US20130101605A1 - Modulators and modulation of the interaction between rgm and neogenin - Google Patents
Modulators and modulation of the interaction between rgm and neogenin Download PDFInfo
- Publication number
- US20130101605A1 US20130101605A1 US13/547,109 US201213547109A US2013101605A1 US 20130101605 A1 US20130101605 A1 US 20130101605A1 US 201213547109 A US201213547109 A US 201213547109A US 2013101605 A1 US2013101605 A1 US 2013101605A1
- Authority
- US
- United States
- Prior art keywords
- rgm
- neogenin
- cells
- protein
- interaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102100031900 Neogenin Human genes 0.000 title claims abstract description 192
- 108010076969 neogenin Proteins 0.000 title claims abstract description 188
- 230000003993 interaction Effects 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 67
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 53
- 208000035475 disorder Diseases 0.000 claims abstract description 29
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 9
- 230000036210 malignancy Effects 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 82
- 238000009739 binding Methods 0.000 claims description 58
- 230000027455 binding Effects 0.000 claims description 57
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 56
- 239000003112 inhibitor Substances 0.000 claims description 51
- 108090000623 proteins and genes Proteins 0.000 claims description 51
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 45
- 102000004169 proteins and genes Human genes 0.000 claims description 39
- 229920001184 polypeptide Polymers 0.000 claims description 35
- 101000756808 Homo sapiens Repulsive guidance molecule A Proteins 0.000 claims description 34
- 102100022813 Repulsive guidance molecule A Human genes 0.000 claims description 34
- 210000003050 axon Anatomy 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 28
- 230000014509 gene expression Effects 0.000 claims description 24
- 201000010099 disease Diseases 0.000 claims description 23
- 210000002569 neuron Anatomy 0.000 claims description 23
- 208000014674 injury Diseases 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 230000006378 damage Effects 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 19
- 208000027418 Wounds and injury Diseases 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 14
- 210000000020 growth cone Anatomy 0.000 claims description 13
- 238000012544 monitoring process Methods 0.000 claims description 13
- 102000037865 fusion proteins Human genes 0.000 claims description 12
- 108020001507 fusion proteins Proteins 0.000 claims description 12
- 101000636823 Homo sapiens Neogenin Proteins 0.000 claims description 10
- 210000004126 nerve fiber Anatomy 0.000 claims description 10
- 230000002401 inhibitory effect Effects 0.000 claims description 9
- 101100468540 Homo sapiens RGMA gene Proteins 0.000 claims description 7
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 7
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 6
- 208000020431 spinal cord injury Diseases 0.000 claims description 6
- 208000029028 brain injury Diseases 0.000 claims description 5
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 4
- 230000003042 antagnostic effect Effects 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 4
- 230000004770 neurodegeneration Effects 0.000 claims description 4
- 208000002320 spinal muscular atrophy Diseases 0.000 claims description 4
- 230000008733 trauma Effects 0.000 claims description 4
- 208000024827 Alzheimer disease Diseases 0.000 claims description 3
- 206010053487 Exposure to toxic agent Diseases 0.000 claims description 3
- 206010061216 Infarction Diseases 0.000 claims description 3
- 206010022773 Intracranial pressure increased Diseases 0.000 claims description 3
- 208000018737 Parkinson disease Diseases 0.000 claims description 3
- 230000007850 degeneration Effects 0.000 claims description 3
- 230000007574 infarction Effects 0.000 claims description 3
- 208000015181 infectious disease Diseases 0.000 claims description 3
- 208000012111 paraneoplastic syndrome Diseases 0.000 claims description 3
- 208000011580 syndromic disease Diseases 0.000 claims description 3
- 206010065040 AIDS dementia complex Diseases 0.000 claims description 2
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 claims description 2
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 claims description 2
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 claims description 2
- 201000010374 Down Syndrome Diseases 0.000 claims description 2
- 208000001730 Familial dysautonomia Diseases 0.000 claims description 2
- 208000023105 Huntington disease Diseases 0.000 claims description 2
- 208000001089 Multiple system atrophy Diseases 0.000 claims description 2
- 208000007542 Paresis Diseases 0.000 claims description 2
- 208000024777 Prion disease Diseases 0.000 claims description 2
- 201000001638 Riley-Day syndrome Diseases 0.000 claims description 2
- 206010044688 Trisomy 21 Diseases 0.000 claims description 2
- 230000001815 facial effect Effects 0.000 claims description 2
- 201000009941 intracranial hypertension Diseases 0.000 claims description 2
- 206010023497 kuru Diseases 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 210000000578 peripheral nerve Anatomy 0.000 claims description 2
- 230000002265 prevention Effects 0.000 claims description 2
- 201000002241 progressive bulbar palsy Diseases 0.000 claims description 2
- 201000008752 progressive muscular atrophy Diseases 0.000 claims description 2
- 208000008864 scrapie Diseases 0.000 claims description 2
- 208000037956 transmissible mink encephalopathy Diseases 0.000 claims description 2
- 230000009870 specific binding Effects 0.000 claims 3
- 230000002708 enhancing effect Effects 0.000 claims 1
- 210000000653 nervous system Anatomy 0.000 abstract description 10
- 230000002491 angiogenic effect Effects 0.000 abstract description 4
- 210000000748 cardiovascular system Anatomy 0.000 abstract description 4
- 229940000032 cardiovascular system drug Drugs 0.000 abstract description 4
- 238000007877 drug screening Methods 0.000 abstract description 2
- 108050005592 Repulsive guidance molecule Proteins 0.000 description 200
- 102000017481 Repulsive guidance molecule Human genes 0.000 description 199
- 239000012634 fragment Substances 0.000 description 48
- 150000007523 nucleic acids Chemical class 0.000 description 41
- 238000003556 assay Methods 0.000 description 35
- 102000039446 nucleic acids Human genes 0.000 description 34
- 108020004707 nucleic acids Proteins 0.000 description 34
- 108020003175 receptors Proteins 0.000 description 27
- 102000005962 receptors Human genes 0.000 description 27
- 241000282414 Homo sapiens Species 0.000 description 21
- 239000008194 pharmaceutical composition Substances 0.000 description 21
- 241000699666 Mus <mouse, genus> Species 0.000 description 18
- 239000012528 membrane Substances 0.000 description 18
- 108091033319 polynucleotide Proteins 0.000 description 18
- 102000040430 polynucleotide Human genes 0.000 description 18
- 239000002157 polynucleotide Substances 0.000 description 18
- 239000013598 vector Substances 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 17
- 150000001413 amino acids Chemical group 0.000 description 15
- 210000004556 brain Anatomy 0.000 description 15
- 239000002773 nucleotide Substances 0.000 description 15
- 125000003729 nucleotide group Chemical group 0.000 description 15
- 210000000130 stem cell Anatomy 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 230000002123 temporal effect Effects 0.000 description 13
- JVJUWEFOGFCHKR-UHFFFAOYSA-N 2-(diethylamino)ethyl 1-(3,4-dimethylphenyl)cyclopentane-1-carboxylate;hydrochloride Chemical class Cl.C=1C=C(C)C(C)=CC=1C1(C(=O)OCCN(CC)CC)CCCC1 JVJUWEFOGFCHKR-UHFFFAOYSA-N 0.000 description 11
- 102000010803 Netrins Human genes 0.000 description 11
- 108010063605 Netrins Proteins 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 11
- 230000002207 retinal effect Effects 0.000 description 11
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 10
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 10
- 102000053642 Catalytic RNA Human genes 0.000 description 10
- 108090000994 Catalytic RNA Proteins 0.000 description 10
- 206010010904 Convulsion Diseases 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 239000002831 pharmacologic agent Substances 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 108091092562 ribozyme Proteins 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 108091023037 Aptamer Proteins 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 108010074223 Netrin-1 Proteins 0.000 description 9
- 102000009065 Netrin-1 Human genes 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 210000003994 retinal ganglion cell Anatomy 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 8
- 230000003376 axonal effect Effects 0.000 description 8
- 210000003169 central nervous system Anatomy 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 239000013604 expression vector Substances 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 230000001537 neural effect Effects 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 208000012902 Nervous system disease Diseases 0.000 description 7
- 208000025966 Neurological disease Diseases 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 238000000159 protein binding assay Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 108010043939 Ephrin-A5 Proteins 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- -1 Slit Proteins 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000004069 differentiation Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 108060002566 ephrin Proteins 0.000 description 6
- 102000012803 ephrin Human genes 0.000 description 6
- 206010015037 epilepsy Diseases 0.000 description 6
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 230000003902 lesion Effects 0.000 description 6
- 238000013508 migration Methods 0.000 description 6
- 230000005012 migration Effects 0.000 description 6
- 230000000926 neurological effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 210000001525 retina Anatomy 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 102000010410 Nogo Proteins Human genes 0.000 description 5
- 108010077641 Nogo Proteins Proteins 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 208000030886 Traumatic Brain injury Diseases 0.000 description 5
- 102000023732 binding proteins Human genes 0.000 description 5
- 108091008324 binding proteins Proteins 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 239000003636 conditioned culture medium Substances 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000001415 gene therapy Methods 0.000 description 5
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 108010043942 Ephrin-A2 Proteins 0.000 description 4
- 102100033919 Ephrin-A2 Human genes 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 206010029113 Neovascularisation Diseases 0.000 description 4
- 101100468538 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RGM1 gene Proteins 0.000 description 4
- 108050003978 Semaphorin Proteins 0.000 description 4
- 102000014105 Semaphorin Human genes 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 208000028867 ischemia Diseases 0.000 description 4
- 230000000302 ischemic effect Effects 0.000 description 4
- 150000002611 lead compounds Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 108010047303 von Willebrand Factor Proteins 0.000 description 4
- 102100036537 von Willebrand factor Human genes 0.000 description 4
- 229960001134 von willebrand factor Drugs 0.000 description 4
- 241000283707 Capra Species 0.000 description 3
- 206010008089 Cerebral artery occlusion Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 108010055191 EphA3 Receptor Proteins 0.000 description 3
- 102000021607 EphA3 Receptor Human genes 0.000 description 3
- 102100033941 Ephrin-A5 Human genes 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000636817 Mus musculus Neogenin Proteins 0.000 description 3
- 108010030865 Netrin Receptors Proteins 0.000 description 3
- 102000005951 Netrin Receptors Human genes 0.000 description 3
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 3
- 108091093037 Peptide nucleic acid Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 239000013613 expression plasmid Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 201000007309 middle cerebral artery infarction Diseases 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000001613 neoplastic effect Effects 0.000 description 3
- 239000002853 nucleic acid probe Substances 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 239000000816 peptidomimetic Substances 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 210000000278 spinal cord Anatomy 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 2
- 101001007348 Arachis hypogaea Galactose-binding lectin Proteins 0.000 description 2
- 201000006474 Brain Ischemia Diseases 0.000 description 2
- 206010008120 Cerebral ischaemia Diseases 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 208000016192 Demyelinating disease Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 101100468539 Gallus gallus RGMA gene Proteins 0.000 description 2
- 208000003098 Ganglion Cysts Diseases 0.000 description 2
- 208000034308 Grand mal convulsion Diseases 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 102000006486 Phosphoinositide Phospholipase C Human genes 0.000 description 2
- 108010044302 Phosphoinositide phospholipase C Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 241000251131 Sphyrna Species 0.000 description 2
- 208000005400 Synovial Cyst Diseases 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 108010006886 Vitrogen Proteins 0.000 description 2
- IZOBIZVXEKNCNN-ZNQIEUMMSA-N [(1r,2r,3's,4e,5s)-4-hexa-2,4-diynylidenespiro[3,6-dioxabicyclo[3.1.0]hexane-2,6'-oxane]-3'-yl] 3-methylbutanoate Chemical compound CC#CC#C\C=C([C@H]1O[C@H]11)\O[C@@]21CC[C@H](OC(=O)CC(C)C)CO2 IZOBIZVXEKNCNN-ZNQIEUMMSA-N 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000004009 axon guidance Effects 0.000 description 2
- 230000028600 axonogenesis Effects 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 206010008118 cerebral infarction Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 210000003837 chick embryo Anatomy 0.000 description 2
- 238000000749 co-immunoprecipitation Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 238000013537 high throughput screening Methods 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 239000012133 immunoprecipitate Substances 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 230000000626 neurodegenerative effect Effects 0.000 description 2
- 230000014511 neuron projection development Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 210000001428 peripheral nervous system Anatomy 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000036573 scar formation Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004017 serum-free culture medium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 210000003863 superior colliculi Anatomy 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 230000009529 traumatic brain injury Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000254032 Acrididae Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102100024321 Alkaline phosphatase, placental type Human genes 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 206010003628 Atonic seizures Diseases 0.000 description 1
- 206010048962 Brain oedema Diseases 0.000 description 1
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 108091027757 Deoxyribozyme Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 102000050554 Eph Family Receptors Human genes 0.000 description 1
- 108091008815 Eph receptors Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 208000006893 Fetal Hypoxia Diseases 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 101000925251 Homo sapiens Ephrin-A5 Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010088373 Neurofilament Proteins Proteins 0.000 description 1
- 102000008763 Neurofilament Proteins Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 101000684301 Schistocerca americana Semaphorin-1A Proteins 0.000 description 1
- 102000013008 Semaphorin-3A Human genes 0.000 description 1
- 108010090319 Semaphorin-3A Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010040703 Simple partial seizures Diseases 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 206010043994 Tonic convulsion Diseases 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 101150032479 UNC-5 gene Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000028311 absence seizure Diseases 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 208000037919 acquired disease Diseases 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000006583 body weight regulation Effects 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000015861 cell surface binding Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009519 contusion Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 208000028329 epileptic seizure Diseases 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001400 expression cloning Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000031169 hemorrhagic disease Diseases 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 238000013198 immunometric assay Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000000670 ligand binding assay Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000008760 nerve sprouting Effects 0.000 description 1
- 230000008271 nervous system development Effects 0.000 description 1
- 210000005044 neurofilament Anatomy 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000004788 neurological cell Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000001314 paroxysmal effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- 230000009984 peri-natal effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000002856 peripheral neuron Anatomy 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 108010031345 placental alkaline phosphatase Proteins 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001581 pretranslational effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001243 pseudopodia Anatomy 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 238000001374 small-angle light scattering Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000003966 vascular damage Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000008189 vertebrate development Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/566—Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/02—Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/827—Proteins from mammals or birds
- Y10S530/839—Nerves; brain
Definitions
- This invention is related to the field of neuroscience and neurology. In particular embodiments it is related to the area of axon guidance cues and their modulators, and neurological drug screening using repulsive guidance molecules and Neogenin.
- RGC axons Having arrived at the anterior pole of the optic tectum, RGC axons start to invade their tectal target to find their target neurons. Mapping occurs in such a way that RGC axons from nasal retina project to posterior tectum and temporal axons to anterior tectum.
- axons coming from dorsal retina terminate in ventral tectum, whereas those from ventral retina end up in dorsal tectum.
- a precise topographic map is formed, where neighborhood relationships in the retina are preserved in the tectum so that axons from neighboring ganglion cells in the retina synapse with neighboring tectal neurons.
- Most important for formation of this map are graded tectal guidance cues, read by retinal growth cones carrying corresponding receptors which also show a graded distribution (Sperry, Proc. Natl. Acad. Sci. USA 50 (1963), 703710; Bonhoeffer & Gierer, Trends Neurosci. 7 (1984) 378-381).
- Position of each retinal growth cone in the tectal field is therefore determined by two sets of gradients: receptor gradients on in-growing retinal axons and growth cones and ligand gradients on tectal cells (Gierer, Development 101 (1987), 479-489).
- the existence of the graded tectal ligands has been postulated from anatomical work. Their identification, however, proved to be extremely difficult and was only made possible with the development of simple in vitro systems (Walter; Development 101 (1987), 685-96; Cox, Neuron 4 (1990), 31-7).
- RGC axons grow on a membrane carpet, consisting of alternating lanes of anterior (a) and posterior (p) tectal membranes.
- temporal retinal axons grow on anterior tectal membranes and are repelled by the posterior lanes, whereas nasal axons do not distinguish between a and p membranes (Walter, Development 101 (1987), 685-96).
- the same specificity is also observed in the growth cone collapse assay (Raper & Kapfhammer, Neuron 4 (1990), 21-29) where temporal retinal growth cones collapse after addition of posterior tectal membrane vesicles but do not react to anterior tectal vesicles and where nasal growth cones are insensitive to either type of vesicles (Cox, (1990), loc. cit.).
- PI-PLC phosphatidylinositol-specific phospholipase C
- RGM Repulsive Guidance Molecule
- RGM Due to the abnormal biochemical behavior of RGM, the precise amino acid sequence was not easily obtainable.
- RGM was described as a molecule which is active during vertebrate development. Interestingly, RGM is downregulated in the embryonic chick tectum after E12 and in the embryonic rat tectum after P2 and completely disappears after the embryonic stages (Muller (1992), Ph.D thesis University of Tübbingen; Müller (1997) Japan Scientific Societies, 215-229). In 1996, Müller (loc. cit.) showed that CALI (chromophore-assisted laser inactivation) of RGM eliminates the repulsive guidance activity of posterior tectal membranes.
- CALI chromophore-assisted laser inactivation
- RGM acts in concert with RAGS (now termed ephrin-A5) and ELF-I (ephrin-A2). It was furthermore envisaged that RGM may be a co-factor potentiating the activity of RAGS and ELF-1 in embryonic guidance events.
- Nogo-A Chon, Nature 403 (2000), 434-438
- the membrane-bound Nogo turned out to be a member of the reticulon family (GrandPre, Nature 403 (2000), 439-444).
- semaphorins have been reported in a wide range of species and described as transmembrane proteins (see, inter alia, Kolodkin Cell 75 (1993) 1389-99, Püchel, Neuron 14 (1995), 941-948). Yet, it was also shown that not all semaphorins have inhibitory activity. Some members of the family, e.g. semaphorin E, act as an attractive guidance signal for cortical axons (Bagnard, Development 125 (1998), 5043-5053).
- Ephrin-Eph A further system of repulsive guidance molecules is the ephrin-Eph system.
- Ephrins are ligands of the Eph receptor kinases and are implicated as positional labels that may guide the development of neural topographic maps (Flanagan, Ann. Rev. Neurosc. 21 (1998), 309-345).
- Ephrins are grouped in two classes, the A-ephrins which are linked to the membrane by a glycosylphosphatidylinositol-anchor (GPIanchor) and the B-ephrins carrying a transmembrane domain (Eph nomenclature committee 1997).
- GPIanchor glycosylphosphatidylinositol-anchor
- ephrin-A2 and ephrin-A5 Two members of the A-ephrins, ephrin-A2 and ephrin-A5, expressed in low anterior-high posterior gradients in the optic tectum, have recently been shown to be involved in repulsive guidance of retinal ganglion cell axons in vitro and in vivo (see, inter alia (Drescher, Cell 82 (1995), 359-70; Cheng, Cell 79 (1994), 157-168; Feldheim, Neuron 21 (1998), 563-74; Feldheim, Neuron 25 (2000), 563-74).
- the technical problems underlying the present invention was to provide for means and methods for modifying developmental or cellular (migration) processes which lead to disease conditions.
- the Ephrin, Semaphorin, Slit, and RGM families of extracellular guidance cues specify axonal trajectories during nervous system development 1-3 .
- the netrins are a family of proteins that are profound modulators of growth of developing axons, functioning as attractants for some axons and repellents of other axons. As such, the modulation of these effects provides an important therapeutic pathway for assisting the regeneration of axons in adult nervous system (e.g. following injury or trauma). While neuronal receptors have been identified for most axonal guidance cues, the mechanism by which the recently sequenced RGM protein (WO 02/051438) acts has not been clarified 3 .
- chick RGM is expressed in a posterior to anterior tectal gradient and has been shown to collapse temporal but not nasal retinal growth cones 3 .
- the cell surface RGM is proteolytically processed to a mature active form of 33 kDa 3 .
- RGM modulators of guidance cues
- Identifying receptors on axons that mediate neural responsiveness to guidance cues will provide key targets for identifying lead pharmaceuticals for therapeutic intervention in the nervous system (see, for example, U.S. Pat. Nos. 6,087,326 and 5,747,262). Accordingly, because RGM has a demonstrated role in axon growth, it would be desirable to accurately identify the receptor through which RGM acts such that targeted screens could be conducted.
- Neogenin is known to share sequence similarity with the Netrin receptor Deleted in Colorectal Cancer (DCC).
- DCC Colorectal Cancer
- the sequence for the Neogenin gene has been described (for example, Keeling S L, Gad J M, Cooper H M. “Mouse Neogenin, a DCC-like molecule, has four splice variants and is expressed widely in the adult mouse and during embryogenesis.” Oncogene. 1997 Aug. 7; 15(6):691-700.
- GenBank NT — 039474; NM — 008684 GenBank NT — 039474; NM — 008684
- the present inventors have determined the true physiological ligand for Neogenin.
- the invention identifies Neogenin as the receptor for Repulsive Guidance Molecule. Accordingly, the invention envisions the use of the previously described Neogenin and RGM molecules in combinations and methods which could not previously have been suggested. In particular, the invention allows for targeted screening assays and the development of inhibitors capable of specifically inhibiting the interaction between RGM and Neogenin.
- the invention provides efficient methods of identifying agents, compounds or lead compounds for agents capable of modulating Neogenin cellular function.
- these screening methods involve assaying for compounds which modulate mammalian Neogenin interaction with a natural mammalian RGM.
- assays for binding agents are provided including labeled in vitro protein-protein binding assays, immunoassays, cell based assays, animal based assay, etc.
- Preferred methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds.
- Such libraries encompass candidate agents of numerous chemical classes, though typically they are organic compounds; preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds.
- Identified agents find use in the pharmaceutical industries for animal and human trials; for example, the agents may be derivatized and rescreened in vitro and in vivo assays to optimize activity and minimize toxicity for pharmaceutical development.
- In vitro binding assays employ a mixture of components including mammalian Neogenin protein, which may be part of a fusion product with another peptide or polypeptide, e.g. a tag for detection or anchoring, etc.
- the assay mixtures comprise a natural extracellular mammalian Neogenin binding target, such as a RGM. While native binding targets may be used, it is frequently preferred to use portions (e.g. peptides) thereof so long as the portion provides binding affinity and avidity to the subject mammalian Neogenin protein conveniently measurable in the assay.
- the assay mixture also comprises a candidate pharmacological agent and typically, a variety of other reagents such as salts, buffers, neutral proteins, e.g.
- the mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding.
- the mixture is then incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the mammalian Neogenin protein specifically binds the cellular binding target, portion or analog with a reference binding affinity. Incubation periods are likewise selected for optimal binding but also minimized to facilitate rapid, high-throughput screening.
- a separation step is often initially used to separate bound from unbound components. Separation may be effected by precipitation (e.g. TCA precipitation, immunoprecipitation, etc.), immobilization (e.g. on a solid substrate), etc., followed by washing by, for examples, membrane filtration, gel chromatography (e.g. gel filtration, affinity, etc.).
- One of the components usually comprises or is coupled to a label.
- the label may provide for direct detection such as radioactivity, luminescence, optical or electron density, etc. or indirect detection such as an epitope tag, an enzyme, etc.
- a variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g. through optical or electron density, radiative emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, etc.
- a difference in the binding affinity of the mammalian Neogenin protein to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the mammalian Neogenin protein to the mammalian RGM.
- a difference in the mammalian Neogenin transcriptional induction in the presence and absence of an agent indicates the agent modulates vertebrate such induced transcription.
- a difference is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.
- the invention provides methods and compositions for identifying pharmacological agents useful in the diagnosis or treatment of neurological disease or injury.
- the invention provides mixtures comprising an isolated (RGM) and an isolated Neogenin receptor capable of specifically binding said RGM.
- the general methods involve incubating a mixture comprising an isolated RGM, an isolated Neogenin receptor, and a candidate pharmacological agent, and determining if the presence of the agent modulates the binding of the RGM to the receptor.
- Specific agents provide lead compounds for pharmacological agents useful in the diagnosis or treatment of neurological disease or injury.
- Another object of the invention is to provide a method for monitoring the interaction between RGM and Neogenin so that agonists and antagonists can be identified.
- Another object of the invention is to provide a polypeptide useful for antagonizing the interaction between a RGM and a Neogenin receptor.
- Another object of the invention is to provide a polypeptide useful for antagonizing the interaction between RGM and Neogenin.
- a method of monitoring the interaction of a RGM and a Neogenin receptor comprises the steps of:
- a method for monitoring the interaction between a RGM and a Neogenin comprises the steps of:
- a method for monitoring the interaction between a RGM and Neogenin comprises the steps of:
- a polypeptide portion of Neogenin useful for antagonizing the interaction between RGM and Neogenin is provided.
- a method of monitoring the interaction between a RGM and Neogenin comprises the steps of:
- a method for monitoring the interaction between a RGM and Neogenin comprises the steps of:
- an antibody preparation which specifically binds to a Neogenin protein.
- an antibody specifically targeted to domain(s) involved in the interaction between Neogenin and RGM would be directed towards the FNIII domain(s) of Neogenin.
- an antibody preparation which specifically binds to a RGM protein.
- RGM is processed proteolytically, and the active domain extends carboxyl from the cut site to the GPI anchorage site. This same region appear to mediate Neogenin binding. Accordingly, antibodies directed to domains within this region would be one aspect of the invention.
- nucleic acid capable of inhibiting the expression of an RGM protein or a Neogenin protein.
- the medical applications of such compounds, their agonists, and their antagonists are enormous and include preventing, alleviating or treating various disorders of the nervous system, angiogenic disorders or disorders of the cardio-vascular system and malignancies of different etiology.
- FIG. 1 Neogenin is a high affinity binding site for RGM.
- FIG. 2 Physical complex containing RGM and Neogenin.
- FIG. 3 Specificity of Neogenin interaction with RGM.
- RGM-AP binds to the FNIII repeats of Neogenin.
- RGM-.AP binding to COS-7 expressing the indicated fragments of Neogenin is illustrated.
- FIG. 4 Dominant negative Neogenin-1 blocks retinotectal axonal preferences.
- A Retinal ganglion cell axon preference for anterior tectal membranes. Outgrowth from explants from the temporal or nasal chick retina (green) is illustrated on stripes consisting of anterior (black) or posterior (red) tectal membranes.
- (C) Stripe preference as a function of soluble Neogenin ectodomain concentration. Data from 4-16 experiments such as in (A) and (B) were scored for the extend of preference of temporal retinal axons for Anterior versus Posterior stripes (AP) or Anterior versus Anterior stripes (AA). A rating of 2 reflects a complete segregation of axons to the anterior stripes, a rating of 1 reflects still a preference for anterior stripes without complete segregation and 0 is no preference 10, 11 .
- FIG. 5 Amino acid sequence of Neogenin.
- FIG. 6 Nucleotide sequence of Neogenin.
- a fusion protein of chick RGM truncated amino terminal to the GPI site was fused to human placental alkaline phosphatase (AP) to express a soluble, carboxy-terminally MycHis tagged secreted protein.
- AP placental alkaline phosphatase
- the cRGM-AP fusion protein was processed proteolytically to yield a 110 kDa fusion protein (data not shown). This material retained biological activity as demonstrated by the avoidance of cRGM-AP stripes by temporal retinal ganglion cell axons ( FIG. 1A ).
- the cRGM-AP fusion protein does not bind to COS-7 kidney-derived cells, so we expressed an adult mouse brain cDNA expression library in these cells and screened for clones driving expression of cell surface binding activity. Only a single clone was identified in screens of 480,000 independent clones. This cDNA clone expressed a saturable binding site for cRGM-AP with a Kd of 230 pM ( FIG. 1B-D ). DNA sequence analysis revealed that the high affinity RGM-AP binding protein was Neogenin. In the mouse genome there are three RGM-related sequences, that we have termed mRGM-A, mRGM-B and mRGM-C.
- the three mouse RGM sequences share 41-49% aa identity and 55-61% aa similarity with one another.
- Chick RGM shares the highest level of identity with mRGM-A at 80% aa identity and 84% aa similarity.
- Both RGM-A and RGM-B are expressed in many regions of the developing mouse brain, so we tested if AP fusion proteins of these also bind to Neogenin.
- Both mRGM-A and mRGM-B bind mNeogenin with high affinity ( FIG. 1E ).
- DCC has no detectable affinity for RGM-AP, any affinity must be at least 50 fold less than for Neogenin ( FIG. 3A ).
- Unc5 proteins can bind Netrin-1 independently of DCC, and serve as obligate co-receptors together with DCC in axon repulsion by Netrins 8 .
- neither Unc5H1 nor Unc5H3 proteins bind RGM-AP ( FIG. 3A ).
- Netrin-1 is known to bind to the FNIII region of DCC, rather than the Ig domains 9 .
- full RGM binding affinity is obtained with a truncated Neogenin containing only the FNIII repeats ( FIG. 3B ).
- FIG. 4B Blockade of retinal axon stripe preference is dose-dependent, with essentially complete blockade at 400 nM soluble Neogenin ectodomain ( FIG. 4C ).
- the tectum contains an anterior-to-posterior both RGM and ephrin A2/A5 guidance cues 3-5 .
- FIG. 4D To ensure that soluble Neogenin ectodomain was selectively blocking RGM function, and not ephrin function, we tested the ligand binding specificity of these systems.
- RGMs form high affinity complexes with Neogenin and Neogenin/RGM complexes play a significant role in retinotectal guidance systems. Since the Neogenin-related DCC functions as an axonal guidance receptor for Netrin-1, there is precedence for this family of receptor proteins mediating axonal guidance in vivo 6-7 . The interaction of RGM with Neogenin is of higher affinity than Netrin-1's interaction with Neogenin, and is specific amongst Netrin-binding proteins. Thus Neogenin's primary role in nervous system development is as a RGM receptor, with DCC serving as the primary Netrin receptor.
- Neogenin and RGM are highly expressed in adult nervous system and in the injured nervous system, thus implicating them in adult neural regeneration.
- RGM is localized at very high concentrations in brains at the lesion site in humans suffering from traumatic brain injury or from cerebral ischemia. From approximately 1-7 days post injury or post cerebralischemia, monocytes, lymphocytes, granulocytes and a few neurons express RGM. In subsequent stages, RGM is present on fibroblast-like cells, on reactive astrocytes and in fresh and mature scar tissue which forms at the lesion site.
- the invention provides methods and compositions for identifying pharmacological agents useful in the diagnosis or treatment of mammalian, particularly human, neurological disease or injury.
- the methods rely on monitoring the interaction of a mammalian, particularly human RGM and a corresponding Neogenin in the presence and absence of a candidate agent.
- assays can be used, including receptor activation assays and binding assays.
- Binding assays may monitor RGM binding to a domain of or a full-length receptor expressed on a cell, or in vitro protein-protein binding of a RGM to a full length or truncated receptor. In some embodiments, such in vitro screens involve the immobilization of one of the binding partners on a solid substrate.
- these assays involve a mixture comprising an isolated RGM and an isolated RGM and an isolated Neogenin capable of specifically binding said RGM.
- these mammalian gene products function as natural mammalian, and in particular, human, ligand-receptor complex.
- the general methods comprise the steps of: (1) forming a mixture comprising an isolated RGM, an isolated negoenin-1 receptor, and a candidate pharmacological agent; (2) incubating said mixture under conditions whereby, but for the presence of said candidate pharmacological agent, said RGM specifically binds said Neogenin at a first binding affinity; and (3) detecting a second binding affinity of said RGM to said Neogenin, wherein a difference between said first and second binding affinity indicates that said candidate pharmacological agent is a lead compound for a pharmacological agent useful in the diagnosis or treatment of neurological disease or injury.
- modulator as employed herein relates to “inhibitors” as well as “activators” of RGM or Neogenin function. Most preferably said “modulation” is an inhibition, wherein said inhibition may be a partial or a complete inhibition.
- An inhibitor of RGM for example, need not bind RGM but might inhibit RGM by interacting with Neogenin and inhibiting the RGM/Neogenin interaction.
- the inhibitor could inhibit RGM by inhibiting transcription, translation or processing (pre or post-translational) of RGM.
- a modulator may mimic RGM function through binding to Neogenin without sharing homology to RGM.
- RGM amino acid sequence relates to the RGM polypeptides disclosed in WO 02/051438 (to which the following SEQ ID Nos. refer).
- SEQ ID NOs: 20 and 21 depict human RGM1.
- Human RGM1 has been localized on chromosome 15.
- human RGMs comprise RGM2 and RGM3.
- RGM2 is depicted in SEQ ID NO: 23 (amino acid sequence) and is encoded by a nucleotide sequence as shown in SEQ ID NO: 22.
- Human RGM2 has been localized on chromosome 5.
- human RGM3 is shown in appended SEQ ID NO: 25 (amino acid sequence) and encoded by a nucleotide sequence as depicted in SEQ ID NO: 24.
- Human RGM3 is located on chromosome 1. Yet, as will be discussed herein below, said term relates also to further RGM homologues.
- (poly) peptide means, in accordance with the present invention, a peptide, a protein, or a (poly) peptide which encompasses amino acid chains of a given length, wherein the amino acid residues are linked by covalent peptide bonds.
- peptidomimetics of such RGM proteins!(poly) peptides or Neogenin proteins/(poly)peptides wherein amino acid (s) and/or peptide bond (s) have been replaced by functional analogs are also encompassed by the invention.
- the present invention is not restricted to uses of RGM and Neogenin from human, mouse or chicken and its inhibitors but also relates to the use of inhibitors of RGM and Neogenin or of RGM and Neogenin itself (or functional fragments or derivatives thereof) from other species. Since the present invention provides for the use of amino acid sequences/polypeptides of RGM and Neogenin and their corresponding inhibitors and since the amino acid sequences of human and chicken RGM and Neogenin have been disclosed, the person skilled in the art is provided with the information to obtain RGM and Neogenin sequences from other species, like, inter alia, mouse, rat, pig, etc. The relevant methods are known in the art and may be carried out by standard methods, employing, inter alia, degenerate and non degenerate primers in PCR-techniques.
- RGM RGM modulator
- RGM-inhibitor Neogenin
- Neogenin modulator Neogenin inhibitor
- Neogenin inhibitor also relate to RGM and Neogenin molecules (and their corresponding inhibitors) which are variants or homologs of the RGM and Neogenin molecules (and their inhibitors) as described herein.
- Homology in this context is understood to refer in this context to a sequence identity of RGM and Neogenin of at least 70%, preferably more than 80% and still more preferably more than 90% on the amino acid level.
- the present invention comprises also (poly)peptides deviating from wildtype amino acid sequences of human or chicken RGM and Neogenin, wherein said deviation may be, for example, the result of amino acid and/or nucleotide substitution(s), deletion(s), addition(s), insertion(s), duplication(s), -inversion(s) and/or recombination(s) either alone or in combination.
- Those deviations may naturally occur or be produced via recombinant DNA techniques well known in the art.
- the term “variation” as employed herein also comprises “allelic variants”. These allelic variations may be naturally occurring allelic variants, splice variants as well as synthetically produced or genetically engineered variants.
- FIGS. 5 and 6 present the amino acid sequence and nucleotide sequence, respectively, for Neogenin.
- reference to “wildtype” Neogenin refers to this sequence although, as described herein, significant modifications of this sequence will not depart from the spirit of the invention. To the extent that allelic or other differences occur among Neogenin genes, these differences may be used to create specific probes or antibodies.
- polynucleotide in accordance with the present invention comprises coding and, wherever applicable, non-coding sequences (like promotors, enhancers etc.). It comprises DNA, RNA as well as PNA.
- polynucleotide/nucleic acid molecule comprises also any feasible derivative of a nucleic acid to which a nucleic acid probe may hybridize. Said nucleic acid probe itself may be a derivative of a nucleic acid molecule capable of hybridizing to said nucleic acid molecule or said derivative thereof.
- nucleic acid molecule further comprises peptide nucleic acids (PNAs) containing DNA analogs with amide backbone linkages (Nielsen, Science 254 (1991), 1497-1500).
- PNAs peptide nucleic acids
- the term “nucleic acid molecule” which encodes a RGM (poly) peptide or a functional fragment/derivative thereof, in connection with the present invention, is defined either by (a) the specific nucleic acid sequences encoding said (poly) peptide specified in the present invention or (b) by nucleic acid sequences hybridizing under stringent conditions to the complementary strand of the nucleotide sequences of (a) and encoding a (poly) peptide deviating from the nucleic acid of (a) by one or more nucleotide substitutions, deletions, additions or inversions and wherein the nucleotide sequence shows at least 70%, more preferably at least 80% identity with the nucleotide sequence of said encoded
- modulator as employed herein also comprises the term “inhibitor”, as mentioned herein above.
- the term comprises “modulators” of the RGM and Neogenin polypeptides and/or the RGM and Neogenin encoding nucleic acid molecule/genes. In context of this invention it is also envisaged that said “modulation” may lead, when desired, to an activation of RGM and/or Neogenin.
- the term “functional fragment or derivative thereof” in context of the present invention and in relation to the RGM and Neogenin molecules comprises fragments of the RGM and Neogenin molecules defined herein having a length of at least 10, in another embodiment 25, in another embodiment at least 50, in another embodiment at least 75, and in another embodiment at least 100 amino acids depending on the application as would be known to one of skill in the art.
- Functional fragments of the herein identified RGM and Neogenin molecules or RGM and Neogenin molecules of other species may be comprised in fusion and/or chimeric proteins.
- “Functional fragments” comprise RGM or Neogenin fragments (or their encoding nucleic acid molecules) which are able to replace RGM or Neogenin full length molecules in corresponding assays (as disclosed in, e.g. collapse and/or stripe assays) or may elucidate an anti-RGM or anti-Neogenin specific immune-response and/or lead to specific anti-RGM or anti-Neogenin antibodies.
- polynucleotides encoding functional fragments of RGM or Neogenin and/or their derivatives have at least 15, in another embodiment at least 30, in another embodiment at least 90, in another embodiment at least 150, and in another embodiment at least 300 nucleotides depending on the application as would be known to one of skill in the art.
- derivative means in context of their invention derivatives of RGM and Neogenin molecules and/or their encoding nucleic acid molecules and refer to natural derivatives (like allelic variants) as well as recombinantly produced derivatives/variants which may differ from RGM or Neogenin molecules by at least one modification/mutation, e.g. at least one deletion, substitution, addition, inversion or duplication.
- derivative also comprises chemical modifications.
- derivative as employed herein in context of the RGM and Neogenin molecule also comprises soluble RGM and Neogenin molecules which do not comprise any membrane anchorage.
- the present invention provides for the use of a modulator, preferably an inhibitor, of RGM molecules and/or their corresponding encoding polynucleotides/nucleic acid molecules for the preparation of a pharmaceutical composition for preventing, alleviating or treating various disorders of the nervous system, angiogenic disorders or disorders of the cardio-vascular system and malignancies of different etiology.
- said disorders of the nervous system comprise degeneration or injury of vertebrate nervous tissue, in particular neurodegenerative diseases, nerve fiber injuries and disorders related to nerve fiber losses.
- Said neurodegenerative diseases may be selected from the group consisting of motomeuronal diseases (MND), amyotrophic lateral sclerosis (ALS), Alzheimer disease, Parkinson's disease, progressive bulbar palsy, progressive muscular atrophy, HIV-related dementia and spinal muscular atrophy (ies), Down's Syndrome, Huntington's Disease, Creutzfeldt-Jacob Disease, Gerstmann-Straeussler Syndrome, kuru, Scrapie, transmissible mink encephalopathy, other unknown prion diseases, multiple system atrophy, Riley-Day familial dysautonomia
- said nerve fiber injuries maybe selected from the group consisting of spinal cord injury (ies), brain injuries related to raised intracranial pressure, trauma, secondary damage due to increased intracranial pressure, infection, infarction, exposure to toxic agents, malignancy and paraneoplastic syndromes and wherein said disorders related to nerve fiber losses may be selected from the group consisting of paresis of nervus facials, nervus medianus, nervus ulnaris
- the above mentioned spinal cord and brain injuries not only comprise traumatic injuries but also relate to injuries caused by stroke, ischemia and the like. It is in particular envisaged that the inhibitors as defined herein below and comprising, inter alia, anti-RGM antibodies be employed in the medical art to stimulate nerve fiber growth in individuals, in particular in vertebrates, most preferably in humans.
- the invention provides for the use of a modulator, preferably an inhibitor to RGM (or a functional fragment or derivative thereof) for the preparation of a pharmaceutical composition for the treatment of disorders of the cardio-vascular system, wherein these disorders, e.g., comprise disorders of the blood-brain barrier, brain oedema, secondary brain damages due to increased intracranial pressure, infection, infarction, ischemia, hypoxia, hypoglycemia, exposure to toxic agents, malignancy, paraneoplastic syndromes.
- a modulator preferably an inhibitor to RGM (or a functional fragment or derivative thereof) for the preparation of a pharmaceutical composition for the treatment of disorders of the cardio-vascular system, wherein these disorders, e.g., comprise disorders of the blood-brain barrier, brain oedema, secondary brain damages due to increased intracranial pressure, infection, infarction, ischemia, hypoxia, hypoglycemia, exposure to toxic agents, malignancy, paraneoplastic syndromes.
- RGM inhibitors may stimulate or allow surviving neurons to project collateral fibers into the diseased tissue, e.g. the ischemic tissue.
- RGM is expressed locally at the side of artificial transection of brain/spinal cord tissue in test animals (like rats), e.g., in the penumbra region surrounding an ischemic core of a human suffering focal ischemia in the temporal cortex. Furthermore, it is documented in the that RGM is, surprisingly, expressed in tissue(s) affected by traumatic brain injuries.
- the invention also relates to the use of a RGM polypeptide or a functional fragment or derivative thereof or the use of a polynucleotide encoding the same (polypeptides and polynucleotides as defined herein), wherein the above described disease or condition associated with seizures is epilepsy.
- An epilepsy is thereby characterized by an epileptic seizure as a convulsion or transient abnormal event experienced by the subject, e.g. a human patient, due to a paroxysmal discharge of (cerebral) neurons.
- the epileptic seizures comprise tonic seizures, tonic-clonic seizures (grand mal), myoclonic seizures, absence seizures as well as akinetic seizures.
- simple partiseizures e.g. Jacksonian seizures and seizures due to perinatal trauma and/or fetal anoxia.
- the uses described herein relate in particular to the preparation of pharmaceutical compositions for the treatment of diseases/conditions associated with aberrant sprouting of nerve fibers, like epilepsy; see also Routbort, Neuroscience 94 (1999), 755-765.
- the modulator preferably the inhibitor of RGM (or of its functional fragment or derivative thereof or of its encoding nucleic acid molecule) used for the preparation of a pharmaceutical composition for the modification of neovascularization.
- Said modification may comprise activation as well as stimulation.
- said neovascularisation be stimulated and/or activated in diseased tissue, like inter alia, ischemic and/or infarctious tissue.
- the RGM-inhibitors described herein may be employed in the regulation of the blood-brain barrier permeability.
- said modulators preferably said inhibitors for RGM be employed in the alleviation, prevention and/or inhibition of progression of vascular plaque formation (e.g. artherosclerosis) in cardio-vascular, cerebo-vascular and/or nephrovascular diseases/disorders.
- vascular plaque formation e.g. artherosclerosis
- the present invention provides for the use of a modulator, preferably an inhibitor of RGM as defined herein for the preparation of a pharmaceutical composition for remyelination. Therefore, the present invention provides for a pharmaceutical composition for the treatment of demyelinating diseases of the CNS, like multiple sclerosis or of demyelinating diseases like peripheral neuropathy caused by diphteria toxin, Landry-Guillain-Barre-Syndrome, Elsberg-Syndrom, Charcot-Marie-Tooth disease and other polyneuropatias.
- a particular preferred inhibitor of RGM in this context is an antibody directed against RGM, e.g. an IgM antibody.
- IgM antibodies against RGM are known in the art and comprise e.g. the F3D4 described in the appended examples.
- the invention provides for the use of a RGM polypeptide as defined herein or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for preventing, alleviating or treating diseases or conditions associated with the activity of autoreactive immune cells or with overactive inflammatory cells.
- these cells are T-cells.
- the present invention relates to the use of a modulator, preferably an inhibitor or another RGM binding molecule of a RGM polypeptide or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or of fragment/derivative thereof for modifying and/or altering the differentiation status of neuronal stem cells and/or their progenitors.
- Said stem cells are normally found in the subventricular zones of many brain regions. It is known that factors in the microenvironment of the brain dramatically influence the differentiation of undifferentiated stem cells. It is assumed that due to the characteristic expression of RGM in the subventricular layers of many different brain regions, this molecule could be a marker for stem cells.
- RGM inhibitors like antibodies could be useful markers for stem cells. Most important in stem cell biology is the understanding of factors influencing their differentiation. It is therefore assumed that RGM inhibitors change the developmental fate of these cells.
- RGM is not only expressed in ischemic tissue but is also expressed in scar tissue surrounding (brain) lesions.
- the modulator preferably the inhibitor of the RGM molecule (or its functional fragment or derivative) is an antibody or a fragment or a derivative thereof, is an aptamer, is a specific receptor molecule capable of interacting with a RGM polypeptide or with a functional fragment or derivative thereof, or is a specific nucleic acid molecule interacting with a polynucleotide encoding an RGM and/or the polypeptide.
- the antibody to be used in context of the present invention can be, for example, polyclonal or monoclonal antibodies. Techniques for the production of antibodies are well known in the art and described, e.g. in Harlow and Lane “Antibodies, A Laboratory Manual”, CSH Press, Cold Spring Harbor, 1988. The production of specific anti-RGM antibodies is further known in the art (see, e.g. Mutter (1996) loc. cit.) or described in the appended examples.
- antibody as employed herein also comprises chimeric, single chain and humanized antibodies, as well as antibody fragments, like, inter alia, Fab fragments.
- Antibody fragments or derivatives further comprise F(ab′)2, Fv or scFv fragments; see, for example, Harlow and Lane, loc. cit.
- F(ab′)2, Fv or scFv fragments see, for example, Harlow and Lane, loc. cit.
- the (antibody) derivatives can be produced by peptidomimetics.
- techniques described for the production of single chain antibodies see, inter alia, U.S. Pat. No. 4,946,778) can be adapted to produce single chain antibodies to polypeptide (s) of this invention.
- transgenic animals may be used to express humanized antibodies to polypeptides• of this invention.
- the antibody to be used in the invention is a monoclonal antibody, for example the F3D4 antibody described in the appended examples may be employed when an IgM is desired.
- the general methodology for producing, monoclonal antibodies is well-known and has been described in, for example, Kohler and Milstein, Nature 256 (1975), 494-496 and reviewed in J. G. R. Hurrel, ed., “Monoclonal Hybridoma Antibodies: Techniques and Applications”, CRC Press Inc., Boca Raton, Fla. (1982), as well as that taught by L. T. Mimms et al., Virology 176 (1990), 604-619.
- said antibodies are directed against functional fragments of the RGM polypeptide.
- functional fragments are easily deducible for the person skilled in the art and, correspondingly, relevant antibodies (or other inhibitors) may be produced.
- the “modulator”, preferably the “inhibitor” as defined herein may also be an aptamer.
- Aptamers are well known in the art and, inter alia, described in Famulok, Curr. Op. Chem. Biol. 2 (1998), 320-327.
- the preparation of aptamers is well known in the art and may involve, inter alia, the use of combinatorial RNA libraries to identify binding sites (Gold, Ann. Rev. Biochem. 64 (1995), 763-797).
- Said other receptors may, for example, be derived from said antibody etc. by peptidomimetics.
- specific “receptor” molecules which may function as inhibitors of the RGM polypeptides are also comprised in this invention.
- Said specific receptors may be deduced by methods known in the art and comprise binding assays and/or interaction assays. These may, inter alia, involve assays in the ELISA-format or FRET-format.
- Said “inhibitor” may also comprise specific peptides binding to and/or interfering with RGM.
- the above recited “modulator”, preferably “inhibitor” may function at the level of RGM gene expression. Therefore, the inhibitor may be a (specific) nucleic acid molecule interacting with a polynucleotide encoding a RGM molecule (or a functional fragment or derivative thereof.) These inhibitors may, e.g., comprise antisense nucleic acid molecules, small inhibitory RNAs (siRNAs) or ribozymes.
- siRNAs small inhibitory RNAs
- the nucleic acid molecule encoding RGM or Neogenin may be employed to construct appropriate anti-sense oligonucleotides or siRNA molecules.
- Said anti-sense oligonucleotides are able to inhibit the function of wild-type (or mutant) RGM and Neogenin genes and comprise, for example, at least 15 nucleotides, at least 20 nucleotides, at least 30 nucleotides or at least 40 nucleotides.
- Ribozymes may specifically cleave the nucleic acid molecule encoding RGM or Neogenin.
- ribozymes comprise, inter alia, hammerhead ribozymes, hammerhead ribozymes with altered core sequences or deoxyribozymes (see, e.g., Santoro, Proc. Natl. Acad. Sci. USA 94 (1997), 4262) and may comprise natural and in vitro selected and/or synthesized ribozymes.
- Nucleic acid molecules according to the present invention which are complementary to nucleic acid molecules coding for proteins/(poly) peptides regulating, causing or contributing to obesity and/or encoding a mammalian (poly) peptide involved in the regulation of body weight (see herein below) may be used for the construction of appropriate ribozymes (see, e.g., EP-B1 0 291 533, EP-A1 0 321 201, EP-A2 0 360 257) which specifically cleave nucleic acid molecules of the invention. Selection of the appropriate target sites and corresponding ribozymes can be done as described for example in Steinecke, Ribozymes, Methods in Cell Biology 50, Galbraith, eds. Academic Press, Inc. (1995), 449-460.
- Said “inhibitor” may also comprise double-stranded RNAs, which lead to RNA mediated gene interference (see Sharp, Genes and Dev. 13 (1999), 139-141). Further potential inhibitors of RGM or Neogenin may be found and/or deduced by interaction assay and employing corresponding read-out systems.
- the present invention provides for the use of the RGM amino acid sequence or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for preventing or treating tumor growth or formation of tumor metastases.
- RGM naturally isolated or recombinantly produced
- RGM functional fragments thereof may be employed for the preparation of a pharmaceutical composition for the treatment of neoplastic disorders, in particular of disorders related to tumor (cell) migration, metastasis and/or tumor invasion.
- RGM inhibits undesired neovascularisation. Said neovascularisation, as an angiogenic disorder during neoplastic events, should be prevented in order to limit, inter alia, tumor growth.
- RGM Rethelial growth cones of neurons and (invasive) tumor cells secrete a cocktail of proteases (uPA, tPA, MNPs, etc.) in order to degrade extracellular matrix. Furthermore, similar mechanisms for adhesion and (cell) migration are employed by these cellular systems. RGM and/or its functional fragments may be employed to actively stimulate withdrawal of lamellipodia of tumor cells and/or to induce their collapse.
- the invention provides for the use of a RGM polypeptide as defined herein or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for preventing, alleviating or treating diseases or conditions associated with the activity of autoreactive immune cells or with overactive inflammatory cells.
- these cells are T-cells.
- the invention provides for the use of a the RGM polypeptide h or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for the treatment of inflammation processes and/or allergies, for wound healing or for the suppression/alleviation of scar formation.
- Scar tissue is formed by invading cells, most importantly by fibroblasts and/or glial cells. Migration and adhesion of these cells are required to get to the lesion side. RGM or an active fragment/derivative could prevent accumulation of these cells in the lesion side, thereby preventing or slowing down scar formation.
- inflammatory reactions migrate to the inflamed region and RGM or its active fragment/derivative prevent or reduce migration of these cells to the side of inflammation, thereby preventing overactive inflammatory reactions.
- the term “pharmaceutical composition” also comprises optionally further comprising an acceptable carrier and/or diluent and/or excipient.
- the pharmaceutical composition of the present invention may be particularly useful in preventing and/or treating pathological disorders in vertebrates, like humans.
- Said pathological disorders comprise, but are not limited to, neurological, neurodegenerative and/or neoplastic disorders as well as disorders associated with seizures, e.g. epilepsy.
- These disorders comprise, inter alia, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (FALS/SALS), ischemia, stroke, epilepsy, AIDS dementia and cancer.
- FALS/SALS amyotrophic lateral sclerosis
- the pharmaceutical composition may also be used for prophylactic purposes.
- Suitable pharmaceutical carriers include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions etc.
- Compositions comprising such carriers can be formulated by well known conventional methods. These pharmaceutical compositions can be administered to the subject at a suitable dose.
- compositions may be effected by different ways, e.g., by intravenous, intraperitoneal, subcutaneous, intramuscular, topical, intradermal, intranasal or intrabronchial administration.
- pharmaceutical compositions are directly applied to the nervous tissue.
- the dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depends upon many factors, including the patient's size, body surface area, general health, age, sex, the particular compound to be administered, time and route of administration, and other drugs being administered concurrently.
- compositions of the invention may be administered locally or systemically. Administration will generally be parenterally, e.g., intravenously.
- the compositions of the invention may also be administered directly to the target site, e.g., by biolistic delivery to an internal or external target site or by catheter to a site in an artery.
- Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions.
- non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils.
- Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.
- the pharmaceutical composition of the invention may comprise further agents, depending on the intended use of the pharmaceutical composition. Such agents may be drugs acting on the central nervous system as well as on small, unmyelinated sensory nerve terminals (like in the skin), neurons of the peripheral nervous system of the digestive tract, etc.
- composition as defined herein may comprise nucleic acid molecules encoding RGM and Neogenin (and/or functional fragments or derivatives thereof) or corresponding RGM and Neogenin inhibitors as defined herein.
- said inhibitors comprise, but are not limited to, antibodies, aptamer, RGM-interacting peptides as well as inhibitors interacting with the RGM-encoding polynucleotides.
- the present invention also provides for a method of treating, preventing and/or alleviating pathological disorders and conditions as defined herein, whereby said method comprises administering to a subject in need of such a treatment a pharmaceutical composition/medicament as defined herein.
- a pharmaceutical composition/medicament as defined herein.
- said subject is a human.
- the nucleic acid molecules may be particularly useful in gene therapy approaches and may comprise DNA, RNA as well as PNA. Said nucleic acid molecules may be comprised in suitable vectors, either inter alia, gene expression vectors.
- suitable vectors may be, e.g., a plasmid, cosmid, virus, bacteriophage or another vector used e.g. conventionally in genetic engineering, and may comprise further genes such as marker genes which allow for the selection of said vector in a suitable host cell and under suitable conditions.
- the vectors may, in addition to the nucleic acid sequences encoding RGM and Neogenin or the corresponding inhibitors, comprise expression control elements, allowing proper expression of the coding regions in suitable host cells or tissues.
- control elements are known to the artisan and may include a promoter, translation initiation codon, translation and insertion site for introducing an insert into the vector.
- the nucleic acid molecule of the invention is operatively linked to said expression control sequences allowing expression in (eukaryotic) cells.
- control sequences which allow for correct expression in neuronal cells and/or cells derived from nervous tissue.
- Control elements ensuring expression in eukaryotic cells are well known to those skilled in the art. As mentioned above, they usually comprise regulatory sequences ensuring initiation of transcription and optionally poly-A signals ensuring termination of transcription and stabilization of the transcript. Additional regulatory elements may include transcriptional as well as translational enhancers, and/or naturally-associated or heterologous promoter regions. Possible regulatory elements permitting expression in for example mammalian host cells comprise the CMV-HSV thymidine kinase promoter, SV40, RSV-promoter (Rous sarcoma virus), human elongation factor 1a-promoter, CMV enhancer, CaM-kinase promoter or SV40-enhancer.
- regulatory elements For the expression for example in nervous tissue and/or cells derived therefrom, several regulatory sequences are well known in the art, like the minimal promoter sequence of human neurofilament L (Charron, J. Biol. Chem. 270 (1995), 25739-25745). Beside elements which are responsible for the initiation of transcription such regulatory elements may also comprise transcription termination signals, such as SV40-poly-A site or the tk-poly-A site, downstream of the polynucleotide.
- suitable expression vectors are known in the art such as Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pRc/CMV, pcDNA1, pcDNA3 (In-Vitrogene, as used, inter alia in the appended examples), pSPORT1 (GIBCO BRL) or pGEMHE (Promega).
- the vector may further comprise nucleic acid sequences encoding for secretion signals. Such sequences are well known to the person skilled in the art.
- leader sequences capable of directing the protein/(poly) peptide to a cellular compartment may be added to the coding sequence of the nucleic acid molecules of the invention and are well known in the art.
- the leader sequence (s) is (are) assembled in appropriate phase with translation, initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein, or a part thereof.
- said vector may also be, besides an expression vector, a gene transfer and/or gene targeting vector.
- Gene therapy which is based on introducing therapeutic genes into cells by ex-vivo or in-vivo techniques is one of the most important applications of gene transfer.
- Suitable vectors, vector systems and methods for in-vitro or in-vivo gene therapy are described in the literature and are known to the person skilled in the art; see, e.g., Giordano, Nature Medicine 2 (1996), 534-539; Schaper, Circ. Res. 79 (1996), 911-919; Anderson, Science 256 (1992), 808-813, Isner, Lancet 348 (1996), 370-374; Muhlhauser, Circ. Res.
- said vectors and/or gene delivery systems are also described in gene therapy approaches in neurological tissue/cells (see, inter alia Blomer, J. Virology 71 (1997) 6641-6649) or in the hypothalamus (see, inter alia, Geddes, Front Neuroendocrinol. 20 (1999), 296-316 or Geddes, Nat. Med. 3 (1997), 1402-1404).
- nucleic acid molecules and vectors of the invention may be designed for direct introduction or for introduction via liposomes, viral vectors (e.g. adenoviral, retroviral), electroporation, ballistic (e.g. gene gun) or other delivery systems into the cell.
- viral vectors e.g. adenoviral, retroviral
- ballistic e.g. gene gun
- baculoviral system can be used as eukaryotic expression system for the nucleic acid molecules described herein.
- treatment used herein to generally mean obtaining a desired pharmacological and/or physiological effect.
- the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of partially or completely curing a disease and/or adverse effect attributed to the disease.
- treatment covers any treatment of a disease in a mammal, particularly a human, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e. arresting its development; or (c) relieving the disease, i.e. causing regression of the disease.
- the present invention provides for the use of a RGM or Neogenin polypeptide or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative as a marker of stem cells. Since it is envisaged that stem cells as well as their undifferentiated progenitor cells express RGM and Neogenin, RGM and Neogenin (and/or functional fragments or derivatives thereof) may be employed to influence the differentiation/differentiation pattern of said stem cells.
- antibodies directed against RGM or Neogenin or functional fragment(s)/derivative(s) thereof may be employed to influence the differentiation of (neuronal) stem cells and (neuronal) progenitor cells. It is particularly preferred that said antibodies (as well as other RGM-inhibitors and/or RGM-binding molecules) be employed to selectively label stem cells. Therefore these reagents may be employed as markers for stem cells. It is also envisaged that peptides or derivatives be employed in said purpose.
- the polypeptide and/or fragment thereof which comprises or has an RGM amino acid sequence to be used in accordance with their invention is a soluble, i.e. not membrane bound molecule.
- ephrins in particular A-ephrins
- soluble RGMs are active and may function without any membrane-attachment.
- RGM in contrast to ephrins, is capable of self-formation of dimers and/or of the formation of higher aggregates.
- the invention also provides for the use of a RGM molecule or functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or a fragment or a derivative for the preparation of a pharmaceutical composition for alleviating, preventing and/or treating homeostatic and/or bleeding disorders and/or vascular damage.
- ROMs may, due to their structural homology to von-Willebrand factor (vWF), be employed in the treatment of said disorders/diseases. Furthermore, it is envisaged that RGM may interact with von Willebrand factor and that said molecule, thereby, influences the activity of vWF.
- vWF von-Willebrand factor
- inhibitors as defined herein should be employed in disorders where immune cells invade the brain, like multiple sclerosis, encephalomyelitis disseminata.
- the present invention also provides for the use of an antibody or a fragment or a derivative thereof, or an aptamer, or a binding molecule capable of interacting with a polypeptide having or comprising the RGM or Neogenin amino acid sequence or with functional fragment or derivative thereof or of a nucleic acid molecule capable of interacting with a polynucleotide encoding said polypeptide or a fragment thereof for the preparation of a diagnostic composition for detecting neurological and/or neurodegenerative disorders or dispositions thereto.
- the diagnostic composition may be used, inter alia, for methods for determining the expression of the nucleic acids encoding RGM and Neogenin polypeptides by detecting, inter alia, the presence of the corresponding mRNA which comprises isolation of RNA from a cell, contacting the RNA so obtained with a nucleic acid probe as described above under hybridizing conditions, and detecting the presence of mRNAs hybridized to the probe.
- RGM and Neogenin (poly) peptides can be detected with methods known in the art, which comprise, inter alia, immunological methods, like, ELISA or Western blotting.
- the diagnostic composition of the invention may be useful, inter alia, in detecting the prevalence, the onset or the progress of a disease related to the aberrant expression of a RGM or Neogenin polypeptide. Accordingly, the diagnostic composition of the invention may be used, inter alia, for assessing the prevalence, the onset and/or the disease status of neurological, neurodegenerative and/or inflammatory disorders, as defined herein above. It is also contemplated that anti-RGM or anti-Neogenin antibodies, aptamers etc. and compositions comprising such antibodies, aptamers, etc. may be useful in discriminating the stage(s) of a disease.
- the diagnostic composition optionally comprises suitable means for detection.
- the nucleic acid molecule(s), vector(s), antibody(ies), (poly)peptide(s), described above are, for example, suitable for use in immunoassays in which they can be utilized in liquid phase or bound to a solid phase carrier.
- examples of well-known carriers include glass, polystyrene, polyvinyl chloride, polypropylene, polyethylene, polycarbonate, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses, and magnetite.
- the nature of the carrier can be either soluble or insoluble for the purposes of the invention.
- Solid phase carriers are known to those in the art and may comprise polystyrene beads, latex beads, magnetic beads, colloid metal particles, glass and/or silicon chips and surfaces, nitrocellulose strips, membranes, sheets, duracytes and the walls of wells of a reaction tray, plastic tubes or other test tubes.
- Suitable methods of immobilizing nucleic acid molecule(s), vector(s), host(s), antibody(ies), (poly)peptide(s), fusion protein(s) etc. on solid phases include but are not limited to ionic, hydrophobic, covalent interactions and the like.
- Examples of immunoassays which can utilize said compounds of the invention are competitive and non-competitive immunoassays in either a direct or indirect format. Commonly used detection assays can comprise radioisotopic or non-radioisotopic methods.
- immunoassays examples include the radioimmunoassay (RIA), the sandwich (immunometric assay) and the Northern or Southern blot assay. Furthermore, these detection methods comprise, inter alia, IRMA (Immune Radioimmunometric Assay), EIA (Enzyme Immuno Assay), ELISA (Enzyme Linked Immuno Assay), FIA (Fluorescent immune Assay), and CLIA (Chemioluminescent Immune Assay).
- IRMA Immunune Radioimmunometric Assay
- EIA Enzyme Immuno Assay
- ELISA Enzyme Linked Immuno Assay
- FIA Fluorescent immune Assay
- CLIA Chemioluminescent Immune Assay
- diagnostic compounds of the present invention may be are employed in techniques like FRET (Fluorescence Resonance Energy Transfer) assays.
- nucleic acid sequences encoding RGMs of other species as well as variants of RGMs are easily deducible from the information provided herein. These nucleic acid sequences are particularly useful, as pointed out herein above, in medical and/or diagnostic setting, but they also provide for important research tools. These tools may be employed, inter alia, for the generation of transgenic animals which overexpress or suppress RGMs or wherein the RGM gene is silenced and/or deleted. Furthermore, said sequences may be employed to detect and/or elucidate RGM interaction partners and/or molecules binding to and/or interfering with RGMs. The same holds true for nucleic acid sequences encoding Neogenin.
- An expression vector containing a vector-derived signal sequence, the chick RGM sequence from aa 28 to 403 fused to AP and a Myc His tag was constructed. This plasmid was stably transfected into HEK293 cells and secreted RGM-AP protein was purified on a Ni-containing resin. Quantitative binding assays to transfected COS-7 cells were conducted as described for Nogo-AP binding 13. To isolate a cDNA encoding a chick RGM-AP binding protein, a mouse adult brain cDNA library (Origene) was screened with 10 nM RGM-AP, as described previously for Nogo-66-AP13.
- Mouse RGM-1-AP (Accession number BC023870) and RGM-2-AP (AK080819) were prepared by identical methods as for chick RGM-AP.
- Mouse RGM-3 is encoded by BC022603.
- the mouse UncSH1 and Unc5H3 expression plasmids were derived from EST clones (BI818609 and BI769500) and the pCMV-SPORT6 vector. Truncated versions of chick Neogenin-1 were expressed using the pcDNA3.1-MycHis vector.
- the soluble ectodomain protein contains aa residues 1-1027 of chick Neogenin-1, the ecto+TM protein contains residues 1-1115 and the 6x.FNIII+TM protein contains aa 400-11.15.
- a rabbit anti-mouse neogenin-1 antibody was employed for immunoblots (Santa Cruz Biotechnology, Inc.).
- Chick retinal axons and tectal membranes were prepared for stripe assays as described 10. 11 .
- Soluble ectodomain of chick Neogenin-1 (1-1027) was expressed with a carboxyl MycHis tag as a secreted protein in HEK293 cells and purified on a Ni containing resin.
- Dialyzed protein was added to the stripe assay cultures.
- Recombinant RGM-AP-MycHis and ephrinA2-Fc or ephrinA2-Fc stripes were prepared using an initial coating of poly-L-lysine coated coverslips with anti-Myc antibody or anti-Human IgG antibody as described for other proteins 10, 11, 14 .
- Expression Construct cDNA encoding the targeted RGM is tagged with the Fc—portion of human IgG and subcloned into a 293 expression vector (pCEP4: In Vitrogen).
- EBNA cells are transfected (CaPO.sub.4 method) with the RGM expression construct. After 24 h recovery, transfected cells are selected with G418 (geneticin, 250 ug/ml, Gibco) and hygromycin (200 ug/ml). Once the selection process is complete, cells are maintained in Dulbecco's Modified Eagles medium (DME)/10% FCS under selection.
- DME Dulbecco's Modified Eagles medium
- Serum-containing media is replaced with Optimem with glutamax-1 (Gibco) and 300 ng/ml heparin (Sigma), and the cells are conditioned for 3 days.
- the media is collected and spun at 3,000.times.g for 10 minutes.
- the supernatant is filtered (0.45 urn) and stored with 0.1% azide at 4.degree. C. for no more than 2 weeks.
- cDNA encoding a corresponding Neogenin deletion mutant comprising the extracellular domain is subcloned into a 293 expression vector (pCEP4:In Vitrogen).
- EBNA cells are transfected (CaPO.sub.4 method) with the receptor mutant expression construct. After 24 h recovery, transfected cells are selected with G418 (geneticin, 250 ug/ml, Gibco) and hygromycin (200 ug/ml). Once the selection process is complete, cells are maintained in Dulbecco's Modified Eagles medium (DME)/10% FCS under selection.
- DME Dulbecco's Modified Eagles medium
- Serum-containing media is replaced with Optimem with glutamax-1 (Gibco) and 300 ng/ml heparin (Sigma), and the cells are conditioned for 3 days.
- the media is collected and spun at 3,000.times.g for 10 minutes.
- the supernatant is filtered (0.45 um) and stored with 0.1% azide at 4.degree. C. for no more than 2 weeks.
- positive controls are provided by titrating RGM binding with serial dilutions of the mutant receptor conditioned medium.
- Binding was observed to receptor-expression cells using a construct in which RGM is fused directly to alkaline phosphatase, for which a secondary antibody is not required.
- Neogenin deletion mutants titrate the RGM-receptor binding, serving as a positive control for inhibition assays.
- mice with targeted gene deletions are studied. These mice are created using mouse Embryonic Stem (ES) cells selected to contain disruptions of the endogenous genes of interest. The ES cells with gene disruptions is injected into mouse blastocysts to derive chimeric animals and then the targeted mutation are bred to homozygosity.
- ES mouse Embryonic Stem
- mice lacking Neogenin or RGM1 or RGM2 or RGM3 functional protein various mouse models for human neurological disease are studied. For example, middle cerebral artery occlusion (MCAO) is created in mice using an intraluminal thread by standard methods. This MCAO produces a stroke in the brain and functional deficits in behavior.
- MCAO middle cerebral artery occlusion
- mice from such injury in wild type and gene targeted lines are compared.
- the RGM/Neogenin interaction limits recovery from injury.
- Parallel studies of brain trauma and spinal cord traums are also made with mice lacking Neogenin or RGM1 or RGM2 or RGM3 function.
- Brain trauma is created by fluid percussion and spinal cord injury is created by either transection or by contusion.
- Improved recovery of mouse behavior after these traumatic lesions demonstrates the role of the RGM/Neogenin interaction in limiting recovery from CNS damage.
- Agents demonstrated to be inhibitory to the RGM/Neogenin interaction similarly improve recovery in wild-type mice exposed to brain trauma/spinal cord injury etc.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
This invention relates to drug screening using mammalian repulsive guidance molecules and mammalian Neogenin. In addition, the invention provides for methods of preventing, alleviating or treating various disorders of the nervous system, angiogenic disorders or disorders of the cardio-vascular system and malignancies of different etiology by disrupting the interaction between RGM and Neogenin.
Description
- This application claims priority to U.S. application Ser. No. 60/392,062, filed Jun. 26, 2002.
- This invention is related to the field of neuroscience and neurology. In particular embodiments it is related to the area of axon guidance cues and their modulators, and neurological drug screening using repulsive guidance molecules and Neogenin.
- One of the most important mechanisms in formation of embryonic nervous systems is the guidance of axons and growth cones by directional guidance cues (Goodman, Annu. Rev. Neurosci. 19 (1996), 341-77; Mueller, Annu. Rev. Neurosci 22, (1999), 351-88). A suitable model system for studying this guidance process is the retinotectal system of vertebrates. In the chick embryo approximately 2 million retinal ganglion cell (RGC) axons leave each eye and grow towards the contralateral tectum opticum to form a precise map (Mey & Thanos, (1992); J. Hirnforschung 33, 673-702). Having arrived at the anterior pole of the optic tectum, RGC axons start to invade their tectal target to find their target neurons. Mapping occurs in such a way that RGC axons from nasal retina project to posterior tectum and temporal axons to anterior tectum. Along the dorso-ventral axis, axons coming from dorsal retina terminate in ventral tectum, whereas those from ventral retina end up in dorsal tectum.
- Ultimately, a precise topographic map is formed, where neighborhood relationships in the retina are preserved in the tectum so that axons from neighboring ganglion cells in the retina synapse with neighboring tectal neurons. Most important for formation of this map are graded tectal guidance cues, read by retinal growth cones carrying corresponding receptors which also show a graded distribution (Sperry, Proc. Natl. Acad. Sci. USA 50 (1963), 703710; Bonhoeffer & Gierer, Trends Neurosci. 7 (1984) 378-381).
- Position of each retinal growth cone in the tectal field is therefore determined by two sets of gradients: receptor gradients on in-growing retinal axons and growth cones and ligand gradients on tectal cells (Gierer, Development 101 (1987), 479-489). The existence of the graded tectal ligands has been postulated from anatomical work. Their identification, however, proved to be extremely difficult and was only made possible with the development of simple in vitro systems (Walter; Development 101 (1987), 685-96; Cox, Neuron 4 (1990), 31-7). In the stripe assay, RGC axons grow on a membrane carpet, consisting of alternating lanes of anterior (a) and posterior (p) tectal membranes. On these carpets, temporal retinal axons grow on anterior tectal membranes and are repelled by the posterior lanes, whereas nasal axons do not distinguish between a and p membranes (Walter, Development 101 (1987), 685-96). The same specificity is also observed in the growth cone collapse assay (Raper & Kapfhammer, Neuron 4 (1990), 21-29) where temporal retinal growth cones collapse after addition of posterior tectal membrane vesicles but do not react to anterior tectal vesicles and where nasal growth cones are insensitive to either type of vesicles (Cox, (1990), loc. cit.). In both assay systems, treatment of posterior tectal membranes with the enzyme phosphatidylinositol-specific phospholipase C (PI-PLC) (which cleaves the lipid anchor of glycosylphosphatidylinositol (GPI)-linked proteins) removed their repellent and collapse-inducing activity (Walter, J. Physiol 84 (1990), 104-10).
- One of the first repulsive guidance molecules identified in the retinotectal system of chick embryos was a GPI-anchored glycoprotein with a molecular weight of 33/35 kDa (Stahl, Neuron 5 (1990), 735-43). This 33/35 kDa molecule, later termed RGM (Repulsive Guidance Molecule), was active in both stripe and collapse-assays and was shown to be expressed in a low-anterior high-posterior gradient in the embryonic tecta of chick and rat (Mueller, Curr. Biol. 6 (1996), 1497-502; Mueller, Japan Scientific Societies Press (1997), 215-229). Due to the abnormal biochemical behavior of RGM, the precise amino acid sequence was not easily obtainable. RGM was described as a molecule which is active during vertebrate development. Interestingly, RGM is downregulated in the embryonic chick tectum after E12 and in the embryonic rat tectum after P2 and completely disappears after the embryonic stages (Muller (1992), Ph.D thesis University of Tübbingen; Müller (1997) Japan Scientific Societies, 215-229). In 1996, Müller (loc. cit.) showed that CALI (chromophore-assisted laser inactivation) of RGM eliminates the repulsive guidance activity of posterior tectal membranes. However, due to the presence of other guidance molecules, in particular of RAGS (repulsive axon guidance signal) and ELF-I (Eph ligand family 1), a complete elimination of guidance was not always detected and it was speculated that RGM acts in concert with RAGS (now termed ephrin-A5) and ELF-I (ephrin-A2). It was furthermore envisaged that RGM may be a co-factor potentiating the activity of RAGS and ELF-1 in embryonic guidance events.
- In 1980/81 the group of Aguayo found that, when peripheral neurons are transplanted/grafted into injured CNS of adult, axon growth of CNS neurons is induced (David, Science 214 (1981), 931-933). Therefore, it was speculated that CNS neurons have still the ability and capacity of neurite-outgrowth and/or regeneration, if a suitable environment would be provided. Furthermore, it was speculated that “CNS-neuron regeneration inhibitors” may exist.
- In 1988, Caroni and Schwab (Neuron 1, 85-96) described two inhibitors of 35 kDa and 250 kDa, isolated from rat CNS myelin (NI-35 and NI-250; see also Schnell, Nature 343 (1990) 269-272; Caroni, J. Cell Biol. 106 (1988), 1291-1288).
- In 2000, the DNA encoding for NI-220/250 was deduced and the corresponding potent inhibitor of neurite growth was termed Nogo-A (Chen, Nature 403 (2000), 434-438). The membrane-bound Nogo turned out to be a member of the reticulon family (GrandPre, Nature 403 (2000), 439-444).
- Further factors which mediate neuronal outgrowth inhibition have first been isolated in grasshoppers, and termed “fasciclin IV” and later “collapsin” in chicken. These inhibitors belong to the so-called semaphoring family. Semaphorins have been reported in a wide range of species and described as transmembrane proteins (see, inter alia, Kolodkin Cell 75 (1993) 1389-99, Püchel, Neuron 14 (1995), 941-948). Yet, it was also shown that not all semaphorins have inhibitory activity. Some members of the family, e.g. semaphorin E, act as an attractive guidance signal for cortical axons (Bagnard, Development 125 (1998), 5043-5053).
- A further system of repulsive guidance molecules is the ephrin-Eph system. Ephrins are ligands of the Eph receptor kinases and are implicated as positional labels that may guide the development of neural topographic maps (Flanagan, Ann. Rev. Neurosc. 21 (1998), 309-345). Ephrins are grouped in two classes, the A-ephrins which are linked to the membrane by a glycosylphosphatidylinositol-anchor (GPIanchor) and the B-ephrins carrying a transmembrane domain (Eph nomenclature committee 1997). Two members of the A-ephrins, ephrin-A2 and ephrin-A5, expressed in low anterior-high posterior gradients in the optic tectum, have recently been shown to be involved in repulsive guidance of retinal ganglion cell axons in vitro and in vivo (see, inter alia (Drescher, Cell 82 (1995), 359-70; Cheng, Cell 79 (1994), 157-168; Feldheim, Neuron 21 (1998), 563-74; Feldheim, Neuron 25 (2000), 563-74). Considering the fact that a plurality of physiological disorders or injuries are related to altered cellular migration processes, the technical problems underlying the present invention was to provide for means and methods for modifying developmental or cellular (migration) processes which lead to disease conditions.
- The Ephrin, Semaphorin, Slit, and RGM families of extracellular guidance cues specify axonal trajectories during nervous system development1-3. The netrins are a family of proteins that are profound modulators of growth of developing axons, functioning as attractants for some axons and repellents of other axons. As such, the modulation of these effects provides an important therapeutic pathway for assisting the regeneration of axons in adult nervous system (e.g. following injury or trauma). While neuronal receptors have been identified for most axonal guidance cues, the mechanism by which the recently sequenced RGM protein (WO 02/051438) acts has not been clarified3. As described in part above, chick RGM is expressed in a posterior to anterior tectal gradient and has been shown to collapse temporal but not nasal retinal growth cones3. After signal peptide cleavage and GPI addition, the cell surface RGM is proteolytically processed to a mature active form of 33 kDa3.
- The ability to construct high-throughput and specific pharmaceutical screens for modulators of guidance cues (such as RGM) has been limited by the lack of identifiable receptors. Identifying receptors on axons that mediate neural responsiveness to guidance cues will provide key targets for identifying lead pharmaceuticals for therapeutic intervention in the nervous system (see, for example, U.S. Pat. Nos. 6,087,326 and 5,747,262). Accordingly, because RGM has a demonstrated role in axon growth, it would be desirable to accurately identify the receptor through which RGM acts such that targeted screens could be conducted.
- Neogenin is known to share sequence similarity with the Netrin receptor Deleted in Colorectal Cancer (DCC). The sequence for the Neogenin gene has been described (for example, Keeling S L, Gad J M, Cooper H M. “Mouse Neogenin, a DCC-like molecule, has four splice variants and is expressed widely in the adult mouse and during embryogenesis.” Oncogene. 1997 Aug. 7; 15(6):691-700. GenBank NT—039474; NM—008684) and it has been previously theorized that it is an interaction with Netrin-1 that is responsible for signaling through Neogenin. However, as described in detail herein, the present inventors have determined the true physiological ligand for Neogenin.
- The invention identifies Neogenin as the receptor for Repulsive Guidance Molecule. Accordingly, the invention envisions the use of the previously described Neogenin and RGM molecules in combinations and methods which could not previously have been suggested. In particular, the invention allows for targeted screening assays and the development of inhibitors capable of specifically inhibiting the interaction between RGM and Neogenin.
- The invention provides efficient methods of identifying agents, compounds or lead compounds for agents capable of modulating Neogenin cellular function. Generally, these screening methods involve assaying for compounds which modulate mammalian Neogenin interaction with a natural mammalian RGM. A wide variety of assays for binding agents are provided including labeled in vitro protein-protein binding assays, immunoassays, cell based assays, animal based assay, etc. Preferred methods are amenable to automated, cost-effective high throughput screening of chemical libraries for lead compounds. Such libraries encompass candidate agents of numerous chemical classes, though typically they are organic compounds; preferably small organic compounds and are obtained from a wide variety of sources including libraries of synthetic or natural compounds. Identified agents find use in the pharmaceutical industries for animal and human trials; for example, the agents may be derivatized and rescreened in vitro and in vivo assays to optimize activity and minimize toxicity for pharmaceutical development.
- In vitro binding assays employ a mixture of components including mammalian Neogenin protein, which may be part of a fusion product with another peptide or polypeptide, e.g. a tag for detection or anchoring, etc. The assay mixtures comprise a natural extracellular mammalian Neogenin binding target, such as a RGM. While native binding targets may be used, it is frequently preferred to use portions (e.g. peptides) thereof so long as the portion provides binding affinity and avidity to the subject mammalian Neogenin protein conveniently measurable in the assay. The assay mixture also comprises a candidate pharmacological agent and typically, a variety of other reagents such as salts, buffers, neutral proteins, e.g. albumin, detergents, protease inhibitors, nuclease inhibitors, antimicrobial agents, etc. The mixture components can be added in any order that provides for the requisite bindings and incubations may be performed at any temperature which facilitates optimal binding. The mixture is then incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the mammalian Neogenin protein specifically binds the cellular binding target, portion or analog with a reference binding affinity. Incubation periods are likewise selected for optimal binding but also minimized to facilitate rapid, high-throughput screening.
- After incubation, the agent-biased binding between the mammalian Neogenin protein and one or more binding targets is detected. A separation step is often initially used to separate bound from unbound components. Separation may be effected by precipitation (e.g. TCA precipitation, immunoprecipitation, etc.), immobilization (e.g. on a solid substrate), etc., followed by washing by, for examples, membrane filtration, gel chromatography (e.g. gel filtration, affinity, etc.). One of the components usually comprises or is coupled to a label. The label may provide for direct detection such as radioactivity, luminescence, optical or electron density, etc. or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be used to detect the label depending on the nature of the label and other assay components, e.g. through optical or electron density, radiative emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, etc. A difference in the binding affinity of the mammalian Neogenin protein to the target in the absence of the agent as compared with the binding affinity in the presence of the agent indicates that the agent modulates the binding of the mammalian Neogenin protein to the mammalian RGM. Analogously, in a cell-based transcription assay, a difference in the mammalian Neogenin transcriptional induction in the presence and absence of an agent indicates the agent modulates vertebrate such induced transcription. A difference, as used herein, is statistically significant and preferably represents at least a 50%, more preferably at least a 90% difference.
- The invention provides methods and compositions for identifying pharmacological agents useful in the diagnosis or treatment of neurological disease or injury. In particular, the invention provides mixtures comprising an isolated (RGM) and an isolated Neogenin receptor capable of specifically binding said RGM. The general methods involve incubating a mixture comprising an isolated RGM, an isolated Neogenin receptor, and a candidate pharmacological agent, and determining if the presence of the agent modulates the binding of the RGM to the receptor. Specific agents provide lead compounds for pharmacological agents useful in the diagnosis or treatment of neurological disease or injury.
- It is an object of the present invention to provide a method of monitoring the interaction of a RGM and a Neogenin.
- Another object of the invention is to provide a method for monitoring the interaction between RGM and Neogenin so that agonists and antagonists can be identified.
- Another object of the invention is to provide a polypeptide useful for antagonizing the interaction between a RGM and a Neogenin receptor.
- Another object of the invention is to provide a polypeptide useful for antagonizing the interaction between RGM and Neogenin.
- These and other objects of the invention are achieved by one or more of the embodiments described below. In one embodiment a method of monitoring the interaction of a RGM and a Neogenin receptor is provided. The method comprises the steps of:
-
- contacting a first protein comprising an RGM with a second protein which comprises Neogenin under conditions where a domain of the RGM binds to a domain of the Neogenin;
- determining the binding of the first protein to the second protein or second protein to the first protein.
- According to another aspect of the invention a method is provided for monitoring the interaction between a RGM and a Neogenin. The method comprises the steps of:
-
- contacting a fusion protein comprising an RGM domain with cells which express a Neogenin;
- detecting the fusion protein comprising the RGM domain which binds to the cells.
- As another aspect of the invention a method is provided for monitoring the interaction between a RGM and Neogenin. The method comprises the steps of:
-
- contacting a protein comprising a RGM domain with cells which express a polypeptide comprising Neogenin;
- detecting the protein comprising the RGM domain which binds to the cells.
- As still another aspect of the invention a polypeptide portion of Neogenin useful for antagonizing the interaction between RGM and Neogenin is provided.
- According to still another aspect of the invention a method of monitoring the interaction between a RGM and Neogenin is provided. The method comprises the steps of:
-
- co-culturing in a matrix (a) embryonic nerve cells with (b) cells which have been transfected with an expression construct encoding a RGM and which express the Neogenin;
- adding to the cells an inhibitor of binding of the RGM and Neogenin;
- determining the axon outgrowth adjacent to the cells which express the RGM in the presence and absence of inhibitor.
- As another aspect of the invention a method is provided for monitoring the interaction between a RGM and Neogenin. The method comprises the steps of:
-
- culturing embryonic nerve cells under conditions in which they display growth cones;
- contacting the embryonic nerve cells with a RGM and an anti-Neogenin antibody;
- observing the effect of the antibody on the collapse of the growth cones.
- Yet another aspect of the invention is provided by an antibody preparation which specifically binds to a Neogenin protein.
- Yet another aspect of the invention is provided by an antibody specifically targeted to domain(s) involved in the interaction between Neogenin and RGM. In a particular embodiment, such antibodies would be directed towards the FNIII domain(s) of Neogenin.
- Yet another aspect of the invention is provided by an antibody preparation which specifically binds to a RGM protein.
- RGM is processed proteolytically, and the active domain extends carboxyl from the cut site to the GPI anchorage site. This same region appear to mediate Neogenin binding. Accordingly, antibodies directed to domains within this region would be one aspect of the invention.
- Yet another aspect of the invention is provided by a nucleic acid capable of inhibiting the expression of an RGM protein or a Neogenin protein.
- The medical applications of such compounds, their agonists, and their antagonists are enormous and include preventing, alleviating or treating various disorders of the nervous system, angiogenic disorders or disorders of the cardio-vascular system and malignancies of different etiology.
-
FIG. 1 . Neogenin is a high affinity binding site for RGM. - (A) Purified recombinant RGM-AP is avoided by temporal axons in a stripe assay.
- (B) The binding of chick RGM-AP to COS-7 cells expressing mouse Neogenin is illustrated. The bound protein is detected as dark reaction product on the right.
- (C) Saturation of RGM-AP to COS-7 expressing Neogenin. Bound AP activity was determined for each of the indicated concentrations of RGM-AP. The data are the average±sem of 6 independent determinations.
- (D) Scatchard analysis of RGM-AP binding to Neogenin expressing cells. Data from (C) are replotted. The Kd is 230 pM.
- (E) Mouse RGM-A-AP and RGM-B-AP also bind to Neogenin.
-
FIG. 2 . Physical complex containing RGM and Neogenin. - (A) Co-immunoprecipitation of RGM and Neogenin. HEK293T cells were transfected with plasmids encoding the indicated proteins and immunoprecipitated with anti-Myc antibody resin. The presence of Neogenin protein in the lysates and the immunoprecipitate is illustrated.
- (B) RGM affinity chromatography of adult mouse brain. Adult mouse brain membrane fractions were extracted with 2% TritonX-100 and solubilized protein was incubated with or without chick RGM-AP-Myc-His. Protein retained by an anti-Myc antibody resin was analyzed by anti-Neogenin immunoblot.
-
FIG. 3 . Specificity of Neogenin interaction with RGM. - (A) RGM-AP binding to COS-7 cells transfected with expression plasmids encoding various Netrin-1 binding proteins.
- (B) RGM-AP binds to the FNIII repeats of Neogenin. RGM-.AP binding to COS-7 expressing the indicated fragments of Neogenin is illustrated.
- (C) Netrin-1 does not alter the binding of RGM-AP to Neogenin. The ability of chick RGM-AP to bind to COS-7 cells expressing wild type mouse Neogenin was assessed in the presence or absence of conditioned medium containing Netrin-1-Myc (100 nM).
-
FIG. 4 . Dominant negative Neogenin-1 blocks retinotectal axonal preferences. - (A) Retinal ganglion cell axon preference for anterior tectal membranes. Outgrowth from explants from the temporal or nasal chick retina (green) is illustrated on stripes consisting of anterior (black) or posterior (red) tectal membranes.
- (B) Retinotectal stripe assay in the presence of soluble ectodomain of Neogenin-1. A preference of temporal axons for anterior membranes observed in (A) is greatly reduced.
- (C) Stripe preference as a function of soluble Neogenin ectodomain concentration. Data from 4-16 experiments such as in (A) and (B) were scored for the extend of preference of temporal retinal axons for Anterior versus Posterior stripes (AP) or Anterior versus Anterior stripes (AA). A rating of 2 reflects a complete segregation of axons to the anterior stripes, a rating of 1 reflects still a preference for anterior stripes without complete segregation and 0 is no preference10, 11.
- (D) Binding specificity of the RGM/Neogenin and ephrinA/EphA pairs. COS-7 cells were transfected with expression plasmids for Neogenin-1 or EphA3 and then incubated with medium containing Ephrin-A2-Fc, Epbrin-A5-Fc or RGM-AP. Note the specificity of binding. Bound Fc has detected with HRP-conjugated anti-human IgG.
-
FIG. 5 . Amino acid sequence of Neogenin. -
FIG. 6 . Nucleotide sequence of Neogenin. - (A) Nucleotides 1-3480.
- (B) Nucleotides 3481-5199.
- To search for high affinity RGM binding sites in brain, a fusion protein of chick RGM truncated amino terminal to the GPI site was fused to human placental alkaline phosphatase (AP) to express a soluble, carboxy-terminally MycHis tagged secreted protein. When expressed in HEK293 cells, the cRGM-AP fusion protein was processed proteolytically to yield a 110 kDa fusion protein (data not shown). This material retained biological activity as demonstrated by the avoidance of cRGM-AP stripes by temporal retinal ganglion cell axons (
FIG. 1A ). - The cRGM-AP fusion protein does not bind to COS-7 kidney-derived cells, so we expressed an adult mouse brain cDNA expression library in these cells and screened for clones driving expression of cell surface binding activity. Only a single clone was identified in screens of 480,000 independent clones. This cDNA clone expressed a saturable binding site for cRGM-AP with a Kd of 230 pM (
FIG. 1B-D ). DNA sequence analysis revealed that the high affinity RGM-AP binding protein was Neogenin. In the mouse genome there are three RGM-related sequences, that we have termed mRGM-A, mRGM-B and mRGM-C. The three mouse RGM sequences share 41-49% aa identity and 55-61% aa similarity with one another. Chick RGM shares the highest level of identity with mRGM-A at 80% aa identity and 84% aa similarity. Both RGM-A and RGM-B are expressed in many regions of the developing mouse brain, so we tested if AP fusion proteins of these also bind to Neogenin. Both mRGM-A and mRGM-B bind mNeogenin with high affinity (FIG. 1E ). - To verify that the RGM interaction with Neogenin was due to their participation in a physical complex, RGM and Neogenin were co-expressed in HEK293T cells and analyzed by co-immunoprecipitation. RGM precipitates contained detectable Neogenin but control immunoprecipitates did not (
FIG. 2A ). More relevant for in vivo activity, affinity chromatography using the RGM-AP protein isolated Neogenin protein from adult mouse brain tissue (FIG. 2B ): - The RGM interaction with Neogenin raises several issues of specificity since Neogenin has been described previously as a Netrin binding protein4. RGM and Netrin-1 show no significant sequence similarity. It should be noted that the reported Netrin binding affinity to Neogenin (2 nM) is an order of magnitude less than the RGM affinity (230 pM). We considered whether RGM-AP binds to other known Netrin receptors. DCC is most closely related to Neogenin in sequence and the two proteins are reported to have similar affinities for Netrins. Functional studies have demonstrated a role for DCC in mediating axonal guidance by Netrins6, 7 but the role of Neogenin in mediating axonal responses to Netrins have not been documented. DCC has no detectable affinity for RGM-AP, any affinity must be at least 50 fold less than for Neogenin (
FIG. 3A ). Unc5 proteins can bind Netrin-1 independently of DCC, and serve as obligate co-receptors together with DCC in axon repulsion by Netrins8. However, neither Unc5H1 nor Unc5H3 proteins bind RGM-AP (FIG. 3A ). Netrin-1 is known to bind to the FNIII region of DCC, rather than the Ig domains9. Similarly, full RGM binding affinity is obtained with a truncated Neogenin containing only the FNIII repeats (FIG. 3B ). This raises the possibility that RGM and Netrin bind to similar regions of Neogenin. However, the addition of excess Netrin-1 did not appear to alter RGM-AP binding to Neogenin (FIG. 3C ). While functional interactions between Netrin and RGM might exist, the two protein do not appear to compete for binding to a single site on Neogenin. - To assess the role of Neogenin binding in RGM signalling in retinal ganglion axons, we purified the soluble recombinant ectodomain of Neogenin via a His tag, and tested its function-blocking capability. To the extent that RGM-Neogenin signalling contributes to retinotectal targeting, the soluble Neogenin ectodomain should disrupt the temporal retinal preference for anterior versus posterior tectal membranes in a stripe assay. The preference of temporal but not nasal retinal ganglion cell axons is obvious in the stripe assay under control conditions (
FIG. 4A , C), as reported previously10, 11. In the presence of soluble Neogenin the preference of temporal axons for anterior tectal stripes is lost (FIG. 4B ). Blockade of retinal axon stripe preference is dose-dependent, with essentially complete blockade at 400 nM soluble Neogenin ectodomain (FIG. 4C ). The tectum contains an anterior-to-posterior both RGM and ephrin A2/A5 guidance cues3-5. To ensure that soluble Neogenin ectodomain was selectively blocking RGM function, and not ephrin function, we tested the ligand binding specificity of these systems (FIG. 4D ). It is clear that ephrinA2/5 bind to EphA3 but not Neogenin and that RGM binds to Neogenin but not EphA3. Thus, the blockade of stripe preference by soluble Neogenin demonstrates a crucial role for RGM/Neogenin signalling in determining retinotectal axon guidance in vitro. - RGMs form high affinity complexes with Neogenin and Neogenin/RGM complexes play a significant role in retinotectal guidance systems. Since the Neogenin-related DCC functions as an axonal guidance receptor for Netrin-1, there is precedence for this family of receptor proteins mediating axonal guidance in vivo6-7. The interaction of RGM with Neogenin is of higher affinity than Netrin-1's interaction with Neogenin, and is specific amongst Netrin-binding proteins. Thus Neogenin's primary role in nervous system development is as a RGM receptor, with DCC serving as the primary Netrin receptor. It is of interest that both Neogenin and RGM (data not shown) are highly expressed in adult nervous system and in the injured nervous system, thus implicating them in adult neural regeneration. For example, RGM is localized at very high concentrations in brains at the lesion site in humans suffering from traumatic brain injury or from cerebral ischemia. From approximately 1-7 days post injury or post cerebralischemia, monocytes, lymphocytes, granulocytes and a few neurons express RGM. In subsequent stages, RGM is present on fibroblast-like cells, on reactive astrocytes and in fresh and mature scar tissue which forms at the lesion site.
- The invention provides methods and compositions for identifying pharmacological agents useful in the diagnosis or treatment of mammalian, particularly human, neurological disease or injury. The methods rely on monitoring the interaction of a mammalian, particularly human RGM and a corresponding Neogenin in the presence and absence of a candidate agent. A wide variety of assays can be used, including receptor activation assays and binding assays. Binding assays may monitor RGM binding to a domain of or a full-length receptor expressed on a cell, or in vitro protein-protein binding of a RGM to a full length or truncated receptor. In some embodiments, such in vitro screens involve the immobilization of one of the binding partners on a solid substrate.
- Typically, these assays involve a mixture comprising an isolated RGM and an isolated RGM and an isolated Neogenin capable of specifically binding said RGM. We have demonstrated that these mammalian gene products function as natural mammalian, and in particular, human, ligand-receptor complex. The general methods comprise the steps of: (1) forming a mixture comprising an isolated RGM, an isolated negoenin-1 receptor, and a candidate pharmacological agent; (2) incubating said mixture under conditions whereby, but for the presence of said candidate pharmacological agent, said RGM specifically binds said Neogenin at a first binding affinity; and (3) detecting a second binding affinity of said RGM to said Neogenin, wherein a difference between said first and second binding affinity indicates that said candidate pharmacological agent is a lead compound for a pharmacological agent useful in the diagnosis or treatment of neurological disease or injury.
- The term “modulator” as employed herein relates to “inhibitors” as well as “activators” of RGM or Neogenin function. Most preferably said “modulation” is an inhibition, wherein said inhibition may be a partial or a complete inhibition. An inhibitor of RGM, for example, need not bind RGM but might inhibit RGM by interacting with Neogenin and inhibiting the RGM/Neogenin interaction. In addition, the inhibitor could inhibit RGM by inhibiting transcription, translation or processing (pre or post-translational) of RGM. Similarly, a modulator may mimic RGM function through binding to Neogenin without sharing homology to RGM.
- The term, RGM amino acid sequence relates to the RGM polypeptides disclosed in WO 02/051438 (to which the following SEQ ID Nos. refer). In particular, SEQ ID NOs: 20 and 21 depict human RGM1. Human RGM1 has been localized on chromosome 15. Further, human RGMs comprise RGM2 and RGM3. RGM2 is depicted in SEQ ID NO: 23 (amino acid sequence) and is encoded by a nucleotide sequence as shown in SEQ ID NO: 22. Human RGM2 has been localized on chromosome 5. Furthermore, human RGM3 is shown in appended SEQ ID NO: 25 (amino acid sequence) and encoded by a nucleotide sequence as depicted in SEQ ID NO: 24. Human RGM3 is located on
chromosome 1. Yet, as will be discussed herein below, said term relates also to further RGM homologues. - The term “(poly) peptide” means, in accordance with the present invention, a peptide, a protein, or a (poly) peptide which encompasses amino acid chains of a given length, wherein the amino acid residues are linked by covalent peptide bonds. However, peptidomimetics of such RGM proteins!(poly) peptides or Neogenin proteins/(poly)peptides wherein amino acid (s) and/or peptide bond (s) have been replaced by functional analogs are also encompassed by the invention.
- The present invention is not restricted to uses of RGM and Neogenin from human, mouse or chicken and its inhibitors but also relates to the use of inhibitors of RGM and Neogenin or of RGM and Neogenin itself (or functional fragments or derivatives thereof) from other species. Since the present invention provides for the use of amino acid sequences/polypeptides of RGM and Neogenin and their corresponding inhibitors and since the amino acid sequences of human and chicken RGM and Neogenin have been disclosed, the person skilled in the art is provided with the information to obtain RGM and Neogenin sequences from other species, like, inter alia, mouse, rat, pig, etc. The relevant methods are known in the art and may be carried out by standard methods, employing, inter alia, degenerate and non degenerate primers in PCR-techniques.
- Basic molecular biology methods are well known in the art and, e.g., described in Sambrook (Molecular Cloning; A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)) and Ausubel, “Current Protocols in Molecular Biology”, Green Publishing Associates; and Wiley Interscience, N.Y. (1989).
- Furthermore, as employed in the context of the present invention, the terms “RGM”, “RGM modulator”, “RGM-inhibitor”, “Neogenin”, “Neogenin modulator” and “Neogenin inhibitor” also relate to RGM and Neogenin molecules (and their corresponding inhibitors) which are variants or homologs of the RGM and Neogenin molecules (and their inhibitors) as described herein. “Homology” in this context is understood to refer in this context to a sequence identity of RGM and Neogenin of at least 70%, preferably more than 80% and still more preferably more than 90% on the amino acid level. The present invention, however, comprises also (poly)peptides deviating from wildtype amino acid sequences of human or chicken RGM and Neogenin, wherein said deviation may be, for example, the result of amino acid and/or nucleotide substitution(s), deletion(s), addition(s), insertion(s), duplication(s), -inversion(s) and/or recombination(s) either alone or in combination. Those deviations may naturally occur or be produced via recombinant DNA techniques well known in the art. The term “variation” as employed herein also comprises “allelic variants”. These allelic variations may be naturally occurring allelic variants, splice variants as well as synthetically produced or genetically engineered variants.
-
FIGS. 5 and 6 present the amino acid sequence and nucleotide sequence, respectively, for Neogenin. For the purposes of this application, reference to “wildtype” Neogenin refers to this sequence although, as described herein, significant modifications of this sequence will not depart from the spirit of the invention. To the extent that allelic or other differences occur among Neogenin genes, these differences may be used to create specific probes or antibodies. - The term “polynucleotide” in accordance with the present invention comprises coding and, wherever applicable, non-coding sequences (like promotors, enhancers etc.). It comprises DNA, RNA as well as PNA. In accordance with the present invention, the term “polynucleotide/nucleic acid molecule” comprises also any feasible derivative of a nucleic acid to which a nucleic acid probe may hybridize. Said nucleic acid probe itself may be a derivative of a nucleic acid molecule capable of hybridizing to said nucleic acid molecule or said derivative thereof. The term “nucleic acid molecule” further comprises peptide nucleic acids (PNAs) containing DNA analogs with amide backbone linkages (Nielsen, Science 254 (1991), 1497-1500). The term “nucleic acid molecule” which encodes a RGM (poly) peptide or a functional fragment/derivative thereof, in connection with the present invention, is defined either by (a) the specific nucleic acid sequences encoding said (poly) peptide specified in the present invention or (b) by nucleic acid sequences hybridizing under stringent conditions to the complementary strand of the nucleotide sequences of (a) and encoding a (poly) peptide deviating from the nucleic acid of (a) by one or more nucleotide substitutions, deletions, additions or inversions and wherein the nucleotide sequence shows at least 70%, more preferably at least 80% identity with the nucleotide sequence of said encoded RGM and Neogenin (poly)peptides having an amino acid sequence as defined herein and functions as a RGM or Neogenin (or a functional fragment/derivative thereof) as the case may be.
- The term “modulator” as employed herein also comprises the term “inhibitor”, as mentioned herein above. The term comprises “modulators” of the RGM and Neogenin polypeptides and/or the RGM and Neogenin encoding nucleic acid molecule/genes. In context of this invention it is also envisaged that said “modulation” may lead, when desired, to an activation of RGM and/or Neogenin.
- The term “functional fragment or derivative thereof” in context of the present invention and in relation to the RGM and Neogenin molecules comprises fragments of the RGM and Neogenin molecules defined herein having a length of at least 10, in another embodiment 25, in another embodiment at least 50, in another embodiment at least 75, and in another embodiment at least 100 amino acids depending on the application as would be known to one of skill in the art.
- Functional fragments of the herein identified RGM and Neogenin molecules or RGM and Neogenin molecules of other species (homologous RGM and Neogenin) may be comprised in fusion and/or chimeric proteins. “Functional fragments” comprise RGM or Neogenin fragments (or their encoding nucleic acid molecules) which are able to replace RGM or Neogenin full length molecules in corresponding assays (as disclosed in, e.g. collapse and/or stripe assays) or may elucidate an anti-RGM or anti-Neogenin specific immune-response and/or lead to specific anti-RGM or anti-Neogenin antibodies. An example of such a “functional fragment” would be a fragment of RGM capable of binding Neogenin. In context of the present invention, polynucleotides encoding functional fragments of RGM or Neogenin and/or their derivatives have at least 15, in another embodiment at least 30, in another embodiment at least 90, in another embodiment at least 150, and in another embodiment at least 300 nucleotides depending on the application as would be known to one of skill in the art.
- The term “derivative” means in context of their invention derivatives of RGM and Neogenin molecules and/or their encoding nucleic acid molecules and refer to natural derivatives (like allelic variants) as well as recombinantly produced derivatives/variants which may differ from RGM or Neogenin molecules by at least one modification/mutation, e.g. at least one deletion, substitution, addition, inversion or duplication. The term “derivative” also comprises chemical modifications. The term “derivative” as employed herein in context of the RGM and Neogenin molecule also comprises soluble RGM and Neogenin molecules which do not comprise any membrane anchorage.
- As mentioned herein above, the present invention provides for the use of a modulator, preferably an inhibitor, of RGM molecules and/or their corresponding encoding polynucleotides/nucleic acid molecules for the preparation of a pharmaceutical composition for preventing, alleviating or treating various disorders of the nervous system, angiogenic disorders or disorders of the cardio-vascular system and malignancies of different etiology.
- In a preferred embodiment, said disorders of the nervous system comprise degeneration or injury of vertebrate nervous tissue, in particular neurodegenerative diseases, nerve fiber injuries and disorders related to nerve fiber losses.
- Said neurodegenerative diseases may be selected from the group consisting of motomeuronal diseases (MND), amyotrophic lateral sclerosis (ALS), Alzheimer disease, Parkinson's disease, progressive bulbar palsy, progressive muscular atrophy, HIV-related dementia and spinal muscular atrophy (ies), Down's Syndrome, Huntington's Disease, Creutzfeldt-Jacob Disease, Gerstmann-Straeussler Syndrome, kuru, Scrapie, transmissible mink encephalopathy, other unknown prion diseases, multiple system atrophy, Riley-Day familial dysautonomia said nerve fiber injuries maybe selected from the group consisting of spinal cord injury (ies), brain injuries related to raised intracranial pressure, trauma, secondary damage due to increased intracranial pressure, infection, infarction, exposure to toxic agents, malignancy and paraneoplastic syndromes and wherein said disorders related to nerve fiber losses may be selected from the group consisting of paresis of nervus facials, nervus medianus, nervus ulnaris, nervus axillaris, nervus thoracicus longus, nervus radialis and for of other peripheral nerves, and other acquired and non-acquired diseases of the (human) central and peripheral nervous system.
- The above mentioned spinal cord and brain injuries not only comprise traumatic injuries but also relate to injuries caused by stroke, ischemia and the like. It is in particular envisaged that the inhibitors as defined herein below and comprising, inter alia, anti-RGM antibodies be employed in the medical art to stimulate nerve fiber growth in individuals, in particular in vertebrates, most preferably in humans.
- In a more preferred embodiment of the present invention, the invention provides for the use of a modulator, preferably an inhibitor to RGM (or a functional fragment or derivative thereof) for the preparation of a pharmaceutical composition for the treatment of disorders of the cardio-vascular system, wherein these disorders, e.g., comprise disorders of the blood-brain barrier, brain oedema, secondary brain damages due to increased intracranial pressure, infection, infarction, ischemia, hypoxia, hypoglycemia, exposure to toxic agents, malignancy, paraneoplastic syndromes.
- It is envisaged, without being bound by theory, that RGM inhibitors may stimulate or allow surviving neurons to project collateral fibers into the diseased tissue, e.g. the ischemic tissue.
- RGM is expressed locally at the side of artificial transection of brain/spinal cord tissue in test animals (like rats), e.g., in the penumbra region surrounding an ischemic core of a human suffering focal ischemia in the temporal cortex. Furthermore, it is documented in the that RGM is, surprisingly, expressed in tissue(s) affected by traumatic brain injuries. The invention also relates to the use of a RGM polypeptide or a functional fragment or derivative thereof or the use of a polynucleotide encoding the same (polypeptides and polynucleotides as defined herein), wherein the above described disease or condition associated with seizures is epilepsy. An epilepsy is thereby characterized by an epileptic seizure as a convulsion or transient abnormal event experienced by the subject, e.g. a human patient, due to a paroxysmal discharge of (cerebral) neurons. The epileptic seizures comprise tonic seizures, tonic-clonic seizures (grand mal), myoclonic seizures, absence seizures as well as akinetic seizures. Yet, also comprised are in context of this invention simple partiseizures, e.g. Jacksonian seizures and seizures due to perinatal trauma and/or fetal anoxia. As mentioned herein below, the uses described herein relate in particular to the preparation of pharmaceutical compositions for the treatment of diseases/conditions associated with aberrant sprouting of nerve fibers, like epilepsy; see also Routbort, Neuroscience 94 (1999), 755-765.
- In an even more preferred embodiment of the invention, the modulator, preferably the inhibitor of RGM (or of its functional fragment or derivative thereof or of its encoding nucleic acid molecule) used for the preparation of a pharmaceutical composition for the modification of neovascularization. Said modification may comprise activation as well as stimulation. It is in particular envisaged that said neovascularisation be stimulated and/or activated in diseased tissue, like inter alia, ischemic and/or infarctious tissue. Furthermore, it is envisaged that the RGM-inhibitors described herein may be employed in the regulation of the blood-brain barrier permeability.
- It is furthermore envisaged that said modulators, preferably said inhibitors for RGM be employed in the alleviation, prevention and/or inhibition of progression of vascular plaque formation (e.g. artherosclerosis) in cardio-vascular, cerebo-vascular and/or nephrovascular diseases/disorders.
- Furthermore, the present invention provides for the use of a modulator, preferably an inhibitor of RGM as defined herein for the preparation of a pharmaceutical composition for remyelination. Therefore, the present invention provides for a pharmaceutical composition for the treatment of demyelinating diseases of the CNS, like multiple sclerosis or of demyelinating diseases like peripheral neuropathy caused by diphteria toxin, Landry-Guillain-Barre-Syndrome, Elsberg-Syndrom, Charcot-Marie-Tooth disease and other polyneuropatias. A particular preferred inhibitor of RGM in this context is an antibody directed against RGM, e.g. an IgM antibody. It has previously be shown that certain IgMs bind to oligodendrocytes and thereby induce remyelination. IgM antibodies against RGM are known in the art and comprise e.g. the F3D4 described in the appended examples.
- In addition the invention provides for the use of a RGM polypeptide as defined herein or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for preventing, alleviating or treating diseases or conditions associated with the activity of autoreactive immune cells or with overactive inflammatory cells.
- Most preferably these cells are T-cells.
- Furthermore, the present invention relates to the use of a modulator, preferably an inhibitor or another RGM binding molecule of a RGM polypeptide or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or of fragment/derivative thereof for modifying and/or altering the differentiation status of neuronal stem cells and/or their progenitors. Said stem cells are normally found in the subventricular zones of many brain regions. It is known that factors in the microenvironment of the brain dramatically influence the differentiation of undifferentiated stem cells. It is assumed that due to the characteristic expression of RGM in the subventricular layers of many different brain regions, this molecule could be a marker for stem cells. Furthermore, RGM inhibitors, like antibodies could be useful markers for stem cells. Most important in stem cell biology is the understanding of factors influencing their differentiation. It is therefore assumed that RGM inhibitors change the developmental fate of these cells.
- RGM is not only expressed in ischemic tissue but is also expressed in scar tissue surrounding (brain) lesions.
- It is particularly preferred that the modulator, preferably the inhibitor of the RGM molecule (or its functional fragment or derivative) is an antibody or a fragment or a derivative thereof, is an aptamer, is a specific receptor molecule capable of interacting with a RGM polypeptide or with a functional fragment or derivative thereof, or is a specific nucleic acid molecule interacting with a polynucleotide encoding an RGM and/or the polypeptide.
- The antibody to be used in context of the present invention can be, for example, polyclonal or monoclonal antibodies. Techniques for the production of antibodies are well known in the art and described, e.g. in Harlow and Lane “Antibodies, A Laboratory Manual”, CSH Press, Cold Spring Harbor, 1988. The production of specific anti-RGM antibodies is further known in the art (see, e.g. Mutter (1996) loc. cit.) or described in the appended examples.
- The term “antibody” as employed herein also comprises chimeric, single chain and humanized antibodies, as well as antibody fragments, like, inter alia, Fab fragments.
- Antibody fragments or derivatives further comprise F(ab′)2, Fv or scFv fragments; see, for example, Harlow and Lane, loc. cit. Various procedures are known in the art and may be used for the production of such antibodies and/or fragments, see also appended examples. Thus, the (antibody) derivatives can be produced by peptidomimetics. Further, techniques described for the production of single chain antibodies (see, inter alia, U.S. Pat. No. 4,946,778) can be adapted to produce single chain antibodies to polypeptide (s) of this invention. Also, transgenic animals may be used to express humanized antibodies to polypeptides• of this invention. Most preferably, the antibody to be used in the invention is a monoclonal antibody, for example the F3D4 antibody described in the appended examples may be employed when an IgM is desired. The general methodology for producing, monoclonal antibodies is well-known and has been described in, for example, Kohler and Milstein, Nature 256 (1975), 494-496 and reviewed in J. G. R. Hurrel, ed., “Monoclonal Hybridoma Antibodies: Techniques and Applications”, CRC Press Inc., Boca Raton, Fla. (1982), as well as that taught by L. T. Mimms et al., Virology 176 (1990), 604-619.
- Preferably, said antibodies (or inhibitors) are directed against functional fragments of the RGM polypeptide. As pointed out herein above and as documented in the appended examples, such functional fragments are easily deducible for the person skilled in the art and, correspondingly, relevant antibodies (or other inhibitors) may be produced.
- The “modulator”, preferably the “inhibitor” as defined herein may also be an aptamer.
- In the context of the present invention, the term “aptamer” comprises nucleic acids such as RNA, ssDNA (ss=single stranded), modified RNA, modified ssDNA or PNAs which bind a plurality of target sequences having a high specificity and affinity.
- Aptamers are well known in the art and, inter alia, described in Famulok, Curr. Op. Chem. Biol. 2 (1998), 320-327. The preparation of aptamers is well known in the art and may involve, inter alia, the use of combinatorial RNA libraries to identify binding sites (Gold, Ann. Rev. Biochem. 64 (1995), 763-797). Said other receptors may, for example, be derived from said antibody etc. by peptidomimetics.
- Other specific “receptor” molecules which may function as inhibitors of the RGM polypeptides are also comprised in this invention. Said specific receptors may be deduced by methods known in the art and comprise binding assays and/or interaction assays. These may, inter alia, involve assays in the ELISA-format or FRET-format.
- Said “inhibitor” may also comprise specific peptides binding to and/or interfering with RGM.
- Furthermore, the above recited “modulator”, preferably “inhibitor” may function at the level of RGM gene expression. Therefore, the inhibitor may be a (specific) nucleic acid molecule interacting with a polynucleotide encoding a RGM molecule (or a functional fragment or derivative thereof.) These inhibitors may, e.g., comprise antisense nucleic acid molecules, small inhibitory RNAs (siRNAs) or ribozymes.
- The nucleic acid molecule encoding RGM or Neogenin may be employed to construct appropriate anti-sense oligonucleotides or siRNA molecules.
- Said anti-sense oligonucleotides are able to inhibit the function of wild-type (or mutant) RGM and Neogenin genes and comprise, for example, at least 15 nucleotides, at least 20 nucleotides, at least 30 nucleotides or at least 40 nucleotides.
- In addition, ribozyme approaches are also envisaged for use in this invention.
- Ribozymes may specifically cleave the nucleic acid molecule encoding RGM or Neogenin.
- In the context of the present invention ribozymes comprise, inter alia, hammerhead ribozymes, hammerhead ribozymes with altered core sequences or deoxyribozymes (see, e.g., Santoro, Proc. Natl. Acad. Sci. USA 94 (1997), 4262) and may comprise natural and in vitro selected and/or synthesized ribozymes.
- Nucleic acid molecules according to the present invention which are complementary to nucleic acid molecules coding for proteins/(poly) peptides regulating, causing or contributing to obesity and/or encoding a mammalian (poly) peptide involved in the regulation of body weight (see herein below) may be used for the construction of appropriate ribozymes (see, e.g., EP-
B1 0 291 533, EP-A1 0 321 201, EP-A2 0 360 257) which specifically cleave nucleic acid molecules of the invention. Selection of the appropriate target sites and corresponding ribozymes can be done as described for example in Steinecke, Ribozymes, Methods inCell Biology 50, Galbraith, eds. Academic Press, Inc. (1995), 449-460. - Said “inhibitor” may also comprise double-stranded RNAs, which lead to RNA mediated gene interference (see Sharp, Genes and Dev. 13 (1999), 139-141). Further potential inhibitors of RGM or Neogenin may be found and/or deduced by interaction assay and employing corresponding read-out systems. These are known in the art and comprise, inter alia, two hybrid screenings (as, described, inter alia, in EP-0 963 376, WO 98/25947, WO 00/02911), GST-pull-down columns, co-precipitation assays from cell extracts as described, inter alia, in Kasus-Jacobi, Oncogene 19 (2000), 20522059, “interaction-trap” systems (as described, inter alia, in U.S. Pat. No. 6,004,746), expression cloning (e.g. lambda gtll), phage display (as described, inter alia, in U.S. Pat. No. 5,541,109), in vitro binding assays and the like. Further interaction assay methods and corresponding read out systems are, inter alia, described in U.S. Pat. No. 5,525,490, WO99/51741, WO 00/17221, WO 00/14271 or WO 00/05410.
- In yet another embodiment, the present invention provides for the use of the RGM amino acid sequence or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for preventing or treating tumor growth or formation of tumor metastases.
- RGM (naturally isolated or recombinantly produced) and/or functional fragments thereof may be employed for the preparation of a pharmaceutical composition for the treatment of neoplastic disorders, in particular of disorders related to tumor (cell) migration, metastasis and/or tumor invasion. Furthermore, it is envisaged that RGM inhibits undesired neovascularisation. Said neovascularisation, as an angiogenic disorder during neoplastic events, should be prevented in order to limit, inter alia, tumor growth.
- Growth cones of neurons and (invasive) tumor cells secrete a cocktail of proteases (uPA, tPA, MNPs, etc.) in order to degrade extracellular matrix. Furthermore, similar mechanisms for adhesion and (cell) migration are employed by these cellular systems. RGM and/or its functional fragments may be employed to actively stimulate withdrawal of lamellipodia of tumor cells and/or to induce their collapse.
- In addition the invention provides for the use of a RGM polypeptide as defined herein or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for preventing, alleviating or treating diseases or conditions associated with the activity of autoreactive immune cells or with overactive inflammatory cells.
- Most preferably these cells are T-cells.
- In yet another embodiment, the invention provides for the use of a the RGM polypeptide h or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative for the preparation of a pharmaceutical composition for the treatment of inflammation processes and/or allergies, for wound healing or for the suppression/alleviation of scar formation. Scar tissue is formed by invading cells, most importantly by fibroblasts and/or glial cells. Migration and adhesion of these cells are required to get to the lesion side. RGM or an active fragment/derivative could prevent accumulation of these cells in the lesion side, thereby preventing or slowing down scar formation. In inflammatory reactions cells migrate to the inflamed region and RGM or its active fragment/derivative prevent or reduce migration of these cells to the side of inflammation, thereby preventing overactive inflammatory reactions.
- In context of the present invention, the term “pharmaceutical composition” also comprises optionally further comprising an acceptable carrier and/or diluent and/or excipient. The pharmaceutical composition of the present invention may be particularly useful in preventing and/or treating pathological disorders in vertebrates, like humans. Said pathological disorders comprise, but are not limited to, neurological, neurodegenerative and/or neoplastic disorders as well as disorders associated with seizures, e.g. epilepsy. These disorders comprise, inter alia, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (FALS/SALS), ischemia, stroke, epilepsy, AIDS dementia and cancer.
- The pharmaceutical composition may also be used for prophylactic purposes.
- Examples of suitable pharmaceutical carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions etc. Compositions comprising such carriers can be formulated by well known conventional methods. These pharmaceutical compositions can be administered to the subject at a suitable dose.
- Administration of the suitable compositions may be effected by different ways, e.g., by intravenous, intraperitoneal, subcutaneous, intramuscular, topical, intradermal, intranasal or intrabronchial administration. However, it is also envisaged that the pharmaceutical compositions are directly applied to the nervous tissue. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depends upon many factors, including the patient's size, body surface area, general health, age, sex, the particular compound to be administered, time and route of administration, and other drugs being administered concurrently. Pharmaceutical active matter may be present preferably, inter alia, in amounts between 1 ng and 1000 mg per dose, more preferably in amounts of 1 ng to 100 mg however, doses below or above this exemplary range are envisioned, especially considering the aforementioned factors. If the regimen is a continuous infusion, it should also be in the range of 1 ug to 10 mg units per kilogram of body weight per minute, respectively. Progress can be monitored by periodic assessment. The compositions of the invention may be administered locally or systemically. Administration will generally be parenterally, e.g., intravenously. The compositions of the invention may also be administered directly to the target site, e.g., by biolistic delivery to an internal or external target site or by catheter to a site in an artery. Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. Furthermore, the pharmaceutical composition of the invention may comprise further agents, depending on the intended use of the pharmaceutical composition. Such agents may be drugs acting on the central nervous system as well as on small, unmyelinated sensory nerve terminals (like in the skin), neurons of the peripheral nervous system of the digestive tract, etc.
- It is also understood that the pharmaceutical composition as defined herein may comprise nucleic acid molecules encoding RGM and Neogenin (and/or functional fragments or derivatives thereof) or corresponding RGM and Neogenin inhibitors as defined herein. As mentioned herein-above, said inhibitors comprise, but are not limited to, antibodies, aptamer, RGM-interacting peptides as well as inhibitors interacting with the RGM-encoding polynucleotides.
- Accordingly, the present invention also provides for a method of treating, preventing and/or alleviating pathological disorders and conditions as defined herein, whereby said method comprises administering to a subject in need of such a treatment a pharmaceutical composition/medicament as defined herein. Preferably, said subject is a human.
- The nucleic acid molecules may be particularly useful in gene therapy approaches and may comprise DNA, RNA as well as PNA. Said nucleic acid molecules may be comprised in suitable vectors, either inter alia, gene expression vectors. Such a vector may be, e.g., a plasmid, cosmid, virus, bacteriophage or another vector used e.g. conventionally in genetic engineering, and may comprise further genes such as marker genes which allow for the selection of said vector in a suitable host cell and under suitable conditions.
- Furthermore, the vectors may, in addition to the nucleic acid sequences encoding RGM and Neogenin or the corresponding inhibitors, comprise expression control elements, allowing proper expression of the coding regions in suitable host cells or tissues.
- Such control elements are known to the artisan and may include a promoter, translation initiation codon, translation and insertion site for introducing an insert into the vector. Preferably, the nucleic acid molecule of the invention is operatively linked to said expression control sequences allowing expression in (eukaryotic) cells. Particularly preferred are in this context control sequences which allow for correct expression in neuronal cells and/or cells derived from nervous tissue.
- Control elements ensuring expression in eukaryotic cells are well known to those skilled in the art. As mentioned above, they usually comprise regulatory sequences ensuring initiation of transcription and optionally poly-A signals ensuring termination of transcription and stabilization of the transcript. Additional regulatory elements may include transcriptional as well as translational enhancers, and/or naturally-associated or heterologous promoter regions. Possible regulatory elements permitting expression in for example mammalian host cells comprise the CMV-HSV thymidine kinase promoter, SV40, RSV-promoter (Rous sarcoma virus), human elongation factor 1a-promoter, CMV enhancer, CaM-kinase promoter or SV40-enhancer. For the expression for example in nervous tissue and/or cells derived therefrom, several regulatory sequences are well known in the art, like the minimal promoter sequence of human neurofilament L (Charron, J. Biol. Chem. 270 (1995), 25739-25745). Beside elements which are responsible for the initiation of transcription such regulatory elements may also comprise transcription termination signals, such as SV40-poly-A site or the tk-poly-A site, downstream of the polynucleotide. In this context, suitable expression vectors are known in the art such as Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pRc/CMV, pcDNA1, pcDNA3 (In-Vitrogene, as used, inter alia in the appended examples), pSPORT1 (GIBCO BRL) or pGEMHE (Promega). Beside the nucleic acid molecules defined herein, the vector may further comprise nucleic acid sequences encoding for secretion signals. Such sequences are well known to the person skilled in the art. Furthermore, depending on the expression system used leader sequences capable of directing the protein/(poly) peptide to a cellular compartment may be added to the coding sequence of the nucleic acid molecules of the invention and are well known in the art. The leader sequence (s) is (are) assembled in appropriate phase with translation, initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein, or a part thereof.
- As mentioned herein above, said vector may also be, besides an expression vector, a gene transfer and/or gene targeting vector. Gene therapy, which is based on introducing therapeutic genes into cells by ex-vivo or in-vivo techniques is one of the most important applications of gene transfer. Suitable vectors, vector systems and methods for in-vitro or in-vivo gene therapy are described in the literature and are known to the person skilled in the art; see, e.g., Giordano, Nature Medicine 2 (1996), 534-539; Schaper, Circ. Res. 79 (1996), 911-919; Anderson, Science 256 (1992), 808-813, Isner, Lancet 348 (1996), 370-374; Muhlhauser, Circ. Res. 77 (1995), 1077-1086; Wang, Nature Medicine 2 (1996), 714-716; WO 94/29469; WO 97/00957, Schaper, Current Opinion in Biotechnology 7 (1996), 635-640 Verma, Nature 389 (1997), 239-242 WO 94/29469, WO 97/00957, U.S. Pat. No. 5,580,859, U.S. Pat. No. 589,66 or U.S. Pat. No. 4,394,448 and references cited therein.
- In particular, said vectors and/or gene delivery systems are also described in gene therapy approaches in neurological tissue/cells (see, inter alia Blomer, J. Virology 71 (1997) 6641-6649) or in the hypothalamus (see, inter alia, Geddes, Front Neuroendocrinol. 20 (1999), 296-316 or Geddes, Nat. Med. 3 (1997), 1402-1404).
- Further suitable gene therapy constructs for use in neurological cells/tissues are known in the art, for example in Meier (1999), J. Neuropathol. Exp. Neurol. 58, 10991110. The nucleic acid molecules and vectors of the invention may be designed for direct introduction or for introduction via liposomes, viral vectors (e.g. adenoviral, retroviral), electroporation, ballistic (e.g. gene gun) or other delivery systems into the cell. Additionally, a baculoviral system can be used as eukaryotic expression system for the nucleic acid molecules described herein.
- The terms “treatment”, “treating” and the like are used herein to generally mean obtaining a desired pharmacological and/or physiological effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of partially or completely curing a disease and/or adverse effect attributed to the disease. The term “treatment” as used herein covers any treatment of a disease in a mammal, particularly a human, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e. arresting its development; or (c) relieving the disease, i.e. causing regression of the disease.
- In yet another embodiment, the present invention provides for the use of a RGM or Neogenin polypeptide or of a functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or fragment or derivative as a marker of stem cells. Since it is envisaged that stem cells as well as their undifferentiated progenitor cells express RGM and Neogenin, RGM and Neogenin (and/or functional fragments or derivatives thereof) may be employed to influence the differentiation/differentiation pattern of said stem cells.
- It is furthermore envisaged that antibodies directed against RGM or Neogenin or functional fragment(s)/derivative(s) thereof may be employed to influence the differentiation of (neuronal) stem cells and (neuronal) progenitor cells. It is particularly preferred that said antibodies (as well as other RGM-inhibitors and/or RGM-binding molecules) be employed to selectively label stem cells. Therefore these reagents may be employed as markers for stem cells. It is also envisaged that peptides or derivatives be employed in said purpose.
- In a particularly preferred embodiment of the present invention, the polypeptide and/or fragment thereof which comprises or has an RGM amino acid sequence to be used in accordance with their invention is a soluble, i.e. not membrane bound molecule.
- As shown in Davis (1994), Science 266, 816-819, ephrins, in particular A-ephrins, are not active in soluble, monomeric form. In contrast, soluble RGMs are active and may function without any membrane-attachment. RGM, in contrast to ephrins, is capable of self-formation of dimers and/or of the formation of higher aggregates. The invention also provides for the use of a RGM molecule or functional fragment or derivative thereof or of a polynucleotide encoding said polypeptide or a fragment or a derivative for the preparation of a pharmaceutical composition for alleviating, preventing and/or treating homeostatic and/or bleeding disorders and/or vascular damage.
- It is envisaged, without being bound by theory, that ROMs may, due to their structural homology to von-Willebrand factor (vWF), be employed in the treatment of said disorders/diseases. Furthermore, it is envisaged that RGM may interact with von Willebrand factor and that said molecule, thereby, influences the activity of vWF.
- Furthermore, the inhibitors as defined herein should be employed in disorders where immune cells invade the brain, like multiple sclerosis, encephalomyelitis disseminata.
- The present invention also provides for the use of an antibody or a fragment or a derivative thereof, or an aptamer, or a binding molecule capable of interacting with a polypeptide having or comprising the RGM or Neogenin amino acid sequence or with functional fragment or derivative thereof or of a nucleic acid molecule capable of interacting with a polynucleotide encoding said polypeptide or a fragment thereof for the preparation of a diagnostic composition for detecting neurological and/or neurodegenerative disorders or dispositions thereto.
- The diagnostic composition may be used, inter alia, for methods for determining the expression of the nucleic acids encoding RGM and Neogenin polypeptides by detecting, inter alia, the presence of the corresponding mRNA which comprises isolation of RNA from a cell, contacting the RNA so obtained with a nucleic acid probe as described above under hybridizing conditions, and detecting the presence of mRNAs hybridized to the probe.
- Furthermore, corresponding mutations and/or alterations may be detected.
- Furthermore, RGM and Neogenin (poly) peptides can be detected with methods known in the art, which comprise, inter alia, immunological methods, like, ELISA or Western blotting.
- The diagnostic composition of the invention may be useful, inter alia, in detecting the prevalence, the onset or the progress of a disease related to the aberrant expression of a RGM or Neogenin polypeptide. Accordingly, the diagnostic composition of the invention may be used, inter alia, for assessing the prevalence, the onset and/or the disease status of neurological, neurodegenerative and/or inflammatory disorders, as defined herein above. It is also contemplated that anti-RGM or anti-Neogenin antibodies, aptamers etc. and compositions comprising such antibodies, aptamers, etc. may be useful in discriminating the stage(s) of a disease.
- The diagnostic composition optionally comprises suitable means for detection. The nucleic acid molecule(s), vector(s), antibody(ies), (poly)peptide(s), described above are, for example, suitable for use in immunoassays in which they can be utilized in liquid phase or bound to a solid phase carrier. Examples of well-known carriers include glass, polystyrene, polyvinyl chloride, polypropylene, polyethylene, polycarbonate, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, agaroses, and magnetite. The nature of the carrier can be either soluble or insoluble for the purposes of the invention.
- Solid phase carriers are known to those in the art and may comprise polystyrene beads, latex beads, magnetic beads, colloid metal particles, glass and/or silicon chips and surfaces, nitrocellulose strips, membranes, sheets, duracytes and the walls of wells of a reaction tray, plastic tubes or other test tubes. Suitable methods of immobilizing nucleic acid molecule(s), vector(s), host(s), antibody(ies), (poly)peptide(s), fusion protein(s) etc. on solid phases include but are not limited to ionic, hydrophobic, covalent interactions and the like. Examples of immunoassays which can utilize said compounds of the invention are competitive and non-competitive immunoassays in either a direct or indirect format. Commonly used detection assays can comprise radioisotopic or non-radioisotopic methods.
- Examples of such immunoassays are the radioimmunoassay (RIA), the sandwich (immunometric assay) and the Northern or Southern blot assay. Furthermore, these detection methods comprise, inter alia, IRMA (Immune Radioimmunometric Assay), EIA (Enzyme Immuno Assay), ELISA (Enzyme Linked Immuno Assay), FIA (Fluorescent immune Assay), and CLIA (Chemioluminescent Immune Assay).
- Furthermore, the diagnostic compounds of the present invention may be are employed in techniques like FRET (Fluorescence Resonance Energy Transfer) assays.
- The nucleic acid sequences encoding RGMs of other species as well as variants of RGMs are easily deducible from the information provided herein. These nucleic acid sequences are particularly useful, as pointed out herein above, in medical and/or diagnostic setting, but they also provide for important research tools. These tools may be employed, inter alia, for the generation of transgenic animals which overexpress or suppress RGMs or wherein the RGM gene is silenced and/or deleted. Furthermore, said sequences may be employed to detect and/or elucidate RGM interaction partners and/or molecules binding to and/or interfering with RGMs. The same holds true for nucleic acid sequences encoding Neogenin.
- All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
- The following Examples are offered by way of illustration and not by way of limitation:
- An expression vector containing a vector-derived signal sequence, the chick RGM sequence from aa 28 to 403 fused to AP and a Myc His tag was constructed. This plasmid was stably transfected into HEK293 cells and secreted RGM-AP protein was purified on a Ni-containing resin. Quantitative binding assays to transfected COS-7 cells were conducted as described for Nogo-AP binding13. To isolate a cDNA encoding a chick RGM-AP binding protein, a mouse adult brain cDNA library (Origene) was screened with 10 nM RGM-AP, as described previously for Nogo-66-AP13. Mouse RGM-1-AP (Accession number BC023870) and RGM-2-AP (AK080819) were prepared by identical methods as for chick RGM-AP. Mouse RGM-3 is encoded by BC022603. The mouse UncSH1 and Unc5H3 expression plasmids were derived from EST clones (BI818609 and BI769500) and the pCMV-SPORT6 vector. Truncated versions of chick Neogenin-1 were expressed using the pcDNA3.1-MycHis vector. The soluble ectodomain protein contains aa residues 1-1027 of chick Neogenin-1, the ecto+TM protein contains residues 1-1115 and the 6x.FNIII+TM protein contains aa 400-11.15. A rabbit anti-mouse neogenin-1 antibody was employed for immunoblots (Santa Cruz Biotechnology, Inc.).
- Chick retinal axons and tectal membranes were prepared for stripe assays as described10. 11. Soluble ectodomain of chick Neogenin-1 (1-1027) was expressed with a carboxyl MycHis tag as a secreted protein in HEK293 cells and purified on a Ni containing resin. Dialyzed protein was added to the stripe assay cultures. Recombinant RGM-AP-MycHis and ephrinA2-Fc or ephrinA2-Fc stripes were prepared using an initial coating of poly-L-lysine coated coverslips with anti-Myc antibody or anti-Human IgG antibody as described for other proteins10, 11, 14.
- Expression Construct: cDNA encoding the targeted RGM is tagged with the Fc—portion of human IgG and subcloned into a 293 expression vector (pCEP4: In Vitrogen).
- Transfection: 293 EBNA cells are transfected (CaPO.sub.4 method) with the RGM expression construct. After 24 h recovery, transfected cells are selected with G418 (geneticin, 250 ug/ml, Gibco) and hygromycin (200 ug/ml). Once the selection process is complete, cells are maintained in Dulbecco's Modified Eagles medium (DME)/10% FCS under selection.
- Preparation of Conditioned Medium: Serum-containing media is replaced with Optimem with glutamax-1 (Gibco) and 300 ng/ml heparin (Sigma), and the cells are conditioned for 3 days. The media is collected and spun at 3,000.times.g for 10 minutes. The supernatant is filtered (0.45 urn) and stored with 0.1% azide at 4.degree. C. for no more than 2 weeks.
- Expression Construct: cDNA encoding a corresponding Neogenin deletion mutant comprising the extracellular domain (truncated immediately N-terminal to the transmembrane region) is subcloned into a 293 expression vector (pCEP4:In Vitrogen).
- Transfection: 293 EBNA cells are transfected (CaPO.sub.4 method) with the receptor mutant expression construct. After 24 h recovery, transfected cells are selected with G418 (geneticin, 250 ug/ml, Gibco) and hygromycin (200 ug/ml). Once the selection process is complete, cells are maintained in Dulbecco's Modified Eagles medium (DME)/10% FCS under selection.
- Preparation of Conditioned Medium: Serum-containing media is replaced with Optimem with glutamax-1 (Gibco) and 300 ng/ml heparin (Sigma), and the cells are conditioned for 3 days. The media is collected and spun at 3,000.times.g for 10 minutes. The supernatant is filtered (0.45 um) and stored with 0.1% azide at 4.degree. C. for no more than 2 weeks.
- Seed COS cells (250,000) on 35 mm dishes in 2 ml DME/10% FCS. 18-24 h later, dilute 1 ug of netrin receptor-encoding DNA (cDNA cloned into pMT21 expression vector) into 200 ul serum-free media and add 6 ul of Lipofectamine (Gibco). Incubate this solution at room temperature for 15-45 min.
- Wash the
cells 2× with PBS. Add 800 ul serum-free media to the tube containing the lipid-DNA complexes. Overlay this solution onto the washed cells. - Incubate for 6 h. Stop the reaction by adding 1 ml DMA/20% FCS. Refeed cells. Assay cells 12 hr later.
- Wash plates of
transfected COS cells 1× with cold PBS (plus Ca/Mg)/1% goat serum. Add 1 ml conditioned media neat and incubate 90 min at room temp. - Wash plates 3× with PBS (plus Ca/Mg). On the 4th wash, add 1
ml 50% methanol to 1 ml PBS. Then add 1 ml methanol. Evacuate and add 1 ml methanol.Wash 1× with PBS.Wash 1×PBS/1% goat serum. - Add secondary antibody (1-to-2,000 anti-human Fe conjugated to alkaline phosphatase (Jackson Lab)) in PBS/1% goat serum. Incubate 30-40 min room temp. Wash 3× with PBS.
Wash 1× alkaline phosphatase buffer (100 mM Tris-Cl, pH 9.5, -
- 100 mM NaCl, 5 mM MgC1). Prepare alkaline phosphatase reagents: 4.5 ul/ml NBT and 3.5 ul/ml BCIP (Gibco) in alkaline phosphatase buffer.
- Incubate 10-30 min, quench with 20 mM EDTA in PBS. Cells that have bound RGM are visible by the presence of a dark purple reaction product.
- In parallel incubations, positive controls are provided by titrating RGM binding with serial dilutions of the mutant receptor conditioned medium.
- Cell expressing mammalian RGM were shown to bind Neogenin. No reactivity was observed with control COS cells or with receptor-expressing COS cells in the presence of the secondary antibody but in the absence of the RGM-Fc fusion.
- Binding was observed to receptor-expression cells using a construct in which RGM is fused directly to alkaline phosphatase, for which a secondary antibody is not required. Neogenin deletion mutants titrate the RGM-receptor binding, serving as a positive control for inhibition assays.
- In order to assess the functional role of the RGM/Neogenin system in neurological outcome after brain or spinal cord injury, studies in mice with targeted gene deletions are studied. These mice are created using mouse Embryonic Stem (ES) cells selected to contain disruptions of the endogenous genes of interest. The ES cells with gene disruptions is injected into mouse blastocysts to derive chimeric animals and then the targeted mutation are bred to homozygosity. In mice lacking Neogenin or RGM1 or RGM2 or RGM3 functional protein, various mouse models for human neurological disease are studied. For example, middle cerebral artery occlusion (MCAO) is created in mice using an intraluminal thread by standard methods. This MCAO produces a stroke in the brain and functional deficits in behavior. The recovery of mice from such injury in wild type and gene targeted lines is compared. The RGM/Neogenin interaction limits recovery from injury. Parallel studies of brain trauma and spinal cord traums are also made with mice lacking Neogenin or RGM1 or RGM2 or RGM3 function. Brain trauma is created by fluid percussion and spinal cord injury is created by either transection or by contusion. Improved recovery of mouse behavior after these traumatic lesions demonstrates the role of the RGM/Neogenin interaction in limiting recovery from CNS damage. Agents demonstrated to be inhibitory to the RGM/Neogenin interaction similarly improve recovery in wild-type mice exposed to brain trauma/spinal cord injury etc.
-
- 1. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123-1133. (1996).
- 2. Yu, T. W. & Bargmann, C. I. Dynamic regulation of axon guidance. Nat Neurosci 4 Suppl, 1169-76 (2001).
- 3. Monnier, P. P. et al. RGM is a repulsive guidance molecule for retinal axons. Nature 419, 392-5 (2002).
- 4. Wang, H., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. & Tessier-Lavigne, M. Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors. J Neurosci 19, 4938-47 (1999).
- 5. Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-AS shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563-74 (2000).
- 6. Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene. Nature 386, 796-804 (1997).
- 7. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 81, 1001-14 (1996).
- 8. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927-41 (1999).
- 9. Geisbrecht, B. V., Dowd, K. A., Barfield, R. W., Longo, P. A. & Leahy, D. J. Netrin binds discrete subdomains of DCC and UNC5 and mediates interactions between DCC and heparin. J Biol Chem. (2003).
- 10. Walter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685-96 (1987).
- 11. Walter, J., Henke-Fahle, S. & Bonhoeffer, F. Avoidance of posterior tectal membranes by temporal retinal axons. Development 101, 909-13 (1987).
- 12. Ming, G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225-35 (1997).
- 13. Fournier, A. E., GrandPre, T. & Strittmatter, S. M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341-6 (2001).
- 14. Vielmetter, J., Stolze, B., Bonhoeffer, F. & Stuermer, C. A. In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp Brain Res 81, 283-7 (1990).
Claims (17)
1. A method for identifying an agent which modulates the binding of a RGM to a Neogenin, the method comprising the steps of:
(a) forming a mixture comprising an isolated mammalian RGM and an isolated mammalian Neogenin;
(b) incubating said mixture in the presence of an agent; and
(c) detecting in the incubated mixture of step (b) the level of specific binding between said RGM and said Neogenin, wherein a difference in the detected level of specific binding of said RGM to said Neogenin in the presence of said agent relative to the level of specific binding in the absence of said agent indicates that said agent modulates the binding of said RGM to said Neogenin.
2. A method for monitoring the interaction between an RGM and a Neogenin, the method comprising the steps of:
(a) contacting a first protein comprising the RGM with a second protein which comprises the Neogenin under conditions where a domain of the RGM binds to a domain of the Neogenin;
(b) determining the binding of the first protein to the second protein or second protein to the first protein.
3. A method for monitoring the interaction between a RGM and a Neogenin, the method comprising the steps of:
(a) contacting a fusion protein comprising an RGM domain with cells which express a Neogenin;
(b) detecting the fusion protein comprising the RGM domain which binds to the cells.
4. A method for monitoring the interaction between a RGM and a Neogenin, the method comprising the steps of:
(a) contacting a protein comprising a RGM domain with cells which express a polypeptide comprising the Neogenin;
(b) detecting the protein comprising the RGM domain which binds to the cells.
5. A method for monitoring the interaction between a RGM and a Neogenin, the method comprises the steps of:
(a) co-culturing in a matrix (a) embryonic nerve cells with (b) cells which have been transfected with an expression construct encoding the RGM and which express the Neogenin;
(b) adding to the cells an inhibitor of binding of the RGM and Neogenin;
(c) determining the axon outgrowth adjacent to the cells which express the RGM in the presence and absence of inhibitor.
6. A method for monitoring the interaction between a RGM and a Neogenin, the method comprising the steps of:
(a) culturing embryonic nerve cells under conditions in which they display growth cones;
(b) contacting the embryonic nerve cells with the RGM and an anti-Neogenin antibody;
(c) observing the effect of the antibody on the collapse of the growth cones.
7. A method according to any one of claims 1 -6, wherein said RGM is a human RGM.
8. A method according to any one of claims 1 -6, wherein said Neogenin is a human Neogenin.
9. A mixture comprising an isolated mammalian RGM and an isolated mammalian Neogenin.
10. A mixture according to claim 9 , wherein said RGM is a human RGM or said Neogenin is human Neogenin.
11. A mixture according to claim 9 , wherein said RGM is a human RGM and said Neogenin is human Neogenin.
12. A method of enhancing axon outgrowth comprising inhibiting the interaction between RGM and Neogenin.
13. A polypeptide portion of Neogenin useful for antagonizing the interaction between RGM and Neogenin.
14. An antibody preparation which specifically inhibits the interaction of a Neogenin protein and an RGM protein.
15. A use of an inhibitor capable of modulating the interaction between RGM and Neogenin in the prevention or treatment of a disease or condition associated with the degeneration or injury of vertebrate nervous tissue.
16. The use of claim 15 wherein said diseases or conditions associated with the degeneration or injury of vertebrate nervous tissue are selected from the group consisting of neurodegenerative diseases, nerve fiber injuries and disorders related to nerve fiber losses.
17. The use of claim 16 , wherein said neurodegenerative disease is selected from the group consisting of motomeuronal diseases (MND), ALS, Alzheimer disease, Parkinson's disease, progressive bulbar palsy, progressive muscular atrophy, HIV-related dementia and spinal muscular atrophy(ies), Down's Syndrome, Huntington's Disease, Creutzfeldt-Jacob Disease, Gerstmann-Straeussler Syndrome, kuru, Scrapie, transmissible mink encephalopathy, other unknown prion diseases, multiple system atrophy, Riley-Day familial dysautonomia wherein said nerve fiber injuries are selected from the group consisting of spinal cord injury(ies), brain injuries related to raised intracranial pressure, trauma, secondary damage due to increased intracranial pressure, infection, infarction, exposure to toxic agents, malignancy and paraneoplastic syndromes and wherein said disorders related to nerve fiber losses are selected from the group consisting of paresis of nervus facials, nervus medianus, nervus ulnaris, nervus axillaris, nervus thoracicus longus, nervus radialis and for of other peripheral nerves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/547,109 US20130101605A1 (en) | 2002-06-26 | 2012-07-12 | Modulators and modulation of the interaction between rgm and neogenin |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39206202P | 2002-06-26 | 2002-06-26 | |
US10/519,132 US7771952B2 (en) | 2002-06-26 | 2003-06-26 | Modulators and modulation of the interaction between RGM and Neogenin |
PCT/US2003/020147 WO2004003150A2 (en) | 2002-06-26 | 2003-06-26 | Modulators and modulation of the interacton between rgm and neogenin |
US12/758,445 US20110003971A1 (en) | 2002-06-26 | 2010-04-12 | Modulators and modulation of the interaction between rgm and neogenin |
US13/547,109 US20130101605A1 (en) | 2002-06-26 | 2012-07-12 | Modulators and modulation of the interaction between rgm and neogenin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/758,445 Continuation US20110003971A1 (en) | 2002-06-26 | 2010-04-12 | Modulators and modulation of the interaction between rgm and neogenin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130101605A1 true US20130101605A1 (en) | 2013-04-25 |
Family
ID=30000804
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/519,132 Expired - Lifetime US7771952B2 (en) | 2002-06-26 | 2003-06-26 | Modulators and modulation of the interaction between RGM and Neogenin |
US12/758,445 Abandoned US20110003971A1 (en) | 2002-06-26 | 2010-04-12 | Modulators and modulation of the interaction between rgm and neogenin |
US13/547,109 Abandoned US20130101605A1 (en) | 2002-06-26 | 2012-07-12 | Modulators and modulation of the interaction between rgm and neogenin |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/519,132 Expired - Lifetime US7771952B2 (en) | 2002-06-26 | 2003-06-26 | Modulators and modulation of the interaction between RGM and Neogenin |
US12/758,445 Abandoned US20110003971A1 (en) | 2002-06-26 | 2010-04-12 | Modulators and modulation of the interaction between rgm and neogenin |
Country Status (4)
Country | Link |
---|---|
US (3) | US7771952B2 (en) |
AU (1) | AU2003280420A1 (en) |
CA (1) | CA2542171C (en) |
WO (1) | WO2004003150A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120328633A1 (en) * | 2009-12-09 | 2012-12-27 | Mitsubishi Tanabe Pharma Corporation | T cell activation inhibitor, pharmaceutical composition containing same, and screening method for t cell activation inhibiting substance |
US20170114129A1 (en) * | 2009-12-08 | 2017-04-27 | AbbVie Deutschland GmbH & Co. KG | Monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration |
US11008388B2 (en) | 2015-04-28 | 2021-05-18 | Mitsubishi Tanabe Pharma Corporation | RGMa binding protein and use thereof |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4986370B2 (en) | 2000-12-22 | 2012-07-25 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | Uses of RGM and its modulators |
KR20070015398A (en) * | 2004-03-11 | 2007-02-02 | 바이오클루즈 가부시키가이샤 | Axon regeneration accelerator |
US20060063208A1 (en) | 2004-08-02 | 2006-03-23 | Woolf Clifford J | DRG11-responsive (DRAGON) gene and uses thereof |
EP2335719B1 (en) | 2005-02-16 | 2015-06-24 | The General Hospital Corporation | Use of hemojuvelin fusion proteins to regulate hepcidin-mediated iron metabolism |
JP2009510002A (en) * | 2005-09-30 | 2009-03-12 | アボット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | Binding domains of proteins of the repulsion-inducing molecule (RGM) protein family, and functional fragments thereof, and uses thereof |
JPWO2008038599A1 (en) * | 2006-09-25 | 2010-01-28 | 国立大学法人 千葉大学 | Axon regeneration promoter |
US8895002B2 (en) | 2007-04-09 | 2014-11-25 | The General Hospital Corporation | Hemojuvelin fusion proteins and uses thereof |
EP2033971A1 (en) * | 2007-09-06 | 2009-03-11 | Abbott GmbH & Co. KG | Bone Morphogenetic Protein (BMP) binding domains of proteins of the Repulsive Guidance Molecule (RGM) protein family and functional fragments thereof and their application |
US8962803B2 (en) | 2008-02-29 | 2015-02-24 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM A protein and uses thereof |
ES2766257T3 (en) | 2008-11-13 | 2020-06-12 | Massachusetts Gen Hospital | Methods and compositions to regulate iron homeostasis by modulating bmp-6 |
WO2012047706A2 (en) * | 2010-10-06 | 2012-04-12 | Massachusetts Eye & Ear Infirmary | Methods for promotiing reinnervation of auditory hair cells |
EP2807192B1 (en) * | 2012-01-27 | 2018-04-18 | Abbvie Deutschland GmbH & Co. KG | Composition and method for diagnosis and treatment of diseases associated with neurite degeneration |
CA2923772A1 (en) * | 2013-09-17 | 2015-03-26 | University Health Network (Uhn): Technology Development And Commercialization | Agents directed against a cis rgma/neogenin interaction or lipid rafts and use of the same in methods of treatment |
WO2015120138A2 (en) * | 2014-02-05 | 2015-08-13 | Dana-Farber Cancer Institute, Inc. | AGENTS THAT MODULATE RGMb-NEOGENIN-BMP SIGNALING AND METHODS OF USE THEREOF |
CA3037758C (en) * | 2015-09-23 | 2022-10-04 | University Health Network | Methods, compounds and compositions for modulating blood brain barrier integrity and re-myelination |
KR102089948B1 (en) * | 2018-06-12 | 2020-03-17 | 단국대학교 천안캠퍼스 산학협력단 | Culture media composition for promoting neuronal stem cell proliferation and maintaining neuronal stem cell capacity comprising neogenin |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
US4987071A (en) | 1986-12-03 | 1991-01-22 | University Patents, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
AU632993B2 (en) | 1987-12-15 | 1993-01-21 | Gene Shears Pty. Limited | Ribozymes |
CA1340323C (en) | 1988-09-20 | 1999-01-19 | Arnold E. Hampel | Rna catalyst for cleaving specific rna sequences |
CA2164088C (en) | 1993-06-07 | 2005-06-14 | Gary J. Nabel | Plasmids suitable for gene therapy |
US5525490A (en) | 1994-03-29 | 1996-06-11 | Onyx Pharmaceuticals, Inc. | Reverse two-hybrid method |
US5541109A (en) | 1994-04-19 | 1996-07-30 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Expression cloning of c-src SH3-domain binding proteins |
ATE254136T1 (en) | 1994-07-20 | 2003-11-15 | Gen Hospital Corp | INTERACTION FULL SYSTEMS FOR DETECTING PROTEIN INTERACTIONS |
WO1997000957A1 (en) | 1995-06-23 | 1997-01-09 | President And Fellows Of Harvard College | Transcriptional regulation of genes encoding vascular endothelial growth factor receptors |
US5747262A (en) | 1995-10-16 | 1998-05-05 | The Regents Of The University Of California | Neurological drug screens |
PT963376E (en) | 1996-12-11 | 2005-06-30 | Bristol Myers Squibb Co | DOUBLE HYBRID PROCATIC SYSTEM |
WO1999051741A2 (en) | 1998-04-03 | 1999-10-14 | Curagen Corporation | Lyst protein complexes and lyst interacting proteins |
JP2002521004A (en) | 1998-07-10 | 2002-07-16 | キュラゲン コーポレイション | Interaction of human β-amidoid precursor protein (β-APP) with human LON protease-like protein (HsLON) |
IL128017A0 (en) | 1998-07-22 | 1999-11-30 | Technion Res & Dev Foundation | Method for detecting protein-protein interactions and a kit therefor |
CA2341314A1 (en) | 1998-09-03 | 2000-03-16 | Loma Linda University | Method for studying protein interactions in vivo |
AU5578999A (en) | 1998-09-24 | 2000-04-10 | Duke University | Method of measuring protein-protein interactions in living cells |
JP4986370B2 (en) | 2000-12-22 | 2012-07-25 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | Uses of RGM and its modulators |
-
2003
- 2003-06-26 US US10/519,132 patent/US7771952B2/en not_active Expired - Lifetime
- 2003-06-26 CA CA2542171A patent/CA2542171C/en not_active Expired - Lifetime
- 2003-06-26 AU AU2003280420A patent/AU2003280420A1/en not_active Abandoned
- 2003-06-26 WO PCT/US2003/020147 patent/WO2004003150A2/en not_active Application Discontinuation
-
2010
- 2010-04-12 US US12/758,445 patent/US20110003971A1/en not_active Abandoned
-
2012
- 2012-07-12 US US13/547,109 patent/US20130101605A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170114129A1 (en) * | 2009-12-08 | 2017-04-27 | AbbVie Deutschland GmbH & Co. KG | Monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration |
US20120328633A1 (en) * | 2009-12-09 | 2012-12-27 | Mitsubishi Tanabe Pharma Corporation | T cell activation inhibitor, pharmaceutical composition containing same, and screening method for t cell activation inhibiting substance |
US9334323B2 (en) * | 2009-12-09 | 2016-05-10 | Mitsubishi Tanabe Pharma Corporation | Method of reducing recurrence of multiple sclerosis symptoms in a mammal by administering an anti-repulsive guidance molecule neutralizing antibody |
US9751938B2 (en) | 2009-12-09 | 2017-09-05 | Mitsubishi Tanabe Pharma Corporation | Method of inhibiting activation of a T cell by administering an anti-RGM antibody or an RGM siRNA |
US11008388B2 (en) | 2015-04-28 | 2021-05-18 | Mitsubishi Tanabe Pharma Corporation | RGMa binding protein and use thereof |
Also Published As
Publication number | Publication date |
---|---|
US20110003971A1 (en) | 2011-01-06 |
AU2003280420A8 (en) | 2004-01-19 |
US7771952B2 (en) | 2010-08-10 |
CA2542171C (en) | 2015-12-15 |
WO2004003150A2 (en) | 2004-01-08 |
US20060252101A1 (en) | 2006-11-09 |
AU2003280420A1 (en) | 2004-01-19 |
WO2004003150A3 (en) | 2004-08-26 |
CA2542171A1 (en) | 2004-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130101605A1 (en) | Modulators and modulation of the interaction between rgm and neogenin | |
US8680239B2 (en) | Use of RGM and its modulators | |
KR100828058B1 (en) | Blocking axon growth mediated by NOX receptors | |
Santolini et al. | Numb is an endocytic protein | |
US7119165B2 (en) | Nogo receptor-mediated blockade of axonal growth | |
JP2007195551A (en) | Semaphorin receptor | |
KR20050110012A (en) | Nogo receptor binding protein | |
CA2245956A1 (en) | Monoclonal antibodies specific to endothelial cell cadherins and uses thereof | |
US20060241284A1 (en) | Transmembrane protein amigo and uses thereof | |
US6559288B1 (en) | Ninjurin | |
EP1365018A1 (en) | CD100 semaphorin in myelination | |
Stallcup | The third fibronectin type III repeat is required for L1 to serve as an optimal substratum for neurite extension | |
US20100129288A1 (en) | Gliomedin, Fragments Thereof and Methods of Using Same | |
JP4503287B2 (en) | Methods for inhibiting the growth of astrocytes and astrocyte tumor cells, methods for increasing neuronal survival, and uses thereof | |
RU2208230C2 (en) | Icam-4 and method for applying it in diagnosing diseases | |
US20090258023A1 (en) | Tgf-beta superfamily binding proteins and modulation of bone formation and loss | |
US20080241168A1 (en) | Transmembrane protein amigo and uses thereof | |
WO2011105527A1 (en) | Nerve growth promoter | |
JP4535670B2 (en) | Novel polypeptides, their DNA and their uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBVIE INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT LABORATORIES;REEL/FRAME:030231/0808 Effective date: 20120801 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |