US20130105724A1 - Stable 2,3,3,3-tetrafluoropropene composition - Google Patents
Stable 2,3,3,3-tetrafluoropropene composition Download PDFInfo
- Publication number
- US20130105724A1 US20130105724A1 US13/808,326 US201113808326A US2013105724A1 US 20130105724 A1 US20130105724 A1 US 20130105724A1 US 201113808326 A US201113808326 A US 201113808326A US 2013105724 A1 US2013105724 A1 US 2013105724A1
- Authority
- US
- United States
- Prior art keywords
- tetrafluoropropene
- ppm
- hfo
- stable composition
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 45
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 150000001875 compounds Chemical class 0.000 claims abstract description 26
- DMUPYMORYHFFCT-UHFFFAOYSA-N 1,2,3,3,3-pentafluoroprop-1-ene Chemical compound FC=C(F)C(F)(F)F DMUPYMORYHFFCT-UHFFFAOYSA-N 0.000 claims abstract description 15
- PGJHURKAWUJHLJ-UHFFFAOYSA-N 1,1,2,3-tetrafluoroprop-1-ene Chemical compound FCC(F)=C(F)F PGJHURKAWUJHLJ-UHFFFAOYSA-N 0.000 claims abstract description 11
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 claims abstract description 11
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 claims abstract description 9
- PRDFNJUWGIQQBW-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-yne Chemical compound FC(F)(F)C#C PRDFNJUWGIQQBW-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000314 lubricant Substances 0.000 claims description 16
- ZDCWZRQSHBQRGN-UHFFFAOYSA-N 1,1,1,2,3-pentafluoropropane Chemical compound FCC(F)C(F)(F)F ZDCWZRQSHBQRGN-UHFFFAOYSA-N 0.000 claims description 15
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims description 11
- WGZYQOSEVSXDNI-UHFFFAOYSA-N 1,1,2-trifluoroethane Chemical compound FCC(F)F WGZYQOSEVSXDNI-UHFFFAOYSA-N 0.000 claims description 8
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 8
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 claims description 7
- FYIRUPZTYPILDH-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoropropane Chemical compound FC(F)C(F)C(F)(F)F FYIRUPZTYPILDH-UHFFFAOYSA-N 0.000 claims description 6
- INEMUVRCEAELBK-UHFFFAOYSA-N 1,1,1,2-tetrafluoropropane Chemical compound CC(F)C(F)(F)F INEMUVRCEAELBK-UHFFFAOYSA-N 0.000 claims description 4
- QAERDLQYXMEHEB-UHFFFAOYSA-N 1,1,3,3,3-pentafluoroprop-1-ene Chemical compound FC(F)=CC(F)(F)F QAERDLQYXMEHEB-UHFFFAOYSA-N 0.000 claims description 4
- 229920005862 polyol Polymers 0.000 claims description 4
- 229920001289 polyvinyl ether Polymers 0.000 claims description 4
- -1 polyol esters Chemical class 0.000 claims description 3
- 150000002334 glycols Chemical class 0.000 claims description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 239000003507 refrigerant Substances 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 7
- 238000005057 refrigeration Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000004378 air conditioning Methods 0.000 description 5
- 238000005796 dehydrofluorination reaction Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000004821 distillation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 238000006704 dehydrohalogenation reaction Methods 0.000 description 3
- 239000011551 heat transfer agent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- HMAHQANPHFVLPT-UHFFFAOYSA-N 1,3,3-trifluoroprop-1-yne Chemical compound FC#CC(F)F HMAHQANPHFVLPT-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- OQISUJXQFPPARX-UHFFFAOYSA-N 2-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(Cl)=C OQISUJXQFPPARX-UHFFFAOYSA-N 0.000 description 1
- OILUAKBAMVLXGF-UHFFFAOYSA-N 3,5,5-trimethyl-hexanoic acid Chemical compound OC(=O)CC(C)CC(C)(C)C OILUAKBAMVLXGF-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- ZRYCZAWRXHAAPZ-UHFFFAOYSA-N alpha,alpha-dimethyl valeric acid Chemical compound CCCC(C)(C)C(O)=O ZRYCZAWRXHAAPZ-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/041—Mixtures of base-materials and additives the additives being macromolecular compounds only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/008—Lubricant compositions compatible with refrigerants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/22—All components of a mixture being fluoro compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
- C10M2209/043—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/1033—Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/109—Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/09—Characteristics associated with water
- C10N2020/097—Refrigerants
- C10N2020/101—Containing Hydrofluorocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
Definitions
- the present invention relates to a stable composition including 2,3,3,3-tetrafluoropropene capable of being used in refrigeration and air conditioning.
- HFCs hydrofluorocarbons
- HFC-134a hydrofluorocarbon (1,1,1,2-tetrafluoroethane: HFC-134a), which is less harmful to the ozone layer.
- GWP Global Warning Potential
- Hydrofluoroolefins have a low heating power and thus meet the objectives set by the Kyoto protocol.
- the document JP 4-110388 discloses 2,3,3,3-tetrafluoropropene (HFO-1234yf) as heat transfer agent in refrigeration, air conditioning and heat pumps.
- a refrigerant In addition to having good properties as a heat transfer agent, in order for a refrigerant to be accepted commercially, it must in particular be thermally stable and be compatible with lubricants. This is because it is highly desirable for the refrigerant to be compatible with a lubricant used in the compressor present in the majority of refrigeration systems. This refrigerant and lubricant combination is important for the use and the effectiveness of the refrigeration system; in particular, the lubricant has to be sufficiently soluble in the refrigerant throughout the operating temperature range.
- fluoroolefins are capable of decomposing on contact with moisture, oxygen or other compounds when they are used as refrigerant, possibly at high temperature, it is recommended to stabilize them with at least one amine.
- stabilizing agents such as benzophenone derivatives, lactones and some phosphorus-comprising compounds, have also been proposed for stabilizing fluoroolefins (WO 2008/027596, WO 2008/027516 and WO 2008/027515).
- the document EP 2 149 543 describes a process for the purification of 1,1,1,2,3-pentafluoropropane, a starting material in the manufacture of HFO-1234yf, in order to obtain a product having a 1,1,1,2,3-pentafluoropropene (HFO-1225ye) content of less than 500 ppm and a trifluoropropyne content of less than 50 ppm.
- the Applicant Company has now developed a 2,3,3,3-tetrafluoropropene composition which makes it possible to improve the thermal stability when it is used in refrigeration systems.
- a subject-matter of the present invention is thus a stable composition (SC) comprising at least x% by weight of 2,3,3,3-tetrafluoropropene (99.8 ⁇ x ⁇ 100), at most y% by weight of unsaturated compound(s) (Ia) (0 ⁇ y ⁇ 0.2) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 500 ppm of 3,3,3-trifluoropropyne and/or at most 200 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
- SC stable composition
- SC comprising at least x% by weight of 2,3,3,3-tetrafluoropropene (99.8 ⁇ x ⁇
- the stable composition according to the present invention can additionally comprise at least one of the compounds (Ib) chosen from 1,1,1,2-tetrafluoropropane (HFC-254eb), 1,1,1,2,3-pentafluoropropane (HFC-245eb), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2-trifluoroethane (HFC-143), 1,1,1,2,3,3-hexafluoropropane, hexafluoropropene, cyclohexafluoropropene and 1,1,1,3,3-pentafluoropropene (HFO-1225zc).
- the compounds (Ib) chosen from 1,1,1,2-tetrafluoropropane (HFC-254eb), 1,1,1,2,3-pentafluoropropane (HFC-245eb), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2-trifluoroethane (HFC
- the combined compounds (Ib) present in the composition according to the present invention represent at most 500 ppm.
- the SC composition comprises at least 99.85% by weight of 2,3,3,3-tetrafluoropropene, at most y% by weight of unsaturated compound(s) (Ia) (0 ⁇ y ⁇ 0.15) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 250 ppm of 3,3,3-trifluoropropyne and/or at most 50 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
- unsaturated compound(s) (Ia) (0 ⁇ y ⁇ 0.15) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene,
- the SC composition which is particularly preferred comprises at least 99.9% by weight of 2,3,3,3-tetrafluoropropene, at most y% by weight of unsaturated compound(s) (Ia) (0 ⁇ y ⁇ 0.1) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 200 ppm of 3,3,3-trifluoropropyne and/or at most 5 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
- unsaturated compound(s) (Ia) (0 ⁇ y ⁇ 0.1) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoro
- the SC composition comprises from 99.85 to 99.98% by weight of 2,3,3,3-tetrafluoropropene, from 0.02 to 0.15% by weight of unsaturated compound(s) (Ia) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 200 ppm of 3,3,3-trifluoropropyne and/or at most 5 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye) and/or at most 400 ppm of compounds (Ib).
- unsaturated compound(s) (Ia) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-t
- the stable composition according to the invention exhibits the advantage of being able to be obtained directly by a process for the manufacture of 2,3,3,3-tetrafluoropropene, optionally after at least one separation stage.
- Another subject-matter of the present invention is 2,3,3,3-tetrafluoropropene which has a purity of greater than or equal to 99.8% by weight and less than 100% by weight and which comprises at most 0.2% by weight of unsaturated compounds (Ia), optionally at most 500 ppm of 3,3,3-trifluoropropyne and/or at most 200 ppm of 1,1,1,2,3-pentafluoropropene and/or at most 500 ppm of compounds (Ib).
- An additional subject-matter of the present invention is 2,3,3,3-tetrafluoropropene which has a purity of greater than or equal to 99.9% by weight and less than 100% by weight and which comprises at most 0.1% by weight of unsaturated compounds (Ia), optionally at most 200 ppm of 3,3,3-trifluoropropyne and/or at most 5 ppm of 1,1,1,2,3-pentafluoropropene and/or at most 500 ppm of compounds (Ib).
- 2,3,3,3-Tetrafluoropropene can be obtained from hexafluoropropene (HFP) in at least 4 reaction stages: -(i) hydrogenation of HFP in the presence of a hydrogenation catalyst in a solid phase to give 1,1,1,2,3,3-hexafluoropropane; (ii) dehydrofluorination of the 1,1,1,2,3,3-hexafluoropropane obtained in stage (i) in the liquid phase using an alkali metal hydroxide or in the gas phase in the presence of a dehydrohalogenation catalyst to give 1,1,1,2,3-pentafluoropropene; (iii) hydrogenation of the HFO-1225ye obtained in (ii) in the presence of a hydrogenation catalyst in the solid phase to give 1,1,1,2,3-pentafluoropropane; (iv) dehydrofluorination of the HFC-245eb obtained in stage (iii) in the liquid phase using an alkali
- 2,3,3,3-Tetrafluoropropene can be obtained from hexafluoropropene (HFP) in at least 2 reaction stages: -(i) hydrogenation of HFP in the presence of a hydrogenation catalyst in the solid phase to give 1,1,1,2,3-pentafluoropropane; (ii) dehydrofluorination of the HFC-245eb obtained in stage (i) in the liquid phase using an alkali metal hydroxide or in the gas phase in the presence of a dehydrohalogenation catalyst to give 2,3,3,3-tetrafluoropropene.
- HFP hexafluoropropene
- the 2,3,3,3-tetrafluoropropene according to the present invention can be obtained from HFP according to a process as described above after a purification of the HFC-245eb and/or after purification of the 2,3,3,3-tetrafluoropropene
- the HFC-245eb prior to the dehydrofluorination stage, is, for example, purified by distillation at an absolute pressure of 6 bar and at a column bottom temperature of 80° C. and a top temperature of 50° C. with approximately 30 theoretical plates and a reflux ratio of approximately 37.
- the HFO-1234yf is subjected to double distillation.
- the first distillation is carried out at an absolute pressure of approximately 13 bar, a column bottom temperature of approximately 60° C. and a top temperature of approximately 40° C. and with approximately 35 theoretical plates and a reflux ratio of approximately 500.
- the second distillation is carried out at an absolute pressure of approximately 11 bar, a column bottom temperature of approximately 105° C., and a top temperature of approximately 44° C. and with approximately 30 theoretical plates at a reflux ratio of approximately 4.
- the 2,3,3,3-tetrafluoropropene can also be obtained from 1,1,1-trifluoro-2-chloropropene by hydrofluorination in the liquid or gas phase in the presence of a fluorination catalyst.
- the 2,3,3,3-tetrafluoropropene thus obtained can be purified to give the 2,3,3,3-tetrafluoropropene according to the present invention.
- compositions according to the present invention are capable of being used as heat transfer agent in stationary or motor-vehicle air conditioning, refrigeration and heat pumps.
- compositions as described above are the compositions as described above in combination with a lubricant.
- PEOs polyol esters
- PAGs polyalkylene glycols
- PVEs polyvinyl ethers
- the PAG lubricants are in the oxyalkylene homo- or copolymer form.
- the preferred PAGs are homopolymers composed of oxypropylene groups with a viscosity of 10 to 200 centistokes at 40° C., advantageously between 30 and 80 centistokes.
- the PAGs which may be suitable are those having hydroxyl groups for each ending or —O—C n H 2n+1 groups.
- Esters of carboxylic acids having a carbon chain of 4 to 9 atoms are preferred.
- carboxylic acid of 4 to 9 carbon atoms of n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-ethylhexanoic acid, 2,2-dimethylpentanoic acid, 3,5,5-trimethylhexanoic acid, adipic acid and succinic acid.
- the POE oils selected can comprise between 0 and 5 relative mol % of CH 2 —O units with respect to the —CH 2 —O—(C ⁇ O)— units.
- the preferred POE lubricants are those having a viscosity of 1 to 1000 centistokes (cSt) at 40° C., preferably of 10 to 200 cSt and advantageously of 30 to 80 cSt
- thermal stability trials are carried out according to Standard ASHRAE 97-2007: “sealed glass tube method to test the chemical stability of materials for use within refrigerant systems”.
- Test conditions are as follows: Weight of fluid: 2.2 g Weight of lubricant: 5 g
- Lengths of steel are introduced into tubes.
- the length of steel and the lubricant are introduced into a 42.2 ml glass tube.
- the tube is subsequently evacuated under vacuum and then the fluid F is added thereto.
- the tube is then welded in order to close it and placed in an oven at 200° C. for 14 days.
- the lubricant used in the tests is a commercial PAG oil: PAG ND8.
- the fluid used for these trials comprises essentially HFO-1234yf (at least 99.9% by weight) and then 300 ppm of HFO-1243zf, 500 ppm of E HFO-1234ze and 300 ppm of HFO-1243zf+500 ppm of E HFO-1234ze are respectively added to the fluid.
- the examples show that the presence of the compounds (Ia) is not harmful to the thermal stability, either of the HFO-1234yf composition or of the lubricant, and in some cases improves it.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Detergent Compositions (AREA)
Abstract
The invention relates to a stable composition (CS) comprising at least x wt.-% 2,3,3,3-tetrafluoropropene (99.8≦x<100), at most y wt.-% unsaturated compound(s) (Ia) (0<y≦0.2) selected from among 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (isomers Z and E) and 1,1,2,3-tetrafluoropropene, and, optionally, at most 500 ppm of 3,3,3-trifluoropropyne and/or at most 200 ppm 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
Description
- The present invention relates to a stable composition including 2,3,3,3-tetrafluoropropene capable of being used in refrigeration and air conditioning.
- The problems presented by substances which deplete the atmospheric ozone layer were dealt with at Montreal, where the protocol was signed imposing a reduction on the production and use of chlorofluorocarbons (CFCs). This protocol has formed the subject of amendments which have required the abandoning of CFCs and have extended regulation to other products, including hydrochlorofluorocarbons (HCFCs).
- The refrigeration and air conditioning industries have invested a great deal in the replacement of these refrigerants and it is because of this that hydrofluorocarbons (HFCs) have been marketed.
- In the motor vehicle industry, the air conditioning systems of commercial vehicles have been changed in many countries from a refrigerant comprising chlorofluorocarbon (CFC-12) to that of hydrofluorocarbon (1,1,1,2-tetrafluoroethane: HFC-134a), which is less harmful to the ozone layer. However, from the viewpoint of the objectives set by the Kyoto protocol, HFC-134a (GWP=1430) is regarded as having a high heating power. The contribution to the greenhouse effect of a refrigerant is quantified by a criterion, the GWP (Global Warning Potential), which summarizes the heating power by taking a reference value of 1 for carbon dioxide.
- Hydrofluoroolefins (HFOs) have a low heating power and thus meet the objectives set by the Kyoto protocol. The document JP 4-110388 discloses 2,3,3,3-tetrafluoropropene (HFO-1234yf) as heat transfer agent in refrigeration, air conditioning and heat pumps.
- In addition to having good properties as a heat transfer agent, in order for a refrigerant to be accepted commercially, it must in particular be thermally stable and be compatible with lubricants. This is because it is highly desirable for the refrigerant to be compatible with a lubricant used in the compressor present in the majority of refrigeration systems. This refrigerant and lubricant combination is important for the use and the effectiveness of the refrigeration system; in particular, the lubricant has to be sufficiently soluble in the refrigerant throughout the operating temperature range.
- According to the document WO 2008/042066, as fluoroolefins are capable of decomposing on contact with moisture, oxygen or other compounds when they are used as refrigerant, possibly at high temperature, it is recommended to stabilize them with at least one amine.
- Other stabilizing agents, such as benzophenone derivatives, lactones and some phosphorus-comprising compounds, have also been proposed for stabilizing fluoroolefins (WO 2008/027596, WO 2008/027516 and WO 2008/027515).
- Furthermore, the document EP 2 149 543 describes a process for the purification of 1,1,1,2,3-pentafluoropropane, a starting material in the manufacture of HFO-1234yf, in order to obtain a product having a 1,1,1,2,3-pentafluoropropene (HFO-1225ye) content of less than 500 ppm and a trifluoropropyne content of less than 50 ppm.
- The Applicant Company has now developed a 2,3,3,3-tetrafluoropropene composition which makes it possible to improve the thermal stability when it is used in refrigeration systems.
- A subject-matter of the present invention is thus a stable composition (SC) comprising at least x% by weight of 2,3,3,3-tetrafluoropropene (99.8≦x<100), at most y% by weight of unsaturated compound(s) (Ia) (0<y≦0.2) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 500 ppm of 3,3,3-trifluoropropyne and/or at most 200 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
- The stable composition according to the present invention can additionally comprise at least one of the compounds (Ib) chosen from 1,1,1,2-tetrafluoropropane (HFC-254eb), 1,1,1,2,3-pentafluoropropane (HFC-245eb), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2-trifluoroethane (HFC-143), 1,1,1,2,3,3-hexafluoropropane, hexafluoropropene, cyclohexafluoropropene and 1,1,1,3,3-pentafluoropropene (HFO-1225zc).
- The combined compounds (Ib) present in the composition according to the present invention represent at most 500 ppm.
- Preferably, the SC composition comprises at least 99.85% by weight of 2,3,3,3-tetrafluoropropene, at most y% by weight of unsaturated compound(s) (Ia) (0<y≦0.15) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 250 ppm of 3,3,3-trifluoropropyne and/or at most 50 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
- The SC composition which is particularly preferred comprises at least 99.9% by weight of 2,3,3,3-tetrafluoropropene, at most y% by weight of unsaturated compound(s) (Ia) (0<y≦0.1) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 200 ppm of 3,3,3-trifluoropropyne and/or at most 5 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
- According to a preferred embodiment of the invention, the SC composition comprises from 99.85 to 99.98% by weight of 2,3,3,3-tetrafluoropropene, from 0.02 to 0.15% by weight of unsaturated compound(s) (Ia) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 200 ppm of 3,3,3-trifluoropropyne and/or at most 5 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye) and/or at most 400 ppm of compounds (Ib).
- The stable composition according to the invention exhibits the advantage of being able to be obtained directly by a process for the manufacture of 2,3,3,3-tetrafluoropropene, optionally after at least one separation stage.
- Another subject-matter of the present invention is 2,3,3,3-tetrafluoropropene which has a purity of greater than or equal to 99.8% by weight and less than 100% by weight and which comprises at most 0.2% by weight of unsaturated compounds (Ia), optionally at most 500 ppm of 3,3,3-trifluoropropyne and/or at most 200 ppm of 1,1,1,2,3-pentafluoropropene and/or at most 500 ppm of compounds (Ib).
- An additional subject-matter of the present invention is 2,3,3,3-tetrafluoropropene which has a purity of greater than or equal to 99.9% by weight and less than 100% by weight and which comprises at most 0.1% by weight of unsaturated compounds (Ia), optionally at most 200 ppm of 3,3,3-trifluoropropyne and/or at most 5 ppm of 1,1,1,2,3-pentafluoropropene and/or at most 500 ppm of compounds (Ib).
- 2,3,3,3-Tetrafluoropropene can be obtained from hexafluoropropene (HFP) in at least 4 reaction stages: -(i) hydrogenation of HFP in the presence of a hydrogenation catalyst in a solid phase to give 1,1,1,2,3,3-hexafluoropropane; (ii) dehydrofluorination of the 1,1,1,2,3,3-hexafluoropropane obtained in stage (i) in the liquid phase using an alkali metal hydroxide or in the gas phase in the presence of a dehydrohalogenation catalyst to give 1,1,1,2,3-pentafluoropropene; (iii) hydrogenation of the HFO-1225ye obtained in (ii) in the presence of a hydrogenation catalyst in the solid phase to give 1,1,1,2,3-pentafluoropropane; (iv) dehydrofluorination of the HFC-245eb obtained in stage (iii) in the liquid phase using an alkali metal hydroxide or in the gas phase in the presence of a dehydrohalogenation catalyst to give 2,3,3,3-tetrafluoropropene.
- 2,3,3,3-Tetrafluoropropene can be obtained from hexafluoropropene (HFP) in at least 2 reaction stages: -(i) hydrogenation of HFP in the presence of a hydrogenation catalyst in the solid phase to give 1,1,1,2,3-pentafluoropropane; (ii) dehydrofluorination of the HFC-245eb obtained in stage (i) in the liquid phase using an alkali metal hydroxide or in the gas phase in the presence of a dehydrohalogenation catalyst to give 2,3,3,3-tetrafluoropropene.
- The 2,3,3,3-tetrafluoropropene according to the present invention can be obtained from HFP according to a process as described above after a purification of the HFC-245eb and/or after purification of the 2,3,3,3-tetrafluoropropene
- Thus, the HFC-245eb, prior to the dehydrofluorination stage, is, for example, purified by distillation at an absolute pressure of 6 bar and at a column bottom temperature of 80° C. and a top temperature of 50° C. with approximately 30 theoretical plates and a reflux ratio of approximately 37.
- After the final dehydrofluorination stage, the HFO-1234yf is subjected to double distillation. The first distillation is carried out at an absolute pressure of approximately 13 bar, a column bottom temperature of approximately 60° C. and a top temperature of approximately 40° C. and with approximately 35 theoretical plates and a reflux ratio of approximately 500. The second distillation is carried out at an absolute pressure of approximately 11 bar, a column bottom temperature of approximately 105° C., and a top temperature of approximately 44° C. and with approximately 30 theoretical plates at a reflux ratio of approximately 4.
- The 2,3,3,3-tetrafluoropropene can also be obtained from 1,1,1-trifluoro-2-chloropropene by hydrofluorination in the liquid or gas phase in the presence of a fluorination catalyst. The 2,3,3,3-tetrafluoropropene thus obtained can be purified to give the 2,3,3,3-tetrafluoropropene according to the present invention.
- The compositions according to the present invention are capable of being used as heat transfer agent in stationary or motor-vehicle air conditioning, refrigeration and heat pumps.
- Another subject-matter of the present invention is the compositions as described above in combination with a lubricant.
- Mention may in particular be made, as lubricant, of polyol esters (POEs), polyalkylene glycols (PAGs), polyalkylene glycol esters and polyvinyl ethers (PVEs).
- The PAG lubricants are in the oxyalkylene homo- or copolymer form. The preferred PAGs are homopolymers composed of oxypropylene groups with a viscosity of 10 to 200 centistokes at 40° C., advantageously between 30 and 80 centistokes. The hydroxyl groups at the ends of the oxyalkylene homo- or copolymer chains can be more or less replaced by —O—CnH2n+1 groups where n=1 to 10; the group with n=1 being preferred. The PAGs which may be suitable are those having hydroxyl groups for each ending or —O—CnH2n+1 groups.
- Mention may in particular be made, as POEs, of esters of carboxylic acids having a linear or branched carbon chain of 2 to 15 atoms and of polyols having a neopentyl backbone, such as neopentyl glycol, trimethylolpropane, pentaerythritol and dipentaerythritol; pentaerythritol is the preferred polyol. Esters of carboxylic acids having a carbon chain of 4 to 9 atoms are preferred.
- Mention may in particular be made, as carboxylic acid of 4 to 9 carbon atoms, of n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, 2-ethylhexanoic acid, 2,2-dimethylpentanoic acid, 3,5,5-trimethylhexanoic acid, adipic acid and succinic acid.
- Some alcohol functional groups are not esterified; however, the proportion remains low.
- The POE oils selected can comprise between 0 and 5 relative mol % of CH2—O units with respect to the —CH2—O—(C═O)— units.
- The preferred POE lubricants are those having a viscosity of 1 to 1000 centistokes (cSt) at 40° C., preferably of 10 to 200 cSt and advantageously of 30 to 80 cSt
- The thermal stability trials are carried out according to Standard ASHRAE 97-2007: “sealed glass tube method to test the chemical stability of materials for use within refrigerant systems”.
- The test conditions are as follows:
Weight of fluid: 2.2 g
Weight of lubricant: 5 g - Duration: 14 days
- Lengths of steel are introduced into tubes.
- The length of steel and the lubricant are introduced into a 42.2 ml glass tube. The tube is subsequently evacuated under vacuum and then the fluid F is added thereto. The tube is then welded in order to close it and placed in an oven at 200° C. for 14 days.
- At the end of the test, various analyses are carried out:
-
- the gas phase is recovered in order to be analysed by gas chromatography: the main impurities were identified by GC/MS (coupled gas chromatography/mass spectrometry). The impurities coming from the fluid F and those coming from the lubricant can thus be combined.
- the length of steel is weighed (measurement of the rate of corrosion) and observed under a microscope.
- the lubricant is analysed: colour (by spectrocolorimetry, Labomat DR Lange LICO220 model MLG131), water content (by Karl Fischer coulornetry, Mettler DL37) and acid number (by quantitative determination with 0.01N methanolic potassium hydroxide).
- The lubricant used in the tests is a commercial PAG oil: PAG ND8.
- The fluid used for these trials comprises essentially HFO-1234yf (at least 99.9% by weight) and then 300 ppm of HFO-1243zf, 500 ppm of E HFO-1234ze and 300 ppm of HFO-1243zf+500 ppm of E HFO-1234ze are respectively added to the fluid.
-
Content of ppm ppm ppm ppm E HFO-1234ze — — 500 500 added HFO-1243zf — 300 300 added Byproducts in the gas phase: from the 600 ppm 600 ppm 900 ppm 900 ppm HFO-1234yf from the oil 1.4% 1.4% 1.4% 1.4% Rate of <5 μm/year <5 μm/year <5 μm/year <5 μm/year corrosion Analysis of the oil: colour 10 Gardner 9 Gardner 8.5 Gardner 9 Gardner water content 300 ppm 300 ppm 250 ppm 300 ppm acid number 5.2 mg 5.2 mg 4.5 mg 5.2 mg KOH/g KOH/g KOH/g KOH/g - The examples show that the presence of the compounds (Ia) is not harmful to the thermal stability, either of the HFO-1234yf composition or of the lubricant, and in some cases improves it.
Claims (23)
1. Stable composition comprising at least about 99.8 to 100% by weight of 2,3,3,3-tetrafluoropropene, at most about 0 to 0.2% by weight of unsaturated compound selected from the group consisting of 3,3,3-trifluoropropene (HFO-1243zf), the positional isomers of 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrafluoropropene, and mixtures thereof.
2. Stable composition according to claim 1 , characterized in that it further comprises at least one compound selected from the group consisting of 1,1,1,2-tetrafluoropropane (HFC-254eb), 1,1,1,2,3-pentafluoropropane (HFC-245eb), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2-trifluoroethane (HFC-143), 1,1,1,2,3,3-hexafluoropropane, hexafluoropropene, cyclohexafluoropropene, 1,1,1,3,3-pentafluoropropene (HFO-1225zc) and mixtures thereof.
3. Stable composition according to claim 2 , characterized in that the compound comprises at most 500 ppm of the stable composition.
4. Stable composition according to claim 1 , characterized in that it comprises at least 99.85% by weight of 2,3,3,3-tetrafluoropropene, at most about 0 to 0.15% by weight of unsaturated compound selected from the group consisting of 3,3,3-trifluoropropene (HFO-1243zf), the positional isomers of 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrafluoropropene, and mixtures thereof.
5. Stable composition according to claim 1 , characterized in that it comprises at least 99.9% by weight of 2,3,3,3-tetrafluoropropene, at most about 0 to 0.1% by weight of unsaturated compound selected from the group consisting of 3,3,3-trifluoropropene (HFO-1243zf), the positional isomers of 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrafluoropropene, and mixtures thereof.
6. Stable composition according to claim 1 , characterized in that it comprises from 99.85 to 99.98% by weight of 2,3,3,3-tetrafluoropropene, from 0.02 to 0.15% by weight of unsaturated compound(s) (Ia) chosen from 3,3,3-trifluoropropene (HFO-1243zf) and the positional isomers of 2,3,3,3-tetrafluoropropene, such as 1,3,3,3-tetrafluoropropene (Z and E isomers) and 1,1,2,3-tetrafluoropropene, and optionally at most 200 ppm of 3,3,3-trifluoropropyne and/or at most 5 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye) and/or at most 400 ppm of compounds (Ib).
7. (canceled)
8. Stable composition according to claim 1 , characterized in that it further comprises a lubricant.
9. Stable composition according to claim 8 , characterized in that the lubricant is selected from the group consisting of polyol esters (POEs), polyalkylene glycols (PAGs), polyalkylene glycol esters, polyvinyl ethers (PVEs) and mixtures thereof.
10. 2,3,3,3-Tetrafluoropropene which has a purity of greater than or equal to 99.8% by weight and less than 100% by weight and which comprises at most 0.2% by weight of unsaturated compound selected from the group consisting of 3,3,3-trifluoropropene (HFO-1243zf), the positional isomers of 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrafluoropropene, and mixtures thereof.
11. 2,3,3,3-Tetrafluoropropene according to claim 10 , characterized by a purity of greater than or equal to 99.9% by weight and less than 100% by weight and comprising at most 0.1% by weight of unsaturated compound selected from the group consisting of 3,3,3-trifluoropropene (HFO-1243zf), the positional isomers of 2,3,3,3-tetrafluoropropene, 1,1,2,3-tetrafluoropropene, and mixtures thereof.
12. Stable composition according to claim 1 , characterized in that it further comprises up to about 500 ppm of 3,3,-trifluoropropyne.
13. Stable composition according to claim 1 , characterized in that it further comprises up to about 200 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
14. Stable composition according to claim 4 , characterized in that it further comprises up to about 250 ppm of 3,3,3,-trifluoropropyne.
15. Stable composition according to claim 4 , characterized in that it further comprises up to about 50 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
16. Stable composition according to claim 5 , characterized in that further comprises up to about 200 ppm of 3,3,3,-trifluoropropyne.
17. Stable composition according to claim 5 , characterized in that it further comprises up to about 5 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
18. Stable composition according to claim 10 , characterized in that it further comprises up to about 500 ppm of 3,3,3,-trifluoropropyne.
19. Stable composition according to claim 10 , characterized in that it further comprises up to about 200 ppm of 1,1,1,2,3-pentafluoropropene (HFO-1225ye).
20. Stable composition according to claim 10 , characterized in that it further comprises up to about 500 ppm of a compound selected from the group consisting of 1,1,1,2-tetrafluoropropane (HFC-254eb), 1,1,1,2,3-pentafluoropropane (HFC-245eb), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2-trifluoroethane (HFC-143), 1,1,1,2,3,3-hexafluoropropane, hexafluoropropene, cyclohexafluoropropene, 1,1,1,3,3-pentafluoropropene (HFO-1225zc) and mixtures thereof.
21. Stable composition according to claim 11 , characterized in that it further comprises up to about 200 ppm of 3,3,3,-trifluoropropyne.
22. Stable composition according to claim 11 , characterized in that it funder comprises up to about 5 ppm of 1,1,1,2,3-pentafluoropropene.
23. Stable composition according to claim 11 , characterized in that it further comprises up to about 500 ppm of a compound selected from the group consisting of 1,1,1,2-tetrafluoropropane (HFC-254eb), 1,1,1,2,3-pentafluoropropane (HFC-245eb), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2-trifluoroethane (HFC-143), 1,1,1,2,3,3-hexafluoropropane, hexafluoropropene, cyclohexafluoropropene, 1,1,1,3,3-pentafluoropropene (HFO-1225zc) and mixtures thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/808,326 US20130105724A1 (en) | 2010-07-09 | 2011-06-20 | Stable 2,3,3,3-tetrafluoropropene composition |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1055628A FR2962442B1 (en) | 2010-07-09 | 2010-07-09 | STABLE 2,3,3,3-TETRAFLUOROPROPENE COMPOSITION |
FR1055628 | 2010-07-09 | ||
US36453910P | 2010-07-15 | 2010-07-15 | |
US13/808,326 US20130105724A1 (en) | 2010-07-09 | 2011-06-20 | Stable 2,3,3,3-tetrafluoropropene composition |
PCT/FR2011/051406 WO2012004487A2 (en) | 2010-07-09 | 2011-06-20 | Stable 2,3,3,3-tetrafluoropropene composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2011/051406 A-371-Of-International WO2012004487A2 (en) | 2010-07-09 | 2011-06-20 | Stable 2,3,3,3-tetrafluoropropene composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/990,159 Division US10119055B2 (en) | 2010-07-09 | 2016-01-07 | Stable 2,3,3,3-tetrafluoropropene composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130105724A1 true US20130105724A1 (en) | 2013-05-02 |
Family
ID=43569402
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/808,326 Abandoned US20130105724A1 (en) | 2010-07-09 | 2011-06-20 | Stable 2,3,3,3-tetrafluoropropene composition |
US14/990,159 Active US10119055B2 (en) | 2010-07-09 | 2016-01-07 | Stable 2,3,3,3-tetrafluoropropene composition |
US16/034,539 Active 2031-06-29 US10662357B2 (en) | 2010-07-09 | 2018-07-13 | Stable 2,3,3,3-tetrafluoropropene composition |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/990,159 Active US10119055B2 (en) | 2010-07-09 | 2016-01-07 | Stable 2,3,3,3-tetrafluoropropene composition |
US16/034,539 Active 2031-06-29 US10662357B2 (en) | 2010-07-09 | 2018-07-13 | Stable 2,3,3,3-tetrafluoropropene composition |
Country Status (8)
Country | Link |
---|---|
US (3) | US20130105724A1 (en) |
EP (1) | EP2590916B1 (en) |
JP (3) | JP2013544896A (en) |
CN (2) | CN102985397B (en) |
ES (1) | ES2602747T3 (en) |
FR (1) | FR2962442B1 (en) |
PL (1) | PL2590916T3 (en) |
WO (1) | WO2012004487A2 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130092869A1 (en) * | 2010-06-30 | 2013-04-18 | Arkema France | Composition comprising 2,3,3,3-tetrafluoropropene |
US9011711B2 (en) | 2009-09-11 | 2015-04-21 | Arkema France | Heat transfer fluid replacing R-410A |
US9028706B2 (en) | 2011-02-10 | 2015-05-12 | Arkema France | Binary compositions of 2,3,3,3-tetrafluoropropene and of ammonia |
US9039922B2 (en) | 2009-09-11 | 2015-05-26 | Arkema France | Low-temperature and average-temperature refrigeration |
US9127191B2 (en) | 2009-09-11 | 2015-09-08 | Arkema France | Use of ternary compositions |
US9133379B2 (en) | 2009-09-11 | 2015-09-15 | Arkema France | Binary refrigerating fluid |
US9175203B2 (en) | 2009-09-11 | 2015-11-03 | Arkema France | Ternary compositions for low-capacity refrigeration |
US20160023034A1 (en) * | 2013-03-13 | 2016-01-28 | Arkema Inc. | Methods for purifying and stabilizing hydrofluoroolefins and hydrochlorofluoroolefins |
US9267064B2 (en) | 2009-09-11 | 2016-02-23 | Arkema France | Ternary compositions for high-capacity refrigeration |
US9315708B2 (en) | 2011-05-04 | 2016-04-19 | Arkema France | Heat-transfer compositions exhibiting improved miscibility with the lubricating oil |
EP3023472A1 (en) | 2014-09-25 | 2016-05-25 | Daikin Industries, Ltd. | Composition containing hfc and hfo |
EP2590916B1 (en) | 2010-07-09 | 2016-10-12 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US9512343B2 (en) | 2010-09-20 | 2016-12-06 | Arkema France | Composition based on 2,3,3,3-tetrafluoropropene |
US9599381B2 (en) | 2008-10-08 | 2017-03-21 | Arkema France | Heat transfer fluid |
US9650551B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US9650553B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US9683155B2 (en) | 2012-12-26 | 2017-06-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US9683157B2 (en) | 2009-09-11 | 2017-06-20 | Arkema France | Heat transfer method |
US9908828B2 (en) | 2015-03-18 | 2018-03-06 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10023780B2 (en) | 2013-07-11 | 2018-07-17 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US10144856B2 (en) | 2014-03-17 | 2018-12-04 | AGC Inc. | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
US10252913B2 (en) | 2013-03-20 | 2019-04-09 | Arkema France | Composition comprising HF and 2,3,3,3-tetrafluoropropene |
US10450488B2 (en) | 2012-01-26 | 2019-10-22 | Arkema France | Heat transfer compositions having improved miscibility with lubricating oil |
US10487030B2 (en) | 2015-07-27 | 2019-11-26 | AGC Inc. | Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system |
EP3040326B1 (en) | 2014-09-26 | 2020-01-08 | Daikin Industries, Ltd. | Haloolefin-based composition |
US10731065B2 (en) | 2014-09-26 | 2020-08-04 | Daikin Industries, Ltd. | Haloolefin-based composition and use thereof |
US10800720B2 (en) | 2017-01-23 | 2020-10-13 | Mexichem Fluor S.A. De C.V. | Process for the removal of haloalkyne impurities from (hydro)halocarbon compositions |
US10808157B2 (en) | 2008-11-03 | 2020-10-20 | Arkema France | Vehicle heating and/or air conditioning method |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US10954467B2 (en) | 2016-10-10 | 2021-03-23 | Arkema France | Use of tetrafluoropropene based compositions |
US20210108119A1 (en) * | 2018-04-30 | 2021-04-15 | The Chemours Company Fc, Llc | Stabilized fluoroolefin compositions and methods for their production, storage and usage |
US11001546B2 (en) | 2018-02-05 | 2021-05-11 | Arkema France | Ternary azeotropic or quasi-azeotropic composition comprising HF, 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
US11306232B2 (en) | 2016-10-10 | 2022-04-19 | Arkema France | Tetrafluoropropene-based azeotropic compositions |
US11629278B2 (en) | 2018-02-15 | 2023-04-18 | Arkema France | Heat transfer compositions as replacement for R-134A |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6555315B2 (en) * | 2017-10-16 | 2019-08-07 | ダイキン工業株式会社 | Refrigerant composition containing HFO-1234ze (E) and HFC-134 and use thereof |
FR3076553B1 (en) * | 2018-01-08 | 2020-07-31 | Arkema France | PROCESS FOR PURIFYING 1,1,1,2,3-PENTAFLUOROPROPANE AND USE OF THE SAME TO OBTAIN HIGH PURITY 2,3,3,3-TETRAFLUOROPROPENE. |
JP6642756B2 (en) * | 2018-04-25 | 2020-02-12 | ダイキン工業株式会社 | Composition containing refrigerant, heat transfer medium and heat cycle system |
FR3106347B1 (en) | 2020-01-20 | 2023-07-07 | Arkema France | Thermal regulation of electrical equipment |
FR3115290B1 (en) | 2020-10-19 | 2023-11-17 | Arkema France | Thermal regulation of a battery by immersion in a liquid composition |
FR3115287B1 (en) | 2020-10-19 | 2023-11-24 | Arkema France | Cooling of a battery by immersion in a composition with change of state |
CN113388370B (en) * | 2021-06-07 | 2022-06-21 | 湖北瑞能华辉能源管理有限公司 | A ternary mixed refrigerant that can replace R134a and its application |
FR3140088A1 (en) | 2023-09-28 | 2024-03-29 | Arkema France | Cooling of a battery by immersion in a composition with change of state |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090030247A1 (en) * | 2006-01-03 | 2009-01-29 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
Family Cites Families (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04110388A (en) | 1990-08-31 | 1992-04-10 | Daikin Ind Ltd | heat transfer fluid |
JPH0585970A (en) | 1991-09-25 | 1993-04-06 | Daikin Ind Ltd | Refrigerant |
RU2073058C1 (en) | 1994-12-26 | 1997-02-10 | Олег Николаевич Подчерняев | Ozone-noninjurious working fluid |
US5895778A (en) | 1997-08-25 | 1999-04-20 | Hatco Corporation | Poly(neopentyl polyol) ester based coolants and improved additive package |
US20050096246A1 (en) | 2003-11-04 | 2005-05-05 | Johnson Robert C. | Solvent compositions containing chlorofluoroolefins |
US7279451B2 (en) | 2002-10-25 | 2007-10-09 | Honeywell International Inc. | Compositions containing fluorine substituted olefins |
US9181410B2 (en) | 2002-10-25 | 2015-11-10 | Honeywell International Inc. | Systems for efficient heating and/or cooling and having low climate change impact |
DK2277972T3 (en) * | 2002-10-25 | 2019-05-27 | Honeywell Int Inc | Compositions containing fluorine-substituted olefins |
US20110037016A1 (en) | 2003-10-27 | 2011-02-17 | Honeywell International Inc. | Fluoropropene compounds and compositions and methods using same |
US20150231527A1 (en) | 2003-10-27 | 2015-08-20 | Honeywell International Inc. | Monochlorotrifluoropropene compounds and compositions and methods using same |
US7655610B2 (en) * | 2004-04-29 | 2010-02-02 | Honeywell International Inc. | Blowing agent compositions comprising fluorinated olefins and carbon dioxide |
ES2318481T3 (en) * | 2004-04-16 | 2009-05-01 | Honeywell International Inc. | COMPOSITION OF AZEOTROPO TYPE TRIFLUOROIODOMETAN. |
US8058486B2 (en) * | 2004-04-29 | 2011-11-15 | Honeywell International Inc. | Integrated process to produce 2,3,3,3-tetrafluoropropene |
US7569170B2 (en) * | 2005-03-04 | 2009-08-04 | E.I. Du Pont De Nemours And Company | Compositions comprising a fluoroolefin |
US20060243945A1 (en) | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
US20060243944A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
US7560602B2 (en) | 2005-11-03 | 2009-07-14 | Honeywell International Inc. | Process for manufacture of fluorinated olefins |
US8766020B2 (en) * | 2008-07-31 | 2014-07-01 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
JP2009542650A (en) * | 2006-06-27 | 2009-12-03 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Tetrafluoropropene production method |
US7485760B2 (en) * | 2006-08-24 | 2009-02-03 | Honeywell International Inc. | Integrated HFC trans-1234ze manufacture process |
WO2008027515A2 (en) | 2006-09-01 | 2008-03-06 | E. I. Du Pont De Nemours And Company | Phosphorus-containing stabilizers for fluoroolefins |
WO2008027596A2 (en) | 2006-09-01 | 2008-03-06 | E. I. Du Pont De Nemours And Company | Benzophenone derivative stabilizers for fluoroolefins |
WO2008027516A1 (en) | 2006-09-01 | 2008-03-06 | E. I. Du Pont De Nemours And Company | Lactones for fluoroolefins |
EP2069456A1 (en) | 2006-09-01 | 2009-06-17 | E.I. Du Pont De Nemours And Company | Amine stabilizers for fluoroolefins |
WO2008030440A2 (en) | 2006-09-05 | 2008-03-13 | E. I. Du Pont De Nemours And Company | Process to manufacture 2,3,3,3-tetrafluoropropene |
CN101535225A (en) | 2006-09-05 | 2009-09-16 | 纳幕尔杜邦公司 | Dehydrofluorination process to manufacture hydrofluoroolefins |
US20080111099A1 (en) | 2006-11-14 | 2008-05-15 | Singh Rajiv R | Heat transfer compositions with a hydrofluoroalkene, an iodocarbon and additives |
US7807074B2 (en) | 2006-12-12 | 2010-10-05 | Honeywell International Inc. | Gaseous dielectrics with low global warming potentials |
JP5572284B2 (en) | 2007-02-27 | 2014-08-13 | Jx日鉱日石エネルギー株式会社 | Refrigerator oil and working fluid composition for refrigerator |
KR101477485B1 (en) * | 2007-06-27 | 2014-12-30 | 알케마 인코포레이티드 | Stabilized hydrochlorofluoroolefins and hydrofluoroolefins |
US7795480B2 (en) | 2007-07-25 | 2010-09-14 | Honeywell International Inc. | Method for producing 2-chloro-3,3,3,-trifluoropropene (HCFC-1233xf) |
US8628681B2 (en) * | 2007-10-12 | 2014-01-14 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
JP2009225636A (en) * | 2008-03-18 | 2009-10-01 | Daikin Ind Ltd | Refrigerating apparatus |
SG193153A1 (en) * | 2008-05-07 | 2013-09-30 | Du Pont | Compositions comprising 1,1,1,2,3-pentafluoropropane or 2,3,3,3- tetrafluoropropene |
FR2932493B1 (en) | 2008-06-11 | 2010-07-30 | Arkema France | COMPOSITIONS BASED ON HYDROFLUOROOLEFINS |
FR2932492B1 (en) | 2008-06-11 | 2010-07-30 | Arkema France | COMPOSITIONS BASED ON HYDROFLUOROOLEFINS |
EP2303947A1 (en) | 2008-07-16 | 2011-04-06 | Dow Global Technologies Inc. | Refrigerant compositions including silyl terminated polyalkylene glycols as lubricants and methods for making the same |
US8975454B2 (en) | 2008-07-31 | 2015-03-10 | Honeywell International Inc. | Process for producing 2,3,3,3-tetrafluoropropene |
JP4947240B2 (en) * | 2008-08-22 | 2012-06-06 | ダイキン工業株式会社 | Method for producing 2,3,3,3-tetrafluoropropene |
WO2010029704A1 (en) | 2008-09-09 | 2010-03-18 | 株式会社ジャパンエナジー | Refrigerator oil for refrigerant 2,3,3,3-tetrafluoro-1-propene |
FR2936806B1 (en) | 2008-10-08 | 2012-08-31 | Arkema France | REFRIGERANT FLUID |
CA2739924C (en) * | 2008-10-13 | 2017-03-07 | Dow Global Technologies Llc | Process for the production of chlorinated and/or fluorinated propenes |
FR2937328B1 (en) | 2008-10-16 | 2010-11-12 | Arkema France | HEAT TRANSFER METHOD |
JP2010133401A (en) * | 2008-10-27 | 2010-06-17 | Toyota Industries Corp | Refrigerant compressor |
US9150768B2 (en) | 2008-10-28 | 2015-10-06 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
US20170080773A1 (en) | 2008-11-03 | 2017-03-23 | Arkema France | Vehicle Heating and/or Air Conditioning Method |
FR2937906B1 (en) | 2008-11-03 | 2010-11-19 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
US20100119460A1 (en) * | 2008-11-11 | 2010-05-13 | Honeywell International Inc. | Azeotrope-Like Compositions Of 2,3,3,3-Tetrafluoropropene And 3,3,3-Trifluoropropene |
EP2367601B2 (en) | 2008-11-19 | 2022-08-03 | The Chemours Company FC, LLC | Tetrafluoropropene compositions and uses thereof |
FR2938550B1 (en) | 2008-11-20 | 2010-11-12 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
FR2938551B1 (en) | 2008-11-20 | 2010-11-12 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
KR20110099702A (en) * | 2008-12-02 | 2011-09-08 | 멕시켐 아만코 홀딩 에스.에이. 데 씨.브이. | Heat transfer compositions |
US8217208B2 (en) | 2008-12-12 | 2012-07-10 | Honeywell International, Inc. | Isomerization of 1-chloro-3,3,3-trifluoropropene |
CN102264877B (en) * | 2008-12-23 | 2014-12-10 | 瑞弗化工有限公司 | Refrigerant lubricant composition |
FR2942237B1 (en) | 2009-02-13 | 2013-01-04 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
FR2948362B1 (en) | 2009-07-23 | 2012-03-23 | Arkema France | PROCESS FOR THE PREPARATION OF FLUORINATED COMPOUNDS |
MX2012002900A (en) | 2009-09-09 | 2012-06-25 | Honeywell Int Inc | Monochlorotrifluoropropene compounds and compositions and methods using same. |
FR2950069B1 (en) | 2009-09-11 | 2011-11-25 | Arkema France | USE OF TERNARY COMPOSITIONS |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
FR2950066B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | LOW AND MEDIUM TEMPERATURE REFRIGERATION |
FR2950070B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | TERNARY COMPOSITIONS FOR HIGH CAPACITY REFRIGERATION |
FR2950068B1 (en) | 2009-09-11 | 2012-05-18 | Arkema France | HEAT TRANSFER METHOD |
FR2950071B1 (en) | 2009-09-11 | 2012-02-03 | Arkema France | TERNARY COMPOSITIONS FOR LOW CAPACITY REFRIGERATION |
FR2950067B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | HEAT TRANSFER FLUID IN REPLACEMENT OF R-410A |
FR2950065B1 (en) | 2009-09-11 | 2012-02-03 | Arkema France | BINARY REFRIGERANT FLUID |
US9206097B2 (en) | 2009-11-16 | 2015-12-08 | Arkema Inc. | Method to purify and stabilize chloroolefins |
FR2962130B1 (en) | 2010-06-30 | 2012-07-20 | Arkema France | COMPOSITION BASED ON 2,3,3,3-TETRAFLUOROPROPENE |
FR2962442B1 (en) | 2010-07-09 | 2016-02-26 | Arkema France | STABLE 2,3,3,3-TETRAFLUOROPROPENE COMPOSITION |
FR2964975B1 (en) | 2010-09-20 | 2012-08-24 | Arkema France | COMPOSITION BASED ON 2,3,3,3-TETRAFLUOROPROPENE |
US8734671B2 (en) | 2010-11-19 | 2014-05-27 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
FR2971512B1 (en) | 2011-02-10 | 2013-01-18 | Arkema France | BINARY COMPOSITIONS OF 2,3,3,3-TETRAFLUOROPROPENE AND AMMONIA |
FR2974812B1 (en) | 2011-05-04 | 2014-08-08 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR2986007B1 (en) | 2012-01-25 | 2015-01-23 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR2986236B1 (en) | 2012-01-26 | 2014-01-10 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
US8987536B2 (en) | 2012-06-06 | 2015-03-24 | E I Du Pont De Nemours And Company | Process for the reduction of RfCCX impurities in fluoroolefins |
FR3000093B1 (en) | 2012-12-26 | 2015-07-17 | Arkema France | AZEOTROPIC OR QUASI-AZEOTROPIC COMPOSITION OF CHLOROMETHANE |
FR3000096B1 (en) | 2012-12-26 | 2015-02-20 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
FR3000095B1 (en) | 2012-12-26 | 2015-02-20 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE AND 1,2-DIFLUOROETHYLENE |
CN105189423B (en) | 2013-03-13 | 2018-12-11 | 阿科玛股份有限公司 | Method for purifying and stablizing HF hydrocarbon and hydro-chloro fluoroolefin |
US8859829B2 (en) | 2013-03-14 | 2014-10-14 | Honeywell International Inc. | Stabilizer and inhibitor for chloropropenes, such as tetrachloropropene 1,1,2,3-tetrachloropropene (1230xa), used in the manufacture of 2,3,3,3-tetrafluoropropene (1234yf) |
FR3003565B1 (en) | 2013-03-20 | 2018-06-29 | Arkema France | COMPOSITION COMPRISING HF AND 2,3,3,3-TETRAFLUOROPROPENE |
FR3008419B1 (en) | 2013-07-11 | 2015-07-17 | Arkema France | 2,3,3,3-TETRAFLUOROPROPENE-BASED COMPOSITIONS HAVING IMPROVED MISCIBILITY |
FR3033791B1 (en) | 2015-03-18 | 2017-04-14 | Arkema France | STABILIZATION OF 1-CHLORO-3,3,3-TRIFLUOROPROPENE |
FR3056222B1 (en) | 2016-09-19 | 2020-01-10 | Arkema France | COMPOSITION BASED ON 1-CHLORO-3,3,3-TRIFLUOROPROPENE |
FR3057271B1 (en) | 2016-10-10 | 2020-01-17 | Arkema France | USE OF TETRAFLUOROPROPENE COMPOSITIONS |
FR3061906B1 (en) | 2017-01-19 | 2019-03-15 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
FR3061905B1 (en) | 2017-01-19 | 2019-05-17 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
-
2010
- 2010-07-09 FR FR1055628A patent/FR2962442B1/en active Active
-
2011
- 2011-06-20 CN CN201180033620.XA patent/CN102985397B/en active Active
- 2011-06-20 PL PL11737991T patent/PL2590916T3/en unknown
- 2011-06-20 US US13/808,326 patent/US20130105724A1/en not_active Abandoned
- 2011-06-20 ES ES11737991.7T patent/ES2602747T3/en active Active
- 2011-06-20 WO PCT/FR2011/051406 patent/WO2012004487A2/en active Application Filing
- 2011-06-20 CN CN201710600480.9A patent/CN107254296B/en active Active
- 2011-06-20 JP JP2013519130A patent/JP2013544896A/en active Pending
- 2011-06-20 EP EP11737991.7A patent/EP2590916B1/en not_active Revoked
-
2016
- 2016-01-07 US US14/990,159 patent/US10119055B2/en active Active
-
2017
- 2017-11-02 JP JP2017212461A patent/JP6615846B2/en active Active
-
2018
- 2018-07-13 US US16/034,539 patent/US10662357B2/en active Active
-
2019
- 2019-11-05 JP JP2019200862A patent/JP2020041147A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090030247A1 (en) * | 2006-01-03 | 2009-01-29 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11130893B2 (en) | 2008-10-08 | 2021-09-28 | Arkema France | Heat transfer fluid |
US9599381B2 (en) | 2008-10-08 | 2017-03-21 | Arkema France | Heat transfer fluid |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US10808157B2 (en) | 2008-11-03 | 2020-10-20 | Arkema France | Vehicle heating and/or air conditioning method |
US9505968B2 (en) | 2009-09-11 | 2016-11-29 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9011711B2 (en) | 2009-09-11 | 2015-04-21 | Arkema France | Heat transfer fluid replacing R-410A |
US9133379B2 (en) | 2009-09-11 | 2015-09-15 | Arkema France | Binary refrigerating fluid |
US9175203B2 (en) | 2009-09-11 | 2015-11-03 | Arkema France | Ternary compositions for low-capacity refrigeration |
US9039922B2 (en) | 2009-09-11 | 2015-05-26 | Arkema France | Low-temperature and average-temperature refrigeration |
US9267064B2 (en) | 2009-09-11 | 2016-02-23 | Arkema France | Ternary compositions for high-capacity refrigeration |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US10858562B2 (en) | 2009-09-11 | 2020-12-08 | Arkema France | Binary refrigerating fluid |
US9399726B2 (en) | 2009-09-11 | 2016-07-26 | Arkema France | Use of ternary compositions |
US9683157B2 (en) | 2009-09-11 | 2017-06-20 | Arkema France | Heat transfer method |
US9884984B2 (en) | 2009-09-11 | 2018-02-06 | Arkema France | Binary refrigerating fluid |
US10125296B2 (en) | 2009-09-11 | 2018-11-13 | Arkema France | Binary refrigerating fluid |
US10316231B2 (en) | 2009-09-11 | 2019-06-11 | Arkema France | Low-temperature and average-temperature refrigeration |
US9127191B2 (en) | 2009-09-11 | 2015-09-08 | Arkema France | Use of ternary compositions |
US10358592B2 (en) | 2009-09-11 | 2019-07-23 | Arkema France | Heat transfer method |
US9663697B2 (en) | 2009-09-11 | 2017-05-30 | Arkema France | Use of ternary compositions |
US20130092869A1 (en) * | 2010-06-30 | 2013-04-18 | Arkema France | Composition comprising 2,3,3,3-tetrafluoropropene |
US8858824B2 (en) * | 2010-06-30 | 2014-10-14 | Arkema France | Composition comprising 2,3,3,3-tetrafluoropropene |
US10662357B2 (en) | 2010-07-09 | 2020-05-26 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
EP2590916B1 (en) | 2010-07-09 | 2016-10-12 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US10119055B2 (en) | 2010-07-09 | 2018-11-06 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US9512343B2 (en) | 2010-09-20 | 2016-12-06 | Arkema France | Composition based on 2,3,3,3-tetrafluoropropene |
US9028706B2 (en) | 2011-02-10 | 2015-05-12 | Arkema France | Binary compositions of 2,3,3,3-tetrafluoropropene and of ammonia |
US9676984B2 (en) | 2011-05-04 | 2017-06-13 | Arkema France | Heat-transfer compositions exhibiting improved miscibility with the lubricating oil |
US9315708B2 (en) | 2011-05-04 | 2016-04-19 | Arkema France | Heat-transfer compositions exhibiting improved miscibility with the lubricating oil |
US10450488B2 (en) | 2012-01-26 | 2019-10-22 | Arkema France | Heat transfer compositions having improved miscibility with lubricating oil |
US9650551B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US9650553B2 (en) | 2012-12-26 | 2017-05-16 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US9969918B2 (en) | 2012-12-26 | 2018-05-15 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US10604690B2 (en) | 2012-12-26 | 2020-03-31 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
EP2938695B1 (en) | 2012-12-26 | 2018-12-05 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US10131829B2 (en) | 2012-12-26 | 2018-11-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US9683155B2 (en) | 2012-12-26 | 2017-06-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US10022576B2 (en) * | 2013-03-13 | 2018-07-17 | Arkema Inc. | Methods for purifying and stabilizing hydrofluoroolefins and hydrochlorofluoroolefins |
US20160023034A1 (en) * | 2013-03-13 | 2016-01-28 | Arkema Inc. | Methods for purifying and stabilizing hydrofluoroolefins and hydrochlorofluoroolefins |
US10252913B2 (en) | 2013-03-20 | 2019-04-09 | Arkema France | Composition comprising HF and 2,3,3,3-tetrafluoropropene |
US10377935B2 (en) | 2013-07-11 | 2019-08-13 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10023780B2 (en) | 2013-07-11 | 2018-07-17 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10144856B2 (en) | 2014-03-17 | 2018-12-04 | AGC Inc. | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
EP3023472B1 (en) | 2014-09-25 | 2019-11-06 | Daikin Industries, Ltd. | Composition containing hfc and hfo |
EP3241879A1 (en) | 2014-09-25 | 2017-11-08 | Daikin Industries, Ltd. | Composition comprising hfc and hfo |
EP3805336B1 (en) | 2014-09-25 | 2024-05-22 | Daikin Industries, Ltd. | Refrigeerator comprising a composition comprising hfc and hfo |
US9663695B2 (en) | 2014-09-25 | 2017-05-30 | Daikin Industries, Ltd. | Composition comprising HFC and HFO |
US9745497B2 (en) | 2014-09-25 | 2017-08-29 | Daikin Industries, Ltd. | Composition comprising HFC and HFO |
US9663694B2 (en) | 2014-09-25 | 2017-05-30 | Daikin Industries, Ltd. | Composition comprising HFC and HFO |
US9574123B2 (en) * | 2014-09-25 | 2017-02-21 | Daikin Industries, Ltd. | Composition comprising HFC and HFO |
US9663696B2 (en) | 2014-09-25 | 2017-05-30 | Daikin Industries, Ltd. | Composition comprising HFC and HFO |
US9644125B2 (en) | 2014-09-25 | 2017-05-09 | Daikin Industries, Ltd. | Composition comprising HFC and HFO |
EP3023472A1 (en) | 2014-09-25 | 2016-05-25 | Daikin Industries, Ltd. | Composition containing hfc and hfo |
US10669464B2 (en) | 2014-09-26 | 2020-06-02 | Daikin Industries, Ltd. | Haloolefin-based composition |
US10731065B2 (en) | 2014-09-26 | 2020-08-04 | Daikin Industries, Ltd. | Haloolefin-based composition and use thereof |
US10913881B2 (en) | 2014-09-26 | 2021-02-09 | Daikin Industries, Ltd. | Method of stabilization of a haloolefin-based composition |
US10968378B2 (en) | 2014-09-26 | 2021-04-06 | Daikin Industries, Ltd. | Haloolefin-based composition |
EP3015526B1 (en) | 2014-09-26 | 2020-11-18 | Daikin Industries, Ltd. | Hydrofluoroolefin-based composition and use thereof |
EP3040326B1 (en) | 2014-09-26 | 2020-01-08 | Daikin Industries, Ltd. | Haloolefin-based composition |
US10618861B2 (en) | 2015-03-18 | 2020-04-14 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US9908828B2 (en) | 2015-03-18 | 2018-03-06 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10399918B2 (en) | 2015-03-18 | 2019-09-03 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10487030B2 (en) | 2015-07-27 | 2019-11-26 | AGC Inc. | Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system |
US10975008B2 (en) | 2015-07-27 | 2021-04-13 | AGC Inc. | Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system |
US11427521B2 (en) | 2015-07-27 | 2022-08-30 | AGC Inc. | Solvent composition, cleaning method, method of forming a coating film, heat transfer fluid, and heat cycle system |
US10954467B2 (en) | 2016-10-10 | 2021-03-23 | Arkema France | Use of tetrafluoropropene based compositions |
US11306232B2 (en) | 2016-10-10 | 2022-04-19 | Arkema France | Tetrafluoropropene-based azeotropic compositions |
US11358919B2 (en) | 2017-01-23 | 2022-06-14 | Mexichem Fluor S.A. De C.V. | Process for the removal of haloalkyne impurities from (hydro)halocarbon compositions |
US10800720B2 (en) | 2017-01-23 | 2020-10-13 | Mexichem Fluor S.A. De C.V. | Process for the removal of haloalkyne impurities from (hydro)halocarbon compositions |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
US11001546B2 (en) | 2018-02-05 | 2021-05-11 | Arkema France | Ternary azeotropic or quasi-azeotropic composition comprising HF, 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane |
US11629278B2 (en) | 2018-02-15 | 2023-04-18 | Arkema France | Heat transfer compositions as replacement for R-134A |
US20210108119A1 (en) * | 2018-04-30 | 2021-04-15 | The Chemours Company Fc, Llc | Stabilized fluoroolefin compositions and methods for their production, storage and usage |
Also Published As
Publication number | Publication date |
---|---|
US20160115361A1 (en) | 2016-04-28 |
CN102985397B (en) | 2018-04-17 |
WO2012004487A3 (en) | 2012-03-29 |
JP2018076500A (en) | 2018-05-17 |
US10662357B2 (en) | 2020-05-26 |
ES2602747T3 (en) | 2017-02-22 |
JP6615846B2 (en) | 2019-12-04 |
PL2590916T3 (en) | 2017-02-28 |
EP2590916B1 (en) | 2016-10-12 |
CN102985397A (en) | 2013-03-20 |
WO2012004487A2 (en) | 2012-01-12 |
JP2013544896A (en) | 2013-12-19 |
FR2962442A1 (en) | 2012-01-13 |
CN107254296B (en) | 2021-04-20 |
US10119055B2 (en) | 2018-11-06 |
US20180327645A1 (en) | 2018-11-15 |
FR2962442B1 (en) | 2016-02-26 |
EP2590916A2 (en) | 2013-05-15 |
JP2020041147A (en) | 2020-03-19 |
CN107254296A (en) | 2017-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10662357B2 (en) | Stable 2,3,3,3-tetrafluoropropene composition | |
US8858824B2 (en) | Composition comprising 2,3,3,3-tetrafluoropropene | |
JP7644385B2 (en) | Haloolefin composition | |
JP6503388B2 (en) | Stable formulation system with chloro-3,3,3-trifluoropropene | |
JP6134470B2 (en) | Stable formulation system with chloro-3,3,3-trifluoropropene | |
US20130099154A1 (en) | Compositions of tetrafluoropene and polyol ester lubricants | |
JP2019048996A (en) | Fluorinated alkene coolant composition | |
CN116042183A (en) | Haloalkene compositions and uses thereof | |
US9315706B2 (en) | 3,3,3-trifluoropropene compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARKEMA FRANCE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOUSSAND, BEATRICE;REEL/FRAME:029567/0946 Effective date: 20121213 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |