn
- 2006-06-19 BR BRPI0612094-6A patent/BRPI0612094A2/en not_active IP Right Cessation
- 2006-06-19 KR KR1020077028980A patent/KR20080018193A/en not_active Withdrawn
- 2006-06-19 US US11/918,861 patent/US8192486B2/en not_active Expired - Fee Related
- 2006-06-19 JP JP2008519134A patent/JP2008546498A/en active Pending
-
2012
- 2012-05-03 US US13/463,530 patent/US20130123918A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178643A (en) * | 1977-09-26 | 1979-12-18 | Cox James E Jr | Valve for inflatable prosthesis |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031046A1 (en) * | 2018-08-10 | 2020-02-13 | Mentor Worldwide Llc | Systems, devices and methods of making mammary implants and tissue expanders having ribbed shells |
US10898313B2 (en) | 2018-08-10 | 2021-01-26 | Mentor Worldwide Llc | Systems, devices and methods of making mammary implants and tissue expanders having ribbed shells |
CN112930153A (en) * | 2018-08-10 | 2021-06-08 | 曼托环球有限责任公司 | Systems, devices, and methods for manufacturing breast implants and tissue expanders with ribbed shells |
AU2019316800B2 (en) * | 2018-08-10 | 2024-11-21 | Mentor Worldwide Llc | Systems, devices and methods of making mammary implants and tissue expanders having ribbed shells |
USD905855S1 (en) | 2019-08-01 | 2020-12-22 | Mentor Worldwide Llc | Implant shell having internal, circumferential ribs |
USD931460S1 (en) | 2019-08-01 | 2021-09-21 | Mentor Worldwide Llc | Implant shell having internal, global ribs |
US11471268B2 (en) | 2020-04-25 | 2022-10-18 | Mentor Worldwide Llc | Implants having gel zones with higher levels of cohesiveness for eschewing scalloping, dimpling, and wrinkling |
US11844687B2 (en) | 2020-04-25 | 2023-12-19 | Mentor Worldwide Llc | Methods of making implants having gel zones with higher levels of cohesiveness for eschewing scalloping, dimpling, and wrinkling |
KR20220060109A (en) * | 2020-11-04 | 2022-05-11 | 인제대학교 산학협력단 | Artificial bone piece for cranioplasty |
KR102478854B1 (en) * | 2020-11-04 | 2022-12-16 | 인제대학교 산학협력단 | Artificial bone piece for cranioplasty |
Also Published As
Publication number | Publication date |
---|---|
CA2605811A1 (en) | 2007-01-04 |
WO2007000756A2 (en) | 2007-01-04 |
US20090093878A1 (en) | 2009-04-09 |
CN101208060A (en) | 2008-06-25 |
EP1895950A4 (en) | 2010-04-28 |
RU2008101636A (en) | 2009-08-10 |
EP1895950A2 (en) | 2008-03-12 |
US8192486B2 (en) | 2012-06-05 |
RU2405501C2 (en) | 2010-12-10 |
JP2008546498A (en) | 2008-12-25 |
CA2605811C (en) | 2015-10-13 |
WO2007000756A3 (en) | 2007-03-29 |
KR20080018193A (en) | 2008-02-27 |
BRPI0612094A2 (en) | 2010-10-19 |
CN101208060B (en) | 2010-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8192486B2 (en) | Human implantable tissue expander | |
US5653755A (en) | Covering for an implantable prosthetic device | |
US4955907A (en) | Implantable prosthetic device | |
US6802861B1 (en) | Structured breast implant | |
US5496370A (en) | Gel-like prosthetic device | |
US8579971B2 (en) | Inflatable intra ocular lens/lens retainer | |
US4531244A (en) | Mammary prosthesis with multiple flow spaces | |
ES2870423T3 (en) | Directional tissue expander | |
US20030093151A1 (en) | Implantable mammary prosthesis with flexible sheet | |
US20180064530A1 (en) | Breast implants | |
CN105142572A (en) | Human implantable tissue expanders | |
JPS61131741A (en) | Implantable shape holding type tissue expander for dilating tissue and method | |
JPS61232841A (en) | Tissue dilating apparatus | |
CA2460766A1 (en) | Spinal implant and method of use | |
ES2567727T3 (en) | Implantable prosthesis for reconstruction of an anatomical feature | |
JPS5936532B2 (en) | Massager for breast augmentation | |
US20170360555A1 (en) | Breast implants | |
EP3056167A1 (en) | Breast implant support device with large back surface area | |
US20220370183A1 (en) | Patient-Specific Breast Implant for Breast Reconstruction after Breast-Conserving Mastectomy | |
WO2007096354A1 (en) | Variable volume body implant | |
US20080221678A1 (en) | Collapse-Resistant Breast Implant With Partial Internal Shells | |
WO2014167381A1 (en) | Preformed tissue expander for ear reconstruction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IMPLITE LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLICKSMAN, AMI;REEL/FRAME:028157/0280 Effective date: 20080407 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |