US20130095270A1 - Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol - Google Patents
Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol Download PDFInfo
- Publication number
- US20130095270A1 US20130095270A1 US13/648,508 US201213648508A US2013095270A1 US 20130095270 A1 US20130095270 A1 US 20130095270A1 US 201213648508 A US201213648508 A US 201213648508A US 2013095270 A1 US2013095270 A1 US 2013095270A1
- Authority
- US
- United States
- Prior art keywords
- mole
- residues
- dicarboxylic acid
- tetramethyl
- cyclobutanediol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 463
- 239000000203 mixture Substances 0.000 title claims description 212
- DNXDYHALMANNEJ-UHFFFAOYSA-N furan-2,3-dicarboxylic acid Chemical compound OC(=O)C=1C=COC=1C(O)=O DNXDYHALMANNEJ-UHFFFAOYSA-N 0.000 title claims description 103
- 150000002148 esters Chemical class 0.000 title description 133
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 title description 3
- NBBUYPNTAABDEY-UHFFFAOYSA-N cyclobutane-1,1-diol Chemical compound OC1(O)CCC1 NBBUYPNTAABDEY-UHFFFAOYSA-N 0.000 title description 3
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 claims abstract description 352
- FQXGHZNSUOHCLO-UHFFFAOYSA-N 2,2,4,4-tetramethyl-1,3-cyclobutanediol Chemical group CC1(C)C(O)C(C)(C)C1O FQXGHZNSUOHCLO-UHFFFAOYSA-N 0.000 claims abstract description 331
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 208
- CHTHALBTIRVDBM-UHFFFAOYSA-N furan-2,5-dicarboxylic acid Chemical group OC(=O)C1=CC=C(C(O)=O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000000835 fiber Substances 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 517
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 236
- 125000004432 carbon atom Chemical group C* 0.000 claims description 199
- 229920000642 polymer Polymers 0.000 claims description 65
- -1 poly(phenylene oxide) Polymers 0.000 claims description 59
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 50
- 229920002472 Starch Polymers 0.000 claims description 37
- 235000019698 starch Nutrition 0.000 claims description 37
- 239000008107 starch Substances 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 25
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 18
- 150000002009 diols Chemical group 0.000 claims description 17
- 239000006260 foam Substances 0.000 claims description 6
- 239000006085 branching agent Substances 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 229920002492 poly(sulfone) Polymers 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920006380 polyphenylene oxide Polymers 0.000 claims description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 2
- 229920001643 poly(ether ketone) Polymers 0.000 claims description 2
- 229920012287 polyphenylene sulfone Polymers 0.000 claims description 2
- 229920005990 polystyrene resin Polymers 0.000 claims description 2
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 claims description 2
- 150000003457 sulfones Chemical class 0.000 claims description 2
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 194
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 194
- 230000009477 glass transition Effects 0.000 description 104
- 238000000034 method Methods 0.000 description 28
- 150000002334 glycols Chemical class 0.000 description 22
- 239000000243 solution Substances 0.000 description 21
- 239000002253 acid Substances 0.000 description 20
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000001125 extrusion Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 14
- 239000000178 monomer Substances 0.000 description 14
- 229920000747 poly(lactic acid) Polymers 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 12
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 229920001634 Copolyester Polymers 0.000 description 10
- 235000011089 carbon dioxide Nutrition 0.000 description 10
- 239000004626 polylactic acid Substances 0.000 description 10
- 238000010926 purge Methods 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 239000004970 Chain extender Substances 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 238000003490 calendering Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 239000004014 plasticizer Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- 229920001400 block copolymer Polymers 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000007765 extrusion coating Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- 239000004609 Impact Modifier Substances 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 239000000600 sorbitol Substances 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- 229940035437 1,3-propanediol Drugs 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229920000229 biodegradable polyester Polymers 0.000 description 3
- 239000004622 biodegradable polyester Substances 0.000 description 3
- 238000000071 blow moulding Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 229940022769 d- lactic acid Drugs 0.000 description 3
- 238000010101 extrusion blow moulding Methods 0.000 description 3
- 238000010096 film blowing Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000010102 injection blow moulding Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 150000003018 phosphorus compounds Chemical class 0.000 description 3
- 229920001432 poly(L-lactide) Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000001175 rotational moulding Methods 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 2
- UNVGBIALRHLALK-UHFFFAOYSA-N 1,5-Hexanediol Chemical compound CC(O)CCCCO UNVGBIALRHLALK-UHFFFAOYSA-N 0.000 description 2
- 229940043375 1,5-pentanediol Drugs 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229930182843 D-Lactic acid Natural products 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000010103 injection stretch blow moulding Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 229960002479 isosorbide Drugs 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical compound OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002863 poly(1,4-phenylene oxide) polymer Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 229920006300 shrink film Polymers 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical compound [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 2
- LWBHHRRTOZQPDM-UHFFFAOYSA-N undecanedioic acid Chemical compound OC(=O)CCCCCCCCCC(O)=O LWBHHRRTOZQPDM-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- WXTPOHDTGNYFSB-RMPHRYRLSA-N (2s,3r,4s,5s,6r)-2-(3,5-dihydroxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1 WXTPOHDTGNYFSB-RMPHRYRLSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- 229940083957 1,2-butanediol Drugs 0.000 description 1
- OKIRBHVFJGXOIS-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC=C1C(C)C OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- IVIDDMGBRCPGLJ-UHFFFAOYSA-N 2,3-bis(oxiran-2-ylmethoxy)propan-1-ol Chemical class C1OC1COC(CO)COCC1CO1 IVIDDMGBRCPGLJ-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- ZACVGCNKGYYQHA-UHFFFAOYSA-N 2-ethylhexoxycarbonyloxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOC(=O)OCC(CC)CCCC ZACVGCNKGYYQHA-UHFFFAOYSA-N 0.000 description 1
- SMNDYUVBFMFKNZ-UHFFFAOYSA-N 2-furoic acid Chemical compound OC(=O)C1=CC=CO1 SMNDYUVBFMFKNZ-UHFFFAOYSA-N 0.000 description 1
- SZFABAXZLWVKDV-UHFFFAOYSA-N 2-methyloctanoyl 2-methyloctaneperoxoate Chemical compound CCCCCCC(C)C(=O)OOC(=O)C(C)CCCCCC SZFABAXZLWVKDV-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- ZQHYXNSQOIDNTL-UHFFFAOYSA-N 3-hydroxyglutaric acid Chemical compound OC(=O)CC(O)CC(O)=O ZQHYXNSQOIDNTL-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- SBBQDUFLZGOASY-OWOJBTEDSA-N 4-[(e)-2-(4-carboxyphenyl)ethenyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1\C=C\C1=CC=C(C(O)=O)C=C1 SBBQDUFLZGOASY-OWOJBTEDSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 229920004142 LEXAN™ Polymers 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004727 Noryl Substances 0.000 description 1
- 229920001207 Noryl Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- WXTPOHDTGNYFSB-UHFFFAOYSA-N Phlorin Natural products OC1C(O)C(O)C(CO)OC1OC1=CC(O)=CC(O)=C1 WXTPOHDTGNYFSB-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- WINXNKPZLFISPD-UHFFFAOYSA-M Saccharin sodium Chemical compound [Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 WINXNKPZLFISPD-UHFFFAOYSA-M 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 108010055615 Zein Proteins 0.000 description 1
- 229920006102 Zytel® Polymers 0.000 description 1
- OORDEDRRTSWSRC-UHFFFAOYSA-N [3-hydroxy-2,2-bis(hydroxymethyl)propyl] acetate Chemical compound CC(=O)OCC(CO)(CO)CO OORDEDRRTSWSRC-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- BHPNXACHQYJJJS-UHFFFAOYSA-N bacteriochlorin Chemical compound N1C(C=C2N=C(C=C3NC(=C4)C=C3)CC2)=CC=C1C=C1CCC4=N1 BHPNXACHQYJJJS-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- LUZSPGQEISANPO-UHFFFAOYSA-N butyltin Chemical compound CCCC[Sn] LUZSPGQEISANPO-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000007765 cera alba Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- QWVBGCWRHHXMRM-UHFFFAOYSA-N hexadecoxycarbonyloxy hexadecyl carbonate Chemical compound CCCCCCCCCCCCCCCCOC(=O)OOC(=O)OCCCCCCCCCCCCCCCC QWVBGCWRHHXMRM-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- WJSATVJYSKVUGV-UHFFFAOYSA-N hexane-1,3,5-triol Chemical compound CC(O)CC(O)CCO WJSATVJYSKVUGV-UHFFFAOYSA-N 0.000 description 1
- MMHWNKSVQDCUDE-UHFFFAOYSA-N hexanedioic acid;terephthalic acid Chemical class OC(=O)CCCCC(O)=O.OC(=O)C1=CC=C(C(O)=O)C=C1 MMHWNKSVQDCUDE-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical class [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Chemical class 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical class CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000005634 peroxydicarbonate group Chemical group 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229930194749 phorbin Natural products 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002961 polybutylene succinate Polymers 0.000 description 1
- 239000004631 polybutylene succinate Substances 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- VCRBUDCZLSQJPZ-UHFFFAOYSA-N porphyrinogen Chemical compound C1C(N2)=CC=C2CC(N2)=CC=C2CC(N2)=CC=C2CC2=CC=C1N2 VCRBUDCZLSQJPZ-UHFFFAOYSA-N 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003503 terephthalic acid derivatives Chemical class 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- CSKKAINPUYTTRW-UHFFFAOYSA-N tetradecoxycarbonyloxy tetradecyl carbonate Chemical compound CCCCCCCCCCCCCCOC(=O)OOC(=O)OCCCCCCCCCCCCCC CSKKAINPUYTTRW-UHFFFAOYSA-N 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 239000012745 toughening agent Substances 0.000 description 1
- DXNCZXXFRKPEPY-UHFFFAOYSA-N tridecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCC(O)=O DXNCZXXFRKPEPY-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000000196 viscometry Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/199—Acids or hydroxy compounds containing cycloaliphatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/672—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1397—Single layer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
Definitions
- the present invention generally relates to polyester compositions made from 2,5-furandicarboxylic acid or an ester thereof or mixtures thereof, cyclobutanediol and 1,4-cyclohexanedimethanol.
- Homopolymers based on 2,5-furandicarboxylic acid or an ester thereof and 1,4-cyclohexanedimethanol are known in the art.
- copolyester compositions made from 2,5-furandicarboxylic acid, an ester thereof, or mixtures thereof, cyclobutanediol and 1,4-cyclohexanedimethanol are superior to polyesters known in the art with respect to stable glass transition temperatures. Good barrier properties have also been observed.
- the invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- this invention relates to a polyester composition
- a polyester composition comprising at least one polyester which comprises:
- the polyesters of the invention can include both 1,4-cyclohexanedimethanol residues and 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues with or without modifying glycols.
- diethylene glycol may be present as a modifying glycol. Even if diethylene glycol is not specifically added, it is understood that diethylene glycol may be formed in situ and may be present in an embodiment where only 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol are added as monomers in the process of making the polyester.
- ethylene glycol may be present as a modifying glycol.
- Embodiments of polyesters of the invention which are stated herein to not include modifying glycols may or may not contain minor amounts of diethylene glycol or ethylene glycol residues.
- the polyesters of the invention comprise 2,5-furandicarboxylic acid (FDCA) can optionally contain residues of terephthalic acid (TPA) and/or an ester thereof. Additional modifying dicarboxylic acid (or corresponding ester) residues (acids other than FDCA and TPA) can optionally be present.
- FDCA 2,5-furandicarboxylic acid
- TPA terephthalic acid
- Additional modifying dicarboxylic acid (or corresponding ester) residues (acids other than FDCA and TPA) can optionally be present.
- the polyesters of the invention can be used to manufacture articles including, but not limited to, injection molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, extrusion stretch blow molded articles, extrusion coatings, calendered articles, compression molded articles, and solution casted articles.
- the polyesters of the invention can be used to manufacture films, injection molded products, extrusion coatings, fibres, foams, thermoformed products, extruded profiles and sheets, extrusion blow molded articles, injection blow molded articles, rotomolded articles, stretch blow molded articles, etc.
- Methods of making the articles of manufacuture include, but are not limited to, extrusion blow molding, extrusion stretch blow molding, injection blow molding, injection stretch blow molding, calendering, rotomolding, compression molding, and solution casting.
- the invention further relates to articles of manufacture comprising the film(s) and/or sheet(s) containing polyester compositions described herein.
- the invention relates to fibers.
- the invention relates to foams and/or foamed articles.
- this invention relates to thermoformed articles.
- polyesters into film(s) and/or sheet(s) are well known in the art.
- film(s) and/or sheet(s) of the invention including but not limited to extruded film(s) and/or sheet(s), calendered film(s) and/or sheet(s), compression molded film(s) and/or sheet(s), solution casted film(s) and/or sheet(s).
- film or sheet production technologies include film blowing, casting (including solution casting), coextrusion, extrusion, calendering, and compression molding.
- This invention relates to copolyester compositions based on 2,5-furandicarboxylic acid or an ester thereof, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and 1,4-cyclohexanedimethanol which are believed to provide greater stability with respect to glass transition temperature than would be expected by one of ordinary skill in the art.
- FIG. 1 is a graphical representation of Table 1 data and depicts glass transition temperature vs. mole percent CHDM for TPA-based and FDCA-based copolyesters.
- Copolyesters synthesized from 2,5-furandicarboxylic acid (FDCA) or its derivatives with 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) and 1,4-cyclohexanedimethanol (CHDM) have an advantage of nearly constant glass transition temperature (Tg) over a wide range of compositions, compared to commercial terephthalic acid-based copolyesters (PET, PETG, PCTG, PCT), for which Tg varies measurably as composition varies. This advantage may be beneficial for producing copolyesters with constant Tg even if composition varies during manufacturing.
- polyester is intended to include “copolyesters” and is understood to mean a synthetic polymer prepared by the reaction of one or more difunctional carboxylic acids and/or multifunctional carboxylic acids with one or more difunctional hydroxyl compounds and/or multifunctional hydroxyl compounds.
- the difunctional carboxylic acid can be a dicarboxylic acid and the difunctional hydroxyl compound can be a dihydric alcohol such as, for example, glycols and diols.
- glycocol as used in this application includes, but is not limited to, diols, glycols, and/or multifunctional hydroxyl compounds, for example, branching agents.
- a difunctional carboxylic acid may be a hydroxy carboxylic acid such as, for example, p-hydroxybenzoic acid
- the difunctional hydroxyl compound may be an aromatic nucleus bearing 2 hydroxyl substituents such as, for example, hydroquinone.
- reduce means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer.
- peating unit means an organic structure having a dicarboxylic acid residue and a diol residue.
- the dicarboxylic acid residues may be derived from a dicarboxylic acid monomer or its associated acid halides, esters, salts, anhydrides, or mixtures thereof.
- dicarboxylic acid is intended to include dicarboxylic acids and any derivative of a dicarboxylic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof, useful in a reaction process with a diol to make polyester.
- the term “diacid” includes multifunctional acids, for example, branching agents.
- terephthalic acid is intended to include terephthalic acid itself and residues thereof as well as any derivative of terephthalic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof or residues thereof useful in a reaction process with a diol to make polyester.
- furandicarboxylic acid and/or its ester may be used as a starting material.
- mixtures of 2,5-furandicarboxylic acid and its ester may be used as the starting material and/or as an intermediate material.
- Terephthalic acid and/or its ester may also be used in one embodiment as one of the starting materials, with 2,5-furandicarboxylic acid and/or its ester.
- dimethyl terephthalate may be used instead of terephthalic acid as a starting material.
- mixtures of terephthalic acid and dimethyl terephthalate may be used as starting materials and/or as an intermediate material.
- Isophthalic acid and/or its ester may also be used in one embodiment as one of the starting materials, with 2,5-furandicarboxylic acid and/or its ester.
- terephthalic acid and/or its ester as well as isophthalic acid and/or its ester may also be used in combination as starting materials, with 2,5-furandicarboxylic acid and/or its ester.
- the polyesters used in the present invention typically can be prepared from dicarboxylic acids and diols which react in substantially equal proportions and are incorporated into the polyester polymer as their corresponding residues.
- the polyesters of the present invention therefore, can contain substantially equal molar proportions of acid residues (100 mole %) and diol (and/or multifunctional hydroxyl compounds) residues (100 mole %) such that the total moles of repeating units is equal to 100 mole %.
- the mole percentages provided in the present disclosure therefore, may be based on the total moles of acid residues, the total moles of diol residues, or the total moles of repeating units.
- a polyester containing 30 mole % isophthalic acid means the polyester contains 30 mole % isophthalic acid residues out of a total of 100 mole % acid residues. Thus, there are 30 moles of isophthalic acid residues among every 100 moles of acid residues.
- a polyester containing 30 mole % 1,4-cyclohexanedimethanol means the polyester contains 30 mole 1,4-cyclohexanedimethanol residues out of a total of 100 mole % diol residues. Thus, there are 30 moles of 1,4-cyclohexanedimethanol residues among every 100 moles of diol residues.
- the Tg of the polyesters useful in the invention can be at least one of the following ranges: 30 to 130° C.; 30 to 125° C.; 30 to 120° C.; 30 to 115° C.; 30 to 110° C.; 30 to 105° C.; 30 to 100° C.; 30 to 95° C.; 30 to 90° C.; 30 to 85° C.; 30 to 80° C.; 30 to 75° C.; 30 to 70° C.; 30 to 65° C.; 30 to 60° C.; 30 to 55° C.; 30 to 50° C.; 30 to 45° C.; 35 to 130° C.; 35 to 125° C.; 35 to 120° C.; 35 to 115° C.; 35 to 110° C.; 35 to 105° C.; 35 to 100° C.; 35 to 95° C.; 35 to 90° C.; 35 to 85° C.; 35 to 80° C.; 35 to 75° C.; 35 to 70° C.; 35 to 65
- the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 85 mole % 2,2,4,
- the glycol component for the polyesters useful in the film or sheet of the invention include but are not limited to at least one of the following ranges: 0.01 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 99 mole 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 95 mole % 1,4-cyclohexane
- the glycol component for the polyesters useful in the film or sheet of the invention include but are not limited to at least one of the following ranges: 0.01 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 90 mole % 1,4-cyclohexanedimethanol and
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 55 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 70 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 75 to 90 mole % 1,4-cyclohexanedimethanol and 10
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 85 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 55 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 70 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 75 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 45 mole %
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 80 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 75 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 65 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 60 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 55 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 50 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 45 mole % 1,4-cyclohexanedimethanol and 50 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 45 and 55 to 95 mole 2,2,4,4-tetramethyl-1,3-cyclobutanediol mole % 1,4-cyclohexanedimethanol; 15 to 45 mole % 1,4-cyclohexanedimethanol and 55
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 40 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 35 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 99.99 mole % mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 30 mole % 1,4-cyclohexan
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 25 mole % 1,4-cyclohexanedimethanol
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 15 to 20 mole % 1,4-cyclohexanedim
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 10 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 10 mole % 1,4-cyclohexanedimethanol and 90 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 10 mole % 1,4-cyclohexanedimethanol and 90 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 10 mole % 1,4-cyclohexanedimethanol and 90 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 0.01 to 5 mole % 1,4-cyclohexanedimethanol and 95 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1 to 5 mole % 1,4-cyclohexanediol and 1 to
- the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.: 0.10 to 1.2 dL/g; 0.10 to 1.1 dL/g; 0.10 to 1 dL/g; 0.10 to less than 1 dL/g; 0.10 to 0.98 dL/g; 0.10 to 0.95 dL/g; 0.10 to 0.90 dL/g; 0.10 to 0.85 dL/g; 0.10 to 0.80 dL/g; 0.10 to 0.75 dL/g; 0.10 to less than 0.75 dL/g; 0.10 to 0.72 dL/g; 0.10 to 0.70 dL/g; 0.10 to less than 0.70 dL/g; 0.10 to 0.68 dL/g; 0.10 to less than 0.68 dL/g;
- the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.: 0.45 to 1.2 dL/g; 0.45 to 1.1 dL/g; 0.45 to 1 dL/g; 0.45 to 0.98 dL/g; 0.45 to 0.95 dL/g; 0.45 to 0.90 dL/g; 0.45 to 0.85 dL/g; 0.45 to 0.80 dL/g; 0.45 to 0.75 dL/g; 0.45 to less than 0.75 dL/g; 0.45 to 0.72 dL/g; 0.45 to 0.70 dL/g; 0.45 to less than 0.70 dL/g; 0.45 to 0.68 dL/g; 0.45 to less than 0.68 dL/g; 0.45 to 0.65 dL/g; 0.45 to 1.2 dL
- the polyester compositions of the invention can possess at least one of the inherent viscosity ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can posses at least one of the Tg ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can posses at least one of the Tg ranges described herein, at least one of the inherent viscosity ranges described herein, and at least one of the monomer ranges for the compositions described herein unless otherwise stated.
- furandicarboxylic acid, or an ester thereof or a mixture of furandicarboxylic acid and an ester thereof makes up most or all of the dicarboxylic acid component used to form the polyesters useful in the invention.
- 2,5-furandicarboxylic acid residues and/or its ester can be present at a concentration of at least 70 mole %, such as at least 80 mole %, at least 90 mole %, at least 95 mole %, at least 99 mole %, or 100 mole %.
- the terms “2,5-furandicarboxylic acid” and its esters are used interchangeably herein.
- ranges of from 70 to 100 mole %; or 80 to 100 mole %; or 90 to 100 mole %; or 99 to 100 mole %; or 100 mole % 2,5-furandicarboxylic acid and/or its esters may be used. In certain embodiments, ranges of from 70 to 100 mole %; or 80 to 100 mole %; or 90 to 100 mole %; or 99 to 100 mole %; or 100 mole % 2,5-furandicarboxylic acid and/or its esters may be used.
- the dicarboxylic acid component of the polyesters useful in the invention can comprise up to 30 mole %, up to 20 mole %, up to 10 mole %, up to 5 mole %, or up to 1 mole % of one or more modifying aromatic dicarboxylic acids. Yet another embodiment contains 0 mole % modifying aromatic dicarboxylic acids.
- the amount of one or more modifying aromatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 30 mole %, from 0.01 to 20 mole %, from 0.01 to 10 mole %, from 0.01 to 5 mole %, or from 0.01 to 1 mole % of one or more modifying aromatic dicarboxylic acids.
- modifying aromatic dicarboxylic acids that may be used in the present invention include but are not limited to those having up to 20 carbon atoms, and that can be linear, para-oriented, or symmetrical.
- modifying aromatic dicarboxylic acids which may be used in this invention include, but are not limited to, terephthalic acid, isophthalic acid, 4,4′-biphenyldicarboxylic acid, 1,4-, 1,5-, 2,6-, 2,7-naphthalenedicarboxylic acid, and trans-4,4′-stilbenedicarboxylic acid, and esters thereof.
- isophthalic acid is the modifying aromatic dicarboxylic acid.
- terephthalic acid is the modifying aromatic dicarboxylic acid.
- the carboxylic acid component of the polyesters useful in the invention can be further modified with up to 30 mole %, such as up to 25 mole % or such as up to such as up to 20 mole % or such as up to 15 mole % or such as up to 10 mole % or such as up to 5 mole % or up to 1 mole % of one or more aliphatic dicarboxylic acids containing 2-16 carbon atoms, such as, for example, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic and dodecanedioic dicarboxylic acids.
- aliphatic dicarboxylic acids containing 2-16 carbon atoms such as, for example, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic and dodecanedioic dicarboxylic acids.
- Certain embodiments can also comprise 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole % of one or more modifying aliphatic dicarboxylic acids.
- Yet another embodiment contains 0 mole % modifying aliphatic dicarboxylic acids.
- the amount of one or more modifying aliphatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 10 mole % and from 0.1 to 10 mole %.
- the total mole % of the dicarboxylic acid component is 100 mole %.
- esters of terephthalic acid and the other modifying dicarboxylic acids or their corresponding esters and/or salts may be used instead of the dicarboxylic acids.
- Suitable examples of dicarboxylic acid esters include, but are not limited to, the dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, and diphenyl esters.
- the esters are chosen from at least one of the following: methyl, ethyl, propyl, isopropyl, and phenyl esters.
- the 1,4-cyclohexanedimethanol may be cis, trans, or a mixture thereof, for example, a cis/trans ratio of 60:40 to 40:60.
- the trans-1,4-cyclohexanedimethanol can be present in the amount of 60 to 80 mole %.
- the molar ratio of cis/trans 1,4-cyclohexandimethanol can vary within the range of 50/50 to 0/100, for example, between 40/60 to 20/80.
- the amount of cis-2,2,4,4-tetramethyl-1,3-cyclobutanediol is greater than 50 mole %, or greater than 55 mole % or greater than 60 mole % or greater than 65 mole % or greater than 70 mole % or greater than 75 mole %.
- the glycol component of the polyester portion of the polyester compositions useful in the invention contain no more than 98 mole % of modifying glycols (glycols other than TMCD and CHDM). In one embodiment, the polyesters useful in the invention can contain less than 30 mole % of one or more modifying glycols. In one embodiment, the polyesters useful in the invention can contain less than 25 mole % of one or more modifying glycols. In one embodiment, the polyesters useful in the invention can contain less than 20 mole % of one or more modifying glycols. In one embodiment, the polyesters useful in the invention can contain less than 15 mole % of one or more modifying glycols.
- the polyesters useful in the invention can contain 10 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 5 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 3 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention may contain 0 mole % modifying glycols. Certain embodiments can also contain 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole % of one or more modifying glycols. Thus, if present, it is contemplated that the amount of one or more modifying glycols can range from any of these preceding endpoint values including, for example, from 0.01 to 15 mole % and from 0.1 to 10 mole %.
- the polyesters useful in the invention can also comprise from 0 to 10 mole percent, for example, from 0.01 to 5 mole percent, from 0.01 to 1 mole percent, from 0.05 to 5 mole percent, from 0.05 to 1 mole percent, or from 0.1 to 0.7 mole percent, or 0.1 to 0.5 mole percent, based the total mole percentages of either the diol or diacid residues; respectively, of one or more residues of a branching monomer, also referred to herein as a branching agent, having 3 or more carboxyl substituents, hydroxyl substituents, or a combination thereof.
- the branching monomer or agent may be added prior to and/or during and/or after the polymerization of the polyester.
- the polyester(s) useful in the invention can thus be linear or branched.
- branching monomers include, but are not limited to, multifunctional acids or multifunctional alcohols such as trimellitic acid, trimellitic anhydride, pyromellitic dianhydride, trimethylolpropane, glycerol, pentaerythritol, citric acid, tartaric acid, 3-hydroxyglutaric acid and the like.
- the branching monomer residues can comprise 0.1 to 0.7 mole percent of one or more residues chosen from at least one of the following: trimellitic anhydride, pyromellitic dianhydride, glycerol, sorbitol, 1,2,6-hexanetriol, pentaerythritol, trimethylolethane, and/or trimesic acid.
- the branching monomer may be added to the polyester reaction mixture or blended with the polyester in the form of a concentrate as described, for example, in U.S. Pat. Nos. 5,654,347 and 5,696,176, whose disclosure regarding branching monomers is incorporated herein by reference.
- the glass transition temperature (Tg) of the polyesters useful in the invention was determined using a TA Instruments Q2000 DSC at a scan rate of 20° C./min.
- the polyesters of this invention can be visually clear.
- the term “visually clear” is defined herein as an appreciable absence of cloudiness, haziness, and/or muddiness, when inspected visually.
- the polyesters when blended with another polymer, the blends can be visually clear.
- the polyesters useful in the invention can be made by processes known from the literature such as, for example, by processes in homogenous solution, by transesterification processes in the melt, and by two phase interfacial processes. Suitable methods include, but are not limited to, the steps of reacting one or more dicarboxylic acids with one or more glycols at a temperature of 100° C. to 315° C. at a pressure of 0.1 to 760 mm Hg for a time sufficient to form a polyester. See U.S. Pat. No. 3,772,405 for methods of producing polyesters, the disclosure regarding such methods is hereby incorporated herein by reference.
- the invention relates to a process for producing a polyester.
- the process comprises:
- Suitable catalysts for use in this process include, but are not limited to, organo-zinc or tin compounds, including but not limited to, zinc acetate, butyltin tris-2-ethylhexanoate, dibutyltin diacetate, and/or dibutyltin oxide.
- Other catalysts may include, but are not limited to, those based on titanium, zinc, manganese, lithium, germanium, and cobalt.
- a phosphorus compound may be used in connection with this invention.
- the catalyst can be a combination of manganese, cobalt and germanium which can be used with phosphorus compounds as described herein.
- titanium and manganese can be used.
- tetrabutyl titanate can be used in combination with manganese acetate.
- titanium and tin catalysts can be combined.
- tin can be used as the only catalyst.
- titanium can be used as the only catalyst.
- the invention further relates to a polyester product made by the process described above.
- the invention further relates to a polymer blend.
- the blend comprises:
- polymeric components include, but are not limited to, nylon, other polyesters different from those described herien, nylon, polyamides such as ZYTEL® from DuPont; polyesters different from those described herein; polystyrene, polystyrene copolymers, styrene acrylonitrile copolymers, acrylonitrile butadiene styrene copolymers, poly(methylmethacrylate), acrylic copolymers, poly(ether-imides) such as ULTEM® (a poly(ether-imide) from General Electric); polyphenylene oxides such as poly(2,6-dimethylphenylene oxide) or poly(phenylene oxide)/polystyrene blends such as NORYL 1000® (a blend of poly(2,6-dimethylphenylene oxide) and polystyrene resins from General Electric); other polyesters; polyphenylene sulfides; polyphenylene sulfide/sulfones;
- polyesters according to the invention can also be used in blends, such blends being obtainable by means of reactive extrusion too, with polymers of natural origin, such as starch, cellulose, chitin and chitosan, alginates, proteins such as gluten, zein, casein, collagen, gelatine, natural rubbers, rosinic acid and its derivatives, lignins and their derivatives, natural fibers (such as for example jute, kenaf, hemp).
- the starches and celluloses may be modified and may include, for instance, the starch and cellulose esters with a degree of substitution coming between 0.2 and 2.5, hydroxypropylated starches, and modified starches with fatty chains.
- Starch can also be used in either destructurized or gelatinised form, or as a filler.
- the starch may represent the continuous or the dispersed phase, or it may be in co-continuous form.
- the starch particles have mean dimension of less than 1 ⁇ , and preferably less than 0.5 ⁇ .
- the particle diameter corresponds to the diameter of the smaller circle in which the particle can be inscribed.
- polyesters according to the invention wherein starch represents the dispersed phase can form biodegradable polymeric compositions with good-resistance to aging and to humidity. Indeed, these polymeric compositions can maintain a high tear strength even in condition of low humidity.
- Such characteristics can be achieved when the water content of the composition during mixing of the component is kept between 1% and 15% by weight. It is, however, also possible to operate with a content of less than 1% by weight, in this case, starting with predried and pre-plasticized starch.
- Desctructurized starch can be obtained before or during mixing with the polyesters according to the present invention in presence of plasticizers such as water, glycerol, di and poly glycerols, ethylene or propylene glycol, ethylene and propylene diglycol, polyethylene glycol, polypropylenglycol, 1,2 propandiol, trymethylol ethane, trymethylol propane, pentaerytritol, dipentaerytritol, sorbitol, erytritol, xylitol, mannitol, sucrose, 1,3 propanediol, 1,2 butanediol, 1,3 butanediol, 1,4 butanediol, 1,5 pentanediol, 1,5 hexanediol, 1,6 hexanediol, 1,2,6 hexanetriol, 1,3,5 hexanetriol, neopentyl glycol and polyvinyl
- Water can be used as a plasticizer in combination with high boiling point plasticizers or alone during the plastification phase of starch before or during the mixing of the composition and can be removed at the needed level by degassing on one or more steps during extrusion. Upon completion of the plastification and mixing of the components, the water is removed by degassing to give a final content of about 0.2-3% by weight.
- Compatibilizers can be also added to the mixture. They can belong to the following classes:
- the starch blends can also contain polymeric compatibilizing agents having two components: one compatible or soluble with starch and a second one soluble or compatible with the polyester.
- starch/polyester copolymers through transesterification catalysts.
- Such polymers can be generated through reactive blending during compounding or can be produced in a separate process and then added during extrusion,
- block copolymers of an hydrophilic and an hydrophobic units are particularly suitable.
- Additives such as di and polyepoxides, di and poly isocyanates, isocyanurates, polycarbodiimmides and peroxides can also be added. They can work as stabilizers as well as chain extenders.
- Another method to improve the microstructure is to achieve starch complexation in the starch polyester mixture.
- the starch/polyester ratio can be comprised in the range 5/95% weight up to 60/40% by weight, or 10/90-45/55% by weight.
- polyolefins polyvinyl alcohol at high and low hydrolysis degree, ethylene vinylalcohol and ethylene vinylacetate copolymers and their combinations as well as aliphatic polyesters such as polybuthylenesuccinate, polybuthylenesuccinate adipate, polybuthylensuccinate adipate-caprolactate, polybuthylensuccinate-lactate, polycaprolactone polymers and copolymers, PBT, PET, PTT, polyamides, polybuthylen terephthalate adipates with a content of terephthalic acid between 40 and 70% with and without sulfonated groups with or without branches and possibly chain extended with diisocyanates or isocyanurates, polyurethanes, polyamide-urethanes, cellulose and starch esters such as acetate, propionate and butryate with substitution degrees between 1 and 3, or
- the starch blends of the polyesters of the present invention can be easily processable in film blowing even at MFI (170° C., 5 kg) of 7 g/10 min. Moreover, they can have impact strength higher than 20 kJ/m2, or higher than 30 kJ/m2, or higher than 45 kJ/m2 (measured on blown film 30 ⁇ m thick at 10° C. and less than 5% relative humidity).
- Particularly resistant and easily processable compounds contain destructurized starch in combination with the polyesters of the invention and polylactic acid polymers and copolymers with and without additives such as polyepoxides, carbodiimmides and/or peroxides.
- polymers according to the invention can also be blended with polyolefins, such as polyethylene, polypropylene and their copolymers, polyvinyl alcohol, polyvinyl acetate, polyethyl vinyl acetate and polyethylene vinyl alcohol, polyester urethanes, polyurethanes, polyamides, polyureas and aromatic polyesters of the diacid diol type wherein the aromatic acid is 2.5 furandicarboxylic acid.
- polyolefins such as polyethylene, polypropylene and their copolymers, polyvinyl alcohol, polyvinyl acetate, polyethyl vinyl acetate and polyethylene vinyl alcohol, polyester urethanes, polyurethanes, polyamides, polyureas and aromatic polyesters of the diacid diol type wherein the aromatic acid is 2.5 furandicarboxylic acid.
- the polymers according to the invention can also be used as prepolymers in the production of polyurethanes and polyureas.
- the polyesters of the invention are blended with starch.
- polyesters according to the invention can also be used in blends with polymers of synthetic origin and with the previously-mentioned polymers of natural origin.
- Binary and ternary blends of the polyester according to the present invention with biodegradable polyesters of the type disclosed above and/or with polymers of natural origin are particularly suitable for the production of films.
- the films obtained with said blends show excellent mechanical properties.
- the polyesters of the invention can be mixed with starch and polylactic acid.
- Blends of the polyesters according the present invention with PLA are of particular interest because their high compatibility with PLA polymers and copolymers permits to cover materials with a wide range of rigidities—which makes these blends particularly suitable for injection molding and extrusion.
- blends of such polyesters with poly L-lactic acid and poly D-lactic acid or poly L-lactide and D-lactide where the ratio between poly L- and poly D-lactic acid or lactide is in the range 10/90-90/10, or 20/80-80/20, and the ratio between aliphatic-aromatic polyester and the polylactic acid or PLA blend is in the range 5/95-95/5, or 10/90 90/10, are of particular interest for the high thermal resistance.
- Polylactic acid or lactide polymers or copolymers are generally of molecular weight Mn in the range between 30,000 and 30,000 or between 50,000 and 250,000.
- compatibilizers or toughening agents such as: polybutylene succinate and copolymers with adipic acid and or lactic acid and or hydroxyl caproic acid, polycaprolactone, aliphatic polymers of diols from C2 to C13 and diacids from C4 to C13, polyhydroxyalkanoates, polyvinylalcohol in the range of hydrolysis degree between 75 and 99% and its copolymers, polyvinylacetate in a range of hydrolysis degree between 0 and 70%, or between 0 and 60%.
- compatibilizers or toughening agents such as: polybutylene succinate and copolymers with adipic acid and or lactic acid and or hydroxyl caproic acid, polycaprolactone, aliphatic polymers of diols from C2 to C13 and diacids from C4 to C13, polyhydroxyalkanoates, polyvinylalcohol in the range of hydrolysis degree between 75 and 99% and its copolymers, polyvinyla
- the diols used in the polyesters of the invention can be chosen from ethylene glycol, propandiol, butanediol and the acids used in the polyesters of the invention can be chosen from: azelaic, sebacic, undecandioic acid, dodecandioic acid, brassylic acid and their combinations.
- One embodiment of the invention can be block copolymers of the aliphatic aromatic copolymers of the invention with polylactic acid.
- Such block copolymers can be obtained taking the two original polymers terminated with hydroxyl groups and then reacting such polymers with chain extenders able to react with hydroxyl groups such as diisocyanates.
- Examples are 1,6-hexamethylene diisocyanate, isophorone diisocyanate, methylene diphenildiisocyanate, toluene diisocyanate or the like. It is also possible to use chain extenders able to react with carboxylic groups like di and poly epoxides (e.g. bisphenols diglycidyl ethers, glycerol diglycidyl ethers) divinyl derivatives if the polymers of the blend are terminated with acid groups. It is possible also to use as chain extenders carbodiimmides, bis-oxazolines, isocyanurates etc.
- chain extenders carbodiimmides, bis-oxazolines, isocyanurates etc.
- the intrinsic viscosity of such block copolymers can be between 0.3 and 1.5 dl/g, or between 0.45 and 1.2 dl/g.
- the amount of compatibilizer in the blend of aliphaticaromatic copolyesters and polylactic acid can be in the range between 0.5 and 50% by weight, or between 1 and 30% by weight, or between 2 and 20% by weight.
- polyesters according to the present invention can advantageously be blended also with nucleating agents and filler both of organic and inorganic nature.
- nucleating agents examples include talc, saccharine sodium salt, calcium silicate, sodium benzoate, calcium titanate, boron nitride, zinc salts, porphyrin, chlorine, phlorin, porphodimethine, porphomethine, bacteriochlorin, isobacteriochorin, porphyrinogen, phorbin, isotactic polypropylene, PLA with low molecular weight and PBT.
- the amount of fillers can be in the range of 0.5-70% by weight, or 5-50% by weight.
- organic fillers wood powder, proteins, cellulose powder, grape residue, bran, maize husks, compost, other natural fibres, cereal grits with and without plasticizers such as polyols can be mentioned.
- inorganic fillers it can be mentioned substances that are able to be dispersed and/or to be reduced in lamellas with submicronic dimensions, for example, less than 500 nm or less than 300 nm, or less than 50 nm.
- inorganic fillers can be selected from zeolites and silicates of various kind such as wollastonites, montmorillonites, hydrotalcites also funetionalised with molecules able to interact with starch and or the specific polyester. The use of such fillers can improve stiffness, water and gas permeability, dimensional stability and maintain transparency.
- biodegradable polyesters according to the invention are biodegradable according to the standard EN 13432.
- the process for producing the polyesters according to the present invention can be conducted using any of the known processes according to the state of the art.
- the polyesters can be advantageously obtained using a polycondensation reaction.
- the copolyester polymerisation process can be advantageously conducted in the presence of a suitable catalyst.
- a suitable catalyst might be the organometallc compounds of tin such as the derivatives of stannoic acid, or the compounds of titanium such as orthobutyl titanate, or the compounds of aluminium such as Al-triisopropyl, or of antimony and zinc.
- polyester compositions and the polymer blend compositions containing the polyesters useful in this invention may also contain from 0.01 to 25% by weight or 0.01 to 20% by weight or 0.01 to 15% by weight or 0.01 to 10% by weight or 0.01 to 5% by weight of the total weight of the polyester composition of common additives such as colorants, dyes, mold release agents, release agents that release the polymer from rolls of the manufacturing equipment, flame retardants, plasticizers, nucleating agents, stabilizers, including but not limited to, UV stabilizers, thermal stabilizers and/or reaction products thereof, fillers, and impact modifiers.
- common additives such as colorants, dyes, mold release agents, release agents that release the polymer from rolls of the manufacturing equipment, flame retardants, plasticizers, nucleating agents, stabilizers, including but not limited to, UV stabilizers, thermal stabilizers and/or reaction products thereof, fillers, and impact modifiers.
- Examples of typical commercially available impact modifiers well known in the art and useful in this invention include, but are not limited to, ethylene/propylene terpolymers; functionalized polyolefins, such as those containing methyl acrylate and/or glycidyl methacrylate; styrene-based block copolymeric impact modifiers; and various acrylic core/shell type impact modifiers.
- UV additives can be incorporated into articles of manufacture through addition to the bulk, through application of a hard coat, or through coextrusion of a cap layer. Residues of such additives are also contemplated as part of the polyester composition.
- release agents which reduce adhesion to manufacturing equipment such as calendering rolls
- these can be selected from the group comprising esters of fatty acids and amides, and metal salts, soaps, paraffin, or hydrocarbon waxes such as: zinc stearate, calcium stearate, aluminum stearate, stearamides, erucamides, behenamides, white beeswax, candelilla wax, LDPE with high MFI such as Eastman Epolene N21, Epolene E20, and Lofio HOB 7119.
- esters of fatty acids and amides and metal salts, soaps, paraffin, or hydrocarbon waxes such as: zinc stearate, calcium stearate, aluminum stearate, stearamides, erucamides, behenamides, white beeswax, candelilla wax, LDPE with high MFI such as Eastman Epolene N21, Epolene E20, and Lofio
- An increase in the molecular weight of the polyesters can be advantageously obtained, for instance, by adding various organic peroxides during the extrusion process.
- the increase in the molecular weight of the biodegradable polyesters is easily detectable on observing the increase in the viscosity values after processing the polyesters with the peroxides.
- peroxides examples include: benzoyl peroxide, lauroyl peroxide, isononanoyl peroxide, di-(tbutylperoxyisopropyl)benzene, t-butyl peroxide, dicumyl peroxide, alpha,alpha-di(t 20 butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butyl cumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hex-3-yne, di(4-tbutylcyclohexyl)peroxydi-carbonate, dicetyl peroxydicarbonate, dimyristyl peroxydicarbonate, 3,69-triethyl
- dialkyl peroxides such as: benzoyl peroxide, la
- peroxides can be added to the polyesters according to the invention in a quantity of less than 0.5% by weight, or less than 0.01-0.2% by weight, or less than 0.01-0.1% by weight.
- the polyesters of the invention can comprise at least one chain extender.
- Suitable chain extenders include, but are not limited to, multifunctional (including, but not limited to, bifunctional) isocyanates, multifunctional epoxides, including for example, epoxylated novolacs, and phenoxy resins.
- chain extenders may be added at the end of the polymerization process or after the polymerization process. If added after the polymerization process, chain extenders can be incorporated by compounding or by addition during conversion processes such as injection molding or extrusion.
- the amount of chain extender used can vary depending on the specific monomer composition used and the physical properties desired but can be selected from 0.1 percent by weight to about 10 percent by weight, or from 0.1 to about 5 percent by weight, based on the total weight of the polyester.
- the polyesters of the invention can contain phosphorous compounds including but not limited to phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, phosphonous acid, and various esters and salts thereof. These can be present in the polyester compositions useful in the invention.
- the esters can be alkyl, branched alkyl, substituted alkyl, difunctional alkyl, alkyl ethers, aryl, and substituted aryl.
- the number of ester groups present in the particular phosphorous compound can vary from zero up to the maximum allowable based on the number of hydroxyl groups present on the phosphorus compound used.
- Examples of phosphorus compounds useful in the invention can include phosphites, phosphates, phosphinates, or phosphonites, including the esters thereof.
- the polyesters of the invention can have good molecular weight.
- the number average molecular weight of the polyesters is at least 10,000. In one embodiment, the number average molecular weight of the polyesters is at least 20,000.
- Reinforcing materials may be useful in the compositions of this invention.
- the reinforcing materials may include, but are not limited to, carbon filaments, silicates, mica, clay, talc, titanium dioxide, Wollastonite, glass flakes, glass beads and fibers, and polymeric fibers and combinations thereof.
- the reinforcing materials are glass, such as, fibrous glass filaments, mixtures of glass and talc, glass and mica, and glass and polymeric fibers.
- the invention further relates to articles of manufacture comprising any of the polyesters and blends described herein.
- polyesters and/or polyester blend compositions can be useful in forming fibers, films, molded articles, foamed articles, containers, bottles and sheeting.
- the methods of forming the polyesters into fibers, films, molded articles, containers, and sheeting are well known in the art.
- the invention further relates to articles of manufacture.
- articles include, but are not limited to, injection molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, extrusion stretch blow molded articles, extrusion coatings, calendered articles, compression molded articles, and solution casted articles.
- Methods of making the articles of manufacuture include, but are not limited to, extrusion blow molding, extrusion stretch blow molding, injection blow molding, injection stretch blow molding, calendering, rotomolding, compression molding, and solution casting.
- polyesters according to the invention have properties and viscosity values that make them suitable, after adjusting their molecular weight, for use in numerous practical applications such as films, injection molded products, extrusion coatings, fibres, foams, thermoformed products, extruded profiles and sheets, extrusion blow molding, injection blow molding, rotomolding, stretch blow molding, etc.
- the invention further relates to articles of manufacture comprising the film(s) and/or sheet(s) containing polyester compositions described herein.
- the invention relates to fibers.
- the invention relates to foams.
- this invention relates to thermoformed articles.
- this invention relates to packaging materials.
- polyesters into film(s) and/or sheet(s) are well known in the art.
- film production technologies include film blowing, casting and coestrusion.
- film(s) and/or sheet(s) of the invention including but not limited to extruded film(s) and/or sheet(s), calendered film(s) and/or sheet(s), compression molded film(s) and/or sheet(s), solution casted film(s) and/or sheet(s).
- Methods of making film and/or sheet include but are not limited to extrusion, calendering, compression molding, and solution casting.
- Examples of potential articles made from film and/or sheet include, but are not limited, to uniaxially stretched film, biaxially stretched film, shrink film (whether or not uniaxially or biaxially stretched), liquid crystal display film (including, but not limited to, diffuser sheets, compensation films and protective films), thermoformed sheet, graphic arts film, outdoor signs, skylights, coating(s), coated articles, painted articles, laminates, laminated articles, and/or multiwall films or sheets.
- Films obtained, with the polyester according to the present invention show excellent mechanical properties, such as for example an ultimate elongation greater than 350%, or greater than 400%, or greater than 500% with an ultimate energy greater than 70 MJ/m3, or greater than 90 MJ/m3 or greater than 100 MJ/m3.
- polyesters according to the invention are suitable for manufacturing:
- polyesters are used in lieu of plastic coated PVC.
- compositions of matter of the invention can be made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope thereof. Unless indicated otherwise, parts are parts by weight, temperature is in degrees C. or is at room temperature, and pressure is at or near atmospheric.
- the cis/trans ratio of the 1,4 cyclohexanedimethanol used in the following examples was approximately 30/70, and could range from 35/65 to 25/75.
- TPA Terephthalic acid DMT Dimethyl terephthalate CHDM 1,4-cyclohexanedimethanol TMCD 2,2,4,4-tetramethyl-1,3-cyclobutanediol FDCA 2,5-Furandicarboxylic Acid IhV or IV Inherent Viscosity T g Glass transition temperature EG Ethylene Glycol
- All polymers in the examples were prepared by standard melt-phase polycondensation polymerization techniques known in the art.
- the polymer inherent viscosity (IhV) was measured by solution viscometry, using Phenol/1,1,2,2-tetrachloroethane (60/40) as a solvent.
- the polymer glass transition temperatures were measured by differential scanning calorimetry (DSC) with a TA Q2000 Differential Scanning calorimeter with refrigerated cooling accessory (RCA), with the first heating from 0 to 280° C. at 20° C./min, followed by cooling to 0° C. at 20° C./min, and heating again (second heating) from 0 to 280° C. at 20° C./min.
- the glass transition temperature (Tg) was recorded during the second heating cycle.
- Polymer compositions (mole percent glycols) were measured by proton nuclear magnetic resonance spectroscopy (NMR) using standard methods known in the art.
- a 500 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.15 mole DMF (27.6 g), 0.11 mole CHDM (15.6 g), 0.05 mole (7.3 g) 2,2,4,4-tetramethyl-1,3-cyclobutanediol and a solution of tin (IV) catalyst such that the concentration of tin was approximately 200 ppm based upon final polymer weight.
- the mixture was heated to 200° C. for while stirring at atmospheric pressure under a N2 purge. The temperature was then slowly increased to 265° C. over a period of about one hour.
- the pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump and held for about 30 minutes, collecting condensate in a sidarm flask cooled with dry ice located between the reaction flask and the vacuum pump.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- the resulting polymer had glycol composition 27 mole % TMCD and 73 mole % CHDM.
- a 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.15 mole DMT (29.1 g), 0.11 mole CHDM (15.6 g), 0.05 mole TMCD (7.1 g) and a solution of tin (IV) catalyst such that the concentration of tin was approximately 200 ppm based upon final polymer weight.
- the mixture was heated to 200° C. for while stirring at atmospheric pressure under a N2 purge. The temperature was then slowly increased to 265° C. over a period of about one hour.
- the pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump and held for about 30 minutes, collecting condensate in a sidarm flask cooled with dry ice located between the reaction flask and the vacuum pump.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- the resulting polymer had glycol composition 28 mole % TMCD and 72 mole % CHDM.
- a 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.12 mole FDCA (18.7 g), 0.04 mole CHDM (5.6 g), 0.20 mole EG (12.5 g) and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight.
- the mixture was heated to 200° C. for about 80 minutes while stirring at atmospheric pressure under a N2 purge. The pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 245° C.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- the resulting polymer had a glycol constituent composition of about 31 mole percent CHDM.
- a 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.12 mole FDCA (18.7 g), 0.07 mole CHDM (10.7 g), 0.17 mole EG (10.3 g) and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight.
- the mixture was heated to 200° C. for about 60 minutes while stirring at atmospheric pressure under a N2 purge. The pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 245° C.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- the resulting polymer had a glycol constituent composition of about 59 mole percent CHDM.
- a 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.1 mole FDCA (15.7 g), 0.11 mole CHDM (15.1 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight.
- the mixture was heated to 200° C. while stirring at atmospheric pressure under a N2 purge until a well-dispersed slurry was obtained. The temperature was then increased to 285° C. over a period of about 15 minutes, at which point a clear liquid melt was observed.
- the pressure was then slowly reduced to 0.5 Torr by means of a vacuum pump and held for about 60 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- a 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.1 mole terephthalic acid, TPA, (16.6 g), 0.30 mole EG (18.6 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 500 ppm based upon final polymer weight.
- TPA 0.1 mole terephthalic acid
- TPA terephthalic acid
- EG 0.30 mole EG (18.6 g)
- titanium tetraisopropoxide in ethylene glycol
- the mixture was heated to 185° C. for about 14 hours while stirring at atmospheric pressure under a N2 purge.
- the temperature was then increased to 230° C. for about 30 minutes.
- the temperature was then increased to about 245° C. for about 30 minutes, at which point a clear liquid melt was observed.
- the pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 260° C. and held for about 30 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump.
- the pressure was then slowly reduced to 0.5 Torr and the temperature increased to 275° C. and held for about 45 minutes.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- a 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.12 mole terephthalic acid, TPA, (19.9 g), 0.04 mole CHDM (5.3 g), 0.20 mole EG (12.6 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 25 ppm based upon final polymer weight.
- the mixture was heated to 185° C. for about 17 hours while stirring at atmospheric pressure under a N2 purge. The temperature was then increased to 230° C. for about 60 minutes. The temperature was then increased to about 245° C. for about 60 minutes, at which point a clear liquid melt was observed.
- the pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 260° C. and held for about 60 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump.
- the pressure was then slowly reduced to 4 Torr and the temperature increased to 270° C. and held for about 30 minutes.
- the pressure was then slowly reduced to 0.5 Torr and held for about 90 minutes.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- the resulting polymer had a glycol constituent composition of about 30 mole percent CHDM.
- a 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.05 mole TPA, (8.3 g), 0.05 mole dimethyl terephthalate (DMT, 9.7 g), 0.07 mole CHDM (9.5 g), 0.13 mole EG (8.3 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight.
- the mixture was heated to 200° C. for about 60 minutes while stirring at atmospheric pressure under a N2 purge. The temperature was then increased to 210° C. and held for about 60 minutes. The temperature was then increased to 245° C. and held for about 45 minutes.
- the pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 260° C. and held for about 30 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump.
- the pressure was then slowly reduced to 4 Torr and the temperature increased to 275° C. and held for about 15 minutes.
- the pressure was then slowly reduced to 0.5 Torr and held for about 45 minutes.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- the resulting polymer had a glycol constituent composition of about 62 mole percent CHDM.
- a 500 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.5 mole dimethyl terephthalate (DMT, 97.0 g), 0.55 mole CHDM (79.2 g) and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 100 ppm based upon final polymer weight.
- DMT dimethyl terephthalate
- CHDM 79.2 g
- Ti titanium tetraisopropoxide
- ethylene glycol ethylene glycol
- the pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump and held for about 50 minutes, collecting condensate in a sidarm flask cooled with dry ice located between the reaction flask and the vacuum pump.
- the resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground.
- a 500 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.5 mole FDCA (78.0 g), 1 mole EG (62.1 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight.
- the mixture was heated to 200° C. for about one hour while stirring at atmospheric pressure under a N2 purge. The temperature was then increased to 215° C. for about one hour. The pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump, and the temperature increased to 260° C.
- Example 1 0 100 0 73 27 0.70 96
- Example 2 100 0 0 72 28 0.70 114
- Example 3 0 100 69 31 0 0.76 84 (PEFG)
- Example 4 0 100 41 59 0 0.90 85 (PCFG)
- Example 5 0 100 0 100 0 0.81 86 (PCF)
- Example 6 100 0 100 0 0 1.00 80
- Example 7 100 0 69 31 0 1.07 83 (PETG)
- Example 8 100 0 38 62 0 0.98 89 (PCTG)
- Example 9 100 0 0 100 0 0.85 95 (PCT)
- Example 0 100 100 0 0 0.72 87 10 (PEF)
- polyesters of the present invention offer a definite advantage over the commercially available polyesters.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Described are polyesters comprising (a) a dicarboxylic acid component comprising 2,5-furandicarboxylic acid residues; optionally, aromatic dicarboxylic acid residues and/or modifying aliphatic dicarboxylic acid residues, 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 1,4-cyclohexanedimethanol. The polyesters may be manufactured into articles such as fibers, films, bottles, coatings, or sheets.
Description
- The present invention generally relates to polyester compositions made from 2,5-furandicarboxylic acid or an ester thereof or mixtures thereof, cyclobutanediol and 1,4-cyclohexanedimethanol.
- Homopolymers based on 2,5-furandicarboxylic acid or an ester thereof and 1,4-cyclohexanedimethanol are known in the art.
- It is believed that certain copolyester compositions made from 2,5-furandicarboxylic acid, an ester thereof, or mixtures thereof, cyclobutanediol and 1,4-cyclohexanedimethanol are superior to polyesters known in the art with respect to stable glass transition temperatures. Good barrier properties have also been observed.
- It is generally known that the more cyclohexanedimethanol that is added to a polyester containing terephthalic acid, the greater its glass transition temperature.
- In certain embodiments of this invention, it has been surpisingly found that the more that cyclohexanedimethanol is added to a polyester containing 2,5-furandicarboxylic acid, the glass transition temperature remains stable.
- In one aspect, the invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of 2,5-furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of other aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 0.01 to 99 mole % of 1,4-cyclohexanedimethanol residues, and
- ii) 1 to 99.99 mole % of residues of at least one modifying glycol;
wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.10 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 20 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 80 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.10 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 20 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 80 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.10 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 20 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 80 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.10 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 20 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 80 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.10 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 20 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 80 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.10 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 20 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 80 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 80 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 20 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 20 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the glass transition temperature is from 50° C. to 150° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 50 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 50 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 50 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 1 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 99 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 50 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 50 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 70 to 80 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 55 to 70 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 30 to 45 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 60 to 85 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 15 to 40 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In one aspect, this invention relates to a polyester composition comprising at least one polyester which comprises:
-
- (a) a dicarboxylic acid component comprising:
- i) 70 to 100 mole % of residues of furandicarboxylic acid and/or an ester thereof;
- ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
- iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
- (b) a glycol component comprising:
- i) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues; and
- ii) 1 to 15 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol,
- wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
- wherein the inherent viscosity of said polyester is from 0.50 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and
- wherein the glass transition temperature is from 70° C. to 120° C.
- (a) a dicarboxylic acid component comprising:
- In any of the embodiments of the invention, the polyesters of the invention can include both 1,4-cyclohexanedimethanol residues and 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues with or without modifying glycols. In another embodiment, diethylene glycol may be present as a modifying glycol. Even if diethylene glycol is not specifically added, it is understood that diethylene glycol may be formed in situ and may be present in an embodiment where only 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol are added as monomers in the process of making the polyester. In another embodiment, ethylene glycol may be present as a modifying glycol. Embodiments of polyesters of the invention which are stated herein to not include modifying glycols may or may not contain minor amounts of diethylene glycol or ethylene glycol residues.
- In any of the embodiments of the invention, the polyesters of the invention comprise 2,5-furandicarboxylic acid (FDCA) can optionally contain residues of terephthalic acid (TPA) and/or an ester thereof. Additional modifying dicarboxylic acid (or corresponding ester) residues (acids other than FDCA and TPA) can optionally be present.
- In one embodiment, the polyesters of the invention can be used to manufacture articles including, but not limited to, injection molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, extrusion stretch blow molded articles, extrusion coatings, calendered articles, compression molded articles, and solution casted articles.
- In one embodiment, the polyesters of the invention can be used to manufacture films, injection molded products, extrusion coatings, fibres, foams, thermoformed products, extruded profiles and sheets, extrusion blow molded articles, injection blow molded articles, rotomolded articles, stretch blow molded articles, etc.
- Methods of making the articles of manufacuture, include, but are not limited to, extrusion blow molding, extrusion stretch blow molding, injection blow molding, injection stretch blow molding, calendering, rotomolding, compression molding, and solution casting.
- In another embodiment, the invention further relates to articles of manufacture comprising the film(s) and/or sheet(s) containing polyester compositions described herein. In another embodiment, the invention relates to fibers. In yet another embodiment, the invention relates to foams and/or foamed articles. In another embodiment, this invention relates to thermoformed articles.
- The methods of forming polyesters into film(s) and/or sheet(s) are well known in the art. Examples of film(s) and/or sheet(s) of the invention including but not limited to extruded film(s) and/or sheet(s), calendered film(s) and/or sheet(s), compression molded film(s) and/or sheet(s), solution casted film(s) and/or sheet(s). Examples of film or sheet production technologies include film blowing, casting (including solution casting), coextrusion, extrusion, calendering, and compression molding.
- This invention relates to copolyester compositions based on 2,5-furandicarboxylic acid or an ester thereof, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and 1,4-cyclohexanedimethanol which are believed to provide greater stability with respect to glass transition temperature than would be expected by one of ordinary skill in the art.
-
FIG. 1 is a graphical representation of Table 1 data and depicts glass transition temperature vs. mole percent CHDM for TPA-based and FDCA-based copolyesters. - The present invention may be understood more readily by reference to the following detailed description of certain embodiments of the invention and the working examples. In accordance with the purpose(s) of this invention, certain embodiments of the invention are described in the Summary of the Invention and are further described herein below. Also, other embodiments of the invention are described herein.
- Copolyesters synthesized from 2,5-furandicarboxylic acid (FDCA) or its derivatives with 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) and 1,4-cyclohexanedimethanol (CHDM) have an advantage of nearly constant glass transition temperature (Tg) over a wide range of compositions, compared to commercial terephthalic acid-based copolyesters (PET, PETG, PCTG, PCT), for which Tg varies measurably as composition varies. This advantage may be beneficial for producing copolyesters with constant Tg even if composition varies during manufacturing.
- The term “polyester”, as used herein, is intended to include “copolyesters” and is understood to mean a synthetic polymer prepared by the reaction of one or more difunctional carboxylic acids and/or multifunctional carboxylic acids with one or more difunctional hydroxyl compounds and/or multifunctional hydroxyl compounds. Typically the difunctional carboxylic acid can be a dicarboxylic acid and the difunctional hydroxyl compound can be a dihydric alcohol such as, for example, glycols and diols. The term “glycol” as used in this application includes, but is not limited to, diols, glycols, and/or multifunctional hydroxyl compounds, for example, branching agents. Alternatively, a difunctional carboxylic acid may be a hydroxy carboxylic acid such as, for example, p-hydroxybenzoic acid, and the difunctional hydroxyl compound may be an aromatic nucleus bearing 2 hydroxyl substituents such as, for example, hydroquinone. The term “residue”, as used herein, means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer. The term “repeating unit”, as used herein, means an organic structure having a dicarboxylic acid residue and a diol residue. Thus, for example, the dicarboxylic acid residues may be derived from a dicarboxylic acid monomer or its associated acid halides, esters, salts, anhydrides, or mixtures thereof. As used herein, therefore, the term dicarboxylic acid is intended to include dicarboxylic acids and any derivative of a dicarboxylic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof, useful in a reaction process with a diol to make polyester. Furthermore, as used in this application, the term “diacid” includes multifunctional acids, for example, branching agents. As used herein, the term “terephthalic acid” is intended to include terephthalic acid itself and residues thereof as well as any derivative of terephthalic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof or residues thereof useful in a reaction process with a diol to make polyester.
- In one embodiment, furandicarboxylic acid and/or its ester may be used as a starting material. In yet another embodiment, mixtures of 2,5-furandicarboxylic acid and its ester may be used as the starting material and/or as an intermediate material.
- Terephthalic acid and/or its ester may also be used in one embodiment as one of the starting materials, with 2,5-furandicarboxylic acid and/or its ester. In another embodiment, dimethyl terephthalate may be used instead of terephthalic acid as a starting material. In yet another embodiment, mixtures of terephthalic acid and dimethyl terephthalate may be used as starting materials and/or as an intermediate material.
- Isophthalic acid and/or its ester may also be used in one embodiment as one of the starting materials, with 2,5-furandicarboxylic acid and/or its ester.
- In another embodiment, terephthalic acid and/or its ester as well as isophthalic acid and/or its ester may also be used in combination as starting materials, with 2,5-furandicarboxylic acid and/or its ester.
- The polyesters used in the present invention typically can be prepared from dicarboxylic acids and diols which react in substantially equal proportions and are incorporated into the polyester polymer as their corresponding residues. The polyesters of the present invention, therefore, can contain substantially equal molar proportions of acid residues (100 mole %) and diol (and/or multifunctional hydroxyl compounds) residues (100 mole %) such that the total moles of repeating units is equal to 100 mole %. The mole percentages provided in the present disclosure, therefore, may be based on the total moles of acid residues, the total moles of diol residues, or the total moles of repeating units. For example, a polyester containing 30 mole % isophthalic acid, based on the total acid residues, means the polyester contains 30 mole % isophthalic acid residues out of a total of 100 mole % acid residues. Thus, there are 30 moles of isophthalic acid residues among every 100 moles of acid residues. In another example, a polyester containing 30 mole % 1,4-cyclohexanedimethanol, based on the total diol residues, means the polyester contains 30 mole 1,4-cyclohexanedimethanol residues out of a total of 100 mole % diol residues. Thus, there are 30 moles of 1,4-cyclohexanedimethanol residues among every 100 moles of diol residues.
- In other aspects of the invention, the Tg of the polyesters useful in the invention can be at least one of the following ranges: 30 to 130° C.; 30 to 125° C.; 30 to 120° C.; 30 to 115° C.; 30 to 110° C.; 30 to 105° C.; 30 to 100° C.; 30 to 95° C.; 30 to 90° C.; 30 to 85° C.; 30 to 80° C.; 30 to 75° C.; 30 to 70° C.; 30 to 65° C.; 30 to 60° C.; 30 to 55° C.; 30 to 50° C.; 30 to 45° C.; 35 to 130° C.; 35 to 125° C.; 35 to 120° C.; 35 to 115° C.; 35 to 110° C.; 35 to 105° C.; 35 to 100° C.; 35 to 95° C.; 35 to 90° C.; 35 to 85° C.; 35 to 80° C.; 35 to 75° C.; 35 to 70° C.; 35 to 65° C.; 35 to 60° C.; 35 to 55° C.; 35 to 50° C.; 35 to 45° C.; 40 to 130° C.; 40 to 125° C.; 40 to 120° C.; 40 to 115° C.; 40 to 110° C.; 40 to 105° C.; 40 to 100° C.; 40 to 95° C.; 40 to 90° C.; 40 to 85° C.; 40 to 80° C.; 40 to 75° C.; 40 to 70° C.; 40 to 65° C.; 40 to 60° C.; 40 to 55° C.; 45 to 130° C.; 45 to 125° C.; 45 to 120° C.; 45 to 115° C.; 45 to 110° C.; 45 to 105° C.; 45 to 100° C.; 45 to 95° C.; 45 to 90° C.; 45 to 85° C.; 45 to 80° C.; 45 to 75° C.; 45 to 70° C.; 45 to 65° C.; 45 to 60° C.; 45 to 55° C.; 50 to 130° C.; 50 to 125° C.; 50 to 120° C.; 50 to 115° C.; 50 to 110° C.; 50 to 105° C.; 50 to 100° C.; 50 to 95° C.; 50 to 90° C.; 50 to 85° C.; 50 to 80° C.; 50 to 75° C.; 50 to 70° C.; 50 to 65° C.; 55 to 130° C.; 55 to 125° C.; 55 to 120° C.; 55 to 115° C.; 55 to 110° C.; 55 to 105° C.; 55 to 100° C.; 55 to 95° C.; 55 to 90° C.; 55 to 85° C.; 55 to 80° C.; 55 to 75° C.; 55 to 70° C.; 55 to 65° C.; 60 to 130° C.; 60 to 125° C.; 60 to 120° C.; 60 to 115° C.; 60 to 110° C.; 60 to 105° C.; 60 to 100° C.; 60 to 95° C.; 60 to 90° C.; 60 to 85° C.; 60 to 80° C.; 60 to 75° C.; 60 to 70° C.; 65 to 130° C.; 65 to 125° C.; 65 to 120° C.; 65 to 115° C.; 65 to 110° C.; 65 to 105° C.; 65 to 100° C.; 65 to 95° C.; 65 to 90° C.; 65 to 85° C.; 65 to 80° C.; 65 to 75° C.; 65 to 70° C.; 70 to 130° C.; 70 to 125° C.; 70 to 120° C.; 70 to 115° C.; 70 to 110° C.; 70 to 105° C.; 70 to 100° C.; 70 to 95° C.; 70 to 90° C.; 70 to 85° C.; 70 to 80° C.; 70 to 75° C.; 75 to 130° C.; 75 to 125° C.; 75 to 120° C.; 75 to 115° C.; 75 to 110° C.; 75 to 105° C.; 75 to 100° C.; 75 to 95° C.; 75 to 90° C.; 75 to 85° C.; 75 to 80° C.; 80 to 130° C.; 80 to 125° C.; 80 to 120° C.; 80 to 115° C.; 80 to 110° C.; 80 to 105° C.; 80 to 100° C.; 80 to 95° C.; 80 to 90° C.; 85 to 130° C.; 85 to 125° C.; 85 to 120° C.; 85 to 115° C.; 85 to 110° C.; 85 to 105° C.; 85 to 100° C.; 85 to 95° C.; 85 to 90° C.; 90 to 130° C.; 90 to 125° C.; 90 to 120° C.; 90 to 115° C.; 90 to 110° C.; 90 to 105° C.; 90 to 100° C.; 90 to 95° C.; 95 to 130° C.; 95 to 125° C.; 95 to 120° C.; 95 to 115° C.; 95 to 110° C.; 95 to 105° C.; 95 to 100° C.; 100 to 130° C.; 100 to 125° C.; 100 to 120° C.; 100 to 115° C.; or 100 to 110° C.
- The polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 55 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 70 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 75 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 25 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 80 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 20 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 85 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 90 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 10 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 95 to 99 mole % 1,4-cyclohexanedimethanol and 1 to 5 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 90 to less than 99.99 mole % 1,4-cyclohexanedimethanol and 0.01 to 10 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 95 to less than 99.99 mole % 1,4-cyclohexanedimethanol and 0.01 to 5 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the film or sheet of the invention include but are not limited to at least one of the following ranges: 0.01 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 99 mole 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 55 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 70 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 75 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 25 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 80 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 20 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 85 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 90 to 95 mole % 1,4-cyclohexanedimethanol and 5 to 10 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the film or sheet of the invention include but are not limited to at least one of the following ranges: 0.01 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 25 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 55 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 70 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 75 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 25 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 80 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 20 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 85 to 90 mole % 1,4-cyclohexanedimethanol and 10 to 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 85 mole % 1,4-cyclohexanedimethanol 15 to 55 mole 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 55 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 70 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 75 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 25 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 80 to 85 mole % 1,4-cyclohexanedimethanol and 15 to 20 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 55 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 70 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 75 to 80 mole % 1,4-cyclohexanedimethanol and 20 to 25 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 55 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 60 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 65 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 35 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 70 to 75 mole % 1,4-cyclohexanedimethanol and 25 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 25 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 55 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 60 to 65 mole % 1,4-cyclohexanedimethanol and 35 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 50 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 55 to 60 mole % 1,4-cyclohexanedimethanol and 40 to 45 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 45 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 50 to 55 mole % 1,4-cyclohexanedimethanol and 45 to 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol 25 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 45 to 50 mole % 1,4-cyclohexanedimethanol and 50 to 55 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 45 mole % 1,4-cyclohexanedimethanol and 50 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 45 and 55 to 95 mole 2,2,4,4-tetramethyl-1,3-cyclobutanediol mole % 1,4-cyclohexanedimethanol; 15 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 45 mole 1,4-cyclohexanedimethanol and 55 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 40 to 45 mole % 1,4-cyclohexanedimethanol and 55 to 60 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 35 to 40 mole % 1,4-cyclohexanedimethanol and 60 to 65 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 30 to 35 mole % 1,4-cyclohexanedimethanol and 65 to 70 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 99.99 mole % mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 25 to 30 mole % 1,4-cyclohexanedimethanol and 70 to 75 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 15 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 20 to 25 mole % 1,4-cyclohexanedimethanol and 75 to 80 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 10 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 15 to 20 mole % 1,4-cyclohexanedimethanol and 80 to 85 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 10 to 15 mole % 1,4-cyclohexanedimethanol and 85 to 90 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following ranges: 0.01 to 10 mole % 1,4-cyclohexanedimethanol and 90 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 1 to 10 mole % 1,4-cyclohexanedimethanol and 90 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 5 to 10 mole % 1,4-cyclohexanedimethanol and 90 to 95 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 0.01 to 5 mole % 1,4-cyclohexanedimethanol and 95 to 99.99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1 to 5 mole % 1,4-cyclohexanedimethanol and 95 to 99 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
- For certain embodiments of the invention, the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.: 0.10 to 1.2 dL/g; 0.10 to 1.1 dL/g; 0.10 to 1 dL/g; 0.10 to less than 1 dL/g; 0.10 to 0.98 dL/g; 0.10 to 0.95 dL/g; 0.10 to 0.90 dL/g; 0.10 to 0.85 dL/g; 0.10 to 0.80 dL/g; 0.10 to 0.75 dL/g; 0.10 to less than 0.75 dL/g; 0.10 to 0.72 dL/g; 0.10 to 0.70 dL/g; 0.10 to less than 0.70 dL/g; 0.10 to 0.68 dL/g; 0.10 to less than 0.68 dL/g; 0.10 to 0.65 dL/g; 0.20 to 1.2 dL/g; 0.20 to 1.1 dL/g; 0.20 to 1 dL/g; 0.20 to less than 1 dL/g; 0.20 to 0.98 dL/g; 0.20 to 0.95 dL/g; 0.20 to 0.90 dL/g; 0.20 to 0.85 dL/g; 0.20 to 0.80 dL/g; 0.20 to 0.75 dL/g; 0.20 to less than 0.75 dL/g; 0.20 to 0.72 dL/g; 0.20 to 0.70 dL/g; 0.20 to less than 0.70 dL/g; 0.20 to 0.68 dL/g; 0.20 to less than 0.68 dL/g; 0.20 to 0.65 dL/g; 0.35 to 1.2 dL/g; 0.35 to 1.1 dL/g; 0.35 to 1 dL/g; 0.35 to less than 1 dL/g; 0.35 to 0.98 dL/g; 0.35 to 0.95 dL/g; 0.35 to 0.90 dL/g; 0.35 to 0.85 dL/g; 0.35 to 0.80 dL/g; 0.35 to 0.75 dL/g; 0.35 to less than 0.75 dL/g; 0.35 to 0.72 dL/g; 0.35 to 0.70 dL/g; 0.35 to less than 0.70 dL/g; 0.35 to 0.68 dL/g; 0.35 to less than 0.68 dL/g; 0.35 to 0.65 dL/g; 0.40 to 1.2 dL/g; 0.40 to 1.1 dL/g; 0.40 to 1 dL/g; 0.40 to less than 1 dL/g; 0.40 to 0.98 dL/g; 0.40 to 0.95 dL/g; 0.40 to 0.90 dL/g; 0.40 to 0.85 dL/g; 0.40 to 0.80 dL/g; 0.40 to 0.75 dL/g; 0.40 to less than 0.75 dL/g; 0.40 to 0.72 dL/g; 0.40 to 0.70 dL/g; 0.40 to less than 0.70 dL/g; 0.40 to 0.68 dL/g; 0.40 to less than 0.68 dL/g; 0.40 to 0.65 dL/g; greater than 0.42 to 1.2 dL/g; greater than 0.42 to 1.1 dL/g; greater than 0.42 to 1 dL/g; greater than 0.42 to less than 1 dL/g; greater than 0.42 to 0.98 dL/g; greater than 0.42 to 0.95 dL/g; greater than 0.42 to 0.90 dL/g; greater than 0.42 to 0.85 dL/g; greater than 0.42 to 0.80 dL/g; greater than 0.42 to 0.75 dL/g; greater than 0.42 to less than 0.75 dL/g; greater than 0.42 to 0.72 dL/g; greater than 0.42 to less than 0.70 dL/g; greater than 0.42 to 0.68 dL/g; greater than 0.42 to less than 0.68 dL/g; and greater than 0.42 to 0.65 dL/g.
- For certain embodiments of the invention, the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.: 0.45 to 1.2 dL/g; 0.45 to 1.1 dL/g; 0.45 to 1 dL/g; 0.45 to 0.98 dL/g; 0.45 to 0.95 dL/g; 0.45 to 0.90 dL/g; 0.45 to 0.85 dL/g; 0.45 to 0.80 dL/g; 0.45 to 0.75 dL/g; 0.45 to less than 0.75 dL/g; 0.45 to 0.72 dL/g; 0.45 to 0.70 dL/g; 0.45 to less than 0.70 dL/g; 0.45 to 0.68 dL/g; 0.45 to less than 0.68 dL/g; 0.45 to 0.65 dL/g; 0.50 to 1.2 dL/g; 0.50 to 1.1 dL/g; 0.50 to 1 dL/g; 0.50 to less than 1 dL/g; 0.50 to 0.98 dL/g; 0.50 to 0.95 dL/g; 0.50 to 0.90 dL/g; 0.50 to 0.85 dL/g; 0.50 to 0.80 dL/g; 0.50 to 0.75 dL/g; 0.50 to less than 0.75 dL/g; 0.50 to 0.72 dL/g; 0.50 to 0.70 dL/g; 0.50 to less than 0.70 dL/g; 0.50 to 0.68 dL/g; 0.50 to less than 0.68 dL/g; 0.50 to 0.65 dL/g; 0.55 to 1.2 dL/g; 0.55 to 1.1 dL/g; 0.55 to 1 dL/g; 0.55 to less than 1 dL/g; 0.55 to 0.98 dL/g; 0.55 to 0.95 dL/g; 0.55 to 0.90 dL/g; 0.55 to 0.85 dL/g; 0.55 to 0.80 dL/g; 0.55 to 0.75 dL/g; 0.55 to less than 0.75 dL/g; 0.55 to 0.72 dL/g; 0.55 to 0.70 dL/g; 0.55 to less than 0.70 dL/g; 0.55 to 0.68 dL/g; 0.55 to less than 0.68 dL/g; 0.55 to 0.65 dL/g; 0.58 to 1.2 dL/g; 0.58 to 1.1 dL/g; 0.58 to 1 dL/g; 0.58 to less than 1 dL/g; 0.58 to 0.98 dL/g; 0.58 to 0.95 dL/g; 0.58 to 0.90 dL/g; 0.58 to 0.85 dL/g; 0.58 to 0.80 dL/g; 0.58 to 0.75 dL/g; 0.58 to less than 0.75 dL/g; 0.58 to 0.72 dL/g; 0.58 to 0.70 dL/g; 0.58 to less than 0.70 dL/g; 0.58 to 0.68 dL/g; 0.58 to less than 0.68 dL/g; 0.58 to 0.65 dL/g; 0.60 to 1.2 dL/g; 0.60 to 1.1 dL/g; 0.60 to 1 dL/g; 0.60 to less than 1 dL/g; 0.60 to 0.98 dL/g; 0.60 to 0.95 dL/g; 0.60 to 0.90 dL/g; 0.60 to 0.85 dL/g; 0.60 to 0.80 dL/g; 0.60 to 0.75 dL/g; 0.60 to less than 0.75 dL/g; 0.60 to 0.72 dL/g; 0.60 to 0.70 dL/g; 0.60 to less than 0.70 dL/g; 0.60 to 0.68 dL/g; 0.60 to less than 0.68 dL/g; 0.60 to 0.65 dL/g; 0.65 to 1.2 dL/g; 0.65 to 1.1 dL/g; 0.65 to 1 dL/g; 0.65 to less than 1 dL/g; 0.65 to 0.98 dL/g; 0.65 to 0.95 dL/g; 0.65 to 0.90 dL/g; 0.65 to 0.85 dL/g; 0.65 to 0.80 dL/g; 0.65 to 0.75 dL/g; 0.65 to less than 0.75 dL/g; 0.65 to 0.72 dL/g; 0.65 to 0.70 dL/g; 0.65 to less than 0.70 dL/g; 0.68 to 1.2 dL/g; 0.68 to 1.1 dL/g; 0.68 to 1 dL/g; 0.68 to less than 1 dL/g; 0.68 to 0.98 dL/g; 0.68 to 0.95 dL/g; 0.68 to 0.90 dL/g; 0.68 to 0.85 dL/g; 0.68 to 0.80 dL/g; 0.68 to 0.75 dL/g; 0.68 to less than 0.75 dL/g; 0.68 to 0.72 dL/g; greater than 0.76 dL/g to 1.2 dL/g; greater than 0.76 dL/g to 1.1 dL/g; greater than 0.76 dL/g to 1 dL/g; greater than 0.76 dL/g to less than 1 dL/g; greater than 0.76 dL/g to 0.98 dL/g; greater than 0.76 dL/g to 0.95 dL/g; greater than 0.76 dL/g to 0.90 dL/g; greater than 0.80 dL/g to 1.2 dL/g; greater than 0.80 dL/g to 1.1 dL/g; greater than 0.80 dL/g to 1 dL/g; greater than 0.80 dL/g to less than 1 dL/g; greater than 0.80 dL/g to 1.2 dL/g; greater than 0.80 dL/g to 0.98 dL/g; greater than 0.80 dL/g to 0.95 dL/g; greater than 0.80 dL/g to 0.90 dL/g.
- It is contemplated that the polyester compositions of the invention can possess at least one of the inherent viscosity ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can posses at least one of the Tg ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can posses at least one of the Tg ranges described herein, at least one of the inherent viscosity ranges described herein, and at least one of the monomer ranges for the compositions described herein unless otherwise stated.
- In certain embodiments, furandicarboxylic acid, or an ester thereof or a mixture of furandicarboxylic acid and an ester thereof, makes up most or all of the dicarboxylic acid component used to form the polyesters useful in the invention. In certain embodiments, 2,5-furandicarboxylic acid residues and/or its ester can be present at a concentration of at least 70 mole %, such as at least 80 mole %, at least 90 mole %, at least 95 mole %, at least 99 mole %, or 100 mole %. For purposes of this disclosure, the terms “2,5-furandicarboxylic acid” and its esters are used interchangeably herein. In certain embodiments, ranges of from 70 to 100 mole %; or 80 to 100 mole %; or 90 to 100 mole %; or 99 to 100 mole %; or 100 mole % 2,5-furandicarboxylic acid and/or its esters may be used. In certain embodiments, ranges of from 70 to 100 mole %; or 80 to 100 mole %; or 90 to 100 mole %; or 99 to 100 mole %; or 100 mole % 2,5-furandicarboxylic acid and/or its esters may be used.
- In addition to 2,5-furandicarboxylic acid residues, the dicarboxylic acid component of the polyesters useful in the invention can comprise up to 30 mole %, up to 20 mole %, up to 10 mole %, up to 5 mole %, or up to 1 mole % of one or more modifying aromatic dicarboxylic acids. Yet another embodiment contains 0 mole % modifying aromatic dicarboxylic acids. Thus, if present, it is contemplated that the amount of one or more modifying aromatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 30 mole %, from 0.01 to 20 mole %, from 0.01 to 10 mole %, from 0.01 to 5 mole %, or from 0.01 to 1 mole % of one or more modifying aromatic dicarboxylic acids. In one embodiment, modifying aromatic dicarboxylic acids that may be used in the present invention include but are not limited to those having up to 20 carbon atoms, and that can be linear, para-oriented, or symmetrical. Examples of modifying aromatic dicarboxylic acids which may be used in this invention include, but are not limited to, terephthalic acid, isophthalic acid, 4,4′-biphenyldicarboxylic acid, 1,4-, 1,5-, 2,6-, 2,7-naphthalenedicarboxylic acid, and trans-4,4′-stilbenedicarboxylic acid, and esters thereof. In one embodiment, isophthalic acid is the modifying aromatic dicarboxylic acid. In one embodiment, terephthalic acid is the modifying aromatic dicarboxylic acid.
- The carboxylic acid component of the polyesters useful in the invention can be further modified with up to 30 mole %, such as up to 25 mole % or such as up to such as up to 20 mole % or such as up to 15 mole % or such as up to 10 mole % or such as up to 5 mole % or up to 1 mole % of one or more aliphatic dicarboxylic acids containing 2-16 carbon atoms, such as, for example, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic and dodecanedioic dicarboxylic acids. Certain embodiments can also comprise 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole % of one or more modifying aliphatic dicarboxylic acids. Yet another embodiment contains 0 mole % modifying aliphatic dicarboxylic acids. Thus, if present, it is contemplated that the amount of one or more modifying aliphatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 10 mole % and from 0.1 to 10 mole %. The total mole % of the dicarboxylic acid component is 100 mole %.
- Esters of terephthalic acid and the other modifying dicarboxylic acids or their corresponding esters and/or salts may be used instead of the dicarboxylic acids. Suitable examples of dicarboxylic acid esters include, but are not limited to, the dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, and diphenyl esters. In one embodiment, the esters are chosen from at least one of the following: methyl, ethyl, propyl, isopropyl, and phenyl esters.
- The 1,4-cyclohexanedimethanol may be cis, trans, or a mixture thereof, for example, a cis/trans ratio of 60:40 to 40:60. In another embodiment, the trans-1,4-cyclohexanedimethanol can be present in the amount of 60 to 80 mole %. For the desired polyester, the molar ratio of cis/trans 1,4-cyclohexandimethanol can vary within the range of 50/50 to 0/100, for example, between 40/60 to 20/80.
- In certain embodiments, the amount of cis-2,2,4,4-tetramethyl-1,3-cyclobutanediol is greater than 50 mole %, or greater than 55 mole % or greater than 60 mole % or greater than 65 mole % or greater than 70 mole % or greater than 75 mole %.
- The glycol component of the polyester portion of the polyester compositions useful in the invention contain no more than 98 mole % of modifying glycols (glycols other than TMCD and CHDM). In one embodiment, the polyesters useful in the invention can contain less than 30 mole % of one or more modifying glycols. In one embodiment, the polyesters useful in the invention can contain less than 25 mole % of one or more modifying glycols. In one embodiment, the polyesters useful in the invention can contain less than 20 mole % of one or more modifying glycols. In one embodiment, the polyesters useful in the invention can contain less than 15 mole % of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 10 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 5 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 3 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention may contain 0 mole % modifying glycols. Certain embodiments can also contain 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole % of one or more modifying glycols. Thus, if present, it is contemplated that the amount of one or more modifying glycols can range from any of these preceding endpoint values including, for example, from 0.01 to 15 mole % and from 0.1 to 10 mole %.
- Modifying glycols useful in the polyesters useful in the invention refer to that are not listed as a required diol and may contain 2 to 16 carbon atoms. Examples of suitable modifying glycols include, but are not limited to, diethylene glycol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, p-xylene glycol, isosorbide, or mixtures thereof. In another embodiment, the modifying glycols include but are not limited to 1,3-propanediol and/or 1,4-butanediol. In another embodiment, at least one modifying glycol is isosorbide. In another embodiment, at least one modifying glycol is ethylene glycol.
- The polyesters useful in the invention can also comprise from 0 to 10 mole percent, for example, from 0.01 to 5 mole percent, from 0.01 to 1 mole percent, from 0.05 to 5 mole percent, from 0.05 to 1 mole percent, or from 0.1 to 0.7 mole percent, or 0.1 to 0.5 mole percent, based the total mole percentages of either the diol or diacid residues; respectively, of one or more residues of a branching monomer, also referred to herein as a branching agent, having 3 or more carboxyl substituents, hydroxyl substituents, or a combination thereof. In certain embodiments, the branching monomer or agent may be added prior to and/or during and/or after the polymerization of the polyester. The polyester(s) useful in the invention can thus be linear or branched.
- Examples of branching monomers include, but are not limited to, multifunctional acids or multifunctional alcohols such as trimellitic acid, trimellitic anhydride, pyromellitic dianhydride, trimethylolpropane, glycerol, pentaerythritol, citric acid, tartaric acid, 3-hydroxyglutaric acid and the like. In one embodiment, the branching monomer residues can comprise 0.1 to 0.7 mole percent of one or more residues chosen from at least one of the following: trimellitic anhydride, pyromellitic dianhydride, glycerol, sorbitol, 1,2,6-hexanetriol, pentaerythritol, trimethylolethane, and/or trimesic acid. The branching monomer may be added to the polyester reaction mixture or blended with the polyester in the form of a concentrate as described, for example, in U.S. Pat. Nos. 5,654,347 and 5,696,176, whose disclosure regarding branching monomers is incorporated herein by reference.
- The glass transition temperature (Tg) of the polyesters useful in the invention was determined using a TA Instruments Q2000 DSC at a scan rate of 20° C./min.
- In one embodiment, the polyesters of this invention can be visually clear. The term “visually clear” is defined herein as an appreciable absence of cloudiness, haziness, and/or muddiness, when inspected visually. In another embodiment, when the polyesters are blended with another polymer, the blends can be visually clear.
- The polyesters useful in the invention can be made by processes known from the literature such as, for example, by processes in homogenous solution, by transesterification processes in the melt, and by two phase interfacial processes. Suitable methods include, but are not limited to, the steps of reacting one or more dicarboxylic acids with one or more glycols at a temperature of 100° C. to 315° C. at a pressure of 0.1 to 760 mm Hg for a time sufficient to form a polyester. See U.S. Pat. No. 3,772,405 for methods of producing polyesters, the disclosure regarding such methods is hereby incorporated herein by reference.
- In another aspect, the invention relates to a process for producing a polyester. The process comprises:
-
- (I) heating a mixture comprising the monomers useful in any of the polyesters useful in the invention in the presence of a catalyst at a temperature of 150 to 240° C. for a time sufficient to produce an initial polyester;
- (II) heating the initial polyester of step (I) at a temperature of 240 to 320° C. for 1 to 4 hours; and
- (III) removing any unreacted glycols.
- Suitable catalysts for use in this process include, but are not limited to, organo-zinc or tin compounds, including but not limited to, zinc acetate, butyltin tris-2-ethylhexanoate, dibutyltin diacetate, and/or dibutyltin oxide. Other catalysts may include, but are not limited to, those based on titanium, zinc, manganese, lithium, germanium, and cobalt. A phosphorus compound may be used in connection with this invention. In one embodiment, the catalyst can be a combination of manganese, cobalt and germanium which can be used with phosphorus compounds as described herein. In another embodiment, titanium and manganese can be used. In one embodiment, tetrabutyl titanate can be used in combination with manganese acetate. In one embodiment, titanium and tin catalysts can be combined. In one embodiment, tin can be used as the only catalyst. In one embodiment, titanium can be used as the only catalyst. The invention further relates to a polyester product made by the process described above.
- The invention further relates to a polymer blend. The blend comprises:
-
- (a) 0.01 to 99.99 weight % of at least one of the polyesters described above; and
- (b) 0.01 to 99.995 weight % of at least one of the polymeric components.
- Suitable examples of the polymeric components include, but are not limited to, nylon, other polyesters different from those described herien, nylon, polyamides such as ZYTEL® from DuPont; polyesters different from those described herein; polystyrene, polystyrene copolymers, styrene acrylonitrile copolymers, acrylonitrile butadiene styrene copolymers, poly(methylmethacrylate), acrylic copolymers, poly(ether-imides) such as ULTEM® (a poly(ether-imide) from General Electric); polyphenylene oxides such as poly(2,6-dimethylphenylene oxide) or poly(phenylene oxide)/polystyrene blends such as NORYL 1000® (a blend of poly(2,6-dimethylphenylene oxide) and polystyrene resins from General Electric); other polyesters; polyphenylene sulfides; polyphenylene sulfide/sulfones; poly(ester-carbonates); polycarbonates such as LEXAN® (a polycarbonate from General Electric); polysulfones; polysulfone ethers; and poly(ether-ketones) of aromatic dihydroxy compounds or mixtures of any of the other foregoing polymers. The blends can be prepared by conventional processing techniques known in the art, such as melt blending or solution blending.
- The polyesters according to the invention can also be used in blends, such blends being obtainable by means of reactive extrusion too, with polymers of natural origin, such as starch, cellulose, chitin and chitosan, alginates, proteins such as gluten, zein, casein, collagen, gelatine, natural rubbers, rosinic acid and its derivatives, lignins and their derivatives, natural fibers (such as for example jute, kenaf, hemp). The starches and celluloses may be modified and may include, for instance, the starch and cellulose esters with a degree of substitution coming between 0.2 and 2.5, hydroxypropylated starches, and modified starches with fatty chains. Starch can also be used in either destructurized or gelatinised form, or as a filler. The starch may represent the continuous or the dispersed phase, or it may be in co-continuous form. In the case of dispersed starch, the starch particles have mean dimension of less than 1μ, and preferably less than 0.5μ.
- In case of a spherical particle the particle diameter corresponds to the diameter of the smaller circle in which the particle can be inscribed.
- Mixtures of polyesters according to the invention wherein starch represents the dispersed phase can form biodegradable polymeric compositions with good-resistance to aging and to humidity. Indeed, these polymeric compositions can maintain a high tear strength even in condition of low humidity.
- Such characteristics can be achieved when the water content of the composition during mixing of the component is kept between 1% and 15% by weight. It is, however, also possible to operate with a content of less than 1% by weight, in this case, starting with predried and pre-plasticized starch.
- It could be useful also to degrade starch at a low molecular weight before or during compounding with the polyesters of the present invention in order to have in the final material or finished product a starch inherent viscosity between 1 and 0.2 dl/g, or between 0.6 and 0.25 dl/g, or between 0.55 and 0.3 dl/g.
- Desctructurized starch can be obtained before or during mixing with the polyesters according to the present invention in presence of plasticizers such as water, glycerol, di and poly glycerols, ethylene or propylene glycol, ethylene and propylene diglycol, polyethylene glycol, polypropylenglycol, 1,2 propandiol, trymethylol ethane, trymethylol propane, pentaerytritol, dipentaerytritol, sorbitol, erytritol, xylitol, mannitol, sucrose, 1,3 propanediol, 1,2 butanediol, 1,3 butanediol, 1,4 butanediol, 1,5 pentanediol, 1,5 hexanediol, 1,6 hexanediol, 1,2,6 hexanetriol, 1,3,5 hexanetriol, neopentyl glycol and polyvinyl alcohol prepolymers and polymers, polyols acetates, ethoxylates and propoxylates, particularly sorbitol ethoxylate, sorbitol acetate, and pentaerythritol acetate. The quantity of high boiling point plasticizers (plasticizers different from water) used are generally from 0% to 50%, or from 10% to 30% by weight, relative to the starch.
- Water can be used as a plasticizer in combination with high boiling point plasticizers or alone during the plastification phase of starch before or during the mixing of the composition and can be removed at the needed level by degassing on one or more steps during extrusion. Upon completion of the plastification and mixing of the components, the water is removed by degassing to give a final content of about 0.2-3% by weight.
- Water, as well as high-boiling point plasticizers, modifies the viscosity of the starch phase and affects the rheological properties of the starch/polymer system, helping to determine the dimensions of the dispersed particles. Compatibilizers can be also added to the mixture. They can belong to the following classes:
-
- Additives such as esters which have hydrophilic/lipophilic balance index values (HLB) greater than 8 and which are obtained from polyols and from mono or polycarboxylic acids with dissociation constants pK lower than 4,5 (the value relates to pK of the first carboxyl group in the case of polycarboxylic acids);
- Esters with HLB values of between 5,5 and 8, obtained from polyols and from mono or polycarboxylic acids with less than 12 carbon atoms and with pK values greater than 4.5 (this value relates to the pK of the first carboxylic group in the case of polycarboxylic acids);
- Esters with HLB values lower than 5.5 obtained from polyols and from fatty acids with 12-22 carbon atoms.
- These compatibilizers can be used in quantities of from 0.2 to 40% weight and or from 1 to 20% by weight related to the starch. The starch blends can also contain polymeric compatibilizing agents having two components: one compatible or soluble with starch and a second one soluble or compatible with the polyester.
- Examples are starch/polyester copolymers through transesterification catalysts. Such polymers can be generated through reactive blending during compounding or can be produced in a separate process and then added during extrusion, In general block copolymers of an hydrophilic and an hydrophobic units are particularly suitable. Additives such as di and polyepoxides, di and poly isocyanates, isocyanurates, polycarbodiimmides and peroxides can also be added. They can work as stabilizers as well as chain extenders.
- All the products above can help to create the needed microstructure.
- It is also possible to promote in situ reactions to create bonds between starch and the polymeric matrix. Also aliphatic-aromatic polymers chain extended with aliphatic or aromatic diisocyanates or di and polyepoxides or isocyanurates or with oxazolines with intrinsic viscosities higher than 1 dl/g or in any case aliphatic-aromatic polyesters with a ratio between Mn and MFI at 190° C., 2.16 kg higher than 10,000, or higher than 12 500 or higher than 15,000 can also be used to achieve the needed microstructure.
- Another method to improve the microstructure is to achieve starch complexation in the starch polyester mixture.
- The starch/polyester ratio can be comprised in the range 5/95% weight up to 60/40% by weight, or 10/90-45/55% by weight.
- In such starch-based blends in combination with the polyesters of the present invention it is possible to add polyolefins, polyvinyl alcohol at high and low hydrolysis degree, ethylene vinylalcohol and ethylene vinylacetate copolymers and their combinations as well as aliphatic polyesters such as polybuthylenesuccinate, polybuthylenesuccinate adipate, polybuthylensuccinate adipate-caprolactate, polybuthylensuccinate-lactate, polycaprolactone polymers and copolymers, PBT, PET, PTT, polyamides, polybuthylen terephthalate adipates with a content of terephthalic acid between 40 and 70% with and without sulfonated groups with or without branches and possibly chain extended with diisocyanates or isocyanurates, polyurethanes, polyamide-urethanes, cellulose and starch esters such as acetate, propionate and butryate with substitution degrees between 1 and 3, or between 1.5 and 2.5, polyhydroxyalkanoates, poly L-lactic acid, poly-D lactic acid and lactides, their mixtures and copolymers.
- The starch blends of the polyesters of the present invention can be easily processable in film blowing even at MFI (170° C., 5 kg) of 7 g/10 min. Moreover, they can have impact strength higher than 20 kJ/m2, or higher than 30 kJ/m2, or higher than 45 kJ/m2 (measured on blown film 30 μm thick at 10° C. and less than 5% relative humidity). Particularly resistant and easily processable compounds contain destructurized starch in combination with the polyesters of the invention and polylactic acid polymers and copolymers with and without additives such as polyepoxides, carbodiimmides and/or peroxides.
- In general, to obtain co-continuous structures it is possible to work either on the selection of starch with high amylopectine content and/or to add to the starch-polyester compositions block copolymers with hydrophobic and hydrophilic units. Possible examples are polyvinylacetate/polyvinylalcohol and polyester/polyether copolymers in which the block length, the balance between the hydrophilicity and hydrophobicity of the blocks and the quality of compatibilizer used can be suitably changed in order to finely adjust the microstructure of the starch-polyester compositions.
- The polymers according to the invention can also be blended with polyolefins, such as polyethylene, polypropylene and their copolymers, polyvinyl alcohol, polyvinyl acetate, polyethyl vinyl acetate and polyethylene vinyl alcohol, polyester urethanes, polyurethanes, polyamides, polyureas and aromatic polyesters of the diacid diol type wherein the aromatic acid is 2.5 furandicarboxylic acid.
- The polymers according to the invention can also be used as prepolymers in the production of polyurethanes and polyureas.
- In one embodiment, the polyesters of the invention are blended with starch.
- The polyesters according to the invention can also be used in blends with polymers of synthetic origin and with the previously-mentioned polymers of natural origin.
- Binary and ternary blends of the polyester according to the present invention with biodegradable polyesters of the type disclosed above and/or with polymers of natural origin are particularly suitable for the production of films. Advantageously, the films obtained with said blends show excellent mechanical properties.
- In one embodiments, the polyesters of the invention can be mixed with starch and polylactic acid.
- Blends of the polyesters according the present invention with PLA are of particular interest because their high compatibility with PLA polymers and copolymers permits to cover materials with a wide range of rigidities—which makes these blends particularly suitable for injection molding and extrusion.
- Moreover, blends of such polyesters with poly L-lactic acid and poly D-lactic acid or poly L-lactide and D-lactide where the ratio between poly L- and poly D-lactic acid or lactide is in the range 10/90-90/10, or 20/80-80/20, and the ratio between aliphatic-aromatic polyester and the polylactic acid or PLA blend is in the range 5/95-95/5, or 10/90 90/10, are of particular interest for the high thermal resistance. Polylactic acid or lactide polymers or copolymers are generally of molecular weight Mn in the range between 30,000 and 30,000 or between 50,000 and 250,000.
- To improve the transparency and toughness of such blends and decrease or avoid a lamellar structure of polylactide polymers, it is possible to introduce other polymers as compatibilizers or toughening agents such as: polybutylene succinate and copolymers with adipic acid and or lactic acid and or hydroxyl caproic acid, polycaprolactone, aliphatic polymers of diols from C2 to C13 and diacids from C4 to C13, polyhydroxyalkanoates, polyvinylalcohol in the range of hydrolysis degree between 75 and 99% and its copolymers, polyvinylacetate in a range of hydrolysis degree between 0 and 70%, or between 0 and 60%. In one embodiment, the diols used in the polyesters of the invention can be chosen from ethylene glycol, propandiol, butanediol and the acids used in the polyesters of the invention can be chosen from: azelaic, sebacic, undecandioic acid, dodecandioic acid, brassylic acid and their combinations.
- To maximize compatibility among the polyesters of the invention and polylactic acid it is very useful the introduction of copolymers with blocks having high affinity for the aliphatic aromatic copolyesters of the invention, and blocks with affinity for the lactic acid polymers or copolymers. One embodiment of the invention can be block copolymers of the aliphatic aromatic copolymers of the invention with polylactic acid. Such block copolymers can be obtained taking the two original polymers terminated with hydroxyl groups and then reacting such polymers with chain extenders able to react with hydroxyl groups such as diisocyanates.
- Examples are 1,6-hexamethylene diisocyanate, isophorone diisocyanate, methylene diphenildiisocyanate, toluene diisocyanate or the like. It is also possible to use chain extenders able to react with carboxylic groups like di and poly epoxides (e.g. bisphenols diglycidyl ethers, glycerol diglycidyl ethers) divinyl derivatives if the polymers of the blend are terminated with acid groups. It is possible also to use as chain extenders carbodiimmides, bis-oxazolines, isocyanurates etc.
- The intrinsic viscosity of such block copolymers can be between 0.3 and 1.5 dl/g, or between 0.45 and 1.2 dl/g. The amount of compatibilizer in the blend of aliphaticaromatic copolyesters and polylactic acid can be in the range between 0.5 and 50% by weight, or between 1 and 30% by weight, or between 2 and 20% by weight.
- The polyesters according to the present invention can advantageously be blended also with nucleating agents and filler both of organic and inorganic nature.
- Examples of nucleating agents include talc, saccharine sodium salt, calcium silicate, sodium benzoate, calcium titanate, boron nitride, zinc salts, porphyrin, chlorine, phlorin, porphodimethine, porphomethine, bacteriochlorin, isobacteriochorin, porphyrinogen, phorbin, isotactic polypropylene, PLA with low molecular weight and PBT.
- In one embodiment, the amount of fillers can be in the range of 0.5-70% by weight, or 5-50% by weight.
- As regards organic fillers, wood powder, proteins, cellulose powder, grape residue, bran, maize husks, compost, other natural fibres, cereal grits with and without plasticizers such as polyols can be mentioned.
- As regards inorganic fillers, it can be mentioned substances that are able to be dispersed and/or to be reduced in lamellas with submicronic dimensions, for example, less than 500 nm or less than 300 nm, or less than 50 nm. In one embodiment, inorganic fillers can be selected from zeolites and silicates of various kind such as wollastonites, montmorillonites, hydrotalcites also funetionalised with molecules able to interact with starch and or the specific polyester. The use of such fillers can improve stiffness, water and gas permeability, dimensional stability and maintain transparency.
- The biodegradable polyesters according to the invention are biodegradable according to the standard EN 13432.
- The process for producing the polyesters according to the present invention can be conducted using any of the known processes according to the state of the art. In particular, the polyesters can be advantageously obtained using a polycondensation reaction. The copolyester polymerisation process can be advantageously conducted in the presence of a suitable catalyst. An example of a suitable catalyst might be the organometallc compounds of tin such as the derivatives of stannoic acid, or the compounds of titanium such as orthobutyl titanate, or the compounds of aluminium such as Al-triisopropyl, or of antimony and zinc.
- In addition, the polyester compositions and the polymer blend compositions containing the polyesters useful in this invention may also contain from 0.01 to 25% by weight or 0.01 to 20% by weight or 0.01 to 15% by weight or 0.01 to 10% by weight or 0.01 to 5% by weight of the total weight of the polyester composition of common additives such as colorants, dyes, mold release agents, release agents that release the polymer from rolls of the manufacturing equipment, flame retardants, plasticizers, nucleating agents, stabilizers, including but not limited to, UV stabilizers, thermal stabilizers and/or reaction products thereof, fillers, and impact modifiers. Examples of typical commercially available impact modifiers well known in the art and useful in this invention include, but are not limited to, ethylene/propylene terpolymers; functionalized polyolefins, such as those containing methyl acrylate and/or glycidyl methacrylate; styrene-based block copolymeric impact modifiers; and various acrylic core/shell type impact modifiers. For example, UV additives can be incorporated into articles of manufacture through addition to the bulk, through application of a hard coat, or through coextrusion of a cap layer. Residues of such additives are also contemplated as part of the polyester composition.
- In the case of adding release agents which reduce adhesion to manufacturing equipment such as calendering rolls, these can be selected from the group comprising esters of fatty acids and amides, and metal salts, soaps, paraffin, or hydrocarbon waxes such as: zinc stearate, calcium stearate, aluminum stearate, stearamides, erucamides, behenamides, white beeswax, candelilla wax, LDPE with high MFI such as Eastman Epolene N21, Epolene E20, and Lofio HOB 7119.
- An increase in the molecular weight of the polyesters can be advantageously obtained, for instance, by adding various organic peroxides during the extrusion process. The increase in the molecular weight of the biodegradable polyesters is easily detectable on observing the increase in the viscosity values after processing the polyesters with the peroxides.
- Examples of peroxides that can advantageously be used are selected from the group of dialkyl peroxides, such as: benzoyl peroxide, lauroyl peroxide, isononanoyl peroxide, di-(tbutylperoxyisopropyl)benzene, t-butyl peroxide, dicumyl peroxide, alpha,alpha-di(
t 20 butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butyl cumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hex-3-yne, di(4-tbutylcyclohexyl)peroxydi-carbonate, dicetyl peroxydicarbonate, dimyristyl peroxydicarbonate, 3,69-triethyl-3,6,9-trimethyl-1,4,7-triperoxonan, di(2-ethylhexyl)peroxydicarbonate and mixtures thereof. - In one embodiment, peroxides can be added to the polyesters according to the invention in a quantity of less than 0.5% by weight, or less than 0.01-0.2% by weight, or less than 0.01-0.1% by weight.
- The polyesters of the invention can comprise at least one chain extender. Suitable chain extenders include, but are not limited to, multifunctional (including, but not limited to, bifunctional) isocyanates, multifunctional epoxides, including for example, epoxylated novolacs, and phenoxy resins. In certain embodiments, chain extenders may be added at the end of the polymerization process or after the polymerization process. If added after the polymerization process, chain extenders can be incorporated by compounding or by addition during conversion processes such as injection molding or extrusion. The amount of chain extender used can vary depending on the specific monomer composition used and the physical properties desired but can be selected from 0.1 percent by weight to about 10 percent by weight, or from 0.1 to about 5 percent by weight, based on the total weight of the polyester.
- The polyesters of the invention can contain phosphorous compounds including but not limited to phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, phosphonous acid, and various esters and salts thereof. These can be present in the polyester compositions useful in the invention. The esters can be alkyl, branched alkyl, substituted alkyl, difunctional alkyl, alkyl ethers, aryl, and substituted aryl. In one embodiment, the number of ester groups present in the particular phosphorous compound can vary from zero up to the maximum allowable based on the number of hydroxyl groups present on the phosphorus compound used. Examples of phosphorus compounds useful in the invention can include phosphites, phosphates, phosphinates, or phosphonites, including the esters thereof.
- The polyesters of the invention can have good molecular weight. In one embodiment, the number average molecular weight of the polyesters is at least 10,000. In one embodiment, the number average molecular weight of the polyesters is at least 20,000.
- Reinforcing materials may be useful in the compositions of this invention. The reinforcing materials may include, but are not limited to, carbon filaments, silicates, mica, clay, talc, titanium dioxide, Wollastonite, glass flakes, glass beads and fibers, and polymeric fibers and combinations thereof. In one embodiment, the reinforcing materials are glass, such as, fibrous glass filaments, mixtures of glass and talc, glass and mica, and glass and polymeric fibers.
- In another embodiment, the invention further relates to articles of manufacture comprising any of the polyesters and blends described herein.
- The present polyesters and/or polyester blend compositions can be useful in forming fibers, films, molded articles, foamed articles, containers, bottles and sheeting. The methods of forming the polyesters into fibers, films, molded articles, containers, and sheeting are well known in the art.
- The invention further relates to articles of manufacture. These articles include, but are not limited to, injection molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, extrusion stretch blow molded articles, extrusion coatings, calendered articles, compression molded articles, and solution casted articles. Methods of making the articles of manufacuture, include, but are not limited to, extrusion blow molding, extrusion stretch blow molding, injection blow molding, injection stretch blow molding, calendering, rotomolding, compression molding, and solution casting.
- The polyesters according to the invention have properties and viscosity values that make them suitable, after adjusting their molecular weight, for use in numerous practical applications such as films, injection molded products, extrusion coatings, fibres, foams, thermoformed products, extruded profiles and sheets, extrusion blow molding, injection blow molding, rotomolding, stretch blow molding, etc.
- In another embodiment, the invention further relates to articles of manufacture comprising the film(s) and/or sheet(s) containing polyester compositions described herein. In another embodiment, the invention relates to fibers. In yet another embodiment, the invention relates to foams. In another embodiment, this invention relates to thermoformed articles. In another embodiment, this invention relates to packaging materials.
- The methods of forming polyesters into film(s) and/or sheet(s) are well known in the art. Examples of film production technologies include film blowing, casting and coestrusion. Examples of film(s) and/or sheet(s) of the invention including but not limited to extruded film(s) and/or sheet(s), calendered film(s) and/or sheet(s), compression molded film(s) and/or sheet(s), solution casted film(s) and/or sheet(s). Methods of making film and/or sheet include but are not limited to extrusion, calendering, compression molding, and solution casting.
- Examples of potential articles made from film and/or sheet include, but are not limited, to uniaxially stretched film, biaxially stretched film, shrink film (whether or not uniaxially or biaxially stretched), liquid crystal display film (including, but not limited to, diffuser sheets, compensation films and protective films), thermoformed sheet, graphic arts film, outdoor signs, skylights, coating(s), coated articles, painted articles, laminates, laminated articles, and/or multiwall films or sheets.
- Films obtained, with the polyester according to the present invention show excellent mechanical properties, such as for example an ultimate elongation greater than 350%, or greater than 400%, or greater than 500% with an ultimate energy greater than 70 MJ/m3, or greater than 90 MJ/m3 or greater than 100 MJ/m3.
- In particular, the polyesters according to the invention are suitable for manufacturing:
-
- mono- and bi-oriented films, and films multilayered with other polymers;
- films for use in the agricultural sector, such as films for use in mulching;
- cling films for use with foodstuffs, for bales in agriculture, and for wrapping waste;
- shrink film such as for example for pallets, mineral water, six pack rings, and so on;
- bags and bin liners for the organic waste collection, e.g. the collection of food scraps and gardening waste;
- thermoformed foodstuff packaging, both mono- and multi-layered, as in containers for milk, yogurt, meats, beverages, etc;
- coatings obtained, using the extrusion coating method;
- multilayer laminates with rigid or flexible backings such as for example paper, plastic, aluminium, or metallic films;
- foamed or foamable beads for the production of pieces obtained by sintering;
- foamed and semi-foamed products, including foamed blocks formed using pre-expanded articles;
- foamed sheets, thermoformed foam sheets, and containers obtained from them for use in foodstuff packaging;
- fruit and vegetable containers in general;
- composites with gelatinised, destructured and/or complexed starch, natural starch, flours, other fillers of natural, vegetal or inorganic origin;
- fibres, microfibres, composite fibres with a core consisting of rigid polymers, such as PLA, PET, PTT etc., and an external shell made using the material according to the invention, dablens composite fibres, fibres with different cross sections, from round to multilobed, fibres in flakes, woven and nonwoven, or spun-bonded or thermobonded fabrics for use in sanitary and hygiene products, and in the agricultural and clothing sectors.
- Other uses may also include applications in which the polyesters are used in lieu of plastic coated PVC.
- As used herein, the abbreviation “wt” means “weight”.
- The following examples further illustrate how the compositions of matter of the invention can be made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope thereof. Unless indicated otherwise, parts are parts by weight, temperature is in degrees C. or is at room temperature, and pressure is at or near atmospheric.
- Unless otherwise specified, the cis/trans ratio of the 1,4 cyclohexanedimethanol used in the following examples was approximately 30/70, and could range from 35/65 to 25/75.
- The following abbreviations apply throughout the working examples and figures:
-
TPA Terephthalic acid DMT Dimethyl terephthalate CHDM 1,4-cyclohexanedimethanol TMCD 2,2,4,4-tetramethyl-1,3-cyclobutanediol FDCA 2,5-Furandicarboxylic Acid IhV or IV Inherent Viscosity Tg Glass transition temperature EG Ethylene Glycol - All polymers in the examples were prepared by standard melt-phase polycondensation polymerization techniques known in the art. The polymer inherent viscosity (IhV) was measured by solution viscometry, using Phenol/1,1,2,2-tetrachloroethane (60/40) as a solvent. The polymer glass transition temperatures were measured by differential scanning calorimetry (DSC) with a TA Q2000 Differential Scanning calorimeter with refrigerated cooling accessory (RCA), with the first heating from 0 to 280° C. at 20° C./min, followed by cooling to 0° C. at 20° C./min, and heating again (second heating) from 0 to 280° C. at 20° C./min. The glass transition temperature (Tg) was recorded during the second heating cycle. Polymer compositions (mole percent glycols) were measured by proton nuclear magnetic resonance spectroscopy (NMR) using standard methods known in the art.
- A 500 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.15 mole DMF (27.6 g), 0.11 mole CHDM (15.6 g), 0.05 mole (7.3 g) 2,2,4,4-tetramethyl-1,3-cyclobutanediol and a solution of tin (IV) catalyst such that the concentration of tin was approximately 200 ppm based upon final polymer weight. The mixture was heated to 200° C. for while stirring at atmospheric pressure under a N2 purge. The temperature was then slowly increased to 265° C. over a period of about one hour. The pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump and held for about 30 minutes, collecting condensate in a sidarm flask cooled with dry ice located between the reaction flask and the vacuum pump. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had glycol composition 27 mole % TMCD and 73 mole % CHDM. The resulting polymer had IhV=0.70 dL/g and Tg=96° C.
- A 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.15 mole DMT (29.1 g), 0.11 mole CHDM (15.6 g), 0.05 mole TMCD (7.1 g) and a solution of tin (IV) catalyst such that the concentration of tin was approximately 200 ppm based upon final polymer weight. The mixture was heated to 200° C. for while stirring at atmospheric pressure under a N2 purge. The temperature was then slowly increased to 265° C. over a period of about one hour. The pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump and held for about 30 minutes, collecting condensate in a sidarm flask cooled with dry ice located between the reaction flask and the vacuum pump. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had glycol composition 28 mole % TMCD and 72 mole % CHDM. The resulting polymer had IhV=0.70 dL/g and Tg=114° C.
- A 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.12 mole FDCA (18.7 g), 0.04 mole CHDM (5.6 g), 0.20 mole EG (12.5 g) and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight. The mixture was heated to 200° C. for about 80 minutes while stirring at atmospheric pressure under a N2 purge. The pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 245° C. and held for about 30 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump. The pressure was then slowly reduced to 0.5 Torr and the temperature increased to 260° C. and held for about one hour. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had a glycol constituent composition of about 31 mole percent CHDM. The resulting polymer had IhV=0.76 dL/g and Tg=84° C.
- A 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.12 mole FDCA (18.7 g), 0.07 mole CHDM (10.7 g), 0.17 mole EG (10.3 g) and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight. The mixture was heated to 200° C. for about 60 minutes while stirring at atmospheric pressure under a N2 purge. The pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 245° C. and held for about 30 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump. The pressure was then slowly reduced to 0.5 Torr and the temperature increased to 260° C. and held for about 80 minutes. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had a glycol constituent composition of about 59 mole percent CHDM. The resulting polymer had IhV=0.90 dL/g and Tg=85° C.
- A 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.1 mole FDCA (15.7 g), 0.11 mole CHDM (15.1 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight. The mixture was heated to 200° C. while stirring at atmospheric pressure under a N2 purge until a well-dispersed slurry was obtained. The temperature was then increased to 285° C. over a period of about 15 minutes, at which point a clear liquid melt was observed. The pressure was then slowly reduced to 0.5 Torr by means of a vacuum pump and held for about 60 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had IhV=0.81 dL/g and Tg=86° C.
- A 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.1 mole terephthalic acid, TPA, (16.6 g), 0.30 mole EG (18.6 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 500 ppm based upon final polymer weight. The mixture was heated to 185° C. for about 14 hours while stirring at atmospheric pressure under a N2 purge. The temperature was then increased to 230° C. for about 30 minutes. The temperature was then increased to about 245° C. for about 30 minutes, at which point a clear liquid melt was observed. The pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 260° C. and held for about 30 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump. The pressure was then slowly reduced to 0.5 Torr and the temperature increased to 275° C. and held for about 45 minutes. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had IhV=1.00 dL/g and Tg=80° C.
- A 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.12 mole terephthalic acid, TPA, (19.9 g), 0.04 mole CHDM (5.3 g), 0.20 mole EG (12.6 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 25 ppm based upon final polymer weight. The mixture was heated to 185° C. for about 17 hours while stirring at atmospheric pressure under a N2 purge. The temperature was then increased to 230° C. for about 60 minutes. The temperature was then increased to about 245° C. for about 60 minutes, at which point a clear liquid melt was observed. The pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 260° C. and held for about 60 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump. The pressure was then slowly reduced to 4 Torr and the temperature increased to 270° C. and held for about 30 minutes. The pressure was then slowly reduced to 0.5 Torr and held for about 90 minutes. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had a glycol constituent composition of about 30 mole percent CHDM. The resulting polymer had IhV=1.07 dL/g and Tg=83° C.
- A 100 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.05 mole TPA, (8.3 g), 0.05 mole dimethyl terephthalate (DMT, 9.7 g), 0.07 mole CHDM (9.5 g), 0.13 mole EG (8.3 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight. The mixture was heated to 200° C. for about 60 minutes while stirring at atmospheric pressure under a N2 purge. The temperature was then increased to 210° C. and held for about 60 minutes. The temperature was then increased to 245° C. and held for about 45 minutes. The pressure was then slowly reduced to 130 Torr by means of a vacuum pump and the temperature increased to 260° C. and held for about 30 minutes, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump. The pressure was then slowly reduced to 4 Torr and the temperature increased to 275° C. and held for about 15 minutes. The pressure was then slowly reduced to 0.5 Torr and held for about 45 minutes. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had a glycol constituent composition of about 62 mole percent CHDM. The resulting polymer had IhV=0.98 dL/g and Tg=89° C.
- A 500 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.5 mole dimethyl terephthalate (DMT, 97.0 g), 0.55 mole CHDM (79.2 g) and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 100 ppm based upon final polymer weight. The mixture was heated to 220° C. while stirring at atmospheric pressure under a N2 purge until a clear melt was obtained. The temperature was then increased to 290° C. over a period of about 30 minutes. The pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump and held for about 50 minutes, collecting condensate in a sidarm flask cooled with dry ice located between the reaction flask and the vacuum pump. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had IhV=0.85 dL/g and Tg=95° C.
- A 500 ml round-bottom flask fitted with a sidearm and condensate collection flask was charged with 0.5 mole FDCA (78.0 g), 1 mole EG (62.1 g), and a solution of titanium tetraisopropoxide in ethylene glycol such that the concentration of Ti was approximately 50 ppm based upon final polymer weight. The mixture was heated to 200° C. for about one hour while stirring at atmospheric pressure under a N2 purge. The temperature was then increased to 215° C. for about one hour. The pressure was then slowly reduced to about 0.3 Torr by means of a vacuum pump, and the temperature increased to 260° C. and held for about one to two hours, collecting condensate in a sidearm flask cooled with dry ice located between the reaction flask and the vacuum pump. The resulting polymer was cooled to room temperature, separated from the flask, and cryogenically ground. The resulting polymer had IhV=0.72 dL/g and Tg=87° C.
-
TABLE 1 Summary of Examples Mole % Mole % Mole % Mole % Mole % IhV, Tg, Example TPA FDCA EG CHDM TMCD dL/g ° C. Example 1 0 100 0 73 27 0.70 96 Example 2 100 0 0 72 28 0.70 114 Example 3 0 100 69 31 0 0.76 84 (PEFG) Example 4 0 100 41 59 0 0.90 85 (PCFG) Example 5 0 100 0 100 0 0.81 86 (PCF) Example 6 100 0 100 0 0 1.00 80 (PET) Example 7 100 0 69 31 0 1.07 83 (PETG) Example 8 100 0 38 62 0 0.98 89 (PCTG) Example 9 100 0 0 100 0 0.85 95 (PCT) Example 0 100 100 0 0 0.72 87 10 (PEF) - It can be clearly seen from a comparison of the data in the above relevant working examples that the polyesters of the present invention offer a definite advantage over the commercially available polyesters.
- The invention has been described in detail with reference to the embodiments disclosed herein, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Claims (33)
1. A polyester composition comprising at least one polyester which comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 mole % of 2,5-furandicarboxylic acid residues;
ii) 0 to 30 mole % of aromatic dicarboxylic acid residues having up to 20 carbon atoms; and
iii) 0 to 30 mole % of aliphatic dicarboxylic acid residues having up to 16 carbon atoms; and
(b) a glycol component comprising:
i) 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
ii) 1,4-cyclohexanedimethanol residues.
2. The polyester composition of claim 1 , wherein the inherent viscosity is from 0.35 to less than 1.0 dL/g.
3. The polyester composition of claim 1 , wherein the inherent viscosity is from 0.35 to 0.80 dL/g.
4. The polyester composition of claim 1 , wherein the inherent viscosity is from 0.50 to 0.75 dL/g.
5. The polyester composition of claim 1 , wherein the inherent viscosity is from 0.30 to 0.60 dL/g.
6. The polyester composition of claim 1 , wherein at least one modifying glycol is ethylene glycol.
7. The polyester composition of claim 1 , wherein at least one modifying glycol is diethylene glycol.
8. The polyester composition of claim 1 , wherein at least one modifying glycol is propanediol.
9. The polyester composition of claim 1 , wherein the glycol component comprises 5 to 80 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues.
10. The polyester composition of claim 1 , wherein the glycol component comprises 15 to 40 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues.
11. The polyester composition of claim 1 , wherein the glycol component of said polyester comprises 20 to 30 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
12. The polyester composition of claim 1 , wherein the glycol component of said polyester comprises 15 to 25 mole % of residues of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 1,4-cyclohexanedimethanol residues.
13. The polyester composition of claim 1 , wherein the glycol component of said polyester comprises 5 to less than 50 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and greater than 50 to 95 mole % of the residues of at least one modifying glycol.
14. The polyester composition of claim 1 , wherein the glycol component of said polyester comprises 10 to 30 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 70 to 90 mole % 1,4-cyclohexanedimethanol residues.
15. The polyester composition of claim 1 , wherein the glycol component comprises 30 to 40 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 60 to 70 mole % 1,4-cyclohexanedimethanol residues.
16. The polyester composition of claim 1 , wherein the dicarboxylic acid component comprises 80 to 100 mole % of furandicarboxylic accid residues.
17. The polyester composition of claim 1 , wherein the dicarboxylic acid component comprises 90 to 100 mole % of 2,5-furandicarboxylic acid residues.
18. The polyester composition of claim 1 , wherein the dicarboxylic acid component comprises 0 to 30 mole % of terephthalic acid residues.
19. The polyester composition of claim 18 , wherein the dicarboxylic acid component comprises 0 to 20 mole % of terephthalic acid residues.
20. The polyester composition of claim 1 , wherein said polyester composition comprises at least one polymer chosen from at least one of the following: poly(etherimides), polyphenylene oxides, poly(phenylene oxide)/polystyrene blends, polystyrene resins, polyphenylene sulfides, polyphenylene sulfide/sulfones, poly(ester-carbonates), polycarbonates, polysulfones; polysulfone ethers, starches, cellulose esters, or poly(ether-ketones).
21. The polyester composition of claim 16 comprising at least one starch.
22. The polyester composition of claim 1 , wherein said polyester composition comprises at least one polycarbonate.
23. The polyester composition of claim 1 , wherein said polyester comprises residues of at least one branching agent.
24. The polyester composition of claim 1 , wherein said polyester comprises residues of at least one branching agent an amount of 0.01 to 10 mole % based on the total mole percentage of the diacid or diol residues.
25. An article of manufacture comprising the polyester composition of claim 1 .
26. An article of manufacture selected from film, fiber, sheet, bottle, foam, foamed article, thermoformed article or a coating according to claim 25 .
27. An article of manufacture comprising a film according to claim 25 .
28. An article of manufacture comprising a sheet according to claim 25 .
29. An article of manufacture comprising a bottle according to claim 25 .
30. An article of manufacture comprising a fiber according to claim 25 .
31. An article of manufacture comprising a coating to claim 25 .
32. An article of manufacture comprising a foamed article according to claim 25 .
33. An article of manufacture comprising a thermoformed article according to claim 25 .
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/648,508 US20130095270A1 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol |
EP19165948.1A EP3521333B1 (en) | 2011-10-14 | 2012-10-11 | Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol |
KR1020147009148A KR101929468B1 (en) | 2011-10-14 | 2012-10-11 | Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol |
EP17179489.4A EP3260482B1 (en) | 2011-10-14 | 2012-10-11 | A process for producing a polyester by reacting furandicarboxylic acid or an ester thereof, cyclohexanedimethanol and ethylene glycol |
EP12778906.3A EP2766408B1 (en) | 2011-10-14 | 2012-10-11 | Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol |
KR1020187035771A KR101971677B1 (en) | 2011-10-14 | 2012-10-11 | Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol |
PCT/US2012/059664 WO2013055862A1 (en) | 2011-10-14 | 2012-10-11 | Polyester compositions containing furandicarboxylic acid or an ester thereof and 2,2,4,4-tetramethyl-1,3.-cyclobutanediol |
PCT/US2012/059662 WO2013055860A1 (en) | 2011-10-14 | 2012-10-11 | Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161547241P | 2011-10-14 | 2011-10-14 | |
US201161547236P | 2011-10-14 | 2011-10-14 | |
US201161547228P | 2011-10-14 | 2011-10-14 | |
US201161547233P | 2011-10-14 | 2011-10-14 | |
US201161547222P | 2011-10-14 | 2011-10-14 | |
US201161547224P | 2011-10-14 | 2011-10-14 | |
US13/648,508 US20130095270A1 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130095270A1 true US20130095270A1 (en) | 2013-04-18 |
Family
ID=48086164
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/648,508 Abandoned US20130095270A1 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol |
US13/648,479 Active US10800877B2 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol |
US13/648,534 Active US10800878B2 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and ethylene glycol |
US13/648,492 Abandoned US20130095269A1 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof and ethylene glycol |
US13/648,519 Abandoned US20130095271A1 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, ethylene glycol and cyclohexanedimethanol |
US13/648,471 Active US9228051B2 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/648,479 Active US10800877B2 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol |
US13/648,534 Active US10800878B2 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and ethylene glycol |
US13/648,492 Abandoned US20130095269A1 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof and ethylene glycol |
US13/648,519 Abandoned US20130095271A1 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof, ethylene glycol and cyclohexanedimethanol |
US13/648,471 Active US9228051B2 (en) | 2011-10-14 | 2012-10-10 | Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol |
Country Status (4)
Country | Link |
---|---|
US (6) | US20130095270A1 (en) |
EP (3) | EP3260482B1 (en) |
KR (2) | KR101929468B1 (en) |
WO (2) | WO2013055862A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9850342B2 (en) | 2013-12-19 | 2017-12-26 | Toyobo Co., Ltd. | Polyester resin |
US20180022866A1 (en) * | 2015-02-13 | 2018-01-25 | The Coca-Cola Company | Barrier enhanced pet multilayer container |
US10815334B2 (en) | 2015-09-04 | 2020-10-27 | Mitsubishi Chemical Corporation | Polyester resin, production method for said polyester resin, and polyester resin composition |
US11905362B2 (en) | 2016-09-16 | 2024-02-20 | Origin Materials Operating, Inc. | Polymers and methods of producing thereof |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130095270A1 (en) | 2011-10-14 | 2013-04-18 | Eastman Chemical Company | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol |
FR2985260B1 (en) * | 2011-12-29 | 2014-06-27 | Natura Cosmeticos Sa | PROCESS FOR THE PRODUCTION OF ETHYLENE POLY (2,5-FURANEDICARBOXYLATE) FROM 2,5-FURANEDICARBOXYLIC ACID AND USE THEREOF, POLYESTER COMPOUND, AND MIXTURES THEREOF |
WO2013149157A1 (en) * | 2012-03-30 | 2013-10-03 | E. I. Du Pont De Nemours And Company | Polyesters and fibers made therefrom |
FR2988724B1 (en) * | 2012-03-30 | 2014-04-25 | Roquette Freres | POLYMERS, PROCESS FOR THEIR SYNTHESIS AND COMPOSITIONS COMPRISING SAME |
CN104395512B (en) * | 2012-03-30 | 2020-06-16 | 纳幕尔杜邦公司 | Polyester and fiber made of the same |
WO2014032730A1 (en) * | 2012-08-31 | 2014-03-06 | Sa Des Eaux Minerales D'evian Saeme | Bottle, method of making the same and use of fdca and diol monomers in such bottle |
US9624341B2 (en) * | 2012-12-20 | 2017-04-18 | Dow Global Technologies Llc | Glycolide-based polyesters |
EP2935418A2 (en) | 2012-12-20 | 2015-10-28 | Dow Global Technologies LLC | Glycolide-based polyesters made with isosorbide |
WO2014100254A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Global Technologies Llc | Barrier films of fdca-based polyesters |
US9580594B2 (en) * | 2012-12-20 | 2017-02-28 | Dow Global Technologies Llc | FDCA-based polyesters |
CN104955646B (en) | 2012-12-20 | 2017-05-24 | 陶氏环球技术有限责任公司 | Multilayer films of FDCA-based polyesters |
EP2935394A2 (en) * | 2012-12-20 | 2015-10-28 | Dow Global Technologies LLC | Fdca-based polyesters made with isosorbide |
US9982094B2 (en) | 2013-10-22 | 2018-05-29 | Empire Technology Development Llc | Compounds and methods for producing nylon 6 |
US9988491B2 (en) | 2013-10-22 | 2018-06-05 | Empire Technology Development Llc | Methods and compounds for producing nylon 6,6 |
CN105658616A (en) | 2013-10-25 | 2016-06-08 | 英派尔科技开发有限公司 | Methods of producing dicarbonyl compounds |
DE102013223496A1 (en) * | 2013-11-18 | 2015-05-21 | Tesa Se | Novel polyester suitable for the production of carrier materials for adhesive tapes |
JP2015120838A (en) * | 2013-12-24 | 2015-07-02 | 花王株式会社 | Porous sheet |
US10316140B2 (en) | 2014-03-21 | 2019-06-11 | Furanix Technologies B.V. | Polyesters comprising 2,5-furandicarboxylate and saturated diol units having a high glass transition temperature |
FR3020811B1 (en) | 2014-05-09 | 2016-06-10 | Roquette Freres | THERMOPLASTIC AROMATIC POLYESTERS COMPRISING TETRAHYDROFURANEDIMETHANOL AND FURANEDICARBOXYLIC ACID PATTERNS |
KR102201815B1 (en) | 2014-08-25 | 2021-01-12 | 퓨라닉스 테크놀러지스 비.브이. | Process for producing an oriented film comprising poly(ethylene-2,5-furandicarboxylate |
CH710701A1 (en) * | 2015-02-06 | 2016-08-15 | Alpla Werke Alwin Lehner Gmbh & Co Kg | Preform for the production of a plastic container, production of the preform and produced from the preform plastic container and its production. |
NL2015266B1 (en) * | 2015-08-04 | 2017-02-21 | Furanix Technologies Bv | Poly(alkylene furandicarboxylate)-comprising polyester. |
MX2018002219A (en) * | 2015-09-04 | 2018-03-23 | Auriga Polymers Inc | MIXTURES OF POLYMERS WITH FURAN-BASED POLYESTERS. |
FR3044666B1 (en) * | 2015-12-02 | 2020-10-30 | Roquette Freres | THERMOPLASTIC COPOLYESTERS INCLUDING 1,4: 3,6-DIANHYDROHEXITOL AND VARIOUS AROMATIC DIACIDS |
FR3044665A1 (en) * | 2015-12-02 | 2017-06-09 | Roquette Freres | AROMATIC THERMOPLASTIC COPOLYESTERS COMPRISING 1,4: 3,6-DIANHYDROHEXITOL AND VARIOUS CYCLIC DIOLS |
TWI851530B (en) * | 2015-12-28 | 2024-08-11 | 日商東洋紡股份有限公司 | Laminated polyester film and polyester film roll |
CN108472928B (en) * | 2015-12-28 | 2020-05-12 | 东洋纺株式会社 | Laminated polyester film |
EP3402787A4 (en) | 2016-01-13 | 2019-11-27 | Stora Enso Oyj | Processes for the preparation of 2,5-furandicarboxylic acid and intermediates and derivatives thereof |
WO2017169553A1 (en) | 2016-03-30 | 2017-10-05 | 東洋紡株式会社 | Polyester film |
ITUA20162764A1 (en) * | 2016-04-20 | 2017-10-20 | Novamont Spa | NEW POLYESTER AND COMPOSITIONS THAT CONTAIN IT |
FR3054830B1 (en) * | 2016-08-02 | 2020-12-11 | Roquette Freres | SEMI-CRYSTALLINE THERMOPLASTIC POLYESTER FOR MANUFACTURING TWO-STRETCH HOLLOW BODIES |
FR3070677B1 (en) * | 2016-08-03 | 2021-11-12 | Roquette Freres | PACKAGING PROCESS FROM SEMI-CRYSTALLINE THERMOPLASTIC POLYESTER |
FR3054838B1 (en) * | 2016-08-03 | 2018-09-07 | Roquette Freres | SEMI-CRYSTALLINE THERMOPLASTIC POLYESTER FOR THE MANUFACTURE OF BI-ORIENT FILMS |
DK3544785T3 (en) | 2016-11-28 | 2021-09-13 | Furanix Technologies Bv | Thermoformed article of poly (ethylene-2,5-furandicarboxylate) -polyester |
US11421067B2 (en) | 2016-12-12 | 2022-08-23 | Ppg Industries Ohio, Inc. | Acrylic polyester resin and an aqueous coating composition containing the same |
KR102634862B1 (en) * | 2017-01-13 | 2024-02-06 | 에스케이케미칼 주식회사 | Synthetic wood |
CN110234677A (en) * | 2017-01-26 | 2019-09-13 | 辛维纳有限合伙公司 | 2,5- furan dicarboxylic acid kind polyester |
KR102411863B1 (en) * | 2017-03-01 | 2022-06-22 | 도요보 가부시키가이샤 | A laminate and packaging bag comprising a polyester film having a furandicarboxylic acid unit and a heat-sealable resin layer |
KR102425314B1 (en) | 2017-03-01 | 2022-07-27 | 도요보 가부시키가이샤 | Method for producing a polyester film having furandicarboxylic acid units |
FR3065958B1 (en) * | 2017-05-05 | 2020-09-04 | Roquette Freres | METHOD OF MANUFACTURING A COMPOSITE MATERIAL |
EP3652161A1 (en) | 2017-07-12 | 2020-05-20 | Stora Enso Oyj | Purified 2,5-furandicarboxylic acid pathway products |
CN108409949B (en) * | 2018-02-10 | 2019-07-26 | 中国科学院长春应用化学研究所 | A kind of 2,5-furandicarboxylic acid-based copolyester material and preparation method thereof |
CN109721716B (en) * | 2018-12-04 | 2021-05-18 | 中国科学院宁波材料技术与工程研究所 | Furandicarboxylic acid copolyester and preparation method thereof |
CN111499846B (en) * | 2019-01-31 | 2023-04-07 | 财团法人工业技术研究院 | Polyester and fiber |
CN110128797A (en) * | 2019-05-13 | 2019-08-16 | 无锡风鹏新材料科技有限公司 | A kind of biaxially oriented polyester film that high temperature dimensional stability is excellent and its production method |
CN111187239B (en) * | 2020-01-14 | 2023-06-27 | 浙江大学衢州研究院 | Continuous production method of furandicarboxylic acid using furan as raw material |
MX2023011289A (en) * | 2021-03-24 | 2023-10-05 | Celanese Int Corp | Thermoformed articles made from bio-based polymers and compositions therefore. |
CN113025012B (en) * | 2021-04-12 | 2022-11-01 | 东莞市东翔塑胶有限公司 | PBAT (poly (butylene adipate-co-terephthalate)) bio-based polyester composite material filled with modified fibers and preparation method thereof |
FR3123077B1 (en) | 2021-05-18 | 2024-08-02 | Michelin & Cie | Elementary textile monofilament made of polyester |
KR20220163693A (en) * | 2021-06-03 | 2022-12-12 | 한국화학연구원 | Bio-degradable furan-based composite with improved mechanical properties and manufacturing method thereof |
WO2023157837A1 (en) * | 2022-02-16 | 2023-08-24 | 東洋紡株式会社 | Polyester resin, and composition for coating metal plate |
WO2023157771A1 (en) * | 2022-02-16 | 2023-08-24 | 東洋紡株式会社 | Polyester resin, and coating composition for metal plates |
CN116330790B (en) * | 2023-05-31 | 2023-08-29 | 合肥长阳新材料科技有限公司 | Furanyl high-barrier transparent heat-resistant polyester film and preparation method thereof |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB621971A (en) | 1946-11-12 | 1949-04-25 | James Gordon Napier Drewitt | Improvements in polymers |
GB819438A (en) | 1955-11-04 | 1959-09-02 | Henkel & Cie Gmbh | Process for the rearrangement of salts of heterocyclic carboxylic acids |
US3203963A (en) | 1963-04-18 | 1965-08-31 | Atlas Chem Ind | Method of purifying dehydromucic acid |
US3225066A (en) | 1963-04-18 | 1965-12-21 | Atlas Chem Ind | Process for the preparation of tetrahydrofuran-cis, 2,5-dicarboxylic acid and salts thereof |
US3326944A (en) | 1964-03-09 | 1967-06-20 | Atlas Chem Ind | Method of producing dehydromucic acid |
DE1595378C3 (en) | 1966-01-20 | 1975-10-16 | Chemische Werke Huels Ag, 4370 Marl | Process for the production of modified polyesters |
CH468782A (en) | 1967-02-20 | 1969-04-15 | Ciba Geigy | Ready-to-use agent for combating harmful bacteria |
US3852247A (en) | 1970-11-02 | 1974-12-03 | Fiber Industries Inc | Polymerization catalyst |
BE794938A (en) | 1972-02-02 | 1973-08-02 | Eastman Kodak Co | NEW PROCESS FOR PREPARING COPOLYESTERS AND APPLICATIONS |
JPS5710646A (en) | 1980-06-23 | 1982-01-20 | Adeka Argus Chem Co Ltd | Stabilized synthetic resin composition |
EP0294863A1 (en) | 1987-05-13 | 1988-12-14 | Stamicarbon B.V. | Aromatic polyester |
IL110514A0 (en) | 1993-10-04 | 1994-10-21 | Eastman Chem Co | Concentrates for improving polyester compositions and a method for preparing such compositions |
FR2723946B1 (en) | 1994-08-24 | 1996-10-18 | Ard Sa | PROCESS FOR THE MANUFACTURE OF A DIESTER OF 2,5-FURANE DICARBOXYLIC ACID |
IT1273617B (en) | 1995-05-05 | 1997-07-08 | Enichem Spa | POLYOLEFINS MODIFIED WITH AN UNSATURATED GLYCIDYL ESTER |
US5696176A (en) | 1995-09-22 | 1997-12-09 | Eastman Chemical Company | Foamable polyester compositions having a low level of unreacted branching agent |
CA2235270A1 (en) | 1995-10-18 | 1997-04-24 | Hoechst Research & Technology Deutschland Gmbh & Co. Kg | Polymers which form cholesteric phases, process for their preparation, and their use |
DE19538700A1 (en) | 1995-10-18 | 1997-04-24 | Hoechst Ag | Polymers forming cholesteric phases, process for their preparation and use |
EP0980399A1 (en) | 1997-05-06 | 2000-02-23 | Ciba SC Holding AG | Modified epoxy resin and its use as a formulating component for heat-curable compositions, especially for powder coatings |
US6025061A (en) | 1998-04-23 | 2000-02-15 | Hna Holdings, Inc. | Sheets formed from polyesters including isosorbide |
US6126992A (en) | 1998-04-23 | 2000-10-03 | E.I. Dupont De Nemours And Company | Optical articles comprising isosorbide polyesters and method for making same |
US6140422A (en) | 1998-04-23 | 2000-10-31 | E.I. Dupont De Nemours And Company | Polyesters including isosorbide as a comonomer blended with other thermoplastic polymers |
US5958581A (en) | 1998-04-23 | 1999-09-28 | Hna Holdings, Inc. | Polyester film and methods for making same |
US5959066A (en) | 1998-04-23 | 1999-09-28 | Hna Holdings, Inc. | Polyesters including isosorbide as a comonomer and methods for making same |
US6063495A (en) | 1998-04-23 | 2000-05-16 | Hna Holdings, Inc. | Polyester fiber and methods for making same |
US6063465A (en) | 1998-04-23 | 2000-05-16 | Hna Holdings, Inc. | Polyester container and method for making same |
US6063464A (en) | 1998-04-23 | 2000-05-16 | Hna Holdings, Inc. | Isosorbide containing polyesters and methods for making same |
US6342300B1 (en) | 1999-02-20 | 2002-01-29 | Celanese Ventures Gmbh | Biodegradable polymers based on natural and renewable raw materials especially isosorbite |
US6914120B2 (en) | 2002-11-13 | 2005-07-05 | Eastman Chemical Company | Method for making isosorbide containing polyesters |
US7052764B2 (en) | 2002-12-19 | 2006-05-30 | E. I. Du Pont De Nemours And Company | Shaped articles comprising poly[(trimethylene-co-dianhydrosugar ester) dicarboxylate] or poly(trimethylene-co-dianhydro-dicarboxylate with improved stability |
US6737481B1 (en) | 2002-12-19 | 2004-05-18 | E. I. Du Pont De Nemours And Company | Ester-modified dicarboxylate polymers |
US7812112B2 (en) | 2005-06-17 | 2010-10-12 | Eastman Chemical Company | Outdoor signs comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol |
DE102005009783A1 (en) | 2005-03-03 | 2006-09-14 | Wacker Chemie Ag | Crosslinkable compositions based on organosilicon compounds |
US8900693B2 (en) * | 2005-07-13 | 2014-12-02 | Sabic Global Technologies B.V. | Polycarbonate compositions having infrared absorbance, method of manufacture, and articles prepared therefrom |
JP4881127B2 (en) | 2005-11-07 | 2012-02-22 | キヤノン株式会社 | Polymer compound and synthesis method thereof |
US8247582B2 (en) | 2006-02-07 | 2012-08-21 | Battelle Memorial Institute | Esters of 5-hydroxymethylfurfural and methods for their preparation |
US20080081883A1 (en) | 2006-09-28 | 2008-04-03 | Battelle Memorial Institute | Polyester Polyols Derived From 2,5-Furandicarboxylic Acid, and Method |
US7638592B2 (en) | 2007-01-16 | 2009-12-29 | Battelle Memorial Institute | Formaldehyde free binders |
JP5446121B2 (en) | 2007-04-24 | 2014-03-19 | 三菱化学株式会社 | Polyester containing furan structure |
JP2008308578A (en) | 2007-06-14 | 2008-12-25 | Canon Inc | Process for preparing polyarylate resin containing furan ring |
US20090018264A1 (en) | 2007-07-12 | 2009-01-15 | Canon Kabushiki Kaisha | Resin composition |
US7385081B1 (en) | 2007-11-14 | 2008-06-10 | Bp Corporation North America Inc. | Terephthalic acid composition and process for the production thereof |
JP5371259B2 (en) | 2008-02-20 | 2013-12-18 | キヤノン株式会社 | POLYESTER RESIN, PROCESS FOR PRODUCING THE SAME, COMPOSITION FOR MOLDED ARTICLE AND MOLDED ARTICLE |
JP2009215467A (en) | 2008-03-11 | 2009-09-24 | Canon Inc | Manufacturing method of polyethylene-2,5-furan dicarboxylate |
ITMI20080507A1 (en) | 2008-03-26 | 2009-09-27 | Novamont Spa | BIODEGRADABLE POLYESTER, ITS PREPARATION PROCESS AND PRODUCTS INCLUDING THE POLYESTER. |
JP5120944B2 (en) | 2008-04-25 | 2013-01-16 | 独立行政法人産業技術総合研究所 | Biodegradable high molecular weight aliphatic polyester and method for producing the same |
IT1387503B (en) | 2008-05-08 | 2011-04-13 | Novamont Spa | ALYPATIC-AROMATIC BIODEGRADABLE POLYESTER |
EP2199314A1 (en) | 2008-12-19 | 2010-06-23 | Hexion Specialty Chemicals Research Belgium S.A. | Powder coating compositions for low temperature curing and high flow |
NL2002382C2 (en) | 2008-12-30 | 2010-07-01 | Furanix Technologies Bv | A process for preparing a polymer having a 2,5-furandicarboxylate moiety within the polymer backbone and such (co)polymers. |
JP5517494B2 (en) | 2009-06-03 | 2014-06-11 | キヤノン株式会社 | Polyester, production method thereof, and molded product |
US8314267B2 (en) | 2009-06-26 | 2012-11-20 | Uop Llc | Carbohydrate route to para-xylene and terephthalic acid |
DE102009028976A1 (en) | 2009-08-28 | 2011-03-03 | Evonik Oxeno Gmbh | Esters of 2,5-furandicarboxylic acid with isomeric decanols and their use |
DE102009028975A1 (en) | 2009-08-28 | 2011-03-03 | Evonik Oxeno Gmbh | Ester derivatives of 2,5-furandicarboxylic acid and their use as plasticizers |
WO2011124639A1 (en) | 2010-04-07 | 2011-10-13 | Novozymes A/S | A method of producing hydroxymethylfurfural |
EP2591040B1 (en) | 2010-07-07 | 2019-08-14 | Perstorp AB | Alkyd resin |
CN105061807B (en) | 2010-08-23 | 2018-03-02 | 佩什托普公司 | Non-neighboring terephthalate-type plasticizer |
US20130095270A1 (en) | 2011-10-14 | 2013-04-18 | Eastman Chemical Company | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and cyclohexanedimethanol |
-
2012
- 2012-10-10 US US13/648,508 patent/US20130095270A1/en not_active Abandoned
- 2012-10-10 US US13/648,479 patent/US10800877B2/en active Active
- 2012-10-10 US US13/648,534 patent/US10800878B2/en active Active
- 2012-10-10 US US13/648,492 patent/US20130095269A1/en not_active Abandoned
- 2012-10-10 US US13/648,519 patent/US20130095271A1/en not_active Abandoned
- 2012-10-10 US US13/648,471 patent/US9228051B2/en active Active
- 2012-10-11 EP EP17179489.4A patent/EP3260482B1/en active Active
- 2012-10-11 KR KR1020147009148A patent/KR101929468B1/en active Active
- 2012-10-11 EP EP12778906.3A patent/EP2766408B1/en active Active
- 2012-10-11 EP EP19165948.1A patent/EP3521333B1/en active Active
- 2012-10-11 KR KR1020187035771A patent/KR101971677B1/en active Active
- 2012-10-11 WO PCT/US2012/059664 patent/WO2013055862A1/en active Application Filing
- 2012-10-11 WO PCT/US2012/059662 patent/WO2013055860A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9850342B2 (en) | 2013-12-19 | 2017-12-26 | Toyobo Co., Ltd. | Polyester resin |
US20180022866A1 (en) * | 2015-02-13 | 2018-01-25 | The Coca-Cola Company | Barrier enhanced pet multilayer container |
US11905363B2 (en) * | 2015-02-13 | 2024-02-20 | The Coca-Cola Company | Barrier enhanced pet multilayer container |
US10815334B2 (en) | 2015-09-04 | 2020-10-27 | Mitsubishi Chemical Corporation | Polyester resin, production method for said polyester resin, and polyester resin composition |
US11905362B2 (en) | 2016-09-16 | 2024-02-20 | Origin Materials Operating, Inc. | Polymers and methods of producing thereof |
Also Published As
Publication number | Publication date |
---|---|
US20130095272A1 (en) | 2013-04-18 |
US20130095268A1 (en) | 2013-04-18 |
EP3260482A1 (en) | 2017-12-27 |
EP3521333A1 (en) | 2019-08-07 |
WO2013055862A1 (en) | 2013-04-18 |
KR101929468B1 (en) | 2018-12-14 |
EP2766408B1 (en) | 2017-07-05 |
WO2013055860A1 (en) | 2013-04-18 |
US20130095263A1 (en) | 2013-04-18 |
US10800877B2 (en) | 2020-10-13 |
EP3260482B1 (en) | 2019-04-24 |
KR20180135496A (en) | 2018-12-20 |
KR101971677B1 (en) | 2019-04-23 |
EP3521333B1 (en) | 2022-08-24 |
US9228051B2 (en) | 2016-01-05 |
EP2766408A1 (en) | 2014-08-20 |
KR20140092297A (en) | 2014-07-23 |
US20130095269A1 (en) | 2013-04-18 |
US20130095271A1 (en) | 2013-04-18 |
US10800878B2 (en) | 2020-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10800878B2 (en) | Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and ethylene glycol | |
US9676902B2 (en) | Aliphatic-aromatic copolyesters and their mixtures | |
US8461273B2 (en) | Biodegradable aliphatic-aromatic copolyester | |
US10316139B2 (en) | Aliphatic-aromatic biodegradable polyester | |
US10988587B2 (en) | Polymer composition for highly disintegratable film | |
US20110187029A1 (en) | Aliphatic-aromatic polyester | |
AU2009295910A1 (en) | Aliphatic polyester | |
JP2012512937A (en) | A miscible blend of terephthalate polyesters containing 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethylcyclobutane-1,3-diol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN CHEMICAL COMPANY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARMAN, HOWARD SMITH, JR.;KILLMAN, JACK I., JR.;CRAWFORD, EMMETT DUDLEY;AND OTHERS;SIGNING DATES FROM 20121010 TO 20121023;REEL/FRAME:029384/0256 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |