US20130091762A1 - Fuel additives with improved miscibility and reduced tendency to form emulsions - Google Patents
Fuel additives with improved miscibility and reduced tendency to form emulsions Download PDFInfo
- Publication number
- US20130091762A1 US20130091762A1 US13/708,374 US201213708374A US2013091762A1 US 20130091762 A1 US20130091762 A1 US 20130091762A1 US 201213708374 A US201213708374 A US 201213708374A US 2013091762 A1 US2013091762 A1 US 2013091762A1
- Authority
- US
- United States
- Prior art keywords
- formula
- temperature
- carboxylic acid
- reaction
- alkanol amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002816 fuel additive Substances 0.000 title description 10
- 239000000839 emulsion Substances 0.000 title description 7
- 230000002829 reductive effect Effects 0.000 title description 2
- 239000000654 additive Substances 0.000 claims abstract description 82
- -1 carboxylic acid compound Chemical class 0.000 claims abstract description 80
- 150000001412 amines Chemical class 0.000 claims abstract description 57
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 48
- 230000000996 additive effect Effects 0.000 claims abstract description 44
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 239000003599 detergent Substances 0.000 claims abstract description 21
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 18
- 239000011541 reaction mixture Substances 0.000 claims abstract description 16
- 239000003960 organic solvent Substances 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 23
- 239000004215 Carbon black (E152) Substances 0.000 claims description 19
- 239000000047 product Substances 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 125000001931 aliphatic group Chemical group 0.000 claims description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 10
- 229920000098 polyolefin Polymers 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 4
- 125000005907 alkyl ester group Chemical group 0.000 claims description 2
- 229960002317 succinimide Drugs 0.000 claims 1
- 239000000446 fuel Substances 0.000 description 28
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 239000002904 solvent Substances 0.000 description 19
- 229920002367 Polyisobutene Polymers 0.000 description 16
- 239000003502 gasoline Substances 0.000 description 15
- 239000002199 base oil Substances 0.000 description 14
- 229930195733 hydrocarbon Natural products 0.000 description 14
- 229920000768 polyamine Polymers 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 11
- 229930195729 fatty acid Natural products 0.000 description 11
- 239000000194 fatty acid Substances 0.000 description 11
- 150000004665 fatty acids Chemical class 0.000 description 11
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 10
- 150000001735 carboxylic acids Chemical class 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 10
- 229920000570 polyether Polymers 0.000 description 10
- 239000000376 reactant Substances 0.000 description 10
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 9
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 9
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 8
- 239000005642 Oleic acid Substances 0.000 description 8
- 239000003607 modifier Substances 0.000 description 8
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 8
- 229920005862 polyol Polymers 0.000 description 8
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 7
- 229940043237 diethanolamine Drugs 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 150000003077 polyols Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 150000004702 methyl esters Chemical class 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 5
- 150000002924 oxiranes Chemical class 0.000 description 5
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 150000001733 carboxylic acid esters Chemical group 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 150000003628 tricarboxylic acids Chemical class 0.000 description 4
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 238000005576 amination reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 229920001083 polybutene Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229940014800 succinic anhydride Drugs 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 3
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N (Z)-Palmitoleic acid Natural products CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- UZVAZDQMPUOHKP-UHFFFAOYSA-N 2-(7-methyloctyl)phenol Chemical compound CC(C)CCCCCCC1=CC=CC=C1O UZVAZDQMPUOHKP-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 2
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 2
- QDTDKYHPHANITQ-UHFFFAOYSA-N 7-methyloctan-1-ol Chemical compound CC(C)CCCCCCO QDTDKYHPHANITQ-UHFFFAOYSA-N 0.000 description 2
- PLLBRTOLHQQAQQ-UHFFFAOYSA-N 8-methylnonan-1-ol Chemical compound CC(C)CCCCCCCO PLLBRTOLHQQAQQ-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N Behenic acid Natural products CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000006683 Mannich reaction Methods 0.000 description 2
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- CNVZJPUDSLNTQU-SEYXRHQNSA-N Petroselinic acid Natural products CCCCCCCCCCC\C=C/CCCCC(O)=O CNVZJPUDSLNTQU-SEYXRHQNSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 159000000032 aromatic acids Chemical class 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000006184 cosolvent Substances 0.000 description 2
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical class OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N methyl undecanoic acid Natural products CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- AOHAPDDBNAPPIN-UHFFFAOYSA-N myristicinic acid Natural products COC1=CC(C(O)=O)=CC2=C1OCO2 AOHAPDDBNAPPIN-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N n-hexadecanoic acid Natural products CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000005498 phthalate group Chemical class 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- YLQLIQIAXYRMDL-UHFFFAOYSA-N propylheptyl alcohol Chemical compound CCCCCC(CO)CCC YLQLIQIAXYRMDL-UHFFFAOYSA-N 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 125000005591 trimellitate group Chemical group 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000005918 1,2-dimethylbutyl group Chemical group 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- IRTOOLQOINXNHY-UHFFFAOYSA-N 1-(2-aminoethylamino)ethanol Chemical class CC(O)NCCN IRTOOLQOINXNHY-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- OXEDXHIBHVMDST-UHFFFAOYSA-N 12Z-octadecenoic acid Natural products CCCCCC=CCCCCCCCCCCC(O)=O OXEDXHIBHVMDST-UHFFFAOYSA-N 0.000 description 1
- GELKGHVAFRCJNA-UHFFFAOYSA-N 2,2-Dimethyloxirane Chemical group CC1(C)CO1 GELKGHVAFRCJNA-UHFFFAOYSA-N 0.000 description 1
- JKTAIYGNOFSMCE-UHFFFAOYSA-N 2,3-di(nonyl)phenol Chemical compound CCCCCCCCCC1=CC=CC(O)=C1CCCCCCCCC JKTAIYGNOFSMCE-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- TZGPACAKMCUCKX-UHFFFAOYSA-N 2-hydroxyacetamide Chemical class NC(=O)CO TZGPACAKMCUCKX-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoic acid Chemical compound CC(C)(C)C1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- 125000006042 4-hexenyl group Chemical group 0.000 description 1
- ANHQLUBMNSSPBV-UHFFFAOYSA-N 4h-pyrido[3,2-b][1,4]oxazin-3-one Chemical group C1=CN=C2NC(=O)COC2=C1 ANHQLUBMNSSPBV-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 101100457838 Caenorhabditis elegans mod-1 gene Proteins 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 101150110972 ME1 gene Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- CNVZJPUDSLNTQU-UHFFFAOYSA-N Petroselaidic acid Natural products CCCCCCCCCCCC=CCCCCC(O)=O CNVZJPUDSLNTQU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 101100457843 Schizosaccharomyces pombe (strain 972 / ATCC 24843) tit1 gene Proteins 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000003901 ceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000002818 heptacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 125000002819 montanyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001802 myricyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002465 nonacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- 150000002888 oleic acid derivatives Chemical class 0.000 description 1
- 229940113162 oleylamide Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000002460 pentacosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000005063 tetradecenyl group Chemical group C(=CCCCCCCCCCCCC)* 0.000 description 1
- AQWHMKSIVLSRNY-UHFFFAOYSA-N trans-Octadec-5-ensaeure Natural products CCCCCCCCCCCCC=CCCCC(O)=O AQWHMKSIVLSRNY-UHFFFAOYSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 125000002469 tricosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005040 tridecenyl group Chemical group C(=CCCCCCCCCCCC)* 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005065 undecenyl group Chemical group C(=CCCCCCCCCC)* 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- DTOSIQBPPRVQHS-UHFFFAOYSA-N α-Linolenic acid Chemical compound CCC=CCC=CCC=CCCCCCCCC(O)=O DTOSIQBPPRVQHS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/16—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
- C07C233/17—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/20—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/224—Amides; Imides carboxylic acid amides, imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1608—Well defined compounds, e.g. hexane, benzene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/1822—Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
- C10L1/1824—Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
- C10L1/1985—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
- C10L1/2387—Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
Definitions
- the present invention relates to novel fuel additives obtainable by reacting carboxylic acids and alkanol amines under specific conditions. Said additives show an improved performance in fuels, like gasoline.
- the invention also relates to methods of preparing the same; additive packages containing said additives; and methods of improving the storage stability of additive packages comprising a detergent additive in an organic solvent.
- Reaction products of fatty acid derivatives and alkanol mono- or polyamines are known to be useful additives for application in gasoline and diesel.
- EP 1 295 933 describes deposit control additives for direct injected engines available by reaction of monocarboxylic acids and polyamines. Most preferred is a molar ratio of 1 to 1.5 moles of monocarboxylic acid and 1 mole of polyamine. Specific preferred examples are the reaction products of equimolar amounts of tallow fatty acid or oleic acid and AEAE. According to the general procedure disclosed therein the reaction is performed at reflux temperature which is in the range of 150 to 175° C. There is no suggestion made in said document with respect to choosing the reaction conditions (molar ratio and/or reaction temperature) such that polysubstituted alkanolamines are preferentially formed. In particular, it is not suggested to control the kinetics of the reaction by selecting a suitable temperature profile.
- EP 1 435 386 describes fatty acid alkanol amides, which improve the acceleration properties of internal combustion engines. This document describes alkanol monoamides obtainable by reaction of 1 mole of fatty acid or it's esters and 1 mole of an alkanol monoamine.
- EP1 272 594 describes the use of friction modifiers, which are the reaction products of certain natural or synthetic carboxylic acid glyceryl esters and alkanol amines in combination with a detergent additive in gasoline for improving the delivery of the friction modifier to the lubricant of the engine.
- the reaction of preparing the friction modifier is performed without applying a specific temperature profile.
- the specific selection of a significant molar excess of the alkanol amine is neither suggested nor exemplified.
- Similar friction modifiers are disclosed on WO 2007/053787 where it is suggested to use the same in combination with a solvent, an alcohol and certain compatibilizer to form fuel additive concentrates remaining fluid at ⁇ 8° C. or below.
- the problem to be solved by the present invention therefore, was to develop additives, which show better solubility and compatibility as well as milder emulsion behaviour than conventional reaction products of fatty acids and alkanol amines, while, preferably, maintaining a similar additive performance profile.
- the additives of the present invention should improve the storage stability of additive packages, in particular at temperatures below 0° C., and should improve the phase separation of fuel/water emulsions so that less or no dehazer is required for preparing the fuel.
- a first embodiment of the invention relates to a reaction product, obtainable by reacting, preferably in a thermal condensation reaction, a carboxylic acid (or carboxylate) compound of formula I
- R 1 is an aliphatic C 1 -C 30 -hydrocarbon radical
- R 2 is hydrogen or alkyl, mono- or polyhydroxyalkyl, or ammonium, with an alkanol amine of the formula II
- R 3 and R 4 are independently selected from hydrogen atoms and linear or branched-chain hydrocarbon groups, the carbon chain of which optionally being interrupted by one or more —NH— groups, and which optionally has at least one hydroxyl group attached to a carbon atom, with the proviso that R 3 and R 4 are not both hydrogen atoms and that at least one of said residues R 3 and R 4 carries at least one hydroxyalkyl group, in a molar ratio of the carboxyl groups (—COO—) of the carboxylic acid of formula I to the molar sum of OH and NH groups of the alkanol amine of formula II in a range and under reaction conditions supporting the formation of a reaction product comprising polysubstituted alkanol amine derivatives.
- said polysubstituted (as for example polycarbonylated) alkanol amine derivatives are comprised in said reaction product in a proportion of more than 20 wt.-%, preferably more than 40 wt.-%, and in particular more than 60 wt.-%, based on the total weight of the reaction product.
- 1:1 adducts are present in a total amount of 20 wt.-% or less, more preferred at 15 wt.-% or less and most preferred at a level of 10 wt.-% or less, like about 0.1 to about 10 or about 1 to about 8 or about 1.5 to about 5, about 2 to about 4 wt.-%, based on the total weight of the reaction product.
- the reaction product of the invention is obtained by a process, wherein the molar ratio of the carboxyl groups of the carboxylic acid of formula I to the molar sum of OH and NH groups of the alkanol amine of formula II is in the range of about 1.8:3 to 3:3, in particular 1.9:3 to 2.5:3.
- reaction is performed by
- the first temperature in step a), b) and/or c) is kept in the range of about 100 to about 155° C., as for example about 110 to about 140° C., or about 120 to about 135° C.
- the second temperature in step d) is kept in the range of 160 to 210° C., as for example about 170 to about 200° C., or about 175 to about 190° C.
- the additive is obtained by reacting a carboxylic acid compound with an alkanol amine of formula II, wherein R 3 and R 4 independently of each other represent hydrogen or a residue of the formula III
- reaction product is obtained from a compound of formula I, which is selected from C 2 -C 31 - or C 8 -C 31 - or C 8 -C 30 - or C 10 -C 22 -carboxylic acids and alkyl esters thereof.
- the compound of formula II is selected from polyamino alkanols, wherein one of the residues R 3 and R 4 is hydrogen and the other is a residue of the formula III, wherein x is 2 or 3, y is 0 or 1, z is 2 or 3 and R 5 is hydroxyl or a residue of the formula IV.
- additive packages comprising in a suitable organic solvent at least one detergent additive and at least one reaction product as defined above.
- a method of improving the storage stability of additive packages wherein the additive package comprises at least one detergent additive in an organic solvent comprises adding to said package at least one reaction product of the invention.
- said detergent additive is selected from as polyalkene monoamines, polyalkene Mannich amines or polyalkene succinimides.
- reaction product means the product of a specific reaction of at least one carboxylic acid compound or a carboxylic acid compound containing first reactant, and at least one alkanol amine or an alkanol amine containing second reactant as explained in more detail below.
- the reaction product is complex in nature, i.e. consists of a complex mixture of constituents, the profile of which being substantially predetermined by the reaction conditions of said conversion.
- the reaction product is, as such, a suitable additive for fuels and normally need not be further purified prior to use.
- the product may, however, be concentrated (if necessary) in order to remove residual solvent or low molecular constituents, like water or non-reacted reactants, if any.
- carboxylate compound refers to any compound of formula I as defined d above.
- aliphatic C 1 -C 30 -hydrocarbon radical denotes an acyclic radical which is composed substantially of carbon atoms and hydrogen atoms and comprises from 1 to 30, as for example 8 to 30 carbon atoms.
- the hydrocarbon radical is preferably an alkyl, alkenyl, alkadienyl, alkatrienyl or polyenyl radical.
- An alkyl radical comprises C 1 -C 8 -alkyl radicals which are linear or branched radicals having from 1 to 8 carbon atoms. Examples thereof are the C 1 -C 4 -alkyl radicals methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl or tert-butyl, and additionally pentyl, methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbut
- Examples thereof are octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, hencosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, squalyl, their constitutional isomers, higher homologs and constitutional isomers thereof.
- Alkenyl comprises C 2 -C 8 -alkenyl radicals which are monounsaturated linear or branched hydrocarbon radicals having from 2 to 8 carbon atoms, as for example ethenyl, 1- or 2-propenyl, 1-, 2- and 3-butenyl, 2-methylpropen-3-yl, 2-methylpropen-1-yl, 1-, 2-, 3- and 4-pentenyl, 1-, 2-, 3-, 4- and 5-hexenyl, 1-, 2-, 3-, 4-, 5- and 6-heptenyl 1-, 2-, 3-, 4-, 5-, 6- and 7-octenyl and also their constitutional isomers;
- C 8 -C 30 -Alkenyl is a monounsaturated linear or branched hydrocarbon radical having from 8 to 30 carbon atoms.
- Examples thereof are octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, hencosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, squalenyl, their constitutional isomers, higher homologs and constitutional isomers thereof.
- Alkandienyl radicals comprise C 4 -C 8 -alkadienyl radicals which are diunsaturated linear or branched hydrocarbon radical having from 4 to 8 carbon atoms, as for example butadienyl, pentadienyl, hexadienyl, heptadienyl or octadienyl and their constitutional isomers; or C 8 -C 30 -alkadienyl radicals which are diunsaturated linear or branched hydrocarbon radicals having from 8 to 30 carbon atoms.
- Examples thereof are octadienyl, nonadienyl, decadienyl, undecadienyl, dodecadienyl, tridecadienyl, tetradecadienyl, pentadecadienyl, hexadecadienyl, heptadecadienyl, octadecadienyl, nonadecadienyl, eicosadienyl, hencosadienyl, docosadienyl, tricosadienyl, tetracosadienyl, pentacosadienyl, hexacosadienyl, heptacosadienyl, octacosadienyl, nonacosadienyl, squaladienyl, their constitutional isomers, higher homologs and constitutional isomers thereof.
- Alkantrienyl radicals comprise C 6 -C 8 -alkatrienyl radicals which are tri-unsaturated linear or branched hydrocarbon radical having from 6 to 8 carbon atoms, as for example hexatrienyl, heptatrienly or octatrienyl; or C 8 -C 30 -alkatrienyl radicals, which are triunsaturated linear or branched hydrocarbon radicals having from 8 to 30 carbon atoms.
- Examples thereof are octatrienyl, nonatrienyl, decatrienyl, undecatrienyl, dodecatrienyl, tridecatrienyl, tetradecatrienyl, pentadecatrienyl, hexadecatrienyl, heptadecatrienyl, octadecatrienyl, nonadecatrienyl, eicosatrienyl, hencosatrienyl, docosatrienyl, tricosatrienyl, tetracosatrienyl, pentacosatrienyl, hexacosatrienyl, heptacosatrienyl, octacosatrienyl, nonacosatrienyl, squalatrienyl, their constitutional isomers, higher homologs and constitutional isomers thereof.
- the olefinic double bonds may be present in conjugated or isolated form.
- Polyenyl radicals are in particular C 8 -C 30 -polyenyl radicals which are generally unsaturated linear or branched aliphatic hydrocarbon radicals having from 8 to 30 carbon atoms and four, five, six or more olefinic nonvicinal double bonds Examples thereof are the higher unsaturated analogs of the above C 8 -C 30 -alkadi- and trienyl residues.
- alkyl refers to C 1 -C 8 -alkyl as defined above.
- mono- or polyhydroxyalkyl refers to C 1 -C 8 -hydroxyalkyl which is a linear or branched alkyl radical having from 1 to 8, in particular from 1 to 4 carbon atoms, in which at least one hydrogen atom, for example 1, 2, 3, or 4 of the hydrogen atoms, is/are replaced by a hydroxyl group.
- R 2 represents a polyhydroxyalkyl residue
- said hydroxy groups are, preferably, not further esterified.
- compounds of formular I do not comprise polyol polyester, as for example triglycerides.
- hydroxyalkyl refers to C 1 -C 8 -hydroxyalkyl which is a linear or branched alkyl radical having from 1 to 8, in particular from 1 to 4 carbon atoms, in which one hydrogen atom is replaced by a hydroxyl group. Suitable examples are stated above.
- a “linear or branched-chain hydrocarbon group, the carbon chain of which optionally being interrupted by one or more —NH— groups optionally carrying at least one hydroxyalkyl group”, comprises a terminal hydroxyalkyl group which is a mono- or polyhydroxyalkyl group as defined above, and comprises optionally at least one C 1 -C 6 -alkylene group, optionally substituted by 1 or more, like 1, 2, or 3 hydroxyl groups, whereby two or more of said alkylene groups being linked together by a —NH-group.
- C 1 -C 6 -Alkylene is a linear or branched bridging hydrocarbon group having 2, 3, 4, 5 or 6 carbon atoms, such as 1,2-ethylene, 1,2- and 1,3-propylene, 1,2-, 1,3-, 2,3- and 1,4-butylene, 2,2-dimethyl-1,2-ethylene, 1,1-dimethyl-1,2-ethylene, 1,5-pentylene, 1,6-hexylene and constitutional isomers thereof.
- a “polysubstituted” or “polycarbonylated” alkanol amine derivative is derived from an polyfunctional alkanol amine, as for example an alkanol polyamine, wherein more than one functional groups (—NH— or —OH groups) of which, being substituted by a carbonyl residue of the formula —CO(hycrocarbyl), wherein hydrocarbyl has the same meanings as an “aliphatic C 1 -C 30 -hydrocarbon radical” as already defined above.
- said substituents may be derived from same or different C 10 -C 22 -carboxylic acids.
- the term “polysubstituted” encompasses di-, tri-, tetra and higher substituted alkanol amine derivatives.
- a “C 2 -C 31 -carboxylic acid” represents a straight-chain or branched, saturated or mono- or poly-unsaturated C 1-30 -hydrocarbyl residue.
- said residue is a straight-chain mono- or poly-unsaturated hydrocarbyl residue or a mixture of such residues with an average length of 1-30, 1-29, preferably 5-25 carbon atoms.
- Particularly preferred residues are:
- Said hydrocarbyl residue may also be derived from fatty acid mixtures as obtained from naturally occurring oils and fats.
- oils and fats Non-limiting examples thereof are olive oil, palm oil, palm cernel oil, peanut oil, rapeseed oil, safflower oil, sesame oil, sunflower oil, soy bean oil, to beef tallow oil, lard oil, castor oil, cottonseed oil, corn oil, soybean oil, whale oil, and coconut oil.
- Suitable fatty acids there may be mentioned monocarboxylic acids such as capric, lauric, myristic, palmitic, stearic, behenic, oleic, petroselinic, elaidic, palmitoleic, linoleic, linolenic and erucic acid.
- alkanol amines has to be understood broadly. It comprises monoalkanolamines, dialkanolamines, and so forth.
- the alkanolamine can possess one or more additional O and/or N functionalities in addition to the one amino group. and at least one hydroxy group.
- Suitable alkanolamines include monoethanolamine, diethanolamine, propanolamine, isopropanolamine, dipropanolamine, di-isopropanolamine, butanolamines, and polyaminoalkanols like aminoethylaminoethanols, e.g., 2-(2-aminoethylamino)ethanol (AEAE)
- Alkanol amines are, for example, compounds of formula II wherein at least one of the residues R 3 and R 4 represents —[(CH 2 ) x NH] y (CH 2 ) z R 5 wherein R 5 is hydroxyl or NH(CH 2 ) z OH.
- Suitable examples of groups of the formula —[(CH 2 ) x NH] y (CH 2 ) z — are
- ⁇ C 2 H 4 NH ⁇ n C 2 H 4 , ⁇ CH 2 ) 3 —NH ⁇ n (CH 2 ) 3 —, ⁇ CH 2 —CH(CH 3 )—NH ⁇ n CH 2 —CH(CH 3 )—, ⁇ CH(CH 3 )—CH 2 —NH ⁇ n CH(CH 3 )—CH 2 —, ⁇ CH 2 ) 4 —NH ⁇ n (CH 2 ) 4 —, wherein n is 0, 1 or 2.
- R 3 and R 4 represents H, and in the other R 5 is hydroxyl and —[(CH 2 ) x NH] y (CH 2 ) z is selected from ⁇ C 2 H 4 —NH ⁇ n C 2 H 4 , ⁇ CH 2 ) 3 —NH ⁇ n (CH 2 ) 3 —, ⁇ CH 2 —CH(CH 3 )—NH ⁇ n CH 2 —CH(CH 3 )—, ⁇ CH(CH 3 )—CH 2 —NH ⁇ n CH(CH 3 )—CH 2 —, ⁇ CH 2 ) 4 —NH ⁇ n (CH 2 ) 4 —, while n is 1 or 2.
- the reaction product may represent a complex product mixture, which is characterized by a high proportion of polysubstituted, i.e. at least two-fold substituted, alkanol polyamines (or polyaminoalkanols).
- the reaction mixture is characterized by a high proportion of constituents, which are selectively carbonylated at primary and/or secondary amino groups.
- reaction products are obtainable by reaction of an alkanol amine selected from the above-identified group of specific alkanol amines with a carboxylic acid containing reagent under conditions defined herein.
- the reaction product formed may contain main constituents A, B and C (as depicted below), which are: the main diamide product (A), optionally in admixture with the corresponding (analytically difficult to distinguish) monoamidoester, each of which carrying two carbonyl residues; the fully substituted diamidoester (B) carrying three carbonyl groups; and the monoamide (C).
- the reaction mixture may also contain minor amounts of unreacted oleic acid (D) (1-5%) and AEAE ( ⁇ 0.1%) as well as significant amounts (10-20%) of unidentified by-products (it is presumed that i.a.
- the kinetically controlled first step of the reaction favors the formation of the main component, in particular the diamide (A), while the less specific reaction conditions in the second reaction step at about 180° C. result in the formation of the diamidoester (B).
- suitable solvents there may be used any solvent, which does not negatively affect the conversion reaction, and, optionally which is compatible with the other constituents of an additive package or the fuel to which the additive of the invention has to be added, so that it is not necessary to remove the solvent prior to use.
- toluene, xylene or any other aromatic solvent dioxane, dialkyl glycol and dialkyl oligo glycols.
- reaction products of the present invention may be added to the fuel as friction modifier, lubricity additive, detergent or deposit control additive, acceleration improver, or corrosion inhibitor
- reaction products of the invention may be added to the fuels individually or in a mixture with further effective additive components (co-additives) as exemplified in ore detail below.
- detergent additives examples include additives comprising detergent action (hereinafter referred to as detergent additives).
- This detergent additive has at least one hydrophobic hydrocarbon radical having a number-average molecular weight (Mn) of from 85 to 20 000 and at least one polar moiety selected from:
- the hydrophobic hydrocarbon radical in the above detergent additives which ensures the adequate solubility in the fuel, has a number-average molecular weight (Mn) of from 85 to 20 000, especially from 113 to 10 000, in particular from 300 to 5000.
- Non-limiting examples of the above groups of detergent additives include the following:
- polybutene or polyisobutene having predominantly internal double bonds usually in the beta and gamma position
- a possible preparative route is by chlorination and subsequent amination or by oxidation of the double bond with air or ozone to give the carbonyl or carboxyl compound and subsequent amination under reductive (hydrogenating) conditions.
- the amines used here for the amination may be, for example, ammonia, monoamines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
- amines used here for the amination may be, for example, ammonia, monoamines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
- Corresponding additives based on polypropene are described in particular in WO-A-94/24231.
- additives comprising monoamino groups (a) are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in DE-A-196 20 262.
- These reaction products are generally mixtures of pure nitropolyisobutenes (e.g. alpha,beta-dinitropolyisobutene) and mixed hydroxynitropolyisobutenes (e.g. alpha-nitro-beta-hydroxypolyisobutene).
- Additives comprising carboxyl groups or their alkali metal or alkaline earth metal salts (d) are preferably copolymers of C 2 -C 40 -olefins with maleic anhydride which have a total molar mass of from 500 to 20 000 and of whose carboxyl groups some or all have been converted to the alkali metal or alkaline earth metal salts and any remainder of the carboxyl groups has been reacted with alcohols or amines.
- Such additives are disclosed in particular by EP-A-307 815.
- Such additives serve mainly to prevent valve seat wear and can, as described in WO-A-87/01126, advantageously be used in combination with customary fuel detergents such as poly(iso)buteneamines or polyetheramines.
- Additives comprising sulfonic acid groups or their alkali metal or alkaline earth metal salts are preferably alkali metal or alkaline earth metal salts of an alkyl sulfosuccinate, as described in particular in EP-A-639 632.
- Such additives serve mainly to prevent valve seat wear and can be used advantageously in combination with customary fuel detergents such as poly(iso)buteneamines or polyetheramines.
- Additives comprising polyoxy-C 2 -C 4 -alkylene moieties (f) are preferably polyethers or polyetheramines which are obtainable by reaction of C 2 - to C 60 -alkanols, C 6 - to C 30 -alkanediols, mono- or di-C 2 -C 30 -alkylamines, C 1 -C 30 -alkylcyclohexanols or C 1 -C 30 -alkylphenols with from 1 to 30 mol of ethylene oxide and/or propylene oxide and/or butylene oxide per hydroxyl group or amino group and, in the case of the polyether-amines, by subsequent reductive amination with ammonia, monoamines or polyamines.
- Such products are described in particular in EP-A-310 875, EP-A-356 725, EP-A-700 985 and U.S. Pat. No. 4,877,416.
- polyethers such products also have carrier oil properties. Typical examples of these are tridecanol butoxylates, isotridecanol butoxylates, isononylphenol butoxylates and polyisobutenol butoxylates and propoxylates and also the corresponding reaction products with ammonia.
- Additives comprising carboxylic ester groups (g) are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, in particular those having a minimum viscosity of 2 mm 2 /s at 100° C., as described in particular in DE-A-38 38 918.
- the mono-, di- or tricarboxylic acids used may be aliphatic or aromatic acids, and particularly suitable ester alcohols or ester polyols are long-chain representatives having, for example, from 6 to 24 carbon atoms.
- esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, of isononanol, of isodecanol and of isotridecanol.
- Such products also have carrier oil properties.
- Particular interest attaches to derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
- Such gasoline fuel additives are described in particular in U.S. Pat. No. 4,849,572.
- Additives comprising moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono- or polyamines are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
- Such “polyisobutene-Mannich bases” are described in particular in EP-A-831 141.
- additive formulations according to the invention may additionally be combined with still further customary components and additives. Mention should be made here primarily of carrier oils.
- Suitable mineral carrier oils are the fractions obtained in crude oil processing, such as brightstock or base oils having viscosities, for example, from the SN 500-2000 class; and also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. Likewise useful is a fraction which is obtained in the refining of mineral oil and is known as “hydrocrack oil” (vacuum distillate cut having a boiling range of from about 360 to 500° C., obtainable from natural mineral oil which has been catalytically hydrogenated under high pressure and isomerized and also deparaffinized). Likewise suitable are mixtures of abovementioned mineral carrier oils.
- Examples of synthetic carrier oils which are useful in accordance with the invention are selected from: polyolefins (poly-alpha-olefins or poly(internal olefin)s), (poly)esters, (poly)alkoxylates, polyethers, aliphatic polyether amines, alkylphenol-started polyethers, alkylphenol-started polyether amines and carboxylic esters of long-chain alkanols.
- suitable polyethers or polyetheramines are preferably compounds comprising polyoxy-C 2 -C 4 -alkylene moieties which are obtainable by reacting C 2 -C 60 -alkanols, C 6 -C 30 -alkanediols, mono- or di-C 2 -C 30 -alkylamines, C 1 -C 30 -alkylcyclohexanols or C 1 -C 30 -alkylphenols with from 1 to 30 mol of ethylene oxide and/or propylene oxide and/or butylene oxide per hydroxyl group or amino group, and, in the case of the polyether amines, by subsequent reductive amination with ammonia, monoamines or polyamines.
- the polyether amines used may be poly-C 2 -C 6 -alkylene oxide amines or functional derivatives thereof. Typical examples thereof are tridecanol butoxylates or isotridecanol butoxylates, isononylphenol butoxylates and also polyisobutenol butoxylates and propoxylates, and also the corresponding reaction products with ammonia.
- carboxylic esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A-38 38 918.
- the mono-, di- or tricarboxylic acids used may be aliphatic or aromatic acids; suitable ester alcohols or polyols are in particular long-chain representatives having, for example, from 6 to 24 carbon atoms.
- esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and isotridecanol, for example di-(n- or isotridecyl) phthalate.
- suitable synthetic carrier oils are alcohol-started polyethers having from about 5 to 35, for example from about 5 to 30, C 3 -C 6 -alkylene oxide units, for example selected from propylene oxide, n-butylene oxide and isobutylene oxide units, or mixtures thereof.
- suitable starter alcohols are long-chain alkanols or phenols substituted by long-chain alkyl in which the long-chain alkyl radical is in particular a straight-chain or branched C 6 -C 18 -alkyl radical.
- Preferred examples include tridecanol and nonylphenol.
- suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A-10 102 913.6.
- any type of hydrocarbon solvent may be mentioned, e.g. kerosene, heavy aromatic solvent (“solvent naphta heavy”, “Solvesso 150”), xylene, paraffins, petroleum, etc.
- suitable co-solvents are for example t-BuOH, i-BuOH, 2-ethyl hexanol, 2-propyl heptanol, butyl glycols,
- glycol oxyalkylate polyol blends such as sold under the trade designation TOLADTM 9312
- phenol/formaldehyde or C 1-18 alkylphenol/-formaldehyde resin oxyalkylates modified by oxyalkylation with C 1-18 epoxides and diepoxides such as sold under the trade designation TOLADTM 9308
- C 14 epoxide copolymers cross-linked with diepoxides, diacids, diesters, diols, diacrylates, dimethacrylates or diisocyanates, and blends thereof.
- the glycol oxyalkylate polyol blends may be polyols oxyalkylated with C 14 epoxides.
- the C 1-18 alkylphenol phenol/-formaldehyde resin oxyalkylates modified by oxyalkylation with C 1-18 epoxides and diepoxides may be based on, for example, cresol, t-butyl phenol, dodecyl phenol or dinonyl phenol, or a mixture of phenol (such as a mixture of t-butyl phenol and nonyl phenol).
- the dehazer should be used in an amount sufficient to inhibit the hazing that might otherwise occur when the fuel without the dehazer contacts water, and this amount will be referred to herein as a “haze-inhibiting amount.” Generally, this amount is from about 0.1 to about 10 ppm based on the weight of the fuel.
- corrosion inhibitors for example based on ammonium salts of organic carboxylic acids, said salts tending to form films, or of heterocyclic aromatics for nonferrous metal corrosion protection
- antioxidants or stabilizers for example based on amines such as p-phenylenediamine, dicyclohexylamine or derivatives thereof or of phenols such as 2,4-di-tert-butylphenol or 3,5-di-tert-butyl-4-hydroxyphenylpropionic acid
- antistats metallocenes such as ferrocene; methylcyclopentadienylmanganese tricarbonyl
- lubricity additives such as certain fatty acids, alkenylsuccinic esters, bis(hydroxyalkyl) fatty amines, hydroxyacetamides or castor oil; and also dyes (markers).
- Amines are also added, if appropriate, to lower the pH of the fuel.
- Amines are also added, if appropriate, to lower
- the additives may be added to the fuel individually or as a concentrate (additive package) comprising a mixture of additives and solvents as discussed above.
- reaction products of the invention are blended with other fuel additives such as detergents, carrier oils, solvent, co-solvent, and other optional minor components as described above.
- such packages may contain:
- the fuel additive package of the present invention remains a fluid at 0° C., or ⁇ 8° C., or ⁇ 18° C., or ⁇ 20° C., or ⁇ 30° C. or even ⁇ 40° C.
- the fuel additive package in its fluid state is substantially free of precipitate and/or sediment.
- the fluid may be substantially free from suspended particles, flocculent, and substantial phase separation (i.e., no multiple phases are formed).
- reaction products of the invention are added to the fuel typically in an amount of from 5 to 2,000 ppm by weight, in particular from 10 to 1,500 or 10 to 500 ppm by weight.
- the other components and additives mentioned above are, if desired, added in amounts customary for the intended purpose.
- additive compositions according to the invention are useful in all conventional diesel and gasoline fuels, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed. 1990, Volume A16, p. 719 ff.
- a gasoline fuel having an aromatics content of not more than 60% by volume, for example not more than 42% by volume or not more than 35% by volume, and/or a sulfur content of not more than 2000 ppm by weight, for example not more than 150 ppm by weight or not more than 10 ppm by weight.
- the aromatics content of the gasoline fuel is, for example, from 10 to 50% by volume, for example from 30 to 42% by volume, in particular from 32 to 40% by volume or not more than 35% by volume.
- the sulfur content of the gasoline fuel is, for example, from 2 to 500 ppm by weight, for example from 5 to 100 ppm by weight, or not more than 10 ppm by weight.
- the gasoline fuel may have, for example, an olefin content of up to 50% by volume, for example from 6 to 21% by volume, in particular from 7 to 18% by volume; a benzene content of up to 5% by volume, for example from 0.5 to 1.0% by volume, in particular from 0.6 to 0.9% by volume, and/or an oxygen content of up to 25% by volume, for example up to 10% by weight, or from 1.0 to 2.7% by weight, in particular from 1.2 to 2.0% by weight.
- an olefin content of up to 50% by volume, for example from 6 to 21% by volume, in particular from 7 to 18% by volume
- a benzene content of up to 5% by volume, for example from 0.5 to 1.0% by volume, in particular from 0.6 to 0.9% by volume
- an oxygen content of up to 25% by volume for example up to 10% by weight, or from 1.0 to 2.7% by weight, in particular from 1.2 to 2.0% by weight.
- gasoline fuels are in particular those which simultaneously have an aromatics content of not more than 38 or 35% by volume, an olefin content of not more than 21% by volume, a sulfur content of not more than 50 or 10 ppm by weight, a benzene content of not more than 1.0% by volume and an oxygen content of from 1.0 to 2.7% by weight.
- the contents of alcohols and ethers in the gasoline fuel may vary over a wide range. Examples of typical maximum contents are 15% by volume for methanol, 65% by volume for ethanol, 20% by volume for isopropanol, 15% by volume for tert-butanol, 20% by volume for isobutanol and 30% by volume for ethers having 5 or more carbon atoms in the molecule.
- the summer vapor pressure of the gasoline fuel is typically not more than 70 kPa, in particular 60 kPa (each at 37° C.).
- the RON of the gasoline fuel is generally from 75 to 105.
- a typical range for the corresponding MON is from 65 to 95.
- a 5 L four-neck glass reactor equipped with condenser, automatic injection equipment, internal temperature control and anchor stirrer was charged with 2200 g of coconut methyl ester (technical grade: ester content, % (m/m): 96. 5 min, kinematic viscosity at 40° C., mm 2 /s: 2.0-4.5) and heated to 150° C. 1050 g of diethanol amine was added at this temperature within 30 minutes. The reaction mixture was kept at 150° C. for 4 hours, and than heated up for 1 hour to 160° C. to completely remove residual methanol. The resulting product was yellow oil.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
This invention relates to an additive package containing an organic solvent, a detergent additive and a reaction product mixture obtained by reacting a carboxylic acid compound of formula (I): R1COOR2 with an alkanol amine of formula (II): NHR3R4 to form a reaction product containing a polysubstituted alkanol amine derivative, where the reaction is performed by:
-
- (a) heating the carboxylic acid of formula (I) to a first temperature;
- (b) adding thereto the alkanol amine of formula (II) under controlled conditions avoiding an increase of temperature above the first temperature range;
- (c) maintaining temperature in the first temperature range; and
- (d) increasing the temperature of the reaction mixture to a second temperature in a second temperature range of 160 to 210° C. and allowing further reaction of residual free carboxylic acid molecules with any reactive group in the reaction mixture.
Description
- This application is a Continuation of U.S. patent application Ser. No. 12/681,788 filed Apr. 6, 2010, which is a National Stage of PCT/EP08/64021 filed Oct. 17, 2008 and claims the benefit of priority from EP patent application no. 07118841.1 filed Oct. 19, 2007.
- The present invention relates to novel fuel additives obtainable by reacting carboxylic acids and alkanol amines under specific conditions. Said additives show an improved performance in fuels, like gasoline. The invention also relates to methods of preparing the same; additive packages containing said additives; and methods of improving the storage stability of additive packages comprising a detergent additive in an organic solvent.
- Reaction products of fatty acid derivatives and alkanol mono- or polyamines are known to be useful additives for application in gasoline and diesel.
- Chapter 7: Organic Friction Modifiers, Lubricant Additives: Chemistry and Applications; Leslie R. Rudnick, CRC 2003, ISBN 0824708571. Kenbeek and Buenemann explain that non-acetic organic friction modifiers are preferably long straight-chain molecules with small polar heads. They are described to form adsorption layers on the surface where multiple molecules are adsorbed by hydrogen bonding and Debye orientation forces. Van der Waals forces cause the molecules to align themselves such that they form multimolecular clusters that are parallel to each other. Examples of organic friction modifiers are oleylamide and glycerol mono-oleate (GMO).
- EP 1 295 933 describes deposit control additives for direct injected engines available by reaction of monocarboxylic acids and polyamines. Most preferred is a molar ratio of 1 to 1.5 moles of monocarboxylic acid and 1 mole of polyamine. Specific preferred examples are the reaction products of equimolar amounts of tallow fatty acid or oleic acid and AEAE. According to the general procedure disclosed therein the reaction is performed at reflux temperature which is in the range of 150 to 175° C. There is no suggestion made in said document with respect to choosing the reaction conditions (molar ratio and/or reaction temperature) such that polysubstituted alkanolamines are preferentially formed. In particular, it is not suggested to control the kinetics of the reaction by selecting a suitable temperature profile.
- EP 1 435 386 describes fatty acid alkanol amides, which improve the acceleration properties of internal combustion engines. This document describes alkanol monoamides obtainable by reaction of 1 mole of fatty acid or it's esters and 1 mole of an alkanol monoamine.
- EP1 272 594 describes the use of friction modifiers, which are the reaction products of certain natural or synthetic carboxylic acid glyceryl esters and alkanol amines in combination with a detergent additive in gasoline for improving the delivery of the friction modifier to the lubricant of the engine. The reaction of preparing the friction modifier is performed without applying a specific temperature profile. The specific selection of a significant molar excess of the alkanol amine is neither suggested nor exemplified. Similar friction modifiers are disclosed on WO 2007/053787 where it is suggested to use the same in combination with a solvent, an alcohol and certain compatibilizer to form fuel additive concentrates remaining fluid at −8° C. or below.
- Even if these additives provide good performance, they have significant disadvantages due to their polar structure.
- Most of such components stabilize emulsions of hydrocarbon fuel and water. Such emulsions can cause severe damage in modern cars; additive suppliers therefore need to compensate this effect by adding so called dehazers.
- Furthermore most of such 1:1 adducts of a carboxylic acid moiety and an alkanol amine show a strong tendency to form multi-molecular clusters, which results in incompatibility with typical detergent additives such as PIB monoamines, PIB Mannich amines or PIB succinimides. Blends of such fatty acid amides with PIB-based products therefore require expensive solvents such as hydrophobic alcohols or comparable solubilizer.
- Even if there are technical solutions to overcome these problems, they will at least unfavourably increase costs so that some of these additives are not economically advantageous.
- The problem to be solved by the present invention, therefore, was to develop additives, which show better solubility and compatibility as well as milder emulsion behaviour than conventional reaction products of fatty acids and alkanol amines, while, preferably, maintaining a similar additive performance profile. In particular, the additives of the present invention should improve the storage stability of additive packages, in particular at temperatures below 0° C., and should improve the phase separation of fuel/water emulsions so that less or no dehazer is required for preparing the fuel.
- Surprisingly is was found that the conversion products of carboxylic acids and alkanol amines obtained under specific reaction conditions and which result in the formation of specific complex reaction mixtures comprising substantial proportions of low polarity constituents still have sufficient additive performance in the fuel, in particular gasoline. An addition, due to their lower polarity they are better compatible with other additive compounds and need no or less dehazer to compensate emulsion effects.
- A first embodiment of the invention relates to a reaction product, obtainable by reacting, preferably in a thermal condensation reaction, a carboxylic acid (or carboxylate) compound of formula I
-
R1COOR2 (I) - in which
R1 is an aliphatic C1-C30-hydrocarbon radical;
R2 is hydrogen or alkyl, mono- or polyhydroxyalkyl, or ammonium,
with an alkanol amine of the formula II -
NHR3R4 (II) - wherein R3 and R4 are independently selected from hydrogen atoms and linear or branched-chain hydrocarbon groups, the carbon chain of which optionally being interrupted by one or more —NH— groups, and which optionally has at least one hydroxyl group attached to a carbon atom, with the proviso that R3 and R4 are not both hydrogen atoms and that at least one of said residues R3 and R4 carries at least one hydroxyalkyl group,
in a molar ratio of the carboxyl groups (—COO—) of the carboxylic acid of formula I to the molar sum of OH and NH groups of the alkanol amine of formula II in a range and under reaction conditions supporting the formation of a reaction product comprising polysubstituted alkanol amine derivatives. - Preferably, said polysubstituted (as for example polycarbonylated) alkanol amine derivatives are comprised in said reaction product in a proportion of more than 20 wt.-%, preferably more than 40 wt.-%, and in particular more than 60 wt.-%, based on the total weight of the reaction product.
- On the other hand 1:1 adducts are present in a total amount of 20 wt.-% or less, more preferred at 15 wt.-% or less and most preferred at a level of 10 wt.-% or less, like about 0.1 to about 10 or about 1 to about 8 or about 1.5 to about 5, about 2 to about 4 wt.-%, based on the total weight of the reaction product.
- According to a further preferred embodiment the reaction product of the invention is obtained by a process, wherein the molar ratio of the carboxyl groups of the carboxylic acid of formula I to the molar sum of OH and NH groups of the alkanol amine of formula II is in the range of about 1.8:3 to 3:3, in particular 1.9:3 to 2.5:3.
- Preferably said reaction is performed by
- a) heating the carboxylic acid compound(s) of formula I (in substance or dissolved/or dispersed in a suitable liquid which does not disturb the reaction) to a first temperature in a first temperature range, allowing the preferential reaction of the acid with amine group(s) of the alkanol amine;
- b) adding thereto the alkanol amine compound(s) of formula II (in substance or dissolved or dispersed in a suitable liquid which does not disturb the reaction) under controlled conditions in order to avoid an increase of the temperature above said first temperature range;
- c) reacting the compounds by maintaining the temperature in said first range;
- d) and increasing the first temperature of the reaction mixture to a second temperature in a second temperature range allowing further condensation of residual free carboxylic acid molecules with any reactive group in the reaction mixture, preferably until the amount of water condensate is at least equal to the theoretical amount of reaction water.
- Preferably, the first temperature in step a), b) and/or c) is kept in the range of about 100 to about 155° C., as for example about 110 to about 140° C., or about 120 to about 135° C.
- Preferably, the second temperature in step d) is kept in the range of 160 to 210° C., as for example about 170 to about 200° C., or about 175 to about 190° C.
- In a particularly preferred embodiment the reaction product the additive is obtained by reacting a carboxylic acid compound with an alkanol amine of formula II, wherein R3 and R4 independently of each other represent hydrogen or a residue of the formula III
-
—[(CH2)xNH]y(CH2)zR5 (III) -
- wherein
- x and z are independently from each other integers from 1 to 6, preferably 1, 2, or 3,
- y is 0 or an integer of 1 to 3, preferably 0 or 1, and
- R5 is hydroxyl or a residue of the formula IV
-
—NH(CH2)zOH (IV) -
- wherein z is as defined above; with the proviso that R3 and R4 are not both hydrogen atoms.
- In a further particularly preferred embodiment the reaction product is obtained from a compound of formula I, which is selected from C2-C31- or C8-C31- or C8-C30- or C10-C22-carboxylic acids and alkyl esters thereof.
- Preferably the compound of formula II is selected from polyamino alkanols, wherein one of the residues R3 and R4 is hydrogen and the other is a residue of the formula III, wherein x is 2 or 3, y is 0 or 1, z is 2 or 3 and R5 is hydroxyl or a residue of the formula IV.
- According to another embodiment of the invention additive packages are provided, comprising in a suitable organic solvent at least one detergent additive and at least one reaction product as defined above.
- According to another embodiment of the invention a method of improving the storage stability of additive packages wherein the additive package comprises at least one detergent additive in an organic solvent, which method comprises adding to said package at least one reaction product of the invention. In particular, said detergent additive is selected from as polyalkene monoamines, polyalkene Mannich amines or polyalkene succinimides.
- A “reaction product” as used herein means the product of a specific reaction of at least one carboxylic acid compound or a carboxylic acid compound containing first reactant, and at least one alkanol amine or an alkanol amine containing second reactant as explained in more detail below. The reaction product is complex in nature, i.e. consists of a complex mixture of constituents, the profile of which being substantially predetermined by the reaction conditions of said conversion. The reaction product is, as such, a suitable additive for fuels and normally need not be further purified prior to use. The product may, however, be concentrated (if necessary) in order to remove residual solvent or low molecular constituents, like water or non-reacted reactants, if any.
- The term “carboxylate compound” refers to any compound of formula I as defined d above.
- The term “aliphatic C1-C30-hydrocarbon radical” denotes an acyclic radical which is composed substantially of carbon atoms and hydrogen atoms and comprises from 1 to 30, as for example 8 to 30 carbon atoms. The hydrocarbon radical is preferably an alkyl, alkenyl, alkadienyl, alkatrienyl or polyenyl radical. Those skilled in the art will appreciate the minimum numbers of carbon atoms that need to be present in hydrocarbon radicals of various degree of unsaturation.
- An alkyl radical comprises C1-C8-alkyl radicals which are linear or branched radicals having from 1 to 8 carbon atoms. Examples thereof are the C1-C4-alkyl radicals methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl or tert-butyl, and additionally pentyl, methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, trimethylpropyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, heptyl, octyl and their constitutional isomers such as 2-ethylhexyl; or C8-C30-alkyl radicals which are linear or branched radicals having from 8 to 30 carbon atoms. Examples thereof are octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, hencosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, squalyl, their constitutional isomers, higher homologs and constitutional isomers thereof.
- Alkenyl comprises C2-C8-alkenyl radicals which are monounsaturated linear or branched hydrocarbon radicals having from 2 to 8 carbon atoms, as for example ethenyl, 1- or 2-propenyl, 1-, 2- and 3-butenyl, 2-methylpropen-3-yl, 2-methylpropen-1-yl, 1-, 2-, 3- and 4-pentenyl, 1-, 2-, 3-, 4- and 5-hexenyl, 1-, 2-, 3-, 4-, 5- and 6-heptenyl 1-, 2-, 3-, 4-, 5-, 6- and 7-octenyl and also their constitutional isomers; C8-C30-Alkenyl is a monounsaturated linear or branched hydrocarbon radical having from 8 to 30 carbon atoms. Examples thereof are octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, hencosenyl, docosenyl, tricosenyl, tetracosenyl, pentacosenyl, hexacosenyl, heptacosenyl, octacosenyl, nonacosenyl, squalenyl, their constitutional isomers, higher homologs and constitutional isomers thereof.
- Alkandienyl radicals comprise C4-C8-alkadienyl radicals which are diunsaturated linear or branched hydrocarbon radical having from 4 to 8 carbon atoms, as for example butadienyl, pentadienyl, hexadienyl, heptadienyl or octadienyl and their constitutional isomers; or C8-C30-alkadienyl radicals which are diunsaturated linear or branched hydrocarbon radicals having from 8 to 30 carbon atoms. Examples thereof are octadienyl, nonadienyl, decadienyl, undecadienyl, dodecadienyl, tridecadienyl, tetradecadienyl, pentadecadienyl, hexadecadienyl, heptadecadienyl, octadecadienyl, nonadecadienyl, eicosadienyl, hencosadienyl, docosadienyl, tricosadienyl, tetracosadienyl, pentacosadienyl, hexacosadienyl, heptacosadienyl, octacosadienyl, nonacosadienyl, squaladienyl, their constitutional isomers, higher homologs and constitutional isomers thereof. The olefinic double bonds may be present in conjugated or isolated form
- Alkantrienyl radicals comprise C6-C8-alkatrienyl radicals which are tri-unsaturated linear or branched hydrocarbon radical having from 6 to 8 carbon atoms, as for example hexatrienyl, heptatrienly or octatrienyl; or C8-C30-alkatrienyl radicals, which are triunsaturated linear or branched hydrocarbon radicals having from 8 to 30 carbon atoms. Examples thereof are octatrienyl, nonatrienyl, decatrienyl, undecatrienyl, dodecatrienyl, tridecatrienyl, tetradecatrienyl, pentadecatrienyl, hexadecatrienyl, heptadecatrienyl, octadecatrienyl, nonadecatrienyl, eicosatrienyl, hencosatrienyl, docosatrienyl, tricosatrienyl, tetracosatrienyl, pentacosatrienyl, hexacosatrienyl, heptacosatrienyl, octacosatrienyl, nonacosatrienyl, squalatrienyl, their constitutional isomers, higher homologs and constitutional isomers thereof. The olefinic double bonds may be present in conjugated or isolated form.
- Polyenyl radicals are in particular C8-C30-polyenyl radicals which are generally unsaturated linear or branched aliphatic hydrocarbon radicals having from 8 to 30 carbon atoms and four, five, six or more olefinic nonvicinal double bonds Examples thereof are the higher unsaturated analogs of the above C8-C30-alkadi- and trienyl residues.
- Unless otherwise stated the term “alkyl”, as for example in the context of residue R2 refers to C1-C8-alkyl as defined above.
- The term “mono- or polyhydroxyalkyl” refers to C1-C8-hydroxyalkyl which is a linear or branched alkyl radical having from 1 to 8, in particular from 1 to 4 carbon atoms, in which at least one hydrogen atom, for example 1, 2, 3, or 4 of the hydrogen atoms, is/are replaced by a hydroxyl group. Examples thereof are, hydroxymethyl, 2-hydroxy-1-ethyl, 2- and 3-hydroxy-1-propyl, 2-, 3- and 4-hydroxy-1-butyl, 2-, 3-, 4- and 5-hydroxy-1-pentyl, 2-, 3-, 4-, 5- and 6-hydroxy-1-hexyl, 2-, 3-, 4-, 5-, 6- and 7-hydroxy-1-heptyl, 2-, 3-, 4-, 5-, 6-, 7- and 8-hydroxy-1-octyl, 2,3-dihydroxy-1-propyl and their constitutional isomers. If R2 represents a polyhydroxyalkyl residue, said hydroxy groups are, preferably, not further esterified. In particular, compounds of formular I do not comprise polyol polyester, as for example triglycerides.
- The term “hydroxyalkyl” refers to C1-C8-hydroxyalkyl which is a linear or branched alkyl radical having from 1 to 8, in particular from 1 to 4 carbon atoms, in which one hydrogen atom is replaced by a hydroxyl group. Suitable examples are stated above.
- A “linear or branched-chain hydrocarbon group, the carbon chain of which optionally being interrupted by one or more —NH— groups optionally carrying at least one hydroxyalkyl group”, comprises a terminal hydroxyalkyl group which is a mono- or polyhydroxyalkyl group as defined above, and comprises optionally at least one C1-C6-alkylene group, optionally substituted by 1 or more, like 1, 2, or 3 hydroxyl groups, whereby two or more of said alkylene groups being linked together by a —NH-group.
- “C1-C6-Alkylene” is a linear or branched bridging hydrocarbon group having 2, 3, 4, 5 or 6 carbon atoms, such as 1,2-ethylene, 1,2- and 1,3-propylene, 1,2-, 1,3-, 2,3- and 1,4-butylene, 2,2-dimethyl-1,2-ethylene, 1,1-dimethyl-1,2-ethylene, 1,5-pentylene, 1,6-hexylene and constitutional isomers thereof.
- A “polysubstituted” or “polycarbonylated” alkanol amine derivative is derived from an polyfunctional alkanol amine, as for example an alkanol polyamine, wherein more than one functional groups (—NH— or —OH groups) of which, being substituted by a carbonyl residue of the formula —CO(hycrocarbyl), wherein hydrocarbyl has the same meanings as an “aliphatic C1-C30-hydrocarbon radical” as already defined above. In particular said substituents may be derived from same or different C10-C22-carboxylic acids. The term “polysubstituted” encompasses di-, tri-, tetra and higher substituted alkanol amine derivatives.
- A “C2-C31-carboxylic acid” represents a straight-chain or branched, saturated or mono- or poly-unsaturated C1-30-hydrocarbyl residue. In particular, said residue is a straight-chain mono- or poly-unsaturated hydrocarbyl residue or a mixture of such residues with an average length of 1-30, 1-29, preferably 5-25 carbon atoms. Particularly preferred residues are:
-
- residues derived from saturated, straight-chain carboxylic acids: CH3—, C2H5—; C3H7—; C4H9—; C5H11—; C6H13—; C7H15—, C8H17—; C9H19—; C10H21—; C11H23—; C12H25—; C13H27—; C14H29—; C15H31—; C16H33—; C17H35—; C18H37—; C19H39—; C20H41—; C21H43—; C23H47—; C24H49; —C25H51—; C29H59—; C30H61;
- residues derived from saturated, branched carboxylic acids: iso-C3H7—; iso-C4H9—; iso-C18H37—;
- residues derived from mono-unsaturated, straight-chain carboxylic acids: C2H3—; C3H5—; C15H29—; C17H33—; C21H41—;
- residues derived from two-fold unsaturated, straight-chain carboxylic acids: C5H7—; C17H31—;
- residues derived from three-fold unsaturated, straight-chain carboxylic acids: C17H29—;
- residues derived from four-fold unsaturated, straight-chain carboxylic acids: C19H31—;
- residues derived from five-fold unsaturated, straight-chain carboxylic acids: C21H33—.
- Said hydrocarbyl residue may also be derived from fatty acid mixtures as obtained from naturally occurring oils and fats. Non-limiting examples thereof are olive oil, palm oil, palm cernel oil, peanut oil, rapeseed oil, safflower oil, sesame oil, sunflower oil, soy bean oil, to beef tallow oil, lard oil, castor oil, cottonseed oil, corn oil, soybean oil, whale oil, and coconut oil. As examples of suitable fatty acids there may be mentioned monocarboxylic acids such as capric, lauric, myristic, palmitic, stearic, behenic, oleic, petroselinic, elaidic, palmitoleic, linoleic, linolenic and erucic acid.
- The term “alkanol amines” has to be understood broadly. It comprises monoalkanolamines, dialkanolamines, and so forth. The alkanolamine can possess one or more additional O and/or N functionalities in addition to the one amino group. and at least one hydroxy group. Suitable alkanolamines include monoethanolamine, diethanolamine, propanolamine, isopropanolamine, dipropanolamine, di-isopropanolamine, butanolamines, and polyaminoalkanols like aminoethylaminoethanols, e.g., 2-(2-aminoethylamino)ethanol (AEAE)
- Alkanol amines are, for example, compounds of formula II wherein at least one of the residues R3 and R4 represents —[(CH2)xNH]y(CH2)zR5 wherein R5 is hydroxyl or NH(CH2)zOH. Suitable examples of groups of the formula —[(CH2)xNH]y(CH2)z— are
- C2H4—NHnC2H4, CH2)3—NHn(CH2)3—, CH2—CH(CH3)—NHnCH2—CH(CH3)—, CH(CH3)—CH2—NHnCH(CH3)—CH2—, CH2)4—NHn(CH2)4—,
wherein n is 0, 1 or 2. - In one particular group one of R3 and R4 represents H, and in the other R5 is hydroxyl and —[(CH2)xNH]y(CH2)z is selected from C2H4—NHnC2H4, CH2)3—NHn(CH2)3—, CH2—CH(CH3)—NHnCH2—CH(CH3)—, CH(CH3)—CH2—NHnCH(CH3)—CH2—, CH2)4—NHn(CH2)4—, while n is 1 or 2.
- In a non-limiting example of the present invention the reaction product may represent a complex product mixture, which is characterized by a high proportion of polysubstituted, i.e. at least two-fold substituted, alkanol polyamines (or polyaminoalkanols). In particular, the reaction mixture is characterized by a high proportion of constituents, which are selectively carbonylated at primary and/or secondary amino groups.
- Preferably, such reaction products are obtainable by reaction of an alkanol amine selected from the above-identified group of specific alkanol amines with a carboxylic acid containing reagent under conditions defined herein.
- Exemplified by AEAE as reactant of formula II the reaction product formed (when a molar excess of a fatty acid is used) may contain main constituents A, B and C (as depicted below), which are: the main diamide product (A), optionally in admixture with the corresponding (analytically difficult to distinguish) monoamidoester, each of which carrying two carbonyl residues; the fully substituted diamidoester (B) carrying three carbonyl groups; and the monoamide (C). The reaction mixture may also contain minor amounts of unreacted oleic acid (D) (1-5%) and AEAE (<0.1%) as well as significant amounts (10-20%) of unidentified by-products (it is presumed that i.a. pyrazidins, imidazolins and ethers are produced). The kinetically controlled first step of the reaction, performed at about 130° C., favors the formation of the main component, in particular the diamide (A), while the less specific reaction conditions in the second reaction step at about 180° C. result in the formation of the diamidoester (B).
- It is well understood by a skilled reader that the specific conditions exemplified herein may be changed without changing the general teaching of the present invention. For example, it is possible to change the order of adding reactants to the reaction mixture, to pre-heat the reactants, if necessary, to add one or more solvents which may be removed after the end of the reaction. In addition it may be possible to remove, if necessary the water as formed during the course of the condensation reaction. Suitable catalysts well-known in the art might also be used.
- As suitable solvents there may be used any solvent, which does not negatively affect the conversion reaction, and, optionally which is compatible with the other constituents of an additive package or the fuel to which the additive of the invention has to be added, so that it is not necessary to remove the solvent prior to use. As examples there may be mentioned toluene, xylene or any other aromatic solvent; dioxane, dialkyl glycol and dialkyl oligo glycols.
- The reaction products of the present invention may be added to the fuel as friction modifier, lubricity additive, detergent or deposit control additive, acceleration improver, or corrosion inhibitor
- The reaction products of the invention may be added to the fuels individually or in a mixture with further effective additive components (co-additives) as exemplified in ore detail below.
- Examples include additives comprising detergent action (hereinafter referred to as detergent additives). This detergent additive has at least one hydrophobic hydrocarbon radical having a number-average molecular weight (Mn) of from 85 to 20 000 and at least one polar moiety selected from:
- (a) mono- or polyamino groups having up to 6 nitrogen atoms, of which at least one nitrogen atom has basic properties;
(b) nitro groups, if appropriate in combination with hydroxyl groups;
(c) hydroxyl groups in combination with mono- or polyamino groups, in which at least one nitrogen atom has basic properties;
(d) carboxyl groups or their alkali metal or their alkaline earth metal salts;
(e) sulfonic acid groups or their alkali metal or alkaline earth metal salts;
(f) polyoxy-C2- to -C4-alkylene groups which are terminated by hydroxyl groups, mono- or polyamino groups, in which at least one nitrogen atom has basic properties, or by carbamate groups;
(g) carboxylic ester groups;
(h) moieties derived from succinic anhydride and having hydroxyl and/or amino and/or amido and/or imido groups; and/or
(i) moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono- or polyamines. - The hydrophobic hydrocarbon radical in the above detergent additives, which ensures the adequate solubility in the fuel, has a number-average molecular weight (Mn) of from 85 to 20 000, especially from 113 to 10 000, in particular from 300 to 5000. Typical hydrophobic hydrocarbon radicals, especially in conjunction with the polar moieties (a), (c), (h) and (i), include the polypropenyl, polybutenyl and polyisobutenyl radical each having Mn=from 300 to 5000, especially from 500 to 2500, in particular from 700 to 2300.
- Non-limiting examples of the above groups of detergent additives include the following:
- Additives comprising mono- or polyamino groups (a) are preferably polyalkenemono- or polyalkenepolyamines based on polypropene or conventional (i.e. having predominantly internal double bonds) polybutene or polyisobutene having Mn=from 300 to 5000. When polybutene or polyisobutene having predominantly internal double bonds (usually in the beta and gamma position) are used as starting materials in the preparation of the additives, a possible preparative route is by chlorination and subsequent amination or by oxidation of the double bond with air or ozone to give the carbonyl or carboxyl compound and subsequent amination under reductive (hydrogenating) conditions. The amines used here for the amination may be, for example, ammonia, monoamines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine. Corresponding additives based on polypropene are described in particular in WO-A-94/24231.
- Further preferred additives comprising monoamino groups (a) are the hydrogenation products of the reaction products of polyisobutenes having an average degree of polymerization P=from 5 to 100 with nitrogen oxides or mixtures of nitrogen oxides and oxygen, as described in particular in WO-A-97/03946.
- Further preferred additives comprising monoamino groups (a) are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in DE-A-196 20 262.
- Additives comprising nitro groups (b), if appropriate in combination with hydroxyl groups, are preferably reaction products of polyisobutenes having an average degree of polymerization P=from 5 to 100 or from 10 to 100 with nitrogen oxides or mixtures of nitrogen oxides and oxygen, as described in particular in WO-A-96/03367 and WO-A-96/03479. These reaction products are generally mixtures of pure nitropolyisobutenes (e.g. alpha,beta-dinitropolyisobutene) and mixed hydroxynitropolyisobutenes (e.g. alpha-nitro-beta-hydroxypolyisobutene).
- Additives comprising hydroxyl groups in combination with mono- or polyamino groups (c) are in particular reaction products of polyisobutene epoxides obtainable from polyisobutene having preferably predominantly terminal double bonds and Mn=from 300 to 5000, with ammonia or mono- or polyamines, as described in particular in EP-A-476 485.
- Additives comprising carboxyl groups or their alkali metal or alkaline earth metal salts (d) are preferably copolymers of C2-C40-olefins with maleic anhydride which have a total molar mass of from 500 to 20 000 and of whose carboxyl groups some or all have been converted to the alkali metal or alkaline earth metal salts and any remainder of the carboxyl groups has been reacted with alcohols or amines. Such additives are disclosed in particular by EP-A-307 815. Such additives serve mainly to prevent valve seat wear and can, as described in WO-A-87/01126, advantageously be used in combination with customary fuel detergents such as poly(iso)buteneamines or polyetheramines.
- Additives comprising sulfonic acid groups or their alkali metal or alkaline earth metal salts (e) are preferably alkali metal or alkaline earth metal salts of an alkyl sulfosuccinate, as described in particular in EP-A-639 632. Such additives serve mainly to prevent valve seat wear and can be used advantageously in combination with customary fuel detergents such as poly(iso)buteneamines or polyetheramines.
- Additives comprising polyoxy-C2-C4-alkylene moieties (f) are preferably polyethers or polyetheramines which are obtainable by reaction of C2- to C60-alkanols, C6- to C30-alkanediols, mono- or di-C2-C30-alkylamines, C1-C30-alkylcyclohexanols or C1-C30-alkylphenols with from 1 to 30 mol of ethylene oxide and/or propylene oxide and/or butylene oxide per hydroxyl group or amino group and, in the case of the polyether-amines, by subsequent reductive amination with ammonia, monoamines or polyamines. Such products are described in particular in EP-A-310 875, EP-A-356 725, EP-A-700 985 and U.S. Pat. No. 4,877,416. In the case of polyethers, such products also have carrier oil properties. Typical examples of these are tridecanol butoxylates, isotridecanol butoxylates, isononylphenol butoxylates and polyisobutenol butoxylates and propoxylates and also the corresponding reaction products with ammonia.
- Additives comprising carboxylic ester groups (g) are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, in particular those having a minimum viscosity of 2 mm2/s at 100° C., as described in particular in DE-A-38 38 918. The mono-, di- or tricarboxylic acids used may be aliphatic or aromatic acids, and particularly suitable ester alcohols or ester polyols are long-chain representatives having, for example, from 6 to 24 carbon atoms. Typical representatives of the esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, of isononanol, of isodecanol and of isotridecanol. Such products also have carrier oil properties.
- Additives comprising moieties derived from succinic anhydride and having hydroxyl and/or amino and/or amido and/or imido groups (h) are preferably corresponding derivatives of polyisobutenyl-succinic anhydride which are obtainable by reacting conventional or highly reactive polyisobutene having Mn=from 300 to 5000 with maleic anhydride by a thermal route or via the chlorinated polyisobutene. Particular interest attaches to derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine. Such gasoline fuel additives are described in particular in U.S. Pat. No. 4,849,572.
- Additives comprising moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono- or polyamines (i) are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine. The polyisobutenyl-substituted phenols may stem from conventional or highly reactive polyisobutene having Mn=from 300 to 5000. Such “polyisobutene-Mannich bases” are described in particular in EP-A-831 141.
- For a more precise definition of the gasoline fuel additives detailed individually, reference is explicitly made here to the disclosures of the abovementioned prior art documents, incorporated herewith by reference.
- The additive formulations according to the invention may additionally be combined with still further customary components and additives. Mention should be made here primarily of carrier oils.
- Suitable mineral carrier oils are the fractions obtained in crude oil processing, such as brightstock or base oils having viscosities, for example, from the SN 500-2000 class; and also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. Likewise useful is a fraction which is obtained in the refining of mineral oil and is known as “hydrocrack oil” (vacuum distillate cut having a boiling range of from about 360 to 500° C., obtainable from natural mineral oil which has been catalytically hydrogenated under high pressure and isomerized and also deparaffinized). Likewise suitable are mixtures of abovementioned mineral carrier oils.
- Examples of synthetic carrier oils which are useful in accordance with the invention are selected from: polyolefins (poly-alpha-olefins or poly(internal olefin)s), (poly)esters, (poly)alkoxylates, polyethers, aliphatic polyether amines, alkylphenol-started polyethers, alkylphenol-started polyether amines and carboxylic esters of long-chain alkanols.
- Examples of suitable polyolefins are olefin polymers having Mn=from 400 to 1800, in particular based on polybutene or polyisobutene (hydrogenated or nonhydrogenated).
- Examples of suitable polyethers or polyetheramines are preferably compounds comprising polyoxy-C2-C4-alkylene moieties which are obtainable by reacting C2-C60-alkanols, C6-C30-alkanediols, mono- or di-C2-C30-alkylamines, C1-C30-alkylcyclohexanols or C1-C30-alkylphenols with from 1 to 30 mol of ethylene oxide and/or propylene oxide and/or butylene oxide per hydroxyl group or amino group, and, in the case of the polyether amines, by subsequent reductive amination with ammonia, monoamines or polyamines. Such products are described in particular in EP-A-310 875, EP-A-356 725, EP-A-700 985 and U.S. Pat. No. 4,877,416. For example, the polyether amines used may be poly-C2-C6-alkylene oxide amines or functional derivatives thereof. Typical examples thereof are tridecanol butoxylates or isotridecanol butoxylates, isononylphenol butoxylates and also polyisobutenol butoxylates and propoxylates, and also the corresponding reaction products with ammonia.
- Examples of carboxylic esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A-38 38 918. The mono-, di- or tricarboxylic acids used may be aliphatic or aromatic acids; suitable ester alcohols or polyols are in particular long-chain representatives having, for example, from 6 to 24 carbon atoms. Typical representatives of the esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and isotridecanol, for example di-(n- or isotridecyl) phthalate.
- Further suitable carrier oil systems are described, for example, in DE-A-38 26 608, DE-A-41 42 241, DE-A-43 09 074, EP-A-0 452 328 and EP-A-0 548 617, which are explicitly incorporated herein by way of reference.
- Examples of particularly suitable synthetic carrier oils are alcohol-started polyethers having from about 5 to 35, for example from about 5 to 30, C3-C6-alkylene oxide units, for example selected from propylene oxide, n-butylene oxide and isobutylene oxide units, or mixtures thereof. Nonlimiting examples of suitable starter alcohols are long-chain alkanols or phenols substituted by long-chain alkyl in which the long-chain alkyl radical is in particular a straight-chain or branched C6-C18-alkyl radical. Preferred examples include tridecanol and nonylphenol.
- Further suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A-10 102 913.6.
- As examples of suitable solvent: any type of hydrocarbon solvent may be mentioned, e.g. kerosene, heavy aromatic solvent (“solvent naphta heavy”, “Solvesso 150”), xylene, paraffins, petroleum, etc. Suitable co-solvents are for example t-BuOH, i-BuOH, 2-ethyl hexanol, 2-propyl heptanol, butyl glycols,
- Dehazers/demulsifiers suitable for use in fuels are well known in the art as. As non-limiting examples there may be mentioned glycol oxyalkylate polyol blends (such as sold under the trade designation TOLAD™ 9312), phenol/formaldehyde or C1-18 alkylphenol/-formaldehyde resin oxyalkylates modified by oxyalkylation with C1-18 epoxides and diepoxides (such as sold under the trade designation TOLAD™ 9308), and C14 epoxide copolymers cross-linked with diepoxides, diacids, diesters, diols, diacrylates, dimethacrylates or diisocyanates, and blends thereof. The glycol oxyalkylate polyol blends may be polyols oxyalkylated with C14 epoxides. The C1-18 alkylphenol phenol/-formaldehyde resin oxyalkylates modified by oxyalkylation with C1-18 epoxides and diepoxides may be based on, for example, cresol, t-butyl phenol, dodecyl phenol or dinonyl phenol, or a mixture of phenol (such as a mixture of t-butyl phenol and nonyl phenol). The dehazer should be used in an amount sufficient to inhibit the hazing that might otherwise occur when the fuel without the dehazer contacts water, and this amount will be referred to herein as a “haze-inhibiting amount.” Generally, this amount is from about 0.1 to about 10 ppm based on the weight of the fuel.
- Further customary additives (different from those of the invention are) are corrosion inhibitors, for example based on ammonium salts of organic carboxylic acids, said salts tending to form films, or of heterocyclic aromatics for nonferrous metal corrosion protection; antioxidants or stabilizers, for example based on amines such as p-phenylenediamine, dicyclohexylamine or derivatives thereof or of phenols such as 2,4-di-tert-butylphenol or 3,5-di-tert-butyl-4-hydroxyphenylpropionic acid; antistats; metallocenes such as ferrocene; methylcyclopentadienylmanganese tricarbonyl; lubricity additives, such as certain fatty acids, alkenylsuccinic esters, bis(hydroxyalkyl) fatty amines, hydroxyacetamides or castor oil; and also dyes (markers). Amines are also added, if appropriate, to lower the pH of the fuel. Optionally anti valve seat recession additives may be used such as sodium or potassium salts of polymeric organic acids.
- The additives may be added to the fuel individually or as a concentrate (additive package) comprising a mixture of additives and solvents as discussed above.
- Usually reaction products of the invention are blended with other fuel additives such as detergents, carrier oils, solvent, co-solvent, and other optional minor components as described above.
- Typically, such packages may contain:
-
- reaction product(s) of the invention: in proportions of about 5-80 or about 10-70 or about 10-40 wt.-%, based on the total weight of the package;
- detergent(s): in proportions of about 10-80 or about 20-70 or about 30-70 wt.-%, based on the total weight of the package;
- carrier oil(s): in proportions of about 5-70 or about 10-50 or about 10-40 wt.-%, based on the total weight of the package;
- solvent(s): in proportions of about 5-70 or about 5-50 or about 10-50 wt.-%, based on the total weight of the package;
- Co-solvent(s): in proportions of about 1-40 or about 5-30 or about 5-20 wt.-%, based on the total weight of the package;
- optionally: dehazer(s) (about <1%), corrosion inhibitor(s) (about 0, 1-5%), conductivity improvers (about <2%), each based on the total weight of the package; and others.
- All components are blended to an additive package, which will be transported and stored for some days up to many months. In particular in cold regions or regions with cold winter season the package must therefore be stable for many weeks at deep temperatures. Stable means that no phase separation or precipitation occurs and the package must not become a solid stuff.
- For example, the fuel additive package of the present invention remains a fluid at 0° C., or −8° C., or −18° C., or −20° C., or −30° C. or even −40° C. The fuel additive package in its fluid state is substantially free of precipitate and/or sediment. The fluid may be substantially free from suspended particles, flocculent, and substantial phase separation (i.e., no multiple phases are formed).
- The reaction products of the invention are added to the fuel typically in an amount of from 5 to 2,000 ppm by weight, in particular from 10 to 1,500 or 10 to 500 ppm by weight. The other components and additives mentioned above are, if desired, added in amounts customary for the intended purpose.
- The additive compositions according to the invention are useful in all conventional diesel and gasoline fuels, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed. 1990, Volume A16, p. 719 ff.
- For example, it is possible to use them in a gasoline fuel having an aromatics content of not more than 60% by volume, for example not more than 42% by volume or not more than 35% by volume, and/or a sulfur content of not more than 2000 ppm by weight, for example not more than 150 ppm by weight or not more than 10 ppm by weight.
- The aromatics content of the gasoline fuel is, for example, from 10 to 50% by volume, for example from 30 to 42% by volume, in particular from 32 to 40% by volume or not more than 35% by volume. The sulfur content of the gasoline fuel is, for example, from 2 to 500 ppm by weight, for example from 5 to 100 ppm by weight, or not more than 10 ppm by weight.
- In addition, the gasoline fuel may have, for example, an olefin content of up to 50% by volume, for example from 6 to 21% by volume, in particular from 7 to 18% by volume; a benzene content of up to 5% by volume, for example from 0.5 to 1.0% by volume, in particular from 0.6 to 0.9% by volume, and/or an oxygen content of up to 25% by volume, for example up to 10% by weight, or from 1.0 to 2.7% by weight, in particular from 1.2 to 2.0% by weight.
- Examples of such gasoline fuels are in particular those which simultaneously have an aromatics content of not more than 38 or 35% by volume, an olefin content of not more than 21% by volume, a sulfur content of not more than 50 or 10 ppm by weight, a benzene content of not more than 1.0% by volume and an oxygen content of from 1.0 to 2.7% by weight.
- The contents of alcohols and ethers in the gasoline fuel may vary over a wide range. Examples of typical maximum contents are 15% by volume for methanol, 65% by volume for ethanol, 20% by volume for isopropanol, 15% by volume for tert-butanol, 20% by volume for isobutanol and 30% by volume for ethers having 5 or more carbon atoms in the molecule.
- The summer vapor pressure of the gasoline fuel is typically not more than 70 kPa, in particular 60 kPa (each at 37° C.).
- The RON of the gasoline fuel is generally from 75 to 105. A typical range for the corresponding MON is from 65 to 95.
- The specifications mentioned are determined by customary methods (DIN EN 228).
- The invention will now be illustrated in detail with reference to the working examples, which follow:
- A 5 L four-neck glass reactor equipped with condenser, automatic injection equipment, internal temperature control and anchor stirrer was charged with 2200 g of coconut methyl ester (technical grade: ester content, % (m/m): 96. 5 min, kinematic viscosity at 40° C., mm2/s: 2.0-4.5) and heated to 150° C. 1050 g of diethanol amine was added at this temperature within 30 minutes. The reaction mixture was kept at 150° C. for 4 hours, and than heated up for 1 hour to 160° C. to completely remove residual methanol. The resulting product was yellow oil.
- According to procedure of example 1 3000 g of coconut methyl ester (technical grade: ester content, % (m/m): 96. 5 min, kinematic viscosity at 40° C., mm2/s: 2.0-4.5) and 716 g diethanol amine were reacted to a yellow oil.
- According to procedure of example 1 3000 g of coconut methyl ester (technical grade: ester content, % (m/m): 96.5 min, kinematic viscosity at 40° C., mm2/s: 2.0-4.5) and 477 g diethanol amine were reacted to a yellow oil.
- A 250 ml glass flask equipped with a condenser was charged with 56.4 g of oleic acid
- (approx. 0.2 moles) and heated up to 130° C. At this temperature 20.8 g (0.2 moles) of amino ethyl ethanolamine were added within 10 minutes. After stirring for three hours at this temperature the reaction mixture was heated up to 180° C. and kept at this temperature for 5 hours. 66 g of brown oil was yielded which solidified after few hours to a light brown wax. Amine number was 124 mgKOH/g.
- Oleic acid and amino ethyl ethanolamine were reacted as described in Example 4 but in a molar ratio of 2:1. Resulting product was a light brown wax with an amine number of 14 mgKOH/g.
- Oleic acid and amino ethyl ethanolamine were reacted as described in Example 4 but in a molar ratio of 3:1. Resulting product was brown oil with an amine number of 6.2 mgKOH/g.
- To demonstrate the effect of different molar ratios, three different products (prepared according to Example 4, 5 and 6) were blended with polyisobutene amine (PIBA), polyoxyalkylene carrier oil and different amounts of solvent to result in typical fuel additive compositions.
- The storage stability at low temperature and the tendency to stabilize emulsions were examined. Standard test procedures were applied. The results are summarized in the following Table 1.
-
TABLE 1 Test results Visual ASTM assessment D 1094, after storage Ex. 4 Ex.5 Ex. 6 ASTM 5 min. + at Dose 1:11) 2:1 3:1 D 1094 1 ppm −20° C. [mg/kg] PIBA PE 1:32) 2:3 3:3 SNH 2-PH 5 min. Dehazer3) for 7 days mod1 1150 250 200 100 300 300 4/34) 2/3 Precipitation mod2 1150 250 200 100 300 300 4/2 0/1 Clear liquid mod3 1150 250 200 100 300 300 2/1 0/1 Clear liquid mod4 1000 250 200 100 150 300 Solid mod5 1000 250 200 100 150 300 Clear liquid mod6 1000 250 200 100 150 300 Clear liquid mod7 850 250 200 100 150 150 Solid mod8 850 250 200 100 150 150 Precipitation mod9 850 250 200 100 150 150 Turbidity 1)molar ratio of fatty acid and alkanol amide reactants 2)molar ratio of functional groups of fatty acid and alkanol amide reactants 3)Dehazer: commercial product containing oxalkylated polymers SNH = Solvent Naphta heavy 2-PH = 2-Propylheptanol 4)Rating scale according ASTM D 1094 interface/separation - This investigation clearly demonstrates that product of Example 6 requires less solubilizer to achieve stable formulations. At the same time products of Examples 5 and 6 are less critical in the ASTM D 1094 test.
- While the present invention was exemplified by making reference to the reaction products obtained with two specific reactants, a skilled reader will be enabled, guided by the general teaching as provided herein, to perform the invention without undue burden with other reactants of the general formulae I and II in order to prepare superior fuel additives falling within the scope of the present invention.
- The disclosure of the citer prior art is incorporated by reference.
Claims (11)
1. An additive package, comprising:
an organic solvent;
a detergent additive; and
a reaction product mixture, obtained by reacting a carboxylic acid compound of formula (I) with an alkanol amine of formula (II) to form a reaction product comprising a poly-substituted alkanol amine derivative:
R1COOR2 (I);
NHR3R4 (II),
R1COOR2 (I);
NHR3R4 (II),
wherein:
R1 is an aliphatic C1-C30-hydrocarbon radical;
R2 is hydrogen or alkyl, mono- or polyhydroxyalkyl, or ammonium;
R3 and R4 independently of each other represent hydrogen or a residue of formula (III):
—[(CH2)xNH]y(CH2)zR5 (III);
—[(CH2)xNH]y(CH2)zR5 (III);
R3 and R4 are not both hydrogen atoms;
x and z are independently from each other integers from 1 to 6;
y is 0 or an integer of 1 to 3;
R5 is hydroxyl or a residue of formula (IV):
—NH(CH2)z′OH (IV);
—NH(CH2)z′OH (IV);
z′ is an integer from 1 to 6; and
the reaction is performed by:
(a) heating the carboxylic acid of formula (I) to a first temperature in a first temperature range of 100 to 155° C.;
(b) adding thereto the alkanol amine of formula (II) under controlled conditions avoiding an increase of temperature above the first temperature range;
(c) maintaining temperature in the first temperature range; and
(d) increasing the temperature of the reaction mixture to a second temperature in a second temperature range of 160 to 210° C. and allowing further reaction of residual free carboxylic acid molecules with any reactive group in the reaction mixture,
such that a molar ratio of carboxyl groups of the carboxylic acid of formula (I) to a molar sum of OH and NH groups of the alkanol amine of formula (II) is in a range of about 1.8:3 to 3:3.
2. The additive package of claim 1 , comprising said polysubstituted alkanol amine derivative in a proportion of more than 20 wt. %, based on a total weight of the product.
3. The additive package of claim 1 , wherein the molar ratio of carboxyl groups of the carboxylic acid of formula (I) to the molar sum of OH and NH groups of the alkanol amine of formula (II) is in a range of about 1.9:3 to 2.5:3.
4. The additive package of claim 1 , wherein the first temperature during at least one of (b), (c) and (d) is maintained in a range of 120 to 135° C.
5. The additive package of claim 1 , wherein the second temperature in (d) is maintained in a range of 175 to 190° C.
6. The additive package of claim 1 , wherein:
x and z are independently from each other integers from 1, 2 or 3;
y is 0 or 1; and
z′ is an integer of 1, 2, or 3.
7. The additive package of claim 1 , wherein the compound of formula (I) is at least one selected from the group consisting of a C8-C30-carboxylic acid and an alkyl ester thereof.
8. The additive package of claim 1 , wherein the compound of formula (II) is a polyaminoalkanol,
wherein:
one of R3 and R4 is hydrogen and the other is the residue of formula (III);
x is 2 or 3;
y is 0 or 1;
z is 2 or 3; and
R5 is hydroxyl or the residue of formula (IV).
9. A method of improving a storage stability of an additive package, the method comprising adding to said package at least one reaction product mixture obtained by reacting a carboxylic acid compound of formula (I) with an alkanol amine of formula (II) to form a reaction product comprising a polysubstituted alkanol amine derivative:
R1COOR2 (I);
NHR3R4 (II),
R1COOR2 (I);
NHR3R4 (II),
wherein:
R1 is an aliphatic C1-C30-hydrocarbon radical;
R2 is hydrogen or alkyl, mono- or polyhydroxyalkyl, or ammonium;
R3 and R4 independently of each other represent hydrogen or a residue of formula (III):
—[(CH2)xNH]y(CH2)zR5 (III);
—[(CH2)xNH]y(CH2)zR5 (III);
R3 and R4 are not both hydrogen atoms;
x and z are independently from each other integers from 1 to 6;
y is 0 or an integer of 1 to 3;
R5 is hydroxyl or a residue of formula (IV):
—NH(CH2)z′OH (IV);
—NH(CH2)z′OH (IV);
z′ is an integer from 1 to 6;
the reaction is performed by:
(a) heating the carboxylic acid of formula (I) to a first temperature in a first temperature range of 100 to 155° C.;
(b) adding thereto the alkanol amine of formula (II) under controlled conditions avoiding an increase of temperature above the first temperature range;
(c) maintaining temperature in the first temperature range; and
(d) increasing the temperature of the reaction mixture to a second temperature in a second temperature range of 160 to 210° C. and allowing further reaction of residual free carboxylic acid molecules with any reactive group in the reaction mixture,
such that a molar ratio of carboxyl groups of the carboxylic acid of formula (I) to a molar sum of OH and NH groups of the alkanol amine of formula (II) is in a range of about 1.8:3 to 3:3; and
the additive package comprises a detergent additive in an organic solvent.
10. The method of claim 9 , wherein the detergent additive is at least one selected from the group consisting of a polyalkene monoamine, a polyalkene Mannich amine and a polyalkene succinimide.
11. A reaction product mixture, obtained by reacting a carboxylic acid compound of formula (I) with an alkanol amine of formula (II) to form a reaction product comprising a polysubstituted alkanol amine derivative:
R1COOR2 (I);
NHR3R4 (II),
R1COOR2 (I);
NHR3R4 (II),
wherein:
R1 is an aliphatic C1-C30-hydrocarbon radical;
R2 is hydrogen or alkyl, mono- or polyhydroxyalkyl, or ammonium;
R3 and R4 independently of each other represent hydrogen or a residue of formula (III):
—[(CH2)xNH]y(CH2)nR5 (III),
—[(CH2)xNH]y(CH2)nR5 (III),
such that R3 and R4 are not both hydrogen atoms;
x and z are independently from each other integers from 1 to 6;
y is 0 or an integer of 1 to 3;
R5 is hydroxyl or a residue of formula (IV):
—NH(CH2)z′OH (IV);
—NH(CH2)z′OH (IV);
z′ is an integer from 1 to 6; and
the reaction is performed by:
(a) heating the carboxylic acid of formula (I) to a first temperature in a first temperature range of 100 to 155° C.;
(b) adding thereto the alkanol amine of formula (II) under controlled conditions avoiding an increase of temperature above the first temperature range;
(c) maintaining temperature in the first temperature range; and
(d) increasing the temperature of the reaction mixture to a second temperature in a second temperature range of 160 to 210° C. and allowing further reaction of residual free carboxylic acid molecules with any reactive group in the reaction mixture,
such that a molar ratio of carboxyl groups of the carboxylic acid of formula (I) to a molar sum of OH and NH groups of the alkanol amine of formula (II) is in a range of about 1.8:3 to 3:3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/708,374 US20130091762A1 (en) | 2007-10-19 | 2012-12-07 | Fuel additives with improved miscibility and reduced tendency to form emulsions |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07118841.1 | 2007-10-19 | ||
EP07118841 | 2007-10-19 | ||
PCT/EP2008/064021 WO2009050256A1 (en) | 2007-10-19 | 2008-10-17 | Fuel additives with improved miscibility and reduced tendency to form emulsions |
US68178810A | 2010-04-06 | 2010-04-06 | |
US13/708,374 US20130091762A1 (en) | 2007-10-19 | 2012-12-07 | Fuel additives with improved miscibility and reduced tendency to form emulsions |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/064021 Continuation WO2009050256A1 (en) | 2007-10-19 | 2008-10-17 | Fuel additives with improved miscibility and reduced tendency to form emulsions |
US68178810A Continuation | 2007-10-19 | 2010-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130091762A1 true US20130091762A1 (en) | 2013-04-18 |
Family
ID=40229834
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/681,788 Abandoned US20100236140A1 (en) | 2007-10-19 | 2008-10-17 | Fuel additives with improved miscibility and reduced tendency to form emulsions |
US13/708,374 Abandoned US20130091762A1 (en) | 2007-10-19 | 2012-12-07 | Fuel additives with improved miscibility and reduced tendency to form emulsions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/681,788 Abandoned US20100236140A1 (en) | 2007-10-19 | 2008-10-17 | Fuel additives with improved miscibility and reduced tendency to form emulsions |
Country Status (13)
Country | Link |
---|---|
US (2) | US20100236140A1 (en) |
EP (1) | EP2203543A1 (en) |
JP (1) | JP2011500909A (en) |
KR (1) | KR20100088668A (en) |
CN (1) | CN101827918B (en) |
AR (1) | AR068929A1 (en) |
AU (1) | AU2008313667B2 (en) |
BR (1) | BRPI0818460A2 (en) |
CA (1) | CA2704759A1 (en) |
MX (1) | MX2010003790A (en) |
MY (1) | MY150570A (en) |
WO (1) | WO2009050256A1 (en) |
ZA (1) | ZA201003464B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2321389T3 (en) | 2008-07-11 | 2016-03-31 | Basf Se | Composition and method to improve the fuel economy of hydrocarbon fueled internal combustion engines |
RU2430145C1 (en) * | 2010-02-16 | 2011-09-27 | Закрытое акционерное общество Научно-производственное объединение "Химсинтез" | Stabilising fuel additive, production method thereof and composition containing said additive |
US20120304531A1 (en) | 2011-05-30 | 2012-12-06 | Shell Oil Company | Liquid fuel compositions |
AU2013265575B2 (en) | 2012-05-25 | 2017-06-15 | Basf Se | Tertiary amines for reducing injector nozzle fouling in direct injection spark ignition engines |
WO2014019911A1 (en) | 2012-08-01 | 2014-02-06 | Basf Se | Process for improving thermostability of lubricant oils in internal combustion engines |
US9388354B2 (en) | 2012-11-06 | 2016-07-12 | Basf Se | Tertiary amines for reducing injector nozzle fouling and modifying friction in direct injection spark ignition engines |
WO2014023853A2 (en) | 2012-11-06 | 2014-02-13 | Basf Se | Tertiary amines for reducing injector nozzle fouling and modifying friction in direct injection spark ignition engines |
WO2014184066A1 (en) | 2013-05-14 | 2014-11-20 | Basf Se | Polyalkenylsuccinimides for reducing injector nozzle fouling in direct injection spark ignition engines |
US10450525B2 (en) | 2014-08-27 | 2019-10-22 | Chevron Oronite Company Llc | Process for alaknolamide synthesis |
WO2016069873A1 (en) | 2014-10-31 | 2016-05-06 | Basf Se | Alkoxylated amides, esters, and anti-wear agents in lubricant compositions |
WO2017144378A1 (en) | 2016-02-23 | 2017-08-31 | Basf Se | Hydrophobic polycarboxylic acids as friction-reducing additive for fuels |
US12091624B2 (en) * | 2021-07-06 | 2024-09-17 | Happyfuel, Llc | Fuel stabilizer |
CN115806846B (en) * | 2021-09-15 | 2024-07-09 | 中国石油化工股份有限公司 | Dual-functional gasoline detergent main agent and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4230588A (en) * | 1978-08-31 | 1980-10-28 | Phillips Petroleum Company | Fuel and lubricant additives from aminoalkylalkanolamines |
US20060196111A1 (en) * | 2005-03-04 | 2006-09-07 | Colucci William J | Fuel additive composition |
WO2007053787A1 (en) * | 2005-11-04 | 2007-05-10 | The Lubrizol Corporation | Fuel additive concentrate composition and fuel composition and method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2607783A (en) * | 1947-09-05 | 1952-08-19 | Armour & Co | Amidoester waxes and method of forming |
US4230558A (en) * | 1978-10-02 | 1980-10-28 | Coulter Electronics, Inc. | Single drop separator |
US4204481A (en) * | 1979-02-02 | 1980-05-27 | Ethyl Corporation | Anti-wear additives in diesel fuels |
US4729769A (en) * | 1986-05-08 | 1988-03-08 | Texaco Inc. | Gasoline compositions containing reaction products of fatty acid esters and amines as carburetor detergents |
US4877416A (en) * | 1987-11-18 | 1989-10-31 | Chevron Research Company | Synergistic fuel compositions |
US4849572A (en) * | 1987-12-22 | 1989-07-18 | Exxon Chemical Patents Inc. | Process for preparing polybutenes having enhanced reactivity using boron trifluoride catalysts (PT-647) |
US6589302B1 (en) * | 2000-05-09 | 2003-07-08 | Texaco Inc. | Friction modifier for poor lubricity fuels |
US20060286061A1 (en) * | 2005-06-20 | 2006-12-21 | O'lenick Kevin A | Amide esters as hydrocarbon gellants |
-
2008
- 2008-10-17 EP EP08840502A patent/EP2203543A1/en not_active Withdrawn
- 2008-10-17 BR BRPI0818460 patent/BRPI0818460A2/en not_active IP Right Cessation
- 2008-10-17 MX MX2010003790A patent/MX2010003790A/en not_active Application Discontinuation
- 2008-10-17 WO PCT/EP2008/064021 patent/WO2009050256A1/en active Application Filing
- 2008-10-17 MY MYPI20101373 patent/MY150570A/en unknown
- 2008-10-17 JP JP2010529393A patent/JP2011500909A/en active Pending
- 2008-10-17 AU AU2008313667A patent/AU2008313667B2/en not_active Ceased
- 2008-10-17 US US12/681,788 patent/US20100236140A1/en not_active Abandoned
- 2008-10-17 AR ARP080104559A patent/AR068929A1/en active IP Right Grant
- 2008-10-17 CA CA2704759A patent/CA2704759A1/en not_active Abandoned
- 2008-10-17 KR KR1020107009439A patent/KR20100088668A/en not_active Ceased
- 2008-10-17 CN CN200880112191.3A patent/CN101827918B/en not_active Expired - Fee Related
-
2010
- 2010-05-17 ZA ZA2010/03464A patent/ZA201003464B/en unknown
-
2012
- 2012-12-07 US US13/708,374 patent/US20130091762A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4230588A (en) * | 1978-08-31 | 1980-10-28 | Phillips Petroleum Company | Fuel and lubricant additives from aminoalkylalkanolamines |
US20060196111A1 (en) * | 2005-03-04 | 2006-09-07 | Colucci William J | Fuel additive composition |
WO2007053787A1 (en) * | 2005-11-04 | 2007-05-10 | The Lubrizol Corporation | Fuel additive concentrate composition and fuel composition and method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2009050256A1 (en) | 2009-04-23 |
AR068929A1 (en) | 2009-12-16 |
US20100236140A1 (en) | 2010-09-23 |
CA2704759A1 (en) | 2009-04-23 |
MY150570A (en) | 2014-01-30 |
JP2011500909A (en) | 2011-01-06 |
EP2203543A1 (en) | 2010-07-07 |
AU2008313667A1 (en) | 2009-04-23 |
MX2010003790A (en) | 2010-04-30 |
ZA201003464B (en) | 2011-08-31 |
BRPI0818460A2 (en) | 2015-04-14 |
CN101827918A (en) | 2010-09-08 |
CN101827918B (en) | 2014-05-14 |
KR20100088668A (en) | 2010-08-10 |
AU2008313667B2 (en) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130091762A1 (en) | Fuel additives with improved miscibility and reduced tendency to form emulsions | |
US8486876B2 (en) | Functional fluids for internal combustion engines | |
US10465138B2 (en) | Use of a complex ester to reduce fuel consumption | |
EP0897382B1 (en) | Alkoxy acetic acid derivatives | |
JP4268632B2 (en) | Polyalkeneamines with improved application properties | |
CA2336878C (en) | Fuel compositions containing propoxilate | |
US20160108331A1 (en) | Betaine compounds as additives for fuels | |
PL198793B1 (en) | Fuel additive compositions for fuels for internal combustion engines with improved viscosity properties and good ivd performance | |
US11130923B2 (en) | Alkoxylated amines as fuel additives | |
WO2018114350A1 (en) | Use of a mixture of a complex ester with a monocarboxylic acid to reduce friction | |
US20140034004A1 (en) | Process for improving thermostability of lubricant oils in internal combustion engines | |
WO2007039488A1 (en) | Hydroxyalkyl-substituted aminoalkylamides of fatty acids as friction modifying agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |