US20130115573A1 - Dental veneers and methods of manufacture - Google Patents
Dental veneers and methods of manufacture Download PDFInfo
- Publication number
- US20130115573A1 US20130115573A1 US13/730,946 US201213730946A US2013115573A1 US 20130115573 A1 US20130115573 A1 US 20130115573A1 US 201213730946 A US201213730946 A US 201213730946A US 2013115573 A1 US2013115573 A1 US 2013115573A1
- Authority
- US
- United States
- Prior art keywords
- veneer
- dental
- composite
- tooth
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000002131 composite material Substances 0.000 claims abstract description 83
- 239000000463 material Substances 0.000 claims abstract description 64
- 239000002245 particle Substances 0.000 claims abstract description 58
- 239000000945 filler Substances 0.000 claims abstract description 37
- 239000011230 binding agent Substances 0.000 claims abstract description 36
- 239000011521 glass Substances 0.000 claims abstract description 27
- 230000001815 facial effect Effects 0.000 claims abstract description 17
- 239000007787 solid Substances 0.000 claims description 58
- 239000000853 adhesive Substances 0.000 claims description 23
- 238000005520 cutting process Methods 0.000 claims description 21
- 238000001723 curing Methods 0.000 claims description 13
- 239000000975 dye Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 239000010954 inorganic particle Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 238000004040 coloring Methods 0.000 claims description 5
- 239000003086 colorant Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000007493 shaping process Methods 0.000 claims description 4
- 238000013007 heat curing Methods 0.000 claims description 3
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 2
- 239000011350 dental composite resin Substances 0.000 claims 5
- 239000002318 adhesion promoter Substances 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 13
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 abstract description 6
- 229910003480 inorganic solid Inorganic materials 0.000 abstract 1
- 238000004381 surface treatment Methods 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 235000011837 pasties Nutrition 0.000 description 9
- 238000000465 moulding Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 210000003298 dental enamel Anatomy 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- AMFGWXWBFGVCKG-UHFFFAOYSA-N Panavia opaque Chemical compound C1=CC(OCC(O)COC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OCC(O)COC(=O)C(C)=C)C=C1 AMFGWXWBFGVCKG-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 4
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- -1 aluminium-fluorosilicate Chemical compound 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 238000013532 laser treatment Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000001029 thermal curing Methods 0.000 description 4
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 230000001055 chewing effect Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 2
- UUEYEUDSRFNIQJ-UHFFFAOYSA-N CCOC(N)=O.CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O Chemical compound CCOC(N)=O.CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O UUEYEUDSRFNIQJ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- MKVYSRNJLWTVIK-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid Chemical group CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O MKVYSRNJLWTVIK-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000002444 silanisation Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 description 1
- OAKFFVBGTSPYEG-UHFFFAOYSA-N (4-prop-2-enoyloxycyclohexyl) prop-2-enoate Chemical compound C=CC(=O)OC1CCC(OC(=O)C=C)CC1 OAKFFVBGTSPYEG-UHFFFAOYSA-N 0.000 description 1
- MFEWNFVBWPABCX-UHFFFAOYSA-N 1,1,2,2-tetraphenylethane-1,2-diol Chemical compound C=1C=CC=CC=1C(C(O)(C=1C=CC=CC=1)C=1C=CC=CC=1)(O)C1=CC=CC=C1 MFEWNFVBWPABCX-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- HSOOIVBINKDISP-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CCC)OC(=O)C(C)=C HSOOIVBINKDISP-UHFFFAOYSA-N 0.000 description 1
- YZTDRUCJEUCHIC-UHFFFAOYSA-N 1-(4,4-dichlorocyclohexa-1,5-dien-1-yl)-2-phenylethane-1,2-dione Chemical compound C1=CC(Cl)(Cl)CC=C1C(=O)C(=O)C1=CC=CC=C1 YZTDRUCJEUCHIC-UHFFFAOYSA-N 0.000 description 1
- BVQVLAIMHVDZEL-UHFFFAOYSA-N 1-phenyl-1,2-propanedione Chemical compound CC(=O)C(=O)C1=CC=CC=C1 BVQVLAIMHVDZEL-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- WDFFWUVELIFAOP-UHFFFAOYSA-N 2,6-difluoro-4-nitroaniline Chemical group NC1=C(F)C=C([N+]([O-])=O)C=C1F WDFFWUVELIFAOP-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- KNEHLRHIODXBSQ-UHFFFAOYSA-N 2-hydroxyethyl 2-methylprop-2-enoate;phthalic acid Chemical compound CC(=C)C(=O)OCCO.OC(=O)C1=CC=CC=C1C(O)=O KNEHLRHIODXBSQ-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- GGRBZHPJKWFAFZ-UHFFFAOYSA-N 3,4-bis(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC(OC(=O)C(C)=C)COC(=O)C(C)=C GGRBZHPJKWFAFZ-UHFFFAOYSA-N 0.000 description 1
- HTWRFCRQSLVESJ-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCOC(=O)C(C)=C HTWRFCRQSLVESJ-UHFFFAOYSA-N 0.000 description 1
- QXKMQBOTKLTKOE-UHFFFAOYSA-N 3-[dichloro(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](C)(Cl)Cl QXKMQBOTKLTKOE-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 description 1
- DOGMJCPBZJUYGB-UHFFFAOYSA-N 3-trichlorosilylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](Cl)(Cl)Cl DOGMJCPBZJUYGB-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- YDIYEOMDOWUDTJ-UHFFFAOYSA-N 4-(dimethylamino)benzoic acid Chemical class CN(C)C1=CC=C(C(O)=O)C=C1 YDIYEOMDOWUDTJ-UHFFFAOYSA-N 0.000 description 1
- ZEWLHMQYEZXSBH-UHFFFAOYSA-N 4-[2-(2-methylprop-2-enoyloxy)ethoxy]-4-oxobutanoic acid Chemical compound CC(=C)C(=O)OCCOC(=O)CCC(O)=O ZEWLHMQYEZXSBH-UHFFFAOYSA-N 0.000 description 1
- YKXAYLPDMSGWEV-UHFFFAOYSA-N 4-hydroxybutyl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)OCCCCO YKXAYLPDMSGWEV-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- 229910004481 Ta2O3 Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- ASFHYIAIHXYBEN-UHFFFAOYSA-N [2-(2-methylprop-2-enoyloxy)-3-phosphonooxypropyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(COP(O)(O)=O)OC(=O)C(C)=C ASFHYIAIHXYBEN-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- UKMBKKFLJMFCSA-UHFFFAOYSA-N [3-hydroxy-2-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)OC(=O)C(C)=C UKMBKKFLJMFCSA-UHFFFAOYSA-N 0.000 description 1
- PCBMVQBBBGFXLZ-UHFFFAOYSA-N [dimethoxy(methyl)silyl]oxymethyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)OCOC(=O)C(C)=C PCBMVQBBBGFXLZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- AKLQYXXZIRUMJH-UHFFFAOYSA-N aluminum barium(2+) silicate Chemical compound [Al+3].[Ba+2].[O-][Si]([O-])([O-])[O-] AKLQYXXZIRUMJH-UHFFFAOYSA-N 0.000 description 1
- CGCZDCZOEJDHFY-UHFFFAOYSA-N aluminum strontium silicate Chemical compound [Si]([O-])([O-])([O-])[O-].[Al+3].[Sr+2] CGCZDCZOEJDHFY-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- PIPBVABVQJZSAB-UHFFFAOYSA-N bis(ethenyl) benzene-1,2-dicarboxylate Chemical compound C=COC(=O)C1=CC=CC=C1C(=O)OC=C PIPBVABVQJZSAB-UHFFFAOYSA-N 0.000 description 1
- AJCHRUXIDGEWDK-UHFFFAOYSA-N bis(ethenyl) butanedioate Chemical compound C=COC(=O)CCC(=O)OC=C AJCHRUXIDGEWDK-UHFFFAOYSA-N 0.000 description 1
- JZQAAQZDDMEFGZ-UHFFFAOYSA-N bis(ethenyl) hexanedioate Chemical compound C=COC(=O)CCCCC(=O)OC=C JZQAAQZDDMEFGZ-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 239000005548 dental material Substances 0.000 description 1
- DCFSWWRUEHGVDF-UHFFFAOYSA-N dibenzoylgermanium Chemical class C=1C=CC=CC=1C(=O)[Ge]C(=O)C1=CC=CC=C1 DCFSWWRUEHGVDF-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- XZSZONUJSGDIFI-UHFFFAOYSA-N n-(4-hydroxyphenyl)-2-methylprop-2-enamide Chemical group CC(=C)C(=O)NC1=CC=C(O)C=C1 XZSZONUJSGDIFI-UHFFFAOYSA-N 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- UZIAQVMNAXPCJQ-UHFFFAOYSA-N triethoxysilylmethyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)COC(=O)C(C)=C UZIAQVMNAXPCJQ-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XASAPYQVQBKMIN-UHFFFAOYSA-K ytterbium(iii) fluoride Chemical compound F[Yb](F)F XASAPYQVQBKMIN-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- A61C5/08—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
- A61C5/70—Tooth crowns; Making thereof
- A61C5/77—Methods or devices for making crowns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
- A61C13/087—Artificial resin teeth
-
- A61C5/10—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
- A61C5/20—Repairing attrition damage, e.g. facets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
- A61C5/70—Tooth crowns; Making thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/15—Compositions characterised by their physical properties
- A61K6/16—Refractive index
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/15—Compositions characterised by their physical properties
- A61K6/17—Particle size
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/30—Compositions for temporarily or permanently fixing teeth or palates, e.g. primers for dental adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/77—Glass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/887—Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
Definitions
- the present invention relates to dental veneers and methods of manufacturing dental veneers.
- Dental veneers are known in the art and are frequently simply called “veneers”. They usually represent cup-shaped solid bodies, which are placed as faces upon perhaps previously ground teeth and/or tooth stumps, in order to provide a discolored tooth with the desired look. Here, they generally replace the natural front of the respective tooth.
- Dental veneers are typically custom-made for a particle from a ceramic.
- First the required geometry of the dental veneer is determined via an impression of the ground tooth and/or tooth stump.
- a new dental veneer must be produced, because an adjustment to the conditions in the mouth of the patient by the dentist is not possible on site. This ultimately means that the patient must go to the dentist at least twice, until the fitting dental veneer is produced and mounted to the tooth. Additionally, this leads to the need of lab work with a considerable expense of time and money.
- the dental veneers according to the invention relate to solid bodies, which can be placed upon a tooth stump and/or tooth prepared in the manner known from prior art, in order to appropriately cover the front of a discolored tooth and optically improve it. They can be adjusted in size during a single visit to the dentist, can have an appearance that matches the natural look of human teeth, can minimize the amount of natural dental tissue that is removed preparatory to attaching the dental veneer to a person's tooth, and can have a hardness that is similar to the hardness of natural teeth.
- the disclosed dental veneers are generally made from composite materials comprising one or more types of binder and one or more types of solid particulate filler.
- the one or more types of binder comprise at least one methacrylate and the one or more types of solid particulate filler comprise solid inorganic particles.
- Fibers can also be added to the composites to add additional toughness, flexibility and durability.
- the dental veneers are made of composite, they do not have the extreme hardness of ceramic veneers (i.e., about 250 GPa) and are therefore adjustable in size.
- the hardness of the dental veneers can be similar to that of real teeth (e.g., about 17-20 GPa, preferably about 19 GPa) and be more flexible, less brittle, and more durable and tough than ceramic. This permits the disclosed veneers to be significantly thinner in cross section compared to ceramic veneers. This, in turn, permits less tooth material to be removed during preparation for receiving the veneer.
- dental veneers as disclosed herein can be adjusted in size and/or shape on site by a dentist using common dental tool and thus be adjusted to the specific tooth conditions of the patient at the time the dental veneer is applied to the tooth surface. This permits production of non-customized dental veneers that can essentially be customized to a patient while at the dental office. This eliminates the need to have customized dental veneers produced in a lab.
- the exterior surface of the dental veneer is at least partially laser-treated to form a continuously hardened and/or glazed molten layer.
- the composite from which the dental veneer is made may therefore comprise in specific regions, preferably the exposed outer surface of the dental veneer, a layer which essentially comprises only the continuously hardened or molten material of the solid particles.
- the disclosed dental veneers can have the required strength and hardness so that said tooth provided with the dental veneer can permanently perform its actual objective as a chewing tool.
- the continuously hardened and/or glazed outer layer provides greater hardness and durability than conventional composites and can better match the hardness and durability of natural tooth enamel.
- the composite veneers can also be made according to a novel molding process, described in more detail below.
- the mold used to make the composite veneers can have both transparent (e.g., glass) and non-transparent (e.g., metal) surfaces.
- the mold can be heated to promote heat curing of the composite resin within the mold.
- the transparent surface permits light curing of the composite adjacent to the transparent surface.
- Such light curing can more quickly cure the composite adjacent to the transparent surface, which advantageously causes more polymerization shrinkage of the composite adjacent to the transparent surface adjacent to the transparent surface. This, in turn, draws the solid filler particles closer together and increases their density prior to laser treatment.
- the high pressure within the molds can further condense and consolidate the composite material together to increase composite density, strength, durability, glossiness, and other desired properties.
- the disclosed dental veneers can be less hard and brittle and have increased toughness compared to conventional ceramic veneers. This permits the dental veneers to advantageously have a thinner profile so that less of the patient's natural tooth tissue needs to be removed preparatory to attaching the veneer.
- the disclosed dental veneers can be more easily adjusted to fit a patient's tooth or teeth, such as by means of a cutting or grinding tool.
- the disclosed dental veneers can be altered, either before or after placement over a patient's teeth, to have a slightly irregular surface, such as by means of a grinding tool. In this way, they can have a more natural appearance compared to ceramic veneers, which can have an artificial appearance as a result of having a perfectly regular surface.
- FIGS. 1-3 are frontal views illustrating exemplary dental veneers for teeth of the upper jaw
- FIGS. 4-6 are longitudinal cross-sectional views through the exemplary dental veneers depicted in FIGS. 1-3 , respectively;
- FIGS. 7-9 are frontal views illustrating exemplary dental veneers for teeth of the lower jaw
- FIGS. 10-12 are longitudinal cross-sectional views through the exemplary dental veneers depicted in FIGS. 4-6 , respectively;
- FIG. 13 is a schematic exploded side view illustrating an exemplary application of a dental veneer to a tooth stump
- FIG. 14 is a schematic side view of the dental veneer of FIG. 13 applied to the tooth stump;
- FIG. 15 is a schematic photomicrograph of a composite used in making a dental veneer
- FIG. 16 illustrates an embodiment of an exemplary kit of dental veneers according to the invention
- FIG. 17 is a flow diagram that schematically illustrates an exemplary method for molding a dental veneer from a composite material
- FIG. 18 is a flow diagram that schematically illustrates an exemplary method for treating a surface of a composite dental veneer to form a treated exterior surface
- FIG. 19 is a schematic diagram illustrating an exemplary molding system for molding a dental veneer from a composite material.
- dental veneers made from composite materials comprising one or more types of organic binder and one or more types of solid particulate filler.
- An exterior surface of the dental veneer can be at least partially laser-treated to form a continuously hardened and/or glazed layer on the facial veneer surface.
- the composite from which the dental veneer is made may comprise at specific sections, preferably the surface of the dental veneer, a layer which consists essentially of only the glazed layer of the solid particles.
- dental veneers of this type can be processed on site by the dentist using the common tools of his/her practice and thus be adjusted to the conditions given in the patient. This eliminates the necessity of producing the dental veneers in a lab.
- the dental veneers according to the invention have solid bodies, which may be placed upon a tooth stump and/or tooth prepared in manners known in the prior art, in order to appropriately cover the front of a discolored and/or damaged tooth and optically improve it.
- dental veneers have solid bodies which are at least partially shaped in a curved cup-like fashion.
- the dental veneers according to the invention also have a required solidity and/or hardness so that said tooth provided with the dental veneer can permanently perform its actual objective as a chewing tool.
- the dental veneers comprise macro particles in a range of 50 ⁇ m to 1 mm (e.g., about 500 ⁇ m), micro particles in a range of 1 ⁇ m to 50 ⁇ m (e.g., 5 ⁇ m), and nano particles in a range of 100 nm to 1 ⁇ m (e.g., 500 nm).
- the filler In order to achieve a high packing density, particularly small grain sizes are important here, because they fill the spaces between the larger grains. In this sense it is beneficial for the filler to comprise solid particles with grain sizes ranging from about 0.01 ⁇ m to about 3 ⁇ m. Additionally, in order to achieve higher solidity, the fill level of the composite must be as high as possible, which means the proportion of filler solid particles should be as high as possible (i.e., have high particle packing density). Beneficial variants of the invention provide that the filler solid particles be at least 75% by volume, preferably at least 82% by volume, in the composite of the dental veneer.
- the filler solid particles include glass, a mixture of several types of glass, or materials made therefrom.
- the types of glass may be different in color and composition.
- the solid particles may comprise barium glass or strontium glass or mixtures thereof.
- the solid particles may comprise aluminium-fluorosilicate glass, strontium-aluminium-silicate glass, barium-aluminium-silicate glass. In general, it may relate to a surface-treated SiO 2 .
- the solid particles comprise quartz, ceramic, pyrogenic silica, precipitated silica, x-ray opaque dental glasses, ytterbium trifluoride, highly dispersed silica such as ZrO 2 , Ta 2 O 3 and TiO 2 or mixed oxides of SiO 2 , ZrO 2 and/or TiO 2 .
- the veneers according to the current invention comprise an organic binder.
- a binder comprising mono-, di- or poly-acrylates and methacrylates.
- the organic binder in the composite may be made from one or more of the following: methyl acrylate, methyl methacrylate, ethyl acrylate, isopropyl methacrylate, n-hexyl acrylate, stearyl acrylate, allyl acrylate, glycerol diacrylate, glycerol triacrylate, ethyleneglycol diacrylate, diethyleneglycol diacrylate, triethyleneglycol dimethacrylate, 1,3-propanediol diacrylate, 1,3-propanediol dimethacrylate, trimethylolpropane triacrylate, 1,2,4-butanetriol trimethacrylate, 1,4-cyclohexanediol diacrylate, pentaerythritol triacrylate
- the organic binder may contain phosphoric acid derivatives and carboxylic acid derivatives of ethylenically unsaturated monomers.
- the organic binder may comprise vinyl compounds such as styrene, diallyl phthalate, divinyl succinate, divinyl adipate and divinylphthalate.
- the disclosed dental veneers are generally made from composite materials comprising one or more types of binder and one or more types of solid particulate filler.
- the one or more types of binder comprise at least one methacrylate and the one or more types of solid particulate filler comprise solid inorganic particles.
- Fibers can also be added to the composites to add additional toughness, flexibility and durability.
- the dental veneers are made of composite, they do not have the extreme hardness of ceramic veneers (i.e., about 250 GPa) and are therefore adjustable in size.
- the hardness of the dental veneers can be similar to that of real teeth (e.g., about 17-20 GPa, preferably about 19 GPa) and be more flexible, less brittle, and more durable and tough than ceramic. This permits the disclosed veneers to be significantly thinner in cross section compared to ceramic veneers. This, in turn, permits less tooth material to be removed during preparation for receiving the veneer.
- the dental veneer comprises a standard color, which resembles the color of natural tooth enamel.
- the dental veneer is translucent and/or transparent, instead of opaque.
- color can be adjusted by using an appropriately colorized bonding material (or bonding material), which is arranged between the dental veneer and the tooth and/or tooth stump when the dental veneer is mounted and shines through the translucent dental veneer. This way the color of the veneer can be adjusted to match the color of the overall environment.
- translucency from about 28% to about 39% and/or a L-value of about 59 to about 69 and/or an a-value from about ⁇ 0.35 to about ⁇ 3.2 and/or a b-value from about ⁇ 0.4 to about ⁇ 6.95.
- Translucency relates to the light permeability, i.e. the reciprocal features of opacity.
- the values mentioned above relate to a measurement according to DIN 6174.
- the lab-color spectrum is known in prior art. It is designed based on the complementary color theory and allows one to determine a color value using color parameters and color intervals in an approximated uniform CIELAB-color range.
- the L-value, the a-value, and the b-value are also determined according to DIN 6174.
- a-axis relates to the complementary colors green and red.
- the b-axis relates to the complementary colors blue and yellow.
- the L-axis is positioned perpendicularly in reference to this level and reflects brightness.
- a dental veneer comprises a cutting edge at one of its end sections, preferably showing a thickness ranging from about 1.0 mm to about 1.3 mm. At regions outside of the cutting edge section, the dental veneer preferably has a thickness of about 0.6 mm, and/or tapers flat at its end opposite the cutting edge.
- thickness is to be understood as the wall thickness in the respective area of the dental veneer.
- One or more embodiments of the invention allow a dentist to adjust a dental veneer and/or a blank of dental veneer on site to match the geometric requirements of the tooth and/or the tooth stump of the patient.
- the dentist has the chance to select a bonding material according to its color, thereby he/she can perform the desired color matching on site.
- a particular embodiment of the invention provides a set (or kit) of several dental veneers with various sizes and/or differently shapes.
- the set (or kit) additionally comprises at least one liquid or pasty bonding material and several different dyes for coloring the bonding material.
- the set (or kit) includes several differently colored, liquid or pasty bonding materials.
- the provided bonding materials are suitable to fasten or adhere the dental veneer to a tooth and/or a tooth stump.
- the dentist can select a blank of dental veneer that most closely resembles the natural situation of the tooth or tooth stump to be treated. The remaining adjustment can then be performed by processing and/or cutting this blank on site. For this purpose, the dentist can use the cutting tools usually available. Further, the dentist can select the suitable dye and/or the appropriately colored fastening (or bonding) material, by which the dental veneer is fastened or adhered to the tooth stump and/or tooth, so that the desired coloring is achieved in the dental veneer fastened to the tooth and/or tooth stump.
- the set (or kit) may comprise at least one bonding material and several different dyes by which the bonding material is colored by the dentist.
- the set already comprises several differently colored bonding materials, in which the dye no longer needs to be mixed into the bonding material by the dentist.
- the bonding material may be pasty, i.e. mushy and/or thickly viscous.
- Organic pigments and/or the inorganic whitener TiO2 may be used as colorants to dye the bonding material.
- the bonding material preferably provided in a pasty form
- the bonding material comprises the same or similar composite as the dental veneer of the set, however still in the pasty consistency.
- the bonding means particularly provided in a liquid form, comprises the same organic binder as the dental veneer of the set, however still in a liquid form.
- the set comprises at least one adhesive agent, preferably at least two different adhesive agents, and/or at least one etchant.
- An adhesive agent serves to create a bond between the hydrophilic tooth and the hydrophobic composite of the dental veneer and/or the bonding means.
- the adhesive agent may also compensate shrinking forces of the bonding material.
- at least two different adhesive agents one of them may be used as an adhesive agent between the tooth and the bonding means, and the other adhesive agent may be used between the bonding means and the dental veneer.
- suitable adhesive agents include the products of the company Indigodental GmbH & Co. KG in Pinneberg, Germany, marked REF 2050 and REF 2051.
- the product REF 2050 may be used as an adhesive agent between the tooth stump and the bonding material. It includes methacrylated polyacrylic acid in a Bis-GMA based matrix.
- the product REF 2051 may be used as an adhesive agent between the bonding material and the dental veneer. This also relates to a Bis-GMA based methacrylate.
- the etchant is in the form of a corrosive gel, which serves to etch away the residual lubricants caused by the drill of the dentist and to expose the tubuli.
- suitable etchants include, but are not limited to, 15-37% concentrated phosphoric acid or the product REF 2052 of the above-mentioned company. It is also possible to use prepared mixtures of etchants and adhesive agents.
- the adhesive agents may include low-molecular methacrylates. Additionally, polymers showing a hydrophilic and a hydrophobic end may be used, such as methacrylated polyacrylic acid.
- the product of the company Indigodental GmbH & Co. KG in Pinneberg, Germany, available under the name REF 2061 may be used as the composite for the production of dental veneers as well as the bonding means.
- This product includes tri-ethylene glycol-dimethacrylate, urethane dimethacrylate, Bis-GMA, and ethoxylated biphenol A dimethacrylate.
- the product REF 2050 of said company, already mentioned with regards to adhesive agents, may be used as the organic binder.
- FIGS. 1-3 show various dental veneers 1 for different teeth of the upper jaw.
- FIGS. 7-9 show various teeth veneers 1 for different teeth of the lower jaw.
- Experiments have shown that it is possible to generalize the tooth shapes occurring in the majority of different patients such that a relatively small number of differently-shaped blanks of dental veneers 1 can cover almost all naturally occurring forms of teeth if the dentist on site selects the appropriate blank of the dental veneer 1 and adjusts it to the actually given tooth shape of the patient.
- This kind of onsite customization can be achieved using the dental veneer 1 according to the invention, but is difficult or impossible in the prior art.
- FIGS. 4-6 and 10 - 12 each show a longitudinal cross-section through the dental veneer 1 of the figure shown thereabove.
- Each of the dental veneers 1 shown comprises an end section 4 in the area of the cutting edge 5 .
- the cutting edge 5 directly contacts the food to be chewed in order to break it apart.
- the dental veneer 1 has its greatest thickness 6 in the end section 4 of the cutting edge 5 .
- the thickness preferably ranges from about 1 mm to about 1.3 mm.
- the dental veneers 1 shown in a longitudinal cross-section are embodied as hook-shaped or graduated, at least at the back.
- the cutting edge 5 when the dental veneer 1 is applied to the tooth stump 10 , forms the entire cutting edge of the tooth reconstructed in this manner.
- the tooth stump 10 then contacts in a form-fitting manner the free end 18 of the end section 4 , embodied hook-shaped and/or graduated as seen in the longitudinal cross-section.
- the dental veneer 1 shows a considerably thinner thickness 7 as seen in FIGS. 4-6 and 10 - 12 . Preferably, it is no thicker than about 0.6 mm. In the embodiments shown in FIGS.
- the end 8 of a veneer located opposite the cutting edge 5 tapers flat.
- the dental veneer 1 forms an overall shape that is at least partially cup-shaped.
- FIG. 13 shows, in a largely schematic fashion, a dental veneer 10 already prepared and etched.
- a first adhesive agent 12 is applied, which provides an intimate connection between the tooth stump 10 and the bonding material 9 a, b , or c .
- the bonding material is a pasty material.
- the bonding material comprises the same composite, i.e. an organic binder 2 and solid particles 3 , as the one constituting the dental veneer 1 .
- the bonding material is in a pasty consistency.
- the bonding material can be dyed in order to show through the translucent veneer and provide the desired color when finished and fastened to the tooth.
- the bonding material 9 b and 9 c preferably comprise both the organic binder 2 as well as the solid particles 3 .
- this material is relatively mushy and/or pasty as compared to more highly filled composites used to make the veneers.
- another bonding material 9 a may also be used, which comprises, in addition to the dye, exclusively the organic binder 2 or at least a lower portion of solid particles 3 .
- the bonding material 9 a in one embodiment has 60 to 70% binder by volume.
- This bonding material 9 a may comprise the same organic binder, preferably on a methacrylate basis.
- the bonding material 9 a also has the same type and mixture of solid particles but at a lower concentration than the composite of the finished dental veneer 1 .
- an adhesive agent 11 is applied between the bonding material 9 a, b , or c and the dental veneer 1 . It is particularly preferred when this represents an adhesive agent 11 different from the adhesive agent 12 . Suitable examples for adhesive agents have been described above.
- FIG. 14 shows the finished status, in which the dental veneer 1 is fastened via the bonding material 9 a, b , or c to the tooth stump 10 , with the adhesive agents 11 and 12 being interposed.
- the color pigments provided in the bonding material 9 a, b , or c can be seen through the translucent material of the dental veneer 1 and thereby provide the desired shade.
- FIG. 15 is a schematic enlargement of the composite material of the dental veneer 1 .
- the various solid particles 3 are intimately connected to each other via the organic binder 2 .
- methacrylate-based resins are used as organic binders. Examples of a suitable organic binder 2 have been mentioned above.
- the solid particles 3 preferably comprise a glass mixture with solid particles 3 of different grain sizes. In this manner, the composite material may achieve a higher density (e.g., mass density and/or particle packing density), which leads to higher strength, stability, and resistance to abrasion.
- the solid particles 3 in the dental veneer 1 amounts to at least 75% by volume, and more preferably at least 82% by volume.
- preferred embodiments of the invention provide that the grain sizes of at least a portion of the solid particles 3 range from about 0.01 and about 1 mm, preferably from about 0.1 ⁇ m to about 500 ⁇ m.
- FIG. 16 shows schematically a dental set with several differently sized dental veneers 1 and adjuvants.
- the dental set according to FIG. 16 comprises various sets of differently sized and shaped dental veneers 1 .
- the dental set may include veneer sets of different shapes, each shape having two different sizes. The difference in size between two closest sizes is preferably about 10%.
- the dentist can select the best matching veneer for the respective tooth of the patient and then perform detailed adjustment by an appropriate cutting on site.
- the set according to FIG. 16 comprises various forms 15 for matching tooth size, by which the optimally pre-shaped dental veneer 1 can be selected in a simple fashion.
- the dental set according to FIG. 16 also comprises different bonding materials 9 a, b , and c .
- the bonding material 9 a is used when the purpose is to fill very small hollow spaces with bonding material.
- the bonding material 9 a comprises an organic binder 2 , which may be contained in and dispensed by different syringes and can be variously dyed.
- the bonding material 9 a may comprise a minor proportion of solid particles 3 , preferably in the above-mentioned concentration (i.e., about 60-70% binder and about 30-40% filler).
- the bonding material 9 a may essentially be equivalent to the organic binder 2 , from which the composite of the dental veneer 1 of this set is made.
- it may include an additional small portion of solid particles 3 .
- the bonding materials 9 b and 9 c represent differently dyed pasty bonding materials. Preferably, they comprise the composite of the dental veneer 1 in a not yet cured consistency.
- the bonding materials 9 b and 9 c therefore comprise both the organic binder 2 as well as the solid particles 3 .
- the dentist can select the appropriately dyed bonding material 9 a, b , or c and use it in the manner indicated in FIGS. 13 and 14 to fasten or bond the dental veneer 1 to the tooth stump 10 .
- the bonding materials 9 c are provided for such cases in which natural tooth enamel remains at the tooth stump 10 .
- the dyes selected here may therefore be very light.
- the various bonding materials 9 b are provided in case the tooth enamel has completely been removed from the tooth stump 10 and more intense dyes can be used to achieve the desired result.
- the dental set (or kit) according to FIG. 16 may also comprise application syringes 16 , which serve to apply the bonding material 9 a, b , and/or c upon the tooth stump 10 .
- Elements 11 and 12 are two different adhesive agents, which can be used as shown schematically in FIG. 13 .
- the set according to FIG. 16 comprises an etchant 13 , which can be used to etch away any layer of lubricants caused by the prior processing of the tooth stump 10 before the respective adhesive agent 11 and/or 12 is applied and to expose the tubuli and/or tooth stumps and/or teeth.
- an etch/adhesion means 17 is provided, which represents a combination of etchant and adhesive agent. Preferred embodiments of appropriate sets are offered in the respective containers. Of course, the allocation of the compartments and the content are only shown as examples and schematically in FIG. 16 .
- FIG. 17 is a flow diagram that schematically illustrates an embodiment if a general process 170 for manufacturing veneers according to the invention.
- the first step 172 includes molding a composite material into a shape for attachment to a prepared tooth surface.
- the composite material may be s disclosed above and comprises at least an organic binder and solid filler particles.
- the next step 174 includes at least partially hardening or curing the composite material.
- a third step 176 includes treating a portion of the at least partially hardened or cured composite material to form an exterior surface.
- the exterior surface from this treatment comprises solid filler particles that have been continuously hardened and/or melted together to form a hardened glassy surface.
- FIG. 18 is a flow diagram that schematically illustrates an embodiment of an exemplary process 180 for molding and treating a dental veneer, which is expanded from the process 170 shown in FIG. 17 .
- the composite comprising the organic binder 2 and the solid particles 3 is first injected into a cartridge.
- the composite is heated to an appropriate temperature (e.g., approximately 100° C.), which softens the composite for processing and molding.
- the composite may also be pressurized to a pressure between about 80-100 bars.
- the composite in injected through a thin tube into a mold having the desired size and shape.
- step 184 After the composite material is injected into the mold, in step 184 it is heated to an appropriate temperature (e.g., about 130° C.) and maintained at the temperature, the heating lasting for about 15 minutes to thermally cure the composite material.
- step 185 during at least a portion of the duration of the heat curing process (e.g., the first 10 minutes or so of the about 15 minutes of thermal curing), light curing of the composite is performed on the facial surface of the veneer by shining light through a transparent side of the mold with a suitable LED light.
- the suitable LED light is characterized, for example, by a wavelength from about 450 nanometers (nm) to about 480 nm. This curing step combines high pressure, heat, and light.
- the transparent side of the mold permits the curing light to pass through the mold to cure the facial side of the tooth veneer, which improves the surface properties of the veneer by causing polymerization shrinkage in the composite material facing the light. This shrinkage causes particles to become closer together on the facial surface of the veneer. Meanwhile, heating and high-pressure condense and consolidate particles together, resulting in high composite density throughout the dental veneer 1 .
- the composite may comprise one or more photo initiators to facilitate the light curing process.
- suitable photo initiators include benzophenone, benzoin and derivatives thereof and a-diketones and derivatives thereof, such as 9,10-phenanthrenequinone, 1-phenyl-propan-1,2-dione, diacetyl and 4,4-dichlorobenzil.
- 4-(dimethylamino)-benzoic acid esters N,N-dimethylaminoethylmethacrylate, N,N-dimethyl-sym.-xylidine or triethanolamine, as well as monobenzoyl- or dibenzoyl germanium derivatives, are preferably used.
- one or more heat initiators may be added to the composite in an embodiment of the invention.
- Benzopinacol and 2,2′-dialkylbenzopinacols are suitable as initiators for thermal curing.
- the blank of the dental veneer 1 is subsequently cooled and removed from the tooth mold, as illustrated.
- the veneer is placed in a compartment with N 2 gas, which prevents oxidation or burning of the organic binder.
- the facial area and/or the surface of the dental veneer 1 is then subjected to a laser treatment, wherein the laser is applied the facial surface of the veneer, entering the surface by about 80 ⁇ m and sintering the solid particles about 80 ⁇ m deep from other facial surface.
- the organic binder 2 is inhibited and/or removed from the surface of the dental veneer 1 , and interstitial polymers are removed by vaporization.
- this layer is provable by a cross-section through the dental veneer 1 and preferably has a thickness ranging from about 10 to about 20 ⁇ m.
- FIG. 19 schematically illustrates an example of a dental veneer mold system 190 according to the invention, wherein a mold 196 is connected through a thin tube 194 to a cartridge 192 containing a composite material pressurized by a pump 191 .
- the cartridge 192 is illustrated as a box in FIG. 19 , it can be embodied in various shapes and sizes known in the art.
- the tooth veneer mold 196 may have various sizes, shapes, and configurations while effectively implementing the underlying principles of the current invention.
- the pressurizing pump 191 is illustrated as exterior to the cartridge 192 , one skilled in the art understands that the pressurizing mechanism may be configured differently, either external or internal to the cartridge 192 .
- the mold 196 is transparent on the side 198 shaping the facial surface 199 of the dental veneer 1 .
- the transparent side 198 of the mold 196 allows for light curing of the composite at the facial surface 199 , and can be made of transparent materials such as inorganic or organic glasses. Because the composite material is also heated in the mold 196 for thermal curing, heat tolerant transparent material are suitable for making the mold 196 .
- the opaque sides 197 of the mold 196 may be made of metals such as chromium-steel.
- a filler according to the invention based on a silanized glass in order to improve the mechanical properties of the cured dental material.
- silanization used herein means the functionalization of the glass surface with polymerizable silanes, such as by reaction with (meth)acrylate-functionalized silanes, e.g.
- (meth)acryloyloxyalkyl-trialkoxysilanes usually 3-(methacryloyloxy)propyl-trimethoxy-silane, 3-(methacryloyloxy)-propyltriethoxysilane, 3-(methacryloyloxy)-propyltrichlorosilane, methacryloyloxy-methyltrimethoxysilane, methacryloyloxymethyltriethoxysilane, 3-(methacryloyloxy)-propylmethyldichlorosilane or 3-(meth-acryl-oyloxy)propylmethyldimethoxy silane.
- silanes 3-(Methacryloyloxy)-propyltrimethoxysilane is preferred.
- the silanization of the glasses takes place in conventional manner and is known to a person skilled in the art. Although it may be preferably to silanize all the filler particles, it may be desirable to not silanize nano-sized particles to prevent or minimize agglomeration.
- barium and/or strontium glass powder may be applied to coat the surface of the veneer during laser treatment.
- the veneer has a heat cured composite base covered by a laser vitrified composite layer, which is covered by a barium and strontium glass layer.
- the final processing may include, but are not limited to, cutting the veneer to achieve correct size and shape, grinding and/or smoothing edges and surface, and creating minute surface texture to achieve a realistic look instead of a perfectly uniform but fake look.
- the dental veneer 1 via laser from a block of composite material, which causes the cured and/or glazed molten layer to form automatically at the surface of the dental veneer 1 .
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Dentistry (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Dental Preparations (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Dental Prosthetics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Abstract
A dental veneer made from a composite comprising at least one organic binder, preferably with methacrylate, and inorganic solid particles as fillers. Methods for manufacturing the dental veneer include curing the composite with heat and light under pressure followed by laser treating the facial surface of the veneer to form a smoother facial surface. Filler particles at the facial surface of the veneer can be melted and/or coalesced together to form a continuous glass surface, which is more natural looking and better resembles natural tooth material as compared to ceramic veneers or other composited veneers lacking surface treatment.
Description
- This application is a continuation-in-part of International Patent Application No. PCT/AT2011/000285, filed Jun. 29, 2011, entitled “TOOTH FRONT VENEER,” which claims the benefit of Austria Patent Application No. A 1124/2010, filed Jul. 2, 2010. The disclosure of the foregoing applications are incorporated herein in their entirety.
- 1. Field of Invention
- The present invention relates to dental veneers and methods of manufacturing dental veneers.
- 2. Technology Review
- Dental veneers are known in the art and are frequently simply called “veneers”. They usually represent cup-shaped solid bodies, which are placed as faces upon perhaps previously ground teeth and/or tooth stumps, in order to provide a discolored tooth with the desired look. Here, they generally replace the natural front of the respective tooth.
- Dental veneers are typically custom-made for a particle from a ceramic. First the required geometry of the dental veneer is determined via an impression of the ground tooth and/or tooth stump. Second, based on this information, the customized ceramic dental veneer is produced in the lab. Third, the dentist must then mount this dental veneer onto the tooth and/or tooth stump. In the event the dental veneer was not produced with sufficient diligence, a new dental veneer must be produced, because an adjustment to the conditions in the mouth of the patient by the dentist is not possible on site. This ultimately means that the patient must go to the dentist at least twice, until the fitting dental veneer is produced and mounted to the tooth. Additionally, this leads to the need of lab work with a considerable expense of time and money.
- Disclosed herein are dental veneers and methods of making and using such dental veneers. The dental veneers according to the invention relate to solid bodies, which can be placed upon a tooth stump and/or tooth prepared in the manner known from prior art, in order to appropriately cover the front of a discolored tooth and optically improve it. They can be adjusted in size during a single visit to the dentist, can have an appearance that matches the natural look of human teeth, can minimize the amount of natural dental tissue that is removed preparatory to attaching the dental veneer to a person's tooth, and can have a hardness that is similar to the hardness of natural teeth.
- The disclosed dental veneers are generally made from composite materials comprising one or more types of binder and one or more types of solid particulate filler. According to one embodiment, the one or more types of binder comprise at least one methacrylate and the one or more types of solid particulate filler comprise solid inorganic particles. Fibers can also be added to the composites to add additional toughness, flexibility and durability. Because the dental veneers are made of composite, they do not have the extreme hardness of ceramic veneers (i.e., about 250 GPa) and are therefore adjustable in size. The hardness of the dental veneers can be similar to that of real teeth (e.g., about 17-20 GPa, preferably about 19 GPa) and be more flexible, less brittle, and more durable and tough than ceramic. This permits the disclosed veneers to be significantly thinner in cross section compared to ceramic veneers. This, in turn, permits less tooth material to be removed during preparation for receiving the veneer.
- With regards to their exact size and/or shape, dental veneers as disclosed herein can be adjusted in size and/or shape on site by a dentist using common dental tool and thus be adjusted to the specific tooth conditions of the patient at the time the dental veneer is applied to the tooth surface. This permits production of non-customized dental veneers that can essentially be customized to a patient while at the dental office. This eliminates the need to have customized dental veneers produced in a lab.
- According to one embodiment, the exterior surface of the dental veneer is at least partially laser-treated to form a continuously hardened and/or glazed molten layer. The composite from which the dental veneer is made may therefore comprise in specific regions, preferably the exposed outer surface of the dental veneer, a layer which essentially comprises only the continuously hardened or molten material of the solid particles. This yields a dental veneer having a smoother, more glossy exterior finish that is better able to match the look of natural tooth enamel compared to ordinary composite materials used to fill or repair teeth. In addition, and primarily due to the solid particles used as fillers, the disclosed dental veneers can have the required strength and hardness so that said tooth provided with the dental veneer can permanently perform its actual objective as a chewing tool. Moreover, the continuously hardened and/or glazed outer layer provides greater hardness and durability than conventional composites and can better match the hardness and durability of natural tooth enamel.
- The composite veneers can also be made according to a novel molding process, described in more detail below. According to one embodiment, the mold used to make the composite veneers can have both transparent (e.g., glass) and non-transparent (e.g., metal) surfaces. The mold can be heated to promote heat curing of the composite resin within the mold. In addition, the transparent surface permits light curing of the composite adjacent to the transparent surface. Such light curing can more quickly cure the composite adjacent to the transparent surface, which advantageously causes more polymerization shrinkage of the composite adjacent to the transparent surface adjacent to the transparent surface. This, in turn, draws the solid filler particles closer together and increases their density prior to laser treatment. The high pressure within the molds can further condense and consolidate the composite material together to increase composite density, strength, durability, glossiness, and other desired properties.
- The disclosed dental veneers can be less hard and brittle and have increased toughness compared to conventional ceramic veneers. This permits the dental veneers to advantageously have a thinner profile so that less of the patient's natural tooth tissue needs to be removed preparatory to attaching the veneer. In addition, because they are not as hard as ceramic veneers, the disclosed dental veneers can be more easily adjusted to fit a patient's tooth or teeth, such as by means of a cutting or grinding tool. In addition, because natural tooth surfaces are not always perfectly dimensioned, the disclosed dental veneers can be altered, either before or after placement over a patient's teeth, to have a slightly irregular surface, such as by means of a grinding tool. In this way, they can have a more natural appearance compared to ceramic veneers, which can have an artificial appearance as a result of having a perfectly regular surface.
- These and other advantages and features of the invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
- In order that the manner in which the above recited and other benefits, advantages and features of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. The following drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope:
-
FIGS. 1-3 are frontal views illustrating exemplary dental veneers for teeth of the upper jaw; -
FIGS. 4-6 are longitudinal cross-sectional views through the exemplary dental veneers depicted inFIGS. 1-3 , respectively; -
FIGS. 7-9 are frontal views illustrating exemplary dental veneers for teeth of the lower jaw; -
FIGS. 10-12 are longitudinal cross-sectional views through the exemplary dental veneers depicted inFIGS. 4-6 , respectively; -
FIG. 13 is a schematic exploded side view illustrating an exemplary application of a dental veneer to a tooth stump; -
FIG. 14 is a schematic side view of the dental veneer ofFIG. 13 applied to the tooth stump; -
FIG. 15 is a schematic photomicrograph of a composite used in making a dental veneer; -
FIG. 16 illustrates an embodiment of an exemplary kit of dental veneers according to the invention; -
FIG. 17 is a flow diagram that schematically illustrates an exemplary method for molding a dental veneer from a composite material; -
FIG. 18 is a flow diagram that schematically illustrates an exemplary method for treating a surface of a composite dental veneer to form a treated exterior surface; and -
FIG. 19 is a schematic diagram illustrating an exemplary molding system for molding a dental veneer from a composite material. - Disclosed herein are dental veneers made from composite materials comprising one or more types of organic binder and one or more types of solid particulate filler. An exterior surface of the dental veneer can be at least partially laser-treated to form a continuously hardened and/or glazed layer on the facial veneer surface. The composite from which the dental veneer is made may comprise at specific sections, preferably the surface of the dental veneer, a layer which consists essentially of only the glazed layer of the solid particles.
- With regards to their shape, dental veneers of this type can be processed on site by the dentist using the common tools of his/her practice and thus be adjusted to the conditions given in the patient. This eliminates the necessity of producing the dental veneers in a lab.
- Similar to prior veneers, the dental veneers according to the invention have solid bodies, which may be placed upon a tooth stump and/or tooth prepared in manners known in the prior art, in order to appropriately cover the front of a discolored and/or damaged tooth and optically improve it. In one or more embodiments of the invention, dental veneers have solid bodies which are at least partially shaped in a curved cup-like fashion. Primarily due to the solid particles used as fillers, the dental veneers according to the invention also have a required solidity and/or hardness so that said tooth provided with the dental veneer can permanently perform its actual objective as a chewing tool.
- In order to achieve high solidity of the dental veneer it is beneficial to arrange the solid particles of the filler packed as densely as possible in the dental veneer. For this purpose it is beneficial for the filler to comprise solid particles with grain sizes different from each other. In one or more embodiments of the invention, the dental veneers comprise macro particles in a range of 50 μm to 1 mm (e.g., about 500 μm), micro particles in a range of 1 μm to 50 μm (e.g., 5 μm), and nano particles in a range of 100 nm to 1 μm (e.g., 500 nm).
- In order to achieve a high packing density, particularly small grain sizes are important here, because they fill the spaces between the larger grains. In this sense it is beneficial for the filler to comprise solid particles with grain sizes ranging from about 0.01 μm to about 3 μm. Additionally, in order to achieve higher solidity, the fill level of the composite must be as high as possible, which means the proportion of filler solid particles should be as high as possible (i.e., have high particle packing density). Beneficial variants of the invention provide that the filler solid particles be at least 75% by volume, preferably at least 82% by volume, in the composite of the dental veneer.
- In one or more embodiments of the invention, the filler solid particles include glass, a mixture of several types of glass, or materials made therefrom. The types of glass may be different in color and composition. In one or more embodiments, the solid particles may comprise barium glass or strontium glass or mixtures thereof. In other embodiments, the solid particles may comprise aluminium-fluorosilicate glass, strontium-aluminium-silicate glass, barium-aluminium-silicate glass. In general, it may relate to a surface-treated SiO2. In alternative embodiments of the current invention, the solid particles comprise quartz, ceramic, pyrogenic silica, precipitated silica, x-ray opaque dental glasses, ytterbium trifluoride, highly dispersed silica such as ZrO2, Ta2O3 and TiO2 or mixed oxides of SiO2, ZrO2 and/or TiO2.
- The veneers according to the current invention comprise an organic binder. One or more embodiments of the invention use a binder comprising mono-, di- or poly-acrylates and methacrylates. For instance, the organic binder in the composite may be made from one or more of the following: methyl acrylate, methyl methacrylate, ethyl acrylate, isopropyl methacrylate, n-hexyl acrylate, stearyl acrylate, allyl acrylate, glycerol diacrylate, glycerol triacrylate, ethyleneglycol diacrylate, diethyleneglycol diacrylate, triethyleneglycol dimethacrylate, 1,3-propanediol diacrylate, 1,3-propanediol dimethacrylate, trimethylolpropane triacrylate, 1,2,4-butanetriol trimethacrylate, 1,4-cyclohexanediol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, sorbitol hexacrylate, trishydroxyethyl-isocyanurate trimethacrylate, 4,4′-(4,4′-isopropylidene diphenoxy)-bis(hydroxyethyl methacrylate phthalate) (BPDP), bis glycerol dimethacrylate phosphate, b is 2-hydroxy ethyl methacrylate phosphate, p-hydroxyphenyl methacrylamide, 3-hydroxy propyl methacrylate, 4-hydroxy butyl methacrylate, triethylene glycol dimethacrylate (TEG-DMA), alkylhydroxy methacrylates, alkylamino methacrylates, urethane dimethacrylate (UDMA), butane diol dimethacrylate, and bisphenol-A-diglycidyl dimethacrylate (Bis-GMA), diurethane dimethacrylate (DUDMA), hydroxyethyl methacrylate (HEMA), methacrylic acid, and/or glycerol di-methacrylate (GDMA), mono-2-(methacryloyloxy)ethyl succinate (HEMA Succinate), hydroxypropylmethacrylate (HPMA), the bis-acrylates and bis-methacrylates of polyethylene glycols of molecular weight 200-500, copolymerizable mixtures of acrylated monomers, and copolymerizable acrylated oligomers, and the like.
- In one or more embodiments of the invention, the organic binder may contain phosphoric acid derivatives and carboxylic acid derivatives of ethylenically unsaturated monomers. In alternative embodiments, the organic binder may comprise vinyl compounds such as styrene, diallyl phthalate, divinyl succinate, divinyl adipate and divinylphthalate.
- The disclosed dental veneers are generally made from composite materials comprising one or more types of binder and one or more types of solid particulate filler. According to one embodiment, the one or more types of binder comprise at least one methacrylate and the one or more types of solid particulate filler comprise solid inorganic particles. Fibers can also be added to the composites to add additional toughness, flexibility and durability. Because the dental veneers are made of composite, they do not have the extreme hardness of ceramic veneers (i.e., about 250 GPa) and are therefore adjustable in size. The hardness of the dental veneers can be similar to that of real teeth (e.g., about 17-20 GPa, preferably about 19 GPa) and be more flexible, less brittle, and more durable and tough than ceramic. This permits the disclosed veneers to be significantly thinner in cross section compared to ceramic veneers. This, in turn, permits less tooth material to be removed during preparation for receiving the veneer.
- An important objective when mounting dental veneers to teeth and/or tooth stumps is to control the coloring of the veneered tooth such that the conditions in the mouth of the patient are matched, i.e. the color of the veneered tooth is adjusted to the same color as adjacent teeth. In one or more embodiments of the invention, the dental veneer comprises a standard color, which resembles the color of natural tooth enamel. In other embodiments of the invention, the dental veneer is translucent and/or transparent, instead of opaque. In these embodiments, color can be adjusted by using an appropriately colorized bonding material (or bonding material), which is arranged between the dental veneer and the tooth and/or tooth stump when the dental veneer is mounted and shines through the translucent dental veneer. This way the color of the veneer can be adjusted to match the color of the overall environment. Examinations have shown that dental veneer with the following quality are preferable: translucency from about 28% to about 39% and/or a L-value of about 59 to about 69 and/or an a-value from about −0.35 to about −3.2 and/or a b-value from about −0.4 to about −6.95. Translucency relates to the light permeability, i.e. the reciprocal features of opacity. The values mentioned above relate to a measurement according to DIN 6174. The lab-color spectrum is known in prior art. It is designed based on the complementary color theory and allows one to determine a color value using color parameters and color intervals in an approximated uniform CIELAB-color range. The L-value, the a-value, and the b-value are also determined according to DIN 6174. When applying the complementary color theory, a-axis relates to the complementary colors green and red. The b-axis relates to the complementary colors blue and yellow. The L-axis is positioned perpendicularly in reference to this level and reflects brightness.
- Based on its high solidity, the dental veneers implemented according to the invention may be made relatively thin. In one or more preferred embodiments of the invention, a dental veneer comprises a cutting edge at one of its end sections, preferably showing a thickness ranging from about 1.0 mm to about 1.3 mm. At regions outside of the cutting edge section, the dental veneer preferably has a thickness of about 0.6 mm, and/or tapers flat at its end opposite the cutting edge. Here, thickness is to be understood as the wall thickness in the respective area of the dental veneer.
- One or more embodiments of the invention allow a dentist to adjust a dental veneer and/or a blank of dental veneer on site to match the geometric requirements of the tooth and/or the tooth stump of the patient. In one or more embodiments of the invention, the dentist has the chance to select a bonding material according to its color, thereby he/she can perform the desired color matching on site. A particular embodiment of the invention provides a set (or kit) of several dental veneers with various sizes and/or differently shapes. The set (or kit) additionally comprises at least one liquid or pasty bonding material and several different dyes for coloring the bonding material. In an alternative embodiment, the set (or kit) includes several differently colored, liquid or pasty bonding materials. The provided bonding materials are suitable to fasten or adhere the dental veneer to a tooth and/or a tooth stump.
- Having a set of dental veneers as noted above allows the dentist to select a blank of dental veneer that most closely resembles the natural situation of the tooth or tooth stump to be treated. The remaining adjustment can then be performed by processing and/or cutting this blank on site. For this purpose, the dentist can use the cutting tools usually available. Further, the dentist can select the suitable dye and/or the appropriately colored fastening (or bonding) material, by which the dental veneer is fastened or adhered to the tooth stump and/or tooth, so that the desired coloring is achieved in the dental veneer fastened to the tooth and/or tooth stump. In one or more embodiments, the set (or kit) may comprise at least one bonding material and several different dyes by which the bonding material is colored by the dentist. In other embodiments, the set already comprises several differently colored bonding materials, in which the dye no longer needs to be mixed into the bonding material by the dentist. The bonding material may be pasty, i.e. mushy and/or thickly viscous. Organic pigments and/or the inorganic whitener TiO2 may be used as colorants to dye the bonding material.
- In order to allow processing smaller fissures it is also possible to provide a liquid bonding material in the set. Particularly preferred embodiments of the set according to the invention provide that the bonding material, preferably provided in a pasty form, comprises the same or similar composite as the dental veneer of the set, however still in the pasty consistency. Further, it is beneficial when the bonding means, particularly provided in a liquid form, comprises the same organic binder as the dental veneer of the set, however still in a liquid form.
- Advantageous embodiments of the set according to the invention additionally provide that the set comprises at least one adhesive agent, preferably at least two different adhesive agents, and/or at least one etchant. An adhesive agent serves to create a bond between the hydrophilic tooth and the hydrophobic composite of the dental veneer and/or the bonding means. In a prefer embodiment, the adhesive agent may also compensate shrinking forces of the bonding material. When at least two different adhesive agents are provided, one of them may be used as an adhesive agent between the tooth and the bonding means, and the other adhesive agent may be used between the bonding means and the dental veneer. Non-limiting examples of suitable adhesive agents include the products of the company Indigodental GmbH & Co. KG in Pinneberg, Germany, marked REF 2050 and REF 2051. The product REF 2050 may be used as an adhesive agent between the tooth stump and the bonding material. It includes methacrylated polyacrylic acid in a Bis-GMA based matrix. The product REF 2051 may be used as an adhesive agent between the bonding material and the dental veneer. This also relates to a Bis-GMA based methacrylate.
- In one or more embodiments, the etchant is in the form of a corrosive gel, which serves to etch away the residual lubricants caused by the drill of the dentist and to expose the tubuli. Examples of suitable etchants include, but are not limited to, 15-37% concentrated phosphoric acid or the product REF 2052 of the above-mentioned company. It is also possible to use prepared mixtures of etchants and adhesive agents. Generally, the adhesive agents may include low-molecular methacrylates. Additionally, polymers showing a hydrophilic and a hydrophobic end may be used, such as methacrylated polyacrylic acid.
- For example, the product of the company Indigodental GmbH & Co. KG in Pinneberg, Germany, available under the name REF 2061, may be used as the composite for the production of dental veneers as well as the bonding means. This product includes tri-ethylene glycol-dimethacrylate, urethane dimethacrylate, Bis-GMA, and ethoxylated biphenol A dimethacrylate. The product REF 2050 of said company, already mentioned with regards to adhesive agents, may be used as the organic binder.
- Reference is now made to the drawings.
FIGS. 1-3 show variousdental veneers 1 for different teeth of the upper jaw.FIGS. 7-9 showvarious teeth veneers 1 for different teeth of the lower jaw. Experiments have shown that it is possible to generalize the tooth shapes occurring in the majority of different patients such that a relatively small number of differently-shaped blanks ofdental veneers 1 can cover almost all naturally occurring forms of teeth if the dentist on site selects the appropriate blank of thedental veneer 1 and adjusts it to the actually given tooth shape of the patient. This kind of onsite customization can be achieved using thedental veneer 1 according to the invention, but is difficult or impossible in the prior art. - Accordingly, a relatively small number of sets of blanks is sufficient in practice. In one embodiment, they may be offered in three different size levels for the upper jaw and two different size levels for the lower jaw.
FIGS. 4-6 and 10-12 each show a longitudinal cross-section through thedental veneer 1 of the figure shown thereabove. Each of thedental veneers 1 shown comprises anend section 4 in the area of thecutting edge 5. Here, when chewing, thecutting edge 5 directly contacts the food to be chewed in order to break it apart. As particularly discernible in the longitudinal cross-sections according toFIGS. 4-6 and 10-12, thedental veneer 1 has itsgreatest thickness 6 in theend section 4 of thecutting edge 5. The thickness preferably ranges from about 1 mm to about 1.3 mm. - In the
end section 4, thedental veneers 1 shown in a longitudinal cross-section are embodied as hook-shaped or graduated, at least at the back. In this configuration, thecutting edge 5, when thedental veneer 1 is applied to thetooth stump 10, forms the entire cutting edge of the tooth reconstructed in this manner. As is discernible inFIG. 14 , thetooth stump 10 then contacts in a form-fitting manner thefree end 18 of theend section 4, embodied hook-shaped and/or graduated as seen in the longitudinal cross-section. Outside theend section 4, thedental veneer 1 shows a considerablythinner thickness 7 as seen inFIGS. 4-6 and 10-12. Preferably, it is no thicker than about 0.6 mm. In the embodiments shown inFIGS. 4-6 and 10-12, theend 8 of a veneer located opposite thecutting edge 5 tapers flat. In one of more embodiments of the invention as seen inFIGS. 1-3 and 7-9, thedental veneer 1 forms an overall shape that is at least partially cup-shaped. -
FIG. 13 shows, in a largely schematic fashion, adental veneer 10 already prepared and etched. Initially, a firstadhesive agent 12 is applied, which provides an intimate connection between thetooth stump 10 and thebonding material 9 a, b, or c. Preferably the bonding material is a pasty material. In one or more embodiments, the bonding material comprises the same composite, i.e. anorganic binder 2 andsolid particles 3, as the one constituting thedental veneer 1. However the bonding material is in a pasty consistency. Additionally, the bonding material can be dyed in order to show through the translucent veneer and provide the desired color when finished and fastened to the tooth. - For a large-area bonding, the
bonding material organic binder 2 as well as thesolid particles 3. However, this material is relatively mushy and/or pasty as compared to more highly filled composites used to make the veneers. In order to allow the processing of very delicate surface structures, instead of thisbonding material bonding material 9 a may also be used, which comprises, in addition to the dye, exclusively theorganic binder 2 or at least a lower portion ofsolid particles 3. For instance, thebonding material 9 a in one embodiment has 60 to 70% binder by volume. Thisbonding material 9 a may comprise the same organic binder, preferably on a methacrylate basis. Thebonding material 9 a also has the same type and mixture of solid particles but at a lower concentration than the composite of the finisheddental veneer 1. - In one or more preferred embodiment, an
adhesive agent 11 is applied between thebonding material 9 a, b, or c and thedental veneer 1. It is particularly preferred when this represents anadhesive agent 11 different from theadhesive agent 12. Suitable examples for adhesive agents have been described above. -
FIG. 14 shows the finished status, in which thedental veneer 1 is fastened via thebonding material 9 a, b, or c to thetooth stump 10, with theadhesive agents bonding material 9 a, b, or c can be seen through the translucent material of thedental veneer 1 and thereby provide the desired shade. -
FIG. 15 is a schematic enlargement of the composite material of thedental veneer 1. The varioussolid particles 3 are intimately connected to each other via theorganic binder 2. Preferably methacrylate-based resins are used as organic binders. Examples of a suitableorganic binder 2 have been mentioned above. Thesolid particles 3 preferably comprise a glass mixture withsolid particles 3 of different grain sizes. In this manner, the composite material may achieve a higher density (e.g., mass density and/or particle packing density), which leads to higher strength, stability, and resistance to abrasion. Preferably, thesolid particles 3 in thedental veneer 1 amounts to at least 75% by volume, and more preferably at least 82% by volume. In order to allow filling the gaps between the relatively large grains as best as possible, preferred embodiments of the invention provide that the grain sizes of at least a portion of thesolid particles 3 range from about 0.01 and about 1 mm, preferably from about 0.1 μm to about 500 μm. - One aspect of the invention relates to a dental set that allow a dentist to adjust and mount the
dental veneer 1 to thetooth stump 10 during a single treatment session.FIG. 16 shows schematically a dental set with several differently sizeddental veneers 1 and adjuvants. The dental set according toFIG. 16 comprises various sets of differently sized and shapeddental veneers 1. In one exemplary embodiment, there is one set ofdental veneers 1 for the teeth of the upper jaw in three different sizes. For the lower jaw, the dental set may include veneer sets of different shapes, each shape having two different sizes. The difference in size between two closest sizes is preferably about 10%. From this supply ofdental veneers 1, the dentist can select the best matching veneer for the respective tooth of the patient and then perform detailed adjustment by an appropriate cutting on site. In order to facilitate the selection of the correctdental veneer 1 by the dentistm the set according toFIG. 16 comprisesvarious forms 15 for matching tooth size, by which the optimally pre-shapeddental veneer 1 can be selected in a simple fashion. - In addition to the
dental veneers 1, the dental set according toFIG. 16 also comprisesdifferent bonding materials 9 a, b, and c. Thebonding material 9 a is used when the purpose is to fill very small hollow spaces with bonding material. Thebonding material 9 a comprises anorganic binder 2, which may be contained in and dispensed by different syringes and can be variously dyed. In one embodiment, thebonding material 9 a may comprise a minor proportion ofsolid particles 3, preferably in the above-mentioned concentration (i.e., about 60-70% binder and about 30-40% filler). In addition to the color pigments and perhaps additional adjuvants, thebonding material 9 a may essentially be equivalent to theorganic binder 2, from which the composite of thedental veneer 1 of this set is made. Optionally, it may include an additional small portion ofsolid particles 3. - The
bonding materials dental veneer 1 in a not yet cured consistency. Thebonding materials organic binder 2 as well as thesolid particles 3. - With the help of a
color key 14 the dentist can select the appropriately dyedbonding material 9 a, b, or c and use it in the manner indicated inFIGS. 13 and 14 to fasten or bond thedental veneer 1 to thetooth stump 10. Thebonding materials 9 c are provided for such cases in which natural tooth enamel remains at thetooth stump 10. The dyes selected here may therefore be very light. Thevarious bonding materials 9 b are provided in case the tooth enamel has completely been removed from thetooth stump 10 and more intense dyes can be used to achieve the desired result. - In the exemplary embodiment shown, the dental set (or kit) according to
FIG. 16 may also compriseapplication syringes 16, which serve to apply thebonding material 9 a, b, and/or c upon thetooth stump 10.Elements FIG. 13 . - Additionally, the set according to
FIG. 16 comprises anetchant 13, which can be used to etch away any layer of lubricants caused by the prior processing of thetooth stump 10 before the respectiveadhesive agent 11 and/or 12 is applied and to expose the tubuli and/or tooth stumps and/or teeth. In the exemplary embodiment shown, an etch/adhesion means 17 is provided, which represents a combination of etchant and adhesive agent. Preferred embodiments of appropriate sets are offered in the respective containers. Of course, the allocation of the compartments and the content are only shown as examples and schematically inFIG. 16 . - Another aspect of the invention relates to methods for manufacturing the
dental veneers 1 from the composite material mentioned above.FIG. 17 is a flow diagram that schematically illustrates an embodiment if ageneral process 170 for manufacturing veneers according to the invention. Thefirst step 172 includes molding a composite material into a shape for attachment to a prepared tooth surface. The composite material may be s disclosed above and comprises at least an organic binder and solid filler particles. Thenext step 174 includes at least partially hardening or curing the composite material. Athird step 176 includes treating a portion of the at least partially hardened or cured composite material to form an exterior surface. The exterior surface from this treatment comprises solid filler particles that have been continuously hardened and/or melted together to form a hardened glassy surface. -
FIG. 18 is a flow diagram that schematically illustrates an embodiment of anexemplary process 180 for molding and treating a dental veneer, which is expanded from theprocess 170 shown inFIG. 17 . Specifically, in one or more embodiments of the invention, instep 181, the composite comprising theorganic binder 2 and thesolid particles 3 is first injected into a cartridge. Instep 182, the composite is heated to an appropriate temperature (e.g., approximately 100° C.), which softens the composite for processing and molding. The composite may also be pressurized to a pressure between about 80-100 bars. Thereafter, instep 183, the composite in injected through a thin tube into a mold having the desired size and shape. - After the composite material is injected into the mold, in
step 184 it is heated to an appropriate temperature (e.g., about 130° C.) and maintained at the temperature, the heating lasting for about 15 minutes to thermally cure the composite material. Instep 185, during at least a portion of the duration of the heat curing process (e.g., the first 10 minutes or so of the about 15 minutes of thermal curing), light curing of the composite is performed on the facial surface of the veneer by shining light through a transparent side of the mold with a suitable LED light. In one or more embodiments of the invention, the suitable LED light is characterized, for example, by a wavelength from about 450 nanometers (nm) to about 480 nm. This curing step combines high pressure, heat, and light. The transparent side of the mold permits the curing light to pass through the mold to cure the facial side of the tooth veneer, which improves the surface properties of the veneer by causing polymerization shrinkage in the composite material facing the light. This shrinkage causes particles to become closer together on the facial surface of the veneer. Meanwhile, heating and high-pressure condense and consolidate particles together, resulting in high composite density throughout thedental veneer 1. - In one or more embodiments of the invention, the composite may comprise one or more photo initiators to facilitate the light curing process. Examples of suitable photo initiators include benzophenone, benzoin and derivatives thereof and a-diketones and derivatives thereof, such as 9,10-phenanthrenequinone, 1-phenyl-propan-1,2-dione, diacetyl and 4,4-dichlorobenzil. Camphorquinone, 2,2-methoxy-2-phenyl-acetophenone or a-diketones, each in combination with amines as reduction agents, such as e.g. 4-(dimethylamino)-benzoic acid esters, N,N-dimethylaminoethylmethacrylate, N,N-dimethyl-sym.-xylidine or triethanolamine, as well as monobenzoyl- or dibenzoyl germanium derivatives, are preferably used. To facilitate thermal curing, one or more heat initiators may be added to the composite in an embodiment of the invention. For instance, Benzopinacol and 2,2′-dialkylbenzopinacols are suitable as initiators for thermal curing.
- In
step 186, the blank of thedental veneer 1 is subsequently cooled and removed from the tooth mold, as illustrated. In one or more preferred embodiments of the invention, the veneer is placed in a compartment with N2 gas, which prevents oxidation or burning of the organic binder. The facial area and/or the surface of thedental veneer 1 is then subjected to a laser treatment, wherein the laser is applied the facial surface of the veneer, entering the surface by about 80 μm and sintering the solid particles about 80 μm deep from other facial surface. During the laser processing of the facial areas theorganic binder 2 is inhibited and/or removed from the surface of thedental veneer 1, and interstitial polymers are removed by vaporization. Coalescing of inorganic particles minimizes polymers on the facial surface of the veneer, forming a highly glossy surface develops based almost exclusively on thesolid particles 3, which after the completion of the laser treatment forms a continuously cured and/or glazed molten layer as the surface of the dental veneer 1 (step 186). Care is taken in the process to prevent this cured and/or glazed molten layer from delaminating from underlying composite. In one or more embodiments of the invention, this layer is provable by a cross-section through thedental veneer 1 and preferably has a thickness ranging from about 10 to about 20 μm. - In one or more embodiments of the invention, the mold for shaping the veneer is at least partially cup shaped.
FIG. 19 schematically illustrates an example of a dentalveneer mold system 190 according to the invention, wherein amold 196 is connected through athin tube 194 to acartridge 192 containing a composite material pressurized by apump 191. Although thecartridge 192 is illustrated as a box inFIG. 19 , it can be embodied in various shapes and sizes known in the art. Similarly, thetooth veneer mold 196 may have various sizes, shapes, and configurations while effectively implementing the underlying principles of the current invention. Moreover, although the pressurizingpump 191 is illustrated as exterior to thecartridge 192, one skilled in the art understands that the pressurizing mechanism may be configured differently, either external or internal to thecartridge 192. - In a preferred embodiment of the invention, the
mold 196 is transparent on theside 198 shaping thefacial surface 199 of thedental veneer 1. Thetransparent side 198 of themold 196 allows for light curing of the composite at thefacial surface 199, and can be made of transparent materials such as inorganic or organic glasses. Because the composite material is also heated in themold 196 for thermal curing, heat tolerant transparent material are suitable for making themold 196. Theopaque sides 197 of themold 196 may be made of metals such as chromium-steel. - In one or more embodiments of the invention, it is advantageous to use a filler according to the invention based on a silanized glass in order to improve the mechanical properties of the cured dental material. The term “silanization” used herein means the functionalization of the glass surface with polymerizable silanes, such as by reaction with (meth)acrylate-functionalized silanes, e.g. (meth)acryloyloxyalkyl-trialkoxysilanes, usually 3-(methacryloyloxy)propyl-trimethoxy-silane, 3-(methacryloyloxy)-propyltriethoxysilane, 3-(methacryloyloxy)-propyltrichlorosilane, methacryloyloxy-methyltrimethoxysilane, methacryloyloxymethyltriethoxysilane, 3-(methacryloyloxy)-propylmethyldichlorosilane or 3-(meth-acryl-oyloxy)propylmethyldimethoxy silane. Among the examples of silanes above, 3-(Methacryloyloxy)-propyltrimethoxysilane is preferred. The silanization of the glasses takes place in conventional manner and is known to a person skilled in the art. Although it may be preferably to silanize all the filler particles, it may be desirable to not silanize nano-sized particles to prevent or minimize agglomeration.
- In one or more embodiments of the invention, barium and/or strontium glass powder may be applied to coat the surface of the veneer during laser treatment. The laser vitrifies the glass powder and forms a glass layer on the facial surface of the veneer, which can match the hardness and refractive index of natural enamel. In these embodiments, the veneer has a heat cured composite base covered by a laser vitrified composite layer, which is covered by a barium and strontium glass layer.
- Finally, cutting or post-processing of the cured composite may occur to yield the final product. The final processing may include, but are not limited to, cutting the veneer to achieve correct size and shape, grinding and/or smoothing edges and surface, and creating minute surface texture to achieve a realistic look instead of a perfectly uniform but fake look.
- As an alternative to the above-described production method, it is also possible to cut the
dental veneer 1 via laser from a block of composite material, which causes the cured and/or glazed molten layer to form automatically at the surface of thedental veneer 1. - The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Claims (36)
1. A dental veneer for placement over a prepared tooth surface, comprising:
a first region, formed from a dental composite, having a shape so as to be attached to a prepared tooth surface, the dental composite comprising an organic binder and solid filler particles; and
a second region, formed from a dental composite, providing at least a portion of an exterior surface of the dental veneer, the second region comprising solid composite filler particles that have been continuously hardened and/or melted together to form a hardened glassy surface.
2. A dental veneer according to claim 1 , wherein the dental veneer is at least partially cup-shaped.
3. A dental veneer according to claim 1 , wherein the organic binder of the first region comprises one or more at least partially cured acrylates or methacrylates.
4. A dental veneer according to claim 1 , wherein the solid filler particles of the first region and the solid composite filler particles that have been continuously hardened and/or melted together comprise inorganic particles.
5. A dental veneer according to claim 4 , wherein the inorganic particles comprise one or more types of glass.
6. A dental veneer according to claim 4 , wherein the inorganic particles comprise differently sized particles having different grain sizes.
7. A dental veneer according to claim 6 , different grain sizes are in a range of about 0.01 μm to about 3 μm.
8. A dental veneer according to claim 1 , wherein at least a portion of the exterior surface of the dental veneer is laser treated to form a continuous cured and/or glazed molten layer of solid composite filler particles.
9. A dental veneer according to claim 1 , wherein the solid filler particles of the dental composite in the first region comprise at least 75% by volume of the dental composite.
10. A dental veneer according to claim 1 , wherein the dental veneer is translucent.
11. A dental veneer according to claim 1 , wherein the dental veneer has at least one of:
a translucency in a range of about 28% to about 39%;
an L-value in a range of about 59 to about 69;
an a-value in a range of about −0.35 to about −3.2; or
a b-value in a range of about −0.4 to about −6.95.
12. A dental veneer according to claim 1 , wherein the dental veneer comprises a cutting edge portion having a thickness in a range of about 1 mm to about 1.3 mm and wherein the dental veneer outside the cutting edge portion has a maximum thickness of about 0.6 mm and/or tapers flat at the end opposite the cutting edge portion.
13. A kit for use in placing a veneer onto a prepared tooth surface, comprising:
a plurality of differently sized and/or differently shaped dental veneers according to claim 1 ; and
a color selection bonding system for use in bonding the dental veneer to a prepared tooth surface.
14. A kit according to claim 13 , wherein the color selection bonding system comprises at least one bonding material and a plurality of different dyes for coloring the at least one bonding material.
15. A kit according to claim 13 , wherein the color selection bonding system comprises a plurality of differently colored bonding materials.
16. A kit according to claim 13 , wherein the color selection bonding system comprises at least one liquid or paste bonding material.
17. A kit according to claim 13 , wherein the color selection bonding system comprises the same composite or the same organic binder as the dental veneer.
18. A kit according to claim 13 , further comprising at least one adhesive agent and at least one etchant.
19. A method of manufacturing a dental veneer, comprising:
shaping a composite material into a shape for attachment to a prepared tooth surface, the composite material comprising an organic binder and solid filler particles;
at least partially hardening or curing the composite material; and
treating a portion of the at least partially hardened or cured composite material to form an exterior surface comprising solid filler particles that have been continuously hardened and/or melted together to form a hardened glassy surface.
20. A method according to claim 19 , wherein shaping a composite material and at least partially hardening or curing the composite material comprises:
providing a moldable composite material;
introducing the moldable composite material into a mold at high pressure, the mold at least partially corresponding to a desired shape of the dental veneer;
subjecting the molded composite material within the mold to at least one of heat or light curing.
21. A method according to claim 20 , wherein the mold includes a glass surface corresponding to a facial surface of the dental veneer and a metal surface corresponding to a basal surface of the dental veneer.
22. A method according to claim 21 , wherein the method comprises both heat curing throughout the mold and light curing through the glass surface of the mold.
23. A method according to claim 22 , wherein light curing through the glass surface of the mold causes the composite material to undergo greater polymerization shrinkage adjacent to the glass surface as compared to adjacent to the metal surface, thereby causing solid filler particles at the facial surface of the dental veneer to be closer together than solid filler particles at the basal surface of the dental veneer.
24. A method according to claim 19 , wherein treating a portion of the at least partially hardened or cured composite material comprises laser treating at least a portion of the exterior surface.
25. A method according to claim 24 , wherein laser treating at least a portion of the exterior surface causes at least a portion of the organic binder of the composite material to be removed so that the exterior surface has a higher percentage of solid filler particles than an adjacent composite region not laser treated.
26. A method according to claim 24 , wherein laser treating at least a portion of the exterior surface causes at least partial melting together of solid filler particles at the exterior surface.
27. A tooth front veneer, wherein the veneer consists of a composite material, the composite material containing at least one organic binder and filler particles as solid.
28. A tooth front veneer according to claim 27 , wherein the veneer is curved in a shell-shaped configuration, at least regionally.
29. A tooth front veneer according to claim 27 , wherein the solid particles of the filler comprise glass or a mixture of different types of glasses and/or that the filler contains solid particles of different grain sizes.
30. A tooth front veneer according to claim 27 , wherein an outer surface of the tooth front veneer is laser treated at least regionally and forms a continuous cured and/or vitrified melt layer.
31. A tooth front veneer according to claim 27 , wherein the solid particles of the filler constitute at least 75% by volume of the composite material of the tooth front veneer.
32. A tooth front veneer according to claim 27 , wherein the veneer is translucent and/or has an L value of 59 to 69 and/or has an “a” value of −0.35 to −3.2 and/or has a “b” value of −0.4 to −6.95.
33. A tooth front veneer according to claim 27 , wherein at one of an end region, the veneer having a cutting edge and/or the tooth front veneer having a maximum thickness of 0.6 mm outside of the end region with the cutting edge and/or the tooth veneer running out flat at an end opposite to the cutting edge.
34. A kit comprising several tooth front veneers of claim 27 , the kit additionally comprising at least one fastening material and several different colors for coloring the fastening material and/or several differently colored fastening materials, the at least one fastening material or the several differently colored fastening materials being suitable for fastening the tooth front veneer to a tooth stump.
35. A kit according to claim 34 , wherein the fastening material contains the same composite material or the same organic binder as the tooth front veneer.
36. A kit according to claim 34 , wherein the kit comprises at least one adhesion promoter and/or at least one etching material.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/264,217 US20170014206A1 (en) | 2010-07-02 | 2016-09-13 | Dental veneers and methods of manufacture |
US15/855,631 US10765492B2 (en) | 2010-07-02 | 2017-12-27 | Dental veneers and methods of manufacture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT11242010 | 2010-07-02 | ||
ATA1124/2010 | 2010-07-02 | ||
PCT/AT2011/000285 WO2012000006A1 (en) | 2010-07-02 | 2011-06-29 | Tooth front veneer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2011/000285 Continuation-In-Part WO2012000006A1 (en) | 2010-07-02 | 2011-06-29 | Tooth front veneer |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/264,217 Division US20170014206A1 (en) | 2010-07-02 | 2016-09-13 | Dental veneers and methods of manufacture |
US15/855,631 Division US10765492B2 (en) | 2010-07-02 | 2017-12-27 | Dental veneers and methods of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130115573A1 true US20130115573A1 (en) | 2013-05-09 |
Family
ID=44630383
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/730,946 Abandoned US20130115573A1 (en) | 2010-07-02 | 2012-12-29 | Dental veneers and methods of manufacture |
US15/264,217 Abandoned US20170014206A1 (en) | 2010-07-02 | 2016-09-13 | Dental veneers and methods of manufacture |
US15/855,631 Active 2032-01-20 US10765492B2 (en) | 2010-07-02 | 2017-12-27 | Dental veneers and methods of manufacture |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/264,217 Abandoned US20170014206A1 (en) | 2010-07-02 | 2016-09-13 | Dental veneers and methods of manufacture |
US15/855,631 Active 2032-01-20 US10765492B2 (en) | 2010-07-02 | 2017-12-27 | Dental veneers and methods of manufacture |
Country Status (12)
Country | Link |
---|---|
US (3) | US20130115573A1 (en) |
EP (2) | EP2588020B1 (en) |
AT (2) | AT12407U1 (en) |
AU (1) | AU2011274281B2 (en) |
CA (2) | CA2802729C (en) |
DE (1) | DE202011110309U1 (en) |
ES (2) | ES2669305T3 (en) |
HU (1) | HUE036901T2 (en) |
PL (1) | PL2588020T3 (en) |
PT (1) | PT2588020T (en) |
TR (1) | TR201805705T4 (en) |
WO (1) | WO2012000006A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150257853A1 (en) | 2009-02-02 | 2015-09-17 | Viax Dental Technologies, LLC | Dentist tool |
US20150366643A1 (en) * | 2013-01-31 | 2015-12-24 | Coltène/Whaledent Ag | Tooth veneer element, and method for the use and production thereof |
USD786445S1 (en) | 2016-09-14 | 2017-05-09 | Jesse Jonah White | Tooth cover with impression material |
WO2017156102A1 (en) * | 2016-03-09 | 2017-09-14 | President And Fellows Of Harvard College | Methods and compositions for dental tissue repair and/or regeneration |
CN108095837A (en) * | 2017-12-13 | 2018-06-01 | 深圳牙领科技有限公司 | Data processing method and terminal |
US10144100B2 (en) | 2009-02-02 | 2018-12-04 | Viax Dental Technologies, LLC | Method of preparation for restoring tooth structure |
US10426572B2 (en) | 2011-05-26 | 2019-10-01 | Viax Dental Technologies Llc | Dental tool and guidance devices |
US10765492B2 (en) | 2010-07-02 | 2020-09-08 | Stephan Lampl | Dental veneers and methods of manufacture |
US11007035B2 (en) | 2017-03-16 | 2021-05-18 | Viax Dental Technologies Llc | System for preparing teeth for the placement of veneers |
US20210315665A1 (en) * | 2020-04-13 | 2021-10-14 | Itay MISHAELOFF | Dental veneer method and system |
US20220233289A1 (en) * | 2012-02-27 | 2022-07-28 | Bay Materials, Llc | Dental products and procedures |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2506923C1 (en) * | 2012-08-07 | 2014-02-20 | Юрий Алексеевич Агафонов | Method for choosing dental bur for finish polishing of dentin surface in treating caries |
AT513857B1 (en) * | 2013-02-27 | 2014-08-15 | Lampl Stephan | Dental partial denture |
US11786346B2 (en) | 2019-01-11 | 2023-10-17 | Trion Concepts, Inc. | Bone-mounted dental arch veneers and methods for fabricating and utilizing the same |
CN110200709B (en) * | 2019-07-15 | 2021-12-14 | 杨桐 | Framework porcelain tooth veneer free of tooth preparation and preparation method thereof |
WO2024180438A1 (en) * | 2023-03-01 | 2024-09-06 | Solventum Intellectual Properties Company | Ceramic veneers and continuous additive manufacturing method for making ceramic veneers |
DE202023104167U1 (en) | 2023-07-25 | 2023-08-07 | Ulrich Wennemann | Identification element for digitizing and identifying a human or an animal |
DE102023119698A1 (en) | 2023-07-25 | 2025-01-30 | Ulrich Wennemann | Identification element for digitizing and identifying a human or an animal and a method for producing such an identification element |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423828A (en) * | 1965-10-01 | 1969-01-28 | Dentists Supply Co | Porcelain and resin tooth with silicon bonding agent |
US3766650A (en) * | 1970-03-17 | 1973-10-23 | R Gnecco | Semi-finished porcelain teeth |
US5080589A (en) * | 1988-12-20 | 1992-01-14 | Sandvik Ab | Artificial tooth crowns |
US5171149A (en) * | 1991-05-28 | 1992-12-15 | Jeneric/Pentron Incorporated | Method and apparatus for applying dentin conditioning system and dental restoration kit comprising the apparatus |
US5510066A (en) * | 1992-08-14 | 1996-04-23 | Guild Associates, Inc. | Method for free-formation of a free-standing, three-dimensional body |
US6382980B1 (en) * | 2000-03-21 | 2002-05-07 | Itzhak Shoher | Compact dental multi-layered material for crown and bridge prosthodontics and method |
US6444724B1 (en) * | 1997-06-19 | 2002-09-03 | Biomat Sciences, Inc. | Composite materials and adhesion promoters for dental applications |
US20030215770A1 (en) * | 1999-09-20 | 2003-11-20 | Masato Sekino | Method of preparing a ceramic artificial crown and a preparation kit used therefor |
US20040106087A1 (en) * | 2002-04-14 | 2004-06-03 | Paul Weigl | Method for automated production of ceramic dental prostheses |
US20050227204A1 (en) * | 2004-04-12 | 2005-10-13 | Hauck Douglas J | Daily wear temporary dental veneers |
US20060257823A1 (en) * | 2005-05-13 | 2006-11-16 | Sirona Dental Systems Gmbh | Method of producing a dental prosthetic item, and dental prosthetic item thus produced |
US20070231364A1 (en) * | 2004-04-30 | 2007-10-04 | Kunio Nishimoto | Biocompatible Membrane and Process for Producing the Same |
US20080213727A1 (en) * | 2006-11-20 | 2008-09-04 | Yu Zhang | Graded glass/ceramic/glass structures for damage resistant ceramic dental and orthopedic prostheses |
US20090035723A1 (en) * | 2007-08-03 | 2009-02-05 | Claus Daniel | Material with a repetitive pattern of micro-features for application in a living organism and method of fabrication |
US20100021867A1 (en) * | 2006-11-27 | 2010-01-28 | Rejuvedent Llc | Method and apparatus for hard tissue treatment and modification |
US20100143868A1 (en) * | 2008-12-09 | 2010-06-10 | Josef Hintersehr | Method for the precise fabrication of dental components using a sintering or selective laser melting process |
US20110104643A1 (en) * | 2006-12-28 | 2011-05-05 | Giordano Russell A | Multicolor dental blanks and related methods |
US20130180110A1 (en) * | 2010-09-03 | 2013-07-18 | 3M Innovative Properties Company | Methods for making layered dental appliances |
US20130216787A1 (en) * | 2012-02-17 | 2013-08-22 | Shu-Tuan Yeh | Ceramic articles with increased surface roughness and methods for manufacturing the same |
US20130273501A1 (en) * | 2012-04-13 | 2013-10-17 | The Argen Corporation | Method of making dental prosthesis and ductile alloys for use therein |
US20150104665A1 (en) * | 2012-05-10 | 2015-04-16 | Renishaw Plc | Method of manufacturing an article |
US20150216636A1 (en) * | 2014-01-31 | 2015-08-06 | Seiko Epson Corporation | Blank material to be cut for dentistry, metal powder for powder metallurgy, metal frame for porcelain fusing for dentistry, and dental prosthesis |
US20150320525A1 (en) * | 2012-08-13 | 2015-11-12 | University Of Louisville Research Foundation, Inc. | Methods for fabricating dental prostheses |
US20160008093A1 (en) * | 2013-02-27 | 2016-01-14 | Stephan Lampl | Partial dental prosthesis |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2463549A (en) * | 1948-07-17 | 1949-03-08 | Myerson Simon | Artificial tooth and method of uniting an artificial tooth to a tooth support |
US3423823A (en) | 1965-10-18 | 1969-01-28 | Hewlett Packard Co | Method for making thin diaphragms |
US3986261A (en) | 1973-12-05 | 1976-10-19 | Faunce Frank R | Method and apparatus for restoring badly discolored, fractured or cariously involved teeth |
US4226593A (en) | 1979-04-16 | 1980-10-07 | Morton Cohen | Apparatus and method for applying dental veneer |
USRE35264E (en) | 1981-05-04 | 1996-06-04 | Dentsply Research & Development Corp. | Dental adhesive system |
US4433959A (en) * | 1982-03-24 | 1984-02-28 | Jaff Investment Company | Composite laminate dental veneer containing color systems |
US4544359A (en) * | 1984-01-13 | 1985-10-01 | Pentron Corporation | Dental restorative material |
US5217375A (en) | 1989-03-23 | 1993-06-08 | Sandvik Ab | Artificial onlay tooth crowns and inlays |
DE59103352D1 (en) * | 1990-11-17 | 1994-12-01 | Heraeus Kulzer Gmbh | Fastening cement. |
DE4123946A1 (en) | 1991-07-19 | 1993-01-28 | Degussa | DENTAL MATERIAL WITH ALUMO ORGANOPOLYSILOXANE FUEL |
GB9309397D0 (en) * | 1993-05-07 | 1993-06-23 | Patel Bipin C M | Laser treatment |
JPH08112296A (en) | 1994-10-19 | 1996-05-07 | Sogo Shika Iryo Kenkyusho:Kk | Composite artificial tooth |
DE4446033C2 (en) | 1994-12-23 | 1996-11-07 | Heraeus Kulzer Gmbh | Polymerizable dental material |
DE19654055C2 (en) * | 1996-12-23 | 1998-11-12 | Heraeus Kulzer Gmbh | Semi-finished product as a shaped body for the manufacture of dental prosthetic items |
JPH11180814A (en) * | 1997-12-24 | 1999-07-06 | Gc:Kk | Dentine adhesive set |
DE19807631A1 (en) | 1998-02-23 | 1999-08-26 | Agfa Gevaert Ag | Curable dental compositions useful for dental fillings, lacquers, fixing and blending materials and dentures |
EP1208812A1 (en) | 2000-11-28 | 2002-05-29 | Coltène AG | Modular colour key, dental kit , reference element and method for selecting a colour |
DE10108261B4 (en) * | 2001-02-21 | 2006-07-20 | Ivoclar Vivadent Ag | Polymerizable composition with particulate composite based filler |
US6878456B2 (en) | 2001-12-28 | 2005-04-12 | 3M Innovative Properties Co. | Polycrystalline translucent alumina-based ceramic material, uses, and methods |
DE10234994A1 (en) * | 2002-07-31 | 2004-02-12 | Gerhard Bruckner | Apparatus for capping teeth comprises carrier on whose inner surface moldable cap is mounted whose inner surface has coating of dental adhesive and whose outer surface is releasably attached to carrier |
JP2004065578A (en) * | 2002-08-06 | 2004-03-04 | Gc Corp | Prosthesis for dental surface |
US7189076B1 (en) * | 2003-02-06 | 2007-03-13 | Rosenfeld Mark D | Denture and process for manufacturing artificial teeth for dentures |
EP1459701B2 (en) | 2003-03-19 | 2021-03-03 | Coltène/Whaledent AG | Dental set and method for widening the gingival sulcus |
US20040241609A1 (en) * | 2003-05-08 | 2004-12-02 | Weitao Jia | Method of manufacturing high strength dental restorations |
EP1570831A1 (en) | 2004-03-02 | 2005-09-07 | Ernst Mühlbauer GmbH & Co.KG | Polymerisable dental material containing a filler |
DE102005023106A1 (en) | 2005-05-13 | 2006-11-16 | Sirona Dental Systems Gmbh | Production of artificial denture part involves division of artificial denture part into first and further structural parts in automatic dismantling process according to construction algorithms, producing 3D data records of structural parts |
JP2010503472A (en) | 2006-09-13 | 2010-02-04 | スリーエム イノベイティブ プロパティズ カンパニー | Preliminarily malleable solid crown |
US7691497B1 (en) | 2007-04-13 | 2010-04-06 | Ivoclar Vivadent, Inc. | Pressable overlay material for veneering of zirconia and composites thereof |
US8945665B2 (en) | 2008-01-29 | 2015-02-03 | Uriel Yarovesky | Process for making a dental restoration and resultant apparatus |
US8979536B2 (en) | 2008-11-17 | 2015-03-17 | 3M Innovative Properties Company | Preformed malleable dental articles and methods |
EP2272458A1 (en) | 2009-07-09 | 2011-01-12 | Nobel Biocare Services AG | Dental product comprising at least one veneer |
JP5454887B2 (en) | 2009-10-16 | 2014-03-26 | 学校法人 日本歯科大学 | Method for manufacturing crown restoration |
US8853338B2 (en) | 2009-12-22 | 2014-10-07 | 3M Innovative Properties Company | Curable dental compositions and articles comprising polymerizable ionic liquids |
AT12407U1 (en) | 2010-07-02 | 2012-05-15 | Stephan Lampl | DENTAL FRONT FACING BODY |
EP2450000A1 (en) | 2010-11-09 | 2012-05-09 | 3M Innovative Properties Company | Process for producing a dental article, article obtainable by this process and uses thereof |
US20170143868A1 (en) | 2015-11-20 | 2017-05-25 | Conary Enterprise Co., Ltd. | Attachable and movable deodorizer for enclosed space |
-
2010
- 2010-07-02 AT AT0807511U patent/AT12407U1/en not_active IP Right Cessation
-
2011
- 2011-06-29 EP EP11743945.5A patent/EP2588020B1/en active Active
- 2011-06-29 CA CA2802729A patent/CA2802729C/en active Active
- 2011-06-29 TR TR2018/05705T patent/TR201805705T4/en unknown
- 2011-06-29 ES ES11743945.5T patent/ES2669305T3/en active Active
- 2011-06-29 PL PL11743945T patent/PL2588020T3/en unknown
- 2011-06-29 HU HUE11743945A patent/HUE036901T2/en unknown
- 2011-06-29 EP EP15000991.8A patent/EP2926760B1/en active Active
- 2011-06-29 AT ATGM39/2013U patent/AT13375U1/en not_active IP Right Cessation
- 2011-06-29 CA CA2988487A patent/CA2988487A1/en not_active Abandoned
- 2011-06-29 AU AU2011274281A patent/AU2011274281B2/en active Active
- 2011-06-29 PT PT117439455T patent/PT2588020T/en unknown
- 2011-06-29 DE DE202011110309U patent/DE202011110309U1/en not_active Expired - Lifetime
- 2011-06-29 WO PCT/AT2011/000285 patent/WO2012000006A1/en active Application Filing
- 2011-06-29 ES ES15000991T patent/ES2757581T3/en active Active
-
2012
- 2012-12-29 US US13/730,946 patent/US20130115573A1/en not_active Abandoned
-
2016
- 2016-09-13 US US15/264,217 patent/US20170014206A1/en not_active Abandoned
-
2017
- 2017-12-27 US US15/855,631 patent/US10765492B2/en active Active
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423828A (en) * | 1965-10-01 | 1969-01-28 | Dentists Supply Co | Porcelain and resin tooth with silicon bonding agent |
US3766650A (en) * | 1970-03-17 | 1973-10-23 | R Gnecco | Semi-finished porcelain teeth |
US5080589A (en) * | 1988-12-20 | 1992-01-14 | Sandvik Ab | Artificial tooth crowns |
US5171149A (en) * | 1991-05-28 | 1992-12-15 | Jeneric/Pentron Incorporated | Method and apparatus for applying dentin conditioning system and dental restoration kit comprising the apparatus |
US5510066A (en) * | 1992-08-14 | 1996-04-23 | Guild Associates, Inc. | Method for free-formation of a free-standing, three-dimensional body |
US6444724B1 (en) * | 1997-06-19 | 2002-09-03 | Biomat Sciences, Inc. | Composite materials and adhesion promoters for dental applications |
US20030215770A1 (en) * | 1999-09-20 | 2003-11-20 | Masato Sekino | Method of preparing a ceramic artificial crown and a preparation kit used therefor |
US6382980B1 (en) * | 2000-03-21 | 2002-05-07 | Itzhak Shoher | Compact dental multi-layered material for crown and bridge prosthodontics and method |
US20040106087A1 (en) * | 2002-04-14 | 2004-06-03 | Paul Weigl | Method for automated production of ceramic dental prostheses |
US20050227204A1 (en) * | 2004-04-12 | 2005-10-13 | Hauck Douglas J | Daily wear temporary dental veneers |
US20070231364A1 (en) * | 2004-04-30 | 2007-10-04 | Kunio Nishimoto | Biocompatible Membrane and Process for Producing the Same |
US20060257823A1 (en) * | 2005-05-13 | 2006-11-16 | Sirona Dental Systems Gmbh | Method of producing a dental prosthetic item, and dental prosthetic item thus produced |
US20080213727A1 (en) * | 2006-11-20 | 2008-09-04 | Yu Zhang | Graded glass/ceramic/glass structures for damage resistant ceramic dental and orthopedic prostheses |
US20100021867A1 (en) * | 2006-11-27 | 2010-01-28 | Rejuvedent Llc | Method and apparatus for hard tissue treatment and modification |
US20110104643A1 (en) * | 2006-12-28 | 2011-05-05 | Giordano Russell A | Multicolor dental blanks and related methods |
US20090035723A1 (en) * | 2007-08-03 | 2009-02-05 | Claus Daniel | Material with a repetitive pattern of micro-features for application in a living organism and method of fabrication |
US20100143868A1 (en) * | 2008-12-09 | 2010-06-10 | Josef Hintersehr | Method for the precise fabrication of dental components using a sintering or selective laser melting process |
US20130180110A1 (en) * | 2010-09-03 | 2013-07-18 | 3M Innovative Properties Company | Methods for making layered dental appliances |
US20130216787A1 (en) * | 2012-02-17 | 2013-08-22 | Shu-Tuan Yeh | Ceramic articles with increased surface roughness and methods for manufacturing the same |
US20130273501A1 (en) * | 2012-04-13 | 2013-10-17 | The Argen Corporation | Method of making dental prosthesis and ductile alloys for use therein |
US20150104665A1 (en) * | 2012-05-10 | 2015-04-16 | Renishaw Plc | Method of manufacturing an article |
US20150320525A1 (en) * | 2012-08-13 | 2015-11-12 | University Of Louisville Research Foundation, Inc. | Methods for fabricating dental prostheses |
US20160008093A1 (en) * | 2013-02-27 | 2016-01-14 | Stephan Lampl | Partial dental prosthesis |
US20150216636A1 (en) * | 2014-01-31 | 2015-08-06 | Seiko Epson Corporation | Blank material to be cut for dentistry, metal powder for powder metallurgy, metal frame for porcelain fusing for dentistry, and dental prosthesis |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11813127B2 (en) | 2009-02-02 | 2023-11-14 | Viax Dental Technologies Llc | Tooth restoration system |
US11253961B2 (en) | 2009-02-02 | 2022-02-22 | Viax Dental Technologies Llc | Method for restoring a tooth |
US11865653B2 (en) | 2009-02-02 | 2024-01-09 | Viax Dental Technologies Llc | Method for producing a dentist tool |
US20150257853A1 (en) | 2009-02-02 | 2015-09-17 | Viax Dental Technologies, LLC | Dentist tool |
US10441382B2 (en) | 2009-02-02 | 2019-10-15 | Viax Dental Technologies, LLC | Dentist tool |
US10144100B2 (en) | 2009-02-02 | 2018-12-04 | Viax Dental Technologies, LLC | Method of preparation for restoring tooth structure |
US10765492B2 (en) | 2010-07-02 | 2020-09-08 | Stephan Lampl | Dental veneers and methods of manufacture |
US10426572B2 (en) | 2011-05-26 | 2019-10-01 | Viax Dental Technologies Llc | Dental tool and guidance devices |
US11925517B2 (en) | 2011-05-26 | 2024-03-12 | Viax Dental Technologies Llc | Dental tool and guidance devices |
US11033356B2 (en) | 2011-05-26 | 2021-06-15 | Cyrus Tahmasebi | Dental tool and guidance devices |
US20220233289A1 (en) * | 2012-02-27 | 2022-07-28 | Bay Materials, Llc | Dental products and procedures |
US20150366643A1 (en) * | 2013-01-31 | 2015-12-24 | Coltène/Whaledent Ag | Tooth veneer element, and method for the use and production thereof |
WO2017156102A1 (en) * | 2016-03-09 | 2017-09-14 | President And Fellows Of Harvard College | Methods and compositions for dental tissue repair and/or regeneration |
US11224679B2 (en) | 2016-03-09 | 2022-01-18 | President And Fellows Of Harvard College | Methods and compositions for dental tissue repair and/or regeneration |
USD786445S1 (en) | 2016-09-14 | 2017-05-09 | Jesse Jonah White | Tooth cover with impression material |
US11007035B2 (en) | 2017-03-16 | 2021-05-18 | Viax Dental Technologies Llc | System for preparing teeth for the placement of veneers |
US12016741B2 (en) | 2017-03-16 | 2024-06-25 | Viax Dental Technologies Llc | System for preparing teeth for the placement of veneers |
CN108095837A (en) * | 2017-12-13 | 2018-06-01 | 深圳牙领科技有限公司 | Data processing method and terminal |
US20210315665A1 (en) * | 2020-04-13 | 2021-10-14 | Itay MISHAELOFF | Dental veneer method and system |
US12232920B2 (en) * | 2020-04-13 | 2025-02-25 | Itay MISHAELOFF | Dental veneer method and system |
Also Published As
Publication number | Publication date |
---|---|
AU2011274281B2 (en) | 2014-01-09 |
CA2802729C (en) | 2018-07-10 |
HUE036901T2 (en) | 2018-08-28 |
EP2926760A1 (en) | 2015-10-07 |
WO2012000006A1 (en) | 2012-01-05 |
CA2802729A1 (en) | 2012-01-05 |
US10765492B2 (en) | 2020-09-08 |
EP2588020B1 (en) | 2018-02-21 |
EP2588020A1 (en) | 2013-05-08 |
EP2926760B1 (en) | 2019-08-21 |
PL2588020T3 (en) | 2018-07-31 |
TR201805705T4 (en) | 2018-06-21 |
US20170014206A1 (en) | 2017-01-19 |
ES2757581T3 (en) | 2020-04-29 |
US20180132973A1 (en) | 2018-05-17 |
DE202011110309U1 (en) | 2013-05-28 |
AT12407U1 (en) | 2012-05-15 |
PT2588020T (en) | 2018-05-02 |
AT13375U1 (en) | 2013-11-15 |
AU2011274281A1 (en) | 2013-02-21 |
ES2669305T3 (en) | 2018-05-24 |
CA2988487A1 (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10765492B2 (en) | Dental veneers and methods of manufacture | |
EP2073750B1 (en) | Method for making provisional and long-term dental restorations | |
JP6865564B2 (en) | Resin material for multi-layer dental cutting | |
JP6536956B2 (en) | Dental restoration | |
EP2687201B1 (en) | Kit of material for repairing dentin | |
CA2678968C (en) | Methods for making dental restorations using two-phase light-curing materials | |
CA2814863A1 (en) | High strength dental material | |
JPWO2018074605A1 (en) | Multi-color laminated dental mill blank | |
EP4129232A1 (en) | Dental prosthesis having structure similar to that of natural teeth, and manufacturing method therefor | |
US11576759B2 (en) | Dental shaped bodies with continuous shade gradient | |
US20150366643A1 (en) | Tooth veneer element, and method for the use and production thereof | |
CN110366406A (en) | It is used to prepare the monochromatic dentistry molded article and blank of dental prosthesis | |
US20200163741A1 (en) | Partial dental prosthesis | |
JP4457061B2 (en) | Dental prosthesis manufacturing kit | |
JP3910374B2 (en) | Method for producing dental prosthesis | |
DE3839069A1 (en) | METHOD FOR COLOR DESIGNING AND SEALING COMPUTER-MILLED MOLDED PARTS FOR DENTAL PURPOSES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |