US20130053411A1 - Pharmaceutical composition and method for treating hypertension - Google Patents
Pharmaceutical composition and method for treating hypertension Download PDFInfo
- Publication number
- US20130053411A1 US20130053411A1 US13/695,628 US201113695628A US2013053411A1 US 20130053411 A1 US20130053411 A1 US 20130053411A1 US 201113695628 A US201113695628 A US 201113695628A US 2013053411 A1 US2013053411 A1 US 2013053411A1
- Authority
- US
- United States
- Prior art keywords
- dextromethorphan
- effective amount
- pharmaceutical composition
- amlodipine
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 206010020772 Hypertension Diseases 0.000 title claims abstract description 55
- 239000008194 pharmaceutical composition Substances 0.000 title claims description 66
- 238000000034 method Methods 0.000 title claims description 47
- 229960001985 dextromethorphan Drugs 0.000 claims abstract description 112
- 229960000528 amlodipine Drugs 0.000 claims abstract description 74
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229940127291 Calcium channel antagonist Drugs 0.000 claims abstract description 53
- 239000000480 calcium channel blocker Substances 0.000 claims abstract description 53
- MKXZASYAUGDDCJ-SZMVWBNQSA-N LSM-2525 Chemical compound C1CCC[C@H]2[C@@]3([H])N(C)CC[C@]21C1=CC(OC)=CC=C1C3 MKXZASYAUGDDCJ-SZMVWBNQSA-N 0.000 claims abstract 23
- 208000024891 symptom Diseases 0.000 claims description 34
- 229940123857 NADPH oxidase inhibitor Drugs 0.000 claims description 18
- 239000002552 dosage form Substances 0.000 claims description 17
- 239000003937 drug carrier Substances 0.000 claims description 16
- 239000003112 inhibitor Substances 0.000 claims description 10
- 208000007220 Cytochrome P-450 CYP2D6 Inhibitors Diseases 0.000 claims description 9
- DFYRUELUNQRZTB-UHFFFAOYSA-N apocynin Chemical compound COC1=CC(C(C)=O)=CC=C1O DFYRUELUNQRZTB-UHFFFAOYSA-N 0.000 claims description 8
- 229960001597 nifedipine Drugs 0.000 claims description 5
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 claims description 5
- HMJIYCCIJYRONP-UHFFFAOYSA-N (+-)-Isradipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC2=NON=C12 HMJIYCCIJYRONP-UHFFFAOYSA-N 0.000 claims description 4
- RKXVEXUAWGRFNP-MUUNZHRXSA-N (2r)-2-[2-[3-[2-(1,3-benzodioxol-5-yloxy)ethyl-methylamino]propoxy]-5-methoxyphenyl]-4-methyl-1,4-benzothiazin-3-one Chemical compound S1C2=CC=CC=C2N(C)C(=O)[C@H]1C1=CC(OC)=CC=C1OCCCN(C)CCOC1=CC=C(OCO2)C2=C1 RKXVEXUAWGRFNP-MUUNZHRXSA-N 0.000 claims description 4
- PVHUJELLJLJGLN-INIZCTEOSA-N (S)-nitrendipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC([N+]([O-])=O)=C1 PVHUJELLJLJGLN-INIZCTEOSA-N 0.000 claims description 4
- JQSAYKKFZOSZGJ-UHFFFAOYSA-N 1-[bis(4-fluorophenyl)methyl]-4-[(2,3,4-trimethoxyphenyl)methyl]piperazine Chemical compound COC1=C(OC)C(OC)=CC=C1CN1CCN(C(C=2C=CC(F)=CC=2)C=2C=CC(F)=CC=2)CC1 JQSAYKKFZOSZGJ-UHFFFAOYSA-N 0.000 claims description 4
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 claims description 4
- HZSOKHVVANONPV-UHFFFAOYSA-N 2-(3-benzyltriazolo[4,5-d]pyrimidin-7-yl)sulfanyl-1,3-benzoxazole Chemical compound N1=NC2=C(SC=3OC4=CC=CC=C4N=3)N=CN=C2N1CC1=CC=CC=C1 HZSOKHVVANONPV-UHFFFAOYSA-N 0.000 claims description 4
- ZBIAKUMOEKILTF-UHFFFAOYSA-N 2-[4-[4,4-bis(4-fluorophenyl)butyl]-1-piperazinyl]-N-(2,6-dimethylphenyl)acetamide Chemical compound CC1=CC=CC(C)=C1NC(=O)CN1CCN(CCCC(C=2C=CC(F)=CC=2)C=2C=CC(F)=CC=2)CC1 ZBIAKUMOEKILTF-UHFFFAOYSA-N 0.000 claims description 4
- NSVFSAJIGAJDMR-UHFFFAOYSA-N 2-[benzyl(phenyl)amino]ethyl 5-(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylate Chemical compound CC=1NC(C)=C(C(=O)OCCN(CC=2C=CC=CC=2)C=2C=CC=CC=2)C(C=2C=C(C=CC=2)[N+]([O-])=O)C=1P1(=O)OCC(C)(C)CO1 NSVFSAJIGAJDMR-UHFFFAOYSA-N 0.000 claims description 4
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 claims description 4
- NMKSAYKQLCHXDK-UHFFFAOYSA-N 3,3-diphenyl-N-(1-phenylethyl)-1-propanamine Chemical compound C=1C=CC=CC=1C(C)NCCC(C=1C=CC=CC=1)C1=CC=CC=C1 NMKSAYKQLCHXDK-UHFFFAOYSA-N 0.000 claims description 4
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 claims description 4
- ZGRIPYHIFXGCHR-UHFFFAOYSA-N 3-o-[2-[(4-fluorophenyl)methyl-methylamino]ethyl] 5-o-propan-2-yl 4-(1,3-benzodioxol-4-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound C=1C=CC=2OCOC=2C=1C1C(C(=O)OC(C)C)=C(C)NC(C)=C1C(=O)OCCN(C)CC1=CC=C(F)C=C1 ZGRIPYHIFXGCHR-UHFFFAOYSA-N 0.000 claims description 4
- RZTAMFZIAATZDJ-HNNXBMFYSA-N 5-o-ethyl 3-o-methyl (4s)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-HNNXBMFYSA-N 0.000 claims description 4
- QOYHHIBFXOOADH-UHFFFAOYSA-N 8-[4,4-bis(4-fluorophenyl)butyl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC2(C(NCN2C=2C=CC=CC=2)=O)CC1 QOYHHIBFXOOADH-UHFFFAOYSA-N 0.000 claims description 4
- NCUCGYYHUFIYNU-UHFFFAOYSA-N Aranidipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCC(C)=O)C1C1=CC=CC=C1[N+]([O-])=O NCUCGYYHUFIYNU-UHFFFAOYSA-N 0.000 claims description 4
- KJEBULYHNRNJTE-DHZHZOJOSA-N Cinalong Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC\C=C\C=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 KJEBULYHNRNJTE-DHZHZOJOSA-N 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 4
- XQLWNAFCTODIRK-UHFFFAOYSA-N Gallopamil Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC(OC)=C(OC)C(OC)=C1 XQLWNAFCTODIRK-UHFFFAOYSA-N 0.000 claims description 4
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 claims description 4
- HBNPJJILLOYFJU-VMPREFPWSA-N Mibefradil Chemical compound C1CC2=CC(F)=CC=C2[C@H](C(C)C)[C@@]1(OC(=O)COC)CCN(C)CCCC1=NC2=CC=CC=C2N1 HBNPJJILLOYFJU-VMPREFPWSA-N 0.000 claims description 4
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 claims description 4
- FAIIFDPAEUKBEP-UHFFFAOYSA-N Nilvadipine Chemical compound COC(=O)C1=C(C#N)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC([N+]([O-])=O)=C1 FAIIFDPAEUKBEP-UHFFFAOYSA-N 0.000 claims description 4
- IFFPICMESYHZPQ-UHFFFAOYSA-N Prenylamine Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)CCNC(C)CC1=CC=CC=C1 IFFPICMESYHZPQ-UHFFFAOYSA-N 0.000 claims description 4
- 229940123924 Protein kinase C inhibitor Drugs 0.000 claims description 4
- 101100244894 Sus scrofa PR39 gene Proteins 0.000 claims description 4
- GYKFWCDBQAFCLJ-RTWAWAEBSA-N [(2s,3s)-8-chloro-5-[2-(dimethylamino)ethyl]-2-(4-methoxyphenyl)-4-oxo-2,3-dihydro-1,5-benzothiazepin-3-yl] acetate Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=C(Cl)C=C2S1 GYKFWCDBQAFCLJ-RTWAWAEBSA-N 0.000 claims description 4
- 239000002333 angiotensin II receptor antagonist Substances 0.000 claims description 4
- 229940125364 angiotensin receptor blocker Drugs 0.000 claims description 4
- 229930188866 apocynin Natural products 0.000 claims description 4
- 229950007556 aranidipine Drugs 0.000 claims description 4
- 229960002992 barnidipine Drugs 0.000 claims description 4
- VXMOONUMYLCFJD-DHLKQENFSA-N barnidipine Chemical compound C1([C@@H]2C(=C(C)NC(C)=C2C(=O)OC)C(=O)O[C@@H]2CN(CC=3C=CC=CC=3)CC2)=CC=CC([N+]([O-])=O)=C1 VXMOONUMYLCFJD-DHLKQENFSA-N 0.000 claims description 4
- FYJJXENSONZJRG-UHFFFAOYSA-N bencyclane Chemical compound C=1C=CC=CC=1CC1(OCCCN(C)C)CCCCCC1 FYJJXENSONZJRG-UHFFFAOYSA-N 0.000 claims description 4
- 229960000945 bencyclane Drugs 0.000 claims description 4
- 229960004916 benidipine Drugs 0.000 claims description 4
- QZVNQOLPLYWLHQ-ZEQKJWHPSA-N benidipine Chemical compound C1([C@H]2C(=C(C)NC(C)=C2C(=O)OC)C(=O)O[C@H]2CN(CC=3C=CC=CC=3)CCC2)=CC=CC([N+]([O-])=O)=C1 QZVNQOLPLYWLHQ-ZEQKJWHPSA-N 0.000 claims description 4
- 229960003665 bepridil Drugs 0.000 claims description 4
- UIEATEWHFDRYRU-UHFFFAOYSA-N bepridil Chemical compound C1CCCN1C(COCC(C)C)CN(C=1C=CC=CC=1)CC1=CC=CC=C1 UIEATEWHFDRYRU-UHFFFAOYSA-N 0.000 claims description 4
- 229960003020 cilnidipine Drugs 0.000 claims description 4
- 229960000876 cinnarizine Drugs 0.000 claims description 4
- DERZBLKQOCDDDZ-JLHYYAGUSA-N cinnarizine Chemical compound C1CN(C(C=2C=CC=CC=2)C=2C=CC=CC=2)CCN1C\C=C\C1=CC=CC=C1 DERZBLKQOCDDDZ-JLHYYAGUSA-N 0.000 claims description 4
- 229950000308 clentiazem Drugs 0.000 claims description 4
- HSUGRBWQSSZJOP-RTWAWAEBSA-N diltiazem Chemical compound C1=CC(OC)=CC=C1[C@H]1[C@@H](OC(C)=O)C(=O)N(CCN(C)C)C2=CC=CC=C2S1 HSUGRBWQSSZJOP-RTWAWAEBSA-N 0.000 claims description 4
- 229960004166 diltiazem Drugs 0.000 claims description 4
- QFXKXRXFBRLLPQ-UHFFFAOYSA-N diphenyleneiodonium Chemical compound C1=CC=C2[I+]C3=CC=CC=C3C2=C1 QFXKXRXFBRLLPQ-UHFFFAOYSA-N 0.000 claims description 4
- 229950003102 efonidipine Drugs 0.000 claims description 4
- 229950010020 elgodipine Drugs 0.000 claims description 4
- 229960004351 etafenone Drugs 0.000 claims description 4
- OEGDFSLNGABBKJ-UHFFFAOYSA-N etafenone Chemical compound CCN(CC)CCOC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 OEGDFSLNGABBKJ-UHFFFAOYSA-N 0.000 claims description 4
- 229960003580 felodipine Drugs 0.000 claims description 4
- 229960002602 fendiline Drugs 0.000 claims description 4
- 229960000326 flunarizine Drugs 0.000 claims description 4
- SMANXXCATUTDDT-QPJJXVBHSA-N flunarizine Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)N1CCN(C\C=C\C=2C=CC=CC=2)CC1 SMANXXCATUTDDT-QPJJXVBHSA-N 0.000 claims description 4
- 229960003532 fluspirilene Drugs 0.000 claims description 4
- 229960000457 gallopamil Drugs 0.000 claims description 4
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 claims description 4
- 229960004427 isradipine Drugs 0.000 claims description 4
- 229960004340 lacidipine Drugs 0.000 claims description 4
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 claims description 4
- 229960004294 lercanidipine Drugs 0.000 claims description 4
- ZDXUKAKRHYTAKV-UHFFFAOYSA-N lercanidipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)(C)CN(C)CCC(C=2C=CC=CC=2)C=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZDXUKAKRHYTAKV-UHFFFAOYSA-N 0.000 claims description 4
- 229960001941 lidoflazine Drugs 0.000 claims description 4
- 229950007692 lomerizine Drugs 0.000 claims description 4
- 229960003963 manidipine Drugs 0.000 claims description 4
- ANEBWFXPVPTEET-UHFFFAOYSA-N manidipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN2CCN(CC2)C(C=2C=CC=CC=2)C=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ANEBWFXPVPTEET-UHFFFAOYSA-N 0.000 claims description 4
- VKQFCGNPDRICFG-UHFFFAOYSA-N methyl 2-methylpropyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCC(C)C)C1C1=CC=CC=C1[N+]([O-])=O VKQFCGNPDRICFG-UHFFFAOYSA-N 0.000 claims description 4
- 229960004438 mibefradil Drugs 0.000 claims description 4
- 229960001783 nicardipine Drugs 0.000 claims description 4
- 229960005366 nilvadipine Drugs 0.000 claims description 4
- 229960000715 nimodipine Drugs 0.000 claims description 4
- 229960000227 nisoldipine Drugs 0.000 claims description 4
- 229960005425 nitrendipine Drugs 0.000 claims description 4
- 229960001989 prenylamine Drugs 0.000 claims description 4
- 239000003881 protein kinase C inhibitor Substances 0.000 claims description 4
- 229950003367 semotiadil Drugs 0.000 claims description 4
- UISARWKNNNHPGI-UHFFFAOYSA-N terodiline Chemical compound C=1C=CC=CC=1C(CC(C)NC(C)(C)C)C1=CC=CC=C1 UISARWKNNNHPGI-UHFFFAOYSA-N 0.000 claims description 4
- 229960005383 terodiline Drugs 0.000 claims description 4
- 229960001722 verapamil Drugs 0.000 claims description 4
- 238000001802 infusion Methods 0.000 claims description 3
- 239000002775 capsule Substances 0.000 claims description 2
- 238000001990 intravenous administration Methods 0.000 claims description 2
- 230000037317 transdermal delivery Effects 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 38
- 230000036772 blood pressure Effects 0.000 abstract description 24
- 230000000694 effects Effects 0.000 abstract description 19
- 229940030600 antihypertensive agent Drugs 0.000 abstract description 9
- 239000002220 antihypertensive agent Substances 0.000 abstract description 9
- 230000002411 adverse Effects 0.000 abstract description 6
- 230000006872 improvement Effects 0.000 abstract description 2
- MKXZASYAUGDDCJ-NJAFHUGGSA-N dextromethorphan Chemical compound C([C@@H]12)CCC[C@]11CCN(C)[C@H]2CC2=CC=C(OC)C=C21 MKXZASYAUGDDCJ-NJAFHUGGSA-N 0.000 description 91
- 150000003839 salts Chemical class 0.000 description 22
- 239000003814 drug Substances 0.000 description 21
- 229940079593 drug Drugs 0.000 description 18
- -1 glucaronate Chemical compound 0.000 description 18
- 239000004480 active ingredient Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 230000035488 systolic blood pressure Effects 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 14
- 230000035487 diastolic blood pressure Effects 0.000 description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 14
- 241000700159 Rattus Species 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 9
- 229960004373 acetylcholine Drugs 0.000 description 9
- GIANIJCPTPUNBA-QMMMGPOBSA-N (2s)-3-(4-hydroxyphenyl)-2-nitramidopropanoic acid Chemical compound [O-][N+](=O)N[C@H](C(=O)O)CC1=CC=C(O)C=C1 GIANIJCPTPUNBA-QMMMGPOBSA-N 0.000 description 8
- 108010002998 NADPH Oxidases Proteins 0.000 description 8
- 102000004722 NADPH Oxidases Human genes 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 210000003038 endothelium Anatomy 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 8
- 229960001802 phenylephrine Drugs 0.000 description 8
- 102100033902 Endothelin-1 Human genes 0.000 description 7
- 101800004490 Endothelin-1 Proteins 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000006187 pill Substances 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- HTIQEAQVCYTUBX-QGZVFWFLSA-N (R)-amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)[C@H]1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-QGZVFWFLSA-N 0.000 description 6
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- XEYBHCRIKKKOSS-UHFFFAOYSA-N disodium;azanylidyneoxidanium;iron(2+);pentacyanide Chemical compound [Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].[O+]#N XEYBHCRIKKKOSS-UHFFFAOYSA-N 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 239000003642 reactive oxygen metabolite Substances 0.000 description 6
- 229940083618 sodium nitroprusside Drugs 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 239000003765 sweetening agent Substances 0.000 description 6
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 230000003276 anti-hypertensive effect Effects 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- 150000002148 esters Chemical group 0.000 description 5
- 235000003599 food sweetener Nutrition 0.000 description 5
- 230000001631 hypertensive effect Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000011269 treatment regimen Methods 0.000 description 5
- RVBUGGBMJDPOST-UHFFFAOYSA-N 2-thiobarbituric acid Chemical compound O=C1CC(=O)NC(=S)N1 RVBUGGBMJDPOST-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 4
- 102000019197 Superoxide Dismutase Human genes 0.000 description 4
- 108010012715 Superoxide dismutase Proteins 0.000 description 4
- 239000007900 aqueous suspension Substances 0.000 description 4
- 230000004872 arterial blood pressure Effects 0.000 description 4
- 230000004531 blood pressure lowering effect Effects 0.000 description 4
- 238000009530 blood pressure measurement Methods 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 235000013355 food flavoring agent Nutrition 0.000 description 4
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000609 methyl cellulose Polymers 0.000 description 4
- 235000010981 methylcellulose Nutrition 0.000 description 4
- 239000001923 methylcellulose Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000013268 sustained release Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102000006587 Glutathione peroxidase Human genes 0.000 description 3
- 108700016172 Glutathione peroxidases Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 3
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 239000002249 anxiolytic agent Substances 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 238000010241 blood sampling Methods 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000007894 caplet Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000007902 hard capsule Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 229940118019 malondialdehyde Drugs 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000002207 metabolite Chemical group 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000036542 oxidative stress Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 238000009097 single-agent therapy Methods 0.000 description 3
- 239000007901 soft capsule Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 2
- PLRACCBDVIHHLZ-UHFFFAOYSA-N 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Chemical compound C1N(C)CCC(C=2C=CC=CC=2)=C1 PLRACCBDVIHHLZ-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 108090000312 Calcium Channels Proteins 0.000 description 2
- 102000003922 Calcium Channels Human genes 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 206010030124 Oedema peripheral Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 208000012886 Vertigo Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000003287 bathing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000007211 cardiovascular event Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229960000541 cetyl alcohol Drugs 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229940000425 combination drug Drugs 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 239000006184 cosolvent Substances 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- ZOOGRGPOEVQQDX-UHFFFAOYSA-N cyclic GMP Natural products O1C2COP(O)(=O)OC2C(O)C1N1C=NC2=C1NC(N)=NC2=O ZOOGRGPOEVQQDX-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000002173 dizziness Diseases 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000012055 enteric layer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000003304 gavage Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000005445 natural material Substances 0.000 description 2
- 230000000324 neuroprotective effect Effects 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 239000008203 oral pharmaceutical composition Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 229960001404 quinidine Drugs 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 235000011069 sorbitan monooleate Nutrition 0.000 description 2
- 239000001593 sorbitan monooleate Substances 0.000 description 2
- 229940035049 sorbitan monooleate Drugs 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000010972 statistical evaluation Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000002691 unilamellar liposome Substances 0.000 description 2
- 239000005526 vasoconstrictor agent Substances 0.000 description 2
- 230000024883 vasodilation Effects 0.000 description 2
- 230000001196 vasorelaxation Effects 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 231100000889 vertigo Toxicity 0.000 description 2
- 102000038650 voltage-gated calcium channel activity Human genes 0.000 description 2
- 108091023044 voltage-gated calcium channel activity Proteins 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- YQSHYGCCYVPRDI-UHFFFAOYSA-N (4-propan-2-ylphenyl)methanamine Chemical compound CC(C)C1=CC=C(CN)C=C1 YQSHYGCCYVPRDI-UHFFFAOYSA-N 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- XHTYQFMRBQUCPX-UHFFFAOYSA-N 1,1,3,3-tetramethoxypropane Chemical compound COC(OC)CC(OC)OC XHTYQFMRBQUCPX-UHFFFAOYSA-N 0.000 description 1
- FHGWEHGZBUBQKL-UHFFFAOYSA-N 1,2-benzothiazepine Chemical compound S1N=CC=CC2=CC=CC=C12 FHGWEHGZBUBQKL-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 1
- LRYZPFWEZHSTHD-HEFFAWAOSA-O 2-[[(e,2s,3r)-2-formamido-3-hydroxyoctadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium Chemical class CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](NC=O)COP(O)(=O)OCC[N+](C)(C)C LRYZPFWEZHSTHD-HEFFAWAOSA-O 0.000 description 1
- HCAJQHYUCKICQH-UHFFFAOYSA-N 2-amino-9-[4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3,7-dihydropurine-6,8-dione Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1C1CC(O)C(CO)O1 HCAJQHYUCKICQH-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- FBTSQILOGYXGMD-LURJTMIESA-N 3-nitro-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C([N+]([O-])=O)=C1 FBTSQILOGYXGMD-LURJTMIESA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-M 4-hydroxybenzoate Chemical compound OC1=CC=C(C([O-])=O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-M 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 101150037123 APOE gene Proteins 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 101710095339 Apolipoprotein E Proteins 0.000 description 1
- 102100029470 Apolipoprotein E Human genes 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008120 Cerebral ischaemia Diseases 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 108010075016 Ceruloplasmin Proteins 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229940122204 Cyclooxygenase inhibitor Drugs 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 101100216294 Danio rerio apoeb gene Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000012848 Dextrorphan Substances 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102100021218 Dual oxidase 1 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000011891 EIA kit Methods 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000968308 Homo sapiens Dual oxidase 1 Proteins 0.000 description 1
- 101000968305 Homo sapiens Dual oxidase 2 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 208000033830 Hot Flashes Diseases 0.000 description 1
- 206010060800 Hot flush Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 108010028554 LDL Cholesterol Proteins 0.000 description 1
- 238000008214 LDL Cholesterol Methods 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- KCWZGJVSDFYRIX-YFKPBYRVSA-N N(gamma)-nitro-L-arginine methyl ester Chemical compound COC(=O)[C@@H](N)CCCN=C(N)N[N+]([O-])=O KCWZGJVSDFYRIX-YFKPBYRVSA-N 0.000 description 1
- 229940099433 NMDA receptor antagonist Drugs 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 208000034827 Neointima Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 1
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 206010046555 Urinary retention Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 239000003529 anticholesteremic agent Substances 0.000 description 1
- 229940127226 anticholesterol agent Drugs 0.000 description 1
- 238000002792 antioxidant assay Methods 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- HPYIIXJJVYSMCV-MGDXKYBTSA-N astressin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]1C(N[C@@H](C)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@@H](CCCCNC(=O)CC1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(N)=O)=O)C(C)C)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CNC=N1 HPYIIXJJVYSMCV-MGDXKYBTSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000008061 calcium-channel-blocking effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000009989 contractile response Effects 0.000 description 1
- 230000001595 contractor effect Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960003782 dextromethorphan hydrobromide Drugs 0.000 description 1
- JAQUASYNZVUNQP-PVAVHDDUSA-N dextrorphan Chemical compound C1C2=CC=C(O)C=C2[C@@]23CCN(C)[C@@H]1[C@H]2CCCC3 JAQUASYNZVUNQP-PVAVHDDUSA-N 0.000 description 1
- 229950006878 dextrorphan Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 229940127292 dihydropyridine calcium channel blocker Drugs 0.000 description 1
- 125000004925 dihydropyridyl group Chemical class N1(CC=CC=C1)* 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 101150107963 eno gene Proteins 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 150000002321 glycerophosphoglycerophosphoglycerols Chemical class 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 230000002102 hyperpolarization Effects 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- TWBYWOBDOCUKOW-UHFFFAOYSA-M isonicotinate Chemical compound [O-]C(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-M 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000003859 lipid peroxidation Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229960003194 meglumine Drugs 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- INAXVFBXDYWQFN-XHSDSOJGSA-N morphinan Chemical compound C1C2=CC=CC=C2[C@]23CCCC[C@H]3[C@@H]1NCC2 INAXVFBXDYWQFN-XHSDSOJGSA-N 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 239000003703 n methyl dextro aspartic acid receptor blocking agent Substances 0.000 description 1
- DDBRXOJCLVGHLX-UHFFFAOYSA-N n,n-dimethylmethanamine;propane Chemical class CCC.CN(C)C DDBRXOJCLVGHLX-UHFFFAOYSA-N 0.000 description 1
- XFKCWRFSPKYBHR-UHFFFAOYSA-N n-methylmethanamine;propane Chemical class CCC.CNC XFKCWRFSPKYBHR-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000008692 neointimal formation Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical class C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- CMFNMSMUKZHDEY-UHFFFAOYSA-N peroxynitrous acid Chemical compound OON=O CMFNMSMUKZHDEY-UHFFFAOYSA-N 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000008103 phosphatidic acids Chemical class 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 229940067605 phosphatidylethanolamines Drugs 0.000 description 1
- 229940067626 phosphatidylinositols Drugs 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000008106 phosphatidylserines Chemical class 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000651 prodrug Chemical group 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000002599 prostaglandin synthase inhibitor Substances 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/485—Morphinan derivatives, e.g. morphine, codeine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4422—1,4-Dihydropyridines, e.g. nifedipine, nicardipine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- Hypertension is a public health problem that affects more than 25% of the adult population worldwide.
- [1,2] Hypertension has been identified as the leading risk factor for mortality and ranks as the third-leading cause of disability-adjusted life-years.
- [1,3] Despite the availability of numerous antihypertensive agents, the diagnosis, management, and control of hypertension are far from ideal, with control rates of 6% to 30% in different communities worldwide.
- Nonadherence to antihypertensive treatment has been associated with lower rates of blood pressure (BP) control and higher rates of cardiovascular events.
- BP blood pressure
- Administration of a once-daily fixed-dose combination (FDC) therapy with >2 classes of antihypertensive agents is a strategy adopted for improving adherence and BP control. This strategy has been described in the recent guidelines, even as an initial therapeutic option.
- FDC once-daily fixed-dose combination
- NADPH oxidases have recently been shown to contribute to the pathogenesis of hypertension. See Williams et al., 2007 , J. Cardiovasc Pharmacol., 50:9-16 and references therein. It has been suggested that specific inhibitors of these enzymes may have potential therapeutic use in hypertensive disease. Two of the most specific inhibitors, gp91ds-tat and apocynin, have been shown to decrease blood pressure in animal models of hypertension.
- inhibitors including diphenylene iodonium, aminoethyl benzenesulfono fluoride, 517834, PR39, protein kinase C inhibitors, and VAS2870, have shown promise in vitro, but their in vivo specificity, pharmacokinetics, and effectiveness in hypertension remains to be determined.
- the currently available antihypertensive agents, angiotensinconverting enyzme inhibitors and angiotensin receptor blockers also effectively inhibit NADPH oxidase activation.
- the cholesterol-lowering agents, statins have been shown to attenuate NADPH oxidase activation.
- Dextromethorphan is a dextrorotatory morphinan and is widely used as a nonopioid cough suppressant in a variety of over-the-counter remedies. [17] It is an NMDA receptor antagonist. The exact mechanism of action of its antitussive activity, however, remains unclear. Studies using animal models of cerebral ischemia and hypoglycemic neural injuries have demonstrated that DM possesses neuroprotective activity. [18-23] DM effectively inhibited the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced production of reactive oxygen species (ROS).
- MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- ROS reactive oxygen species
- DM reduces oxidative stress and inhibits atherosclerosis and neointima formation in mice through the direct inhibition of NADPH oxidase and that it also decreases superoxide production in the aorta and carotid artery of apolipoprotein E (apoE)-deficient mice. Liu et al., 2009 , Cardiovascular Research, 82:161-169.
- CBs Calcium channel blockers
- Amlodipine is a CCB with antihypertensive properties prescribed as monotherapy. It is one of a series of dihydropyridine calcium antagonists. It has been found to be well tolerated even in high-risk patients, such as those with coronary disease, heart failure, or multiple risk factors for cardiovascular events. [12-16] Amlodipine has a generally slower onset and longer duration of action than, for example, nifedipine. (Jensen, H. et al., J. Hum. Hypertens., 42(5): 541-45, 1990). The metabolites of amlodipine apparently do not possess significant calcium channel blocking activity, while the parent drug offers a biological half-life of some 35-40 hours, prompting a once-daily dosage regimen.
- dextromethorphan not only is effective to lower blood pressure in a subject suffering from hypertension, but also acts synergistically with a calcium channel blocker to result in a major improvement in the treatment of hypertension, with no or little adverse effects.
- embodiments of the present invention relate to a method of treating hypertension or a symptom associated therewith in a subject.
- the method comprises administering to the subject a pharmaceutical composition comprising an effective amount of dextromethorphan and a pharmaceutically acceptable carrier.
- embodiments of the present invention relate to a method of treating hypertension or a symptom associated therewith in a subject.
- the method comprises administering to the subject an effective amount of dextromethorphan and an effective amount of a calcium channel blocker.
- embodiments of the present invention relate to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, comprising an effective amount of dextromethorphan, an effective amount of a calcium channel blocker, and a pharmaceutically acceptable carrier.
- the present invention relates to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, which comprises an effective amount of dextromethorphan, an effective amount of amlodipine, and a pharmaceutically acceptable carrier.
- embodiments of the present invention relate to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, comprising an effective amount of a calcium channel blocker, an effective amount of a NADPH oxidase inhibitor, and a pharmaceutically acceptable carrier.
- aspects of the present invention relate to methods of treating hypertension or a symptom associated therewith in a subject, comprising administering to the subject an effective amount of a calcium channel blocker, such as amlodipine, and an effective amount of a NADPH oxidase inhibitor, such as dextromethorphan.
- a calcium channel blocker such as amlodipine
- a NADPH oxidase inhibitor such as dextromethorphan.
- FIG. 1 a - FIG. 1 d illustrate the blood pressure lowing effect of dextromethorphan (DM) in an animal model for hypertension, i.e., spontaneous hypertensive rats (SHR), at three dosage levels, 1 mg/kg/day, 5 mg/kg/day, and 25 mg/kg/day:
- DM dextromethorphan
- FIG. 1 a changes of systolic blood pressure (SBP) after DM treatment
- FIG. 1 b changes of diastolic blood pressure (DBP) after DM treatment
- FIG. 1 c changes of heart rate (HR) after DM treatment.
- FIG. 1 d changes of mean blood pressure (MBP) after DM treatment
- FIG. 2 a - FIG. 2 d illustrate the blood pressure lowing effect of amlodipine (AM) in SHR, at two dosage levels, 1 mg/kg/day and 5 mg/kg/day:
- AM amlodipine
- FIG. 2 a changes of SBP after AM treatment
- FIG. 2 b changes of DBP after AM treatment
- FIG. 2 c changes of HR after AM treatment
- FIG. 2 d changes of MBP after AM treatment
- FIG. 3 a - FIG. 3 d illustrate the blood pressure lowing effect of the combination of DM and
- FIG. 3 a changes of SBP after DM+AM treatment
- FIG. 3 b changes of DBP after DM+AM treatment
- FIG. 3 c changes of HR after DM+AM treatment.
- FIG. 3 d changes of MBP after DM+AM treatment
- FIG. 4 a - FIG. 4 d illustrate the blood pressure lowing effect of different treatment regimens in SHR, expressed as percentage change of blood pressure or heart rate:
- FIG. 4 a percentage changes of SBP after different treatment regimens
- FIG. 4 b changes of DBP after different treatment regimens
- FIG. 4 c changes of HR after different treatment regimens.
- FIG. 4 d changes of MBP after different treatment regimens
- FIG. 5 a and FIG. 5 b show the comparison of blood pressure lowering effect of single and combination treatments in SHR as percentage changes of SBP and DBP:
- FIG. 5 a percentage changes of SBP and DBP after single treatment with DM at 1 mg/kg/day, single treatment with AM at 5 mg/kg/day, and combined treatment with DM at 1 mg/kg/day and AM at 5 mg/kg/day;
- FIG. 5 b percentage changes of SBP and DBP after single treatment with DM at 5 mg/kg/day, single treatment with AM at 5 mg/kg/day, and combined treatment with DM at 5 mg/kg/day and AM at 5 mg/kg/day;
- FIG. 6 is a flow chart showing the different time points when blood pressure were measured and blood sampling were taken in the animal study.
- the name of a compound can encompass all possibly existing isomeric forms (e.g., optical isomer, enantiomer, diastereomer, racemate or racemic mixture), esters, prodrugs, metabolite forms, pharmaceutically acceptable salts, pharmaceutically acceptable esters, pharmaceutically acceptable amides, and protected derivatives, of the compound.
- isomeric forms e.g., optical isomer, enantiomer, diastereomer, racemate or racemic mixture
- esters e.g., prodrugs, metabolite forms, pharmaceutically acceptable salts, pharmaceutically acceptable esters, pharmaceutically acceptable amides, and protected derivatives, of the compound.
- pharmaceutically acceptable salt(s) means those salts of a compound of interest that are safe and effective for pharmaceutical use in mammals and that possess the desired biological activity.
- Pharmaceutically acceptable salts include salts of acidic or basic groups present in the specified compounds.
- the acidic or basic groups can be organic or inorganic.
- Pharmaceutically acceptable acid addition salts include, but are not limited to, hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzensulfonate, p-toluenesulfonate and pamoate (i.e., 1,1′-methylene-bis-(2-hydroxy-3-naphthoate)) salts.
- Suitable base salts include, but are not limited to, aluminum, calcium, lithium, magnesium, potassium, sodium, zinc, and diethanolamine salts.
- Certain compounds used in the present invention can form pharmaceutically acceptable salts with various amino acids, e.g., lysine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), procaine, and tris, and other salts which are currently in widespread pharmaceutical use and are listed in sources well known to those of skill in the art, such as The Merck Index.
- Any suitable constituent can be selected to make a salt of an active drug discussed herein, provided that it is non-toxic and does not substantially interfere with the desired activity.
- a “NADPH oxidase inhibitor” is a drug or a natural substance that inhibits, decreases or reduces the enzymatic activity of a NADPH oxidase, i.e., nicotinamide adenine dinucleotide phosphate-oxidase.
- the NADPH oxidase generates superoxide by transferring electrons from NADPH and coupling the electrons to molecular oxygen to produce superoxide, a reactive free-radical that can generate reactive oxygen species (ROS).
- a “NADPH oxidase inhibitor” is effective in preventing, decreasing or reducing the production of the superoxide, thus ROS, in blood vessels of a subject.
- NADPH oxidase inhibitors examples include, but are not limited to, dextromethorphan, gp91ds-tat, apocynin, diphenylene iodonium, aminoethyl benzenesulfono fluoride, 517834, PR39, protein kinase C inhibitors, VAS2870, angiotensinconverting enyzme inhibitors, angiotensin receptor blockers and statins.
- DM refers to the compound (+)-3-methoxy-17-methyl-9 ⁇ ,13 ⁇ ,14 ⁇ -morphinan, which is also named (+)-3-methoxy-N-methylmorphinan, and any pharmaceutically acceptable salt thereof.
- dextromethorphan can be in a pharmaceutically acceptable salt form selected from the group consisting of salts of free acids, inorganic salts, salts of sulfate, salts of hydrochloride, and salts of hydrobromide. Dextromethorphan is commonly available as the monohydrated hydrobromide salt.
- Dextromethorphan is the dextrorotatory (d) enantiomer.
- a pharmaceutical composition according to embodiments of the present invention comprises substantially optically pure dextromethorphan or is substantially free of the levorotary (l) enantiomer of DM.
- substantially optically pure dextromethorphan or “substantially free of the levorotary (l) enantiomer of DM” means that the pharmaceutical composition contains a greater proportion or percentage of DM in relation to its 1 enantiomer.
- the pharmaceutical composition preferably contains about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%, by weight of DM, wherein the percentage is based on the total amount of DM and its 1 enantiomer in the pharmaceutical composition.
- Dextromethorphan can be synthesized and optically purified using methods known in the art, for example as described in U.S. Pat. No. 2,676,177, the content of which is hereby incorporated by reference. It is also available from various commercial sources.
- calcium channel blockers refers to a class of drugs and natural substances that disrupt the calcium (Ca 2+ ) conduction of calcium channels. They block voltage-gated calcium channels (VGCCs) in cardiac muscle and blood vessels and decrease blood pressure.
- VGCCs voltage-gated calcium channels
- the term “calcium channel blockers” encompasses any class of CCBs that can be used for treating hypertension in a subject, such as the class of dihydropyridine, phenylalkylamine, benzothiazepine, and the nonselective CCBs.
- amlodipine or “AM” refers to the compound 3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-1,4-dihydro-6-methylpyridine-3,5-dicarboxylate, and any optical isomer, enantiomer, diastereomer, racemate or racemic mixture, pharmaceutically acceptable salts, or pharmaceutically acceptable esters, of the compound.
- amlodipine can be in a pharmaceutically acceptable salt form of inorganic and organic acids.
- Such acids are selected from the group consisting of acetic, benzene-sulfonic (besylate), benzoic, camphorsulfonic, citric, ethenesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric acid, p-toluenesulfonic, and the like.
- Particularly preferred are besylate, hydrobromic, hydrochloric, phosphoric and sulfuric acids. (See Campbell, S. F. et al., U.S. Pat. No. 4,806,557).
- Amlodipine can also be a pharmaceutically acceptable ester of amlodipine, particularly lower alkyl esters.
- Amlodipin is a chiral compound.
- a pharmaceutical composition according to embodiments of the present invention can comprise a racemate, i.e., 1:1 mixture of (R)-(+)- and (S)-( ⁇ )-amlodipine or a racemic mixture of the (R)-(+)- and (S)-( ⁇ )-amlodipine at different ratios.
- the pharmaceutical composition can also comprise isolated (R)-(+)-amlodipine or (S)-( ⁇ )-amlodipine that is substantially free of the other stereoisomer.
- composition according to embodiments of the present invention comprises substantially optically pure (S)-( ⁇ )-amlodipine or is substantially free of (R)-(+)-amlodipine.
- substantially optically pure (S)-( ⁇ )-amlodipine or “substantially free of (R)-(+)-amlodipine” means that the pharmaceutical composition contains a greater proportion or percentage of (S)-( ⁇ )-amlodipine in relation to (R)-(+)-amlodipine.
- the pharmaceutical composition preferably contains about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%, by weight of (S)-( ⁇ )-amlodipine, wherein the percentage is based on the total amount of (R)-(+)-amlodipine and (S)-( ⁇ )-amlodipine in the pharmaceutical composition.
- the chemical synthesis of the racemic mixture of amlodipine can be performed using methods known in the art, e.g., as described in Arrowsmith, J. E. et al., J. Med. Chem., 29: 1696-1702 (1986). It is also available from various commercial sources. Separation of the amlodipine isomers from the racemic mixture can be performed by methods known in the art, such as those illustrated in U.S. Pat. No. 6,448,275 or U.S. Pat. No. 7,482,464. The contents of the references are hereby incorporated by reference.
- the term “pharmaceutical composition” is intended to encompass a product or composition comprising the specified ingredient in the specified amount, as well as any product which results, directly or indirectly, from combinations of the specified ingredient in the specified amount.
- the term “subject” means any animal, preferably a mammal, most preferably a human, to whom will be or has been administered compounds or pharmaceutical compositions according to embodiments of the invention.
- the term “mammal” as used herein, encompasses any mammal. Examples of mammals include, but are not limited to, cows, horses, sheep, pigs, cats, dogs, mice, rats, rabbits, guinea pigs, monkeys, humans etc., more preferably, a human.
- a subject is in need of, or has been the object of observation or experiment of, treatment or prevention of hypertension and symptoms associated therewith.
- treating hypertension or a symptom associated therewith means to elicit an antihypertensive effect, such as by providing a normalization to otherwise elevated systolic and/or diastolic blood pressure, and by so doing providing relief from one or more possible symptoms or other hemodynamic effects caused by the elevated blood pressure.
- treating refers to an amelioration, prophylaxis, or reversal of a disease or disorder, or at least one discernible symptom thereof, for example, treating hypertension or a symptom associated therewith by lowering the elevated systolic and/or diastolic blood pressure.
- treating refers to an amelioration, prophylaxis, or reversal of at least one measurable physical parameter related to the disease or disorder being treated, not necessarily discernible symptom in or by the mammal, for example, treating hypertension or a symptom associated therewith by decreasing ROS in the vessels.
- treating refers to inhibiting or slowing the progression of a disease or disorder, either physically, e.g., stabilization of a discernible symptom, physiologically, e.g., stabilization of a physical parameter, or both.
- treating refers to delaying the onset of a disease or disorder or reduce of the risk of acquiring a disease or disorder, such as hypertension or a symptom associated therewith.
- the specified pharmaceutical compositions are administered as a preventative measure to a subject having a predisposition to hypertension, even though symptoms of hypertension are absent or minimal.
- the term “effective amount” of a compound refers to the amount of the compound that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.
- the effective amount of a compound is sufficient to treat, improve the treatment of, or prophylactically prevent, hypertension or a symptom associated therewith, but is insufficient to cause significant adverse effects associated with administration of the compound.
- the prophylactic or therapeutic treatment of the above identified conditions is expected to be achieved via administration of dosage levels of the active ingredients in amounts from about 0.01 mg/kg to about 100 mg/kg, 0.03 mg/kg to about 75 mg/kg, 0.05 mg/kg to about 50 mg/kg body weight per day, or from about 0.1 mg/kg to about 10 mg/kg of body weight per day.
- dosage levels of the active ingredients in amounts from about 0.01 mg/kg to about 100 mg/kg, 0.03 mg/kg to about 75 mg/kg, 0.05 mg/kg to about 50 mg/kg body weight per day, or from about 0.1 mg/kg to about 10 mg/kg of body weight per day.
- the dosage can be formulated to be delivered in a substantially continuous fashion, as may be provided by sustained and/or controlled release dosage forms, or by a transdermal patch.
- cardiovascular effects including tachycardia and diminished contractility of the heart
- edema of the extremities headache, dizziness, flushing, fatigue, vertigo, muscle cramps, hallucination, diarrhea, fever, urinary retention, vomiting, body rash/itching, etc.
- dextromethorphan is effective to lower blood pressure in a subject suffering from hypertension, either alone or in combination with another antihypertensive agent. It is further discovered that dextromethorphan, a NADPH oxidase inhibitor, and amlodipine, a CCB, act synergistically in lowering blood pressure in a subject suffering from hypertension. This synergistic effect is unexpected. Novel and more effective pharmaceutical compositions and methods for treating hypertension or a symptom associated therewith are thus developed based on the present discoveries.
- the present invention relates to a method of treating hypertension or a symptom associated therewith in a subject.
- the method comprises administering to the subject a pharmaceutical composition comprising an effective amount of dextromethorphan and a pharmaceutically acceptable carrier.
- any of the pharmaceutically acceptable salt of dextromethorphan can be used in the pharmaceutical compositions and methods according to embodiments of the present invention.
- a substantially optically pure dextromethorphan such as a substantially optically pure dextromethorphan hydrobromide, is used in the present invention.
- dextromethorphan is rapidly absorbed from the gastrointestinal tract and converted into the less active metabolite, dextrorphan, in the liver by the cytochrome P450 enzyme CYP2D6 Inhibiting the enzymatic activity of CYP2D6 would increase the stability of dextromethorphan and prolong its half life in the subject, resulting in more effective treatment with more consistent and predictable result.
- a method according to an embodiment of the present invention can further comprise administering to the subject a CYP2D6 inhibitor.
- CYP2D6 inhibitors that can be used in the present invention include, but are not limited to, quinidine.
- the CYP2D6 inhibitors can be administered together with DM in the same pharmaceutical composition, or separately from DM in a different pharmaceutical composition, so long as the dosing schedules of DM and the CYP2D6 inhibitor overlap in time so that the administered CYP2D6 inhibitor is effective to prolong the half life of dextromethorphan in the subject.
- embodiments of the present invention relate to a method of treating hypertension or a symptom associated therewith in a subject, comprising administering to the subject an effective amount of dextromethorphan and an effective amount of a calcium channel blocker (CCB).
- CCB calcium channel blocker
- any of the CCBs effective for treating hypertension in a subject can be used in the present invention, including, but not limited to, amlodipine, bepridil, clentiazem, diltiazem, fendiline, gallopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, aranidipine, barnidipine, benidipine, cilnidipine, efonidipine, elgodipine, felodipine, isradipine, lacidipine, lercanidipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, perhex
- the CCB is amlodipine.
- Any of the optical isomer, enantiomer, diastereomer, racemate or racemic mixture, pharmaceutically acceptable salts, or pharmaceutically acceptable esters, of amlodipine can be used in the present invention.
- a racemic mixture of amlodipine or (R,S)-amlodipine is used in the present invention.
- a substantially optically pure (S)-( ⁇ )-amlodipine such as a substantially optically pure (S)-( ⁇ )-amlodipine besylate, (S)-( ⁇ )-amlodipine mesylate or S)-( ⁇ )-amlodipine maleate, is used in the present invention.
- dextromethorphan and the CCB can be administered together in the same pharmaceutical composition, or separately in different pharmaceutical compositions, so long as the dosing schedules of DM and the CCB overlap in time.
- the CCB and DM are administered in a dosage ratio of CCB:DM as 1:0.5 to 1:100, e.g., 1:1, 1:5, 1:10, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90 or 1:100, in the same pharmaceutical composition, e.g., a dosage form comprising both CCB and DM, or in separate pharmaceutical compositions, e.g., a separate dosage form for each of CCB and DM.
- Another general aspect of the present invention relates to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, which comprises an effective amount of dextromethorphan, an effective amount of a calcium channel blocker, and a pharmaceutically acceptable carrier.
- Embodiments of the present invention also relate to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, which comprises an effective amount of a calcium channel blocker, an effective amount of a NADPH oxidase inhibitor, and a pharmaceutically acceptable carrier.
- CCBs effective for treating hypertension in a subject such as those described above, can be used in the present invention.
- NADPH oxidase inhibitor examples include, but are not limited to, gp91ds-tat, apocynin, diphenylene iodonium, aminoethyl benzenesulfono fluoride, S17834, PR39, protein kinase C inhibitors, VAS2870, angiotensinconverting enyzme inhibitors, angiotensin receptor blockers, statins, and dextromethorphan.
- compositions according to embodiments of the present invention can optionally comprise other therapeutically active ingredients, such as another class of antihypertensive agent.
- Embodiments of the present invention also relate to methods of treating hypertension or a symptom associated therewith in a subject.
- the methods comprising administering to the subject an effective amount of a NADPH oxidase inhibitor, such as dextromethorphan, and an effective amount of a CCB, such as amlodipine.
- a NADPH oxidase inhibitor such as dextromethorphan
- a CCB such as amlodipine
- the NADPH oxidase inhibitor and the CCB can be administered together in a single pharmaceutical composition, separately at approximately the same time, or separately on separate dosing schedules. All that is required is that the dosing schedules of the NADPH oxidase inhibitor and the CCB overlap in time and thus are being followed concurrently.
- the methods according to embodiments of the present invention can optionally comprise administering to the subject other therapeutically active ingredients, such as another class of antihypertensive agent.
- the therapeutic active ingredient can be administered by any known route of administration, including, orally, topically, parenterally (including subcutaneous, intravenous, intramuscular, and intrasternal injection or infusion administration techniques), by inhalation spray or rectally in dosage units or pharmaceutical compositions containing conventional pharmaceutically acceptable carriers and any such dosage units or pharmaceutical compositions are within the scope of the present invention.
- compositions adapted for oral administration include solid forms such as pills, tablets, caplets, and hard or soft capsules (each including immediate release, timed release, and sustained release formulations) as well as lozenges and dispersible powders or granules.
- Liquid forms of pharmaceutical compositions adapted for oral administration include solutions, syrups, elixirs, emulsions, and aqueous or oily suspensions. Any of these dosage forms may be prepared according to any method or compounding technique known in the art for the manufacture of pharmaceutical compositions.
- compositions adapted for oral administration may further include one or more sweetening agents, flavoring agents, coloring agents, or preserving agents in order to provide attractive or palatable preparations.
- the dosage form is a tablet or pill
- it may either be uncoated or coated, and if coated, may be coated by any known technique.
- the coating if desirably provided, can be formulated or applied by known techniques so that the coating can delay disintegration of the tablet or pill, and thus, absorption of the active ingredient, thereby providing a controlled and/or sustained release dosage form capable of providing sustained therapeutic or prophylactic effect over a longer period.
- the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- An enteric layer that serves to resist disintegration in the stomach and permits the inner component to pass substantially intact into the duodenum or to be delayed in release can separate the two components.
- enteric layers or coatings including a number of polymeric acids, shellac, cetyl alcohol and cellulose acetate.
- enteric layers or coatings including a number of polymeric acids, shellac, cetyl alcohol and cellulose acetate.
- tablets, pills or capsules may be formulated as osmotic pump dosage forms by any known method.
- compositions adapted for oral administration may also be presented as hard or soft gelatin capsules, wherein the active ingredient may be mixed with an inert solid diluent, such as calcium carbonate, calcium phosphate or kaolin in the case of the former or with water or miscible solvents such as propylene glycol, PEG's and ethanol, or an oil medium such as peanut oil, liquid paraffin, or olive oil in the case of the latter.
- an inert solid diluent such as calcium carbonate, calcium phosphate or kaolin in the case of the former or with water or miscible solvents such as propylene glycol, PEG's and ethanol, or an oil medium such as peanut oil, liquid paraffin, or olive oil in the case of the latter.
- Aqueous suspensions can be prepared that contain the active ingredient(s) in admixture with excipients suitable for the manufacture of aqueous suspensions.
- excipients include suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia, dextran, polyvinyl-pyrrolidone or gelatin; and dispersing or wetting agents such as lecithin, polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxyethylene sorbitol monooleate, and polyethylene sorbitan monooleate.
- Aqueous suspensions may also contain one or more preservatives, such as ethyl or n-propyl, p-hydroxybenzoate; one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose, saccharine or aspartame.
- Oily suspensions may be formulated by suspending the active ingredient(s) in a vegetable oil, such as cottonseed, olive, sesame or coconut oil, or in a mineral oil, such as liquid paraffin.
- the oily suspensions may contain a thickening agent, such as beeswax, hard paraffin, or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation.
- Such oily suspensions may be preserved by the inclusion of an anti-oxidant such as ascorbic acid.
- Dispersible powders and granules suitable for the preparation of an aqueous suspension suitable for oral administration can provide the active ingredient(s) in admixture with a dispersing or wetting agent, suspending agent, and one or more preservatives, all of which have been discussed above.
- a dispersing or wetting agent suspending agent
- preservatives all of which have been discussed above.
- Sweetening, flavoring, or coloring agents may also be present, if desired.
- compositions suitable for oral administration may also be presented in the form of an oil-in-water emulsion.
- the oily phase may be a vegetable or mineral oil, such as those described above, or mixtures of these.
- Suitable emulsifying agents may be naturally-occurring phosphatides, such as soy bean, lecithin, sorbitan monooleate, or polyoxyethylene sorbitan monooleate.
- the emulsions may also contain sweetening or flavoring agents.
- Syrups and elixirs may be formulated with sweetening agents, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring or coloring agents.
- sweetening agents for example, glycerol, propylene glycol, sorbitol or sucrose.
- Such formulations may also contain a demulcent, a preservative and flavoring or coloring agents.
- compositions may be further provided in a form adapted for parenteral administration, i.e., by injection or infusion.
- injectable aqueous or oleaginous suspensions are desirably sterile and may be formulated according to known methods using suitable dispersing, wetting and suspending agents as mentioned above.
- a parenterally-acceptable diluent or solvent may also be utilized, such as 1,3-butanediol, water, Ringer's solution, and isotonic sodium chloride.
- Cosolvents such as ethanol, propylene glycol or polyethylene glycols may also be used.
- sterile, fixed oils are conventionally employed as solvents or suspending mediums in injectable or infusible solutions, and these may include any bland fixed oil, such as any of the synthetic mono- or diglycerides.
- Fatty acids such as oleic acid also may be utilized in the preparation of injectable or infusible solutions.
- the pharmaceutical composition may also be presented in the form of a suppository.
- Suppositories can be formulated by mixing the active ingredient(s) and any additional desired therapeutic agent(s) with a suitable non-irritating excipient that is solid at room temperature but molten at body temperature, thereby releasing the active ingredient(s).
- suitable materials include cocoa butter and polyethylene glycols.
- Topical use creams, ointments, gels, solutions or suspensions containing the active ingredient(s) may be prepared.
- topical use includes mouth washes and gargles.
- Topical formulations may include cosolvents, emulsifiers, penetration enhancers, preservatives, emollients, and the like.
- the active ingredients according to embodiments of the present invention can also be provided in a pharmaceutical composition in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles.
- Liposomes can be formed from a variety of lipids, including but not limited to amphipathic lipids such as phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, phophatidylcholines, cardiolipins, phosphatidylserines, phosphatidylglycerols, phosphatidic acids, phosphatidylinositols, diacyl trimethylammonium propanes, diacyl dimethylammonium propanes, and stearylamine, neutral lipids such as triglycerides, and combinations thereof. They may either contain cholesterol or may be cholesterol-free.
- amphipathic lipids such as phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, phophatidylcholines, cardiolipins, phosphatidylserines, phosphatidylglycerols, phosphat
- compositions according to embodiments of the present invention are formulated for oral administration.
- the pharmaceutical compositions may be conveniently presented in dosage form, and prepared by any of the methods known in the art of pharmacy in view of the present disclosure.
- the pharmaceutical compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.
- compositions will generally include from about 0.01 mg to about 1000 mg, from about 0.1 mg to 500 mg, from about 1 mg to about 100 mg, or from about 10 mg to about 100 mg, of the active ingredients.
- each dosage form for oral administration such as a pill, a tablet, a caplet, a hard or soft capsule, comprises about 10 mg to about 100 mg of an NADPH oxidase inhibitor, such as DM.
- Each of the dosage form can further comprise 10 mg to about 100 mg of a CYP2D6 inhibitor, such as quinidine.
- Each of the dosage form can additionally comprise about 0.5 mg to about 10 mg of a CCB, such as AM.
- each dosage form for oral administration such as a pill, a tablet, a caplet, a hard or soft capsule, comprises a ratio of a CCB (such as AM): a NADPH oxidase inhibitor (such as DM) of 1:0.5 to 1:100, e.g., 1:1, 1:5, 1:10, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90 or 1:100.
- a CCB such as AM
- a NADPH oxidase inhibitor such as DM
- a suitable dosage range of a NADPH, such as dextromethorphan, for use in the present invention is from about 0.1 mg to about 500 mg total daily dose, given as a once daily administration in the morning or in divided doses if required.
- a dose range of between about 1 mg to about 300 mg is given as a once daily administration or in divided doses if required, and most preferably a dose range of from between about 10 mg to about 100 mg, or a dose range of from between about 20 mg to about 50 mg is given as a once daily administration or in divided doses if required.
- Patients may be upward titrated from below to within this dose range to a satisfactory control of symptoms or blood pressure as appropriate.
- a suitable dosage range of a CCB, such as amlodipine, for use in the present invention is from about 0.01 mg to about 100.0 mg total daily dose, given as a once daily administration in the morning or in divided doses if required.
- a dose range of between about 0.5 mg to about 20.0 mg is given as a once daily administration or in divided doses if required, and most preferably a dose range of from between about 0.5 mg to about 10.0 mg is given as a once daily administration or in divided doses if required.
- Patients may be upward titrated from below to within this dose range to a satisfactory control of symptoms or blood pressure as appropriate.
- Untreated WKY and SHR were compared with SHR treated with amlodipine (1, 5 mg/kg/day) or dextromethorphan (1, 5, 25 mg/kg/day) and fix dose combination (AM+DM) using a matrix combination of above doses for 4 weeks. All the treatment groups are listed in Table 1, including G1 ⁇ G12 for SHR and G0 for WKY as a control.
- Treatment groups Treatment* A0 A1 A2 D0 G1 G5 G9 D1 G2 G6 G10 D2 G3 G7 G11 D3 G4 G8 G12 *A0: no drug; A1: 1 mg/kg/day; and A2: 5 mg/kg/day of amlodipine treatment.
- rats were divided into several experimental groups as follows:
- Control rats received 1% solution of methylcellulose (1 ml/kg) by a gavage as a vehicle.
- AM and DM were suspended in 1% solution of methylcellulose and administered by a gavage in a 1 ml/kg volume. All compounds were administered for 4 weeks.
- Arterial blood pressure measurement and blood sampling were carried out before treatment, and after the second and forth week of drug administration.
- Arterial blood pressure was measured in conscious rats with an automatic sphygmomanometer, using tail-cuff method. Before the measurements, the animals were placed inside a warming chamber (about 34° C.) for 30 min. The aim of the procedure is to calm the animals and dilate the tail blood vessels. Arterial blood pressure was measured at least three times for each animal. Changes in pressure are expressed as the percentage of baseline values.
- Total cholesterol, LDL-cholesterol, ALT, AST and Creatinine are measured by using automatic biochemical analyzers (SpotchemTM SP 4410 Kyoto Daiichi Kagaku Co. Ltd.).
- the oxidant systems include enzymes such as superoxide dismutase, catalase, and glutathionine peroxidase, macromolecules such as albumin, ceruloplasmin and ferritin, small molecules such as ascorbic acid, ⁇ -tocopherol, ⁇ -carotene, reduced gluthionine, uric acid and bilirubin.
- the sum of the endogenous and food-derived antioxidants represents the total antioxidant activity of the system.
- the total antioxidant capacity or total antioxidant status (TAS, mmol/L) of plasma, serum, urine, saliva, or cell lysates can be measured using commercially available kits, such as Antioxidant Assay Kit (Cat No. 709001, Cayman) or Total Antioxidant Status, Randox Lab Ltd), with results expressed as mmol/L, following the kit's protocol.
- serum peroxynitrate (3-nitrotyrosine, 3-NT), 8-Hydroxydeoxyguanosine(8-OHdG), endothelin-1 (ET-1), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities are also assessed.
- Nitrotyrosine is formed in presence of the active metabolite NO.
- Various pathways including the formation of peroxinitrite lead to nitrotyrosine production.
- nitrotyrosine is a stable end product of peroxynitrite oxidation, assessment of its plasma concentration may be useful as a marker of NO-dependent damage in vivo.
- the presence of nitrotyrosine has been detected in various inflammatory processes including atherosclerotic plaques, celiac disease, rheumatoid arthritis, chronic renal failure and septic shock.
- Nitrotyrosine has also been identified as a marker of inflammation. In normal plasma low, undetectable, levels of nitrotyrosine are present.
- Quantitative determination of nitrotyrosine in plasma and other biological samples can be performed using commercially available kits, such as Nitrotyrosine ELISA kit (Hycult Biotech, HK501)
- 8-OHdG is produced by oxidative damage of DNA by reactive oxygen and nitrogen species and serve as an established marker of oxidative stress. Increased 8-OH-dG are associated with hypertension, as well as aging process and a number of other conditions, such as cancer and diabetes. Quantitative determination of 8-OHdG in plasma and other biological samples can be performed using commercially available kits, such as 8-hydroxy-2-deoxy Guanosine EIA Kit (Cayman, Cat No. 589320 or 589321)
- ET-1 Endothelin-1
- L Endothelin-1 Assay Kit
- the 3-NT, 8-OhdG, ET-1 can also be measured in duplicate with commercially available enzyme-linked immunosorbent assay kits (Quantikine, R&D Systems, USA) according to the manufacturer's instructions.
- TBA thiobarbituric acid
- the organic phase is analyzed spectrophotometrically at 532 nm, using 1,1,3,3-tetramethoxypropane as an external standard. The results are expressed as ⁇ mol/L of MDA.
- Arterial blood pressure and blood sampling will be measured before treatment, and after the second and forth week of drug administration ( FIG. 6 ).
- Results are expressed as mean ⁇ SD.
- the normality of distribution was checked by means of Kolmogorov-Smirnov test with Lilliefors test.
- the statistical evaluation was performed using analysis of variance (ANOVA) and post hoc comparisons were performed by means of Least Significant Differences (LSD) test. If the data were not normally distributed, statistical evaluation was performed by using ANOVA (Kriskall-Wallis) and Mann-Whitney U test. Differences were considered significant when p ⁇ 0.05.
- Table 2 lists the blood pressure measurements of the control groups, i.e., WKY and SHR, measured before and after the rats were given with the blank treatment (1% solution of methylcellulose). As shown in Table 2, the blood pressure measurements generally stayed the same at the two measure points.
- the blood pressure lowering effect of DM and AM is greater than the additive effect of DM and AM alone separately. This indicates that DM and AM act synergistically in lowering the blood pressure.
- the mechanism of the blood pressure lowering effect of dextromethorphan or its synergistic action with a calcium channel blocker in the treatment of hypertension is studied by an endothelium-dependent vasorelaxation study, which measures isometric tension of rat aortic ring in response to drugs.
- the effect of the testing drug e.g., dextromethorphan, amlodipine, or a combination of dextromethorphan and amlodipine on high KCl-induced contractions are studied, e.g., by measuring the cumulative concentration-response curves to the endothelium-dependent and endothelium-independent relaxant agonists acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, or to the 1-receptor agonist phenylephrine (PE).
- the testing drug e.g., dextromethorphan, amlodipine, or a combination of dextromethorphan and amlodipine
- ACh endothelium-dependent and endothelium-independent relaxant agonists acetylcholine
- SNP sodium nitroprusside
- PE 1-receptor agonist phenylephrine
- the rats are anaesthetized with pentobarbital (60 mg kg-1 of body weight, i.p.), descending thoracic aorta is dissected, cut into small rings (3-5 mm in width) and suspended in a 5 ml organ bath containing normal Krebs physiological salt solution (KPSS) of the following compositions (mM): NaCl 118.2, KCl 4.7, CaCl 2 . 2H 2 O 2.5, KH 2 PO 4 1.2, MgCl 2 1.2, glucose 11.7, NaHCO 3 25.0, and EDTA 0.026.
- KPSS normal Krebs physiological salt solution
- the bathing solution is gassed continuously with 95% oxygen and 5% carbon dioxide at 37° C. (pH 7.4).
- Isometric tension (g) is measured using a force displacement transducer connected to a Mac Lab recording system (ADI Instruments, Australia). Aortic rings are then progressively stretched to an optimal basal tension of 1 g and allowed to equilibrate for 45 min. During this period, the bathing solution is replaced every 15 min and, if needed, the basal tone is readjusted to 1 g.
- Aortic rings are then repeatedly stimulated with KCl solution (high K + , 80 mM) for 5 min at 10 min intervals until two consecutive equal contractions are attained—evidence of tissue stability.
- the aortic rings are incubated for 20 min with the testing drug, e.g., dextromethorphan, amlodipine, or a combination of dextromethorphan and amlodipine or its vehicle (control), and cumulative concentration-response curves to the endothelium-dependent and endothelium-independent relaxant agonists acetylcholine (ACh, 10 ⁇ 10 to 10 ⁇ 5 M) and sodium nitroprusside (SNP, 10 ⁇ 11 to 10 ⁇ 6 M), respectively, or to the 1-receptor agonist phenylephrine (PE, 10 ⁇ 10 to 10 ⁇ 5 M) are then measured. To test the relaxation responses to ACh and SNP, the aortic rings are pre-contracted with PE (1 ⁇ M).
- the testing drug e.g., dextromethorphan, amlodipine, or a combination of dextromethorphan and amlodipine or its vehicle (control
- the concentrations of the testing drug are chosen based on the physiologically achievable plasma concentrations of the drug.
- the aortic rings are exposed to various pharmacological agents for 5 min before the incubation with the drug or its vehicle.
- endothelium is removed by gently rubbing the intimal surface of the vessel with the blunted forceps.
- the endothelium is considered effectively removed if ACh (1 ⁇ M) caused less than 10% relaxation of aortic rings pre-contracted with PE.
- the concentration-response curves to ACh are measured in aortic rings incubated with and in continued presence of N-nitro-1-arginine methyl ester (L-NAME, 10 ⁇ M)—an eNOs inhibitor, indomethacin (10 ⁇ M)—a cyclooxygenase inhibitor, and methylene blue (10 ⁇ M)—a cyclic GMP inhibitor, respectively.
- L-NAME N-nitro-1-arginine methyl ester
- 10 ⁇ M an eNOs inhibitor
- indomethacin (10 ⁇ M) a cyclooxygenase inhibitor
- methylene blue (10 ⁇ M) a cyclic GMP inhibitor
- the aortic rings are partially depolarized by increasing concentration of KCl in the KPSS (4.8-20 mM), and the concentration-response curves to ACh is then performed.
- EDHF endothelium-derived hyperpolarizing factor
- K+ potassium
- the contractile responses of aortic rings to graded concentrations of PE are expressed as percentages of the maximum contractile effect of high K + in respective tissues.
- vasodilator effect of increasing concentrations of ACh or SNP are expressed as percent decrease of the peak PE (10 ⁇ 6 M) contraction.
- concentration-response curve for each experimental condition is plotted and from it are deduced the values of maximal contraction (Cmax) or maximal relaxation (Rmax) and the concentration of the testing drug (expressed as negative log molar) producing 50% of maximum contraction or relaxation (pEC50) recorded (Prism Version 2.0, GraphPad Software, USA).
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Emergency Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Urology & Nephrology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- Hypertension is a public health problem that affects more than 25% of the adult population worldwide. [1,2] Hypertension has been identified as the leading risk factor for mortality and ranks as the third-leading cause of disability-adjusted life-years. [1,3] Despite the availability of numerous antihypertensive agents, the diagnosis, management, and control of hypertension are far from ideal, with control rates of 6% to 30% in different communities worldwide. [1] Nonadherence to antihypertensive treatment has been associated with lower rates of blood pressure (BP) control and higher rates of cardiovascular events. [4-6] Administration of a once-daily fixed-dose combination (FDC) therapy with >2 classes of antihypertensive agents is a strategy adopted for improving adherence and BP control. This strategy has been described in the recent guidelines, even as an initial therapeutic option. [7,8]
- NADPH oxidases have recently been shown to contribute to the pathogenesis of hypertension. See Williams et al., 2007, J. Cardiovasc Pharmacol., 50:9-16 and references therein. It has been suggested that specific inhibitors of these enzymes may have potential therapeutic use in hypertensive disease. Two of the most specific inhibitors, gp91ds-tat and apocynin, have been shown to decrease blood pressure in animal models of hypertension. Other inhibitors, including diphenylene iodonium, aminoethyl benzenesulfono fluoride, 517834, PR39, protein kinase C inhibitors, and VAS2870, have shown promise in vitro, but their in vivo specificity, pharmacokinetics, and effectiveness in hypertension remains to be determined. The currently available antihypertensive agents, angiotensinconverting enyzme inhibitors and angiotensin receptor blockers also effectively inhibit NADPH oxidase activation. Similarly, the cholesterol-lowering agents, statins, have been shown to attenuate NADPH oxidase activation.
- Dextromethorphan (DM) is a dextrorotatory morphinan and is widely used as a nonopioid cough suppressant in a variety of over-the-counter remedies. [17] It is an NMDA receptor antagonist. The exact mechanism of action of its antitussive activity, however, remains unclear. Studies using animal models of cerebral ischemia and hypoglycemic neural injuries have demonstrated that DM possesses neuroprotective activity. [18-23] DM effectively inhibited the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced production of reactive oxygen species (ROS). The neuroprotective effect of DM depended on the normal function of NADPH oxidase.[24] Recent in vitro and in vivo studies showed that DM reduces oxidative stress and inhibits atherosclerosis and neointima formation in mice through the direct inhibition of NADPH oxidase and that it also decreases superoxide production in the aorta and carotid artery of apolipoprotein E (apoE)-deficient mice. Liu et al., 2009, Cardiovascular Research, 82:161-169. Alvarez Y et al suggest that the increased production of superoxide anion (O2 −) from NADP(H) oxidase in vessels of hypertensive rats contributes to the vasoconstrictor responses and counteracts the increase of NO from iNOS and the consequent modulation of these responses. [25]
- Calcium channel blockers (CCBs) are indicated as initial therapy for hypertension. Their benefits and the possible risks have been explored in several clinical trials. [9-14] Use of high-dose CCBs has been associated with a high incidence of adverse events (AEs), such as peripheral edema and constipation. [8,11,12]
- Amlodipine is a CCB with antihypertensive properties prescribed as monotherapy. It is one of a series of dihydropyridine calcium antagonists. It has been found to be well tolerated even in high-risk patients, such as those with coronary disease, heart failure, or multiple risk factors for cardiovascular events. [12-16] Amlodipine has a generally slower onset and longer duration of action than, for example, nifedipine. (Jensen, H. et al., J. Hum. Hypertens., 42(5): 541-45, 1990). The metabolites of amlodipine apparently do not possess significant calcium channel blocking activity, while the parent drug offers a biological half-life of some 35-40 hours, prompting a once-daily dosage regimen. (Lorimer, A. R., et al., J. Hum. Hypertens., 3(3): 191-96, 1989; Glasser, S. F. et al., AJH, 2(3): 154-57, 1989). Its ability to block, calcium channels in smooth muscle produces peripheral vasodilation resulting in decreases in both systolic and diastolic blood pressure. The racemic mixture of amlodipine is presently used primarily as an antihypertensive agent, which produces peripheral vasodilation, resulting in decreases in both systolic and diastolic blood pressure when used as an antihypertensive agent. This antihypertensive effect occurs in the relative absence of significant or sustained effects on cardiac rate. However, the administration of the racemic mixture of amlodipine to a human has been found to cause adverse effects, such as edema of the extremities, peripheral edema, headache, flushing/hot flashes, fatigue, vertigo, muscle cramps and dizziness.
- There remains a need of novel effective and safe methods and pharmaceutical compositions for treating or preventing hypertension and related symptoms. Such methods and pharmaceutical compositions are described in the present application.
- It is now discovered that dextromethorphan not only is effective to lower blood pressure in a subject suffering from hypertension, but also acts synergistically with a calcium channel blocker to result in a major improvement in the treatment of hypertension, with no or little adverse effects.
- In one general aspect, embodiments of the present invention relate to a method of treating hypertension or a symptom associated therewith in a subject. The method comprises administering to the subject a pharmaceutical composition comprising an effective amount of dextromethorphan and a pharmaceutically acceptable carrier.
- In one general aspect, embodiments of the present invention relate to a method of treating hypertension or a symptom associated therewith in a subject. The method comprises administering to the subject an effective amount of dextromethorphan and an effective amount of a calcium channel blocker.
- In another general aspect, embodiments of the present invention relate to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, comprising an effective amount of dextromethorphan, an effective amount of a calcium channel blocker, and a pharmaceutically acceptable carrier.
- In a preferred embodiment, the present invention relates to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, which comprises an effective amount of dextromethorphan, an effective amount of amlodipine, and a pharmaceutically acceptable carrier.
- In another general aspect, embodiments of the present invention relate to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, comprising an effective amount of a calcium channel blocker, an effective amount of a NADPH oxidase inhibitor, and a pharmaceutically acceptable carrier.
- Other aspects of the present invention relate to methods of treating hypertension or a symptom associated therewith in a subject, comprising administering to the subject an effective amount of a calcium channel blocker, such as amlodipine, and an effective amount of a NADPH oxidase inhibitor, such as dextromethorphan.
- Other aspects, features and advantages of the invention will be apparent from the following disclosure, including the detailed description of the invention and its preferred embodiments and the appended claims.
- The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
- In the drawings:
-
FIG. 1 a-FIG. 1 d illustrate the blood pressure lowing effect of dextromethorphan (DM) in an animal model for hypertension, i.e., spontaneous hypertensive rats (SHR), at three dosage levels, 1 mg/kg/day, 5 mg/kg/day, and 25 mg/kg/day: -
FIG. 1 a: changes of systolic blood pressure (SBP) after DM treatment; -
FIG. 1 b: changes of diastolic blood pressure (DBP) after DM treatment; -
FIG. 1 c: changes of heart rate (HR) after DM treatment; and -
FIG. 1 d: changes of mean blood pressure (MBP) after DM treatment; -
FIG. 2 a-FIG. 2 d illustrate the blood pressure lowing effect of amlodipine (AM) in SHR, at two dosage levels, 1 mg/kg/day and 5 mg/kg/day: -
FIG. 2 a: changes of SBP after AM treatment; -
FIG. 2 b: changes of DBP after AM treatment; -
FIG. 2 c: changes of HR after AM treatment; and -
FIG. 2 d: changes of MBP after AM treatment; -
FIG. 3 a-FIG. 3 d illustrate the blood pressure lowing effect of the combination of DM and - AM in SHR, at various dosage levels:
-
FIG. 3 a: changes of SBP after DM+AM treatment; -
FIG. 3 b: changes of DBP after DM+AM treatment; -
FIG. 3 c: changes of HR after DM+AM treatment; and -
FIG. 3 d: changes of MBP after DM+AM treatment; -
FIG. 4 a-FIG. 4 d illustrate the blood pressure lowing effect of different treatment regimens in SHR, expressed as percentage change of blood pressure or heart rate: -
FIG. 4 a: percentage changes of SBP after different treatment regimens; -
FIG. 4 b: changes of DBP after different treatment regimens; -
FIG. 4 c: changes of HR after different treatment regimens; and -
FIG. 4 d: changes of MBP after different treatment regimens; -
FIG. 5 a andFIG. 5 b show the comparison of blood pressure lowering effect of single and combination treatments in SHR as percentage changes of SBP and DBP: -
FIG. 5 a: percentage changes of SBP and DBP after single treatment with DM at 1 mg/kg/day, single treatment with AM at 5 mg/kg/day, and combined treatment with DM at 1 mg/kg/day and AM at 5 mg/kg/day; and -
FIG. 5 b: percentage changes of SBP and DBP after single treatment with DM at 5 mg/kg/day, single treatment with AM at 5 mg/kg/day, and combined treatment with DM at 5 mg/kg/day and AM at 5 mg/kg/day; -
FIG. 6 is a flow chart showing the different time points when blood pressure were measured and blood sampling were taken in the animal study. - Various publications, articles and patents are cited or described in the background and throughout the specification; each of these references is herein incorporated by reference in its entirety. Discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is for the purpose of providing context for the present invention. Such discussion is not an admission that any or all of these matters form part of the prior art with respect to any inventions disclosed or claimed.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention pertains. Otherwise, certain terms used herein have the meanings as set in the specification. All patents, published patent applications and publications cited herein are incorporated by reference as if set forth fully herein. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise.
- As used herein, the name of a compound, such as dextromethorphan or amlodipine, can encompass all possibly existing isomeric forms (e.g., optical isomer, enantiomer, diastereomer, racemate or racemic mixture), esters, prodrugs, metabolite forms, pharmaceutically acceptable salts, pharmaceutically acceptable esters, pharmaceutically acceptable amides, and protected derivatives, of the compound.
- The phrase “pharmaceutically acceptable salt(s)”, as used herein, means those salts of a compound of interest that are safe and effective for pharmaceutical use in mammals and that possess the desired biological activity. Pharmaceutically acceptable salts include salts of acidic or basic groups present in the specified compounds. The acidic or basic groups can be organic or inorganic. Pharmaceutically acceptable acid addition salts include, but are not limited to, hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzensulfonate, p-toluenesulfonate and pamoate (i.e., 1,1′-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Suitable base salts include, but are not limited to, aluminum, calcium, lithium, magnesium, potassium, sodium, zinc, and diethanolamine salts. Certain compounds used in the present invention can form pharmaceutically acceptable salts with various amino acids, e.g., lysine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), procaine, and tris, and other salts which are currently in widespread pharmaceutical use and are listed in sources well known to those of skill in the art, such as The Merck Index. Any suitable constituent can be selected to make a salt of an active drug discussed herein, provided that it is non-toxic and does not substantially interfere with the desired activity. For a review on pharmaceutically acceptable salts see BERGE ET AL., 66 J. PHARM. SCI. 1-19 (1977), incorporated herein by reference.
- As used herein, a “NADPH oxidase inhibitor” is a drug or a natural substance that inhibits, decreases or reduces the enzymatic activity of a NADPH oxidase, i.e., nicotinamide adenine dinucleotide phosphate-oxidase. The NADPH oxidase generates superoxide by transferring electrons from NADPH and coupling the electrons to molecular oxygen to produce superoxide, a reactive free-radical that can generate reactive oxygen species (ROS). A “NADPH oxidase inhibitor” is effective in preventing, decreasing or reducing the production of the superoxide, thus ROS, in blood vessels of a subject. Examples of NADPH oxidase inhibitors that can be used in the present invention include, but are not limited to, dextromethorphan, gp91ds-tat, apocynin, diphenylene iodonium, aminoethyl benzenesulfono fluoride, 517834, PR39, protein kinase C inhibitors, VAS2870, angiotensinconverting enyzme inhibitors, angiotensin receptor blockers and statins.
- As used herein, “dextromethorphan” or “DM” refers to the compound (+)-3-methoxy-17-methyl-9α,13α,14α-morphinan, which is also named (+)-3-methoxy-N-methylmorphinan, and any pharmaceutically acceptable salt thereof. For example, dextromethorphan can be in a pharmaceutically acceptable salt form selected from the group consisting of salts of free acids, inorganic salts, salts of sulfate, salts of hydrochloride, and salts of hydrobromide. Dextromethorphan is commonly available as the monohydrated hydrobromide salt.
- Dextromethorphan is the dextrorotatory (d) enantiomer. Preferably, a pharmaceutical composition according to embodiments of the present invention comprises substantially optically pure dextromethorphan or is substantially free of the levorotary (l) enantiomer of DM.
- As used herein, “substantially optically pure dextromethorphan” or “substantially free of the levorotary (l) enantiomer of DM” means that the pharmaceutical composition contains a greater proportion or percentage of DM in relation to its 1 enantiomer. For example, the pharmaceutical composition preferably contains about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%, by weight of DM, wherein the percentage is based on the total amount of DM and its 1 enantiomer in the pharmaceutical composition.
- Dextromethorphan can be synthesized and optically purified using methods known in the art, for example as described in U.S. Pat. No. 2,676,177, the content of which is hereby incorporated by reference. It is also available from various commercial sources.
- As used herein, “calcium channel blockers” or “CCBs” refers to a class of drugs and natural substances that disrupt the calcium (Ca2+) conduction of calcium channels. They block voltage-gated calcium channels (VGCCs) in cardiac muscle and blood vessels and decrease blood pressure. The term “calcium channel blockers” encompasses any class of CCBs that can be used for treating hypertension in a subject, such as the class of dihydropyridine, phenylalkylamine, benzothiazepine, and the nonselective CCBs. Examples of CCBs that can be used in the present invention include, but are not limited to, amlodipine, bepridil, clentiazem, diltiazem, fendiline, gallopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, aranidipine, barnidipine, benidipine, cilnidipine, efonidipine, elgodipine, felodipine, isradipine, lacidipine, lercanidipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, perhexyline, and fluspirilene.
- As used herein, “amlodipine” or “AM” refers to the compound 3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-1,4-dihydro-6-methylpyridine-3,5-dicarboxylate, and any optical isomer, enantiomer, diastereomer, racemate or racemic mixture, pharmaceutically acceptable salts, or pharmaceutically acceptable esters, of the compound. For example, amlodipine can be in a pharmaceutically acceptable salt form of inorganic and organic acids. Such acids are selected from the group consisting of acetic, benzene-sulfonic (besylate), benzoic, camphorsulfonic, citric, ethenesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric acid, p-toluenesulfonic, and the like. Particularly preferred are besylate, hydrobromic, hydrochloric, phosphoric and sulfuric acids. (See Campbell, S. F. et al., U.S. Pat. No. 4,806,557). Amlodipine can also be a pharmaceutically acceptable ester of amlodipine, particularly lower alkyl esters.
- Amlodipin is a chiral compound. A pharmaceutical composition according to embodiments of the present invention can comprise a racemate, i.e., 1:1 mixture of (R)-(+)- and (S)-(−)-amlodipine or a racemic mixture of the (R)-(+)- and (S)-(−)-amlodipine at different ratios. The pharmaceutical composition can also comprise isolated (R)-(+)-amlodipine or (S)-(−)-amlodipine that is substantially free of the other stereoisomer.
- (S)-(−)-amlodipine is a more potent calcium channel blocker than (R)-(+)-amlodipine. Thus, preferably, a pharmaceutical composition according to embodiments of the present invention comprises substantially optically pure (S)-(−)-amlodipine or is substantially free of (R)-(+)-amlodipine.
- As used herein, “substantially optically pure (S)-(−)-amlodipine” or “substantially free of (R)-(+)-amlodipine” means that the pharmaceutical composition contains a greater proportion or percentage of (S)-(−)-amlodipine in relation to (R)-(+)-amlodipine. For example, the pharmaceutical composition preferably contains about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100%, by weight of (S)-(−)-amlodipine, wherein the percentage is based on the total amount of (R)-(+)-amlodipine and (S)-(−)-amlodipine in the pharmaceutical composition.
- The chemical synthesis of the racemic mixture of amlodipine can be performed using methods known in the art, e.g., as described in Arrowsmith, J. E. et al., J. Med. Chem., 29: 1696-1702 (1986). It is also available from various commercial sources. Separation of the amlodipine isomers from the racemic mixture can be performed by methods known in the art, such as those illustrated in U.S. Pat. No. 6,448,275 or U.S. Pat. No. 7,482,464. The contents of the references are hereby incorporated by reference.
- As used herein, the term “pharmaceutical composition” is intended to encompass a product or composition comprising the specified ingredient in the specified amount, as well as any product which results, directly or indirectly, from combinations of the specified ingredient in the specified amount.
- As used herein, the term “subject” means any animal, preferably a mammal, most preferably a human, to whom will be or has been administered compounds or pharmaceutical compositions according to embodiments of the invention. The term “mammal” as used herein, encompasses any mammal. Examples of mammals include, but are not limited to, cows, horses, sheep, pigs, cats, dogs, mice, rats, rabbits, guinea pigs, monkeys, humans etc., more preferably, a human. Preferably, a subject is in need of, or has been the object of observation or experiment of, treatment or prevention of hypertension and symptoms associated therewith.
- As used herein, “treating hypertension or a symptom associated therewith” means to elicit an antihypertensive effect, such as by providing a normalization to otherwise elevated systolic and/or diastolic blood pressure, and by so doing providing relief from one or more possible symptoms or other hemodynamic effects caused by the elevated blood pressure.
- In one embodiment, “treating” refers to an amelioration, prophylaxis, or reversal of a disease or disorder, or at least one discernible symptom thereof, for example, treating hypertension or a symptom associated therewith by lowering the elevated systolic and/or diastolic blood pressure.
- In another embodiment, “treating” refers to an amelioration, prophylaxis, or reversal of at least one measurable physical parameter related to the disease or disorder being treated, not necessarily discernible symptom in or by the mammal, for example, treating hypertension or a symptom associated therewith by decreasing ROS in the vessels.
- In yet another embodiment, “treating” refers to inhibiting or slowing the progression of a disease or disorder, either physically, e.g., stabilization of a discernible symptom, physiologically, e.g., stabilization of a physical parameter, or both.
- In yet another embodiment, “treating” refers to delaying the onset of a disease or disorder or reduce of the risk of acquiring a disease or disorder, such as hypertension or a symptom associated therewith. For example, the specified pharmaceutical compositions are administered as a preventative measure to a subject having a predisposition to hypertension, even though symptoms of hypertension are absent or minimal.
- As used herein, the term “effective amount” of a compound refers to the amount of the compound that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated. In a preferred embodiment, the effective amount of a compound is sufficient to treat, improve the treatment of, or prophylactically prevent, hypertension or a symptom associated therewith, but is insufficient to cause significant adverse effects associated with administration of the compound.
- Methods are known in the art for determining the effective amount of a therapeutically active ingredient according to embodiments of the present invention. Furthermore, and as is also understood by those of ordinary skill in the art, specific dose levels for any particular subject will depend upon a variety of factors including the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, any additional therapeutic agents administered in combination therewith and the severity of the disease or condition being treated. Generally speaking, the prophylactic or therapeutic treatment of the above identified conditions is expected to be achieved via administration of dosage levels of the active ingredients in amounts from about 0.01 mg/kg to about 100 mg/kg, 0.03 mg/kg to about 75 mg/kg, 0.05 mg/kg to about 50 mg/kg body weight per day, or from about 0.1 mg/kg to about 10 mg/kg of body weight per day. Whatever the desired or appropriate dosage level, it may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Alternatively, the dosage can be formulated to be delivered in a substantially continuous fashion, as may be provided by sustained and/or controlled release dosage forms, or by a transdermal patch.
- The term “adverse effects” includes, but is not limited to, cardiovascular effects (including tachycardia and diminished contractility of the heart), edema of the extremities, headache, dizziness, flushing, fatigue, vertigo, muscle cramps, hallucination, diarrhea, fever, urinary retention, vomiting, body rash/itching, etc.
- It is now discovered that dextromethorphan is effective to lower blood pressure in a subject suffering from hypertension, either alone or in combination with another antihypertensive agent. It is further discovered that dextromethorphan, a NADPH oxidase inhibitor, and amlodipine, a CCB, act synergistically in lowering blood pressure in a subject suffering from hypertension. This synergistic effect is unexpected. Novel and more effective pharmaceutical compositions and methods for treating hypertension or a symptom associated therewith are thus developed based on the present discoveries.
- In one general aspect, the present invention relates to a method of treating hypertension or a symptom associated therewith in a subject. The method comprises administering to the subject a pharmaceutical composition comprising an effective amount of dextromethorphan and a pharmaceutically acceptable carrier.
- Any of the pharmaceutically acceptable salt of dextromethorphan can be used in the pharmaceutical compositions and methods according to embodiments of the present invention. In a preferred embodiment, a substantially optically pure dextromethorphan, such as a substantially optically pure dextromethorphan hydrobromide, is used in the present invention.
- In most patients, dextromethorphan is rapidly absorbed from the gastrointestinal tract and converted into the less active metabolite, dextrorphan, in the liver by the cytochrome P450 enzyme CYP2D6 Inhibiting the enzymatic activity of CYP2D6 would increase the stability of dextromethorphan and prolong its half life in the subject, resulting in more effective treatment with more consistent and predictable result.
- Thus, a method according to an embodiment of the present invention can further comprise administering to the subject a CYP2D6 inhibitor. Examples of CYP2D6 inhibitors that can be used in the present invention include, but are not limited to, quinidine. The CYP2D6 inhibitors can be administered together with DM in the same pharmaceutical composition, or separately from DM in a different pharmaceutical composition, so long as the dosing schedules of DM and the CYP2D6 inhibitor overlap in time so that the administered CYP2D6 inhibitor is effective to prolong the half life of dextromethorphan in the subject.
- In another general aspect, embodiments of the present invention relate to a method of treating hypertension or a symptom associated therewith in a subject, comprising administering to the subject an effective amount of dextromethorphan and an effective amount of a calcium channel blocker (CCB).
- Any of the CCBs effective for treating hypertension in a subject can be used in the present invention, including, but not limited to, amlodipine, bepridil, clentiazem, diltiazem, fendiline, gallopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, aranidipine, barnidipine, benidipine, cilnidipine, efonidipine, elgodipine, felodipine, isradipine, lacidipine, lercanidipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, perhexyline, and fluspirilene.
- In one embodiment of the present invention, the CCB is amlodipine. Any of the optical isomer, enantiomer, diastereomer, racemate or racemic mixture, pharmaceutically acceptable salts, or pharmaceutically acceptable esters, of amlodipine can be used in the present invention.
- In one embodiment, a racemic mixture of amlodipine or (R,S)-amlodipine, is used in the present invention.
- In a preferred embodiment, a substantially optically pure (S)-(−)-amlodipine, such as a substantially optically pure (S)-(−)-amlodipine besylate, (S)-(−)-amlodipine mesylate or S)-(−)-amlodipine maleate, is used in the present invention.
- According to embodiments of the present invention, dextromethorphan and the CCB can be administered together in the same pharmaceutical composition, or separately in different pharmaceutical compositions, so long as the dosing schedules of DM and the CCB overlap in time.
- In an embodiment of the present invention, the CCB and DM are administered in a dosage ratio of CCB:DM as 1:0.5 to 1:100, e.g., 1:1, 1:5, 1:10, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90 or 1:100, in the same pharmaceutical composition, e.g., a dosage form comprising both CCB and DM, or in separate pharmaceutical compositions, e.g., a separate dosage form for each of CCB and DM.
- Another general aspect of the present invention relates to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, which comprises an effective amount of dextromethorphan, an effective amount of a calcium channel blocker, and a pharmaceutically acceptable carrier.
- Embodiments of the present invention also relate to a pharmaceutical composition for treating hypertension or a symptom associated therewith in a subject, which comprises an effective amount of a calcium channel blocker, an effective amount of a NADPH oxidase inhibitor, and a pharmaceutically acceptable carrier.
- Any of the CCBs effective for treating hypertension in a subject, such as those described above, can be used in the present invention.
- Examples of NADPH oxidase inhibitor that can be used in the present application include, but are not limited to, gp91ds-tat, apocynin, diphenylene iodonium, aminoethyl benzenesulfono fluoride, S17834, PR39, protein kinase C inhibitors, VAS2870, angiotensinconverting enyzme inhibitors, angiotensin receptor blockers, statins, and dextromethorphan.
- The pharmaceutical compositions according to embodiments of the present invention can optionally comprise other therapeutically active ingredients, such as another class of antihypertensive agent.
- Embodiments of the present invention also relate to methods of treating hypertension or a symptom associated therewith in a subject. The methods comprising administering to the subject an effective amount of a NADPH oxidase inhibitor, such as dextromethorphan, and an effective amount of a CCB, such as amlodipine.
- The NADPH oxidase inhibitor and the CCB can be administered together in a single pharmaceutical composition, separately at approximately the same time, or separately on separate dosing schedules. All that is required is that the dosing schedules of the NADPH oxidase inhibitor and the CCB overlap in time and thus are being followed concurrently.
- The methods according to embodiments of the present invention can optionally comprise administering to the subject other therapeutically active ingredients, such as another class of antihypertensive agent.
- Whether administered alone or in combination with an additional therapeutic agent, the therapeutic active ingredient can be administered by any known route of administration, including, orally, topically, parenterally (including subcutaneous, intravenous, intramuscular, and intrasternal injection or infusion administration techniques), by inhalation spray or rectally in dosage units or pharmaceutical compositions containing conventional pharmaceutically acceptable carriers and any such dosage units or pharmaceutical compositions are within the scope of the present invention.
- Pharmaceutical compositions adapted for oral administration include solid forms such as pills, tablets, caplets, and hard or soft capsules (each including immediate release, timed release, and sustained release formulations) as well as lozenges and dispersible powders or granules. Liquid forms of pharmaceutical compositions adapted for oral administration include solutions, syrups, elixirs, emulsions, and aqueous or oily suspensions. Any of these dosage forms may be prepared according to any method or compounding technique known in the art for the manufacture of pharmaceutical compositions. Pharmaceutically acceptable carriers that may be desirably utilized in the manufacture of solid oral dosage forms include inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating or disintegrating agents, such as corn starch or alginic acid; binding agents, such as starch, gelatin, or acacia; and lubricating agents such as magnesium stearate, stearic acid or talc. If desired, solid pharmaceutical compositions adapted for oral administration may further include one or more sweetening agents, flavoring agents, coloring agents, or preserving agents in order to provide attractive or palatable preparations.
- In those embodiments wherein the dosage form is a tablet or pill, it may either be uncoated or coated, and if coated, may be coated by any known technique. Further, the coating, if desirably provided, can be formulated or applied by known techniques so that the coating can delay disintegration of the tablet or pill, and thus, absorption of the active ingredient, thereby providing a controlled and/or sustained release dosage form capable of providing sustained therapeutic or prophylactic effect over a longer period. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. An enteric layer that serves to resist disintegration in the stomach and permits the inner component to pass substantially intact into the duodenum or to be delayed in release can separate the two components. A variety of materials can be used for such enteric layers or coatings, including a number of polymeric acids, shellac, cetyl alcohol and cellulose acetate. Alternatively, in those embodiments wherein such a controlled and or sustained release is desired, tablets, pills or capsules may be formulated as osmotic pump dosage forms by any known method.
- Pharmaceutical compositions adapted for oral administration may also be presented as hard or soft gelatin capsules, wherein the active ingredient may be mixed with an inert solid diluent, such as calcium carbonate, calcium phosphate or kaolin in the case of the former or with water or miscible solvents such as propylene glycol, PEG's and ethanol, or an oil medium such as peanut oil, liquid paraffin, or olive oil in the case of the latter.
- Aqueous suspensions can be prepared that contain the active ingredient(s) in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia, dextran, polyvinyl-pyrrolidone or gelatin; and dispersing or wetting agents such as lecithin, polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxyethylene sorbitol monooleate, and polyethylene sorbitan monooleate. Aqueous suspensions may also contain one or more preservatives, such as ethyl or n-propyl, p-hydroxybenzoate; one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose, saccharine or aspartame.
- Oily suspensions may be formulated by suspending the active ingredient(s) in a vegetable oil, such as cottonseed, olive, sesame or coconut oil, or in a mineral oil, such as liquid paraffin. The oily suspensions may contain a thickening agent, such as beeswax, hard paraffin, or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. Such oily suspensions may be preserved by the inclusion of an anti-oxidant such as ascorbic acid.
- Dispersible powders and granules suitable for the preparation of an aqueous suspension suitable for oral administration can provide the active ingredient(s) in admixture with a dispersing or wetting agent, suspending agent, and one or more preservatives, all of which have been discussed above. Sweetening, flavoring, or coloring agents may also be present, if desired.
- Pharmaceutical compositions suitable for oral administration may also be presented in the form of an oil-in-water emulsion. The oily phase may be a vegetable or mineral oil, such as those described above, or mixtures of these. Suitable emulsifying agents may be naturally-occurring phosphatides, such as soy bean, lecithin, sorbitan monooleate, or polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening or flavoring agents.
- Syrups and elixirs may be formulated with sweetening agents, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring or coloring agents.
- The pharmaceutical compositions may be further provided in a form adapted for parenteral administration, i.e., by injection or infusion. Injectable aqueous or oleaginous suspensions are desirably sterile and may be formulated according to known methods using suitable dispersing, wetting and suspending agents as mentioned above. A parenterally-acceptable diluent or solvent may also be utilized, such as 1,3-butanediol, water, Ringer's solution, and isotonic sodium chloride. Cosolvents such as ethanol, propylene glycol or polyethylene glycols may also be used. In addition, sterile, fixed oils are conventionally employed as solvents or suspending mediums in injectable or infusible solutions, and these may include any bland fixed oil, such as any of the synthetic mono- or diglycerides. Fatty acids such as oleic acid also may be utilized in the preparation of injectable or infusible solutions.
- The pharmaceutical composition may also be presented in the form of a suppository. Suppositories can be formulated by mixing the active ingredient(s) and any additional desired therapeutic agent(s) with a suitable non-irritating excipient that is solid at room temperature but molten at body temperature, thereby releasing the active ingredient(s). Suitable materials include cocoa butter and polyethylene glycols.
- For topical use, creams, ointments, gels, solutions or suspensions containing the active ingredient(s) may be prepared. As used herein, topical use includes mouth washes and gargles. Topical formulations may include cosolvents, emulsifiers, penetration enhancers, preservatives, emollients, and the like.
- The active ingredients according to embodiments of the present invention can also be provided in a pharmaceutical composition in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of lipids, including but not limited to amphipathic lipids such as phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, phophatidylcholines, cardiolipins, phosphatidylserines, phosphatidylglycerols, phosphatidic acids, phosphatidylinositols, diacyl trimethylammonium propanes, diacyl dimethylammonium propanes, and stearylamine, neutral lipids such as triglycerides, and combinations thereof. They may either contain cholesterol or may be cholesterol-free.
- Preferably, pharmaceutical compositions according to embodiments of the present invention are formulated for oral administration. The pharmaceutical compositions may be conveniently presented in dosage form, and prepared by any of the methods known in the art of pharmacy in view of the present disclosure. In general, the pharmaceutical compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.
- The amount of therapeutically active ingredients to be included in a dosage form will depend upon the patient being treated, the mode of administration and the desired delivered dose. Representative pharmaceutical compositions will generally include from about 0.01 mg to about 1000 mg, from about 0.1 mg to 500 mg, from about 1 mg to about 100 mg, or from about 10 mg to about 100 mg, of the active ingredients.
- In an embodiment of the present invention, each dosage form for oral administration, such as a pill, a tablet, a caplet, a hard or soft capsule, comprises about 10 mg to about 100 mg of an NADPH oxidase inhibitor, such as DM. Each of the dosage form can further comprise 10 mg to about 100 mg of a CYP2D6 inhibitor, such as quinidine. Each of the dosage form can additionally comprise about 0.5 mg to about 10 mg of a CCB, such as AM.
- In another embodiment of the present invention, each dosage form for oral administration, such as a pill, a tablet, a caplet, a hard or soft capsule, comprises a ratio of a CCB (such as AM): a NADPH oxidase inhibitor (such as DM) of 1:0.5 to 1:100, e.g., 1:1, 1:5, 1:10, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90 or 1:100.
- In the case where an oral pharmaceutical composition is employed, a suitable dosage range of a NADPH, such as dextromethorphan, for use in the present invention is from about 0.1 mg to about 500 mg total daily dose, given as a once daily administration in the morning or in divided doses if required. Preferably, a dose range of between about 1 mg to about 300 mg is given as a once daily administration or in divided doses if required, and most preferably a dose range of from between about 10 mg to about 100 mg, or a dose range of from between about 20 mg to about 50 mg is given as a once daily administration or in divided doses if required. Patients may be upward titrated from below to within this dose range to a satisfactory control of symptoms or blood pressure as appropriate.
- In the case where an oral pharmaceutical composition is employed, a suitable dosage range of a CCB, such as amlodipine, for use in the present invention is from about 0.01 mg to about 100.0 mg total daily dose, given as a once daily administration in the morning or in divided doses if required. Preferably, a dose range of between about 0.5 mg to about 20.0 mg is given as a once daily administration or in divided doses if required, and most preferably a dose range of from between about 0.5 mg to about 10.0 mg is given as a once daily administration or in divided doses if required. Patients may be upward titrated from below to within this dose range to a satisfactory control of symptoms or blood pressure as appropriate.
- This invention will be better understood by reference to the non-limiting example that follows, but those skilled in the art will readily appreciate that the example is only illustrative of the invention as described more fully in the claims which follow thereafter.
- An in vivo study was conducted to measure and compare the anti-hypertensive efficacy and tolerability of dextromethorphan and amlodipine in monotherapy and combined therapy in spontaneous hypertensive rats, an animal model for hypertension. The same study can be performed with other NADPH oxidase inhibitor and CCB.
- Materials and Methods
- Animals
- The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publications no. 85-23, revised 1996) and complies with the current Taipei Veterans General Hospital laws. Aged 18-week male normotensive Wistar Kyoto (WKY) and spontaneous hypertensive rats (SHR) were used in this study.
- Untreated WKY and SHR were compared with SHR treated with amlodipine (1, 5 mg/kg/day) or dextromethorphan (1, 5, 25 mg/kg/day) and fix dose combination (AM+DM) using a matrix combination of above doses for 4 weeks. All the treatment groups are listed in Table 1, including G1˜G12 for SHR and G0 for WKY as a control.
-
TABLE 1 Treatment groups Treatment* A0 A1 A2 D0 G1 G5 G9 D1 G2 G6 G10 D2 G3 G7 G11 D3 G4 G8 G12 *A0: no drug; A1: 1 mg/kg/day; and A2: 5 mg/kg/day of amlodipine treatment. D0: no drug; D1: 1 mg/kg/day; D2: 5 mg/kg/day; and D3: 25 mg/kg/day of dextromethorphan treatment. - Experimental Design
- As aforementioned in Table 1, rats were divided into several experimental groups as follows:
- G0: WKY as control (normotensive rats without drugs, n=10)
- G1: SHR (hypertensive rats without drugs, n=10)
- G2: SHR+D1 (
DM 1 mg/kg/day, n=10) - G3: SHR+D2 (
DM 5 mg/kg/day, n=10) - G4: SHR+D3 (
DM 25 mg/kg/day, n=10) - G5: SHR+A1 (
AM 1 mg/kg/day, n=10) - G6: SHR+A1+ D1 (
AM 1 mg/kg/day+DM 1 mg/kg/day, n=10) - G7: SHR+A1+ D2 (
AM 1 mg/kg/day+DM 5 mg/kg/day, n=10) - G8: SHR+A1+ D3 (
AM 1 mg/kg/day+DM 25 mg/kg/day, n=10) - G9: SHR+A2 (
AM 5 mg/kg/day, n=10) - G10: SHR+A2+D1 (
AM 5 mg/kg/day+DM 1 mg/kg/day, n=10) - G11: SHR+A2+D2 (
AM 5 mg/kg/day+DM 5 mg/kg/day, n=10) - G12: SHR+A2+D3 (
AM 1 mg/kg/day+DM 25 mg/kg/day, n=10) - Control rats (G0 and G1) received 1% solution of methylcellulose (1 ml/kg) by a gavage as a vehicle. AM and DM were suspended in 1% solution of methylcellulose and administered by a gavage in a 1 ml/kg volume. All compounds were administered for 4 weeks. Arterial blood pressure measurement and blood sampling were carried out before treatment, and after the second and forth week of drug administration.
- Blood Pressure Determination
- Arterial blood pressure was measured in conscious rats with an automatic sphygmomanometer, using tail-cuff method. Before the measurements, the animals were placed inside a warming chamber (about 34° C.) for 30 min. The aim of the procedure is to calm the animals and dilate the tail blood vessels. Arterial blood pressure was measured at least three times for each animal. Changes in pressure are expressed as the percentage of baseline values.
- Biochemistry
- Total cholesterol, LDL-cholesterol, ALT, AST and Creatinine are measured by using automatic biochemical analyzers (Spotchem™ SP 4410 Kyoto Daiichi Kagaku Co. Ltd.).
- Serum Oxidative Stress and Inflammatory Markers
- The oxidant systems include enzymes such as superoxide dismutase, catalase, and glutathionine peroxidase, macromolecules such as albumin, ceruloplasmin and ferritin, small molecules such as ascorbic acid, α-tocopherol, β-carotene, reduced gluthionine, uric acid and bilirubin. The sum of the endogenous and food-derived antioxidants represents the total antioxidant activity of the system. The total antioxidant capacity or total antioxidant status (TAS, mmol/L) of plasma, serum, urine, saliva, or cell lysates, can be measured using commercially available kits, such as Antioxidant Assay Kit (Cat No. 709001, Cayman) or Total Antioxidant Status, Randox Lab Ltd), with results expressed as mmol/L, following the kit's protocol.
- In addition, serum peroxynitrate (3-nitrotyrosine, 3-NT), 8-Hydroxydeoxyguanosine(8-OHdG), endothelin-1 (ET-1), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities (IU/g Hb) are also assessed.
- Nitrotyrosine is formed in presence of the active metabolite NO. Various pathways including the formation of peroxinitrite lead to nitrotyrosine production. Since nitrotyrosine is a stable end product of peroxynitrite oxidation, assessment of its plasma concentration may be useful as a marker of NO-dependent damage in vivo. The presence of nitrotyrosine has been detected in various inflammatory processes including atherosclerotic plaques, celiac disease, rheumatoid arthritis, chronic renal failure and septic shock. Nitrotyrosine has also been identified as a marker of inflammation. In normal plasma low, undetectable, levels of nitrotyrosine are present. Quantitative determination of nitrotyrosine in plasma and other biological samples can be performed using commercially available kits, such as Nitrotyrosine ELISA kit (Hycult Biotech, HK501)
- 8-OHdG is produced by oxidative damage of DNA by reactive oxygen and nitrogen species and serve as an established marker of oxidative stress. Increased 8-OH-dG are associated with hypertension, as well as aging process and a number of other conditions, such as cancer and diabetes. Quantitative determination of 8-OHdG in plasma and other biological samples can be performed using commercially available kits, such as 8-hydroxy-2-deoxy Guanosine EIA Kit (Cayman, Cat No. 589320 or 589321)
- Endothelin-1 (ET-1), a peptide of 21 amino acid residues, is the most potent vasoconstrictor substance known. ET-1 has been shown to have potent effects on smooth muscle cells, fibroblasts and to be involved in many disease processes, particularly cardiovascular diseases. It has been shown to be important in congestive heart failure, renal failure and pulmonary hypertension. Quantitative determination of 8-OHdG in plasma and other biological samples can be performed using commercially available kits, such as Endothelin-1 Assay Kit (L) (IBL, Code No. 27165).
- The 3-NT, 8-OhdG, ET-1 can also be measured in duplicate with commercially available enzyme-linked immunosorbent assay kits (Quantikine, R&D Systems, USA) according to the manufacturer's instructions.
- These assays are based on a two-site ELISA sandwich format using two antibodies directed against different epitopes of MMPs. The 96-well miroplate is precoated with antibody to MMPs. The plasma samples are added into the microplate and the detection of antibody conjugated to horseradish peroxidase is added. Then tetramethylbenzidine (TMB) substrate is used. The reaction of peroxide-TMB is stopped by the addition of sulfuric acid and the resultant color measured at 450 nm in a microplate spectrophotometer. Thus, 100-4, samples are analysed in duplicate with working standards and measured on a microplate reader (Asys-Hitech, Austria). After a standard curve is constructed, sample values are determined using microplate reader with software (version 3.1, Asys-Hitech, Austria).
- SOD and GPx activities, expressed as IU/g Hb, are assessed using commercially available kits (Ransod and Ransel, respectively, from Randox Lab Ltd, Crumlin, UK).
- Products of lipid peroxidation, namely, malondialdehyde (MDA), are evaluated by the thiobarbituric acid (TBA) assay. The assay mixture consisted of 0.1 mL serum, 0.4 mL 0.9% NaCl, 0.5 mL 3% sodium dodecylsulfate (SDS), and 3 mL TBA reagent (containing equal parts of 0.8% aqueous TBA and acetic acid); the mixture is heated for 75 minutes at 95° C. and, thereafter, 1 mL cold 0.9% NaCl and extracted with 5 mL n-butanol. After centrifugation at 730 g for 15 minutes at 4° C., the organic phase is analyzed spectrophotometrically at 532 nm, using 1,1,3,3-tetramethoxypropane as an external standard. The results are expressed as μmol/L of MDA.
- Measurement Time Points
- Arterial blood pressure and blood sampling will be measured before treatment, and after the second and forth week of drug administration (
FIG. 6 ). - Statistical Analysis
- Results are expressed as mean±SD. The normality of distribution was checked by means of Kolmogorov-Smirnov test with Lilliefors test. The statistical evaluation was performed using analysis of variance (ANOVA) and post hoc comparisons were performed by means of Least Significant Differences (LSD) test. If the data were not normally distributed, statistical evaluation was performed by using ANOVA (Kriskall-Wallis) and Mann-Whitney U test. Differences were considered significant when p<0.05.
- Table 2 lists the blood pressure measurements of the control groups, i.e., WKY and SHR, measured before and after the rats were given with the blank treatment (1% solution of methylcellulose). As shown in Table 2, the blood pressure measurements generally stayed the same at the two measure points.
-
TABLE 2 Blood pressure measurements of the control groups WKY SHR SBP(Before) 126.42 202.82 SBP(After) 124.16 209.76 DBP(Before) 91.64 165.48 DBP(After) 94.00 178.90 HR(Before) 292.08 401.80 HR(After) 335.04 418.28 MBP(Before) 103.00 178.20 MBP(After) 103.96 189.04 - As shown in
FIGS. 1 a-d, treatment with DM alone at three different dosage levels, 1 mg/kg/day, 5 mg/kg/day, and 25 mg/kg/day, all resulted in lowering of the blood pressure in SHR. However, no clear dosage response was observed. - As shown in
FIGS. 2 a-d, treatment with AM alone at two different dosage levels, 1 mg/kg/day and 5 mg/kg/day, also resulted in lowering of the blood pressure in SHR. The blood pressure lowering effect is more pronounced with the higher dose AM treatment. - As shown in
FIGS. 3 a-d, combined treatment with DM and AM at various dosage levels dramatically improved the blood pressure lowing effects of each of DM and AM. - As more clearly illustrated in
FIGS. 4 a-4 d andFIGS. 5 a and 5 b, the blood pressure lowering effect of DM and AM, particularly as measured by systolic blood pressure (SBP), is greater than the additive effect of DM and AM alone separately. This indicates that DM and AM act synergistically in lowering the blood pressure. - The mechanism of the blood pressure lowering effect of dextromethorphan or its synergistic action with a calcium channel blocker in the treatment of hypertension is studied by an endothelium-dependent vasorelaxation study, which measures isometric tension of rat aortic ring in response to drugs. In particular, the effect of the testing drug, e.g., dextromethorphan, amlodipine, or a combination of dextromethorphan and amlodipine on high KCl-induced contractions are studied, e.g., by measuring the cumulative concentration-response curves to the endothelium-dependent and endothelium-independent relaxant agonists acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, or to the 1-receptor agonist phenylephrine (PE).
- Aortic Ring Preparation
- The rats are anaesthetized with pentobarbital (60 mg kg-1 of body weight, i.p.), descending thoracic aorta is dissected, cut into small rings (3-5 mm in width) and suspended in a 5 ml organ bath containing normal Krebs physiological salt solution (KPSS) of the following compositions (mM): NaCl 118.2, KCl 4.7, CaCl2. 2H2O 2.5, KH2PO4 1.2, MgCl2 1.2, glucose 11.7, NaHCO3 25.0, and EDTA 0.026. The bathing solution is gassed continuously with 95% oxygen and 5% carbon dioxide at 37° C. (pH 7.4).
- Isometric tension (g) is measured using a force displacement transducer connected to a Mac Lab recording system (ADI Instruments, Australia). Aortic rings are then progressively stretched to an optimal basal tension of 1 g and allowed to equilibrate for 45 min. During this period, the bathing solution is replaced every 15 min and, if needed, the basal tone is readjusted to 1 g.
- Aortic rings are then repeatedly stimulated with KCl solution (high K+, 80 mM) for 5 min at 10 min intervals until two consecutive equal contractions are attained—evidence of tissue stability.
- Pharmacological Studies
- Following washout of high K+ responses, the aortic rings are incubated for 20 min with the testing drug, e.g., dextromethorphan, amlodipine, or a combination of dextromethorphan and amlodipine or its vehicle (control), and cumulative concentration-response curves to the endothelium-dependent and endothelium-independent relaxant agonists acetylcholine (ACh, 10−10 to 10−5 M) and sodium nitroprusside (SNP, 10−11 to 10−6 M), respectively, or to the 1-receptor agonist phenylephrine (PE, 10−10 to 10−5 M) are then measured. To test the relaxation responses to ACh and SNP, the aortic rings are pre-contracted with PE (1 μM).
- The concentrations of the testing drug are chosen based on the physiologically achievable plasma concentrations of the drug. In experiments to characterize the mechanisms involved in the effects of the testing drugs, the aortic rings are exposed to various pharmacological agents for 5 min before the incubation with the drug or its vehicle.
- Where indicated, endothelium is removed by gently rubbing the intimal surface of the vessel with the blunted forceps. The endothelium is considered effectively removed if ACh (1 μM) caused less than 10% relaxation of aortic rings pre-contracted with PE.
- To examine the possible role of nitric oxide, prostacyclin, and the cyclic GMP relaxant pathway in the effects of the testing drug, the concentration-response curves to ACh are measured in aortic rings incubated with and in continued presence of N-nitro-1-arginine methyl ester (L-NAME, 10 μM)—an eNOs inhibitor, indomethacin (10 μM)—a cyclooxygenase inhibitor, and methylene blue (10 μM)—a cyclic GMP inhibitor, respectively.
- To examine the contribution of endothelium-derived hyperpolarizing factor (EDHF) or potassium (K+) channels in the effects of the test drug, the aortic rings are partially depolarized by increasing concentration of KCl in the KPSS (4.8-20 mM), and the concentration-response curves to ACh is then performed.
- Statistical Analysis
- The contractile responses of aortic rings to graded concentrations of PE are expressed as percentages of the maximum contractile effect of high K+ in respective tissues.
- The vasodilator effect of increasing concentrations of ACh or SNP are expressed as percent decrease of the peak PE (10−6 M) contraction.
- The concentration-response curve for each experimental condition is plotted and from it are deduced the values of maximal contraction (Cmax) or maximal relaxation (Rmax) and the concentration of the testing drug (expressed as negative log molar) producing 50% of maximum contraction or relaxation (pEC50) recorded (Prism Version 2.0, GraphPad Software, USA).
- It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
-
- 1. Kearney P M, Whelton M, Reynolds K, et al. Global burden of hypertension: Analysis of worldwide data. Lancet. 2005; 365:217-223.
- 2. Ong K L, Cheung B M, Man Y B, et al. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999-2004. Hypertension. 2007; 49:69-75.
- 3. Ezzati M, Lopez A D, Rodgers A, et al, for the Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. Lancet. 2002; 360:1347-1360.
- 4. O'Connor P J. Improving medication adherence: Challenges for physicians, payers, and policy makers. Arch Intern Med. 2006; 166:1802-1804.
- 5. Nelson M R, Reid C M, Ryan P, et al. Self-reported adherence with medication and cardiovascular disease outcomes in the Second Australian National Blood Pressure Study (ANBP2). Med J Aust. 2006; 185:487-489.
- 6. Mounier-Vehier C, Bernaud C, Cart6 A, et al. Compliance and antihypertensive efficacy of amlodipine compared with nifedipine slow-release. Am J Hypertens. 1998; 11:478-486.
- 7. Chobanian A V, Bakris G L, Black H R, et al, for the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; the National Heart, Lung, and Blood Institute; and the National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42:1206-1252.
- 8. Mancia G, De BackerG, Dominiczak A, et al, for the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension and the European Society of Cardiology. 2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2007; 28:1462-1536.
- 9. Staessen J A, Fagard R, Thijs L, et al, for the Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. Lancet. 1997; 350:757-764.
- 10. Liu L, Wang J G, Gong L, et al, for the Systolic Hypertension in China (Syst-China) Collaborative Group. Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. J Hypergens. 1998; 16:1823-1829.
- 11. Brown M J, Palmer C R, Castaigne A, et al. Morbidity and mortality in patients randomised to doubleblind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention as a Goal in Hypertension Treatment (INSIGHT) [published correction appears in Lancet. 2000; 356:514]. Lancet. 2000; 356:366-372.
- 12. Hansson L, Zanchetti A, Carruthers S G, et al, for the HOTStudy Group. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: Principal results of the Hypertension Optimal Treatment (HOT) randomized trial. Lancet. 1998; 351:1755-1762.
- 13. The ALLAHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensinconverting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-LoweringTreatment to Prevent Heart AttackTrial (ALLHAT). JAMA. 2002; 288:2981-2997.
- 14. Dahlof B, Sever P S, Poulter N R, et al, for the ASCOT Investigators. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): A multicentre randomised controlled trial. Lancet. 2005; 366:895-906.
- 15. Packer M, O'Connor C M, Ghali J K, et al, for the Prospective Randomized Amlodipine Survival Evaluation Study Group. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. N Engl J Med 1996; 335:1107-1114.
- 16. Julius S, Kjeldsen S E, Weber M, et al, for the VALUE Trial Group. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: The VALUE randomized trial. Lancet. 2004; 363:2022-2031.
- 17. Tortella F C, Pellicano M, and Bowery N G (1989) Dextromethorphan and neuromodulation: old drug coughs up new activities. Trends Pharmacol Sci 10:501-507.
- 18. George C P, Goldberg M P, Choi D W, and Steinberg G K (1988) Dextromethorphan reduces neocortical ischemic neuronal damage in vivo. Brain Res 440:375-379.
- 19. Monyer H and Choi D W (1988) Morphinans attenuate cortical neuronal injury induced by glucose deprivation in vitro. Brain Res 446:144-148.
- 20. Prince D A and Feeser H R (1988) Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neurosci Lett 85:291-296.
- 21. Steinberg G K, George C P, DeLaPaz R, Shibata D K, and Gross T (1988) Dextromethorphan protects against cerebral injury following transient focal ischemia in rabbits. Stroke 19:1112-1118.
- 22. Britton P, Lu X C, Laskosky M S, and Tortella F C (1997) Dextromethorphan protects against cerebral injury following transient, but not permanent, focal ischemia in rats. Life Sci 60:1729-1740.
- 23. Tortella F C, Britton P, Williams A, Lu X C, and Newman A H (1999) Neuroprotection (focal ischemia) and neurotoxicity (electroencephalographic) studies in rats with AHN649, a 3-amino analog of dextromethorphan and low-affinity N-methyl-Daspartate antagonist. J Pharmacol Exp Ther 291:399-408.
- 24. Wei Zhang, Tongguang Wang, Liya Qin, Hui-Ming Gao, Belinda Wilson, Syed F. Ali, Wanqin Zhang, Jau-Shyong Hong, And Bin Liu (2004). Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidasel. FASEB 18:589-591.
- 25. Y Alvarez, A M Briones, R Hernanz, J V Pérez-Girón, M J Alonso and M Salaices (2008). Role of NADPH oxidase and iNOS in vasoconstrictor responses of vessels from ypertensive and normotensive rats. British Journal of Pharmacology 153, 926-935.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/695,628 US20130053411A1 (en) | 2010-05-03 | 2011-04-29 | Pharmaceutical composition and method for treating hypertension |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33054010P | 2010-05-03 | 2010-05-03 | |
PCT/CN2011/073560 WO2011137734A1 (en) | 2010-05-03 | 2011-04-29 | Pharmaceutical composition and method for treating hypertension |
US13/695,628 US20130053411A1 (en) | 2010-05-03 | 2011-04-29 | Pharmaceutical composition and method for treating hypertension |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/073560 A-371-Of-International WO2011137734A1 (en) | 2010-05-03 | 2011-04-29 | Pharmaceutical composition and method for treating hypertension |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/141,381 Division US9744165B2 (en) | 2010-05-03 | 2016-04-28 | Method for treating hypertension |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130053411A1 true US20130053411A1 (en) | 2013-02-28 |
Family
ID=44903590
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/695,628 Abandoned US20130053411A1 (en) | 2010-05-03 | 2011-04-29 | Pharmaceutical composition and method for treating hypertension |
US15/141,381 Expired - Fee Related US9744165B2 (en) | 2010-05-03 | 2016-04-28 | Method for treating hypertension |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/141,381 Expired - Fee Related US9744165B2 (en) | 2010-05-03 | 2016-04-28 | Method for treating hypertension |
Country Status (11)
Country | Link |
---|---|
US (2) | US20130053411A1 (en) |
EP (1) | EP2566478A4 (en) |
JP (1) | JP5847162B2 (en) |
KR (1) | KR20130061148A (en) |
CN (1) | CN102869360B (en) |
AU (1) | AU2011250485B2 (en) |
BR (1) | BR112012028153A2 (en) |
MY (1) | MY161853A (en) |
RU (1) | RU2571284C2 (en) |
TW (1) | TWI583383B (en) |
WO (1) | WO2011137734A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180193273A1 (en) * | 2015-08-20 | 2018-07-12 | Tsh Biopharm Corporation Ltd. | Pharmaceutical composition comprising amlodipine and dextromethorphan |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA026989B1 (en) * | 2013-02-14 | 2017-06-30 | Новартис Аг | Substituted bisphenyl butanoic acid derivatives as nep inhibitors with improved in vivo efficacy |
EP3082428A4 (en) | 2013-12-09 | 2017-08-02 | Respira Therapeutics, Inc. | Pde5 inhibitor powder formulations and methods relating thereto |
US10912778B2 (en) | 2016-12-14 | 2021-02-09 | Respira Therapeutics, Inc. | Methods for treatment of pulmonary hypertension |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992003137A1 (en) * | 1990-08-23 | 1992-03-05 | The Children's Medical Center Corporation | Treatment of aids dementia, myelopathy, peripheral neuropathy, and vision loss |
JPH04368338A (en) * | 1991-06-12 | 1992-12-21 | Taisho Pharmaceut Co Ltd | antitussive |
US5350756A (en) * | 1991-06-17 | 1994-09-27 | Smith Richard A | Use of a cytochrome oxidase inhibitor to increase the cough-suppressing activity of dextromorphan |
US20060188450A1 (en) * | 2005-02-24 | 2006-08-24 | Tim Clarot | System and method for suppressing a cough |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2676177A (en) | 1949-11-09 | 1954-04-20 | Hoffmann La Roche | Process for the preparation of optically active 3-methoxy-n-methyl morphinans and salts thereof |
GB8710493D0 (en) | 1987-05-02 | 1987-06-03 | Pfizer Ltd | Dihydropyridines |
US6057344A (en) | 1991-11-26 | 2000-05-02 | Sepracor, Inc. | Methods for treating hypertension, and angina using optically pure (-) amlodipine |
US5560913A (en) | 1995-01-27 | 1996-10-01 | The Procter & Gamble Company | Pharmaceutical compositions |
WO2003091256A1 (en) | 2002-04-23 | 2003-11-06 | Shionogi & Co., Ltd. | PYRAZOLO[1,5-a]PYRIMIDINE DERIVATIVE AND NAD(P)H OXIDASE INHIBITOR CONTAINING THE SAME |
CA2486157C (en) | 2002-05-17 | 2013-04-16 | Jenken Biosciences, Inc. | Opioid and opioid-like compounds and uses thereof |
US7923454B2 (en) * | 2002-05-17 | 2011-04-12 | Jenken Biosciences, Inc. | Opioid and opioid-like compounds and uses thereof |
TWI326214B (en) * | 2002-07-17 | 2010-06-21 | Avanir Pharmaceuticals Inc | Pharmaceutical compositions comprising dextromethorphan and quinidine for the treatment of neurological disorders |
KR100476636B1 (en) | 2002-09-11 | 2005-03-17 | 한림제약(주) | Process for the preparation of S-(-)-amlodipine by use of L-(+)-tartrate |
US7863287B2 (en) * | 2002-12-18 | 2011-01-04 | Wyeth Llc | Compositions of non-steroidal anti-inflammatory drugs, decongestants and anti-histamines |
US8569374B2 (en) | 2004-09-16 | 2013-10-29 | The Trustees Of The University Of Pennsylvania | NADPH oxidase inhibition pharmacotherapies for obstructive sleep apnea syndrome and its associated morbidities |
US7939567B2 (en) * | 2006-02-24 | 2011-05-10 | Blue Blood Biotech Corp. | Dextromethorphan-based method for treating acne |
US7820689B2 (en) | 2006-08-10 | 2010-10-26 | Hua-Lin Wu | Methods and compositions for preventing or treating cardiovascular disease |
EP2224923A4 (en) * | 2007-11-28 | 2013-05-15 | Sequoia Pharmaceuticals Inc | Compositions and methods for inhibiting cytochrome p450 2d6 |
-
2011
- 2011-04-29 MY MYPI2012004815A patent/MY161853A/en unknown
- 2011-04-29 US US13/695,628 patent/US20130053411A1/en not_active Abandoned
- 2011-04-29 JP JP2013508361A patent/JP5847162B2/en not_active Expired - Fee Related
- 2011-04-29 AU AU2011250485A patent/AU2011250485B2/en not_active Ceased
- 2011-04-29 TW TW100115056A patent/TWI583383B/en active
- 2011-04-29 WO PCT/CN2011/073560 patent/WO2011137734A1/en active Application Filing
- 2011-04-29 RU RU2012151051/15A patent/RU2571284C2/en not_active IP Right Cessation
- 2011-04-29 BR BR112012028153A patent/BR112012028153A2/en not_active IP Right Cessation
- 2011-04-29 EP EP11777155.0A patent/EP2566478A4/en not_active Withdrawn
- 2011-04-29 CN CN201180022318.4A patent/CN102869360B/en not_active Expired - Fee Related
- 2011-04-29 KR KR1020127031507A patent/KR20130061148A/en not_active Ceased
-
2016
- 2016-04-28 US US15/141,381 patent/US9744165B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992003137A1 (en) * | 1990-08-23 | 1992-03-05 | The Children's Medical Center Corporation | Treatment of aids dementia, myelopathy, peripheral neuropathy, and vision loss |
JPH04368338A (en) * | 1991-06-12 | 1992-12-21 | Taisho Pharmaceut Co Ltd | antitussive |
US5350756A (en) * | 1991-06-17 | 1994-09-27 | Smith Richard A | Use of a cytochrome oxidase inhibitor to increase the cough-suppressing activity of dextromorphan |
US20060188450A1 (en) * | 2005-02-24 | 2006-08-24 | Tim Clarot | System and method for suppressing a cough |
Non-Patent Citations (3)
Title |
---|
Fogari et al. Effects of Amlodipine, Nifedipine GITS, and Indomethacin on Angiotensin-Converting Enzyme Inhibitor-Induced Cough: A Randomized, Placebo-Controlled, Double-Masked, Crossover Study. Curr. Ther. Res. 60(3), pp. 121-128 (1999). * |
Kamei et al. Antitussive effects of Ca2+ channel antagonists. Eur. J. Pharm. 212, pp. 61-66 (1992). * |
Qian et al. Preservation of Ca2+/CAM PK II by two types of calcium channel antagonists in cerebral ischemia. Zhongguo Yingyong Shenglixue Zazhi 14(1), pp. 1-4 (1998). * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180193273A1 (en) * | 2015-08-20 | 2018-07-12 | Tsh Biopharm Corporation Ltd. | Pharmaceutical composition comprising amlodipine and dextromethorphan |
Also Published As
Publication number | Publication date |
---|---|
TWI583383B (en) | 2017-05-21 |
WO2011137734A1 (en) | 2011-11-10 |
AU2011250485B2 (en) | 2016-07-07 |
MY161853A (en) | 2017-05-15 |
EP2566478A4 (en) | 2014-04-30 |
EP2566478A1 (en) | 2013-03-13 |
BR112012028153A2 (en) | 2018-08-07 |
US20160235741A1 (en) | 2016-08-18 |
JP2013525460A (en) | 2013-06-20 |
CN102869360B (en) | 2015-03-25 |
CN102869360A (en) | 2013-01-09 |
JP5847162B2 (en) | 2016-01-20 |
RU2012151051A (en) | 2014-06-10 |
US9744165B2 (en) | 2017-08-29 |
TW201206437A (en) | 2012-02-16 |
RU2571284C2 (en) | 2015-12-20 |
KR20130061148A (en) | 2013-06-10 |
AU2011250485A1 (en) | 2012-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9744165B2 (en) | Method for treating hypertension | |
HRP20040992A2 (en) | Method for treating cognitive disorders | |
WO2019241020A1 (en) | Serdexmethylphenidate conjugates, compositions and methods of use thereof | |
EP1715863B1 (en) | Enhancement of ampakine-induced facilitation of synaptic responses by cholinesterase inhibitors | |
Guarneri et al. | In vitro and in vivo vascular selectivity of lercanidipine and its enantiomers | |
SG190326A1 (en) | Complex formulation comprising lercanidipine hydrochloride and valsartan and method for the preparation thereof | |
JPS61155327A (en) | Antiarteriosclerotic agent containing dihydropyridine compound | |
JPH10259126A (en) | Treating and preventing agent for alzheimer's disease | |
JP5441052B2 (en) | Alzheimer's disease treatment | |
US7214683B1 (en) | Compositions of descarboethoxyloratadine | |
US7214684B2 (en) | Methods for the treatment of allergic rhinitis | |
EP0965341A2 (en) | Combination of dofetilide and a calcium channel blocker | |
US8604054B2 (en) | Triglyceride-lowering agent and hyperinsulinism-ameliorating agent | |
ULC et al. | PRMYLAN-VERAPAMILSR | |
Clapham | No. 2, zyxwvutsrqponmlkjihg | |
KR20110073575A (en) | Drugs for Diabetic Nephropathy | |
MXPA99004460A (en) | Combination of dofetilida and a blocking of the calculates | |
FR2916142A1 (en) | PHARMACEUTICAL FORM COMPRISING (10 - [(3S) -1-AZABICYCLO [2.2.2] OCT-3-YLMETHYL] -10H-PHENOTHIAZINE PRESENTING IN AN APPROPRIATE FORM FOR ADMINISTRATION OF A DAILY DOSE UNDER BETWEEN 1 AND 3 MG | |
WO2012041258A1 (en) | Compositions and methods for treating hypertension using eprosartan and amlodipine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TSH BIOPHARM CORPORATION LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, JAW-WEN;WANG, HIS-CHIEH;JUANG, SHIN-YI;SIGNING DATES FROM 20121001 TO 20121003;REEL/FRAME:029223/0855 |
|
AS | Assignment |
Owner name: TSH BIOPHARM CORPORATION LTD., TAIWAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SPELLING OF THE SECOND INVENTORS NAME PREVIOUSLY RECORDED ON REEL 029223 FRAME 0855. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, JAW-WEN;WANG, HSI-CHIEH;JUANG, SHIN-YI;SIGNING DATES FROM 20121002 TO 20121113;REEL/FRAME:029396/0507 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |