US20130089909A1 - Binding a target substance - Google Patents
Binding a target substance Download PDFInfo
- Publication number
- US20130089909A1 US20130089909A1 US13/633,626 US201213633626A US2013089909A1 US 20130089909 A1 US20130089909 A1 US 20130089909A1 US 201213633626 A US201213633626 A US 201213633626A US 2013089909 A1 US2013089909 A1 US 2013089909A1
- Authority
- US
- United States
- Prior art keywords
- magnetic particles
- magnetic
- target substance
- particles according
- binding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000013076 target substance Substances 0.000 title claims abstract description 65
- 230000027455 binding Effects 0.000 title claims abstract description 37
- 239000006249 magnetic particle Substances 0.000 claims abstract description 106
- 230000005291 magnetic effect Effects 0.000 claims abstract description 41
- 239000002245 particle Substances 0.000 claims abstract description 41
- 239000011159 matrix material Substances 0.000 claims abstract description 40
- 239000000696 magnetic material Substances 0.000 claims abstract description 30
- 239000007791 liquid phase Substances 0.000 claims abstract description 28
- 125000000524 functional group Chemical group 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 102000004169 proteins and genes Human genes 0.000 claims description 20
- 108090000623 proteins and genes Proteins 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 230000005293 ferrimagnetic effect Effects 0.000 claims description 13
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 230000002209 hydrophobic effect Effects 0.000 claims description 9
- 244000005700 microbiome Species 0.000 claims description 9
- 239000003446 ligand Substances 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 241000700605 Viruses Species 0.000 claims description 6
- 108091008324 binding proteins Proteins 0.000 claims description 6
- 229960002685 biotin Drugs 0.000 claims description 6
- 239000011616 biotin Substances 0.000 claims description 6
- 108090001008 Avidin Proteins 0.000 claims description 5
- 235000020958 biotin Nutrition 0.000 claims description 5
- 230000005298 paramagnetic effect Effects 0.000 claims description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- 102000029797 Prion Human genes 0.000 claims description 3
- 108091000054 Prion Proteins 0.000 claims description 3
- 239000013522 chelant Substances 0.000 claims description 3
- 239000002738 chelating agent Substances 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 3
- 230000000813 microbial effect Effects 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229920000620 organic polymer Polymers 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical class 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000003302 ferromagnetic material Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 102000014914 Carrier Proteins Human genes 0.000 claims 3
- 230000005415 magnetization Effects 0.000 claims 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 108020004707 nucleic acids Proteins 0.000 description 45
- 102000039446 nucleic acids Human genes 0.000 description 45
- 150000007523 nucleic acids Chemical class 0.000 description 45
- 239000000523 sample Substances 0.000 description 26
- 239000000178 monomer Substances 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 18
- 239000007790 solid phase Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000002955 isolation Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000356 contaminant Substances 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012472 biological sample Substances 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- -1 this may be rRNA Proteins 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 239000002902 ferrimagnetic material Substances 0.000 description 4
- 230000005661 hydrophobic surface Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000007762 w/o emulsion Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 102000023732 binding proteins Human genes 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000007764 o/w emulsion Substances 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010042653 IgA receptor Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 102100034014 Prolyl 3-hydroxylase 3 Human genes 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000003196 chaotropic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical class NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241001430197 Mollicutes Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- GRSTVVGJSKHCCS-UHFFFAOYSA-N bis(1h-imidazol-2-yl)methanone Chemical class N=1C=CNC=1C(=O)C1=NC=CN1 GRSTVVGJSKHCCS-UHFFFAOYSA-N 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229920001795 coordination polymer Polymers 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229940021317 other blood product in atc Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000021127 protein binding proteins Human genes 0.000 description 1
- 108091011138 protein binding proteins Proteins 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- GOZDTZWAMGHLDY-UHFFFAOYSA-L sodium picosulfate Chemical compound [Na+].[Na+].C1=CC(OS(=O)(=O)[O-])=CC=C1C(C=1N=CC=CC=1)C1=CC=C(OS([O-])(=O)=O)C=C1 GOZDTZWAMGHLDY-UHFFFAOYSA-L 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000011078 sorbitan tristearate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
- C12N15/1013—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54326—Magnetic particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54326—Magnetic particles
- G01N33/54333—Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54393—Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- U.S. Pat. No. 5,990,302 describes a method for isolating RNA which is also performed in the presence of a chaotrope.
- a sample is mixed with an acidic solution containing a lithium salt, a chaotropic agent and a nucleic acid-binding carrier to absorb the RNA onto the carrier.
- the RNA-bound carrier is isolated from the liquid phase and eluted.
- Magnetic silica particles are used as the nucleic acid-binding carrier, although silica, cellulose, nitrocellulose, latex and hydroxyapatite are all mentioned as possible carriers.
- WO96/18731 also uses magnetic particles to bind nucleic acid.
- the magnetic particles are polystyrene-based and polyurethane-coated and a detergent is used instead of a chaotrope.
- U.S. Pat. No. 5,705,628 discloses a method of separating polynucleotides, especially DNA, by binding the polynucleotides to a magnetic micro particle having a functional group-coated surface.
- remanent magnetic particles may be advantageously used in isolating nucleic acid and other target substances.
- the present invention provides magnetic particles capable of binding a target substance, which comprise a magnetic material and a matrix material, wherein the magnetic material is remanent upon exposure to a magnetic field and the matrix material has a surface comprising functional groups which promote disaggregation of the particles in the presence of a liquid phase.
- the magnetic particles are remanent, they are highly responsive to magnetic fields.
- the particles can be made smaller than conventional magnetic particles and yet respond quickly to a magnetic field. This has an advantage that the smaller the particle, generally the higher the binding capacity. Accordingly, the invention allows the use of high capacity, small particles which are still capable of obtaining a fast separation, as compared with larger conventional particles.
- Particles according to the invention are superior to paramagnetic and superparamagnetic particles of the same size in terms of velocity in a magnetic field. This is an enormous advantage regarding isolation. In automatic systems it becomes possible to increase the number of samples to be analysed dramatically.
- the magnetic material which forms part of the magnetic particles is remanent in the sense that, upon exposure to a magnetic field, the material must have residual magnetisation in the absence of a magnetic field. Accordingly, in the present specification remanence encompasses both materials which have been previously exposed to a magnetic field and therefore have residual magnetisation and those materials which currently have no residual magnetisation but will develop this feature following exposure to the magnetic field. These properties of magnetic materials according to the present invention contrast those in the prior art such as U.S. Pat. No. 6,027,945 or U.S. Pat. No. 5,945,525 in which the magnetic particles are paramagnetic or superparamagnetic and are not themselves magnetic in the absence of a magnetic field.
- the magnetic material according to the present invention advantageously comprises a ferrimagnetic material.
- a ferrimagnetic material is one which may be a metal or a metal oxide and may or may not contain iron.
- the ferrimagnetic material comprises a ferrimagnetic metal oxide which preferably comprises an iron oxide.
- all or a part of the ferrous iron of the metal or metal oxide may be substituted by a divalent transition metal selected from cadmium, chromium, cobalt, copper, magnesium, manganese, nickel, vanadium, and/or zinc.
- a particularly preferred ferrimagnetic metal oxide comprises ferrimagnetic magnetite.
- the magnetic material is ferromagnetic, and preferably contains iron.
- the ferromagnetic material may be metal or metal oxide.
- all or part of the iron of the metal or metal oxide may be substituted with another divalent transition metal as above.
- the length or diameter of the magnetic particles is typically in the range 0.1 to 5,000 ⁇ m, preferably in the range 0.1 to 1,000 ⁇ m, more preferably in the range 0.1 to 500 ⁇ m, most preferably in the range 0.1 to 100 ⁇ m. It is found that smaller particles can be separated quickly in a magnetic field and will have high binding capacity. It is preferred that the magnetic particles are substantially spherical because particles of this shape disaggregate more easily.
- the matrix material of the magnetic particles may comprise any material suitable to facilitate binding of the target substance.
- the composition of the matrix material will therefore depend to some extent on the nature of the target substance to be bound by the magnetic particles.
- the matrix material may provide a coating or shell for the magnetic material and may bind or complex with the magnetic material or form a composite therewith.
- the matrix material comprises a polymer which may be an organic polymer or an inorganic polymer such as a silica-based polymer. Where the matrix material is inorganic, this may alternatively comprise salts or molecules.
- the surface of the magnetic particles may comprise functional groups which promote disaggregation of the magnetic particles in the presence of a liquid phase.
- These functional groups may arise because of the nature of the matrix material used in the magnetic particles.
- the matrix material may need to be treated in order to introduce those functional groups.
- the functional groups of the matrix material are hydrophilic for use with an aqueous liquid phase.
- a matrix material having a hydrophilic surface would be easier to disaggregate than a matrix material having a hydrophobic surface.
- magnetic particles may be provided in which the functional groups of the matrix material are hydrophobic for use with an organic liquid phase, especially a non-polar liquid phase.
- a hydrophilic surface on the magnetic particles would make the particles more difficult to disaggregate. It is also possible for the surface to have a combination of both hydrophilic and hydrophobic groups. Such a combination is preferred where solvent systems miscible with both water and non-poplar solvents are used, such as THF, DIGLYMR and DMSO.
- the functional groups may also affect the binding properties of the particles in relation to the target substance.
- the capability of the magnetic particles to bind the target substance may be conferred by the bulk properties of the matrix material or by the matrix material further comprising an affinant for binding the target substance.
- Affinant chemistry and methodology is discussed in further detail in “Immobilised Affinity Ligand Techniques” by Hermanson et at (1992).
- the surface properties and affinant properties of the magnetic particles will be discussed in further detail below in relation to various different target substances.
- the present invention provides a process for the preparation of magnetic particles capable of binding a target substance, which comprises providing an unmagnetised magnetic material, and providing a matrix material so as to form magnetic particles, wherein the magnetic material is remanent upon exposure to a magnetic field and the matrix material has a surface comprising functional groups which promote disaggregation of the particles in the presence of a liquid phase.
- the matrix material may comprise a polymer which, as discussed above, may be inorganic or organic.
- the process may be performed in a number of ways.
- the matrix material is provided preformed and added to the magnetic material.
- the polymer is preferably provided by polymerisation of a monomer in the presence of an unmagnetised magnetic material to form the magnetic particles comprising the magnetic material and a polymeric material.
- the monomer may comprise an organic monomer or an inorganic monomer, such as a silica-based monomer, depending on the desired polymer.
- Other inorganic monomers include organometallic monomers, sulfonitride monomers, phosphonitrilic monomers and monomers to form carborane coordination polymers.
- This polymerisation is not particularly limited but may comprise a step-growth condensation (also called a polyaddition reaction) and/or a radical reaction.
- the polymerisation may take place in an emulsion in which the unmagnetised magnetic material is present in discontinuous phase thereof.
- the step of polymerisation preferably takes place in the discontinuous phase of the emulsion and the monomer is typically also present in the discontinuous phase of the emulsion, prior to polymerisation.
- the present invention is not limited to this system since it is also possible that some (or all) of the monomer may be in the continuous phase. After a chemical reaction takes place at the interface between the continuous and discontinuous phase it is made possible for the monomer to enter the emulsion droplets (discontinuous phase) prior to the polymerisation.
- the emulsion may be water-in-oil emulsion or an oil-in-water emulsion.
- the monomer generally comprises a water soluble organic and/or inorganic monomer.
- the monomer generally comprises a non-polar organic and/or inorganic monomer.
- the step of polymerisation may take place in solution followed by a coating of the magnetic material.
- the magnetic material may comprise particles, the length or diameter of which is in the range 0.1 ⁇ m to 5000 ⁇ m, preferably 0.1 ⁇ m to 500 ⁇ m and most preferably 0.1 ⁇ m to 100 ⁇ m.
- a particularly preferred length or diameter for the magnetic material is in the range 100-300 nm.
- the magnetic particles according to the invention may be provided for separating a target substance from a sample containing such a target substance.
- the target substance may comprise a cell; a microorganism, which may be cellular or acellular; a metal such as a pure metal or compound comprising a minor or major part thereof; or an organic compound such as an environmental contaminant, a nucleic acid, or a protein.
- nucleic acid which may be DNA, RNA, or a modified form thereof. Where the nucleic acid is DNA, this may be ds or ssDNA. Where the nucleic acid is RNA, this may be rRNA, mRNA or total RNA.
- a nucleic acid-containing sample typically comprises a biological sample such as a cellular sample.
- the biological sample may or may not need to be pretreated, depending on its structure. For example, in the case of plant or fungal cells or solid animal tissue, pretreatment would be required as is known in the art. Samples stored in the form of a solid phase such as a paraffin section may also need pretreatment. Samples may be from foodstuffs, environmental samples or clinical samples and may contain prokaryotic or eukaryotic cells or other moieties such as mycoplasmas, protoplasts or viruses. Blood products are an important area for nucleic acid isolation and the present invention is particularly applicable to whole blood and other blood products such as plasma, serum and buffycoat.
- the matrix material may comprise any material capable of binding nucleic acid, such as certain organic polymeric materials or silica-based materials.
- the matrix material bears acid groups on its surface as described in GB0210766.2 filed on 10 th May 2002 by the present applicant company.
- the acid groups preferably comprise an organic acid surface such as a carboxylic acid surface.
- carboxy, sulpho and aryloxy groups may be mentioned carboxy, sulpho and aryloxy groups.
- the carboxy or sulpho groups may be linked to the solid phase by alkylene or arylene groups so as to form carboxylic or sulphonic acids.
- Aryloxy groups such as phenoxy groups may also be so linked and may incorporate further aromatic or aliphatic moieties.
- Carbon atoms in each type of organic acid may be substituted with heteroatoms.
- the presence of such heteroatoms and the optional presence of further functional groups on the surface may each contribute to the properties of the solid phase, especially to the hydrophilicity of the solid phase.
- the preferred solid phase is hydrophilic because too hydrophobic a solid phase (for instance where there is too a high a concentration of polystyrene) will tend to give problems with nucleic acid binding.
- the matrix material may comprise a silica-based material for binding nucleic acid.
- Silica-based magnetic particles may require the use of a chaotrope as part of the isolation process to promote binding of the nucleic acid to the particles.
- the chaotrope generally comprises a chaotropic ion provided at a concentration sufficiently high to cause the nucleic acid to lose its secondary structure and, in the case of double-stranded nucleic acids, to melt. Chaotropes are thought to disrupt hydrogen-bonding in water so as to make denatured nucleic acid more stable than its undenatured counterpart.
- the chaotrope typically comprises a guanidinium salt, urea, or an iodide, chlorate, perchlorate or (iso)thiocyanate.
- Preferred chaotropes include guanidinium thiocyanate, and guanidinium hydrochloride.
- the concentration of chaotrope typically present when contacted with the sample is in the range 2M to 8M.
- an affinant comprising an oligonucleotide may be used as a specific hybridisation probe for nucleic acid having a sequence complementary to the oligonucleotide sequence.
- a step of separating the magnetic particles with the nucleic acid bound thereto from the liquid phase is generally required in order to remove contaminants in the liquid phase. Further washing steps may be applied to the solid phase at this point. Any conventional separation step for separating solid phase from liquid phase is applicable, including centrifugation and decanting of the liquid phase from the pelleted solid phase or using a column in which the solid phase is packed and the liquid phase passed through. Where the magnetic solid phase is used, this facilitates separation, which can be carried out in the presence of a magnetic field.
- a further elution step can be provided.
- the nucleic acid may be eluted from the solid phase by applying an elution solution, which may simply be water or a buffer.
- Suitable affinants may be selected which are known to bind each of these target substances.
- the affinant is capable of binding a cell or a protein and preferably comprises an antibody, a binding protein, a fragment of an antibody or binding protein, or a ligand.
- the binding protein may comprise an avidin such as streptavidin or other biotin-binding affinant.
- the target substance is biotinylated.
- the avidin is bound to the target substance and the magnetic particles are biotinylated.
- the affinant comprises a ligand which comprises an oligonucleotide or a metal chelate specific for the target substance.
- the cell or protein may be microbial.
- the affinant may also be capable of binding a virus or a prion.
- the target substance comprises cells
- antibodies on the magnetic particles.
- the antibodies may be intact or present as an active fragment.
- Antibodies are typically introduced on the magnetic particles via covalent coupling of a ligand from the antibody to the surface of the magnetic particle, usually via the matrix material.
- Suitable ligands from the antibody include —OH, —NH 2 and —SH.
- Various coupling chemistries may be applied to couple the ligand of the antibody to the magnetic particle.
- For —OH it is possible for example to use epoxy, divinyl sulfone, or cyanuric chloride.
- —SH it is possible to use maleimide, iodoacetyl, pyridyl disulfide or epoxy activated matrices.
- —NH 2 coupling it is possible to use epoxy, carboxylic acid/EDC, azlactones, aldehydes/NaCNBH 3 , cyanogen bromide, N-hydroxy succinimides, carbonyl diimidazoles, organic sulfonyl chlorides and others.
- introduction of one of avidin or biotin on the magnetic particles and introduction of the other onto the cells will enable the particles specifically to bind to the cells via an avidin-biotin binding interaction.
- streptavidin is introduced to the magnetic particles.
- the cells may be biotinylated for instance by using biotinylated NHS or by allowing the cells to interact selectively with a reagent which comprises biotin coupled to a moiety which reacts specifically with the cells such as an antibody.
- proteins using the specific chemistry of the magnetic particles.
- oligonucleotides could be introduced on the magnetic particles as affinants for specific amino acids of the proteins.
- immobilised metal chelate affinity chromatography in which chelates are introduced onto the magnetic particles to isolate proteins via specific metal affinity domains of the proteins.
- Histidine tags are repeated Histidine tags on proteins which will have an affinity for immobilised nickel on the magnetic particles.
- the target substance comprises a microorganism such as a virus, bacterium or other microorganism
- one strategy is to introduce antibodies or proteins on the magnetic particles which have an affinity for the proteins of the microorganism that are exposed on the cell membrane or surface.
- the methodology may be analogous to that used in isolating other cells.
- proteins that have affinity for the microorganism proteins in the same way as applied to isolating proteins as discussed above.
- the target substance comprises a metal and the affinant comprises a chelator for the metal.
- the target substance comprises a metal such as a pure metal or metal compound which may be necessary to be depleted from a sample for environmental reasons
- a metal chelator on the magnetic particle. Examples include IDA or NTA for the specific binding of metal of choice. Chelation chemistry is well known to those skilled in this art and is discussed in the book by Hermanson et at (1992).
- the matrix material may comprise a hydrophobic functional group capable of binding the microorganisms.
- Hydrophobic functional groups may also be used on the matrix material in order to bind hydrophobic target substances such as environmental contaminants.
- PCBs have a hydrophobic structure which is capable of being bound by a hydrophobic surface on a matrix material.
- the hydrophobic surface may, for example, be obtained by using aromatic groups.
- the magnetic particles according to the present invention may be used in a positive selection or a negative selection of the target substance.
- the target substance is required for further use or further isolation and possibly purification.
- positive selection it is preferred to avoid non-specific isolation of contaminating material.
- Easy disaggregation of the magnetic particles is extremely important in positive isolation to ensure good mixing and facilitate efficient washing of the particles with the target substance bound thereto. Isolation of nucleic acid is just one example of positive selection where the target substance is isolated from the sample.
- the magnetic particles may be used in a cell sorting apparatus for positive selection or negative selection.
- the present invention provides a process for separating a target substance from a target substance containing sample, which comprises:
- the step of dispersing the sample with the magnetic particles preferably comprises subjecting the magnetic particles to disruption to disaggregate the particles.
- the disruption may comprise mechanical, acoustic or UV disruption.
- Mechanical disruption includes pipetting, stirring, vortexing and/or shaking so as to disaggregate the particles.
- Acoustic disruption includes ultra sonication and UV disruption. It is important that the sample is dispersed as fully as possible with the magnetic particles so as to maximise binding of the target substance thereto.
- the process of the invention may include further steps.
- one or more washing steps may be incorporated into the process following binding of the target substance to the magnetic particles.
- the target substance may be used in a state bound to the magnetic particles.
- there is a need to elute the target substance from the magnetic particles for example, by applying an elution solution.
- the present invention provides a kit for separating a target substance from a sample containing such a target substance.
- the kit comprises magnetic particles as defined herein typically dispersed in a buffered aqueous solution and optionally including a component to inhibit microbial growth such as an azide. Sodium azide at 0.02% is a typical additive in such a buffered aqueous solution.
- the kit may typically further comprise one or more binding solutions, one or more washing solutions and one or more elution solutions each of which is generally aqueous.
- the elution solution may be aqueous or non-aqueous, depending on the target substance.
- the kit will additionally include one or more lysis solutions.
- nucleic acid is the target substance
- the kit may appear in a standard format comprising a nucleic acid binding magnetic particle, together with one or more of the solutions discussed above.
- the nucleic acid binding magnetic particle is a silica magnetic particle
- the kit may also include a chaotrope.
- an aqueous dispersion of ferrimagnetic magnetite particles in sodium silicate solution is mixed with an oil phase to form a water-in-oil emulsion with magnetite in the aqueous phase.
- Condensation polymerisation is performed in the presence of acid to produce the magnetic particles with an inorganic polymer.
- Ferrimagnetic magnetite particles (size 200-300 nm) 20 g were dispersed in 40 g waterglass (NMD) using an ultraturax mixing device. After mixing for 1 min at 16000 rpm, the speed was reduced to 13000 rpm and 300 ml of an oilphase (for instance toluene or isopar) containing 3% of an emulsifier (for instance span 80, span 65) was added. The speed was increased to 1700 rpm for 1 min and the resulting water in oil emulsion (magnetite dispersed in the water phase) was stirred in a reactor for 10 min at 20° C. before 2M HNO 3 (30 ml) was added.
- an oilphase for instance toluene or isopar
- an emulsifier for instance span 80, span 65
- ferrimagnetic magnetite particles are dispersed in an organic monomer (EGDMA) and an oil in water emulsion is formed by mixing the particle suspension with an aqueous phase.
- the monomers are polymerised to produce the organic polymer magnetic particles.
- Ferrimagnetic magnetite particles (size 200-300 nm) 6.6 g were dispersed in 20 g EGDMA.
- AIBN (0.45 g) was added to the dispersion and the organic phase containing magnetite was emulsified in water (150 ml) containing 0.5% polyvinylalcohol (Evanol) by use of an ultraturax (13000 rpm, 2 min).
- the resulting emulsion was stirred in an reactor for 20 h at 65° C. and the magnetic polymer beads were washed with methanol (5 ⁇ 150 ml) and dried at 80° C. for 6 h.
- Particle size 0.7 ⁇ -6 ⁇ m.
- Relative susceptibility 15 ⁇ 10 ⁇ 3 cgs.
- ferrimagnetic magnetic particles are dispersed in an organic solvent with a monomer, which is then polymerised to form the particles.
- Magnetite (1 g) is dispersed in an organic solvent such as THF, hexane or toluene (10 ml), where after an epoxiresin like bisphenol-A (10 ml) is added. Stirring is continued at 70° C. for 16 h and the magnetic particle are then washed 5 times with THF (25 ml each wash) by using a centrifuge. Finally the particles are dried in vacuum at 50° C. The particles have approximately 0.25 mmol/g epoxigroups.
- ferrimagnetic magnetic particles are dispersed in an organic solvent with a prepolymerised polymer to form the particles.
- Dry ferrimagnetic magnetite particles (size 200-300 nm) 1 g were dispersed in 10 ml of 0.5% poly(ethylene) imine (Aldrich, Mw 35 000) in 0.1 M Na-carbonate pH 9.5. The suspension was allowed to incubate at ambient temperature for 3 h, where after the particles were washed with 4 ⁇ 20 ml water.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Power Engineering (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Soft Magnetic Materials (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Compounds Of Iron (AREA)
- Peptides Or Proteins (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Magnetic particles capable of binding a target substance, which comprise a magnetic material and a matrix material, wherein the magnetic material is remanent upon exposure to a magnetic field and the matrix material has a surface comprising functional groups which promote disaggregation of the particles in the presence of a liquid phase.
Description
- The present invention relates to magnetic particles capable of binding a target substance such as nucleic acid, a process for making such magnetic particles, and a process for isolating a target substance from a target substance-containing sample.
- Procedures involving nucleic acids such as DNA and RNA continue to play a crucial role in biotechnology. Nucleic acid detection and manipulation including hybridisation, amplification, sequencing and other processes generally require nucleic acid to have been isolated from contaminating material. Where a nucleic acid-containing sample is a biological sample, contaminating material may include proteins, carbohydrates, lipids and polyphenols. Accordingly, a variety of approaches have hitherto been used in the isolation of DNA or RNA.
- Early methods of isolating nucleic acid involved a series of extractions with organic solvents, involving ethanol precipitation and dialysis of the nucleic acids. These early methods are relatively laborious and time-consuming and may result in low yield. Isopropanol may also be used in the precipitation of the nucleic acid.
- An alcohol precipitation method is described in U.S. Pat. No. 5,523,231. Nucleic acid is precipitated by highly concentrated alcohol in the presence of magnetic beads. The precipitate can be separated from supernatant by the application of a magnetic field.
- U.S. Pat. No. 5,395,498 describes a method for isolating biological macromolecules from electrophoretograms using a matrix of magnetic particles which have an affinity to the molecules separated on the electrophoretogram. Magnetic particles are described with a range of various magnetic substances, those having essentially no magnetic memory being preferred. A magnetic field is used to attract the magnetic particles to a specific location in the electrophoretogram for specific binding of the particles to a specific species of biological macromolecule, typically separated as a band in the electrophoretogram.
- U.S. Pat. No. 6,027,945 describes a method which uses a silica-based nucleic acid binding solid phase in the presence of a chaotrope to isolate nucleic acid. According to this method, the silica-based solid phase is magnetic, thereby facilitating separation of the solid phase containing the target nucleic acid from the liquid phase containing contaminants upon application of a magnetic field. A similar method is described in U.S. Pat. No. 5,945,525.
- U.S. Pat. No. 5,990,302 describes a method for isolating RNA which is also performed in the presence of a chaotrope. A sample is mixed with an acidic solution containing a lithium salt, a chaotropic agent and a nucleic acid-binding carrier to absorb the RNA onto the carrier. The RNA-bound carrier is isolated from the liquid phase and eluted. Magnetic silica particles are used as the nucleic acid-binding carrier, although silica, cellulose, nitrocellulose, latex and hydroxyapatite are all mentioned as possible carriers.
- WO96/18731 also uses magnetic particles to bind nucleic acid. In this disclosure the magnetic particles are polystyrene-based and polyurethane-coated and a detergent is used instead of a chaotrope.
- U.S. Pat. No. 5,705,628 discloses a method of separating polynucleotides, especially DNA, by binding the polynucleotides to a magnetic micro particle having a functional group-coated surface.
- All of the prior art documents described herein and each of their commercial counterparts known to the present applicants use magnetic particles which are capable of being magnetised in the presence of a magnetic field but which are not themselves magnetic in the absence of such a field. Paramagnetic or superparamagnetic materials possess these qualities. It has hitherto been thought that particles which are themselves magnetic in the absence of a magnetic field (and which are known as remanent particles) are undesirable because they disadvantageously form aggregates because of their remanence. These aggregates prevent intimate mixture with sample and are therefore considered to inhibit partially binding of nucleic acid from the sample to the magnetic particles.
- Contrary to this generally-held thinking, the present applicants have surprisingly found that remanent magnetic particles may be advantageously used in isolating nucleic acid and other target substances.
- Accordingly, in a first aspect, the present invention provides magnetic particles capable of binding a target substance, which comprise a magnetic material and a matrix material, wherein the magnetic material is remanent upon exposure to a magnetic field and the matrix material has a surface comprising functional groups which promote disaggregation of the particles in the presence of a liquid phase.
- It has surprisingly been found that remanent magnetic particles can be extremely effective in separation or isolation of target substances from a sample. Remanent magnetic particles according to the present invention may form aggregates when suspended in a liquid phase but are readily dispersible upon application of a force to disrupt the aggregates. Advantageously, the matrix material of the magnetic particles has a surface comprising functional groups which promote this disaggregation of the particles in the presence of the liquid phase.
- Because the magnetic particles are remanent, they are highly responsive to magnetic fields. The particles can be made smaller than conventional magnetic particles and yet respond quickly to a magnetic field. This has an advantage that the smaller the particle, generally the higher the binding capacity. Accordingly, the invention allows the use of high capacity, small particles which are still capable of obtaining a fast separation, as compared with larger conventional particles. Particles according to the invention are superior to paramagnetic and superparamagnetic particles of the same size in terms of velocity in a magnetic field. This is an enormous advantage regarding isolation. In automatic systems it becomes possible to increase the number of samples to be analysed dramatically.
- The magnetic material which forms part of the magnetic particles is remanent in the sense that, upon exposure to a magnetic field, the material must have residual magnetisation in the absence of a magnetic field. Accordingly, in the present specification remanence encompasses both materials which have been previously exposed to a magnetic field and therefore have residual magnetisation and those materials which currently have no residual magnetisation but will develop this feature following exposure to the magnetic field. These properties of magnetic materials according to the present invention contrast those in the prior art such as U.S. Pat. No. 6,027,945 or U.S. Pat. No. 5,945,525 in which the magnetic particles are paramagnetic or superparamagnetic and are not themselves magnetic in the absence of a magnetic field.
- The magnetic material according to the present invention advantageously comprises a ferrimagnetic material. Whilst some texts define a ferrimagnetic material as one which contains iron, according to the present specification, a ferrimagnetic material is one which may be a metal or a metal oxide and may or may not contain iron. In one embodiment, the ferrimagnetic material comprises a ferrimagnetic metal oxide which preferably comprises an iron oxide. Optionally all or a part of the ferrous iron of the metal or metal oxide may be substituted by a divalent transition metal selected from cadmium, chromium, cobalt, copper, magnesium, manganese, nickel, vanadium, and/or zinc. A particularly preferred ferrimagnetic metal oxide comprises ferrimagnetic magnetite.
- In another embodiment of the present invention, the magnetic material is ferromagnetic, and preferably contains iron. The ferromagnetic material may be metal or metal oxide. Optionally, all or part of the iron of the metal or metal oxide may be substituted with another divalent transition metal as above.
- The length or diameter of the magnetic particles is typically in the range 0.1 to 5,000 μm, preferably in the range 0.1 to 1,000 μm, more preferably in the range 0.1 to 500 μm, most preferably in the range 0.1 to 100 μm. It is found that smaller particles can be separated quickly in a magnetic field and will have high binding capacity. It is preferred that the magnetic particles are substantially spherical because particles of this shape disaggregate more easily.
- The matrix material of the magnetic particles may comprise any material suitable to facilitate binding of the target substance. The composition of the matrix material will therefore depend to some extent on the nature of the target substance to be bound by the magnetic particles. The matrix material may provide a coating or shell for the magnetic material and may bind or complex with the magnetic material or form a composite therewith. In one arrangement the matrix material comprises a polymer which may be an organic polymer or an inorganic polymer such as a silica-based polymer. Where the matrix material is inorganic, this may alternatively comprise salts or molecules.
- It is advantageous for the surface of the magnetic particles to comprise functional groups which promote disaggregation of the magnetic particles in the presence of a liquid phase. These functional groups may arise because of the nature of the matrix material used in the magnetic particles. Alternatively, the matrix material may need to be treated in order to introduce those functional groups. In one arrangement, the functional groups of the matrix material are hydrophilic for use with an aqueous liquid phase. For example, where the aqueous liquid phase arises from a biological sample, a matrix material having a hydrophilic surface would be easier to disaggregate than a matrix material having a hydrophobic surface. In the alternative, magnetic particles may be provided in which the functional groups of the matrix material are hydrophobic for use with an organic liquid phase, especially a non-polar liquid phase. Where a non-polar liquid phase is used, a hydrophilic surface on the magnetic particles would make the particles more difficult to disaggregate. It is also possible for the surface to have a combination of both hydrophilic and hydrophobic groups. Such a combination is preferred where solvent systems miscible with both water and non-poplar solvents are used, such as THF, DIGLYMR and DMSO.
- The functional groups may also affect the binding properties of the particles in relation to the target substance. The capability of the magnetic particles to bind the target substance may be conferred by the bulk properties of the matrix material or by the matrix material further comprising an affinant for binding the target substance. Affinant chemistry and methodology is discussed in further detail in “Immobilised Affinity Ligand Techniques” by Hermanson et at (1992). The surface properties and affinant properties of the magnetic particles will be discussed in further detail below in relation to various different target substances.
- In a further aspect the present invention provides a process for the preparation of magnetic particles capable of binding a target substance, which comprises providing an unmagnetised magnetic material, and providing a matrix material so as to form magnetic particles, wherein the magnetic material is remanent upon exposure to a magnetic field and the matrix material has a surface comprising functional groups which promote disaggregation of the particles in the presence of a liquid phase.
- The matrix material may comprise a polymer which, as discussed above, may be inorganic or organic. The process may be performed in a number of ways. According to one embodiment, the matrix material is provided preformed and added to the magnetic material. According to another embodiment, the polymer is preferably provided by polymerisation of a monomer in the presence of an unmagnetised magnetic material to form the magnetic particles comprising the magnetic material and a polymeric material. The monomer may comprise an organic monomer or an inorganic monomer, such as a silica-based monomer, depending on the desired polymer. Other inorganic monomers include organometallic monomers, sulfonitride monomers, phosphonitrilic monomers and monomers to form carborane coordination polymers. This polymerisation is not particularly limited but may comprise a step-growth condensation (also called a polyaddition reaction) and/or a radical reaction.
- The polymerisation may take place in an emulsion in which the unmagnetised magnetic material is present in discontinuous phase thereof. According to this embodiment, the step of polymerisation preferably takes place in the discontinuous phase of the emulsion and the monomer is typically also present in the discontinuous phase of the emulsion, prior to polymerisation. The present invention is not limited to this system since it is also possible that some (or all) of the monomer may be in the continuous phase. After a chemical reaction takes place at the interface between the continuous and discontinuous phase it is made possible for the monomer to enter the emulsion droplets (discontinuous phase) prior to the polymerisation. The emulsion may be water-in-oil emulsion or an oil-in-water emulsion. Where the emulsion is a water-in-oil emulsion, the monomer generally comprises a water soluble organic and/or inorganic monomer. Where the emulsion is an oil-in-water emulsion, the monomer generally comprises a non-polar organic and/or inorganic monomer.
- As an alternative to an emulsion-based system, the step of polymerisation may take place in solution followed by a coating of the magnetic material.
- The magnetic material may comprise particles, the length or diameter of which is in the range 0.1 μm to 5000 μm, preferably 0.1 μm to 500 μm and most preferably 0.1 μm to 100 μm. A particularly preferred length or diameter for the magnetic material is in the range 100-300 nm.
- In use, the magnetic particles according to the invention may be provided for separating a target substance from a sample containing such a target substance. The target substance may comprise a cell; a microorganism, which may be cellular or acellular; a metal such as a pure metal or compound comprising a minor or major part thereof; or an organic compound such as an environmental contaminant, a nucleic acid, or a protein.
- One important target substance is a nucleic acid, which may be DNA, RNA, or a modified form thereof. Where the nucleic acid is DNA, this may be ds or ssDNA. Where the nucleic acid is RNA, this may be rRNA, mRNA or total RNA.
- A nucleic acid-containing sample typically comprises a biological sample such as a cellular sample. The biological sample may or may not need to be pretreated, depending on its structure. For example, in the case of plant or fungal cells or solid animal tissue, pretreatment would be required as is known in the art. Samples stored in the form of a solid phase such as a paraffin section may also need pretreatment. Samples may be from foodstuffs, environmental samples or clinical samples and may contain prokaryotic or eukaryotic cells or other moieties such as mycoplasmas, protoplasts or viruses. Blood products are an important area for nucleic acid isolation and the present invention is particularly applicable to whole blood and other blood products such as plasma, serum and buffycoat.
- Where nucleic acid is to be purified, the matrix material may comprise any material capable of binding nucleic acid, such as certain organic polymeric materials or silica-based materials. In one arrangement, the matrix material bears acid groups on its surface as described in GB0210766.2 filed on 10th May 2002 by the present applicant company. The acid groups preferably comprise an organic acid surface such as a carboxylic acid surface.
- Among those acid groups useable according to this aspect of the present invention may be mentioned carboxy, sulpho and aryloxy groups. For example, the carboxy or sulpho groups may be linked to the solid phase by alkylene or arylene groups so as to form carboxylic or sulphonic acids. Aryloxy groups such as phenoxy groups may also be so linked and may incorporate further aromatic or aliphatic moieties. Carbon atoms in each type of organic acid may be substituted with heteroatoms. The presence of such heteroatoms and the optional presence of further functional groups on the surface, including esters, amines, alcohols, carboxylic acids, amides, halides, aldehydes, ketones, imines, nitro compounds, thiols, thioesters, nitriles, acid anhydrides and sulphonic compounds may each contribute to the properties of the solid phase, especially to the hydrophilicity of the solid phase. The preferred solid phase is hydrophilic because too hydrophobic a solid phase (for instance where there is too a high a concentration of polystyrene) will tend to give problems with nucleic acid binding.
- Alternatively, the matrix material may comprise a silica-based material for binding nucleic acid. Silica-based magnetic particles may require the use of a chaotrope as part of the isolation process to promote binding of the nucleic acid to the particles.
- The chaotrope generally comprises a chaotropic ion provided at a concentration sufficiently high to cause the nucleic acid to lose its secondary structure and, in the case of double-stranded nucleic acids, to melt. Chaotropes are thought to disrupt hydrogen-bonding in water so as to make denatured nucleic acid more stable than its undenatured counterpart. The chaotrope typically comprises a guanidinium salt, urea, or an iodide, chlorate, perchlorate or (iso)thiocyanate. Preferred chaotropes include guanidinium thiocyanate, and guanidinium hydrochloride.
- The concentration of chaotrope typically present when contacted with the sample is in the range 2M to 8M.
- In a further arrangement where the nucleic acid is the target substance, an affinant comprising an oligonucleotide may be used as a specific hybridisation probe for nucleic acid having a sequence complementary to the oligonucleotide sequence.
- A step of separating the magnetic particles with the nucleic acid bound thereto from the liquid phase is generally required in order to remove contaminants in the liquid phase. Further washing steps may be applied to the solid phase at this point. Any conventional separation step for separating solid phase from liquid phase is applicable, including centrifugation and decanting of the liquid phase from the pelleted solid phase or using a column in which the solid phase is packed and the liquid phase passed through. Where the magnetic solid phase is used, this facilitates separation, which can be carried out in the presence of a magnetic field.
- Depending on the form in which the isolated nucleic acid is required, a further elution step can be provided. In some cases it may be satisfactory for the nucleic acid to remain bound to the magnetic probe. This may be the case if further manipulations of the nucleic acid on a solid phase are required, such as an amplification step. Equally, the nucleic acid may be eluted from the solid phase by applying an elution solution, which may simply be water or a buffer.
- According to further embodiments of the invention, the target substance may comprise a cell, protein, bacterium, virus, or environmental contaminant. The cells may be prokaryotic or eukaryotic cells. Eukaryotic cells include animal, plant and fungal cells. Prokaryotic cells include bacteria and blue green “algae”. Other microorganisms include acellular microrganisms such as viruses and prions.
- Suitable affinants may be selected which are known to bind each of these target substances. In one embodiment, the affinant is capable of binding a cell or a protein and preferably comprises an antibody, a binding protein, a fragment of an antibody or binding protein, or a ligand. The binding protein may comprise an avidin such as streptavidin or other biotin-binding affinant. According to this embodiment, the target substance is biotinylated. Alternatively, the avidin is bound to the target substance and the magnetic particles are biotinylated. In a further arrangement, the affinant comprises a ligand which comprises an oligonucleotide or a metal chelate specific for the target substance. The cell or protein may be microbial. The affinant may also be capable of binding a virus or a prion.
- Where the target substance comprises cells, it is possible, for example, to introduce antibodies on the magnetic particles. The antibodies may be intact or present as an active fragment. Antibodies are typically introduced on the magnetic particles via covalent coupling of a ligand from the antibody to the surface of the magnetic particle, usually via the matrix material. Suitable ligands from the antibody include —OH, —NH2 and —SH. Various coupling chemistries may be applied to couple the ligand of the antibody to the magnetic particle. For —OH it is possible for example to use epoxy, divinyl sulfone, or cyanuric chloride. For —SH, it is possible to use maleimide, iodoacetyl, pyridyl disulfide or epoxy activated matrices. For —NH2 coupling it is possible to use epoxy, carboxylic acid/EDC, azlactones, aldehydes/NaCNBH3, cyanogen bromide, N-hydroxy succinimides, carbonyl diimidazoles, organic sulfonyl chlorides and others.
- It is also possible to tailor the chemistry of the matrix material so that it has affinity for the cell in question.
- As a further option, introduction of one of avidin or biotin on the magnetic particles and introduction of the other onto the cells will enable the particles specifically to bind to the cells via an avidin-biotin binding interaction. Typically streptavidin is introduced to the magnetic particles. The cells may be biotinylated for instance by using biotinylated NHS or by allowing the cells to interact selectively with a reagent which comprises biotin coupled to a moiety which reacts specifically with the cells such as an antibody.
- In the case where the target substance is a protein it is possible to introduce protein binding proteins which specifically target other proteins. One example is to introduce protein B on the magnetic particles to isolate humane IgA (Faulmann et at 1991. Equally, human IgA could be introduced on the magnetic particles to isolate protein B.
- In another embodiment it is possible to isolate proteins using the specific chemistry of the magnetic particles. For example, oligonucleotides could be introduced on the magnetic particles as affinants for specific amino acids of the proteins. Alternatively, it is possible to use immobilised metal chelate affinity chromatography in which chelates are introduced onto the magnetic particles to isolate proteins via specific metal affinity domains of the proteins. One example of this is repeated Histidine tags on proteins which will have an affinity for immobilised nickel on the magnetic particles.
- In a further embodiment, it is possible to use an avidin/biotin binding pair in the same way as for isolating cells.
- Where the target substance comprises a microorganism such as a virus, bacterium or other microorganism, one strategy is to introduce antibodies or proteins on the magnetic particles which have an affinity for the proteins of the microorganism that are exposed on the cell membrane or surface. The methodology may be analogous to that used in isolating other cells. Alternatively, it is possible to introduce proteins that have affinity for the microorganism proteins in the same way as applied to isolating proteins as discussed above.
- In a further embodiment, it is possible to use a hydrophobic surface to obtain depletion of the bacteria to that surface.
- In a further embodiment, the target substance comprises a metal and the affinant comprises a chelator for the metal.
- Where the target substance comprises a metal such as a pure metal or metal compound which may be necessary to be depleted from a sample for environmental reasons, it is possible to introduce a metal chelator on the magnetic particle. Examples include IDA or NTA for the specific binding of metal of choice. Chelation chemistry is well known to those skilled in this art and is discussed in the book by Hermanson et at (1992).
- Instead of using an affinant to bind microorganisms, the matrix material may comprise a hydrophobic functional group capable of binding the microorganisms. Hydrophobic functional groups may also be used on the matrix material in order to bind hydrophobic target substances such as environmental contaminants. For example, PCBs have a hydrophobic structure which is capable of being bound by a hydrophobic surface on a matrix material. The hydrophobic surface may, for example, be obtained by using aromatic groups.
- The magnetic particles according to the present invention may be used in a positive selection or a negative selection of the target substance. In a positive selection, the target substance is required for further use or further isolation and possibly purification. In positive selection it is preferred to avoid non-specific isolation of contaminating material. Easy disaggregation of the magnetic particles is extremely important in positive isolation to ensure good mixing and facilitate efficient washing of the particles with the target substance bound thereto. Isolation of nucleic acid is just one example of positive selection where the target substance is isolated from the sample.
- In a negative selection, the target substance is depleted from the sample. The purpose of this is generally to clean the sample for future manipulation or use of the sample. Removal of contaminants such as environmental contaminants is one example of a negative selection. Another example of negative selection is where the target substance is T-cells and the sample is a blood sample.
- The magnetic particles may be used in a cell sorting apparatus for positive selection or negative selection.
- In a further aspect, the present invention provides a process for separating a target substance from a target substance containing sample, which comprises:
-
- (a) providing target substance binding magnetic particles which comprise a magnetic material and a matrix material, wherein the magnetic material is remnant upon exposure to a magnetic field;
- (b) providing a liquid phase comprising the target substance-containing sample;
- (c) dispersing the sample with the magnetic particles so as to bind the target substance thereto; and
- (d) isolating the particles from the sample by applying a magnetic field thereto and separating the particles from the liquid phase.
- The step of dispersing the sample with the magnetic particles preferably comprises subjecting the magnetic particles to disruption to disaggregate the particles. The disruption may comprise mechanical, acoustic or UV disruption. Mechanical disruption includes pipetting, stirring, vortexing and/or shaking so as to disaggregate the particles. Acoustic disruption includes ultra sonication and UV disruption. It is important that the sample is dispersed as fully as possible with the magnetic particles so as to maximise binding of the target substance thereto.
- The process is useful for separating a target substance as defined above and may be used in a positive selection or a negative selection. Isolation of nucleic acid is a particularly important aspect of the invention, especially isolation of unfractionated nucleic acid such as total nucleic acid from a biological sample.
- The process of the invention may include further steps. For example, where the isolated target substance is to be further purified or used in further manipulation, one or more washing steps may be incorporated into the process following binding of the target substance to the magnetic particles. In some cases the target substance may be used in a state bound to the magnetic particles. In other cases, there is a need to elute the target substance from the magnetic particles, for example, by applying an elution solution.
- In a further aspect, the present invention provides a kit for separating a target substance from a sample containing such a target substance. The kit comprises magnetic particles as defined herein typically dispersed in a buffered aqueous solution and optionally including a component to inhibit microbial growth such as an azide. Sodium azide at 0.02% is a typical additive in such a buffered aqueous solution. The kit may typically further comprise one or more binding solutions, one or more washing solutions and one or more elution solutions each of which is generally aqueous. The elution solution may be aqueous or non-aqueous, depending on the target substance. Where samples require pretreatment, for example where biological samples incorporate material to be lysed, the kit will additionally include one or more lysis solutions. Where nucleic acid is the target substance, the kit may appear in a standard format comprising a nucleic acid binding magnetic particle, together with one or more of the solutions discussed above. Where the nucleic acid binding magnetic particle is a silica magnetic particle, the kit may also include a chaotrope.
- The present invention is now described in more detail, by way of example only, with reference to the following Examples.
- All Examples are performed in the absence of an applied magnetic field.
- In this example, an aqueous dispersion of ferrimagnetic magnetite particles in sodium silicate solution (water glass) is mixed with an oil phase to form a water-in-oil emulsion with magnetite in the aqueous phase. Condensation polymerisation is performed in the presence of acid to produce the magnetic particles with an inorganic polymer.
- Ferrimagnetic magnetite particles (size 200-300 nm) 20 g were dispersed in 40 g waterglass (NMD) using an ultraturax mixing device. After mixing for 1 min at 16000 rpm, the speed was reduced to 13000 rpm and 300 ml of an oilphase (for instance toluene or isopar) containing 3% of an emulsifier (for instance span 80, span 65) was added. The speed was increased to 1700 rpm for 1 min and the resulting water in oil emulsion (magnetite dispersed in the water phase) was stirred in a reactor for 10 min at 20° C. before 2M HNO3 (30 ml) was added. After stirring for 1 h and addition of methanol (30 ml), the suspension was stirred at 50° C. for 16 h. The magnetic particles were washed with methanol (3×150 ml), water (1×150 ml) and finally methanol (2×150 ml) using a centrifuge or a magnetic device. The particles were dried under vacuum. Particle size 0.3 μm-1.5 μm. Relative susceptibility: 35×10−3 cgs.
- In this example ferrimagnetic magnetite particles are dispersed in an organic monomer (EGDMA) and an oil in water emulsion is formed by mixing the particle suspension with an aqueous phase. The monomers are polymerised to produce the organic polymer magnetic particles.
- Ferrimagnetic magnetite particles (size 200-300 nm) 6.6 g were dispersed in 20 g EGDMA. AIBN (0.45 g) was added to the dispersion and the organic phase containing magnetite was emulsified in water (150 ml) containing 0.5% polyvinylalcohol (Evanol) by use of an ultraturax (13000 rpm, 2 min). The resulting emulsion was stirred in an reactor for 20 h at 65° C. and the magnetic polymer beads were washed with methanol (5×150 ml) and dried at 80° C. for 6 h. Particle size 0.7 μ-6 μm. Relative susceptibility: 15×10−3 cgs.
- In this Example ferrimagnetic magnetic particles are dispersed in an organic solvent with a monomer, which is then polymerised to form the particles.
- Magnetite (1 g) is dispersed in an organic solvent such as THF, hexane or toluene (10 ml), where after an epoxiresin like bisphenol-A (10 ml) is added. Stirring is continued at 70° C. for 16 h and the magnetic particle are then washed 5 times with THF (25 ml each wash) by using a centrifuge. Finally the particles are dried in vacuum at 50° C. The particles have approximately 0.25 mmol/g epoxigroups.
- In this Example ferrimagnetic magnetic particles are dispersed in an organic solvent with a prepolymerised polymer to form the particles.
- Dry ferrimagnetic magnetite particles (size 200-300 nm) 1 g were dispersed in 10 ml of 0.5% poly(ethylene) imine (Aldrich, Mw 35 000) in 0.1 M Na-carbonate pH 9.5. The suspension was allowed to incubate at ambient temperature for 3 h, where after the particles were washed with 4×20 ml water.
- Introduced polymers were confirmed by surface charge measurements (Malvern Zetaziser). The surface of the magnetic particle had a positive shift in isoelectric point of 1 magnitude.
Claims (23)
1-55. (canceled)
56. Magnetic particles capable of binding a target substance, the magnetic particles comprising a magnetic material and a matrix material, wherein the magnetic material is remanent upon exposure to a magnetic field such that the magnetic material has a residual magnetization that is sufficient to cause the magnetic particles to form aggregates when suspended in a liquid phase in the absence of a magnetic field but are dispersible upon application of a force to disrupt the aggregates, wherein the matrix material has a surface comprising functional groups that promote disaggregation of the particles in the presence of a liquid phase, and wherein the magnetic particles are not paramagnetic or superparamagnetic.
57. Magnetic particles according to claim 56 , wherein the magnetic material comprises a magnetic metal oxide.
58. Magnetic particles according to claim 57 , wherein the magnetic metal oxide comprises an iron oxide in which, optionally, all or a part of the ferrous iron thereof is substituted by a divalent transition metal selected from cadmium, chromium, cobalt, copper, magnesium, manganese, nickel, vanadium, and/or zinc.
59. Magnetic particles according to claim 56 , wherein the magnetic material comprises a ferrimagnetic metal oxide.
60. Magnetic particles according to claim 59 , wherein the ferrimagnetic metal oxide comprises ferrimagnetic magnetite.
61. Magnetic particles according to claim 56 , wherein the magnetic material comprises a ferromagnetic material.
62. Magnetic particles according to claim 56 , the length or diameter of which is in the range 0.1 to 5000 μm.
63. Magnetic particles according to claim 56 , which are substantially spherical.
64. Magnetic particles according to claim 56 , wherein the matrix material comprises a polymer.
65. Magnetic particles according to claim 64 , wherein the polymer comprises an organic polymer or a silica-based polymer.
66. Magnetic particles according to claim 56 wherein the functional groups of the matrix material are hydrophilic for use with an aqueous liquid phase.
67. Magnetic particles according to claim 56 , wherein the functional groups of the matrix material are hydrophobic for use with a non-polar liquid phase.
68. Magnetic particles according to claim 56 , wherein the matrix material further comprises an affinant for binding the target substance.
69. Magnetic particles according to claim 56 , wherein the target substance is a protein.
70. Magnetic particles according to claim 68 , wherein the affinant is capable of binding a cell, a protein, a virus or a prion.
71. Magnetic particles according to claim 70 , wherein the affinant comprises an antibody, a binding protein, a fragment of an antibody or binding protein, or a ligand.
72. Magnetic particles according to claim 71 , wherein the affinant comprises a binding protein which comprises an avidin for binding to a target substance which is biotinylated, or the affinant comprises biotin and the target substance is avidinylated.
73. Magnetic particles according to claim 71 , wherein the affinant comprises a ligand which comprises a metal chelate specific for the target substance.
74. Magnetic particles according to claim 70 , wherein the cell or protein is microbial.
75. Magnetic particles according to claim 68 , wherein the target substance comprises a metal and the affinant comprises a chelator for the metal.
76. Magnetic particles according to claim 67 , wherein the hydrophobic functional groups are capable of binding microorganisms or hydrophobic target substances.
77. A process for separating a target substance from a target substance containing sample, which comprises:
(a) providing target substance binding magnetic particles which comprise a magnetic material and a matrix material, wherein the magnetic material is remnant upon exposure to a magnetic field such that the magnetic material has residual magnetization that is sufficient to cause the magnetic particles to form aggregates when suspended in a liquid phase in the absence of a magnetic field but are dispersible upon application of a force to disrupt the aggregates, wherein the magnetic particles are not paramagnetic or superparamagnetic, and wherein the matrix material has a surface comprising functional groups that promote disaggregation of the magnetic particles in the presence of a liquid phase;
(b) providing a liquid phase comprising the target substance-containing sample;
(c) dispersing the sample with the magnetic particles so as to allow the magnetic particles to bind the target substance thereto by disrupting magnetic particles to disaggregate the magnetic particles; and
(d) isolating the magnetic particles from the sample by applying a magnetic field thereto and separating the particles from the liquid phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/633,626 US20130089909A1 (en) | 2002-07-01 | 2012-10-02 | Binding a target substance |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0215185.0A GB0215185D0 (en) | 2002-07-01 | 2002-07-01 | Binding a target substance |
GB0215185.0 | 2002-07-01 | ||
US10/519,167 US20060188876A1 (en) | 2002-07-01 | 2003-07-01 | Binding a target substance |
PCT/IB2003/002994 WO2004003231A2 (en) | 2002-07-01 | 2003-07-01 | Remanent magnetic paricles capable of binding a target substance, their production and uses thereof |
US13/633,626 US20130089909A1 (en) | 2002-07-01 | 2012-10-02 | Binding a target substance |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2003/002994 Continuation WO2004003231A2 (en) | 2002-07-01 | 2003-07-01 | Remanent magnetic paricles capable of binding a target substance, their production and uses thereof |
US11/519,167 Continuation US7425006B2 (en) | 2006-09-11 | 2006-09-11 | Live twist beam axle assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130089909A1 true US20130089909A1 (en) | 2013-04-11 |
Family
ID=9939622
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/519,167 Abandoned US20060188876A1 (en) | 2002-07-01 | 2003-07-01 | Binding a target substance |
US13/633,626 Abandoned US20130089909A1 (en) | 2002-07-01 | 2012-10-02 | Binding a target substance |
US14/810,216 Active 2026-09-22 US10816546B2 (en) | 2002-07-01 | 2015-07-27 | Binding a target substance |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/519,167 Abandoned US20060188876A1 (en) | 2002-07-01 | 2003-07-01 | Binding a target substance |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/810,216 Active 2026-09-22 US10816546B2 (en) | 2002-07-01 | 2015-07-27 | Binding a target substance |
Country Status (6)
Country | Link |
---|---|
US (3) | US20060188876A1 (en) |
EP (1) | EP1520041B1 (en) |
JP (1) | JP4324101B2 (en) |
CA (1) | CA2490962C (en) |
GB (1) | GB0215185D0 (en) |
WO (1) | WO2004003231A2 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0215185D0 (en) | 2002-07-01 | 2002-08-07 | Genovision As | Binding a target substance |
US7754444B2 (en) * | 2004-06-24 | 2010-07-13 | The Hong Kong University Of Science And Technology | Biofunctional magnetic nanoparticles for pathogen detection |
EP1650297B1 (en) * | 2004-10-19 | 2011-04-13 | Samsung Electronics Co., Ltd. | Method and apparatus for the rapid disruption of cells or viruses using micro magnetic beads and laser |
KR100601972B1 (en) * | 2004-11-03 | 2006-07-18 | 삼성전자주식회사 | Apparatus and Method for Purifying Nucleic Acids by Phase Separation Using Lasers and Beads |
KR100601974B1 (en) * | 2004-11-25 | 2006-07-18 | 삼성전자주식회사 | Apparatus and Method for Purifying Nucleic Acids by Different Laser Absorption of Beads |
AT501194A1 (en) * | 2004-12-30 | 2006-07-15 | Thomas Dr Schlederer | METHOD FOR ISOLATING CELLS AND VIRUSES |
FR2883296B1 (en) * | 2005-03-15 | 2007-05-18 | Nicolas Bara | METHOD AND DEVICE FOR ISOLATING MICROORGANISMS |
KR101157174B1 (en) * | 2005-11-24 | 2012-06-20 | 삼성전자주식회사 | Method and apparatus for rapidly lysing cells or virus |
EP2125659B1 (en) * | 2007-02-01 | 2016-01-13 | Siemens Healthcare Diagnostics Inc. | Silica magnetic particles with a high nucleic acid binding capability |
CA2682192A1 (en) * | 2007-03-29 | 2008-10-09 | University Of Utah Research Foundation | Materials for removing contaminants from fluids using supports with biologically-derived functionalized groups and methods of forming and using the same |
EP2345719A1 (en) | 2010-01-18 | 2011-07-20 | Qiagen GmbH | Method for isolating small RNA |
NO2588609T3 (en) * | 2010-06-29 | 2018-06-16 | ||
EP2407540A1 (en) | 2010-07-15 | 2012-01-18 | Qiagen GmbH | Method for purifying a target nucleic acid |
JP6096774B2 (en) | 2011-08-12 | 2017-03-15 | キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for isolating nucleic acids |
EP2634254A1 (en) | 2012-02-29 | 2013-09-04 | QIAGEN GmbH | Method for isolating nucleic acids from a food sample |
EP2888354B1 (en) | 2012-08-21 | 2020-04-01 | Qiagen GmbH | Virus particle stabilisation and method for isolating viral nucleic acids |
US20150225712A1 (en) | 2012-08-21 | 2015-08-13 | Qiagen Gmbh | Method for isolating nucleic acids from a formaldehyde releaser stabilized sample |
SG11201500655VA (en) | 2012-09-03 | 2015-05-28 | Qiagen Gmbh | Method for isolating rna including small rna with high yield |
EP2931661B1 (en) | 2012-12-11 | 2017-11-08 | Qiagen GmbH | Preparation of silica particles |
US10745686B2 (en) | 2013-02-08 | 2020-08-18 | Qiagen Gmbh | Method for separating DNA by size |
JP2016510872A (en) * | 2013-03-01 | 2016-04-11 | スピノミックス エス.ア.Spinomix S.A. | Separation and analysis method based on magnetic particles |
JP2017539080A (en) | 2014-10-23 | 2017-12-28 | コーニング インコーポレイテッド | Polymer encapsulated magnetic nanoparticles |
EP3059312A1 (en) | 2015-02-20 | 2016-08-24 | QIAGEN GmbH | Nucleic acid extraction method |
EP3303580B1 (en) | 2015-06-01 | 2020-11-18 | Qiagen GmbH | Electrophoresis assisted method for purifying a target nucleic acid using a delayed elution approach |
EP3303582A1 (en) | 2015-06-01 | 2018-04-11 | Qiagen GmbH | Electrophoresis assisted method and device for purifying a charged target molecule from a sample |
ES2906751T3 (en) | 2015-06-05 | 2022-04-20 | Qiagen Gmbh | Method to separate DNA by size |
WO2018081044A1 (en) | 2016-10-25 | 2018-05-03 | 3M Innovative Properties Company | Magnetizable abrasive particle and method of making the same |
CN111148834B (en) | 2017-09-27 | 2024-06-11 | 凯杰有限公司 | Method for isolating RNA in high yield |
SG11202100345RA (en) * | 2018-07-19 | 2021-02-25 | Beckman Coulter Inc | Magnetic particles |
GB201818421D0 (en) | 2018-11-12 | 2018-12-26 | Cambridge Entpr Ltd | Magnetic particle and method |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB215185A (en) | 1923-04-23 | 1924-05-08 | Thomas Robinson & Son Ltd | Improvements in machinery for separating particles from air |
US4157323A (en) * | 1976-06-09 | 1979-06-05 | California Institute Of Technology | Metal containing polymeric functional microspheres |
FR2461521A1 (en) * | 1979-07-20 | 1981-02-06 | Anvar | MAGNETIC FLUIDS, IN PARTICULAR FERROFLUIDS, AND PROCESS FOR OBTAINING THEM |
US4343901A (en) | 1980-10-22 | 1982-08-10 | Uop Inc. | Magnetic support matrix for enzyme immobilization |
US4454234A (en) | 1981-12-30 | 1984-06-12 | Czerlinski George H | Coated magnetizable microparticles, reversible suspensions thereof, and processes relating thereto |
US4452773A (en) | 1982-04-05 | 1984-06-05 | Canadian Patents And Development Limited | Magnetic iron-dextran microspheres |
US4554088A (en) * | 1983-05-12 | 1985-11-19 | Advanced Magnetics Inc. | Magnetic particles for use in separations |
JPS59224102A (en) | 1983-06-03 | 1984-12-17 | Ricoh Co Ltd | Surface treating method of magnetic powder |
GB8408127D0 (en) * | 1984-03-29 | 1984-05-10 | Nyegaard & Co As | Contrast agents |
US5597531A (en) * | 1985-10-04 | 1997-01-28 | Immunivest Corporation | Resuspendable coated magnetic particles and stable magnetic particle suspensions |
US4661408A (en) | 1986-03-18 | 1987-04-28 | E.I. Du Pont De Nemours And Company | Coated chromium dioxide particles |
US5091206A (en) | 1987-10-26 | 1992-02-25 | Baxter Diagnostics Inc. | Process for producing magnetically responsive polymer particles and application thereof |
US5395688A (en) | 1987-10-26 | 1995-03-07 | Baxter Diagnostics Inc. | Magnetically responsive fluorescent polymer particles |
JP2979414B2 (en) | 1989-09-29 | 1999-11-15 | 富士レビオ株式会社 | Magnetic particles and immunoassay using the same |
US5523231A (en) | 1990-02-13 | 1996-06-04 | Amersham International Plc | Method to isolate macromolecules using magnetically attractable beads which do not specifically bind the macromolecules |
US5200084A (en) * | 1990-09-26 | 1993-04-06 | Immunicon Corporation | Apparatus and methods for magnetic separation |
US5395498A (en) | 1991-11-06 | 1995-03-07 | Gombinsky; Moshe | Method for separating biological macromolecules and means therfor |
US5610274A (en) | 1991-11-20 | 1997-03-11 | Cpg, Inc. | Production and use of magnetic porous inorganic materials |
US5445970A (en) | 1992-03-20 | 1995-08-29 | Abbott Laboratories | Magnetically assisted binding assays using magnetically labeled binding members |
US5648124A (en) | 1993-07-09 | 1997-07-15 | Seradyn, Inc. | Process for preparing magnetically responsive microparticles |
US5705628A (en) | 1994-09-20 | 1998-01-06 | Whitehead Institute For Biomedical Research | DNA purification and isolation using magnetic particles |
GB9425138D0 (en) | 1994-12-12 | 1995-02-08 | Dynal As | Isolation of nucleic acid |
DE19503664C2 (en) | 1995-01-27 | 1998-04-02 | Schering Ag | Magnetorelaxometric detection of analytes |
JPH08259607A (en) * | 1995-03-24 | 1996-10-08 | Japan Synthetic Rubber Co Ltd | Production of inorganic substance-containing polymer particle |
DE19520398B4 (en) | 1995-06-08 | 2009-04-16 | Roche Diagnostics Gmbh | Magnetic pigment |
JP2965131B2 (en) | 1995-07-07 | 1999-10-18 | 東洋紡績株式会社 | Magnetic carrier for nucleic acid binding and nucleic acid isolation method using the same |
WO1997022366A1 (en) * | 1995-12-15 | 1997-06-26 | Igen, Inc. | Preparation and use of magnetically susceptible polymer particles |
US5990302A (en) | 1996-07-12 | 1999-11-23 | Toyo Boseki Kabushiki Kaisha | Method for isolating ribonucleic acid |
US5962641A (en) * | 1996-08-16 | 1999-10-05 | Clontech Laboratories, Inc. | Method for purification of recombinant proteins |
KR100464870B1 (en) | 1997-01-21 | 2005-01-05 | 더블유.알. 그레이스 앤드 캄파니-콘. | Silica Adsorbent on Magnetic Substrate |
US6027945A (en) | 1997-01-21 | 2000-02-22 | Promega Corporation | Methods of isolating biological target materials using silica magnetic particles |
DE19725190A1 (en) | 1997-06-14 | 1998-12-17 | Innova Gmbh | Devices with integrated electrodes made of electrically conductive plastics |
SE509780C2 (en) | 1997-07-04 | 1999-03-08 | Ericsson Telefon Ab L M | Bipolar power transistor and manufacturing method |
AU9691298A (en) * | 1997-10-11 | 1999-05-03 | Research Foundation Of The State University Of New York, The | Controlled size polymeric microspheres with superparamagnetic cores |
DE59912604D1 (en) | 1998-02-04 | 2005-11-03 | Merck Patent Gmbh | PROCESS FOR THE ISOLATION AND PURIFICATION OF NUCLEIC ACIDS |
US7078224B1 (en) | 1999-05-14 | 2006-07-18 | Promega Corporation | Cell concentration and lysate clearance using paramagnetic particles |
JP2000306718A (en) | 1999-04-23 | 2000-11-02 | Jsr Corp | Magnetic polymer particle and manufacture thereof |
EP1069131B1 (en) | 1999-07-15 | 2006-03-15 | Qiagen GmbH | Methods for separating particulate substrates from solution while minimizing particle loss |
DE60025529T2 (en) | 1999-11-17 | 2006-08-24 | Roche Diagnostics Gmbh | MAGNETIC GLASS PARTICLES, MANUFACTURING METHOD AND USE |
WO2001071732A2 (en) * | 2000-03-24 | 2001-09-27 | Qiagen Gmbh | Porous ferro- or ferrimagnetic glass particles for isolating molecules |
US6548264B1 (en) | 2000-05-17 | 2003-04-15 | University Of Florida | Coated nanoparticles |
US7169618B2 (en) * | 2000-06-28 | 2007-01-30 | Skold Technology | Magnetic particles and methods of producing coated magnetic particles |
WO2002044414A2 (en) | 2000-11-28 | 2002-06-06 | Promega Corporation | Purification of dna sequencing reactions using silica magnetic particles |
CN1152055C (en) | 2001-03-20 | 2004-06-02 | 清华大学 | Surface cladding and radical functino modification method of magnetic microsphere, thus obtained microsphere and its application |
GB0116359D0 (en) * | 2001-07-04 | 2001-08-29 | Genovision As | Preparation of polymer particles |
GB0116358D0 (en) * | 2001-07-04 | 2001-08-29 | Genovision As | Preparation of polymer particles |
GB0210766D0 (en) | 2002-05-10 | 2002-06-19 | Genovision As | Isolating nucleic acid |
ATE375512T1 (en) | 2002-06-27 | 2007-10-15 | Toyo Boseki | MAGNETIC CARRIER FOR BIOLOGICAL SUBSTANCES, METHOD FOR ITS PRODUCTION AND ITS USE FOR ISOLATION OF THESE BIOLOGICAL SUBSTANCES |
GB0215185D0 (en) | 2002-07-01 | 2002-08-07 | Genovision As | Binding a target substance |
FR2920875B1 (en) | 2007-09-07 | 2009-12-04 | Magnisense Tech Limited | METHOD AND DEVICE FOR ANALYZING MAGNETIC MATERIAL, APPARATUS INCLUDING THE DEVICE |
GB201604029D0 (en) | 2016-03-09 | 2016-04-20 | Ctxt Pty Ltd | Compounds |
-
2002
- 2002-07-01 GB GBGB0215185.0A patent/GB0215185D0/en not_active Ceased
-
2003
- 2003-07-01 CA CA002490962A patent/CA2490962C/en not_active Expired - Lifetime
- 2003-07-01 JP JP2004517153A patent/JP4324101B2/en not_active Expired - Lifetime
- 2003-07-01 WO PCT/IB2003/002994 patent/WO2004003231A2/en active Application Filing
- 2003-07-01 US US10/519,167 patent/US20060188876A1/en not_active Abandoned
- 2003-07-01 EP EP03738456.7A patent/EP1520041B1/en not_active Revoked
-
2012
- 2012-10-02 US US13/633,626 patent/US20130089909A1/en not_active Abandoned
-
2015
- 2015-07-27 US US14/810,216 patent/US10816546B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20060188876A1 (en) | 2006-08-24 |
GB0215185D0 (en) | 2002-08-07 |
EP1520041B1 (en) | 2015-10-07 |
JP2005532799A (en) | 2005-11-04 |
US20150329851A1 (en) | 2015-11-19 |
WO2004003231A3 (en) | 2004-03-11 |
EP1520041A2 (en) | 2005-04-06 |
US10816546B2 (en) | 2020-10-27 |
AU2003244985A1 (en) | 2004-01-19 |
WO2004003231A2 (en) | 2004-01-08 |
JP4324101B2 (en) | 2009-09-02 |
CA2490962A1 (en) | 2004-01-08 |
CA2490962C (en) | 2010-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10816546B2 (en) | Binding a target substance | |
US6368800B1 (en) | Kits for isolating biological target materials using silica magnetic particles | |
CN102421898B (en) | Nucleic acid purification method | |
US6534262B1 (en) | Solid phase technique for selectively isolating nucleic acids | |
US20060024701A1 (en) | Methods and reagents for the isolation of nucleic acids | |
US20200024592A1 (en) | Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof | |
JP2005532799A5 (en) | ||
EP1312671B1 (en) | Magnetic particles having lower limit critical solution temperature | |
JP2010162037A (en) | Isolation of nucleic acid | |
US6958372B2 (en) | Magnetic, silanised polyvinylalcohol-based carrier materials | |
CN101535501A (en) | Methods of extracting nucleic acids | |
WO2003095646A1 (en) | Isolating nucleic acid | |
AU2002357421B2 (en) | Magnetism based nucleic acid amplification | |
AU2003244985B2 (en) | Remanent magnetic paricles capable of binding a target substance, their production and uses thereof | |
US20050287583A1 (en) | Methods and kits for isolating biological target materials using silica magnetic particles | |
KR101800004B1 (en) | Graphene oxide modified magnetic bead, process for preparing the same and process for nucleic acid extraction using the same | |
JP2006327962A (en) | Method for separating target substance and molecular complex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |