US20130068422A1 - System and method for recycling energy from ice remnants - Google Patents
System and method for recycling energy from ice remnants Download PDFInfo
- Publication number
- US20130068422A1 US20130068422A1 US13/200,078 US201113200078A US2013068422A1 US 20130068422 A1 US20130068422 A1 US 20130068422A1 US 201113200078 A US201113200078 A US 201113200078A US 2013068422 A1 US2013068422 A1 US 2013068422A1
- Authority
- US
- United States
- Prior art keywords
- ice
- facility
- remnants
- gas
- further including
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004064 recycling Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims description 54
- 239000007788 liquid Substances 0.000 claims abstract description 62
- 238000002844 melting Methods 0.000 claims abstract description 45
- 230000008018 melting Effects 0.000 claims abstract description 45
- 239000012530 fluid Substances 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims description 73
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 30
- 235000013361 beverage Nutrition 0.000 claims description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 15
- 239000001569 carbon dioxide Substances 0.000 claims description 15
- 239000004615 ingredient Substances 0.000 claims description 10
- 235000013305 food Nutrition 0.000 claims description 9
- 241001465754 Metazoa Species 0.000 claims description 7
- 235000000346 sugar Nutrition 0.000 claims description 7
- 241000238631 Hexapoda Species 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000010792 warming Methods 0.000 claims description 6
- 230000029553 photosynthesis Effects 0.000 claims description 5
- 238000010672 photosynthesis Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 150000008163 sugars Chemical class 0.000 claims description 4
- 230000000638 stimulation Effects 0.000 claims description 3
- 235000016709 nutrition Nutrition 0.000 claims description 2
- 238000004088 simulation Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 241000271566 Aves Species 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 241000272878 Apodiformes Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 235000006085 Vigna mungo var mungo Nutrition 0.000 description 1
- 240000005616 Vigna mungo var. mungo Species 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C1/00—Direct-contact trickle coolers, e.g. cooling towers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0017—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- This invention relates to a system and method for recovering energy from ice remnants.
- ice and/or cold fluids may be discarded in situations such as: the unconsumed portion of a beverage from a food service facility (FSF), ice and slushy water at a skating facility, or cold fluids and/or ice from any type of facility containing materials which are at a temperature below the local ambient.
- FSF food service facility
- ice and slushy water at a skating facility or cold fluids and/or ice from any type of facility containing materials which are at a temperature below the local ambient.
- discarded beverage remnants from a FSF there may be value associated with: the potable water, the food energy value of sugar and other ingredients, the energy consumed to bring the beverage and associated ice to serving temperature, and the energy associated with concentrating carbon dioxide and carbonating the beverage.
- the potable water for discarded beverage remnants from a skating facility or similar type facility that uses ice and/or a mixture of ice and fluid, there is value associated with the water and energy consumed to form the ice.
- This invention features a system for recycling energy from ice remnants.
- the system comprises a container including a receptacle configured to receive discarded ice remnants from a facility, an ice capturing and melting device below the receptacle configured to capture and melt ice in the ice remnants while allowing fluid in the ice remnants to pass therethrough thereby forming a cooled recycled ice liquid at a bottom of the container, and a discharge port located proximate the bottom of the container configured to direct the cooled recycled liquid to at least one heat source of the facility and cool the heat source.
- the ice remnants may include discarded beverage remnants, discarded ice, and/or a mixture of discarded ice and a fluid.
- the facility may include a food service facility and/or a skating facility.
- the ice capturing and melting device may include a plurality of screens.
- the plurality of screens may include screens with different mesh sizes each configured to trap ice in the ice remnants having different sizes.
- the screens may be configured to be progressively layered with screens having different sizes.
- a gas collection device coupled downstream from the at least one heat source may be configured to remove and collect gas from the cooled recycled liquid.
- the system may include an output port downstream from the gas collection device configured to output a final output fluid.
- the final output fluid may be at a predetermined temperature.
- the final output fluid may be configured as an energy product including dissolved ingredients of nutritional value in the ice remnants.
- the system may include a line configured to deliver the energy product to a garden at the facility.
- the energy product may be configured to attract desired birds and/or desired insects to the garden to draw customers to the facility.
- the energy product may be configured to be used for manufacturing a feed product for animals.
- the container may include at least one gas intake port configured to receive hot/humid gas and direct the gas through the ice capturing and melting device to assist in the melting of the ice to form the cooled recycled liquid.
- the container may include at least one gas intake port configured to receive a hot/humid gas and direct the gas through the ice capturing and melting device to form a cooled de-humidified gas in the container.
- the container may include at least one gas output port configured to direct the cooled de-humidified gas to the facility and/or a different facility.
- the at least one gas output port may be configured to direct the cooled de-humidified gas to a HVAC system of the facility and/or a different facility.
- the container may include a plurality of receptacles.
- the system may include a plurality of containers.
- the system may include a plurality of receptacles located at different locations of the facility coupled to each other and configured to deliver the ice remnants to the container.
- the system may include a plurality of receptacles located at different locations of the facility coupled to each other and configured to deliver the ice remnants to a plurality of containers.
- the cooled recycled liquid may be directed to a different facility to cool at least one heat source at the different facility.
- This invention also features a system for recycling energy from ice remnants, the system comprises a container including a receptacle configured to receive ice remnants, an ice capturing and melting device below the receptacle configured to capture and melt ice in the ice remnants while allowing fluid in the ice remnants to pass therethrough thereby forming a cooled recycled liquid at a bottom of the container, at least one gas intake port configured to receive a hot/humid gas and direct the hot/humid gas towards the ice capturing and melting device to assist in the melting of the ice to form the cooled recycled liquid and configured to create a de-humidified gas in the container, a discharge port located proximate the bottom of the container configured to direct the cooled recycled liquid to at least one heat source of a facility and cool the heat source, and at least one gas output configured to direct the cooled de-humidified gas to the facility.
- This invention also features a method for recycling energy from ice remnants, the method including: receiving ice remnants from a facility, providing an ice capturing and melting device configured capture and melt ice in the ice remnants while allowing fluid in the ice remnants to pass therethrough thereby forming a cooled recycled liquid, and directing the cooled recycled liquid to at least one heat source of the facility and cool the heat source.
- the method may include the step of collecting gas from the cooled recycled liquid.
- the method may include the step of receiving hot/humid gas and directing the hot/humid gas through the ice capturing and melting device to assist in the melting of the ice to form the cooled recycled liquid.
- the method may include the step of directing hot/humid gas through the ice capturing and melting device to form a cooled de-humidified gas.
- the method may include the step of directing the de-humidified gas to the facility and/or a different facility.
- the method may include the step of directing the cooled de-humidified gas to an HVAC system of the facility and/or a different facility.
- the method may include the step of gradually warming the cooled recycled liquid such that any dissolved carbon dioxide therein gases out to form a liquid energy product.
- the method may include the step of capturing the carbon dioxide.
- the method may include the step of directing the carbon dioxide to a greenhouse to facilitate photosynthesis simulation.
- the method may include the step of directing the liquid energy product to a predetermined location at the facility.
- the method may include the step of directing the energy product to a garden to attract desired birds and/or desired insects to the garden and to draw customers to the facility.
- the method may include the step of using the energy product to manufacture feed products for animals.
- the energy product may include one or more of dissolved sugars, flavorings, and ingredients originally present in the ice remnants.
- This invention also features a method for recovering an energy product from beverage remnants, the method including: receiving beverage remnants from a facility, providing an ice capturing and melting device configured to capture and melt ice in the beverage remnants while allowing fluid in the beverage remnants to pass therethrough thereby forming a cooled recycled liquid, and gradually warming the cooled recycled liquid such that any dissolved carbon dioxide therein gases out and forms a liquid energy product.
- the method may include the step of directing the energy product to a predetermined location.
- the method may include the step of directing the energy product to a garden.
- the method may include the step of capturing the carbon dioxide.
- the method may include the step of directing the carbon dioxide to a greenhouse to facilitate photosynthesis stimulation.
- the method may include the step of using the energy product to manufacture a food product for animals.
- the method may include the step of using the energy product to attract desired birds and/or insects to draw customers to the facility.
- This invention also features a method for recycling energy from ice remnants, the method including: receiving ice remnants from a facility, providing an ice capturing and melting device configured capture and melt ice in the ice remnants while allowing fluid in the ice remnants to pass therethrough thereby forming a cooled recycled liquid, receiving hot/humid gas and directing the hot/humid gas through the ice capturing and melting device to assist in the melting of the ice and to form a cooled de-humidified gas, directing the cooled recycled liquid to at least one heat source of a facility and cool the heat source, and directing the cooled de-humidified gas to the facility.
- FIG. 1 is a schematic block diagram of one embodiment of the system and method for recovering energy from ice remnants of this invention
- FIG. 2 is a schematic block diagram of another embodiment of the system and method for recovering energy from ice remnants in accordance with this invention
- FIG. 3A is a schematic block diagram showing another embodiment of the system and method for recovering energy from ice remnants in accordance with this invention.
- FIG. 3B is a schematic block diagram showing yet another embodiment of the system for recovering energy from ice remnants in accordance with this invention.
- FIG. 4 depicts schematic diagrams showing examples of mesh sizes of the ice capturing and melting device shown in FIGS. 1-3B .
- Ice remnants 12 may be unconsumed cooled beverage remnants having some form of ice therein discarded from a facility, such as a FSF facility or any similar type facility which serves cooled beverages.
- ice remnants 12 may include one or more of: water, carbonated water, ice, flavorings, sugar, alcohol, or any similar type ingredient of a cooled beverage served at a facility, known to those skilled in the art.
- Ice remnants 12 may also include discarded ice and/or a mixture of discarded ice and a fluid discarded from a facility associated with ice remnants, e.g., a skating facility or similar type facility.
- System 10 recovers a majority, or at times, all of the costs associated with ice remnants 12 discussed in the Background section above.
- System 10 includes container 14 for holding recycled liquid 64 from ice remnants 12 .
- Container 14 may be made of plastic, metal, or similar type material.
- Container 14 includes receptacle 16 configured to receive ice remnants 12 as they are discarded from a facility receptacle. Receptacle 16 then directs ice remnants 12 through opening 17 and into ice capturing and melting device 29 , as shown by arrows 18 .
- Receptacle 16 is may be shaped as a funnel as shown, or may have any shape known to those skilled in the art that acts to direct ice remnants 12 discarded by a facility through opening 17 and into ice capturing and melting device 29 .
- system 10 ′ includes container 14 ′ which includes a plurality of receptacles 16 each configured to direct ice remnants 12 to ice capturing and melting device 29 .
- system 10 ′′, FIG. 3A may include a plurality of receptacles 16 configured to receive ice remnants 12 and direct the ice remnants 12 to receptacle 16 of container 14 by line 19 .
- system 10 ′, FIG. 3B may include a plurality of receptacles 16 connected via line 21 which directs the ice remnants 12 to a plurality of containers 14 .
- Container 14 preferably includes ice capturing and melting device 29 .
- ice capturing and melting device 29 includes at least one screen 30 which traps the ice, e.g., ice cubes/flakes, in ice remnants 12 in mesh openings 31 in screen 30 .
- the melted liquid from the ice is collected as recycled liquid 64 .
- the melted ice from screen 30 brings the temperature of cooled recycled liquid 64 at bottom 66 of container 14 to about 32° F.
- ice capturing and melting device 29 may include a plurality of screens, e.g., plurality of screens 32 .
- a plurality of screens e.g., plurality of screens 32 .
- the upper most screen e.g., screen(s) 34 , FIGS. 1 and 4 , preferably have mesh openings 40 , FIG. 4 , just smaller than the ice cubes/flakes in ice remnants 12 .
- Screen(s) 36 , FIGS. 1 and 4 , just below screen(s) 34 preferably have mesh openings 42 , FIG. 4 , that are slightly smaller than the mesh opening of the upper most screen(s).
- the lower most screen(s), e.g., screen(s) 38 , FIGS. 1 and 4 preferably have mesh openings 44 , FIG. 4 , that are slightly smaller than mesh openings of screen(s) 36 .
- the pattern of progressively smaller mesh openings for the screens of ice melting and capturing device 29 continues until screen(s) 38 , FIGS. 1 and 4 , with the smallest mesh openings, e.g., mesh openings 44 , FIG. 4 , allow only the tiniest ice crystals to pass therethrough.
- system 10 is preferably includes a plurality of screens 32 .
- this is not a necessary limitation of this invention, as system 10 need only include at least one screen 30 .
- ice remnants 12 discarded at a facility are directed through opening 17 by receptacle 16 to ice capturing and melting device 29 .
- the liquid portion of ice remnants 12 flows through screens 32 and is collected as recycled liquid 64 at bottom 66 of container 14 .
- the ice cubes/flakes in ice remnants 12 are trapped by the mesh openings of the various layers of screens 32 .
- the larger ice cubes/flakes are trapped by screens 34 with larger mesh openings 40 , FIG. 4 , where they melt.
- the melted liquid from the ice is collected as recycled liquid 64 , as shown by arrow 50 .
- Smaller ice cubes/ice flakes are trapped by mesh openings 42 of screens 36 where they melt.
- the melted liquid from the ice is collected as recycled liquid 64 .
- Still smaller ice cubes/ice flakes are trapped by mesh openings 44 of screens 38 where they melt.
- the melted liquid from the ice is collected as recycled liquid 64 .
- As the ice cubes/ice flakes trapped in screens 36 melt they drop to screens 38 and melt again
- the melted ice cubes/flakes from screens 34 - 36 bring the temperature of cooled recycled liquid 64 at bottom 66 of container 14 to about 32° F.
- Cooled recycled liquid 64 collects at bottom 66 of container 14 , it is preferably drained via drainage pipe 68 with any suitable flow valve 70 connected to line 72 . Cooled recycled liquid 64 may then be pumped to a network of lines and radiators (not shown) to spaces surrounding various heat sources 74 of the facility, e.g., ovens, dishwashers, griddles, and the like of a FSF, or any heat source of any type of facility that needs to be cooled. Cooled recycled liquid 64 may also be pumped from the facility where it is generated to another facility to cool at least one heat source of the other facility. The result is the radiated infra-red heat from heat sources 74 is captured and blocked from warming the room.
- the chilled water in line 72 may also be used to pre-cool food stuffs and equipment in the kitchen of the FSF, or similar type equipment of any type of facility that needs cooling.
- Line 72 may proceed in stages, with the initial section containing the coldest recycled liquid 64 to be used to cool heat sources 74 , e.g., for ovens, deep fat fryolators, and the like, of a FSF or any of the various heat sources for any type of facility.
- the now warmer liquid e.g., in line 76
- the now warmer liquid e.g., in line 76
- may be used to cool other devices 78 e.g., wine cabinets, and the like, of a FSF, or the heat sources of any type of facility that needs to be cooled.
- a gradual warming of the liquid passing from line 72 to line 80 downstream from device 78 causes any dissolved carbon dioxide in recycled liquid 64 , e.g., from beverage remnants 12 associated with a FSF (beverage remnants), to gas out.
- the gas in line 80 is preferably captured and collected by gas collection device 82 by line 83 .
- Gas collection device 82 preferably outputs the captured gas 84 via line 86 .
- Captured gas 84 may then be used for greenhouse photosynthesis rate stimulation or for any type of process which needs carbon dioxide gas.
- the ultimate discharge from system 10 by line 80 is output fluid 88 .
- output fluid 88 is preferably a close-to room temperature fluid that may include dissolved sugars, flavors, and other similar ingredients that may have been originally in ice remnants 12 .
- output fluid 88 need not include dissolved sugars, flavors, and other similar ingredients that may have been originally in ice remnants 12 .
- Output fluid 88 may be used on on-site or transported to another facility.
- the commercial value of output fluid 84 includes, inter alia, a food for pollenizing bees, a food stuff for a butterfly garden, a hummingbird habitat, and the like. Using fluid 88 in this manner may draw customers to the FSF or similar type facility.
- the sugar water ingredient in output fluid 88 may also be used as an ingredient for feed pellets/mashes for animals, and the like.
- System 10 ′, 10 ′′, and 10 ′′′, FIGS. 2-3C may include similar features and may operate in a similar manner, as discussed above with reference to FIG. 1 .
- Container 14 also includes duct 52 configured to receive hot/humid air 54 from the facility and direct the hot/humid air 54 to ice capturing and melting device 29 to assist in the melting the ice cubes/ice flakes trapped therein.
- Hot/humid air 54 is preferably pumped into duct 52 by an arrangement of fans, ducting, and the like (not shown) at various locations in the facility where the air is the warmest and most humid, e.g., ceilings, above sinks and cooking appliances, restrooms and the like of a facility, as shown by arrow 55 .
- the air becomes cooled and de-humidified and preferably may flow out ducts 56 as cooled/de-humidified air 58 , as shown by arrows 60 and may be used to cool the facility.
- the cooled/de-humidified air 58 may be mixed with conventional HVAC systems 62 to cool tables, work spaces, and other various heat sources of the facility.
- Screen(s) 32 and/or screen(s) 34 and/or screen(s) 36 also preferably ensure that the large de-humidification power of the 32° F. ice is completely harvested by the flow of hot/humid air 54 and the resulting condensation drip only occurs within container 14 . This is different than a typical vapor compression chiller which cannot continuously operate at 32° F. or below because of frost buildup on the heat exchange surfaces.
- System 10 ′, 10 ′′, and 10 ′′′, FIGS. 2-3B may operate in a similar manner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Drying Of Gases (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/200,078 US20130068422A1 (en) | 2011-09-15 | 2011-09-15 | System and method for recycling energy from ice remnants |
PCT/US2011/001774 WO2013039464A2 (fr) | 2011-09-15 | 2011-10-19 | Système et procédé permettant de recycler l'énergie à partir de restes de glace |
TW100141867A TWI468634B (zh) | 2011-09-15 | 2011-11-16 | 自殘冰回收能源之系統及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/200,078 US20130068422A1 (en) | 2011-09-15 | 2011-09-15 | System and method for recycling energy from ice remnants |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130068422A1 true US20130068422A1 (en) | 2013-03-21 |
Family
ID=47879518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/200,078 Abandoned US20130068422A1 (en) | 2011-09-15 | 2011-09-15 | System and method for recycling energy from ice remnants |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130068422A1 (fr) |
TW (1) | TWI468634B (fr) |
WO (1) | WO2013039464A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120186276A1 (en) * | 2010-12-17 | 2012-07-26 | Seymour Kerry R | Ice and chilled water producing and dispensing machine |
US11053112B2 (en) | 2019-07-08 | 2021-07-06 | Kooler Ice, Inc. | Systems for producing and dispensing chilled water |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2205413A (en) * | 1937-08-10 | 1940-06-25 | Kaufman Hiram Joseph | Cooling and dehumidifying apparatus |
US2569432A (en) * | 1947-05-06 | 1951-09-25 | James A Halford | Lawn sprinkler system |
US3528217A (en) * | 1968-05-20 | 1970-09-15 | Exxon Production Research Co | Supersonic flow separator with film flow collector |
US3575009A (en) * | 1969-06-06 | 1971-04-13 | Nicholas Kooney | Rapid-acting water vapor condenser |
US3827248A (en) * | 1972-05-01 | 1974-08-06 | Struthers Patent Corp | Ice crystals |
US4071080A (en) * | 1976-01-14 | 1978-01-31 | Bridgers Frank H | Air conditioning system |
US4596120A (en) * | 1983-12-08 | 1986-06-24 | Chicago Bridge & Iron Company | Apparatus and method for cold aqueous liquid and/or ice production, storage and use for cooling and refrigeration |
US5536411A (en) * | 1994-11-10 | 1996-07-16 | Bassai Limited | Water and energy recovery process for an ice rink |
US6269651B1 (en) * | 1999-10-28 | 2001-08-07 | Scotsway Limited | Cooling apparatus |
US6367540B1 (en) * | 1998-07-06 | 2002-04-09 | Frank S. Elliott | Portable liquid cooling and heating apparatus |
US20020166656A1 (en) * | 2001-05-09 | 2002-11-14 | Howard Lee Jarvis | Heat exchanger column |
US20040065110A1 (en) * | 2002-10-03 | 2004-04-08 | York International | Compressor systems for use with smokeless lubricant |
US20080041083A1 (en) * | 2006-08-15 | 2008-02-21 | Al-Garni Ahmed Z | Low-cost air conditioning system for open area |
US20090044932A1 (en) * | 2001-06-21 | 2009-02-19 | Blackstone Ralf W | Air cooling device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3949522A (en) * | 1974-07-26 | 1976-04-13 | Kehl Donald K | Greenhouse |
JP2000121101A (ja) * | 1998-10-13 | 2000-04-28 | Hisao Matsumoto | 雪氷貯溜型冷房装置 |
JP2000230763A (ja) * | 1999-02-09 | 2000-08-22 | Hisao Matsumoto | 冷熱源雪氷のセイロ収納による冷房装置の構成方法 |
US20010004838A1 (en) * | 1999-10-29 | 2001-06-28 | Wong Kenneth Kai | Integrated heat exchanger system for producing carbon dioxide |
US6508078B2 (en) * | 2000-10-26 | 2003-01-21 | Crystal Peak Farms | Separation of purified water and nutrients from agricultural and farm wastes |
JP2002372352A (ja) * | 2001-06-14 | 2002-12-26 | Agricore:Kk | 降雪を利用した冷却装置 |
JP2003336864A (ja) * | 2002-05-15 | 2003-11-28 | Kudo Kensetsu Kk | 雪冷房装置 |
CN101551147A (zh) * | 2009-05-07 | 2009-10-07 | 上海本家空调系统有限公司 | 一种蓄冰槽 |
CN201605630U (zh) * | 2009-09-29 | 2010-10-13 | 刘冰清 | 生活废水自动回收再利用装置 |
TWM394708U (en) * | 2010-08-27 | 2010-12-21 | Junior-Julian Hsu | Chilled drink dispenser |
-
2011
- 2011-09-15 US US13/200,078 patent/US20130068422A1/en not_active Abandoned
- 2011-10-19 WO PCT/US2011/001774 patent/WO2013039464A2/fr active Application Filing
- 2011-11-16 TW TW100141867A patent/TWI468634B/zh not_active IP Right Cessation
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2205413A (en) * | 1937-08-10 | 1940-06-25 | Kaufman Hiram Joseph | Cooling and dehumidifying apparatus |
US2569432A (en) * | 1947-05-06 | 1951-09-25 | James A Halford | Lawn sprinkler system |
US3528217A (en) * | 1968-05-20 | 1970-09-15 | Exxon Production Research Co | Supersonic flow separator with film flow collector |
US3575009A (en) * | 1969-06-06 | 1971-04-13 | Nicholas Kooney | Rapid-acting water vapor condenser |
US3827248A (en) * | 1972-05-01 | 1974-08-06 | Struthers Patent Corp | Ice crystals |
US4071080A (en) * | 1976-01-14 | 1978-01-31 | Bridgers Frank H | Air conditioning system |
US4596120A (en) * | 1983-12-08 | 1986-06-24 | Chicago Bridge & Iron Company | Apparatus and method for cold aqueous liquid and/or ice production, storage and use for cooling and refrigeration |
US5536411A (en) * | 1994-11-10 | 1996-07-16 | Bassai Limited | Water and energy recovery process for an ice rink |
US6367540B1 (en) * | 1998-07-06 | 2002-04-09 | Frank S. Elliott | Portable liquid cooling and heating apparatus |
US6269651B1 (en) * | 1999-10-28 | 2001-08-07 | Scotsway Limited | Cooling apparatus |
US20020166656A1 (en) * | 2001-05-09 | 2002-11-14 | Howard Lee Jarvis | Heat exchanger column |
US20090044932A1 (en) * | 2001-06-21 | 2009-02-19 | Blackstone Ralf W | Air cooling device |
US20040065110A1 (en) * | 2002-10-03 | 2004-04-08 | York International | Compressor systems for use with smokeless lubricant |
US20080041083A1 (en) * | 2006-08-15 | 2008-02-21 | Al-Garni Ahmed Z | Low-cost air conditioning system for open area |
Non-Patent Citations (2)
Title |
---|
Envac, Envac Kitchen Waste Vacuum System, June 2011, Pg. 8-9 * |
Norma Venable, Beauty in your Backyard: Attracting and Feeding Summer Birds, August 2000, Pg. 1-2 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120186276A1 (en) * | 2010-12-17 | 2012-07-26 | Seymour Kerry R | Ice and chilled water producing and dispensing machine |
US9134060B2 (en) * | 2010-12-17 | 2015-09-15 | Kooler Ice, Inc. | Ice and chilled water producing and dispensing machine |
US11053112B2 (en) | 2019-07-08 | 2021-07-06 | Kooler Ice, Inc. | Systems for producing and dispensing chilled water |
Also Published As
Publication number | Publication date |
---|---|
WO2013039464A3 (fr) | 2014-04-03 |
TW201312072A (zh) | 2013-03-16 |
WO2013039464A2 (fr) | 2013-03-21 |
TWI468634B (zh) | 2015-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203231588U (zh) | 一种预冷式翅片蒸发器 | |
WO2019027824A1 (fr) | Échangeur thermique à ventilateur pour serre | |
PH12015501684A1 (en) | Snow ice maker | |
US10712051B2 (en) | Refrigeration appliance with multiple temperature zones | |
EP2009373A3 (fr) | Appareil de réfrigération avec module de stockage optionnel | |
US9732994B2 (en) | Device and method for an efficient surface evaporation and for an efficient condensation | |
US20130068422A1 (en) | System and method for recycling energy from ice remnants | |
CN112292194B (zh) | 自清洁通风单元 | |
CN105841427A (zh) | 一种快递柜 | |
CN204084705U (zh) | 一种饭店后厨热泵系统 | |
CN202099156U (zh) | 多功能环保型设备 | |
CN103750501A (zh) | 速冻流化床 | |
CN110195939A (zh) | 一种可分区控温的组装式制冷系统及其应用的保鲜柜 | |
DE102019209224A1 (de) | Schnellkühlvorrichtung | |
CN203940677U (zh) | 冷库蒸发器自动除霜系统 | |
CN211823414U (zh) | 接水盘组件及具有其的冷冻冷藏设备 | |
CN101424471A (zh) | 冷却装置 | |
CN201202130Y (zh) | 空气制水装置 | |
US20180347156A1 (en) | Watervaporextractor | |
CN110325690A (zh) | 配置成采集大气水的制冷设备 | |
CN212778123U (zh) | 蒸发器倾斜设置的冰箱 | |
TWM548782U (zh) | 集水裝置 | |
CN215873867U (zh) | 保鲜餐车 | |
DE102016103940B3 (de) | Kühlaggregat für eine Lebensmittelschale | |
TWI646294B (zh) | 集水裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |