+

US20130039954A1 - Control of antibody responses to synthetic nanocarriers - Google Patents

Control of antibody responses to synthetic nanocarriers Download PDF

Info

Publication number
US20130039954A1
US20130039954A1 US13/560,925 US201213560925A US2013039954A1 US 20130039954 A1 US20130039954 A1 US 20130039954A1 US 201213560925 A US201213560925 A US 201213560925A US 2013039954 A1 US2013039954 A1 US 2013039954A1
Authority
US
United States
Prior art keywords
cell antigen
coupled
polymer
synthetic nanocarriers
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/560,925
Inventor
Lynnelle Ann McNamee Pittet
David H. Altreuter
Yun Gao
Petr Ilyinskii
William Kuhlman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cartesian Therapeutics Inc
Original Assignee
Selecta Biosciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selecta Biosciences Inc filed Critical Selecta Biosciences Inc
Priority to US13/560,925 priority Critical patent/US20130039954A1/en
Assigned to SELECTA BIOSCIENCES, INC. reassignment SELECTA BIOSCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCNAMEE PITTET, LYNNELLE ANN, ALTREUTER, DAVID H., GAO, YUN, ILYINSKII, PETR, KUHLMAN, William
Publication of US20130039954A1 publication Critical patent/US20130039954A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/593Polyesters, e.g. PLGA or polylactide-co-glycolide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • This invention relates to synthetic nanocarrier compositions that comprise an off-target response attenuating polymeric coating, and related methods, such as for treating diseases or conditions in which generating an immune response against a B cell antigen is desirable.
  • Anti-carrier antibody generation by a nanocarrier vaccine is an off-target side effect that may have direct unintended or undesirable impacts on pharmaceutical or biomedical formulations of related compositions, and may interfere with the generation of desired anti-B cell antigen antibodies. Therefore, improved compositions and therapeutic methods to avoid or minimize undesirable anti-carrier effects are needed to provide improved therapies for diseases and conditions in which generating an immune response against a B cell antigen is desirable.
  • composition comprising a population of synthetic nanocarriers, wherein the synthetic nanocarriers comprise a B cell antigen and an off-target response attenuating polymeric coating is provided.
  • the B cell antigen is coupled to the synthetic nanocarrier.
  • composition comprising a population of synthetic nanocarriers, wherein the synthetic nanocarriers comprise (i) a B cell antigen and (ii) a coating comprising one or more polymers present at at least a portion of the surface of the synthetic nanocarriers is provided.
  • the B cell antigen is coupled to the synthetic nanocarrier.
  • the synthetic nanocarriers generate on average across the population of synthetic nanocarriers an antibody response against the B cell antigen that is at least two-fold greater than an off-target antibody response.
  • the antibody response against the B cell antigen is at least five-fold greater than the off-target antibody response.
  • the antibody response against the B cell antigen is at least ten-fold greater than the off-target antibody response.
  • the antibody response against the B cell antigen is at least 25-fold greater than the off-target antibody response.
  • the antibody response against the B cell antigen is at least 50-fold greater than the off-target antibody response.
  • the antibody response against the B cell antigen is at least 100-fold greater than the off-target antibody response.
  • the off-target antibody response is an undesired antibody response not specific to the B cell antigen.
  • the off-target antibody response is an antibody response again the synthetic nanocarrier.
  • the off-target antibody response is an antibody response again the coating.
  • the off-target antibody response is an antibody response against a polymer of the coating.
  • the off-target antibody response is an IgG or IgA antibody response.
  • the desired antibody response is also an IgG or IgA antibody response, respectively.
  • the off-target antibody response is an IgG antibody response and the desired antibody response is also an IgG antibody response.
  • the off-target antibody response is an IgA antibody response and the desired antibody response is also an IgA antibody response.
  • the antibody responses are each measured as an antibody titer with an ELISA.
  • the antibody titer is an IgG or IgA titer (EC50).
  • the B cell antigen is coupled to the coating. In another embodiment, the B cell antigen is coupled to one or more polymers of the coating. In another embodiment, the B cell antigen is coupled to another part of the synthetic nanocarriers.
  • the off-target antibody response is an undesired antibody response not specific to the B cell antigen.
  • the off-target antibody response is an antibody response against a polymer (or portion thereof) of the nanocarrier or its coating.
  • the antibody response against the B cell antigen is at least five-fold greater than the antibody response against a polymer of the off-target response attenuating polymeric coating. In another embodiment, the antibody response is at least ten-fold greater. In still another embodiment, the antibody response is at least 25-fold greater. In yet another embodiment, the antibody response is at least 50-fold greater. In a further embodiment, the antibody response is at least 100-fold greater.
  • the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 2000 g/mole. In another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 3000 g/mole. In yet another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 4000 g/mole. In still another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 5000 g/mole.
  • the off-target response attenuating polymeric coating comprises a polymer with a weight average or number average molecular weight of between 3500 g/mole and 5000 g/mole In a further embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of 5000 g/mole.
  • the B cell antigen is coupled to the polymer. In one embodiment of any of the foregoing embodiments, the molecular weight is the weight average molecular weight. In another embodiment of any of the foregoing embodiments, the molecular weight is the number average molecular weight.
  • the molecular weight is the weight average molecular weight. In yet another embodiment of any of the foregoing embodiments where the polymer does comprise polyethylene glycol, the molecular weight is the number average molecular weight.
  • the off-target response attenuating polymeric coating comprises another polymer.
  • This other polymer may be the same type of polymer as the aforementioned polymer or it may be a different type of polymer.
  • this other polymer has a molecular weight of greater than 2000 g/mole.
  • this other polymer has a molecular weight of greater than 3000 g/mole.
  • this other polymer has a molecular weight of greater than 4000 g/mole.
  • this other polymer has a molecular weight of greater than 5000 g/mole.
  • this other polymer has a molecular weight of between 3500 g/mole and 5000 g/mole.
  • this other polymer has a molecular weight of 5000 g/mole.
  • the B cell antigen is coupled to this other polymer.
  • the B cell antigen is coupled to this other polymer and the aforementioned polymer.
  • the molecular weight is the weight average molecular weight.
  • the molecular weight is the number average molecular weight.
  • the molecular weight is the weight average molecular weight.
  • the molecular weight is the number average molecular weight.
  • the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1. In another embodiment, the ratio is between 0.01 and 1. In still another embodiment, the ratio is between 0.1 and 1. In yet another embodiment, the ratio is between 0.25 and 1. In a further embodiment, the ratio is between 0.5 and 1. In still a further embodiment, the ratio is between 0.75 and 1. In yet another embodiment, the ratio is between 0.1 and 0.5. In a further embodiment, the ratio is 0.5.
  • the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the populariton of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1. In another embodiment, the ratio is between 0.01 and 1. In still another embodiment, the ratio is between 0.1 and 1. In yet another embodiment, the ratio is between 0.25 and 1. In a further embodiment, the ratio is between 0.5 and 1. In still a further embodiment, the ratio is between 0.75 and 1. In yet another embodiment, the ratio is between 0.1 and 0.5. In a further embodiment, the ratio is 0.5.
  • the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the populariton of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1. In another embodiment, the ratio is between 0.01 and 1. In still another embodiment, the ratio is between 0.1 and 1. In yet another embodiment, the ratio is between 0.25 and 1. In a further embodiment, the ratio is between 0.5 and 1. In still a further embodiment, the ratio is between 0.75 and 1. In yet another embodiment, the ratio is between 0.1 and 0.5. In a further embodiment, the ratio is 0.5.
  • the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • the polymer and/or other polymer comprises polyethylene glycol. In another embodiment, the polymer and/or other polymer comprises a polyethyloxazoline. In still another embodiment, the polymer and/or other polymer comprises a polyamino acid, polycarbonate, hydrophilic polyacetal, hydrophilic polyketal, polysaccharide, polypropylene or polyethyleneimine.
  • the B cell antigen comprises a protein, peptide, small molecule or oligosaccharide. In another embodiment, the B cell antigen comprises a cancer antigen, an infection or infectious disease antigen, a non-autoimmune or degenerative disease antigen or an addiction antigen.
  • the composition and/or B cell antigen further comprises an additional antigen.
  • the additional antigen is a T cell antigen.
  • the T cell antigen is a T helper cell antigen.
  • the T cell antigen is a T helper cell antigen.
  • the additional antigen is another B cell antigen.
  • the one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 20 or more, etc. additional antigens are comprised in the compositions provided herein.
  • the additional antigens are B cell or T cell antigens or some combination thereof.
  • all of the additional antigens are B cell antigens.
  • the additional antigen is also coupled to the synthetic nanocarriers. In a further embodiment, the additional antigen is also coupled to the off-target response attenuating polymeric coating of the synthetic nanocarriers. In yet another embodiment, the additional antigen is coupled to another population of synthetic nanocarriers. In still another embodiment, the additional antigen is not coupled to any synthetic nanocarriers.
  • the composition further comprises one or more adjuvants.
  • composition further comprises one or more pharmaceutically acceptable excipients.
  • compositions provided comprising any of the compositions provided.
  • a vaccine comprising any of the dosage forms provided is provided.
  • a method comprising administering any of the compositions provided herein to a subject in need thereof.
  • the subject is a human.
  • the subject has or is at risk of having cancer.
  • the subject has or is at risk of having an infection or infectious disease.
  • the subject has or is at risk of having a non-autoimmune or degenerative disease.
  • the subject has or is at risk of having an addiction.
  • any of the compositions provided herein is administered by oral, subcutaneous, pulmonary, intranasal, intradermal, intravenous, transmucosal, intramucosal or intramuscular administration.
  • a method comprising producing synthetic nanocarriers that comprise a B cell antigen and an off-target response attenuating polymeric coating and determining the level of antibody response against the B cell antigen and the level of off-target antibody response.
  • the method further comprises comparing the antibody response against the B cell antigen and the off-target antibody response.
  • the antibody response against the B cell antigen and the off-target antibody response can be determined with any of the methods provided herein.
  • the synthetic nanocarriers may be any of the synthetic nanocarriers described herein.
  • a process for producing an off-target response attenuating polymeric coating comprising the steps of: (a) providing a composition comprising one or more polymers present at at least a portion of the surface of a synthetic nanocarrier; (b) coupling a B cell antigen to said synthetic nanocarrier under conditions where: (i) the molecular weight of the polymers; and/or (ii) the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers; and/or (iii) the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer not coupled to the B cell antigen; and/or (iv) the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen plus the average number of polymers not coupled
  • the antibody response against the B cell antigen and the off-target antibody response are each IgG antibody responses. In another embodiment, they are each IgA antibody responses. In another embodiment, these antibody responses are measured as antibody titers (EC50) with an ELISA.
  • the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • the molecular weight, ratio of average number and/or ratio by weight of the one or more polymers is as defined herein.
  • the molecular weight is the weight average molecular weight.
  • the molecular weight is the number average molecular weight.
  • the molecular weight is the weight average molecular weight.
  • the molecular weight is the number average molecular weight.
  • compositions, dosage forms or vaccines provided herein can be used for therapy or prophylaxis.
  • compositions, dosage forms or vaccines provided herein can be used for any of the methods provided herein.
  • compositions, dosage forms or vaccines provided herein can be used in vaccination.
  • any of the compositions, dosage forms or vaccines provided herein can be for use in a method of therapy or prophylaxis of cancer, an infection or infectious disease, a non-autoimmune or degenerative disease or an addiction.
  • any of the compositions, dosage forms or vaccines provided herein can be for use in a method of therapy or prophylaxis comprising administration by oral, subcutaneous, pulmonary, intranasal, intradermal, intravenous, transmucosal, intramucosal or intramuscular administration.
  • compositions provided herein for the manufacture of a medicament, for example a vaccine, for use in any of the methods provided herein is provided.
  • FIG. 1 shows the anti-nicotine antibodies (target or desired antibodies) and anti-PEG antibodies (off-target or undesired antibodies) at day 40 after inoculation.
  • FIG. 2 shows the anti-nicotine antibody titers and anti-PEG antibody titers following a prime and two-boost inoculation schedule.
  • a polymer includes a mixture of two or more such molecules or a mixture of differing molecular weights of a single polymer species
  • a synthetic nanocarrier includes a mixture of two or more such synthetic nanocarriers or a plurality of such synthetic nanocarriers
  • reference to “a DNA molecule” includes a mixture of two or more such DNA molecules or a plurality of such DNA molecules
  • reference to “an adjuvant” includes mixture of two or more such adjuvant molecules or a plurality of such adjuvant molecules, and the like.
  • the term “comprise” or variations thereof such as “comprises” or “comprising” are to be read to indicate the inclusion of any recited integer (e.g. a feature, element, characteristic, property, method/process step or limitation) or group of integers (e.g. features, elements, characteristics, properties, method/process steps or limitations) but not the exclusion of any other integer or group of integers.
  • the term “comprising” is inclusive and does not exclude additional, unrecited integers or method/process steps.
  • compositions and methods comprising or may be replaced with “consisting essentially of” or “consisting of”.
  • the phrase “consisting essentially of” is used herein to require the specified integer(s) or steps as well as those which do not materially affect the character or function of the claimed invention.
  • the term “consisting” is used to indicate the presence of the recited integer (e.g. a feature, element, characteristic, property, method/process step or limitation) or group of integers (e.g. features, elements, characteristics, properties, method/process steps or limitations) alone.
  • Hapten-carrier conjugates are commonly employed constructs for vaccine formulation.
  • a well-known phenomenon related to their use is the creation, or augmentation, of an immune response to the carrier (e.g., anti-carrier antibodies, which are also referred to herein as undesired or off-target antibodies).
  • the anti-carrier response is often of concern as it is not the intended effect of the vaccine and it may relate to undesirable side effects.
  • nanocarrier vaccine formulations such as biocompatible synthetic nanocarriers presenting an antigen
  • an anti-carrier effect may also be observed, such as initiated or enhanced undesired antibody generation to the synthetic components of the nanocarrier.
  • nanocarriers which contain synthetic components, even those with an extended history of safe medical use in humans (e.g., PLGA, PLA, or PEG), anti-carrier effects can result and attenuate the intended vaccine response or alter the vaccine's immune response to those components in other medical applications. It is, therefore, valuable to identify means to formulate nanocarrier vaccines such that the anti-carrier effect is attenuated or absent.
  • the inventors have unexpectedly and surprisingly discovered that the problems and limitations noted above can be overcome by practicing the invention disclosed herein.
  • the inventors believe that the invention provided herein is the first of its kind to offer the ability to optimize a target antibody response specific for a B cell antigen of a synthetic nanocarrier composition while attenuating an off-target anti-carrier antibody response.
  • Prior studies have not addressed the design of synthetic nanocarriers relative to optimizing humoral immune responses.
  • the inventors have discovered that nanocarriers can be rationally designed as a function of B cell antigen content and/or polymer molecular weights or composition to optimize target antibody generation to the B cell antigen and minimize or eliminate off-target antibody generation.
  • compositions with improved target antibody response versus off-target antibody response comprising a population of synthetic nanocarriers, wherein the synthetic nanocarriers comprise (i) a B cell antigen and (ii) an off-target response attenuating polymeric coating, wherein the synthetic nanocarriers generate on average across the population of synthetic nanocarriers an antibody response against the B cell antigen that is at least two-fold greater than an off-target antibody response.
  • the respective antibody responses are measured as an antibody titer (e.g., IgG or IgA EC50) with ELISA.
  • the off-target antibody response is an undesired antibody response against the synthetic nanocarrier or a component thereof not specific to the B cell antigen.
  • the off-target antibody response is an antibody response against a polymer (or portion thereof) of the synthetic nanocarrier, such as a polymer (or portion thereof) of the coating.
  • the B cell antigen may be coupled to the off-target response attenuating polymeric coating.
  • the B cell antigen is not coupled to the off-target response attenuating polymeric coating but is coupled to the synthetic nanocarrier.
  • the B cell antigen or portion thereof is present at the surface of the synthetic nanocarrier.
  • the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole given as the weight average molecular weight or number average molecular weight.
  • the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole.
  • the B cell antigen may be coupled to the polymer, another polymer or to another portion of the synthetic nanocarrier that is not the coating.
  • the other polymer has a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole given as a weight average molecular weight or as a number average molecular weight.
  • the other polymer has a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole.
  • the polymer and other polymer both have a molecular weight of 5000 g/mole given as a weight average molecular weight or a number average molecular weight.
  • the molecular weight is the weight average molecular weight.
  • the molecular weight is the number average molecular weight.
  • the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, or the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1, 0.01 and 1, 0.1 and 1, 0.25 and 1, 0.5 and 1, 0.75 and 1, 0.01 and 0.75, 0.01 and 0.5, 0.01 and 0.25, 0.1 and 0.75, 0.1
  • this ratio may be calculated for the polymeric coating of the synthetic nanocarriers. In other embodiments, this ratio is calculated for the synthetic nanocarriers as a whole.
  • the polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen may be the same type of polymer or may be different types of polymers. In one embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole.
  • the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole.
  • the polymer and other polymer both have a molecular weight of 5000 g/mole.
  • the molecular weight may be the weight average molecular weight or it may be the number average molecular weight.
  • the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer not coupled to the B cell antigen, polymer coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen, or polymer not coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen is greater than 0.1, 0.25 or 0.5 and less than 1. Again, this ratio may be calculated based on the polymeric coating of the synthetic nanocarriers. In other embodiments, this ratio is calculated based on the synthetic nanocarriers as a whole.
  • the polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen may be the same type of polymer or may be different types of polymers.
  • the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole.
  • the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole.
  • the polymer and other polymer both have a molecular weight of 5000 g/mole.
  • the molecular weight may be a weight average molecular weight or it may be a number average molecular weight.
  • any of the ratios referred to herein can be based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • dosage forms and vaccines comprising any of the compositions provided herein are provided.
  • any of the compositions may be administered to a subject in need thereof.
  • the subject may have or be at risk of having cancer, an infection or infectious disease, a non-autoimmune or degenerative disease or an addiction.
  • “Addiction antigens” are antigens associated with an addiction or addictive substance. Such antigens include those that can generate an antibody response against an addictive substance. Such antigens can comprise an addictive substance or a portion thereof.
  • adjuvant means an agent that does not constitute a specific antigen, but boosts the strength and longevity of immune response to a concomitantly administered antigen.
  • adjuvants may include, but are not limited to stimulators of pattern recognition receptors, such as Toll-like receptors, RIG-1 and NOD-like receptors (NLR), mineral salts, such as alum, alum combined with monphosphoryl lipid (MPL) A of Enterobacteria, such as Escherihia coli, Salmonella minnesota, Salmonella typhimurium , or Shigella flexneri or specifically with MPL® (AS04), MPL A of above-mentioned bacteria separately, saponins, such as QS-21, Quil-A, ISCOMs, ISCOMATRIXTM, emulsions such as MF59TM, Montanide® ISA 51 and ISA 720, AS02 (QS21+ squalene+MPL®), liposomes and liposomal formulation
  • gonorrheae Chlamydia trachomatis and others, or chitosan particles
  • depot-forming agents such as Pluronic® block co-polymers, specifically modified or prepared peptides, such as muramyl dipeptide, aminoalkyl glucosaminide 4-phosphates, such as RC529, or proteins, such as bacterial toxoids or toxin fragments.
  • adjuvants comprise agonists for pattern recognition receptors (PRR), including, but not limited to Toll-Like Receptors (TLRs), specifically TLRs 2, 3, 4, 5, 7, 8, 9 and/or combinations thereof.
  • adjuvants comprise agonists for Toll-Like Receptors 3, agonists for Toll-Like Receptors 7 and 8, or agonists for Toll-Like Receptor 9; preferably the recited adjuvants comprise imidazoquinolines; such as R848; adenine derivatives, such as those disclosed in U.S. Pat. No.
  • synthetic nanocarriers incorporate as adjuvants compounds that are agonists for toll-like receptors (TLRs) 7 & 8 (“TLR 7/8 agonists”).
  • TLR 7/8 agonists are agonists for toll-like receptors
  • a synthetic nanocarrier incorporates an adjuvant that promotes DC maturation (needed for priming of naive T cells) and the production of cytokines, such as type I interferons, which promote antibody immune responses.
  • adjuvants also may comprise immunostimulatory RNA molecules, such as but not limited to dsRNA, poly I:C or poly I:poly C12U (available as Ampligen®, both poly I:C and poly I:polyC12U being known as TLR3 stimulants), and/or those disclosed in F. Heil et al., “Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8” Science 303(5663), 1526-1529 (2004); J. Vollmer et al., “Immune modulation by chemically modified ribonucleosides and oligoribonucleotides” WO 2008033432 A2; A.
  • immunostimulatory RNA molecules such as but not limited to dsRNA, poly I:C or poly I:poly C12U (available as Ampligen®, both poly I:C and poly I:polyC12U being known as TLR3 stimulants), and/or those disclosed in F. Heil et al.
  • an adjuvant may be a TLR-4 agonist, such as bacterial lipopolysacccharide (LPS), VSV-G, and/or HMGB-1.
  • adjuvants may comprise TLR-5 agonists, such as flagellin, or portions or derivatives thereof, including but not limited to those disclosed in U.S. Pat. Nos. 6,130,082, 6,585,980, and 7,192,725.
  • synthetic nanocarriers incorporate a ligand for Toll-like receptor (TLR)-9, such as immunostimulatory DNA molecules comprising CpGs, which induce type I interferon secretion, and stimulate T and B cell activation leading to increased antibody production and cytotoxic T cell responses
  • TLR Toll-like receptor
  • CpG motifs in bacterial DNA trigger direct B cell activation. Nature. 1995. 374:546-549; Chu et al. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J. Exp. Med. 1997. 186:1623-1631; Lipford et al.
  • CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants.
  • CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol. 1998. 160:870-876; Lipford et al., Bacterial DNA as immune cell activator. Trends Microbiol. 1998. 6:496-500; U.S.
  • adjuvants may be proinflammatory stimuli released from necrotic cells (e.g., urate crystals).
  • adjuvants may be activated components of the complement cascade (e.g., CD21, CD35, etc.).
  • adjuvants may be activated components of immune complexes.
  • the adjuvants also include complement receptor agonists, such as a molecule that binds to CD21 or CD35.
  • the complement receptor agonist induces endogenous complement opsonization of the synthetic nanocarrier.
  • adjuvants are cytokines, which are small proteins or biological factors (in the range of 5 kD-20 kD) that are released by cells and have specific effects on cell-cell interaction, communication and behavior of other cells.
  • the cytokine receptor agonist is a small molecule, antibody, fusion protein, or aptamer.
  • the dose of adjuvant may be coupled to synthetic nanocarriers, preferably, all of the dose of adjuvant is coupled to synthetic nanocarriers. In other embodiments, at least a portion of the dose of the adjuvant is not coupled to the synthetic nanocarriers.
  • the dose of adjuvant comprises two or more types of adjuvants or multiple adjuvants of the same type. For instance, and without limitation, adjuvants that act on different TLR receptors may be combined. As an example, in an embodiment a TLR 7/8 agonist may be combined with a TLR9 agonist. In another embodiment, a TLR 7/8 agonist may be combined with a TLR9 agonist. In yet another embodiment, a TLR9 agonist may be combined with a TLR9 agonist. In another embodiment, two TLR9 agonists may be combined.
  • administering means providing a material, such as a drug, to a subject in a manner that is pharmacologically useful.
  • “Amount effective” is any amount of a composition provided herein that produces one or more desired responses, such as one or more desired immune responses. This amount can be for in vitro or in vivo purposes. For in vivo purposes, the amount can be one that a clinician would believe may have a clinical benefit for a subject in need of a humoral immune response to a B cell antigen. Such subjects include those that have or are at risk of having cancer, an infection or infectious disease, a non-autoimmune or degenerative disease or an addiction.
  • Amounts effective include those that involve the production of an antibody response against a B cell antigen administered in one of the inventive compositions provided herein.
  • a subject's antibody response can be monitored by routine methods.
  • An amount that is effective to produce one or more desired immune responses can also be an amount of a composition provided herein that produces a desired therapeutic endpoint or a desired therapeutic result.
  • Amounts effective will depend, of course, on the particular subject being treated; the severity of a condition, disease or disorder; the individual patient parameters including age, physical condition, size and weight; the duration of the treatment; the nature of concurrent therapy (if any); the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a patient may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reason.
  • doses of the compositions of the invention can range from about 10 ⁇ g/kg to about 100,000 ⁇ g/kg. In some embodiments, the doses can range from about 0.1 mg/kg to about 100 mg/kg. In still other embodiments, the doses can range from about 0.1 mg/kg to about 25 mg/kg, about 25 mg/kg to about 50 mg/kg, about 50 mg/kg to about 75 mg/kg or about 75 mg/kg to about 100 mg/kg. Alternatively, the dose can be administered based on the number of synthetic nanocarriers. For example, useful doses include greater than 10 6 , 10 7 , 10 8 , 10 9 or 10 10 synthetic nanocarriers per dose. Other examples of useful doses include from about 1 ⁇ 10 6 to about 1 ⁇ 10 10 , about 1 ⁇ 10 7 to about 1 ⁇ 10 9 or about 1 ⁇ 10 8 to about 1 ⁇ 10 9 synthetic nanocarriers per dose.
  • Antibody response refers to the generation of antibodies specific for an antigen.
  • An antibody response can target a desired B cell antigen (i.e., a desired antibody response) or to an off-target B cell antigen (i.e., an undesired antibody response).
  • the desired antibody responses are specific to the coupled B cell antigen of the compositions provided.
  • Undesired antibody responses can interfere with desired antibody responses and include, for example, undesired antibody responses to the synthetic nanocarrier or a component thereof (e.g., a polymer, portion or unit thereof) of a synthetic nanocarrier.
  • compositions provided herein have been devised to include synthetic nanocarriers with an off-target response attenuating polymeric coating that elicits a desired antibody response to a coupled B cell antigen that is at least two-fold greater than an undesired antibody response, such as to the synthetic nanocarrier or component thereof.
  • the level of antibody response can be measured as a titer with an ELISA.
  • the antibody response can be quantitated, for example, as the number of antibodies, concentration of antibodies or titer.
  • the values can be absolute or they can be relative.
  • Assays for quantifying an antibody response include antibody capture assays, enzyme-linked immunosorbent assays (ELISAs), inhibition liquid phase absorption assays (ILPAAs), rocket immunoelectrophoresis (RIE) assays and line immunoelectrophoresis (LIE) assays.
  • ELISAs enzyme-linked immunosorbent assays
  • IPAAs inhibition liquid phase absorption assays
  • RIE rocket immunoelectrophoresis
  • LIE line immunoelectrophoresis
  • An ELISA method for measuring an antibody titer may consist of the following steps (i) preparing an ELISA-plate coating material such that the antibody target of interest is coupled to a substrate polymer or other suitable material (ii) preparing the coating material in an aqueous solution (such as PBS) and delivering the coating material solution to the wells of a multiwell plate for overnight deposition of the coating onto the multiwell plate (iii) thoroughly washing the multiwell plate with wash buffer (such as 0.05% Tween-20 in PBS) to remove excess coating material (iv) blocking the plate for nonspecific binding by applying a diluent solution (such as 10% fetal bovine serum in PBS), (v) washing the blocking/diluent solution from the plate with wash buffer (vi) diluting the serum sample(s) containing antibodies and appropriate standards (positive controls) with diluent as required to obtain a concentration that suitably saturates the ELISA reponse (vii) serially diluting the plasma samples on the following steps (
  • Antigen means a B cell antigen or T cell antigen. In embodiments, antigens are coupled to the synthetic nanocarriers. In other embodiments, antigens are not coupled to the synthetic nanocarriers. “Type(s) of antigens” means molecules that share the same, or substantially the same, antigenic characteristics.
  • An “at risk” subject is one in which a health practitioner believes has a chance of having a disease or condition as provided herein.
  • Average refers to the arithmetic mean unless otherwise noted.
  • Average number of polymers is an absolute or relative value for the number of polymers averaged across a population of synthetic nanocarriers. Methods for determining the average number of polymers are known to those of ordinary skill in the art. For example, the average number of polymers in a formulated population may be obtained by determining the total weight of the polymer in the population and dividing by the number-averaged molecular weight. When the ratio of polymers as provided herein is calculated for a particular synthetic nanocarrier population the same type of value (absolute or relative) measured according to the same type of assay is used.
  • B cell antigen means any antigen that is recognized by or triggers an immune response in a B cell (e.g., an antigen that is specifically recognized by a B cell or a receptor thereon).
  • an antigen that is a T cell antigen is also a B cell antigen.
  • the T cell antigen is not also a B cell antigen.
  • B cell antigens include, but are not limited to proteins, peptides, small molecules, oligosaccharides, and carbohydrates.
  • the B cell antigen comprises a non-protein antigen (i.e., not a protein or peptide antigen).
  • the B cell antigen comprises a carbohydrate associated with an infectious agent.
  • the B cell antigen comprises a glycoprotein or glycopeptide associated with an infectious agent.
  • the infectious agent can be a bacterium, virus, fungus, protozoan, or parasite.
  • the B cell antigen comprises a poorly immunogenic antigen.
  • the B cell antigen comprises an abused substance or a portion thereof.
  • the B cell antigen comprises an addictive substance or a portion thereof.
  • Addictive substances include, but are not limited to, nicotine, a narcotic, a cough suppressant, a tranquilizer, and a sedative.
  • the B cell antigen comprises a toxin, such as a toxin from a chemical weapon or natural sources.
  • the B cell antigen may also comprise a hazardous environmental agent.
  • the B cell antigen comprises a self antigen.
  • the B cell antigen comprises an alloantigen, an allergen, a contact sensitizer, a degenerative disease antigen, a hapten, an infectious disease antigen, a cancer antigen, an atopic disease antigen, an autoimmune disease antigen, a non-autoimmune disease antigen, an addictive substance, a xenoantigen, or a metabolic disease enzyme or enzymatic product thereof.
  • B cell antigen of the compositions provided refers to a B cell antigen to which a target antibody response is desired and not to an antigen to which an antibody response is not desired (e.g., against the carrier or synthetic component thereof (e.g., a polymer of the synthetic nanocarrier)).
  • Cancer antigens are antigens associated with a cancer or cancerous tumor. Such antigens can generate an antibody response against a cancer or tumor cell. Such antigens can comprise an antigen that is expressed in or on cancer or tumor cells but not in or on normal or healthy cells. Such antigens can also comprise an antigen that is expressed in or on cancer or tumor cells and on normal or healthy cells but is expressed in or on cancer or tumor cells at a greater level than on normal or healthy cells. Preferably, the use of a cancer antigen in such an embodiment will not lead to a substantial or detrimental immune response against normal or healthy cells or will lead to a beneficial immune response against the cancer or tumor cells that outweighs any immune response against normal or healthy cells.
  • Couple or “Coupled” or “Couples” (and the like) means to chemically associate one entity (for example a moiety) with another.
  • the coupling is covalent, meaning that the coupling occurs in the context of the presence of a covalent bond between the two entities.
  • the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof.
  • encapsulation is a form of coupling.
  • Dosage form means a pharmacologically and/or immunologically active material in a medium, carrier, vehicle, or device suitable for administration to a subject.
  • Encapsulate means to enclose at least a portion of a substance within a synthetic nanocarrier. In some embodiments, a substance is enclosed completely within a synthetic nanocarrier. In other embodiments, most or all of a substance that is encapsulated is not exposed to the local environment external to the synthetic nanocarrier. In other embodiments, no more than 50%, 40%, 30%, 20%, 10% or 5% (weight/weight) of the substance is exposed to the local environment. Encapsulation is distinct from absorption, which places most or all of a substance on a surface of a synthetic nanocarrier, and leaves the substance exposed to the local environment external to the synthetic nanocarrier.
  • the polymeric coating provided herein encapsulates one or more or all of the other substances of a synthetic nanocarrier provided. In one embodiment, these other substances do not include desired B cell antigen coupled to the polymeric coating at the surface of the synthetic nanocarrier.
  • Human response means any immune response that results in the production or stimulation of B cells and/or the production of antibodies.
  • the humoral immune response is specific to an antigen comprised within an inventive composition or administered during the practice of an inventive method.
  • Methods for assessing whether a humoral response is induced are known to those of ordinary skill in the art. Examples of such methods are provided below in the Examples.
  • infectious disease is any condition or disease caused by a microorganism, pathogen or other agent, such as a bacterium, fungus, prion or virus.
  • An infection or infectious disease antigen is an antigen associated with an infection or infectious disease. Such antigens include antigens that can be used to generate an antibody response against a pathogen or other infectious agent, or component thereof, or that can generate an antibody response against infected cells.
  • “Maximum dimension of a synthetic nanocarrier” means the largest dimension of a nanocarrier measured along any axis of the synthetic nanocarrier. “Minimum dimension of a synthetic nanocarrier” means the smallest dimension of a synthetic nanocarrier measured along any axis of the synthetic nanocarrier. For example, for a spheroidal synthetic nanocarrier, the maximum and minimum dimension of a synthetic nanocarrier would be substantially identical, and would be the size of its diameter. Similarly, for a cuboidal synthetic nanocarrier, the minimum dimension of a synthetic nanocarrier would be the smallest of its height, width or length, while the maximum dimension of a synthetic nanocarrier would be the largest of its height, width or length.
  • a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than 100 nm.
  • a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 5 ⁇ m.
  • a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is greater than 110 nm, more preferably greater than 120 nm, more preferably greater than 130 nm, and more preferably still greater than 150 nm.
  • Aspects ratios of the maximum and minimum dimensions of inventive synthetic nanocarriers may vary depending on the embodiment.
  • aspect ratios of the maximum to minimum dimensions of the synthetic nanocarriers may vary from 1:1 to 1,000, 000:1, preferably from 1:1 to 100, 000:1, more preferably from 1:1 to 10,000:1, more preferably from 1:1 to 1000:1, still more preferably from 1:1 to 100:1, and yet more preferably from 1:1 to 10:1.
  • a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 3 ⁇ m, more preferably equal to or less than 2 ⁇ m, more preferably equal to or less than 1 ⁇ m, more preferably equal to or less than 800 nm, more preferably equal to or less than 600 nm, and more preferably still equal to or less than 500 nm.
  • a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than 100 nm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, more preferably equal to or greater than 140 nm, and more preferably still equal to or greater than 150 nm.
  • Measurement of synthetic nanocarrier dimensions e.g., diameter
  • DLS dynamic light scattering
  • a suspension of synthetic nanocarriers can be diluted from an aqueous buffer into purified water to achieve a final synthetic nanocarrier suspension concentration of approximately 0.01 to 0.1 mg/mL.
  • the diluted suspension may be prepared directly inside, or transferred to, a suitable cuvette for DLS analysis.
  • the cuvette may then be placed in the DLS, allowed to equilibrate to the controlled temperature, and then scanned for sufficient time to acquire a stable and reproducible distribution based on appropriate inputs for viscosity of the medium and refractive indicies of the sample.
  • the effective diameter, or mean of the distribution is then reported.
  • “Dimension” or “size” or “diameter” of synthetic nanocarriers means the mean of a particle size distribution obtained using dynamic light scattering.
  • Non-autoimmune or degenerative antigens are antigens associated with non-autoimmune or degenerative diseases or conditions. Such antigens can result in an antibody response that can be indicative of and/or present when the non-autoimmune or degenerative disease or condition occurs or is present in a subject. Such antigens can also be used to generate an antibody response, the generation of which may be beneficial in the treatment or prevention of the disease or condition or one or more symptoms thereof.
  • Off-target response attenuating polymeric coating refers to a composition comprising one or more polymers present at at least a portion of the surface of a synthetic nanocarrier and that when the synthetic nanocarrier is coupled to a B cell antigen, the synthetic nanocarrier, or population thereof, generates an antibody response against the B cell antigen that is at least two-fold greater than an off-target (or undesired) antibody response, such as against the synthetic nanocarrier or component thereof (such as a polymer of the coating).
  • the antibody response against the B cell antigen and the off-target antibody response are of the same type, such as both an IgG or IgA antibody response.
  • the synthetic nanocarrier, or population thereof generates an antibody response that is at least 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95- or 100-fold greater.
  • the response is measured as an antibody titer (e.g., IgG or IgA EC50) with an ELISA.
  • the coating may be present throughout the surface of a synthetic nanocarrier.
  • the coating may comprise a number of polymers of the same type or it may comprise a number of polymers of two or more different types.
  • the polymers of the coating may comprise PEG, a polyethyloxazoline, a polyamino acid, polycarbonate, hydrophilic polyacetal, hydrophilic polyketal, polysaccharide, polypropylene or polyethyleneimine, or some combination thereof.
  • the coating may comprise a number of the same type of the aforementioned polymers or may comprise a number of two or more types of the aforementioned polymers.
  • the coating comprises a number of polymers that comprise one or more of the aforementioned types of polymers, and it is the antibody response to one or more of these aforementioned types of polymers that is at least two-fold less than the antibody response to the target B cell antigen.
  • the antibody response is at least 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95- or 100-fold less.
  • the coating comprises polymers comprising PEG, and it is the antibody response to PEG that is at least two-fold less than the antibody response to the target B cell antigen.
  • the antibody response to PEG is at least 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95- or 100-fold less.
  • the response may be measured as an antibody titer (e.g., IgG or IgA EC50) with an ELISA, and/or both responses are of the same type (e.g., both IgG or IgA antibody responses).
  • an antibody titer e.g., IgG or IgA EC50
  • both responses are of the same type (e.g., both IgG or IgA antibody responses).
  • the coating comprises a polymer (e.g., one of the aforementioned polymers) with a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole.
  • the polymer has a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole.
  • the B cell antigen may be coupled to this polymer or to another polymer of the coating.
  • the B cell antigen may also be coupled to another portion of the synthetic nanocarriers such as to the surface of the synthetic nanocarriers but not to the coating.
  • the other polymer also has a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole.
  • the other polymer has a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole.
  • the polymer and other polymer of the coating both have a molecular weight of 5000 g/mole.
  • the molecular weight may be a weight average molecular weight or a number average molecular weight.
  • the ratio of the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers, the ratio of the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers, or the ratio of the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers is between 0.001 and 1, 0.01 and 1, 0.1 and 1, 0.25 and 1, 0.5 and 1 or 0.75 and 1 or
  • the ratio by weight is 0.1, 0.25 or 0.5. In one embodiment, this ratio is calculated based on the polymeric coatings of the synthetic nanocarriers. In another embodiment, this ratio is calculated based on the synthetic nanocarriers as a whole.
  • the polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen may be the same type of polymer or may be different types of polymers. In one embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole.
  • the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole.
  • the polymer and other polymer both have a molecular weight of 5000 g/mole.
  • the molecular weight may be the weight average molecular weight or the number average molecular weight.
  • Off-target antibody response is any undesired antibody response as provided herein.
  • the off-target antibody response is an antibody response not specific to the B cell antigen coupled to the synthetic nanocarriers to which an antibody response is desired.
  • the intended antibody response is IgG or IgA
  • this desired antibody response be at least two-fold greater than the off-target response by that same class.
  • an off-target IgM response that is of similar or greater magnitude than a desired IgG or IgA response may occur.
  • IgM tends to be a transient low-affinity response whereas IgG is a longer-lasting higher-affinity response.
  • the off-target antibody response is an antibody response against the synthetic nanocarrier or component thereof, such as a polymer (or portion thereof), such as of the coating.
  • “Pharmaceutically acceptable excipient” means a pharmacologically inactive material used together with the recited synthetic nanocarriers to formulate the inventive compositions.
  • compositions comprise a variety of materials known in the art, including but not limited to saccharides (such as glucose, lactose, and the like), preservatives such as antimicrobial agents, reconstitution aids, colorants, saline (such as phosphate buffered saline), and buffers.
  • saccharides such as glucose, lactose, and the like
  • preservatives such as antimicrobial agents
  • reconstitution aids such as phosphate buffered saline
  • colorants such as phosphate buffered saline
  • saline such as phosphate buffered saline
  • “Ratio by weight averaged across the population of synthetic nanocarriers” refers to the ratio of absolute or relative values for two weights averaged across a population of synthetic nanocarriers. When the ratio of the weight of polymers is calculated for a particular synthetic nanocarrier population the same type of value (absolute or relative) measured according to the same type of assay is used. Methods for determining the weight of a certain type of polymer in synthetic nanocarriers are known to those of ordinary skill in the art. Examples of methods are also provided elsewhere herein. Alternatively, well-described polymers, such as those with information provided by a manufacturer can be formulated at a certain ratio.
  • “Same type of polymer” means polymers that share the same, or substantially the same, chemical structure. Polymers that are the same type of polymers may have the same or different molecular weights. In a preferred embodiment, polymers that are the same type of polymer also have the same molecular weight.
  • Subject means animals, including warm blooded mammals such as humans and primates; avians; domestic household or farm animals such as cats, dogs, sheep, goats, cattle, horses and pigs; laboratory animals such as mice, rats and guinea pigs; fish; reptiles; zoo and wild animals; and the like.
  • “Synthetic nanocarrier(s)” means a discrete object that is not found in nature, and that possesses at least one dimension that is less than or equal to 5 microns in size.
  • Albumin nanoparticles are generally included as synthetic nanocarriers, however in certain embodiments the synthetic nanocarriers do not comprise albumin nanoparticles.
  • synthetic nanocarriers do not comprise chitosan.
  • the synthetic nanocarriers do not comprise chitosan.
  • inventive synthetic nanocarriers are not lipid-based nanoparticles.
  • inventive synthetic nanocarriers do not comprise a phospholipid.
  • a synthetic nanocarrier can be, but is not limited to, one or a plurality of lipid-based nanoparticles (also referred to herein as lipid nanoparticles, i.e., nanoparticles where the majority of the material that makes up their structure are lipids), polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles (i.e., particles that are primarily made up of viral structural proteins but that are not infectious or have low infectivity), peptide or protein-based particles (also referred to herein as protein particles, i.e., particles where the majority of the material that makes up their structure are peptides or proteins) (such as albumin nanoparticles) and/or nanoparticles that are developed using a combination of nanomaterials such as lipid-polymer nanoparticles.
  • lipid-based nanoparticles also referred to herein as lipid nanoparticles, i
  • Synthetic nanocarriers may be a variety of different shapes, including but not limited to spheroidal, cuboidal, pyramidal, oblong, cylindrical, toroidal, and the like. Synthetic nanocarriers according to the invention comprise one or more surfaces. Exemplary synthetic nanocarriers that can be adapted for use in the practice of the present invention comprise: (1) the biodegradable nanoparticles disclosed in U.S. Pat. No.
  • synthetic nanocarriers may possess an aspect ratio greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1:10.
  • Synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface with hydroxyl groups that activate complement or alternatively comprise a surface that consists essentially of moieties that are not hydroxyl groups that activate complement.
  • synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that substantially activates complement or alternatively comprise a surface that consists essentially of moieties that do not substantially activate complement.
  • synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that activates complement or alternatively comprise a surface that consists essentially of moieties that do not activate complement.
  • synthetic nanocarriers exclude virus-like particles.
  • the virus-like particles comprise non-natural adjuvant (meaning that the VLPs comprise an adjuvant other than naturally occurring RNA generated during the production of the VLPs).
  • synthetic nanocarriers may possess an aspect ratio greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1:10.
  • T cell antigen means any antigen that is recognized by and triggers an immune response in a T cell (e.g., an antigen that is specifically recognized by a T cell receptor on a T cell or an NKT cell via presentation of the antigen or portion thereof bound to a Class I or Class II major histocompatability complex molecule (MHC), or bound to a CD1 complex).
  • an antigen that is a T cell antigen is also a B cell antigen.
  • the T cell antigen is not also a B cell antigen.
  • T cell antigens generally are proteins or peptides.
  • T cell antigens may be an antigen that stimulates a CD8+ T cell response, a CD4+ T cell response, or both. The nanocarriers, therefore, in some embodiments can effectively stimulate both types of responses.
  • the T cell antigen is a T helper cell antigen (i.e. one that can generate an enhanced response to a B cell antigen, preferably an unrelated B cell antigen, through stimulation of T cell help).
  • a T helper cell antigen may comprise one or more peptides obtained or derived from tetanus toxoid, Epstein-Barr virus, influenza virus, respiratory syncytial virus, measles virus, mumps virus, rubella virus, cytomegalovirus, adenovirus, diphtheria toxoid, or a PADRE peptide (known from the work of Sette et al. U.S. Pat. No. 7,202,351).
  • a T helper cell antigen may comprise one or more lipids, or glycolipids, including but not limited to: ⁇ -galactosylceramide ( ⁇ -GalCer), ⁇ -linked glycosphingolipids (from Sphingomonas spp.), galactosyl diacylglycerols (from Borrelia burgdorferi ), lypophosphoglycan (from Leishmania donovani ), and phosphatidylinositol tetramannoside (PIM4) (from Mycobacterium leprae ).
  • ⁇ -galactosylceramide ⁇ -GalCer
  • ⁇ -linked glycosphingolipids from Sphingomonas spp.
  • galactosyl diacylglycerols from Borrelia burgdorferi
  • lypophosphoglycan from Leishmania donovani
  • PIM4 phosphatidylinositol tetramann
  • CD4+ T-cell antigens may be derivatives of a CD4+ T-cell antigen that is obtained from a source, such as a natural source.
  • CD4+ T-cell antigen sequences such as those peptides that bind to MHC II, may have at least 70%, 80%, 90%, or 95% identity to the antigen obtained from the source.
  • the T cell antigen preferably a T helper cell antigen, may be coupled to, or uncoupled from, a synthetic nanocarrier.
  • the T cell antigen is encapsulated in the synthetic nanocarriers of the compositions.
  • Vaccine means a composition of matter that improves the immune response to a particular pathogen or disease.
  • a vaccine typically contains factors that stimulate a subject's immune system to recognize a specific antigen as foreign and eliminate it from the subject's body.
  • a vaccine also establishes an immunologic ‘memory’ so the antigen will be quickly recognized and responded to if a person is re-challenged.
  • Vaccines can be prophylactic (for example to prevent future infection by any pathogen), or therapeutic (for example a vaccine against a tumor specific antigen for the treatment of cancer).
  • a vaccine may comprise dosage forms according to the invention.
  • Weight refers to mass unless otherwise noted. When a molecular weight of a polymer is measured, it can be measured as the weight average molecular weight or a number average molecular weight. “Weight average molecular weight” for the polymers of the compositions provided herein is calculated by the following formula:
  • M _ w ⁇ i ⁇ N i ⁇ M i 2 ⁇ i ⁇ N i ⁇ M i , Formula ⁇ ⁇ 1
  • Ni is the number of molecules of molecular weight Mi.
  • the weight average molecular weight can be determined by a variety of methods including light scattering, small angle neutron scattering (SANS), X-ray scattering, Nuclear Magnetic Resonance (NMR) and sedimentation velocity.
  • SANS small angle neutron scattering
  • NMR Nuclear Magnetic Resonance
  • An example of an alternative for weight average molecular weight is to perform gel permeation chromatography using suitable traceable-weight standards to establish a retention-time versus weight curve, and calculating the mean weight-averaged molecular weight of a sample polymer from the mean of the integrated sample peak as compared to the calibration curve.
  • the “number average molecular weight” can be determined by NMR.
  • number average molecular weight can be determined by proton NMR wherein the ratio of the polymer repeating units to the end group is established and then multiplied by theoretical repeating unit molecular weight.
  • a known weight concentration may be established and then titrated in the presense of an indicator dye with an appropriate neutralizing agent of known molar concentration to provide moles of end group per mass of polymer.
  • compositions comprising synthetic nanocarriers that provide optimized target antibody generation to a B cell antigen relative to off-target antibody generation.
  • synthetic nanocarriers comprise a B cell antigen and an off-target response attenuating polymeric coating. It has been found that optimized target antibody generation relative to off-target antibody generation results when a polymeric coating comprises certain B cell antigen content and/or polymer molecular weights and compositions.
  • coatings that provide optimized B cell antigen response relative to off-target antibody response may comprise polymers with certain molecular weights (as weight average or number average) with polymers with greater molecular weights having better effect.
  • the coating may comprise one type of polymer (with an aforementioned molecular weight) but may also comprise one or more other types of polymers.
  • the one or more other types of polymers may also have the aforementioned molecular weights.
  • the one or more types of polymers of the coating may be in the form of a polymeric matrix.
  • the target B cell antigen may be coupled to one of the types of polymers of the coating or to more than one of the types of polymers of the coating. In another embodiment, the target B cell antigen is coupled to the polymer of the coating for which an attenuated antibody response is desired. When a target B cell antigen is coupled to one or more of the types of polymers of the coating, the target B cell antigen is coupled to all or less than all of the polymer molecules of the one or more types of polymers of the coating.
  • the target B cell antigen may also be coupled to another component of the synthetic nanocarriers, such as the surface of the synthetic nanocarrier, but not to the coating.
  • the target B cell antigen can be coupled, in some embodiments, by any means known in the art. In one embodiment, the target B cell antigen is coupled via a bond or linker.
  • the amount of antigen coupled to the off-target response attenuating polymeric coating can also provide optimized B cell antigen response relative to off-target antibody response. It has been found that an increased amount of antigen present in the coating of the synthetic nanocarrier provides attenuated off-target antibody response relative to target antibody response.
  • the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, or the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers may be between 0.001 and 1, 0.01 and 1, 0.1 and 1, 0.25 and 1, 0.5 and 1 or 0.75 and 1.
  • the ratio can be calculated based on an assessment of the polymeric coating across the population of synthetic nanocarriers or of the synthetic nanocarriers as a whole across the population of synthetic nanocarriers.
  • the polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen of the coating may be the same type of polymer or may be different types of polymers. These polymers may also have the molecular weights provided above in some embodiments.
  • the polymers of the coating may comprise a number of polymers of the same type or it may comprise a number of polymers of two or more different types.
  • the polymers of the coating may comprise PEG, a polyethyloxazoline, a polyamino acid, polycarbonate, hydrophilic polyacetal, hydrophilic polyketal, polypropylene, polysaccharide or polyethyleneimine, or some combination thereof.
  • the polymers of the coating comprise PEG.
  • the off-target response attenuating polymeric coating may be a coating on a number of different types of synthetic nanocarriers. Accordingly, a wide variety of synthetic nanocarriers can be used according to the invention.
  • synthetic nanocarriers are spheres or spheroids.
  • synthetic nanocarriers are flat or plate-shaped.
  • synthetic nanocarriers are cubes or cubic.
  • synthetic nanocarriers are ovals or ellipses.
  • synthetic nanocarriers are cylinders, cones, or pyramids.
  • a population of synthetic nanocarriers that is relatively uniform in terms of size, shape, and/or composition so that each synthetic nanocarrier has similar properties. For example, at least 80%, at least 90%, or at least 95% of the synthetic nanocarriers, based on the total number of synthetic nanocarriers, may have a minimum dimension or maximum dimension that falls within 5%, 10%, or 20% of the average diameter or average dimension of the synthetic nanocarriers. In some embodiments, a population of synthetic nanocarriers may be heterogeneous with respect to size, shape, and/or composition.
  • Synthetic nanocarriers can be solid or hollow and can comprise one or more layers. In some embodiments, each layer has a unique composition and unique properties relative to the other layer(s).
  • synthetic nanocarriers may have a core/shell structure, wherein the core is one layer (e.g. a polymeric core) and the shell is a second layer (e.g. a lipid bilayer or monolayer). Synthetic nanocarriers may comprise a plurality of different layers.
  • synthetic nanocarriers may optionally comprise one or more lipids.
  • a synthetic nanocarrier may comprise a liposome.
  • a synthetic nanocarrier may comprise a lipid bilayer.
  • a synthetic nanocarrier may comprise a lipid monolayer.
  • a synthetic nanocarrier may comprise a micelle.
  • a synthetic nanocarrier may comprise a core comprising a polymeric matrix surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
  • a synthetic nanocarrier may comprise a non-polymeric core (e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.) surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
  • a non-polymeric core e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.
  • lipid layer e.g., lipid bilayer, lipid monolayer, etc.
  • synthetic nanocarriers can comprise one or more other polymers.
  • various elements of the synthetic nanocarriers can be coupled with such polymers.
  • Such other polymers may form a polymeric matrix, and the components of the synthetic nanocarriers may be covalently associated with the polymeric matrix.
  • covalent association is mediated by a linker.
  • a component may be noncovalently associated with the polymeric matrix.
  • a component may be encapsulated within, surrounded by, and/or dispersed throughout a polymeric matrix.
  • a component can be associated with a polymeric matrix by hydrophobic interactions, charge interactions, van der Waals forces, etc.
  • components can also be coupled thereto by these aforementioned methods.
  • a polymeric matrix comprises one or more polymers.
  • Polymers may be natural or unnatural (synthetic) polymers.
  • Polymers may be homopolymers or copolymers comprising two or more monomers. In terms of sequence, copolymers may be random, block, or comprise a combination of random and block sequences.
  • polymers in accordance with the present invention are organic polymers.
  • polymers suitable for use in the synthetic nanocarriers, as part of the coating or other portion of the synthetic nanocarriers include, but are not limited to polyethylenes, polycarbonates (e.g. poly(1,3-dioxan-2one)), polyanhydrides (e.g. poly(sebacic anhydride)), polypropylfumerates, polyamides (e.g. polycaprolactam), polyacetals, polyethers, polyesters (e.g., polylactide, polyglycolide, polylactide-co-glycolide, polycaprolactone, polyhydroxyacid (e.g.
  • polymers in accordance with the present invention include polymers which have been approved for use in humans by the U.S. Food and Drug Administration (FDA) under 21 C.F.R.
  • polyesters e.g., polylactic acid, poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly(1,3-dioxan-2one)
  • polyanhydrides e.g., poly(sebacic anhydride)
  • polyethers e.g., polyethylene glycol
  • polyurethanes polymethacrylates; polyacrylates; and polycyanoacrylates.
  • polymers can be hydrophilic.
  • polymers may comprise anionic groups (e.g., phosphate group, sulphate group, carboxylate group); cationic groups (e.g., quaternary amine group); or polar groups (e.g., hydroxyl group, thiol group, amine group).
  • a synthetic nanocarrier comprising a hydrophilic polymeric matrix generates a hydrophilic environment within the synthetic nanocarrier.
  • polymers can be hydrophobic.
  • a synthetic nanocarrier comprising a hydrophobic polymeric matrix generates a hydrophobic environment within the synthetic nanocarrier. Selection of the hydrophilicity or hydrophobicity of the polymer may have an impact on the nature of materials that are incorporated (e.g. coupled) within the synthetic nanocarrier.
  • polymers may be modified with one or more moieties and/or functional groups.
  • moieties or functional groups can be used in accordance with the present invention.
  • polymers may be modified with polyethylene glycol (PEG), with a carbohydrate, and/or with acyclic polyacetals derived from polysaccharides (Papisov, 2001, ACS Symposium Series, 786:301). Certain embodiments may be made using the general teachings of U.S. Pat. No. 5,543,158 to Gref et al., or WO publication WO2009/051837 by Von Andrian et al.
  • polymers may be modified with a lipid or fatty acid group.
  • a fatty acid group may be one or more of butyric, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, or lignoceric acid.
  • a fatty acid group may be one or more of palmitoleic, oleic, vaccenic, linoleic, alpha-linoleic, gamma-linoleic, arachidonic, gadoleic, arachidonic, eicosapentaenoic, docosahexaenoic, or erucic acid.
  • polymers may be polyesters, including copolymers comprising lactic acid and glycolic acid units, such as poly(lactic acid-co-glycolic acid) and poly(lactide-co-glycolide), collectively referred to herein as “PLGA”; and homopolymers comprising glycolic acid units, referred to herein as “PGA,” and lactic acid units, such as poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-L-lactide, poly-D-lactide, and poly-D,L-lactide, collectively referred to herein as “PLA.”
  • exemplary polyesters include, for example, polyhydroxyacids; PEG copolymers and copolymers of lactide and glycolide (e.g., PLA-PEG copolymers, PGA-PEG copolymers, PLGA-PEG copolymers, and derivatives thereof.
  • polyesters include, for example, poly(caprolactone), poly(caprolactone)-PEG copolymers, poly(L-lactide-co-L-lysine), poly(serine ester), poly(4-hydroxy-L-proline ester), poly[ ⁇ -(4-aminobutyl)-L-glycolic acid], and derivatives thereof.
  • a polymer may be PLGA.
  • PLGA is a biocompatible and biodegradable co-polymer of lactic acid and glycolic acid, and various forms of PLGA are characterized by the ratio of lactic acid:glycolic acid.
  • Lactic acid can be L-lactic acid, D-lactic acid, or D,L-lactic acid.
  • the degradation rate of PLGA can be adjusted by altering the lactic acid:glycolic acid ratio.
  • PLGA to be used in accordance with the present invention is characterized by a lactic acid:glycolic acid ratio of approximately 85:15, approximately 75:25, approximately 60:40, approximately 50:50, approximately 40:60, approximately 25:75, or approximately 15:85.
  • polymers may be one or more acrylic polymers.
  • acrylic polymers include, for example, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, glycidyl methacrylate copolymers, polycyanoacrylates, and combinations comprising one or more of the foregoing polymers.
  • the acrylic polymer may comprise fully-polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammoni
  • polymers can be cationic polymers.
  • cationic polymers are able to condense and/or protect negatively charged strands of nucleic acids (e.g. DNA, or derivatives thereof).
  • Amine-containing polymers such as poly(lysine) (Zauner et al., 1998, Adv. Drug Del. Rev., 30:97; and Kabanov et al., 1995, Bioconjugate Chem., 6:7), poly(ethylene imine) (PEI; Boussif et al., 1995, Proc. Natl. Acad.
  • inventive synthetic nanocarriers may not comprise (or may exclude) cationic polymers.
  • polymers can be degradable polyesters bearing cationic side chains (Putnam et al., 1999, Macromolecules, 32:3658; Barrera et al., 1993, J. Am. Chem. Soc., 115:11010; Kwon et al., 1989, Macromolecules, 22:3250; Lim et al., 1999, J. Am. Chem. Soc., 121:5633; and Zhou et al., 1990, Macromolecules, 23:3399).
  • polyesters include poly(L-lactide-co-L-lysine) (Barrera et al., 1993, J. Am. Chem.
  • polymers can be linear or branched polymers. In some embodiments, polymers can be dendrimers. In some embodiments, polymers can be substantially cross-linked to one another. In some embodiments, polymers can be substantially free of cross-links. In some embodiments, polymers can be used in accordance with the present invention without undergoing a cross-linking step. It is further to be understood that inventive synthetic nanocarriers may comprise block copolymers, graft copolymers, blends, mixtures, and/or adducts of any of the foregoing and other polymers. Those skilled in the art will recognize that the polymers listed herein represent an exemplary, not comprehensive, list of polymers that can be of use in accordance with the present invention.
  • synthetic nanocarriers may comprise metal particles, quantum dots, ceramic particles, etc.
  • a non-polymeric synthetic nanocarrier is an aggregate of non-polymeric components, such as an aggregate of metal atoms (e.g., gold atoms).
  • synthetic nanocarriers may optionally comprise one or more amphiphilic entities.
  • an amphiphilic entity can promote the production of synthetic nanocarriers with increased stability, improved uniformity, or increased viscosity.
  • amphiphilic entities can be associated with the interior surface of a lipid membrane (e.g., lipid bilayer, lipid monolayer, etc.). Many amphiphilic entities known in the art are suitable for use in making synthetic nanocarriers in accordance with the present invention.
  • amphiphilic entities include, but are not limited to, phosphoglycerides; phosphatidylcholines; dipalmitoyl phosphatidylcholine (DPPC); dioleylphosphatidyl ethanolamine (DOPE); dioleyloxypropyltriethylammonium (DOTMA); dioleoylphosphatidylcholine; cholesterol; cholesterol ester; diacylglycerol; diacylglycerolsuccinate; diphosphatidyl glycerol (DPPG); hexanedecanol; fatty alcohols such as polyethylene glycol (PEG); polyoxyethylene-9-lauryl ether; a surface active fatty acid, such as palmitic acid or oleic acid; fatty acids; fatty acid monoglycerides; fatty acid diglycerides; fatty acid amides; sorbitan trioleate (Span®85) glycocholate; sorbitan monolaurate (Span®20); polysorbate 20
  • amphiphilic entity component may be a mixture of different amphiphilic entities. Those skilled in the art will recognize that this is an exemplary, not comprehensive, list of substances with surfactant activity. Any amphiphilic entity may be used in the production of synthetic nanocarriers to be used in accordance with the present invention.
  • synthetic nanocarriers may optionally comprise one or more carbohydrates.
  • Carbohydrates may be natural or synthetic.
  • a carbohydrate may be a derivatized natural carbohydrate.
  • a carbohydrate comprises monosaccharide or disaccharide, including but not limited to glucose, fructose, galactose, ribose, lactose, sucrose, maltose, trehalose, cellbiose, mannose, xylose, arabinose, glucoronic acid, galactoronic acid, mannuronic acid, glucosamine, galatosamine, and neuramic acid.
  • a carbohydrate is a polysaccharide, including but not limited to pullulan, cellulose, microcrystalline cellulose, hydroxypropyl methylcellulose (HPMC), hydroxycellulose (HC), methylcellulose (MC), dextran, cyclodextran, glycogen, hydroxyethylstarch, carageenan, glycon, amylose, chitosan, N,O-carboxylmethylchitosan, algin and alginic acid, starch, chitin, inulin, konjac, glucommannan, pustulan, heparin, hyaluronic acid, curdlan, and xanthan.
  • the inventive synthetic nanocarriers do not comprise (or specifically exclude) carbohydrates, such as a polysaccharide.
  • the carbohydrate may comprise a carbohydrate derivative such as a sugar alcohol, including but not limited to mannitol, sorbitol, xylitol, erythritol, maltitol, and lactitol.
  • compositions according to the invention comprise inventive synthetic nanocarriers in combination with pharmaceutically acceptable excipients, such as preservatives, buffers, saline, or phosphate buffered saline.
  • inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.
  • the antigen and/or adjuvant when preparing synthetic nanocarriers as carriers for antigens and/or adjuvants for use in vaccines, methods for coupling the antigens and/or adjuvants to the synthetic nanocarriers may be useful. If the antigen and/or adjuvant is a small molecule it may be of advantage to attach the antigen and/or adjuvant to a polymer prior to the assembly of the synthetic nanocarriers. In embodiments, it may also be an advantage to prepare the synthetic nanocarriers with surface groups that are used to couple the antigen and/or adjuvant to the synthetic nanocarrier through the use of these surface groups rather than attaching the antigen and/or adjuvant to a polymer and then using this polymer conjugate in the construction of synthetic nanocarriers.
  • the coupling can be a covalent linker.
  • peptides according to the invention can be covalently coupled to the external surface via a 1,2,3-triazole linker formed by the 1,3-dipolar cycloaddition reaction of azido groups on the surface of the nanocarrier with antigen or adjuvant containing an alkyne group or by the 1,3-dipolar cycloaddition reaction of alkynes on the surface of the nanocarrier with antigens or adjuvants containing an azido group.
  • Such cycloaddition reactions are preferably performed in the presence of a Cu(I) catalyst along with a suitable Cu(I)-ligand and a reducing agent to reduce Cu(II) compound to catalytic active Cu(I) compound.
  • This Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) can also be referred as the click reaction.
  • the covalent coupling may comprise a covalent linker that comprises an amide linker, a disulfide linker, a thioether linker, a hydrazone linker, a hydrazide linker, an imine or oxime linker, an urea or thiourea linker, an amidine linker, an amine linker, and a sulfonamide linker.
  • a covalent linker that comprises an amide linker, a disulfide linker, a thioether linker, a hydrazone linker, a hydrazide linker, an imine or oxime linker, an urea or thiourea linker, an amidine linker, an amine linker, and a sulfonamide linker.
  • An amide linker is formed via an amide bond between an amine on one component such as the antigen or adjuvant with the carboxylic acid group of a second component such as the nanocarrier.
  • the amide bond in the linker can be made using any of the conventional amide bond forming reactions with suitably protected amino acids or antigens or adjuvants and activated carboxylic acid such N-hydroxysuccinimide-activated ester.
  • a disulfide linker is made via the formation of a disulfide (S—S) bond between two sulfur atoms of the form, for instance, of R1-S—S—R2.
  • a disulfide bond can be formed by thiol exchange of an antigen or adjuvant containing thiol/mercaptan group (—SH) with another activated thiol group on a polymer or nanocarrier or a nanocarrier containing thiol/mercaptan groups with an antigen or adjuvant containing activated thiol group.
  • a triazole linker specifically a 1,2,3-triazole of the form
  • R1 and R2 may be any chemical entities, is made by the 1,3-dipolar cycloaddition reaction of an azide attached to a first component such as the nanocarrier with a terminal alkyne attached to a second component such as the peptide.
  • the 1,3-dipolar cycloaddition reaction is performed with or without a catalyst, preferably with Cu(I)-catalyst, which links the two components through a 1,2,3-triazole function.
  • This chemistry is described in detail by Sharpless et al., Angew. Chem. Int. Ed. 41(14), 2596, (2002) and Meldal, et al, Chem. Rev., 2008, 108(8), 2952-3015 and is often referred to as a “click” reaction or CuAAC.
  • a polymer containing an azide or alkyne group, terminal to the polymer chain is prepared.
  • This polymer is then used to prepare a synthetic nanocarrier in such a manner that a plurality of the alkyne or azide groups are positioned on the surface of that nanocarrier.
  • the synthetic nanocarrier can be prepared by another route, and subsequently functionalized with alkyne or azide groups.
  • the antigen or adjuvant is prepared with the presence of either an alkyne (if the polymer contains an azide) or an azide (if the polymer contains an alkyne) group.
  • the antigen or adjuvant is then allowed to react with the nanocarrier via the 1,3-dipolar cycloaddition reaction with or without a catalyst which covalently couples the antigen to the particle through the 1,4-disubstituted 1,2,3-triazole linker.
  • a thioether linker is made by the formation of a sulfur-carbon (thioether) bond in the form, for instance, of R1-S—R2.
  • Thioether can be made by either alkylation of a thiol/mercaptan (—SH) group on one component such as the antigen or adjuvant with an alkylating group such as halide or epoxide on a second component such as the nanocarrier.
  • Thioether linkers can also be formed by Michael addition of a thiol/mercaptan group on one component such as an antigen or adjuvant to an electron-deficient alkene group on a second component such as a polymer containing a maleimide group or vinyl sulfone group as the Michael acceptor.
  • thioether linkers can be prepared by the radical thiol-ene reaction of a thiol/mercaptan group on one component such as an antigen or adjuvant with an alkene group on a second component such as a polymer or nanocarrier.
  • a hydrazone linker is made by the reaction of a hydrazide group on one component such as the antigen or adjuvant with an aldehyde/ketone group on the second component such as the nanocarrier.
  • a hydrazide linker is formed by the reaction of a hydrazine group on one component such as the antigen or adjuvant with a carboxylic acid group on the second component such as the nanocarrier. Such reaction is generally performed using chemistry similar to the formation of amide bond where the carboxylic acid is activated with an activating reagent.
  • An imine or oxime linker is formed by the reaction of an amine or N-alkoxyamine (or aminooxy) group on one component such as the antigen or adjuvant with an aldehyde or ketone group on the second component such as the nanocarrier.
  • An urea or thiourea linker is prepared by the reaction of an amine group on one component such as the antigen or adjuvant with an isocyanate or thioisocyanate group on the second component such as the nanocarrier.
  • An amidine linker is prepared by the reaction of an amine group on one component such as the antigen or adjuvant with an imidoester group on the second component such as the nanocarrier.
  • An amine linker is made by the alkylation reaction of an amine group on one component such as the antigen or adjuvant with an alkylating group such as halide, epoxide, or sulfonate ester group on the second component such as the nanocarrier.
  • an amine linker can also be made by reductive amination of an amine group on one component such as the antigen or adjuvant with an aldehyde or ketone group on the second component such as the nanocarrier with a suitable reducing reagent such as sodium cyanoborohydride or sodium triacetoxyborohydride.
  • a sulfonamide linker is made by the reaction of an amine group on one component such as the antigen or adjuvant with a sulfonyl halide (such as sulfonyl chloride) group on the second component such as the nanocarrier.
  • a sulfonyl halide such as sulfonyl chloride
  • a sulfone linker is made by Michael addition of a nucleophile to a vinyl sulfone.
  • Either the vinyl sulfone or the nucleophile may be on the surface of the nanocarrier or attached to the antigen or adjuvant.
  • the antigen or adjuvant can also be conjugated to the nanocarrier via non-covalent conjugation methods.
  • a negative charged antigen or adjuvant can be conjugated to a positive charged nanocarrier through electrostatic adsorption.
  • An antigen or adjuvant containing a metal ligand can also be conjugated to a nanocarrier containing a metal complex via a metal-ligand complex.
  • the antigen or adjuvant can be attached to a polymer, for example polylactic acid-block-polyethylene glycol, prior to the assembly of the synthetic nanocarrier or the synthetic nanocarrier can be formed with reactive or activatible groups on its surface.
  • the antigen or adjuvant may be prepared with a group which is compatible with the attachment chemistry that is presented by the synthetic nanocarriers' surface.
  • a peptide antigen can be attached to VLPs or liposomes using a suitable linker.
  • a linker is a compound or reagent capable of coupling two molecules together.
  • the linker can be a homobifuntional or heterobifunctional reagent as described in Hermanson 2008.
  • a VLP or liposome synthetic nanocarrier containing a carboxylic group on the surface can be treated with a homobifunctional linker, adipic dihydrazide (ADH), in the presence of EDC to form the corresponding synthetic nanocarrier with the ADH linker.
  • ADH adipic dihydrazide
  • the resulting ADH linked synthetic nanocarrier is then conjugated with a peptide containing an acid group via the other end of the ADH linker on NC to produce the corresponding VLP or liposome peptide conjugate.
  • the adjuvant can be coupled by adsorbtion to a pre-formed synthetic nanocarrier or it can be coupled by encapsulation during the formation of the synthetic nanocarrier.
  • a component such as an antigen or adjuvant
  • Isolated refers to the element being separated from its native environment and present in sufficient quantities to permit its identification or use. This means, for example, the element may be (i) selectively produced by expression cloning or (ii) purified as by chromatography or electrophoresis. Isolated elements may be, but need not be, substantially pure. Because an isolated element may be admixed with a pharmaceutically acceptable excipient in a pharmaceutical preparation, the element may comprise only a small percentage by weight of the preparation. The element is nonetheless isolated in that it has been separated from the substances with which it may be associated in living systems, i.e., isolated from other lipids or proteins. Any of the elements provided herein may be isolated. Any of the antigens provided herein can be included in the compositions in isolated form.
  • Synthetic nanocarriers may be prepared using a wide variety of methods known in the art.
  • synthetic nanocarriers can be formed by methods as nanoprecipitation, flow focusing fluidic channels, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, milling, microemulsion procedures, microfabrication, nanofabrication, sacrificial layers, simple and complex coacervation, and other methods well known to those of ordinary skill in the art.
  • aqueous and organic solvent syntheses for monodisperse semiconductor, conductive, magnetic, organic, and other nanomaterials have been described (Pellegrino et al., 2005, Small, 1:48; Murray et al., 2000, Ann Rev. Mat.
  • Various materials may be encapsulated into synthetic nanocarriers as desirable using a variety of methods including but not limited to C. Astete et al., “Synthesis and characterization of PLGA nanoparticles” J. Biomater. Sci. Polymer Edn, Vol. 17, No. 3, pp. 247-289 (2006); K. Avgoustakis “Pegylated Poly(Lactide) and Poly(Lactide-Co-Glycolide) Nanoparticles: Preparation, Properties and Possible Applications in Drug Delivery” Current Drug Delivery 1:321-333 (2004); C. Reis et al., “Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles” Nanomedicine 2:8-21 (2006); P.
  • synthetic nanocarriers are prepared by a nanoprecipitation process or spray drying. Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, “stickiness,” shape, etc.). The method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
  • Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, “stickiness,” shape, etc.).
  • the method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
  • particles prepared by any of the above methods have a size range outside of the desired range, particles can be sized, for example, using a sieve.
  • Elements of the inventive synthetic nanocarriers may be coupled to the overall synthetic nanocarrier, e.g., by one or more covalent bonds, or may be coupled by means of one or more linkers. Additional methods of functionalizing synthetic nanocarriers may be adapted from Published US Patent Application 2006/0002852 to Saltzman et al., Published US Patent Application 2009/0028910 to DeSimone et al., or Published International Patent Application WO/2008/127532 A1 to Murthy et al.
  • synthetic nanocarriers can be coupled to elements directly or indirectly via non-covalent interactions.
  • the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof.
  • Such couplings may be arranged to be on an external surface or an internal surface of an inventive synthetic nanocarrier.
  • encapsulation and/or absorption is a form of coupling.
  • the inventive synthetic nanocarriers can be combined with other adjuvants by admixing in the same vehicle or delivery system.
  • adjuvants may include, but are not limited to mineral salts, such as alum, alum combined with monphosphoryl lipid (MPL) A of Enterobacteria, such as Escherihia coli, Salmonella minnesota, Salmonella typhimurium , or Shigella flexneri or specifically with MPL® (AS04), MPL A of above-mentioned bacteria separately, saponins, such as QS-21, Quil-A, ISCOMs, ISCOMATRIXTM, emulsions such as MF59TM, Montanide® ISA 51 and ISA 720, AS02 (QS21+ squalene+MPL®), liposomes and liposomal formulations such as AS01, synthesized or specifically prepared microparticles and microcarriers such as bacteria-derived outer membrane vesicles (OMV) of NMV
  • gonorrheae Chlamydia trachomatis and others, or chitosan particles
  • depot-forming agents such as Pluronic® block co-polymers, specifically modified or prepared peptides, such as muramyl dipeptide, aminoalkyl glucosaminide 4-phosphates, such as RC529, or proteins, such as bacterial toxoids or toxin fragments.
  • the doses of such other adjuvants can be determined using conventional dose ranging studies.
  • the inventive synthetic nanocarriers can be combined with an antigen different, similar or identical to those coupled to a nanocarrier (with or without adjuvant, utilizing or not utilizing another delivery vehicle) administered separately at a different time-point and/or at a different body location and/or by a different immunization route or with another antigen and/or adjuvant-carrying synthetic nanocarrier administered separately at a different time-point and/or at a different body location and/or by a different immunization route.
  • Synthetic nanocarriers may be combined to form pharmaceutical dosage forms according to the present invention using traditional pharmaceutical mixing methods. These include liquid-liquid mixing in which two or more suspensions, each containing one or more subset of nanocarriers, are directly combined or are brought together via one or more vessels containing diluent. As synthetic nanocarriers may also be produced or stored in a powder form, dry powder-powder mixing could be performed as could the re-suspension of two or more powders in a common media. Depending on the properties of the nanocarriers and their interaction potentials, there may be advantages conferred to one or another route of mixing.
  • compositions that comprise synthetic nanocarriers may comprise inorganic or organic buffers (e.g., sodium or potassium salts of phosphate, carbonate, acetate, or citrate) and pH adjustment agents (e.g., hydrochloric acid, sodium or potassium hydroxide, salts of citrate or acetate, amino acids and their salts) antioxidants (e.g., ascorbic acid, alpha-tocopherol), surfactants (e.g., polysorbate 20, polysorbate 80, polyoxyethylene9-10 nonyl phenol, sodium desoxycholate), solution and/or cryo/lyo stabilizers (e.g., sucrose, lactose, mannitol, trehalose), osmotic adjustment agents (e.g., salts or sugars), antibacterial agents (e.g., benzoic acid, phenol, gentamicin), antifoaming agents (e.g., polydimethylsilozone), preservatives (e.g., thoxy
  • compositions according to the invention comprise synthetic nanocarriers in combination with pharmaceutically acceptable excipients.
  • the compositions may be made using conventional pharmaceutical manufacturing and compounding techniques to arrive at useful dosage forms. Techniques suitable for use in practicing the present invention may be found in Handbook of Industrial Mixing: Science and Practice, Edited by Edward L. Paul, Victor A. Atiemo-Obeng, and Suzanne M. Kresta, 2004 John Wiley & Sons, Inc.; and Pharmaceutics: The Science of Dosage Form Design, 2nd Ed. Edited by M. E. Auten, 2001, Churchill Livingstone.
  • inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.
  • compositions of the invention can be made in any suitable manner, and the invention is in no way limited to compositions that can be produced using the methods described herein. Selection of an appropriate method may require attention to the properties of the particular moieties being associated.
  • the synthetic nanocarriers are manufactured under sterile conditions or are terminally sterilized. This can ensure that resulting composition are sterile and non-infectious, thus improving safety when compared to non-sterile compositions. This provides a valuable safety measure, especially when subjects receiving synthetic nanocarriers have immune defects, are suffering from infection, and/or are susceptible to infection.
  • inventive synthetic nanocarriers may be lyophilized and stored in suspension or as lyophilized powder depending on the formulation strategy for extended periods without losing activity.
  • compositions of the invention can be administered by a variety of routes, including or not limited to subcutaneous, intranasal, oral, intravenous, intraperitoneal, intramuscular, transmucosal, transmucosal, sublingual, rectal, ophthalmic, pulmonary, intradermal, transdermal, transcutaneous or intradermal or by a combination of these routes.
  • Routes of administration also include administration by inhalation or pulmonary aerosol. Techniques for preparing aerosol delivery systems are well known to those of skill in the art (see, for example, Sciarra and Cutie, “Aerosols,” in Remington's Pharmaceutical Sciences, 18th edition, 1990, pp. 1694-1712; incorporated by reference).
  • Doses of dosage forms contain varying amounts of populations of synthetic nanocarriers and/or varying amounts of antigens, adjuvants, etc., according to the invention.
  • the amount of synthetic nanocarriers and/or other elements present in the inventive dosage forms can be varied according to the nature of the elements, the therapeutic benefit to be accomplished, and other such parameters.
  • dose ranging studies can be conducted to establish optimal therapeutic amount of the population of synthetic nanocarriers and the amount of antigens to be present in the dosage form.
  • the synthetic nanocarriers and the antigens are present in the dosage form in an amount effective to generate an immune response to the antigens upon administration to a subject.
  • Inventive dosage forms may be administered at a variety of frequencies.
  • at least one administration of the dosage form is sufficient to generate a pharmacologically relevant response.
  • at least two administrations, at least three administrations, or at least four administrations, of the dosage form are utilized to ensure a pharmacologically relevant response.
  • compositions and methods described herein can be used to induce, enhance, suppress, modulate, direct, or redirect an immune response.
  • the compositions and methods described herein can be used in the diagnosis, prophylaxis and/or treatment of conditions such as cancers, infectious diseases, metabolic diseases, degenerative diseases, non-autoimmune diseases or other disorders and/or conditions.
  • the compositions and methods described herein can also be used for the prophylaxis or treatment of an addiction, such as an addiction to an illegal drug, an over-the-counter drug, a prescription drug.
  • the addiction is to cocaine, heroin, marijuana, methamphetamines, nicotine or a narcotic.
  • the compositions and methods described herein can also be used for the prophylaxis and/or treatment of a condition resulting from the exposure to a toxin, hazardous substance, environmental toxin, or other harmful agent.
  • infectious disease examples include, but are not limited to, viral infectious diseases, such as AIDS, Chickenpox (Varicella), Common cold, Cytomegalovirus Infection, Colorado tick fever, Dengue fever, Ebola hemorrhagic fever, Hand, foot and mouth disease, Hepatitis, Herpes simplex, Herpes zoster, HPV, Influenza (Flu), Lassa fever, Measles, Marburg hemorrhagic fever, Infectious mononucleosis, Mumps, Norovirus, Poliomyelitis, Progressive multifocal leukencephalopathy, Rabies, Rubella, SARS, Smallpox (Variola), Viral encephalitis, Viral gastroenteritis, Viral meningitis, Viral pneumonia, West Nile disease and Yellow fever; bacterial infectious diseases, such as Anthrax, Bacterial Meningitis, Botulism, Brucellosis, Campylobacteriosis, Cat Scratch Disease, Cholera, Diphth
  • cancers include, but are not limited to breast cancer; biliary tract cancer; bladder cancer; brain cancer including glioblastomas and medulloblastomas; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; hematological neoplasms including acute lymphocytic and myelogenous leukemia, e.g., B Cell CLL; T-cell acute lymphoblastic leukemia/lymphoma; hairy cell leukemia; chronic myelogenous leukemia, multiple myeloma; AIDS-associated leukemias and adult T-cell leukemia/lymphoma; intraepithelial neoplasms including Bowen's disease and Paget's disease; liver cancer; lung cancer; lymphomas including Hodgkin's disease and lymphocytic lymphomas; neuroblastomas; oral cancer including squamous cell carcinoma; ovarian cancer including those arising from epit
  • metabolic diseases include, but are not limited to, disorders of carbohydrate metabolism, amino acid metabolism, organic acid metabolism, fatty acid oxidation and mitochondrial metabolism, prophyrin metabolism, purine or pyrimidine metabolism, steroid metabolism, lysosomal mitochondrial function, peroxisomal function, lysosomal storage, urea cycle disorders (e.g., N-acetyl glutamate synthetase deficiency, carbamylphosphate synthase deficiency, ornithine carbamyl transferase deficiency, crginosuccinic aciduria, citrullinaemia, arginase deficiency), amino acid disorders (e.g., Non-ketotic hyperglycinaemia, tyrosinaemia (Type I), Maple syrup urine disease), organic acidemias (e.g, isovaleric acidemia, methylmalonic acidemia, propionic acidemia, glutaric aciduria type I, glutaric acidemia type I & II),
  • degenerative diseases include, but are not limited to, mesenchyme/mesoderm degenerative disease, muscle degenerative disease, endothelial degenerative disease, neurodegenerative disease, degenerative joint disease (e.g., osteoarthritis), major types of degenerative heart disease (e.g., coronary heart disease, congenital heart disease, rheumatic heart disease, angina pectoris), neurodegenerative disease (e.g., Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Lewy body disease, Parkinson's disease, spinal muscular atrophy), neuromuscular disorders (e.g., muscular dystrophy, duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, myotonic muscular dystrophy, congenital myopathy, familial cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, restrictive cardiomyopathy, or coronary artery disease).
  • degenerative heart disease e.g., coronary heart disease,
  • Ovalbumin peptide 323-339 amide acetate salt was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Part #4065609.)
  • PLGA-R848 conjugate of 75/25 lactide/glycolide monomer composition and approximately 4100 Da molecular weight having 5.2% w/w R848 content was synthesized by conjugation of R848 to the terminal-acid of commercially-supplied PLGA via an amide linkage.
  • PLA-PEG-Nicotine with a nicotine-terminated PEG block of 3,500 Da and DL-PLA block of approximately 15,000 Da was synthesized.
  • Solution 1 Ovalbumin peptide 323-339 amide acetate salt @ 70 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • PLGA-R848 @ 75 mg/mL and PLA-PEG-Nicotine @ 25 mg/mL in dichloromethane was prepared by dissolving PLGA-R848 at 100 mg/mL in dichloromethane and PLA-PEG-Nicotine at 100 mg/mL in dichloromethane, then combining 3 parts of the PLGA-R848 solution to 1 part of the PLA-PEG-Nicotine solution.
  • Solution 3 Polyvinyl alcohol @ 50 mg/mL in 100 mM phosphate buffer, pH 8.
  • Solution 4 70 mM phosphate buffer, pH 8.
  • a primary (W1/O) emulsion was first created using Solution 1 & Solution 2.
  • Solution 1 (0.1 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • a secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2 mL) to the primary emulsion and sonicating at 30% amplitude for 40 seconds using the Branson Digital Sonifier 250.
  • the secondary emulsion was added to an open 50 mL beaker containing 30 mL of stiffing 70 mM phosphate buffer solution and was stirred at room temperature for not less than 2 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension. A portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 13800 rcf for 60 minutes at 4° C., removing the supernatant, and re-suspending the pellet in phosphate buffered saline.
  • Ovalbumin peptide 323-339 amide acetate salt was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Part #4065609.) PLGA-R848 conjugate of 75/25 lactide/glycolide monomer composition and approximately 4100 Da molecular weight having 5.2% w/w R848 content was synthesized by conjugation of R848 to the terminal-acid of commercially-supplied PLGA via an amide linkage. PLA with an inherent viscosity of 0.19 dL/g was purchased from Boehringer Ingelheim (Ingelheim Germany. Product Code R202H).
  • PLA-PEG-Nicotine with a nicotine-terminated PEG block of 3,500 Da and DL-PLA block of approximately 15,000 Da was synthesized.
  • Solution 1 Ovalbumin peptide 323-339 amide acetate salt @ 70 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • Solution 2 PLGA-R848 @ 75 mg/mL, PLA-PEG-Nicotine @ 6 mg/mL, and PLA at 19 mg/mL in dichloromethane was prepared by dissolving PLGA-R848 at 100 mg/mL in dichloromethane, PLA-PEG-Nicotine at 100 mg/mL in dichloromethane, and PLA at 100 mg/mL in dichloromethane and then combining 750 ⁇ L of the PLGA-R848 solution with 60 ⁇ L of the PLA-PEG-Nicotine solution and 190 ⁇ L of the PLA solution.
  • Solution 3 Polyvinyl alcohol @ 50 mg/mL in 100 mM phosphate buffer, pH 8.
  • Solution 4 70 mM phosphate buffer, pH 8.
  • a primary (W1/O) emulsion was first created using Solution 1 & Solution 2.
  • Solution 1 (0.1 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • a secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2 mL) to the primary emulsion and sonicating at 10% amplitude for 40 seconds using the Branson Digital Sonifier 250.
  • the secondary emulsion was added to an open 50 mL beaker containing 30 mL of stiffing 70 mM phosphate buffer solution and was stirred at room temperature for not less than 2 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension. A portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 13800 rcf for 60 minutes at 4° C., removing the supernatant, and re-suspending the pellet in phosphate buffered saline.
  • Ovalbumin peptide 323-339 amide acetate salt was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Part #4065609.)
  • PLGA-R848 conjugate of 75/25 lactide/glycolide monomer composition and approximately 4100 Da molecular weight having 5.2% w/w R848 content was synthesized by conjugation of R848 to the terminal-acid of commercially-supplied PLGA via an amide linkage.
  • PLA-PEG-Nicotine with a nicotine-terminated PEG block of 3,500 Da and DL-PLA block of approximately 15,000 Da was synthesized.
  • PLA-PEG-OMe block co-polymer with a PEG-OMe (Methyl-ether capped PEG) block of 2,000 Da and DL-PLA block of approximately 19,000 Da was synthesized.
  • Solution 1 Ovalbumin peptide 323-339 amide acetate salt @ 70 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • Solution 2 PLGA-R848 @ 75 mg/mL, PLA-PEG-Nicotine @ 6 mg/mL, and PLA-PEG-OMe at 19 mg/mL in dichloromethane was prepared by dissolving PLGA-R848 at 100 mg/mL in dichloromethane, PLA-PEG-Nicotine at 100 mg/mL in dichloromethane, and PLA-PEG-OMe at 100 mg/mL in dichloromethane and then combining 750 ⁇ L of the PLGA-R848 solution with 60 ⁇ L of the PLA-PEG-Nicotine solution and 190 ⁇ L of the PLA-PEG-OMe solution.
  • Solution 3 Polyvinyl alcohol @ 50 mg/mL in 100 mM phosphate buffer, pH 8.
  • Solution 4 70 mM phosphate buffer, pH 8.
  • a primary (W1/O) emulsion was first created using Solution 1 & Solution 2.
  • Solution 1 (0.1 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • a secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2 mL) to the primary emulsion and sonicating at 10% amplitude for 40 seconds using the Branson Digital Sonifier 250.
  • the secondary emulsion was added to an open 50 mL beaker containing 30 mL of stiffing 70 mM phosphate buffer solution and was stirred at room temperature for not less than 2 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension. A portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 13800 rcf for 60 minutes at 4° C., removing the supernatant, and re-suspending the pellet in phosphate buffered saline.
  • Ovalbumin peptide 323-339 amide acetate salt was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Product code 4065609.) PLGA-R848 of approximately 5,200 Da made from PLGA of 3:1 lactide to glycolide ratio and having 12.7% w/w conjugated R848 content was synthesized. PLA with an inherent viscosity of 0.21 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211. Product Code 100 DL 2A.) PLA-PEG 2k -OMe block co-polymer with a methyl ether terminated PEG block of 2,000 Da and DL-PLA block of approximately 19,000 Da was synthesized.
  • PLA-PEG 5k -OMe block co-polymer with a methyl ether terminated PEG block of 5,000 Da and DL-PLA block of approximately 20,000 Da was synthesized.
  • PLA-PEG-Nicotine block copolymer having a nicotine-terminated PEG block of 5,000 Da and DL-PLA block of approximately 21,000 Da was synthesized.
  • Solution 1 Ovalbumin peptide 323-339 amide acetate salt @ 20 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • Solution 2 Stock solutions, each containing one of the individual polymers (PLGA-R848, PLA, PLA-PEG 2k -OMe, PLA-PEG 5k -OMe, and PLA-PEG-Nicotine), were prepared in dichloromethane at 100 mg/mL. These single-polymer stocks were combined according to Table 4 to generate a unique “Solution 2” for each of the nanocarrier lots.
  • Solution 3 Polyvinyl alcohol @ 50 mg/mL in 100 mM in 100 mM phosphate buffer, pH 8.
  • Solution 4 70 mM phosphate buffer, pH 8.
  • a primary (W1/O) emulsion was first created using Solution 1 & Solution 2.
  • Solution 1 (0.2 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • a secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2.0 mL) to the primary emulsion, vortexing to create a course dispersion, and then sonicating at 30% amplitude for 40 seconds using the Branson Digital Sonifier 250.
  • the secondary emulsion was added to an open 50 mL beaker containing 70 mM phosphate buffer solution (30 mL) and stirred at room temperature for 2 to 3 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension.
  • a portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 21,000 rcf for 45 minutes, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. This washing procedure was repeated and then the pellet was re-suspended in phosphate buffered saline to achieve a nanocarrier suspension having a nominal concentration of 10 mg/mL on a polymer basis.
  • the suspension was stored frozen at ⁇ 20° C. until use.
  • PLA-PEG- PLA-PEG 2k- PLA-PEG 5k- Ova Peptide R848 Nic OMe OMe PLA Load (% Load Gr. NC Lot # (% w/w) (% w/w) (% w/w) (% w/w) w/w) (% w/w) 1 4 25 0 0 25 2.0 4.1 3 6 50 0 0 0 1.0 3.9 4 7 25 25 0 0 1.1 3.9 7 10 25 0 25 0 0.1 4.0 5 8 37.5 12.5 0 0 1.0 4.4 6 9 37.5 0 12.5 0 0.7 4.1 2 5 37.5 0 0 12.5 1.8 4.4 9 12 0 0 0 50 0.7 4.2 8 11 0 0 50 0 0 4.6
  • mice were inoculated with nicotine-presenting R848-adjuvanted nanocarrier formulations. Groups 2 through 4 were evaluated for antigen-presentation and anti-carrier effect.
  • the nicotine-presenting conjugate in the nanocarrier is a PLA-PEG3.5k-Nicotine construct of ⁇ 15,350 Mw PLA and ⁇ 3500 Mw PEG.
  • the study groups used formulations having varied content of the PLA-PEG3.5k-Nicotine construct, partially-substituting the construct with either a ⁇ 20 k Mw PLA polymer or with a PLA-PEG2k-OMe polymer of ⁇ 18,700 Mw PLA and 2000 Mw PEG. Mice were immunized at days 0, 14, and 28 and serum was collected at days 26 and 40. The formulations are described as tabulated below and the anti-nicotine and resultant anti-PEG antibodies at day 40 are presented in FIG. 1 .
  • Antibody titers to nicotine and PEG were determined by ELISA using sera collected from immunized mice. Plates were coated with 100 ⁇ L per well of either polylysine-nicotine (PLL-Nic), PLA-PEG-OMe, or polylysine-PEG (PLL-PEG-OMe) and incubated overnight at 4° C. Plates were washed three times with wash buffer (0.05% Tween-20 in PBS) and blocked at room temperature for two hours using 200 ⁇ L per well of 10% fetal bovine serum (FBS) in PBS (diluent). Serum samples were added to the wells of the top row of a 96-well plate and diluted 3-fold down the plate to obtain an antibody titration curve.
  • PLL-Nic polylysine-nicotine
  • PLA-PEG-OMe polylysine-PEG
  • PBS fetal bovine serum
  • a mouse anti-nicotine monoclonal antibody or a biotinylated rabbit anti-PEG monoclonal antibody were used in two columns of the plate.
  • serum from unimmunized mice or isotype control antibodies were used. Plates were incubated for two hours at room temperature and washed three times with wash buffer. Secondary detection antibody (biotinylated goat anti-mouse Ig, BD Biosciences, Catalog #553999) was diluted 1:1000 in diluent and 100 ⁇ L was added to each well of the plate. Plates were incubated for one hour at room temperature and washed three times with wash buffer.
  • Detection enzyme streptavidin-horseradish peroxidase, SA-HRP, BD Biosciences, Catalog #554066
  • SA-HRP horseradish peroxidase
  • BD Biosciences, Catalog #555214 TMB substrate
  • Stop solution (2N sulfuric acid) was added to stop the enzymatic reaction (50 ⁇ L per well) and the optical density of the plates was read using a plate reader at 450 nm wavelength with subtraction of 570 nm.
  • the half maximal effective concentration (EC50) of antibodies was calculated based on the generated four-parameter logistic curve-fit graph.
  • the average OD value of two diluent-only blanks (negative control) was subtracted from the rest of the wells of the plate.
  • the EC50 value of the average top OD value of the two standards was used to determine the EC50 value for the rest of the plate.
  • the data show a non-linear increase in anti-nicotine (target) antibodies with higher nicotine content of the nanocarrier (25% vs. 6% PLA-PEG3.5k-Nicotine); a 5-fold increase in PLA-PEG3.5k-Nicotine yielded a 21 to 74-fold higher anti-nicotine response while achieving a ⁇ 31:1 ratio of anti-nicotine to anti-PEG antibodies.
  • the anti-PEG titer exceeded the nicotine titer to yield a 1:10 ratio of anti-nicotine to anti-PEG antibodies.
  • Anti-PEG antibody titers were 8-fold higher in formulations containing 6% PLA-PEG3.5k-Nicotine than those containing 25% PLA-PEG3.5k-Nicotine. Additionally, in the group that was inoculated with Lot 2 (contained 19% PLA polymer instead of 19% PLA-PEG2k-OMe), anti-PEG antibody levels were nearly absent.
  • mice were inoculated with nicotine-presenting R848-adjuvanted nanocarrier formulations. All formulations were prepared on the same date using a consistent set of solutions and materials. All tested nanocarriers were formulated with a 50% PLGA-R848 polymer content, with the remaining 50% of the composition made up of one or more of the following polymers: PLA-PEG5k-Nicotine, PLA-PEG2k-OMe, PLA-PEG5k-OMe, or PLA.
  • the on-target (anti-nicotine) antibody titers and off-target (anti-PEG) antibody titers were determined by ELISA as described above (except PEG length in the ELISA coating materials was adjusted to match the length used in the nanoparticles used for injections when applicable) and are presented in FIG. 2 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • AIDS & HIV (AREA)
  • Pulmonology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed are synthetic nanocarrier compositions that comprise B cell antigen for desired antibody production and an off-target response attenuating polymeric coating as well as related methods.

Description

    RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. §119 of U.S. provisional application 61/513,496, 61/513,526 and 61/513,527, each filed Jul. 29, 2011, the entire contents of each of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to synthetic nanocarrier compositions that comprise an off-target response attenuating polymeric coating, and related methods, such as for treating diseases or conditions in which generating an immune response against a B cell antigen is desirable.
  • BACKGROUND OF THE INVENTION
  • Anti-carrier antibody generation by a nanocarrier vaccine is an off-target side effect that may have direct unintended or undesirable impacts on pharmaceutical or biomedical formulations of related compositions, and may interfere with the generation of desired anti-B cell antigen antibodies. Therefore, improved compositions and therapeutic methods to avoid or minimize undesirable anti-carrier effects are needed to provide improved therapies for diseases and conditions in which generating an immune response against a B cell antigen is desirable.
  • SUMMARY OF THE INVENTION
  • In one aspect, a composition comprising a population of synthetic nanocarriers, wherein the synthetic nanocarriers comprise a B cell antigen and an off-target response attenuating polymeric coating is provided. In one embodiment, the B cell antigen is coupled to the synthetic nanocarrier.
  • In another aspect, a composition comprising a population of synthetic nanocarriers, wherein the synthetic nanocarriers comprise (i) a B cell antigen and (ii) a coating comprising one or more polymers present at at least a portion of the surface of the synthetic nanocarriers is provided. In one embodiment, the B cell antigen is coupled to the synthetic nanocarrier.
  • In an embodiment of any of the compositions provided, the synthetic nanocarriers generate on average across the population of synthetic nanocarriers an antibody response against the B cell antigen that is at least two-fold greater than an off-target antibody response. In another embodiment, the antibody response against the B cell antigen is at least five-fold greater than the off-target antibody response. In another embodiment, the antibody response against the B cell antigen is at least ten-fold greater than the off-target antibody response. In another embodiment, the antibody response against the B cell antigen is at least 25-fold greater than the off-target antibody response. In another embodiment, the antibody response against the B cell antigen is at least 50-fold greater than the off-target antibody response. In another embodiment, the antibody response against the B cell antigen is at least 100-fold greater than the off-target antibody response. In one embodiment, the off-target antibody response is an undesired antibody response not specific to the B cell antigen. In another embodiment, the off-target antibody response is an antibody response again the synthetic nanocarrier. In another embodiment, the off-target antibody response is an antibody response again the coating. In another embodiment, the off-target antibody response is an antibody response against a polymer of the coating. In another embodiment, the off-target antibody response is an IgG or IgA antibody response. In another embodiment, the desired antibody response is also an IgG or IgA antibody response, respectively. In another embodiment, the off-target antibody response is an IgG antibody response and the desired antibody response is also an IgG antibody response. In another embodiment, the off-target antibody response is an IgA antibody response and the desired antibody response is also an IgA antibody response. In another embodiment, the antibody responses are each measured as an antibody titer with an ELISA. In another embodiment, the antibody titer is an IgG or IgA titer (EC50).
  • In one embodiment, the B cell antigen is coupled to the coating. In another embodiment, the B cell antigen is coupled to one or more polymers of the coating. In another embodiment, the B cell antigen is coupled to another part of the synthetic nanocarriers.
  • In yet another embodiment, the off-target antibody response is an undesired antibody response not specific to the B cell antigen. In another embodiment, the off-target antibody response is an antibody response against a polymer (or portion thereof) of the nanocarrier or its coating.
  • In one embodiment, the antibody response against the B cell antigen is at least five-fold greater than the antibody response against a polymer of the off-target response attenuating polymeric coating. In another embodiment, the antibody response is at least ten-fold greater. In still another embodiment, the antibody response is at least 25-fold greater. In yet another embodiment, the antibody response is at least 50-fold greater. In a further embodiment, the antibody response is at least 100-fold greater.
  • In one embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 2000 g/mole. In another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 3000 g/mole. In yet another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 4000 g/mole. In still another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 5000 g/mole. In another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a weight average or number average molecular weight of between 3500 g/mole and 5000 g/mole In a further embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of 5000 g/mole. In another embodiment, the B cell antigen is coupled to the polymer. In one embodiment of any of the foregoing embodiments, the molecular weight is the weight average molecular weight. In another embodiment of any of the foregoing embodiments, the molecular weight is the number average molecular weight. In still another embodiment of any of the foregoing embodiments where the polymer does not comprise polyethylene glycol, the molecular weight is the weight average molecular weight. In yet another embodiment of any of the foregoing embodiments where the polymer does comprise polyethylene glycol, the molecular weight is the number average molecular weight.
  • In still another embodiment, the off-target response attenuating polymeric coating comprises another polymer. This other polymer may be the same type of polymer as the aforementioned polymer or it may be a different type of polymer. In one embodiment, this other polymer has a molecular weight of greater than 2000 g/mole. In another embodiment, this other polymer has a molecular weight of greater than 3000 g/mole. In still another embodiment, this other polymer has a molecular weight of greater than 4000 g/mole. In yet another embodiment, this other polymer has a molecular weight of greater than 5000 g/mole. In still another embodiment, this other polymer has a molecular weight of between 3500 g/mole and 5000 g/mole. In yet another embodiment, this other polymer has a molecular weight of 5000 g/mole. In one embodiment, the B cell antigen is coupled to this other polymer. In another embodiment, the B cell antigen is coupled to this other polymer and the aforementioned polymer. In one embodiment of any of the foregoing embodiments, the molecular weight is the weight average molecular weight. In another embodiment of any of the foregoing embodiments, the molecular weight is the number average molecular weight. In still another embodiment of any of the foregoing embodiments where the polymer does not comprise polyethylene glycol, the molecular weight is the weight average molecular weight. In yet another embodiment of any of the foregoing embodiments where the polymer does comprise polyethylene glycol, the molecular weight is the number average molecular weight.
  • In one embodiment, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1. In another embodiment, the ratio is between 0.01 and 1. In still another embodiment, the ratio is between 0.1 and 1. In yet another embodiment, the ratio is between 0.25 and 1. In a further embodiment, the ratio is between 0.5 and 1. In still a further embodiment, the ratio is between 0.75 and 1. In yet another embodiment, the ratio is between 0.1 and 0.5. In a further embodiment, the ratio is 0.5.
  • In one embodiment, the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • In another embodiment, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the populariton of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1. In another embodiment, the ratio is between 0.01 and 1. In still another embodiment, the ratio is between 0.1 and 1. In yet another embodiment, the ratio is between 0.25 and 1. In a further embodiment, the ratio is between 0.5 and 1. In still a further embodiment, the ratio is between 0.75 and 1. In yet another embodiment, the ratio is between 0.1 and 0.5. In a further embodiment, the ratio is 0.5.
  • In one embodiment, the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • In still another embodiment, the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the populariton of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1. In another embodiment, the ratio is between 0.01 and 1. In still another embodiment, the ratio is between 0.1 and 1. In yet another embodiment, the ratio is between 0.25 and 1. In a further embodiment, the ratio is between 0.5 and 1. In still a further embodiment, the ratio is between 0.75 and 1. In yet another embodiment, the ratio is between 0.1 and 0.5. In a further embodiment, the ratio is 0.5.
  • In one embodiment, the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • In one embodiment, the polymer and/or other polymer comprises polyethylene glycol. In another embodiment, the polymer and/or other polymer comprises a polyethyloxazoline. In still another embodiment, the polymer and/or other polymer comprises a polyamino acid, polycarbonate, hydrophilic polyacetal, hydrophilic polyketal, polysaccharide, polypropylene or polyethyleneimine.
  • In one embodiment, the B cell antigen comprises a protein, peptide, small molecule or oligosaccharide. In another embodiment, the B cell antigen comprises a cancer antigen, an infection or infectious disease antigen, a non-autoimmune or degenerative disease antigen or an addiction antigen.
  • In yet another embodiment, the composition and/or B cell antigen further comprises an additional antigen. In one embodiment, the additional antigen is a T cell antigen. In another embodiment, the T cell antigen is a T helper cell antigen. In yet a further embodiment, the T cell antigen is a T helper cell antigen. In still a further embodiment, the additional antigen is another B cell antigen. In still another embodiment, the one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 20 or more, etc. additional antigens are comprised in the compositions provided herein. In one embodiment, the additional antigens are B cell or T cell antigens or some combination thereof. In another embodiment, all of the additional antigens are B cell antigens.
  • In another embodiment, the additional antigen is also coupled to the synthetic nanocarriers. In a further embodiment, the additional antigen is also coupled to the off-target response attenuating polymeric coating of the synthetic nanocarriers. In yet another embodiment, the additional antigen is coupled to another population of synthetic nanocarriers. In still another embodiment, the additional antigen is not coupled to any synthetic nanocarriers.
  • In one embodiment, the composition further comprises one or more adjuvants.
  • In another embodiment, the composition further comprises one or more pharmaceutically acceptable excipients.
  • In another aspect, a dosage form comprising any of the compositions provided is provided.
  • In yet another aspect, a vaccine comprising any of the dosage forms provided is provided.
  • In still another aspect, a method comprising administering any of the compositions provided herein to a subject in need thereof is provided. In one embodiment, the subject is a human. In another embodiment, the subject has or is at risk of having cancer. In still another embodiment, the subject has or is at risk of having an infection or infectious disease. In yet another embodiment, the subject has or is at risk of having a non-autoimmune or degenerative disease. In a further embodiment, the subject has or is at risk of having an addiction.
  • In another embodiment, any of the compositions provided herein is administered by oral, subcutaneous, pulmonary, intranasal, intradermal, intravenous, transmucosal, intramucosal or intramuscular administration.
  • In another aspect, a method comprising producing synthetic nanocarriers that comprise a B cell antigen and an off-target response attenuating polymeric coating and determining the level of antibody response against the B cell antigen and the level of off-target antibody response is provided. In one embodiment, the method further comprises comparing the antibody response against the B cell antigen and the off-target antibody response. The antibody response against the B cell antigen and the off-target antibody response can be determined with any of the methods provided herein. The synthetic nanocarriers may be any of the synthetic nanocarriers described herein.
  • In another aspect, a process for producing an off-target response attenuating polymeric coating, comprising the steps of: (a) providing a composition comprising one or more polymers present at at least a portion of the surface of a synthetic nanocarrier; (b) coupling a B cell antigen to said synthetic nanocarrier under conditions where: (i) the molecular weight of the polymers; and/or (ii) the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers; and/or (iii) the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer not coupled to the B cell antigen; and/or (iv) the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers; and/or (v) the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen; and/or (vi) the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers; and/or (vii) the ratio by weight averaged across the population of synthetic nanocarriers of polymer not coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen; are selected such that an antibody response against the B cell antigen is at least two-fold greater than an off-target antibody response. In one embodiment, the antibody response against the B cell antigen and the off-target antibody response are each IgG antibody responses. In another embodiment, they are each IgA antibody responses. In another embodiment, these antibody responses are measured as antibody titers (EC50) with an ELISA.
  • In one embodiment, the ratio is based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • In one embodiment, the molecular weight, ratio of average number and/or ratio by weight of the one or more polymers is as defined herein. In another embodiment, the molecular weight is the weight average molecular weight. In another embodiment of any of the foregoing embodiments, the molecular weight is the number average molecular weight. In still another embodiment of any of the foregoing embodiments where the polymer does not comprise polyethylene glycol, the molecular weight is the weight average molecular weight. In yet another embodiment of any of the foregoing embodiments where the polymer does comprise polyethylene glycol, the molecular weight is the number average molecular weight.
  • In another aspect, any of the compositions, dosage forms or vaccines provided herein can be used for therapy or prophylaxis.
  • In still another aspect, any of the compositions, dosage forms or vaccines provided herein can be used for any of the methods provided herein.
  • In yet another aspect, any of the compositions, dosage forms or vaccines provided herein can be used in vaccination.
  • In a further aspect, any of the compositions, dosage forms or vaccines provided herein can be for use in a method of therapy or prophylaxis of cancer, an infection or infectious disease, a non-autoimmune or degenerative disease or an addiction.
  • In still a further aspect, any of the compositions, dosage forms or vaccines provided herein can be for use in a method of therapy or prophylaxis comprising administration by oral, subcutaneous, pulmonary, intranasal, intradermal, intravenous, transmucosal, intramucosal or intramuscular administration.
  • In another aspect, a use of any of the compositions provided herein for the manufacture of a medicament, for example a vaccine, for use in any of the methods provided herein is provided.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows the anti-nicotine antibodies (target or desired antibodies) and anti-PEG antibodies (off-target or undesired antibodies) at day 40 after inoculation.
  • FIG. 2 shows the anti-nicotine antibody titers and anti-PEG antibody titers following a prime and two-boost inoculation schedule.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified materials or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting of the use of alternative terminology to describe the present invention.
  • All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety for all purposes.
  • As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. For example, reference to “a polymer” includes a mixture of two or more such molecules or a mixture of differing molecular weights of a single polymer species, reference to “a synthetic nanocarrier” includes a mixture of two or more such synthetic nanocarriers or a plurality of such synthetic nanocarriers, reference to “a DNA molecule” includes a mixture of two or more such DNA molecules or a plurality of such DNA molecules, reference to “an adjuvant” includes mixture of two or more such adjuvant molecules or a plurality of such adjuvant molecules, and the like.
  • As used herein, the term “comprise” or variations thereof such as “comprises” or “comprising” are to be read to indicate the inclusion of any recited integer (e.g. a feature, element, characteristic, property, method/process step or limitation) or group of integers (e.g. features, elements, characteristics, properties, method/process steps or limitations) but not the exclusion of any other integer or group of integers. Thus, as used herein, the term “comprising” is inclusive and does not exclude additional, unrecited integers or method/process steps.
  • In embodiments of any of the compositions and methods provided herein, “comprising” may be replaced with “consisting essentially of” or “consisting of”. The phrase “consisting essentially of” is used herein to require the specified integer(s) or steps as well as those which do not materially affect the character or function of the claimed invention. As used herein, the term “consisting” is used to indicate the presence of the recited integer (e.g. a feature, element, characteristic, property, method/process step or limitation) or group of integers (e.g. features, elements, characteristics, properties, method/process steps or limitations) alone.
  • A. INTRODUCTION
  • Hapten-carrier conjugates are commonly employed constructs for vaccine formulation. A well-known phenomenon related to their use is the creation, or augmentation, of an immune response to the carrier (e.g., anti-carrier antibodies, which are also referred to herein as undesired or off-target antibodies). The anti-carrier response is often of concern as it is not the intended effect of the vaccine and it may relate to undesirable side effects. In the similar case of nanocarrier vaccine formulations, such as biocompatible synthetic nanocarriers presenting an antigen, an anti-carrier effect may also be observed, such as initiated or enhanced undesired antibody generation to the synthetic components of the nanocarrier. In the case of nanocarriers which contain synthetic components, even those with an extended history of safe medical use in humans (e.g., PLGA, PLA, or PEG), anti-carrier effects can result and attenuate the intended vaccine response or alter the vaccine's immune response to those components in other medical applications. It is, therefore, valuable to identify means to formulate nanocarrier vaccines such that the anti-carrier effect is attenuated or absent.
  • The inventors have unexpectedly and surprisingly discovered that the problems and limitations noted above can be overcome by practicing the invention disclosed herein. The inventors believe that the invention provided herein is the first of its kind to offer the ability to optimize a target antibody response specific for a B cell antigen of a synthetic nanocarrier composition while attenuating an off-target anti-carrier antibody response. Prior studies have not addressed the design of synthetic nanocarriers relative to optimizing humoral immune responses. Specifically, the inventors have discovered that nanocarriers can be rationally designed as a function of B cell antigen content and/or polymer molecular weights or composition to optimize target antibody generation to the B cell antigen and minimize or eliminate off-target antibody generation. In particular, the inventors have unexpectedly discovered that it is possible to provide compositions with improved target antibody response versus off-target antibody response, and related methods, that comprise a population of synthetic nanocarriers, wherein the synthetic nanocarriers comprise (i) a B cell antigen and (ii) an off-target response attenuating polymeric coating, wherein the synthetic nanocarriers generate on average across the population of synthetic nanocarriers an antibody response against the B cell antigen that is at least two-fold greater than an off-target antibody response. In one embodiment, the respective antibody responses are measured as an antibody titer (e.g., IgG or IgA EC50) with ELISA. In one embodiment, the off-target antibody response is an undesired antibody response against the synthetic nanocarrier or a component thereof not specific to the B cell antigen. In another embodiment, the off-target antibody response is an antibody response against a polymer (or portion thereof) of the synthetic nanocarrier, such as a polymer (or portion thereof) of the coating. The B cell antigen may be coupled to the off-target response attenuating polymeric coating. In another embodiment, the B cell antigen is not coupled to the off-target response attenuating polymeric coating but is coupled to the synthetic nanocarrier. In embodiments, the B cell antigen or portion thereof is present at the surface of the synthetic nanocarrier.
  • Preferably, in one embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole given as the weight average molecular weight or number average molecular weight. In another embodiment, the off-target response attenuating polymeric coating comprises a polymer with a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole. The B cell antigen may be coupled to the polymer, another polymer or to another portion of the synthetic nanocarrier that is not the coating. In another embodiment, wherein the B cell antigen is coupled to the other polymer, the other polymer has a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole given as a weight average molecular weight or as a number average molecular weight. In another embodiment, the other polymer has a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole. In a certain preferred embodiment, the polymer and other polymer both have a molecular weight of 5000 g/mole given as a weight average molecular weight or a number average molecular weight. In still another embodiment of any of the foregoing embodiments where the polymer does not comprise polyethylene glycol, the molecular weight is the weight average molecular weight. In yet another embodiment of any of the foregoing embodiments where the polymer does comprise polyethylene glycol, the molecular weight is the number average molecular weight.
  • In another preferred embodiment, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, or the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1, 0.01 and 1, 0.1 and 1, 0.25 and 1, 0.5 and 1, 0.75 and 1, 0.01 and 0.75, 0.01 and 0.5, 0.01 and 0.25, 0.1 and 0.75, 0.1 and 0.5 or 0.1 and 0.25. In embodiments, this ratio may be calculated for the polymeric coating of the synthetic nanocarriers. In other embodiments, this ratio is calculated for the synthetic nanocarriers as a whole. The polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen may be the same type of polymer or may be different types of polymers. In one embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole. In another embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole. Again, in a certain preferred embodiment, the polymer and other polymer both have a molecular weight of 5000 g/mole. As above the molecular weight may be the weight average molecular weight or it may be the number average molecular weight.
  • In yet another preferred embodiment, the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer not coupled to the B cell antigen, polymer coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen, or polymer not coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen is greater than 0.1, 0.25 or 0.5 and less than 1. Again, this ratio may be calculated based on the polymeric coating of the synthetic nanocarriers. In other embodiments, this ratio is calculated based on the synthetic nanocarriers as a whole. Again, the polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen may be the same type of polymer or may be different types of polymers. In one embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole. In another embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole. Again, in a certain preferred embodiment, the polymer and other polymer both have a molecular weight of 5000 g/mole. The molecular weight may be a weight average molecular weight or it may be a number average molecular weight.
  • In one embodiment, any of the ratios referred to herein can be based on the polymeric coating across the population of synthetic nanocarriers. In another embodiment, the ratio is based on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
  • In another aspect, dosage forms and vaccines comprising any of the compositions provided herein are provided.
  • In still another aspect, any of the compositions may be administered to a subject in need thereof. The subject may have or be at risk of having cancer, an infection or infectious disease, a non-autoimmune or degenerative disease or an addiction.
  • The invention will now be described in more detail below.
  • B. DEFINITIONS
  • “Addiction antigens” are antigens associated with an addiction or addictive substance. Such antigens include those that can generate an antibody response against an addictive substance. Such antigens can comprise an addictive substance or a portion thereof.
  • “Adjuvant” means an agent that does not constitute a specific antigen, but boosts the strength and longevity of immune response to a concomitantly administered antigen. Such adjuvants may include, but are not limited to stimulators of pattern recognition receptors, such as Toll-like receptors, RIG-1 and NOD-like receptors (NLR), mineral salts, such as alum, alum combined with monphosphoryl lipid (MPL) A of Enterobacteria, such as Escherihia coli, Salmonella minnesota, Salmonella typhimurium, or Shigella flexneri or specifically with MPL® (AS04), MPL A of above-mentioned bacteria separately, saponins, such as QS-21, Quil-A, ISCOMs, ISCOMATRIX™, emulsions such as MF59™, Montanide® ISA 51 and ISA 720, AS02 (QS21+ squalene+MPL®), liposomes and liposomal formulations such as AS01, synthesized or specifically prepared microparticles and microcarriers such as bacteria-derived outer membrane vesicles (OMV) of N. gonorrheae, Chlamydia trachomatis and others, or chitosan particles, depot-forming agents, such as Pluronic® block co-polymers, specifically modified or prepared peptides, such as muramyl dipeptide, aminoalkyl glucosaminide 4-phosphates, such as RC529, or proteins, such as bacterial toxoids or toxin fragments.
  • In embodiments, adjuvants comprise agonists for pattern recognition receptors (PRR), including, but not limited to Toll-Like Receptors (TLRs), specifically TLRs 2, 3, 4, 5, 7, 8, 9 and/or combinations thereof. In other embodiments, adjuvants comprise agonists for Toll-Like Receptors 3, agonists for Toll-Like Receptors 7 and 8, or agonists for Toll-Like Receptor 9; preferably the recited adjuvants comprise imidazoquinolines; such as R848; adenine derivatives, such as those disclosed in U.S. Pat. No. 6,329,381 (Sumitomo Pharmaceutical Company), US Published Patent Application 2010/0075995 to Biggadike et al., or WO 2010/018132 to Campos et al.; immunostimulatory DNA; or immunostimulatory RNA. In specific embodiments, synthetic nanocarriers incorporate as adjuvants compounds that are agonists for toll-like receptors (TLRs) 7 & 8 (“TLR 7/8 agonists”). Of utility are the TLR 7/8 agonist compounds disclosed in U.S. Pat. No. 6,696,076 to Tomai et al., including but not limited to imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, and 1,2-bridged imidazoquinoline amines. Preferred adjuvants comprise imiquimod and resiquimod (also known as R848). In specific embodiments, an adjuvant may be an agonist for the DC surface molecule CD40. In certain embodiments, to stimulate immunity rather than tolerance, a synthetic nanocarrier incorporates an adjuvant that promotes DC maturation (needed for priming of naive T cells) and the production of cytokines, such as type I interferons, which promote antibody immune responses. In embodiments, adjuvants also may comprise immunostimulatory RNA molecules, such as but not limited to dsRNA, poly I:C or poly I:poly C12U (available as Ampligen®, both poly I:C and poly I:polyC12U being known as TLR3 stimulants), and/or those disclosed in F. Heil et al., “Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8” Science 303(5663), 1526-1529 (2004); J. Vollmer et al., “Immune modulation by chemically modified ribonucleosides and oligoribonucleotides” WO 2008033432 A2; A. Forsbach et al., “Immunostimulatory oligoribonucleotides containing specific sequence motif(s) and targeting the Toll-like receptor 8 pathway” WO 2007062107 A2; E. Uhlmann et al., “Modified oligoribonucleotide analogs with enhanced immunostimulatory activity” U.S. Pat. Appl. Publ. 2006241076; G. Lipford et al., “Immunostimulatory viral RNA oligonucleotides and use for treating cancer and infections” WO 2005097993 A2; G. Lipford et al, “Immunostimulatory G,U-containing oligoribonucleotides, compositions, and screening methods” WO 2003086280 A2. In some embodiments, an adjuvant may be a TLR-4 agonist, such as bacterial lipopolysacccharide (LPS), VSV-G, and/or HMGB-1. In some embodiments, adjuvants may comprise TLR-5 agonists, such as flagellin, or portions or derivatives thereof, including but not limited to those disclosed in U.S. Pat. Nos. 6,130,082, 6,585,980, and 7,192,725. In specific embodiments, synthetic nanocarriers incorporate a ligand for Toll-like receptor (TLR)-9, such as immunostimulatory DNA molecules comprising CpGs, which induce type I interferon secretion, and stimulate T and B cell activation leading to increased antibody production and cytotoxic T cell responses (Krieg et al., CpG motifs in bacterial DNA trigger direct B cell activation. Nature. 1995. 374:546-549; Chu et al. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J. Exp. Med. 1997. 186:1623-1631; Lipford et al. CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur. J. Immunol. 1997. 27:2340-2344; Roman et al Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat. Med. 1997. 3:849-854; Davis et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J. Immunol. 1998. 160:870-876; Lipford et al., Bacterial DNA as immune cell activator. Trends Microbiol. 1998. 6:496-500; U.S. Pat. No. 6,207,646 to Krieg et al.; U.S. Pat. No. 7,223,398 to Tuck et al.; U.S. Pat. No. 7,250,403 to Van Nest et al.; or U.S. Pat. No. 7,566,703 to Krieg et al.
  • In some embodiments, adjuvants may be proinflammatory stimuli released from necrotic cells (e.g., urate crystals). In some embodiments, adjuvants may be activated components of the complement cascade (e.g., CD21, CD35, etc.). In some embodiments, adjuvants may be activated components of immune complexes. The adjuvants also include complement receptor agonists, such as a molecule that binds to CD21 or CD35. In some embodiments, the complement receptor agonist induces endogenous complement opsonization of the synthetic nanocarrier. In some embodiments, adjuvants are cytokines, which are small proteins or biological factors (in the range of 5 kD-20 kD) that are released by cells and have specific effects on cell-cell interaction, communication and behavior of other cells. In some embodiments, the cytokine receptor agonist is a small molecule, antibody, fusion protein, or aptamer.
  • In embodiments, at least a portion of the dose of adjuvant may be coupled to synthetic nanocarriers, preferably, all of the dose of adjuvant is coupled to synthetic nanocarriers. In other embodiments, at least a portion of the dose of the adjuvant is not coupled to the synthetic nanocarriers. In embodiments, the dose of adjuvant comprises two or more types of adjuvants or multiple adjuvants of the same type. For instance, and without limitation, adjuvants that act on different TLR receptors may be combined. As an example, in an embodiment a TLR 7/8 agonist may be combined with a TLR9 agonist. In another embodiment, a TLR 7/8 agonist may be combined with a TLR9 agonist. In yet another embodiment, a TLR9 agonist may be combined with a TLR9 agonist. In another embodiment, two TLR9 agonists may be combined.
  • “Administering” or “administration” means providing a material, such as a drug, to a subject in a manner that is pharmacologically useful.
  • “Amount effective” is any amount of a composition provided herein that produces one or more desired responses, such as one or more desired immune responses. This amount can be for in vitro or in vivo purposes. For in vivo purposes, the amount can be one that a clinician would believe may have a clinical benefit for a subject in need of a humoral immune response to a B cell antigen. Such subjects include those that have or are at risk of having cancer, an infection or infectious disease, a non-autoimmune or degenerative disease or an addiction.
  • Amounts effective include those that involve the production of an antibody response against a B cell antigen administered in one of the inventive compositions provided herein. A subject's antibody response can be monitored by routine methods. An amount that is effective to produce one or more desired immune responses can also be an amount of a composition provided herein that produces a desired therapeutic endpoint or a desired therapeutic result.
  • Amounts effective will depend, of course, on the particular subject being treated; the severity of a condition, disease or disorder; the individual patient parameters including age, physical condition, size and weight; the duration of the treatment; the nature of concurrent therapy (if any); the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a patient may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reason.
  • In general, doses of the compositions of the invention can range from about 10 μg/kg to about 100,000 μg/kg. In some embodiments, the doses can range from about 0.1 mg/kg to about 100 mg/kg. In still other embodiments, the doses can range from about 0.1 mg/kg to about 25 mg/kg, about 25 mg/kg to about 50 mg/kg, about 50 mg/kg to about 75 mg/kg or about 75 mg/kg to about 100 mg/kg. Alternatively, the dose can be administered based on the number of synthetic nanocarriers. For example, useful doses include greater than 106, 107, 108, 109 or 1010 synthetic nanocarriers per dose. Other examples of useful doses include from about 1×106 to about 1×1010, about 1×107 to about 1×109 or about 1×108 to about 1×109 synthetic nanocarriers per dose.
  • “Antibody response” refers to the generation of antibodies specific for an antigen. An antibody response can target a desired B cell antigen (i.e., a desired antibody response) or to an off-target B cell antigen (i.e., an undesired antibody response). Preferably, the desired antibody responses are specific to the coupled B cell antigen of the compositions provided. Undesired antibody responses can interfere with desired antibody responses and include, for example, undesired antibody responses to the synthetic nanocarrier or a component thereof (e.g., a polymer, portion or unit thereof) of a synthetic nanocarrier. As a result, the compositions provided herein have been devised to include synthetic nanocarriers with an off-target response attenuating polymeric coating that elicits a desired antibody response to a coupled B cell antigen that is at least two-fold greater than an undesired antibody response, such as to the synthetic nanocarrier or component thereof. As provided elsewhere herein, the level of antibody response can be measured as a titer with an ELISA.
  • Methods for measuring an antibody response are known to those of ordinary skill in the art and are also exemplified below in the EXAMPLES. In particular, the antibody response can be quantitated, for example, as the number of antibodies, concentration of antibodies or titer. The values can be absolute or they can be relative. Assays for quantifying an antibody response include antibody capture assays, enzyme-linked immunosorbent assays (ELISAs), inhibition liquid phase absorption assays (ILPAAs), rocket immunoelectrophoresis (RIE) assays and line immunoelectrophoresis (LIE) assays. When a desired antibody response is compared to an undesired antibody response the same type of quantitative value (e.g., titer) and method of measurement (e.g., ELISA) is used to make the comparison.
  • An ELISA method for measuring an antibody titer, for example, may consist of the following steps (i) preparing an ELISA-plate coating material such that the antibody target of interest is coupled to a substrate polymer or other suitable material (ii) preparing the coating material in an aqueous solution (such as PBS) and delivering the coating material solution to the wells of a multiwell plate for overnight deposition of the coating onto the multiwell plate (iii) thoroughly washing the multiwell plate with wash buffer (such as 0.05% Tween-20 in PBS) to remove excess coating material (iv) blocking the plate for nonspecific binding by applying a diluent solution (such as 10% fetal bovine serum in PBS), (v) washing the blocking/diluent solution from the plate with wash buffer (vi) diluting the serum sample(s) containing antibodies and appropriate standards (positive controls) with diluent as required to obtain a concentration that suitably saturates the ELISA reponse (vii) serially diluting the plasma samples on the multiwell plate such to cover a range of concentrations suitable for generating an ELISA response curve (viii) incubating the plate to provide for antibody-target binding (ix) washing the plate with wash buffer to remove antibodies not bound to antigen (x) adding an appropriate concentration of a secondary detection antibody in same diluent such as a biotin-coupled detection antibody capable of binding the primary antibody (xi) incubating the plate with the applied detection antibody, followed by washing with wash buffer (xii) adding an enzyme such as streptavidin-HRP (horse radish peroxidase) that will bind to biotin found on biotinylated antibodies and incubating (xiii) washing the multiwell plate (xiv) adding substrate(s) (such as TMB solution) to the plate (xv) applying a stop solution (such as 2N sulfuric acid) when color development is complete (xvi) reading optical density of the plate wells at a specific wavelength for the substrate (450 nm with subtraction of readings at 570 nm) (xvi) applying a suitable multiparameter curve fit to the data and defining half-maximal effective concentration (EC50) as the concentration on the curve at which half the maximum OD value for the plate standards is achieved.
  • “Antigen” means a B cell antigen or T cell antigen. In embodiments, antigens are coupled to the synthetic nanocarriers. In other embodiments, antigens are not coupled to the synthetic nanocarriers. “Type(s) of antigens” means molecules that share the same, or substantially the same, antigenic characteristics.
  • An “at risk” subject is one in which a health practitioner believes has a chance of having a disease or condition as provided herein.
  • “Average”, as used herein, refers to the arithmetic mean unless otherwise noted.
  • “Average number of polymers” is an absolute or relative value for the number of polymers averaged across a population of synthetic nanocarriers. Methods for determining the average number of polymers are known to those of ordinary skill in the art. For example, the average number of polymers in a formulated population may be obtained by determining the total weight of the polymer in the population and dividing by the number-averaged molecular weight. When the ratio of polymers as provided herein is calculated for a particular synthetic nanocarrier population the same type of value (absolute or relative) measured according to the same type of assay is used.
  • “B cell antigen” means any antigen that is recognized by or triggers an immune response in a B cell (e.g., an antigen that is specifically recognized by a B cell or a receptor thereon). In some embodiments, an antigen that is a T cell antigen is also a B cell antigen. In other embodiments, the T cell antigen is not also a B cell antigen. B cell antigens include, but are not limited to proteins, peptides, small molecules, oligosaccharides, and carbohydrates. In some embodiments, the B cell antigen comprises a non-protein antigen (i.e., not a protein or peptide antigen). In some embodiments, the B cell antigen comprises a carbohydrate associated with an infectious agent. In some embodiments, the B cell antigen comprises a glycoprotein or glycopeptide associated with an infectious agent. The infectious agent can be a bacterium, virus, fungus, protozoan, or parasite. In some embodiments, the B cell antigen comprises a poorly immunogenic antigen. In some embodiments, the B cell antigen comprises an abused substance or a portion thereof. In some embodiments, the B cell antigen comprises an addictive substance or a portion thereof. Addictive substances include, but are not limited to, nicotine, a narcotic, a cough suppressant, a tranquilizer, and a sedative. In some embodiments, the B cell antigen comprises a toxin, such as a toxin from a chemical weapon or natural sources. The B cell antigen may also comprise a hazardous environmental agent. In some embodiments, the B cell antigen comprises a self antigen. In other embodiments, the B cell antigen comprises an alloantigen, an allergen, a contact sensitizer, a degenerative disease antigen, a hapten, an infectious disease antigen, a cancer antigen, an atopic disease antigen, an autoimmune disease antigen, a non-autoimmune disease antigen, an addictive substance, a xenoantigen, or a metabolic disease enzyme or enzymatic product thereof.
  • Generally, as used herein and unless otherwise noted, “B cell antigen” of the compositions provided refers to a B cell antigen to which a target antibody response is desired and not to an antigen to which an antibody response is not desired (e.g., against the carrier or synthetic component thereof (e.g., a polymer of the synthetic nanocarrier)).
  • “Cancer antigens” are antigens associated with a cancer or cancerous tumor. Such antigens can generate an antibody response against a cancer or tumor cell. Such antigens can comprise an antigen that is expressed in or on cancer or tumor cells but not in or on normal or healthy cells. Such antigens can also comprise an antigen that is expressed in or on cancer or tumor cells and on normal or healthy cells but is expressed in or on cancer or tumor cells at a greater level than on normal or healthy cells. Preferably, the use of a cancer antigen in such an embodiment will not lead to a substantial or detrimental immune response against normal or healthy cells or will lead to a beneficial immune response against the cancer or tumor cells that outweighs any immune response against normal or healthy cells.
  • “Couple” or “Coupled” or “Couples” (and the like) means to chemically associate one entity (for example a moiety) with another. In some embodiments, the coupling is covalent, meaning that the coupling occurs in the context of the presence of a covalent bond between the two entities. In non-covalent embodiments, the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof. In embodiments, encapsulation is a form of coupling.
  • “Dosage form” means a pharmacologically and/or immunologically active material in a medium, carrier, vehicle, or device suitable for administration to a subject.
  • “Encapsulate” means to enclose at least a portion of a substance within a synthetic nanocarrier. In some embodiments, a substance is enclosed completely within a synthetic nanocarrier. In other embodiments, most or all of a substance that is encapsulated is not exposed to the local environment external to the synthetic nanocarrier. In other embodiments, no more than 50%, 40%, 30%, 20%, 10% or 5% (weight/weight) of the substance is exposed to the local environment. Encapsulation is distinct from absorption, which places most or all of a substance on a surface of a synthetic nanocarrier, and leaves the substance exposed to the local environment external to the synthetic nanocarrier. In some embodiments, the polymeric coating provided herein encapsulates one or more or all of the other substances of a synthetic nanocarrier provided. In one embodiment, these other substances do not include desired B cell antigen coupled to the polymeric coating at the surface of the synthetic nanocarrier.
  • “Humoral response” means any immune response that results in the production or stimulation of B cells and/or the production of antibodies. Preferably, the humoral immune response is specific to an antigen comprised within an inventive composition or administered during the practice of an inventive method. Methods for assessing whether a humoral response is induced are known to those of ordinary skill in the art. Examples of such methods are provided below in the Examples.
  • An “infection” or “infectious disease” is any condition or disease caused by a microorganism, pathogen or other agent, such as a bacterium, fungus, prion or virus. “An infection or infectious disease antigen” is an antigen associated with an infection or infectious disease. Such antigens include antigens that can be used to generate an antibody response against a pathogen or other infectious agent, or component thereof, or that can generate an antibody response against infected cells.
  • “Maximum dimension of a synthetic nanocarrier” means the largest dimension of a nanocarrier measured along any axis of the synthetic nanocarrier. “Minimum dimension of a synthetic nanocarrier” means the smallest dimension of a synthetic nanocarrier measured along any axis of the synthetic nanocarrier. For example, for a spheroidal synthetic nanocarrier, the maximum and minimum dimension of a synthetic nanocarrier would be substantially identical, and would be the size of its diameter. Similarly, for a cuboidal synthetic nanocarrier, the minimum dimension of a synthetic nanocarrier would be the smallest of its height, width or length, while the maximum dimension of a synthetic nanocarrier would be the largest of its height, width or length. In an embodiment, a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is equal to or greater than 100 nm. In an embodiment, a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is equal to or less than 5 μm. Preferably, a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is greater than 110 nm, more preferably greater than 120 nm, more preferably greater than 130 nm, and more preferably still greater than 150 nm. Aspects ratios of the maximum and minimum dimensions of inventive synthetic nanocarriers may vary depending on the embodiment. For instance, aspect ratios of the maximum to minimum dimensions of the synthetic nanocarriers may vary from 1:1 to 1,000, 000:1, preferably from 1:1 to 100, 000:1, more preferably from 1:1 to 10,000:1, more preferably from 1:1 to 1000:1, still more preferably from 1:1 to 100:1, and yet more preferably from 1:1 to 10:1. Preferably, a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 3 μm, more preferably equal to or less than 2 μm, more preferably equal to or less than 1 μm, more preferably equal to or less than 800 nm, more preferably equal to or less than 600 nm, and more preferably still equal to or less than 500 nm. In preferred embodiments, a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample, is equal to or greater than 100 nm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, more preferably equal to or greater than 140 nm, and more preferably still equal to or greater than 150 nm. Measurement of synthetic nanocarrier dimensions (e.g., diameter) is obtained by suspending the synthetic nanocarriers in a liquid (usually aqueous) media and using dynamic light scattering (DLS) (e.g. using a Brookhaven ZetaPALS instrument). For example, a suspension of synthetic nanocarriers can be diluted from an aqueous buffer into purified water to achieve a final synthetic nanocarrier suspension concentration of approximately 0.01 to 0.1 mg/mL. The diluted suspension may be prepared directly inside, or transferred to, a suitable cuvette for DLS analysis. The cuvette may then be placed in the DLS, allowed to equilibrate to the controlled temperature, and then scanned for sufficient time to acquire a stable and reproducible distribution based on appropriate inputs for viscosity of the medium and refractive indicies of the sample. The effective diameter, or mean of the distribution, is then reported. “Dimension” or “size” or “diameter” of synthetic nanocarriers means the mean of a particle size distribution obtained using dynamic light scattering.
  • “Non-autoimmune or degenerative antigens” are antigens associated with non-autoimmune or degenerative diseases or conditions. Such antigens can result in an antibody response that can be indicative of and/or present when the non-autoimmune or degenerative disease or condition occurs or is present in a subject. Such antigens can also be used to generate an antibody response, the generation of which may be beneficial in the treatment or prevention of the disease or condition or one or more symptoms thereof.
  • “Off-target response attenuating polymeric coating” refers to a composition comprising one or more polymers present at at least a portion of the surface of a synthetic nanocarrier and that when the synthetic nanocarrier is coupled to a B cell antigen, the synthetic nanocarrier, or population thereof, generates an antibody response against the B cell antigen that is at least two-fold greater than an off-target (or undesired) antibody response, such as against the synthetic nanocarrier or component thereof (such as a polymer of the coating). In one embodiment, the antibody response against the B cell antigen and the off-target antibody response are of the same type, such as both an IgG or IgA antibody response. In another embodiment, the synthetic nanocarrier, or population thereof, generates an antibody response that is at least 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95- or 100-fold greater. In another embodiment, the response is measured as an antibody titer (e.g., IgG or IgA EC50) with an ELISA. In another embodiment, the coating may be present throughout the surface of a synthetic nanocarrier.
  • The coating may comprise a number of polymers of the same type or it may comprise a number of polymers of two or more different types. The polymers of the coating may comprise PEG, a polyethyloxazoline, a polyamino acid, polycarbonate, hydrophilic polyacetal, hydrophilic polyketal, polysaccharide, polypropylene or polyethyleneimine, or some combination thereof. The coating may comprise a number of the same type of the aforementioned polymers or may comprise a number of two or more types of the aforementioned polymers. In one embodiment, the coating comprises a number of polymers that comprise one or more of the aforementioned types of polymers, and it is the antibody response to one or more of these aforementioned types of polymers that is at least two-fold less than the antibody response to the target B cell antigen. In one embodiment, the antibody response is at least 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95- or 100-fold less. In another embodiment, the coating comprises polymers comprising PEG, and it is the antibody response to PEG that is at least two-fold less than the antibody response to the target B cell antigen. In a further embodiment, the antibody response to PEG is at least 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95- or 100-fold less. Again, the response may be measured as an antibody titer (e.g., IgG or IgA EC50) with an ELISA, and/or both responses are of the same type (e.g., both IgG or IgA antibody responses).
  • Preferably, in one embodiment, the coating comprises a polymer (e.g., one of the aforementioned polymers) with a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole. In another embodiment, the polymer has a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole. The B cell antigen may be coupled to this polymer or to another polymer of the coating. The B cell antigen may also be coupled to another portion of the synthetic nanocarriers such as to the surface of the synthetic nanocarriers but not to the coating. In another embodiment, wherein the B cell antigen is coupled to another polymer of the coating, the other polymer also has a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole. In another embodiment, the other polymer has a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole. In a certain preferred embodiment, the polymer and other polymer of the coating both have a molecular weight of 5000 g/mole. The molecular weight may be a weight average molecular weight or a number average molecular weight.
  • In another preferred embodiment, the ratio of the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers, the ratio of the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers, or the ratio of the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen of the coating across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen of the coating across the population of synthetic nanocarriers is between 0.001 and 1, 0.01 and 1, 0.1 and 1, 0.25 and 1, 0.5 and 1 or 0.75 and 1 or as elsewhere provided. In yet another preferred embodiment, the ratio by weight is 0.1, 0.25 or 0.5. In one embodiment, this ratio is calculated based on the polymeric coatings of the synthetic nanocarriers. In another embodiment, this ratio is calculated based on the synthetic nanocarriers as a whole. The polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen may be the same type of polymer or may be different types of polymers. In one embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of greater than 2000 g/mole, 3000 g/mole, 4000 g/mole or 5000 g/mole. In another embodiment, the polymers coupled to the B cell antigen and/or the polymers not coupled to the B cell antigen have a molecular weight of between 2000-5000 g/mole, between 2500-5000 g/mole, between 3000-5000 g/mole, between 3500-5000 g/mole or between 4000-5000 g/mole. Again, in a certain preferred embodiment, the polymer and other polymer both have a molecular weight of 5000 g/mole. The molecular weight may be the weight average molecular weight or the number average molecular weight.
  • “Off-target antibody response” is any undesired antibody response as provided herein. Generally, the off-target antibody response is an antibody response not specific to the B cell antigen coupled to the synthetic nanocarriers to which an antibody response is desired. In some embodiments, if the intended antibody response is IgG or IgA, it is desirable that this desired antibody response be at least two-fold greater than the off-target response by that same class. In some embodiments, an off-target IgM response that is of similar or greater magnitude than a desired IgG or IgA response may occur. Generally, IgM tends to be a transient low-affinity response whereas IgG is a longer-lasting higher-affinity response.
  • In one embodiment, the off-target antibody response is an antibody response against the synthetic nanocarrier or component thereof, such as a polymer (or portion thereof), such as of the coating.
  • “Pharmaceutically acceptable excipient” means a pharmacologically inactive material used together with the recited synthetic nanocarriers to formulate the inventive compositions.
  • Pharmaceutically acceptable excipients comprise a variety of materials known in the art, including but not limited to saccharides (such as glucose, lactose, and the like), preservatives such as antimicrobial agents, reconstitution aids, colorants, saline (such as phosphate buffered saline), and buffers.
  • “Ratio by weight averaged across the population of synthetic nanocarriers” refers to the ratio of absolute or relative values for two weights averaged across a population of synthetic nanocarriers. When the ratio of the weight of polymers is calculated for a particular synthetic nanocarrier population the same type of value (absolute or relative) measured according to the same type of assay is used. Methods for determining the weight of a certain type of polymer in synthetic nanocarriers are known to those of ordinary skill in the art. Examples of methods are also provided elsewhere herein. Alternatively, well-described polymers, such as those with information provided by a manufacturer can be formulated at a certain ratio.
  • “Same type of polymer” means polymers that share the same, or substantially the same, chemical structure. Polymers that are the same type of polymers may have the same or different molecular weights. In a preferred embodiment, polymers that are the same type of polymer also have the same molecular weight.
  • “Subject” means animals, including warm blooded mammals such as humans and primates; avians; domestic household or farm animals such as cats, dogs, sheep, goats, cattle, horses and pigs; laboratory animals such as mice, rats and guinea pigs; fish; reptiles; zoo and wild animals; and the like.
  • “Synthetic nanocarrier(s)” means a discrete object that is not found in nature, and that possesses at least one dimension that is less than or equal to 5 microns in size. Albumin nanoparticles are generally included as synthetic nanocarriers, however in certain embodiments the synthetic nanocarriers do not comprise albumin nanoparticles. In embodiments, synthetic nanocarriers do not comprise chitosan. In certain other embodiments, the synthetic nanocarriers do not comprise chitosan. In other embodiments, inventive synthetic nanocarriers are not lipid-based nanoparticles. In further embodiments, inventive synthetic nanocarriers do not comprise a phospholipid.
  • A synthetic nanocarrier can be, but is not limited to, one or a plurality of lipid-based nanoparticles (also referred to herein as lipid nanoparticles, i.e., nanoparticles where the majority of the material that makes up their structure are lipids), polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles (i.e., particles that are primarily made up of viral structural proteins but that are not infectious or have low infectivity), peptide or protein-based particles (also referred to herein as protein particles, i.e., particles where the majority of the material that makes up their structure are peptides or proteins) (such as albumin nanoparticles) and/or nanoparticles that are developed using a combination of nanomaterials such as lipid-polymer nanoparticles. Synthetic nanocarriers may be a variety of different shapes, including but not limited to spheroidal, cuboidal, pyramidal, oblong, cylindrical, toroidal, and the like. Synthetic nanocarriers according to the invention comprise one or more surfaces. Exemplary synthetic nanocarriers that can be adapted for use in the practice of the present invention comprise: (1) the biodegradable nanoparticles disclosed in U.S. Pat. No. 5,543,158 to Gref et al., (2) the polymeric nanoparticles of Published US Patent Application 20060002852 to Saltzman et al., (3) the lithographically constructed nanoparticles of Published US Patent Application 20090028910 to DeSimone et al., (4) the disclosure of WO 2009/051837 to von Andrian et al., (5) the nanoparticles disclosed in Published US Patent Application 2008/0145441 to Penades et al., (6) the protein nanoparticles disclosed in Published US Patent Application 20090226525 to de los Rios et al., (7) the virus-like particles disclosed in published US Patent Application 20060222652 to Sebbel et al., (8) the nucleic acid coupled virus-like particles disclosed in published US Patent Application 20060251677 to Bachmann et al., (9) the virus-like particles disclosed in WO2010047839A1 or WO2009106999A2, (10) the nanoprecipitated nanoparticles disclosed in P. Paolicelli et al., “Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles” Nanomedicine. 5(6):843-853 (2010) or (11) apoptotic cells, apoptotic bodies or the synthetic or semisynthetic mimics disclosed in U.S. Publication 2002/0086049. In embodiments, synthetic nanocarriers may possess an aspect ratio greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1:10.
  • Synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface with hydroxyl groups that activate complement or alternatively comprise a surface that consists essentially of moieties that are not hydroxyl groups that activate complement. In a preferred embodiment, synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that substantially activates complement or alternatively comprise a surface that consists essentially of moieties that do not substantially activate complement. In a more preferred embodiment, synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that activates complement or alternatively comprise a surface that consists essentially of moieties that do not activate complement. In embodiments, synthetic nanocarriers exclude virus-like particles. In embodiments, when synthetic nanocarriers comprise virus-like particles, the virus-like particles comprise non-natural adjuvant (meaning that the VLPs comprise an adjuvant other than naturally occurring RNA generated during the production of the VLPs). In embodiments, synthetic nanocarriers may possess an aspect ratio greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1:10.
  • “T cell antigen” means any antigen that is recognized by and triggers an immune response in a T cell (e.g., an antigen that is specifically recognized by a T cell receptor on a T cell or an NKT cell via presentation of the antigen or portion thereof bound to a Class I or Class II major histocompatability complex molecule (MHC), or bound to a CD1 complex). In some embodiments, an antigen that is a T cell antigen is also a B cell antigen. In other embodiments, the T cell antigen is not also a B cell antigen. T cell antigens generally are proteins or peptides. T cell antigens may be an antigen that stimulates a CD8+ T cell response, a CD4+ T cell response, or both. The nanocarriers, therefore, in some embodiments can effectively stimulate both types of responses.
  • In some embodiments the T cell antigen is a T helper cell antigen (i.e. one that can generate an enhanced response to a B cell antigen, preferably an unrelated B cell antigen, through stimulation of T cell help). In embodiments, a T helper cell antigen may comprise one or more peptides obtained or derived from tetanus toxoid, Epstein-Barr virus, influenza virus, respiratory syncytial virus, measles virus, mumps virus, rubella virus, cytomegalovirus, adenovirus, diphtheria toxoid, or a PADRE peptide (known from the work of Sette et al. U.S. Pat. No. 7,202,351). In other embodiments, a T helper cell antigen may comprise one or more lipids, or glycolipids, including but not limited to: α-galactosylceramide (α-GalCer), α-linked glycosphingolipids (from Sphingomonas spp.), galactosyl diacylglycerols (from Borrelia burgdorferi), lypophosphoglycan (from Leishmania donovani), and phosphatidylinositol tetramannoside (PIM4) (from Mycobacterium leprae). For additional lipids and/or glycolipids useful as a T helper cell antigen, see V. Cerundolo et al., “Harnessing invariant NKT cells in vaccination strategies.” Nature Rev Immun, 9:28-38 (2009). In embodiments, CD4+ T-cell antigens may be derivatives of a CD4+ T-cell antigen that is obtained from a source, such as a natural source. In such embodiments, CD4+ T-cell antigen sequences, such as those peptides that bind to MHC II, may have at least 70%, 80%, 90%, or 95% identity to the antigen obtained from the source. In embodiments, the T cell antigen, preferably a T helper cell antigen, may be coupled to, or uncoupled from, a synthetic nanocarrier. In some embodiments, the T cell antigen is encapsulated in the synthetic nanocarriers of the compositions.
  • “Vaccine” means a composition of matter that improves the immune response to a particular pathogen or disease. A vaccine typically contains factors that stimulate a subject's immune system to recognize a specific antigen as foreign and eliminate it from the subject's body. A vaccine also establishes an immunologic ‘memory’ so the antigen will be quickly recognized and responded to if a person is re-challenged. Vaccines can be prophylactic (for example to prevent future infection by any pathogen), or therapeutic (for example a vaccine against a tumor specific antigen for the treatment of cancer). In embodiments, a vaccine may comprise dosage forms according to the invention.
  • “Weight”, as used herein, refers to mass unless otherwise noted. When a molecular weight of a polymer is measured, it can be measured as the weight average molecular weight or a number average molecular weight. “Weight average molecular weight” for the polymers of the compositions provided herein is calculated by the following formula:
  • M _ w = i N i M i 2 i N i M i , Formula 1
  • where Ni is the number of molecules of molecular weight Mi. The weight average molecular weight can be determined by a variety of methods including light scattering, small angle neutron scattering (SANS), X-ray scattering, Nuclear Magnetic Resonance (NMR) and sedimentation velocity. An example of an alternative for weight average molecular weight is to perform gel permeation chromatography using suitable traceable-weight standards to establish a retention-time versus weight curve, and calculating the mean weight-averaged molecular weight of a sample polymer from the mean of the integrated sample peak as compared to the calibration curve. The “number average molecular weight” can be determined by NMR. For example, number average molecular weight can be determined by proton NMR wherein the ratio of the polymer repeating units to the end group is established and then multiplied by theoretical repeating unit molecular weight. Alternatively, in the case of a titratable (e.g., acid or base) end group polymer, a known weight concentration may be established and then titrated in the presense of an indicator dye with an appropriate neutralizing agent of known molar concentration to provide moles of end group per mass of polymer.
  • C. INVENTIVE COMPOSITIONS
  • Provided herein are compositions comprising synthetic nanocarriers that provide optimized target antibody generation to a B cell antigen relative to off-target antibody generation. These synthetic nanocarriers comprise a B cell antigen and an off-target response attenuating polymeric coating. It has been found that optimized target antibody generation relative to off-target antibody generation results when a polymeric coating comprises certain B cell antigen content and/or polymer molecular weights and compositions.
  • It has been found that coatings that provide optimized B cell antigen response relative to off-target antibody response may comprise polymers with certain molecular weights (as weight average or number average) with polymers with greater molecular weights having better effect. The coating may comprise one type of polymer (with an aforementioned molecular weight) but may also comprise one or more other types of polymers. The one or more other types of polymers may also have the aforementioned molecular weights. The one or more types of polymers of the coating may be in the form of a polymeric matrix.
  • The target B cell antigen may be coupled to one of the types of polymers of the coating or to more than one of the types of polymers of the coating. In another embodiment, the target B cell antigen is coupled to the polymer of the coating for which an attenuated antibody response is desired. When a target B cell antigen is coupled to one or more of the types of polymers of the coating, the target B cell antigen is coupled to all or less than all of the polymer molecules of the one or more types of polymers of the coating. The target B cell antigen may also be coupled to another component of the synthetic nanocarriers, such as the surface of the synthetic nanocarrier, but not to the coating. The target B cell antigen can be coupled, in some embodiments, by any means known in the art. In one embodiment, the target B cell antigen is coupled via a bond or linker.
  • It has also been found that the amount of antigen coupled to the off-target response attenuating polymeric coating can also provide optimized B cell antigen response relative to off-target antibody response. It has been found that an increased amount of antigen present in the coating of the synthetic nanocarrier provides attenuated off-target antibody response relative to target antibody response. In another preferred embodiment, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, or the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers may be between 0.001 and 1, 0.01 and 1, 0.1 and 1, 0.25 and 1, 0.5 and 1 or 0.75 and 1. The ratio can be calculated based on an assessment of the polymeric coating across the population of synthetic nanocarriers or of the synthetic nanocarriers as a whole across the population of synthetic nanocarriers. The polymers coupled to the B cell antigen and the polymers not coupled to the B cell antigen of the coating may be the same type of polymer or may be different types of polymers. These polymers may also have the molecular weights provided above in some embodiments.
  • As mentioned above, the polymers of the coating may comprise a number of polymers of the same type or it may comprise a number of polymers of two or more different types. The polymers of the coating may comprise PEG, a polyethyloxazoline, a polyamino acid, polycarbonate, hydrophilic polyacetal, hydrophilic polyketal, polypropylene, polysaccharide or polyethyleneimine, or some combination thereof. In preferred embodiments, the polymers of the coating comprise PEG.
  • The off-target response attenuating polymeric coating may be a coating on a number of different types of synthetic nanocarriers. Accordingly, a wide variety of synthetic nanocarriers can be used according to the invention. In some embodiments, synthetic nanocarriers are spheres or spheroids. In some embodiments, synthetic nanocarriers are flat or plate-shaped. In some embodiments, synthetic nanocarriers are cubes or cubic. In some embodiments, synthetic nanocarriers are ovals or ellipses. In some embodiments, synthetic nanocarriers are cylinders, cones, or pyramids.
  • In some embodiments, it is desirable to use a population of synthetic nanocarriers that is relatively uniform in terms of size, shape, and/or composition so that each synthetic nanocarrier has similar properties. For example, at least 80%, at least 90%, or at least 95% of the synthetic nanocarriers, based on the total number of synthetic nanocarriers, may have a minimum dimension or maximum dimension that falls within 5%, 10%, or 20% of the average diameter or average dimension of the synthetic nanocarriers. In some embodiments, a population of synthetic nanocarriers may be heterogeneous with respect to size, shape, and/or composition.
  • Synthetic nanocarriers can be solid or hollow and can comprise one or more layers. In some embodiments, each layer has a unique composition and unique properties relative to the other layer(s). To give but one example, synthetic nanocarriers may have a core/shell structure, wherein the core is one layer (e.g. a polymeric core) and the shell is a second layer (e.g. a lipid bilayer or monolayer). Synthetic nanocarriers may comprise a plurality of different layers.
  • In some embodiments, synthetic nanocarriers may optionally comprise one or more lipids. In some embodiments, a synthetic nanocarrier may comprise a liposome. In some embodiments, a synthetic nanocarrier may comprise a lipid bilayer. In some embodiments, a synthetic nanocarrier may comprise a lipid monolayer. In some embodiments, a synthetic nanocarrier may comprise a micelle. In some embodiments, a synthetic nanocarrier may comprise a core comprising a polymeric matrix surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.). In some embodiments, a synthetic nanocarrier may comprise a non-polymeric core (e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.) surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
  • In some embodiments, synthetic nanocarriers can comprise one or more other polymers. In some embodiments, various elements of the synthetic nanocarriers can be coupled with such polymers. Such other polymers may form a polymeric matrix, and the components of the synthetic nanocarriers may be covalently associated with the polymeric matrix. In some embodiments, covalent association is mediated by a linker. In some embodiments, a component may be noncovalently associated with the polymeric matrix. For example, in some embodiments, a component may be encapsulated within, surrounded by, and/or dispersed throughout a polymeric matrix. Alternatively or additionally, a component can be associated with a polymeric matrix by hydrophobic interactions, charge interactions, van der Waals forces, etc. In some embodiments, where the polymers of the coating form a polymeric matrix, components can also be coupled thereto by these aforementioned methods.
  • A wide variety of polymers and methods for forming polymeric matrices therefrom are known conventionally. In general, a polymeric matrix comprises one or more polymers. Polymers may be natural or unnatural (synthetic) polymers. Polymers may be homopolymers or copolymers comprising two or more monomers. In terms of sequence, copolymers may be random, block, or comprise a combination of random and block sequences. Typically, polymers in accordance with the present invention are organic polymers.
  • Examples of polymers suitable for use in the synthetic nanocarriers, as part of the coating or other portion of the synthetic nanocarriers, include, but are not limited to polyethylenes, polycarbonates (e.g. poly(1,3-dioxan-2one)), polyanhydrides (e.g. poly(sebacic anhydride)), polypropylfumerates, polyamides (e.g. polycaprolactam), polyacetals, polyethers, polyesters (e.g., polylactide, polyglycolide, polylactide-co-glycolide, polycaprolactone, polyhydroxyacid (e.g. poly(β-hydroxyalkanoate))), poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polyureas, polystyrenes, and polyamines, polylysine, polylysine-PEG copolymers, and poly(ethyleneimine), poly(ethylene imine)-PEG copolymers. In some embodiments, polymers in accordance with the present invention include polymers which have been approved for use in humans by the U.S. Food and Drug Administration (FDA) under 21 C.F.R. §177.2600, including but not limited to polyesters (e.g., polylactic acid, poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly(1,3-dioxan-2one)); polyanhydrides (e.g., poly(sebacic anhydride)); polyethers (e.g., polyethylene glycol); polyurethanes; polymethacrylates; polyacrylates; and polycyanoacrylates.
  • In some embodiments, polymers can be hydrophilic. For example, polymers may comprise anionic groups (e.g., phosphate group, sulphate group, carboxylate group); cationic groups (e.g., quaternary amine group); or polar groups (e.g., hydroxyl group, thiol group, amine group). In some embodiments, a synthetic nanocarrier comprising a hydrophilic polymeric matrix generates a hydrophilic environment within the synthetic nanocarrier. In some embodiments, polymers can be hydrophobic. In some embodiments, a synthetic nanocarrier comprising a hydrophobic polymeric matrix generates a hydrophobic environment within the synthetic nanocarrier. Selection of the hydrophilicity or hydrophobicity of the polymer may have an impact on the nature of materials that are incorporated (e.g. coupled) within the synthetic nanocarrier.
  • In some embodiments, polymers may be modified with one or more moieties and/or functional groups. A variety of moieties or functional groups can be used in accordance with the present invention. In some embodiments, polymers may be modified with polyethylene glycol (PEG), with a carbohydrate, and/or with acyclic polyacetals derived from polysaccharides (Papisov, 2001, ACS Symposium Series, 786:301). Certain embodiments may be made using the general teachings of U.S. Pat. No. 5,543,158 to Gref et al., or WO publication WO2009/051837 by Von Andrian et al.
  • In some embodiments, polymers may be modified with a lipid or fatty acid group. In some embodiments, a fatty acid group may be one or more of butyric, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, or lignoceric acid. In some embodiments, a fatty acid group may be one or more of palmitoleic, oleic, vaccenic, linoleic, alpha-linoleic, gamma-linoleic, arachidonic, gadoleic, arachidonic, eicosapentaenoic, docosahexaenoic, or erucic acid.
  • In some embodiments, polymers may be polyesters, including copolymers comprising lactic acid and glycolic acid units, such as poly(lactic acid-co-glycolic acid) and poly(lactide-co-glycolide), collectively referred to herein as “PLGA”; and homopolymers comprising glycolic acid units, referred to herein as “PGA,” and lactic acid units, such as poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-L-lactide, poly-D-lactide, and poly-D,L-lactide, collectively referred to herein as “PLA.” In some embodiments, exemplary polyesters include, for example, polyhydroxyacids; PEG copolymers and copolymers of lactide and glycolide (e.g., PLA-PEG copolymers, PGA-PEG copolymers, PLGA-PEG copolymers, and derivatives thereof. In some embodiments, polyesters include, for example, poly(caprolactone), poly(caprolactone)-PEG copolymers, poly(L-lactide-co-L-lysine), poly(serine ester), poly(4-hydroxy-L-proline ester), poly[α-(4-aminobutyl)-L-glycolic acid], and derivatives thereof.
  • In some embodiments, a polymer may be PLGA. PLGA is a biocompatible and biodegradable co-polymer of lactic acid and glycolic acid, and various forms of PLGA are characterized by the ratio of lactic acid:glycolic acid. Lactic acid can be L-lactic acid, D-lactic acid, or D,L-lactic acid. The degradation rate of PLGA can be adjusted by altering the lactic acid:glycolic acid ratio. In some embodiments, PLGA to be used in accordance with the present invention is characterized by a lactic acid:glycolic acid ratio of approximately 85:15, approximately 75:25, approximately 60:40, approximately 50:50, approximately 40:60, approximately 25:75, or approximately 15:85.
  • In some embodiments, polymers may be one or more acrylic polymers. In certain embodiments, acrylic polymers include, for example, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, glycidyl methacrylate copolymers, polycyanoacrylates, and combinations comprising one or more of the foregoing polymers. The acrylic polymer may comprise fully-polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
  • In some embodiments, polymers can be cationic polymers. In general, cationic polymers are able to condense and/or protect negatively charged strands of nucleic acids (e.g. DNA, or derivatives thereof). Amine-containing polymers such as poly(lysine) (Zauner et al., 1998, Adv. Drug Del. Rev., 30:97; and Kabanov et al., 1995, Bioconjugate Chem., 6:7), poly(ethylene imine) (PEI; Boussif et al., 1995, Proc. Natl. Acad. Sci., USA, 1995, 92:7297), and poly(amidoamine) dendrimers (Kukowska-Latallo et al., 1996, Proc. Natl. Acad. Sci., USA, 93:4897; Tang et al., 1996, Bioconjugate Chem., 7:703; and Haensler et al., 1993, Bioconjugate Chem., 4:372) are positively-charged at physiological pH, form ion pairs with nucleic acids, and mediate transfection in a variety of cell lines. In embodiments, the inventive synthetic nanocarriers may not comprise (or may exclude) cationic polymers.
  • In some embodiments, polymers can be degradable polyesters bearing cationic side chains (Putnam et al., 1999, Macromolecules, 32:3658; Barrera et al., 1993, J. Am. Chem. Soc., 115:11010; Kwon et al., 1989, Macromolecules, 22:3250; Lim et al., 1999, J. Am. Chem. Soc., 121:5633; and Zhou et al., 1990, Macromolecules, 23:3399). Examples of these polyesters include poly(L-lactide-co-L-lysine) (Barrera et al., 1993, J. Am. Chem. Soc., 115:11010), poly(serine ester) (Zhou et al., 1990, Macromolecules, 23:3399), poly(4-hydroxy-L-proline ester) (Putnam et al., 1999, Macromolecules, 32:3658; and Lim et al., 1999, J. Am. Chem. Soc., 121:5633), and poly(4-hydroxy-L-proline ester) (Putnam et al., 1999, Macromolecules, 32:3658; and Lim et al., 1999, J. Am. Chem. Soc., 121:5633).
  • The properties of these and other polymers and methods for preparing them are well known in the art (see, for example, U.S. Pat. Nos. 6,123,727; 5,804,178; 5,770,417; 5,736,372; 5,716,404; 6,095,148; 5,837,752; 5,902,599; 5,696,175; 5,514,378; 5,512,600; 5,399,665; 5,019,379; 5,010,167; 4,806,621; 4,638,045; and 4,946,929; Wang et al., 2001, J. Am. Chem. Soc., 123:9480; Lim et al., 2001, J. Am. Chem. Soc., 123:2460; Langer, 2000, Acc. Chem. Res., 33:94; Langer, 1999, J. Control. Release, 62:7; and Uhrich et al., 1999, Chem. Rev., 99:3181). More generally, a variety of methods for synthesizing certain suitable polymers are described in Concise Encyclopedia of Polymer Science and Polymeric Amines and Ammonium Salts, Ed. by Goethals, Pergamon Press, 1980; Principles of Polymerization by Odian, John Wiley & Sons, Fourth Edition, 2004; Contemporary Polymer Chemistry by Allcock et al., Prentice-Hall, 1981; Deming et al., 1997, Nature, 390:386; and in U.S. Pat. Nos. 6,506,577, 6,632,922, 6,686,446, and 6,818,732.
  • In some embodiments, polymers can be linear or branched polymers. In some embodiments, polymers can be dendrimers. In some embodiments, polymers can be substantially cross-linked to one another. In some embodiments, polymers can be substantially free of cross-links. In some embodiments, polymers can be used in accordance with the present invention without undergoing a cross-linking step. It is further to be understood that inventive synthetic nanocarriers may comprise block copolymers, graft copolymers, blends, mixtures, and/or adducts of any of the foregoing and other polymers. Those skilled in the art will recognize that the polymers listed herein represent an exemplary, not comprehensive, list of polymers that can be of use in accordance with the present invention.
  • In some embodiments, synthetic nanocarriers may comprise metal particles, quantum dots, ceramic particles, etc. In some embodiments, a non-polymeric synthetic nanocarrier is an aggregate of non-polymeric components, such as an aggregate of metal atoms (e.g., gold atoms).
  • In some embodiments, synthetic nanocarriers may optionally comprise one or more amphiphilic entities. In some embodiments, an amphiphilic entity can promote the production of synthetic nanocarriers with increased stability, improved uniformity, or increased viscosity. In some embodiments, amphiphilic entities can be associated with the interior surface of a lipid membrane (e.g., lipid bilayer, lipid monolayer, etc.). Many amphiphilic entities known in the art are suitable for use in making synthetic nanocarriers in accordance with the present invention. Such amphiphilic entities include, but are not limited to, phosphoglycerides; phosphatidylcholines; dipalmitoyl phosphatidylcholine (DPPC); dioleylphosphatidyl ethanolamine (DOPE); dioleyloxypropyltriethylammonium (DOTMA); dioleoylphosphatidylcholine; cholesterol; cholesterol ester; diacylglycerol; diacylglycerolsuccinate; diphosphatidyl glycerol (DPPG); hexanedecanol; fatty alcohols such as polyethylene glycol (PEG); polyoxyethylene-9-lauryl ether; a surface active fatty acid, such as palmitic acid or oleic acid; fatty acids; fatty acid monoglycerides; fatty acid diglycerides; fatty acid amides; sorbitan trioleate (Span®85) glycocholate; sorbitan monolaurate (Span®20); polysorbate 20 (Tween®20); polysorbate 60 (Tween®60); polysorbate 65 (Tween®65); polysorbate 80 (Tween®80); polysorbate 85 (Tween®85); polyoxyethylene monostearate; surfactin; a poloxomer; a sorbitan fatty acid ester such as sorbitan trioleate; lecithin; lysolecithin; phosphatidylserine; phosphatidylinositol; sphingomyelin; phosphatidylethanolamine (cephalin); cardiolipin; phosphatidic acid; cerebrosides; dicetylphosphate; dipalmitoylphosphatidylglycerol; stearylamine; dodecylamine; hexadecyl-amine; acetyl palmitate; glycerol ricinoleate; hexadecyl sterate; isopropyl myristate; tyloxapol; poly(ethylene glycol)5000-phosphatidylethanolamine; poly(ethylene glycol)400-monostearate; phospholipids; synthetic and/or natural detergents having high surfactant properties; deoxycholates; cyclodextrins; chaotropic salts; ion pairing agents; and combinations thereof. An amphiphilic entity component may be a mixture of different amphiphilic entities. Those skilled in the art will recognize that this is an exemplary, not comprehensive, list of substances with surfactant activity. Any amphiphilic entity may be used in the production of synthetic nanocarriers to be used in accordance with the present invention.
  • In some embodiments, synthetic nanocarriers may optionally comprise one or more carbohydrates. Carbohydrates may be natural or synthetic. A carbohydrate may be a derivatized natural carbohydrate. In certain embodiments, a carbohydrate comprises monosaccharide or disaccharide, including but not limited to glucose, fructose, galactose, ribose, lactose, sucrose, maltose, trehalose, cellbiose, mannose, xylose, arabinose, glucoronic acid, galactoronic acid, mannuronic acid, glucosamine, galatosamine, and neuramic acid. In certain embodiments, a carbohydrate is a polysaccharide, including but not limited to pullulan, cellulose, microcrystalline cellulose, hydroxypropyl methylcellulose (HPMC), hydroxycellulose (HC), methylcellulose (MC), dextran, cyclodextran, glycogen, hydroxyethylstarch, carageenan, glycon, amylose, chitosan, N,O-carboxylmethylchitosan, algin and alginic acid, starch, chitin, inulin, konjac, glucommannan, pustulan, heparin, hyaluronic acid, curdlan, and xanthan. In embodiments, the inventive synthetic nanocarriers do not comprise (or specifically exclude) carbohydrates, such as a polysaccharide. In certain embodiments, the carbohydrate may comprise a carbohydrate derivative such as a sugar alcohol, including but not limited to mannitol, sorbitol, xylitol, erythritol, maltitol, and lactitol.
  • Compositions according to the invention comprise inventive synthetic nanocarriers in combination with pharmaceutically acceptable excipients, such as preservatives, buffers, saline, or phosphate buffered saline. The compositions may be made using conventional pharmaceutical manufacturing and compounding techniques to arrive at useful dosage forms. In an embodiment, inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.
  • In embodiments, when preparing synthetic nanocarriers as carriers for antigens and/or adjuvants for use in vaccines, methods for coupling the antigens and/or adjuvants to the synthetic nanocarriers may be useful. If the antigen and/or adjuvant is a small molecule it may be of advantage to attach the antigen and/or adjuvant to a polymer prior to the assembly of the synthetic nanocarriers. In embodiments, it may also be an advantage to prepare the synthetic nanocarriers with surface groups that are used to couple the antigen and/or adjuvant to the synthetic nanocarrier through the use of these surface groups rather than attaching the antigen and/or adjuvant to a polymer and then using this polymer conjugate in the construction of synthetic nanocarriers.
  • In certain embodiments, the coupling can be a covalent linker. In embodiments, peptides according to the invention can be covalently coupled to the external surface via a 1,2,3-triazole linker formed by the 1,3-dipolar cycloaddition reaction of azido groups on the surface of the nanocarrier with antigen or adjuvant containing an alkyne group or by the 1,3-dipolar cycloaddition reaction of alkynes on the surface of the nanocarrier with antigens or adjuvants containing an azido group. Such cycloaddition reactions are preferably performed in the presence of a Cu(I) catalyst along with a suitable Cu(I)-ligand and a reducing agent to reduce Cu(II) compound to catalytic active Cu(I) compound. This Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) can also be referred as the click reaction.
  • Additionally, the covalent coupling may comprise a covalent linker that comprises an amide linker, a disulfide linker, a thioether linker, a hydrazone linker, a hydrazide linker, an imine or oxime linker, an urea or thiourea linker, an amidine linker, an amine linker, and a sulfonamide linker.
  • An amide linker is formed via an amide bond between an amine on one component such as the antigen or adjuvant with the carboxylic acid group of a second component such as the nanocarrier. The amide bond in the linker can be made using any of the conventional amide bond forming reactions with suitably protected amino acids or antigens or adjuvants and activated carboxylic acid such N-hydroxysuccinimide-activated ester.
  • A disulfide linker is made via the formation of a disulfide (S—S) bond between two sulfur atoms of the form, for instance, of R1-S—S—R2. A disulfide bond can be formed by thiol exchange of an antigen or adjuvant containing thiol/mercaptan group (—SH) with another activated thiol group on a polymer or nanocarrier or a nanocarrier containing thiol/mercaptan groups with an antigen or adjuvant containing activated thiol group.
  • A triazole linker, specifically a 1,2,3-triazole of the form
  • Figure US20130039954A1-20130214-C00001
  • wherein R1 and R2 may be any chemical entities, is made by the 1,3-dipolar cycloaddition reaction of an azide attached to a first component such as the nanocarrier with a terminal alkyne attached to a second component such as the peptide. The 1,3-dipolar cycloaddition reaction is performed with or without a catalyst, preferably with Cu(I)-catalyst, which links the two components through a 1,2,3-triazole function. This chemistry is described in detail by Sharpless et al., Angew. Chem. Int. Ed. 41(14), 2596, (2002) and Meldal, et al, Chem. Rev., 2008, 108(8), 2952-3015 and is often referred to as a “click” reaction or CuAAC.
  • In embodiments, a polymer containing an azide or alkyne group, terminal to the polymer chain is prepared. This polymer is then used to prepare a synthetic nanocarrier in such a manner that a plurality of the alkyne or azide groups are positioned on the surface of that nanocarrier. Alternatively, the synthetic nanocarrier can be prepared by another route, and subsequently functionalized with alkyne or azide groups. The antigen or adjuvant is prepared with the presence of either an alkyne (if the polymer contains an azide) or an azide (if the polymer contains an alkyne) group. The antigen or adjuvant is then allowed to react with the nanocarrier via the 1,3-dipolar cycloaddition reaction with or without a catalyst which covalently couples the antigen to the particle through the 1,4-disubstituted 1,2,3-triazole linker.
  • A thioether linker is made by the formation of a sulfur-carbon (thioether) bond in the form, for instance, of R1-S—R2. Thioether can be made by either alkylation of a thiol/mercaptan (—SH) group on one component such as the antigen or adjuvant with an alkylating group such as halide or epoxide on a second component such as the nanocarrier. Thioether linkers can also be formed by Michael addition of a thiol/mercaptan group on one component such as an antigen or adjuvant to an electron-deficient alkene group on a second component such as a polymer containing a maleimide group or vinyl sulfone group as the Michael acceptor. In another way, thioether linkers can be prepared by the radical thiol-ene reaction of a thiol/mercaptan group on one component such as an antigen or adjuvant with an alkene group on a second component such as a polymer or nanocarrier.
  • A hydrazone linker is made by the reaction of a hydrazide group on one component such as the antigen or adjuvant with an aldehyde/ketone group on the second component such as the nanocarrier.
  • A hydrazide linker is formed by the reaction of a hydrazine group on one component such as the antigen or adjuvant with a carboxylic acid group on the second component such as the nanocarrier. Such reaction is generally performed using chemistry similar to the formation of amide bond where the carboxylic acid is activated with an activating reagent.
  • An imine or oxime linker is formed by the reaction of an amine or N-alkoxyamine (or aminooxy) group on one component such as the antigen or adjuvant with an aldehyde or ketone group on the second component such as the nanocarrier.
  • An urea or thiourea linker is prepared by the reaction of an amine group on one component such as the antigen or adjuvant with an isocyanate or thioisocyanate group on the second component such as the nanocarrier.
  • An amidine linker is prepared by the reaction of an amine group on one component such as the antigen or adjuvant with an imidoester group on the second component such as the nanocarrier.
  • An amine linker is made by the alkylation reaction of an amine group on one component such as the antigen or adjuvant with an alkylating group such as halide, epoxide, or sulfonate ester group on the second component such as the nanocarrier. Alternatively, an amine linker can also be made by reductive amination of an amine group on one component such as the antigen or adjuvant with an aldehyde or ketone group on the second component such as the nanocarrier with a suitable reducing reagent such as sodium cyanoborohydride or sodium triacetoxyborohydride.
  • A sulfonamide linker is made by the reaction of an amine group on one component such as the antigen or adjuvant with a sulfonyl halide (such as sulfonyl chloride) group on the second component such as the nanocarrier.
  • A sulfone linker is made by Michael addition of a nucleophile to a vinyl sulfone. Either the vinyl sulfone or the nucleophile may be on the surface of the nanocarrier or attached to the antigen or adjuvant.
  • The antigen or adjuvant can also be conjugated to the nanocarrier via non-covalent conjugation methods. For example, a negative charged antigen or adjuvant can be conjugated to a positive charged nanocarrier through electrostatic adsorption. An antigen or adjuvant containing a metal ligand can also be conjugated to a nanocarrier containing a metal complex via a metal-ligand complex.
  • In embodiments, the antigen or adjuvant can be attached to a polymer, for example polylactic acid-block-polyethylene glycol, prior to the assembly of the synthetic nanocarrier or the synthetic nanocarrier can be formed with reactive or activatible groups on its surface. In the latter case, the antigen or adjuvant may be prepared with a group which is compatible with the attachment chemistry that is presented by the synthetic nanocarriers' surface. In other embodiments, a peptide antigen can be attached to VLPs or liposomes using a suitable linker. A linker is a compound or reagent capable of coupling two molecules together. In an embodiment, the linker can be a homobifuntional or heterobifunctional reagent as described in Hermanson 2008. For example, a VLP or liposome synthetic nanocarrier containing a carboxylic group on the surface can be treated with a homobifunctional linker, adipic dihydrazide (ADH), in the presence of EDC to form the corresponding synthetic nanocarrier with the ADH linker. The resulting ADH linked synthetic nanocarrier is then conjugated with a peptide containing an acid group via the other end of the ADH linker on NC to produce the corresponding VLP or liposome peptide conjugate.
  • For detailed descriptions of available conjugation methods, see Hermanson G T “Bioconjugate Techniques”, 2nd Edition Published by Academic Press, Inc., 2008. In addition to covalent attachment the adjuvant can be coupled by adsorbtion to a pre-formed synthetic nanocarrier or it can be coupled by encapsulation during the formation of the synthetic nanocarrier.
  • In some embodiments, a component, such as an antigen or adjuvant, may be isolated. Isolated refers to the element being separated from its native environment and present in sufficient quantities to permit its identification or use. This means, for example, the element may be (i) selectively produced by expression cloning or (ii) purified as by chromatography or electrophoresis. Isolated elements may be, but need not be, substantially pure. Because an isolated element may be admixed with a pharmaceutically acceptable excipient in a pharmaceutical preparation, the element may comprise only a small percentage by weight of the preparation. The element is nonetheless isolated in that it has been separated from the substances with which it may be associated in living systems, i.e., isolated from other lipids or proteins. Any of the elements provided herein may be isolated. Any of the antigens provided herein can be included in the compositions in isolated form.
  • D. METHODS OF MAKING AND USING THE INVENTIVE COMPOSITIONS AND RELATED METHODS
  • Synthetic nanocarriers may be prepared using a wide variety of methods known in the art. For example, synthetic nanocarriers can be formed by methods as nanoprecipitation, flow focusing fluidic channels, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, milling, microemulsion procedures, microfabrication, nanofabrication, sacrificial layers, simple and complex coacervation, and other methods well known to those of ordinary skill in the art. Alternatively or additionally, aqueous and organic solvent syntheses for monodisperse semiconductor, conductive, magnetic, organic, and other nanomaterials have been described (Pellegrino et al., 2005, Small, 1:48; Murray et al., 2000, Ann Rev. Mat. Sci., 30:545; and Trindade et al., 2001, Chem. Mat., 13:3843). Additional methods have been described in the literature (see, e.g., Doubrow, Ed., “Microcapsules and Nanoparticles in Medicine and Pharmacy,” CRC Press, Boca Raton, 1992; Mathiowitz et al., 1987, J. Control. Release, 5:13; Mathiowitz et al., 1987, Reactive Polymers, 6:275; and Mathiowitz et al., 1988, J. Appl. Polymer Sci., 35:755; U.S. Pat. Nos. 5,578,325 and 6,007,845; P. Paolicelli et al., “Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles” Nanomedicine. 5(6):843-853 (2010)).
  • Various materials may be encapsulated into synthetic nanocarriers as desirable using a variety of methods including but not limited to C. Astete et al., “Synthesis and characterization of PLGA nanoparticles” J. Biomater. Sci. Polymer Edn, Vol. 17, No. 3, pp. 247-289 (2006); K. Avgoustakis “Pegylated Poly(Lactide) and Poly(Lactide-Co-Glycolide) Nanoparticles: Preparation, Properties and Possible Applications in Drug Delivery” Current Drug Delivery 1:321-333 (2004); C. Reis et al., “Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles” Nanomedicine 2:8-21 (2006); P. Paolicelli et al., “Surface-modified PLGA-based Nanoparticles that can Efficiently Associate and Deliver Virus-like Particles” Nanomedicine. 5(6):843-853 (2010). Other methods suitable for encapsulating materials into synthetic nanocarriers may be used, including without limitation methods disclosed in U.S. Pat. No. 6,632,671 to Unger Oct. 14, 2003.
  • In certain embodiments, synthetic nanocarriers are prepared by a nanoprecipitation process or spray drying. Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, “stickiness,” shape, etc.). The method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
  • If particles prepared by any of the above methods have a size range outside of the desired range, particles can be sized, for example, using a sieve.
  • Elements of the inventive synthetic nanocarriers may be coupled to the overall synthetic nanocarrier, e.g., by one or more covalent bonds, or may be coupled by means of one or more linkers. Additional methods of functionalizing synthetic nanocarriers may be adapted from Published US Patent Application 2006/0002852 to Saltzman et al., Published US Patent Application 2009/0028910 to DeSimone et al., or Published International Patent Application WO/2008/127532 A1 to Murthy et al.
  • Alternatively or additionally, synthetic nanocarriers can be coupled to elements directly or indirectly via non-covalent interactions. In non-covalent embodiments, the non-covalent coupling is mediated by non-covalent interactions including but not limited to charge interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof. Such couplings may be arranged to be on an external surface or an internal surface of an inventive synthetic nanocarrier. In embodiments, encapsulation and/or absorption is a form of coupling.
  • In embodiments, the inventive synthetic nanocarriers can be combined with other adjuvants by admixing in the same vehicle or delivery system. Such adjuvants may include, but are not limited to mineral salts, such as alum, alum combined with monphosphoryl lipid (MPL) A of Enterobacteria, such as Escherihia coli, Salmonella minnesota, Salmonella typhimurium, or Shigella flexneri or specifically with MPL® (AS04), MPL A of above-mentioned bacteria separately, saponins, such as QS-21, Quil-A, ISCOMs, ISCOMATRIX™, emulsions such as MF59™, Montanide® ISA 51 and ISA 720, AS02 (QS21+ squalene+MPL®), liposomes and liposomal formulations such as AS01, synthesized or specifically prepared microparticles and microcarriers such as bacteria-derived outer membrane vesicles (OMV) of N. gonorrheae, Chlamydia trachomatis and others, or chitosan particles, depot-forming agents, such as Pluronic® block co-polymers, specifically modified or prepared peptides, such as muramyl dipeptide, aminoalkyl glucosaminide 4-phosphates, such as RC529, or proteins, such as bacterial toxoids or toxin fragments. The doses of such other adjuvants can be determined using conventional dose ranging studies.
  • In embodiments, the inventive synthetic nanocarriers can be combined with an antigen different, similar or identical to those coupled to a nanocarrier (with or without adjuvant, utilizing or not utilizing another delivery vehicle) administered separately at a different time-point and/or at a different body location and/or by a different immunization route or with another antigen and/or adjuvant-carrying synthetic nanocarrier administered separately at a different time-point and/or at a different body location and/or by a different immunization route.
  • Populations of synthetic nanocarriers may be combined to form pharmaceutical dosage forms according to the present invention using traditional pharmaceutical mixing methods. These include liquid-liquid mixing in which two or more suspensions, each containing one or more subset of nanocarriers, are directly combined or are brought together via one or more vessels containing diluent. As synthetic nanocarriers may also be produced or stored in a powder form, dry powder-powder mixing could be performed as could the re-suspension of two or more powders in a common media. Depending on the properties of the nanocarriers and their interaction potentials, there may be advantages conferred to one or another route of mixing.
  • Typical compositions that comprise synthetic nanocarriers may comprise inorganic or organic buffers (e.g., sodium or potassium salts of phosphate, carbonate, acetate, or citrate) and pH adjustment agents (e.g., hydrochloric acid, sodium or potassium hydroxide, salts of citrate or acetate, amino acids and their salts) antioxidants (e.g., ascorbic acid, alpha-tocopherol), surfactants (e.g., polysorbate 20, polysorbate 80, polyoxyethylene9-10 nonyl phenol, sodium desoxycholate), solution and/or cryo/lyo stabilizers (e.g., sucrose, lactose, mannitol, trehalose), osmotic adjustment agents (e.g., salts or sugars), antibacterial agents (e.g., benzoic acid, phenol, gentamicin), antifoaming agents (e.g., polydimethylsilozone), preservatives (e.g., thimerosal, 2-phenoxyethanol, EDTA), polymeric stabilizers and viscosity-adjustment agents (e.g., polyvinylpyrrolidone, poloxamer 488, carboxymethylcellulose) and co-solvents (e.g., glycerol, polyethylene glycol, ethanol).
  • Compositions according to the invention comprise synthetic nanocarriers in combination with pharmaceutically acceptable excipients. The compositions may be made using conventional pharmaceutical manufacturing and compounding techniques to arrive at useful dosage forms. Techniques suitable for use in practicing the present invention may be found in Handbook of Industrial Mixing: Science and Practice, Edited by Edward L. Paul, Victor A. Atiemo-Obeng, and Suzanne M. Kresta, 2004 John Wiley & Sons, Inc.; and Pharmaceutics: The Science of Dosage Form Design, 2nd Ed. Edited by M. E. Auten, 2001, Churchill Livingstone. In an embodiment, inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.
  • It is to be understood that the compositions of the invention can be made in any suitable manner, and the invention is in no way limited to compositions that can be produced using the methods described herein. Selection of an appropriate method may require attention to the properties of the particular moieties being associated.
  • In some embodiments, the synthetic nanocarriers are manufactured under sterile conditions or are terminally sterilized. This can ensure that resulting composition are sterile and non-infectious, thus improving safety when compared to non-sterile compositions. This provides a valuable safety measure, especially when subjects receiving synthetic nanocarriers have immune defects, are suffering from infection, and/or are susceptible to infection. In some embodiments, inventive synthetic nanocarriers may be lyophilized and stored in suspension or as lyophilized powder depending on the formulation strategy for extended periods without losing activity.
  • The compositions of the invention can be administered by a variety of routes, including or not limited to subcutaneous, intranasal, oral, intravenous, intraperitoneal, intramuscular, transmucosal, transmucosal, sublingual, rectal, ophthalmic, pulmonary, intradermal, transdermal, transcutaneous or intradermal or by a combination of these routes. Routes of administration also include administration by inhalation or pulmonary aerosol. Techniques for preparing aerosol delivery systems are well known to those of skill in the art (see, for example, Sciarra and Cutie, “Aerosols,” in Remington's Pharmaceutical Sciences, 18th edition, 1990, pp. 1694-1712; incorporated by reference).
  • Doses of dosage forms contain varying amounts of populations of synthetic nanocarriers and/or varying amounts of antigens, adjuvants, etc., according to the invention. The amount of synthetic nanocarriers and/or other elements present in the inventive dosage forms can be varied according to the nature of the elements, the therapeutic benefit to be accomplished, and other such parameters. In embodiments, dose ranging studies can be conducted to establish optimal therapeutic amount of the population of synthetic nanocarriers and the amount of antigens to be present in the dosage form. In embodiments, the synthetic nanocarriers and the antigens are present in the dosage form in an amount effective to generate an immune response to the antigens upon administration to a subject. It may be possible to determine amounts of the antigens effective to generate an immune response using conventional dose ranging studies and techniques in subjects. Inventive dosage forms may be administered at a variety of frequencies. In a preferred embodiment, at least one administration of the dosage form is sufficient to generate a pharmacologically relevant response. In more preferred embodiment, at least two administrations, at least three administrations, or at least four administrations, of the dosage form are utilized to ensure a pharmacologically relevant response.
  • The compositions and methods described herein can be used to induce, enhance, suppress, modulate, direct, or redirect an immune response. The compositions and methods described herein can be used in the diagnosis, prophylaxis and/or treatment of conditions such as cancers, infectious diseases, metabolic diseases, degenerative diseases, non-autoimmune diseases or other disorders and/or conditions. The compositions and methods described herein can also be used for the prophylaxis or treatment of an addiction, such as an addiction to an illegal drug, an over-the-counter drug, a prescription drug. In some embodiments, the addiction is to cocaine, heroin, marijuana, methamphetamines, nicotine or a narcotic. The compositions and methods described herein can also be used for the prophylaxis and/or treatment of a condition resulting from the exposure to a toxin, hazardous substance, environmental toxin, or other harmful agent.
  • Examples of infectious disease include, but are not limited to, viral infectious diseases, such as AIDS, Chickenpox (Varicella), Common cold, Cytomegalovirus Infection, Colorado tick fever, Dengue fever, Ebola hemorrhagic fever, Hand, foot and mouth disease, Hepatitis, Herpes simplex, Herpes zoster, HPV, Influenza (Flu), Lassa fever, Measles, Marburg hemorrhagic fever, Infectious mononucleosis, Mumps, Norovirus, Poliomyelitis, Progressive multifocal leukencephalopathy, Rabies, Rubella, SARS, Smallpox (Variola), Viral encephalitis, Viral gastroenteritis, Viral meningitis, Viral pneumonia, West Nile disease and Yellow fever; bacterial infectious diseases, such as Anthrax, Bacterial Meningitis, Botulism, Brucellosis, Campylobacteriosis, Cat Scratch Disease, Cholera, Diphtheria, Epidemic Typhus, Gonorrhea, Impetigo, Legionellosis, Leprosy (Hansen's Disease), Leptospirosis, Listeriosis, Lyme disease, Melioidosis, Rheumatic Fever, MRSA infection, Nocardiosis, Pertussis (Whooping Cough), Plague, Pneumococcal pneumonia, Psittacosis, Q fever, Rocky Mountain Spotted Fever (RMSF), Salmonellosis, Scarlet Fever, Shigellosis, Syphilis, Tetanus, Trachoma, Tuberculosis, Tularemia, Typhoid Fever, Typhus and Urinary Tract Infections; parasitic infectious diseases, such as African trypanosomiasis, Amebiasis, Ascariasis, Babesiosis, Chagas Disease, Clonorchiasis, Cryptosporidiosis, Cysticercosis, Diphyllobothriasis, Dracunculiasis, Echinococcosis, Enterobiasis, Fascioliasis, Fasciolopsiasis, Filariasis, Free-living amebic infection, Giardiasis, Gnathostomiasis, Hymenolepiasis, Isosporiasis, Kala-azar, Leishmaniasis, Malaria, Metagonimiasis, Myiasis, Onchocerciasis, Pediculosis, Pinworm Infection, Scabies, Schistosomiasis, Taeniasis, Toxocariasis, Toxoplasmosis, Trichinellosis, Trichinosis, Trichuriasis, Trichomoniasis and Trypanosomiasis; fungal infectious disease, such as Aspergillosis, Blastomycosis, Candidiasis, Coccidioidomycosis, Cryptococcosis, Histoplasmosis, Tinea pedis (Athlete's Foot) and Tinea cruris; prion infectious diseases, such as Alpers' disease, Fatal Familial Insomnia, Gerstmann-Sträussler-Scheinker syndrome, Kuru and Variant Creutzfeldt-Jakob disease.
  • Examples of cancers include, but are not limited to breast cancer; biliary tract cancer; bladder cancer; brain cancer including glioblastomas and medulloblastomas; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; hematological neoplasms including acute lymphocytic and myelogenous leukemia, e.g., B Cell CLL; T-cell acute lymphoblastic leukemia/lymphoma; hairy cell leukemia; chronic myelogenous leukemia, multiple myeloma; AIDS-associated leukemias and adult T-cell leukemia/lymphoma; intraepithelial neoplasms including Bowen's disease and Paget's disease; liver cancer; lung cancer; lymphomas including Hodgkin's disease and lymphocytic lymphomas; neuroblastomas; oral cancer including squamous cell carcinoma; ovarian cancer including those arising from epithelial cells, stromal cells, germ cells and mesenchymal cells; pancreatic cancer; prostate cancer; rectal cancer; sarcomas including leiomyosarcoma, rhabdomyosarcoma, liposarcoma, fibrosarcoma, and osteosarcoma; skin cancer including melanoma, Merkel cell carcinoma, Kaposi's sarcoma, basal cell carcinoma, and squamous cell cancer; testicular cancer including germinal tumors such as seminoma, non-seminoma (teratomas, choriocarcinomas), stromal tumors, and germ cell tumors; thyroid cancer including thyroid adenocarcinoma and medullar carcinoma; and renal cancer including adenocarcinoma and Wilms tumor.
  • Examples of metabolic diseases include, but are not limited to, disorders of carbohydrate metabolism, amino acid metabolism, organic acid metabolism, fatty acid oxidation and mitochondrial metabolism, prophyrin metabolism, purine or pyrimidine metabolism, steroid metabolism, lysosomal mitochondrial function, peroxisomal function, lysosomal storage, urea cycle disorders (e.g., N-acetyl glutamate synthetase deficiency, carbamylphosphate synthase deficiency, ornithine carbamyl transferase deficiency, crginosuccinic aciduria, citrullinaemia, arginase deficiency), amino acid disorders (e.g., Non-ketotic hyperglycinaemia, tyrosinaemia (Type I), Maple syrup urine disease), organic acidemias (e.g, isovaleric acidemia, methylmalonic acidemia, propionic acidemia, glutaric aciduria type I, glutaric acidemia type I & II), mitochondrial disorders (e.g., carboxylase defects, mitochondrial myopathies, lactic acidosis (pyruvate dehydrogenase complex defects), congenital lactic acidosis, mitochondrial respiratory chain defects, cystinosis, Gaucher's disease, Fabry's disease, Pompe's disease, mucopolysaccharoidosis I, mucopolysaccharoidosis II, mucopolysaccharoidosis VI).
  • Examples of degenerative diseases include, but are not limited to, mesenchyme/mesoderm degenerative disease, muscle degenerative disease, endothelial degenerative disease, neurodegenerative disease, degenerative joint disease (e.g., osteoarthritis), major types of degenerative heart disease (e.g., coronary heart disease, congenital heart disease, rheumatic heart disease, angina pectoris), neurodegenerative disease (e.g., Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Lewy body disease, Parkinson's disease, spinal muscular atrophy), neuromuscular disorders (e.g., muscular dystrophy, duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, myotonic muscular dystrophy, congenital myopathy, familial cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, restrictive cardiomyopathy, or coronary artery disease).
  • EXAMPLES Example 1 Formulations of Synthetic Nanocarriers Materials for Lot #1
  • Ovalbumin peptide 323-339 amide acetate salt, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Part #4065609.) PLGA-R848 conjugate of 75/25 lactide/glycolide monomer composition and approximately 4100 Da molecular weight having 5.2% w/w R848 content was synthesized by conjugation of R848 to the terminal-acid of commercially-supplied PLGA via an amide linkage. PLA-PEG-Nicotine with a nicotine-terminated PEG block of 3,500 Da and DL-PLA block of approximately 15,000 Da was synthesized. Polyvinyl alcohol (Mw=9,000-10,000, 80% hydrolyzed) was purchased from SIGMA (Part Number 360627).
  • Methods for Lot #1
  • Solutions were prepared as follows:
  • Solution 1: Ovalbumin peptide 323-339 amide acetate salt @ 70 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • Solution 2: PLGA-R848 @ 75 mg/mL and PLA-PEG-Nicotine @ 25 mg/mL in dichloromethane was prepared by dissolving PLGA-R848 at 100 mg/mL in dichloromethane and PLA-PEG-Nicotine at 100 mg/mL in dichloromethane, then combining 3 parts of the PLGA-R848 solution to 1 part of the PLA-PEG-Nicotine solution.
  • Solution 3: Polyvinyl alcohol @ 50 mg/mL in 100 mM phosphate buffer, pH 8.
  • Solution 4: 70 mM phosphate buffer, pH 8.
  • A primary (W1/O) emulsion was first created using Solution 1 & Solution 2. Solution 1 (0.1 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2 mL) to the primary emulsion and sonicating at 30% amplitude for 40 seconds using the Branson Digital Sonifier 250. The secondary emulsion was added to an open 50 mL beaker containing 30 mL of stiffing 70 mM phosphate buffer solution and was stirred at room temperature for not less than 2 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension. A portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 13800 rcf for 60 minutes at 4° C., removing the supernatant, and re-suspending the pellet in phosphate buffered saline. This washing procedure was repeated and then the pellet was re-suspended in phosphate buffered saline to achieve a nanocarrier suspension having a nominal concentration of 10 mg/mL on a polymer basis. The suspension which was stored frozen at −20C until use.
  • TABLE 1
    Nanocarrier Effective TLR Agonist, % T-cell helper peptide,
    ID Diameter (nm) w/w % w/w
    1 197 1.5 0.8
  • Materials for Lot #2
  • Ovalbumin peptide 323-339 amide acetate salt, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Part #4065609.) PLGA-R848 conjugate of 75/25 lactide/glycolide monomer composition and approximately 4100 Da molecular weight having 5.2% w/w R848 content was synthesized by conjugation of R848 to the terminal-acid of commercially-supplied PLGA via an amide linkage. PLA with an inherent viscosity of 0.19 dL/g was purchased from Boehringer Ingelheim (Ingelheim Germany. Product Code R202H). PLA-PEG-Nicotine with a nicotine-terminated PEG block of 3,500 Da and DL-PLA block of approximately 15,000 Da was synthesized. Polyvinyl alcohol (Mw=9,000-10,000, 80% hydrolyzed) was purchased from SIGMA (Part Number 360627).
  • Methods for Lot #2
  • Solutions were prepared as follows:
  • Solution 1: Ovalbumin peptide 323-339 amide acetate salt @ 70 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • Solution 2: PLGA-R848 @ 75 mg/mL, PLA-PEG-Nicotine @ 6 mg/mL, and PLA at 19 mg/mL in dichloromethane was prepared by dissolving PLGA-R848 at 100 mg/mL in dichloromethane, PLA-PEG-Nicotine at 100 mg/mL in dichloromethane, and PLA at 100 mg/mL in dichloromethane and then combining 750 μL of the PLGA-R848 solution with 60 μL of the PLA-PEG-Nicotine solution and 190 μL of the PLA solution.
  • Solution 3: Polyvinyl alcohol @ 50 mg/mL in 100 mM phosphate buffer, pH 8.
  • Solution 4: 70 mM phosphate buffer, pH 8.
  • A primary (W1/O) emulsion was first created using Solution 1 & Solution 2. Solution 1 (0.1 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2 mL) to the primary emulsion and sonicating at 10% amplitude for 40 seconds using the Branson Digital Sonifier 250. The secondary emulsion was added to an open 50 mL beaker containing 30 mL of stiffing 70 mM phosphate buffer solution and was stirred at room temperature for not less than 2 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension. A portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 13800 rcf for 60 minutes at 4° C., removing the supernatant, and re-suspending the pellet in phosphate buffered saline. This washing procedure was repeated and then the pellet was re-suspended in phosphate buffered saline to achieve a nanocarrier suspension having a nominal concentration of 10 mg/mL on a polymer basis. The suspension which was stored frozen at −20C until use.
  • TABLE 2
    Nanocarrier Effective TLR Agonist, % T-cell helper peptide,
    ID Diameter (nm) w/w % w/w
    2 212 1.4 1.8
  • Materials for Lot #3
  • Ovalbumin peptide 323-339 amide acetate salt, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Part #4065609.) PLGA-R848 conjugate of 75/25 lactide/glycolide monomer composition and approximately 4100 Da molecular weight having 5.2% w/w R848 content was synthesized by conjugation of R848 to the terminal-acid of commercially-supplied PLGA via an amide linkage. PLA-PEG-Nicotine with a nicotine-terminated PEG block of 3,500 Da and DL-PLA block of approximately 15,000 Da was synthesized. PLA-PEG-OMe block co-polymer with a PEG-OMe (Methyl-ether capped PEG) block of 2,000 Da and DL-PLA block of approximately 19,000 Da was synthesized. Polyvinyl alcohol (Mw=9,000-10,000, 80% hydrolyzed) was purchased from SIGMA (Part Number 360627).
  • Methods for Lot #3
  • Solutions were prepared as follows:
  • Solution 1: Ovalbumin peptide 323-339 amide acetate salt @ 70 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • Solution 2: PLGA-R848 @ 75 mg/mL, PLA-PEG-Nicotine @ 6 mg/mL, and PLA-PEG-OMe at 19 mg/mL in dichloromethane was prepared by dissolving PLGA-R848 at 100 mg/mL in dichloromethane, PLA-PEG-Nicotine at 100 mg/mL in dichloromethane, and PLA-PEG-OMe at 100 mg/mL in dichloromethane and then combining 750 μL of the PLGA-R848 solution with 60 μL of the PLA-PEG-Nicotine solution and 190 μL of the PLA-PEG-OMe solution.
  • Solution 3: Polyvinyl alcohol @ 50 mg/mL in 100 mM phosphate buffer, pH 8.
  • Solution 4: 70 mM phosphate buffer, pH 8.
  • A primary (W1/O) emulsion was first created using Solution 1 & Solution 2. Solution 1 (0.1 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2 mL) to the primary emulsion and sonicating at 10% amplitude for 40 seconds using the Branson Digital Sonifier 250. The secondary emulsion was added to an open 50 mL beaker containing 30 mL of stiffing 70 mM phosphate buffer solution and was stirred at room temperature for not less than 2 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension. A portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 13800 rcf for 60 minutes at 4° C., removing the supernatant, and re-suspending the pellet in phosphate buffered saline. This washing procedure was repeated and then the pellet was re-suspended in phosphate buffered saline to achieve a nanocarrier suspension having a nominal concentration of 10 mg/mL on a polymer basis. The suspension which was stored frozen at −20C until use.
  • TABLE 3
    Nanocarrier Effective TLR Agonist, % T-cell helper peptide,
    ID Diameter (nm) w/w % w/w
    3 197 1.8 0.9
  • Materials for Lots #4-#12
  • Ovalbumin peptide 323-339 amide acetate salt, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Product code 4065609.) PLGA-R848 of approximately 5,200 Da made from PLGA of 3:1 lactide to glycolide ratio and having 12.7% w/w conjugated R848 content was synthesized. PLA with an inherent viscosity of 0.21 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211. Product Code 100 DL 2A.) PLA-PEG2k-OMe block co-polymer with a methyl ether terminated PEG block of 2,000 Da and DL-PLA block of approximately 19,000 Da was synthesized. PLA-PEG5k-OMe block co-polymer with a methyl ether terminated PEG block of 5,000 Da and DL-PLA block of approximately 20,000 Da was synthesized. PLA-PEG-Nicotine block copolymer having a nicotine-terminated PEG block of 5,000 Da and DL-PLA block of approximately 21,000 Da was synthesized. Polyvinyl alcohol (Mw=11,000-31,000, 87-89% hydrolyzed) was purchased from J. T. Baker (Part Number U232-08).
  • Methods for Lots #4-#12
  • Solutions were prepared as follows:
  • Solution 1: Ovalbumin peptide 323-339 amide acetate salt @ 20 mg/mL was prepared by dissolution in 0.13N hydrochloric acid at room temperature.
  • Solution 2: Stock solutions, each containing one of the individual polymers (PLGA-R848, PLA, PLA-PEG2k-OMe, PLA-PEG5k-OMe, and PLA-PEG-Nicotine), were prepared in dichloromethane at 100 mg/mL. These single-polymer stocks were combined according to Table 4 to generate a unique “Solution 2” for each of the nanocarrier lots.
  • Solution 3: Polyvinyl alcohol @ 50 mg/mL in 100 mM in 100 mM phosphate buffer, pH 8.
  • Solution 4: 70 mM phosphate buffer, pH 8.
  • A primary (W1/O) emulsion was first created using Solution 1 & Solution 2. Solution 1 (0.2 mL) and Solution 2 (1.0 mL) were combined in a small glass pressure tube and sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250. A secondary (W1/O/W2) emulsion was then formed by adding Solution 3 (2.0 mL) to the primary emulsion, vortexing to create a course dispersion, and then sonicating at 30% amplitude for 40 seconds using the Branson Digital Sonifier 250. The secondary emulsion was added to an open 50 mL beaker containing 70 mM phosphate buffer solution (30 mL) and stirred at room temperature for 2 to 3 hours to allow the dichloromethane to evaporate and the nanocarriers to form in suspension. A portion of the suspended nanocarriers was washed by transferring the nanocarrier suspension to a centrifuge tube, spinning at 21,000 rcf for 45 minutes, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. This washing procedure was repeated and then the pellet was re-suspended in phosphate buffered saline to achieve a nanocarrier suspension having a nominal concentration of 10 mg/mL on a polymer basis. The suspension was stored frozen at −20° C. until use.
  • TABLE 4
    Composition of Solution 2 for Nanocarrier Formulation
    Solution
    2 Composition for Production of Example Nanocarrier Lots
    4 6 7 10 8 9 5 12 11
    Polymer PLA-PEG- 0.25 mL 0.50 mL 0.25 mL 0.25 mL 0.375 mL 0.375 mL 0.375 mL
    Solution Nicotine
    (100 mg/mL) PLA-PEG2k- 0.25 mL 0.125 mL
    OMe
    PLA-PEG5k- 0.25 mL 0.125 mL 0.50 mL
    OMe
    PLA 0.25 mL 0.125 mL 0.50 mL
    PLGA-R848 0.50 mL 0.50 mL 0.50 mL 0.50 mL  0.50 mL  0.50 mL  0.50 mL 0.50 mL 0.50 mL
  • TABLE 5
    PLA-PEG- PLA-PEG2k- PLA-PEG5k- Ova Peptide R848
    Nic OMe OMe PLA Load (% Load
    Gr. NC Lot # (% w/w) (% w/w) (% w/w) (% w/w) w/w) (% w/w)
    1 4 25 0 0 25 2.0 4.1
    3 6 50 0 0 0 1.0 3.9
    4 7 25 25 0 0 1.1 3.9
    7 10 25 0 25 0 0.1 4.0
    5 8 37.5 12.5 0 0 1.0 4.4
    6 9 37.5 0 12.5 0 0.7 4.1
    2 5 37.5 0 0 12.5 1.8 4.4
    9 12 0 0 0 50 0.7 4.2
    8 11 0 0 50 0 0 4.6
  • Example 2 Synthetic Nanocarriers with Increased Antigen Increases Antigen-Specific Antibody Generation and Decreases Anti-Carrier Antibody Generation
  • Mice were inoculated with nicotine-presenting R848-adjuvanted nanocarrier formulations. Groups 2 through 4 were evaluated for antigen-presentation and anti-carrier effect. The nicotine-presenting conjugate in the nanocarrier is a PLA-PEG3.5k-Nicotine construct of ˜15,350 Mw PLA and ˜3500 Mw PEG. The study groups used formulations having varied content of the PLA-PEG3.5k-Nicotine construct, partially-substituting the construct with either a ˜20 k Mw PLA polymer or with a PLA-PEG2k-OMe polymer of ˜18,700 Mw PLA and 2000 Mw PEG. Mice were immunized at days 0, 14, and 28 and serum was collected at days 26 and 40. The formulations are described as tabulated below and the anti-nicotine and resultant anti-PEG antibodies at day 40 are presented in FIG. 1.
  • TABLE 6
    Synthetic Nanocarrier Formulations
    μg R848/mg
    NP released
    PLGA-R848 Polymer-Ag Replacement R848 Ova (24 hrs,
    Conjugate, % Description, % polymer, % of Load Peptide citrate pH
    Gr. NC Lot # of NC mass of NC mass NC mass (%) Load (%) 4.5)
    2 1 75% PLA-PEG-Nic, None 1.5 0.8 3.7
    25%
    3 2 75% PLA-PEG-Nic, R202H PLA, 1.4 1.8 3.9
    6% 19%
    4 3 75% PLA-PEG-Nic, PLA-PEG, 19% 1.8 0.9 4.5
    6%
  • Antibody titers to nicotine and PEG were determined by ELISA using sera collected from immunized mice. Plates were coated with 100 μL per well of either polylysine-nicotine (PLL-Nic), PLA-PEG-OMe, or polylysine-PEG (PLL-PEG-OMe) and incubated overnight at 4° C. Plates were washed three times with wash buffer (0.05% Tween-20 in PBS) and blocked at room temperature for two hours using 200 μL per well of 10% fetal bovine serum (FBS) in PBS (diluent). Serum samples were added to the wells of the top row of a 96-well plate and diluted 3-fold down the plate to obtain an antibody titration curve. For a positive control, either a mouse anti-nicotine monoclonal antibody or a biotinylated rabbit anti-PEG monoclonal antibody (Epitomics, Catalog #2137-1) were used in two columns of the plate. For negative controls, either serum from unimmunized mice or isotype control antibodies were used. Plates were incubated for two hours at room temperature and washed three times with wash buffer. Secondary detection antibody (biotinylated goat anti-mouse Ig, BD Biosciences, Catalog #553999) was diluted 1:1000 in diluent and 100 μL was added to each well of the plate. Plates were incubated for one hour at room temperature and washed three times with wash buffer. Detection enzyme (streptavidin-horseradish peroxidase, SA-HRP, BD Biosciences, Catalog #554066) was diluted 1:1000 in diluent and 100 μL was added to each well of the plate. Plates were incubated for 30 minutes at room temperature in the dark and washed three times with wash buffer (during each wash step, plates were incubated with wash buffer for at least 30 seconds). TMB substrate (BD Biosciences, Catalog #555214) was added to the plate (100 μL per well) and incubated for 15 minutes at room temperature in the dark. Stop solution (2N sulfuric acid) was added to stop the enzymatic reaction (50 μL per well) and the optical density of the plates was read using a plate reader at 450 nm wavelength with subtraction of 570 nm. The half maximal effective concentration (EC50) of antibodies was calculated based on the generated four-parameter logistic curve-fit graph. The average OD value of two diluent-only blanks (negative control) was subtracted from the rest of the wells of the plate. The EC50 value of the average top OD value of the two standards was used to determine the EC50 value for the rest of the plate.
  • The data show a non-linear increase in anti-nicotine (target) antibodies with higher nicotine content of the nanocarrier (25% vs. 6% PLA-PEG3.5k-Nicotine); a 5-fold increase in PLA-PEG3.5k-Nicotine yielded a 21 to 74-fold higher anti-nicotine response while achieving a ˜31:1 ratio of anti-nicotine to anti-PEG antibodies. Surprisingly, in the case where ˜75% of the PLA-PEG3.5k-Nicotine was substituted with PLA-PEG2k-OMe, the anti-PEG titer exceeded the nicotine titer to yield a 1:10 ratio of anti-nicotine to anti-PEG antibodies. Anti-PEG antibody titers were 8-fold higher in formulations containing 6% PLA-PEG3.5k-Nicotine than those containing 25% PLA-PEG3.5k-Nicotine. Additionally, in the group that was inoculated with Lot 2 (contained 19% PLA polymer instead of 19% PLA-PEG2k-OMe), anti-PEG antibody levels were nearly absent.
  • Example 3 Synthetic Nanocarriers with Increased Antigen or Increased Polymer Length Decreases Anti-Carrier Antibody Generation
  • Mice were inoculated with nicotine-presenting R848-adjuvanted nanocarrier formulations. All formulations were prepared on the same date using a consistent set of solutions and materials. All tested nanocarriers were formulated with a 50% PLGA-R848 polymer content, with the remaining 50% of the composition made up of one or more of the following polymers: PLA-PEG5k-Nicotine, PLA-PEG2k-OMe, PLA-PEG5k-OMe, or PLA.
  • TABLE 7
    Synthetic Nanocarrier Formulations
    PLA-PEG- PLA-PEG2k- PLA-PEG5k- Ova Peptide R848
    Nic OMe OMe PLA Load (% Load
    Gr. NC Lot # (% w/w) (% w/w) (% w/w) (% w/w) w/w) (% w/w)
    1 4 25 0 0 25 2.0 4.1
    2 5 37.5 0 0 12.5 1.8 4.4
    3 6 50 0 0 0 1.0 3.9
    4 7 25 25 0 0 1.1 3.9
    5 8 37.5 12.5 0 0 1.0 4.4
    6 9 37.5 0 12.5 0 0.7 4.1
    7 10 25 0 25 0 0.1 4.0
    8 11 0 0 50 0 0 4.6
    9 12 0 0 0 50 0.7 4.2
  • Following a prime and two-boost inoculation schedule, the on-target (anti-nicotine) antibody titers and off-target (anti-PEG) antibody titers were determined by ELISA as described above (except PEG length in the ELISA coating materials was adjusted to match the length used in the nanoparticles used for injections when applicable) and are presented in FIG. 2.
  • The results revealed several surprising outcomes with implications on nanocarrier vaccine formulations. For example, at 25% PLA-PEG5k-Nicotine content or higher, with no other sources of PEG in the formulation, essentially no induction of anti-PEG antibodies is observed. Additionally, the incorporation of PLA-PEG5k-Nicotine above 25% of the particle content does not further increase anti-nicotine antibody titers (plateau effect). Incorporation of 100% more nicotine actually resulted in a decrease in anti-nicotine antibody titers. Introduction of shorter-chain filler PLA-PEG2k (PEG of 2000 Mw) leads to a significant anti-PEG antibody titer, whereas a longer-PEG-chain filler PLA-PEG5k (PEG of 5000 Mw) results in limited anti-PEG titers. This result is evident at two different content levels of the filler introduction whether the anti-PEG response is considered as an absolute titer or as a ratio to the intended anti-nicotine response.

Claims (31)

1. A composition comprising:
a population of synthetic nanocarriers, wherein the synthetic nanocarriers comprise (i) a B cell antigen and (ii) an off-target response attenuating polymeric coating, wherein the B cell antigen is coupled to the synthetic nanocarrier.
2. The composition of claim 1, wherein the coating comprises one or more polymers present at at least a portion of the surface of the synthetic nanocarriers.
3. The composition of claim 1, wherein the B cell antigen is coupled to the off-target response attenuating polymeric coating.
4. The composition of claim 1, wherein the off-target response attenuating polymeric coating comprises a polymer with a weight average or number average molecular weight of greater than 2000 g/mole, of greater than 3000 g/mole, of greater than 4000 g/mole, of greater than 5000 g/mole, of between 3500 g/mole and 5000 g/mole, or of 5000 g/mole.
5.-9. (canceled)
10. The composition of claim 1, wherein the B cell antigen is coupled to the polymer.
11. The composition of claim 1, wherein the off-target response attenuating polymeric coating comprises another polymer.
12. The composition of claim 11, wherein the B cell antigen is coupled to the other polymer.
13.-18. (canceled)
19. The composition of claim 11, wherein the polymer and other polymer are the same type of polymer.
20. The composition of claim 11, wherein the polymer and other polymer are not the same type of polymer.
21. The composition of claim 1, wherein the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers, or the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers is between 0.001 and 1, between 0.01 and 1, between 0.1 and 1, between 0.25 and 1, between 0.5 and 1, or between 0.75 and 1.
22.-26. (canceled)
27. The composition of claim 21, wherein the ratio is based on the polymeric coating across the population of synthetic nanocarriers, or on the synthetic nanocarrier as a whole across the population of synthetic nanocarriers.
28. (canceled)
29. The composition of claim 1, wherein the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer not coupled to the B cell antigen, the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen, or the ratio by weight averaged across the population of synthetic nanocarriers of polymer not coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen is between 0.1 and 1, between 0.25 and 1, between 0.5 and 1, between 0.1 and 0.5, or 0.5.
30.-35. (canceled)
36. The composition of claim 1 or claim 11, wherein the polymer and/or other polymer comprises polyethylene glycol, a polyethyloxazoline, a polyamino acid, polycarbonate, hydrophilic polyacetal, hydrophilic polyketal, saccharide polypropylene, or polyethyleneimine.
37.-38. (canceled)
39. The composition of claim 1, wherein the B cell antigen comprises a protein, peptide, small molecule or oligosaccharide.
40. (canceled)
41. The composition of claim 1, wherein the composition further comprises a T cell antigen.
42. (canceled)
43. The composition of claim 1, wherein the composition further comprises an adjuvant and/or a pharmaceutically acceptable excipient.
44. (canceled)
45. A dosage form comprising the composition of claim 1.
46. A vaccine comprising the dosage form of claim 45.
47. A method comprising administering the dosage form of claim 45 to a subject in need thereof.
48.-49. (canceled)
50. A process for producing a synthetic nanocarrier comprising an off-target response attenuating polymeric coating, comprising the steps of: (a) providing a composition comprising one or more polymers present at at least a portion of the surface of a synthetic nanocarrier; (b) coupling a B cell antigen to said synthetic nanocarrier under conditions where: (i) the molecular weight of the polymers (as weight average or number average molecular weight); and/or (ii) the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers; and/or (iii) the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer not coupled to the B cell antigen; and/or (iv) the ratio of the average number of polymers coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers; and/or (v) the ratio by weight averaged across the population of synthetic nanocarriers of polymer coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen; and/or (vi) the ratio of the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers to the average number of polymers coupled to the B cell antigen plus the average number of polymers not coupled to the B cell antigen across the population of synthetic nanocarriers; and/or (vii) the ratio by weight averaged across the population of synthetic nanocarriers of polymer not coupled to the B cell antigen nanocarriers to polymer coupled to the B cell antigen plus polymer not coupled to the B cell antigen; are selected such that an antibody response against the B cell antigen is at least two-fold greater than an off-target antibody response.
51.-59. (canceled)
US13/560,925 2011-07-29 2012-07-27 Control of antibody responses to synthetic nanocarriers Abandoned US20130039954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/560,925 US20130039954A1 (en) 2011-07-29 2012-07-27 Control of antibody responses to synthetic nanocarriers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161513496P 2011-07-29 2011-07-29
US201161513526P 2011-07-29 2011-07-29
US201161513527P 2011-07-29 2011-07-29
US13/560,925 US20130039954A1 (en) 2011-07-29 2012-07-27 Control of antibody responses to synthetic nanocarriers

Publications (1)

Publication Number Publication Date
US20130039954A1 true US20130039954A1 (en) 2013-02-14

Family

ID=47597380

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/560,943 Abandoned US20130028857A1 (en) 2011-07-29 2012-07-27 Synthetic nanocarriers comprising polymers comprising multiple immunomodulatory agents
US13/560,955 Active US10933129B2 (en) 2011-07-29 2012-07-27 Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses
US13/560,925 Abandoned US20130039954A1 (en) 2011-07-29 2012-07-27 Control of antibody responses to synthetic nanocarriers

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/560,943 Abandoned US20130028857A1 (en) 2011-07-29 2012-07-27 Synthetic nanocarriers comprising polymers comprising multiple immunomodulatory agents
US13/560,955 Active US10933129B2 (en) 2011-07-29 2012-07-27 Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses

Country Status (12)

Country Link
US (3) US20130028857A1 (en)
EP (1) EP2736537A4 (en)
JP (2) JP2014521687A (en)
KR (1) KR20140050698A (en)
CN (3) CN109125722A (en)
AU (3) AU2012290306B2 (en)
BR (1) BR112014002139A2 (en)
CA (1) CA2843274A1 (en)
EA (1) EA201490381A1 (en)
IL (2) IL230269B (en)
MX (1) MX2014001142A (en)
WO (3) WO2013019648A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110020388A1 (en) * 2009-05-27 2011-01-27 Selecta Biosciences, Inc. Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
US20110110965A1 (en) * 2009-08-26 2011-05-12 Selecta Biosciences, Inc. Compositions that induce t cell help
US20110223201A1 (en) * 2009-04-21 2011-09-15 Selecta Biosciences, Inc. Immunonanotherapeutics Providing a Th1-Biased Response
US8652487B2 (en) 2011-04-29 2014-02-18 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for inducing regulatory B cells
US9066978B2 (en) 2010-05-26 2015-06-30 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US9522180B2 (en) 2013-08-13 2016-12-20 Northwestern University Peptide conjugated particles
US9994443B2 (en) 2010-11-05 2018-06-12 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
US10046064B2 (en) 2014-09-07 2018-08-14 Selecta Biosciences, Inc. Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses
US10201596B2 (en) 2012-06-21 2019-02-12 Northwestern University Peptide conjugated particles for the treatment of allergy
US10335395B2 (en) 2013-05-03 2019-07-02 Selecta Biosciences, Inc. Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance
US10471093B2 (en) 2010-11-12 2019-11-12 Cour Pharmaceuticals Development Company. Modified immune-modulating particles
US10933129B2 (en) 2011-07-29 2021-03-02 Selecta Biosciences, Inc. Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses
US11045492B2 (en) 2013-03-13 2021-06-29 Oncour Pharma, Inc. Immune-modifying nanoparticles for the treatment of inflammatory diseases
WO2022052212A1 (en) * 2020-09-14 2022-03-17 苏州大学 Use of fluorinated polyethylenimine in preparation of vaccine or preparation for preventing or treating diseases caused by viruses or bacteria
US11426451B2 (en) 2017-03-11 2022-08-30 Selecta Biosciences, Inc. Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822663B2 (en) 2010-08-06 2014-09-02 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
CN104531812A (en) 2010-10-01 2015-04-22 现代治疗公司 Engineered nucleic acids and methods of use thereof
US8710200B2 (en) 2011-03-31 2014-04-29 Moderna Therapeutics, Inc. Engineered nucleic acids encoding a modified erythropoietin and their expression
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
HUE057725T2 (en) 2011-10-03 2022-06-28 Modernatx Inc Modified nucleosides, nucleotides and nucleic acids and their uses
LT2791160T (en) 2011-12-16 2022-06-10 Modernatx, Inc. MODIFIED MRNR COMPOSITIONS
US9254311B2 (en) 2012-04-02 2016-02-09 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins
AU2013243954A1 (en) 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
PT2922554T (en) 2012-11-26 2022-06-28 Modernatx Inc Terminally modified rna
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US10314917B2 (en) * 2013-03-15 2019-06-11 The Brigham And Women's Hospital, Inc. Targeted polymeric inflammation-resolving nanoparticles
AU2014262164B2 (en) * 2013-05-03 2020-02-27 Selecta Biosciences, Inc. Dosing combinations for reducing undesired humoral immune responses
EP3024936B1 (en) 2013-07-25 2019-09-04 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
CA2923029A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
AU2014329452B2 (en) 2013-10-03 2019-06-20 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
KR102507624B1 (en) 2013-11-22 2023-03-09 미나 테라퓨틱스 리미티드 C/ebp alpha short activating rna compositions and methods of use
CN105939699B (en) 2013-12-03 2020-10-02 西北大学 Liposome particle, method for preparing said liposome particle and use thereof
AU2015269412B2 (en) 2014-06-04 2020-03-12 Exicure Operating Company Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
US20150359865A1 (en) * 2014-06-17 2015-12-17 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for t-cell-mediated autoimmune disease
EP2966160A1 (en) 2014-07-09 2016-01-13 Clariant International Ltd. Storage-stable compositions comprising soil release polymers
WO2016005271A1 (en) 2014-07-09 2016-01-14 Unilever Plc Laundry liquid composition
WO2016010788A1 (en) 2014-07-15 2016-01-21 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Polyketal particles including a cpg oligodeoxynucleotide for the treatment of lung cancer
WO2016014846A1 (en) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Modified polynucleotides for the production of intrabodies
CA2958090A1 (en) * 2014-08-13 2016-02-18 The Regents Of The University Of California Biodegradable trehalose glycopolymers
KR101892689B1 (en) * 2014-10-14 2018-08-28 삼성전기주식회사 Chip electronic component and board having the same mounted thereon
EP3220895B1 (en) 2014-11-21 2022-08-31 Northwestern University The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
US20170025028A1 (en) * 2015-07-23 2017-01-26 Rhythmalytics LLC Actigraphy based biological rhythm modification methods and systems that result in a greater efficacy of applied medical treatment to a patient
MA47016A (en) 2015-10-22 2018-08-29 Modernatx Inc RESPIRATORY VIRUS VACCINES
EP3389720A1 (en) 2015-12-18 2018-10-24 The General Hospital Corporation Polyacetal polymers, conjugates, particles and uses thereof
RS63135B1 (en) 2015-12-23 2022-05-31 Modernatx Inc Methods of using ox40 ligand encoding polynucleotides
US20190241658A1 (en) 2016-01-10 2019-08-08 Modernatx, Inc. Therapeutic mRNAs encoding anti CTLA-4 antibodies
US20190184013A1 (en) * 2016-05-23 2019-06-20 University Of Miami Compositions for selective humoral responses and methods of use thereof
CN106065047B (en) * 2016-07-14 2019-02-26 山东省肿瘤防治研究院 A kind of liver targeting cationic polymer and its preparation method and application
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
EP3808380A1 (en) 2016-12-08 2021-04-21 CureVac AG Rna for treatment or prophylaxis of a liver disease
WO2018104540A1 (en) 2016-12-08 2018-06-14 Curevac Ag Rnas for wound healing
US12121573B2 (en) 2019-07-14 2024-10-22 Tianxin Wang Methods and agents including STING agonist to treat tumor
WO2018201090A1 (en) 2017-04-28 2018-11-01 Exicure, Inc. Synthesis of spherical nucleic acids using lipophilic moieties
WO2018237115A2 (en) 2017-06-23 2018-12-27 Pathovax Llc Chimeric virus-like particles and uses thereof as antigen-specific redirectors of immune responses
US11690920B2 (en) 2017-07-13 2023-07-04 Northwestern University General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles
US10472361B2 (en) 2017-08-16 2019-11-12 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a benzotriazole moiety, conjugates thereof, and methods and uses therefor
US10494370B2 (en) 2017-08-16 2019-12-03 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a pyridine or pyrazine moiety, conjugates thereof, and methods and uses therefor
US10457681B2 (en) 2017-08-16 2019-10-29 Bristol_Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a tricyclic moiety, conjugates thereof, and methods and uses therefor
US10508115B2 (en) 2017-08-16 2019-12-17 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having heteroatom-linked aromatic moieties, conjugates thereof, and methods and uses therefor
US10487084B2 (en) 2017-08-16 2019-11-26 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a heterobiaryl moiety, conjugates thereof, and methods and uses therefor
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
EP4233880A3 (en) 2017-09-08 2023-09-20 MiNA Therapeutics Limited Hnf4a sarna compositions and methods of use
EP3684405A2 (en) * 2017-09-21 2020-07-29 Emergex Vaccines Holdings Ltd MHC Class I Associated Peptides for Prevention and Treatment of Zika Virus
US11566246B2 (en) 2018-04-12 2023-01-31 Mina Therapeutics Limited SIRT1-saRNA compositions and methods of use
US11554120B2 (en) 2018-08-03 2023-01-17 Bristol-Myers Squibb Company 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists and methods and uses therefor
CN113396155A (en) 2018-12-27 2021-09-14 维伊木恩股份有限公司 Conjugated virus-like particles and their use as anti-tumor immune redirection agents
EP3938379A4 (en) 2019-03-15 2023-02-22 ModernaTX, Inc. HIV RNA VACCINE
US20220211740A1 (en) 2019-04-12 2022-07-07 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
CN110938200B (en) * 2019-12-05 2021-04-20 大连理工大学 A kind of preparation method of side chain containing lutidine amine polyester
MX2019015508A (en) 2019-12-18 2021-06-21 Univ Guadalajara NANOPARTICLES FOR THE TREATMENT OF CANCER.
CN111122429B (en) * 2019-12-31 2022-04-22 华南理工大学 Rapid detection method for nanocellulose conversion degree
US20220193225A1 (en) * 2020-08-31 2022-06-23 Bruce Lyday Compositions and methods for sars-2 vaccine with virus replicative particles and recombinant glycoproteins
KR20230129379A (en) 2020-10-19 2023-09-08 버이뮨 아이엔씨. Virus-influenced compositions and methods for using them to redirect existing immune responses for cancer treatment
GB2603454A (en) 2020-12-09 2022-08-10 Ucl Business Ltd Novel therapeutics for the treatment of neurodegenerative disorders
TW202305133A (en) 2021-03-26 2023-02-01 英商米納治療有限公司 Tmem173 sarna compositions and methods of use
EP4377331A2 (en) 2021-07-30 2024-06-05 CureVac SE Mrnas for treatment or prophylaxis of liver diseases
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
GB202117758D0 (en) 2021-12-09 2022-01-26 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023144193A1 (en) 2022-01-25 2023-08-03 CureVac SE Mrnas for treatment of hereditary tyrosinemia type i
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
EP4520345A1 (en) 2023-09-06 2025-03-12 Myneo Nv Product

Family Cites Families (332)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR7461M (en) 1968-06-19 1970-01-05
GB1355961A (en) 1970-02-27 1974-06-12 Wellcome Found Preparation of immunosuppressive antilymphocytic serum
CH594444A5 (en) 1972-12-04 1978-01-13 Gerd Birrenbach
DK143689C (en) 1975-03-20 1982-03-15 J Kreuter PROCEDURE FOR THE PREPARATION OF AN ADVERTISED VACCINE
US4756907A (en) 1978-10-17 1988-07-12 Stolle Research & Development Corp. Active/passive immunization of the internal female reproductive organs
US4946929A (en) 1983-03-22 1990-08-07 Massachusetts Institute Of Technology Bioerodible articles useful as implants and prostheses having predictable degradation rates
US6309669B1 (en) 1984-03-16 2001-10-30 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix
US4638045A (en) 1985-02-19 1987-01-20 Massachusetts Institute Of Technology Non-peptide polyamino acid bioerodible polymers
US4631211A (en) 1985-03-25 1986-12-23 Scripps Clinic & Research Foundation Means for sequential solid phase organic synthesis and methods using the same
US4806621A (en) 1986-01-21 1989-02-21 Massachusetts Institute Of Technology Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article
JPS63122620A (en) 1986-11-12 1988-05-26 Sanraku Inc Polylactic acid microsphere and production thereof
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5736372A (en) 1986-11-20 1998-04-07 Massachusetts Institute Of Technology Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
FR2608988B1 (en) 1986-12-31 1991-01-11 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF COLLOIDAL DISPERSIBLE SYSTEMS OF A SUBSTANCE, IN THE FORM OF NANOPARTICLES
US5912017A (en) 1987-05-01 1999-06-15 Massachusetts Institute Of Technology Multiwall polymeric microspheres
US5229490A (en) 1987-05-06 1993-07-20 The Rockefeller University Multiple antigen peptide system
US5019379A (en) 1987-07-31 1991-05-28 Massachusetts Institute Of Technology Unsaturated polyanhydrides
US6130082A (en) 1988-05-05 2000-10-10 American Cyanamid Company Recombinant flagellin vaccines
US4929624A (en) 1989-03-23 1990-05-29 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo(4,5-c)quinolin-4-amines
US5010167A (en) 1989-03-31 1991-04-23 Massachusetts Institute Of Technology Poly(amide-and imide-co-anhydride) for biological application
US5114703A (en) 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
US5733572A (en) 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
GB9016885D0 (en) 1990-08-01 1990-09-12 Scras Sustained release pharmaceutical compositions
US6699474B1 (en) 1990-08-20 2004-03-02 Erich Hugo Cerny Vaccine and immunserum against drugs of abuse
US5389640A (en) 1991-03-01 1995-02-14 Minnesota Mining And Manufacturing Company 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5175296A (en) 1991-03-01 1992-12-29 Minnesota Mining And Manufacturing Company Imidazo[4,5-c]quinolin-4-amines and processes for their preparation
DK0531497T3 (en) 1991-04-02 1998-03-23 Biotech Australia Pty Ltd Oral administration systems for microparticles
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
IL105325A (en) 1992-04-16 1996-11-14 Minnesota Mining & Mfg Immunogen/vaccine adjuvant composition
US6235313B1 (en) 1992-04-24 2001-05-22 Brown University Research Foundation Bioadhesive microspheres and their use as drug delivery and imaging systems
ATE156710T1 (en) 1992-06-25 1997-08-15 Smithkline Beecham Biolog VACCINE COMPOSITION CONTAINING ADJUVANTS
JPH07509467A (en) 1992-07-21 1995-10-19 ザ ゼネラル ホスピタル コーポレーション Drug transport system to lymphoid tissue
GB9216082D0 (en) 1992-07-28 1992-09-09 Univ Nottingham Lymphatic delivery composition
US6608201B2 (en) 1992-08-28 2003-08-19 3M Innovative Properties Company Process for preparing 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
FR2695563B1 (en) 1992-09-11 1994-12-02 Pasteur Institut Microparticles carrying antigens and their use for the induction of humoral or cellular responses.
WO1994007469A1 (en) 1992-09-25 1994-04-14 Dynagen, Inc. An immunobooster for delayed release of immunogen
US5399665A (en) 1992-11-05 1995-03-21 Massachusetts Institute Of Technology Biodegradable polymers for cell transplantation
DK0678034T3 (en) 1993-01-11 1999-11-08 Dana Farber Cancer Inst Inc Induction of cytotoxic T lymphocyte reactions
US5512600A (en) 1993-01-15 1996-04-30 Massachusetts Institute Of Technology Preparation of bonded fiber structures for cell implantation
US5514378A (en) 1993-02-01 1996-05-07 Massachusetts Institute Of Technology Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures
MX9401351A (en) 1993-02-22 1994-08-31 Alza Corp COMPOSITIONS FOR ORAL SUPPLY FOR ACTIVE AGENTS.
EP0689430B1 (en) 1993-03-17 1997-08-13 Silica Gel Ges.M.B.H Superparamagnetic particles, process for producing the same and their use
WO1995003035A1 (en) 1993-07-23 1995-02-02 Massachusetts Institute Of Technology Polymerized liposomes with enhanced stability for oral delivery
US5565215A (en) 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
US5543158A (en) 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
WO1995007707A1 (en) 1993-09-14 1995-03-23 Cytel Corporation Alteration of immune response using pan dr-binding peptides
US5798340A (en) 1993-09-17 1998-08-25 Gilead Sciences, Inc. Nucleotide analogs
US5500161A (en) 1993-09-21 1996-03-19 Massachusetts Institute Of Technology And Virus Research Institute Method for making hydrophobic polymeric microparticles
JP2930421B2 (en) 1994-02-28 1999-08-03 メディノヴァ メディカル コンサルティング ゲゼルシャフト ミット ベシュレンクテル ハフツング Pharmaceutical composition, method for producing the same and method for using the same
WO1995026204A1 (en) 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
GB9412273D0 (en) 1994-06-18 1994-08-10 Univ Nottingham Administration means
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
ATE328890T1 (en) 1994-07-15 2006-06-15 Univ Iowa Res Found IMMUNOMODULATORY OLIGONUCLEOTIDES
US6007845A (en) 1994-07-22 1999-12-28 Massachusetts Institute Of Technology Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers
US5716404A (en) 1994-12-16 1998-02-10 Massachusetts Institute Of Technology Breast tissue engineering
EP0805678B1 (en) 1995-01-05 2003-10-29 THE BOARD OF REGENTS acting for and on behalf of THE UNIVERSITY OF MICHIGAN Surface-modified nanoparticles and method of making and using same
US5876727A (en) 1995-03-31 1999-03-02 Immulogic Pharmaceutical Corporation Hapten-carrier conjugates for use in drug-abuse therapy and methods for preparation of same
US6123727A (en) 1995-05-01 2000-09-26 Massachusetts Institute Of Technology Tissue engineered tendons and ligaments
US5866132A (en) 1995-06-07 1999-02-02 Alberta Research Council Immunogenic oligosaccharide compositions
WO1997004747A1 (en) 1995-07-27 1997-02-13 Dunn James M Drug delivery systems for macromolecular drugs
CA2230494A1 (en) 1995-08-31 1997-03-06 Alkermes Controlled Therapeutics Inc. Composition for sustained release of an agent
US6095148A (en) 1995-11-03 2000-08-01 Children's Medical Center Corporation Neuronal stimulation using electrically conducting polymers
US5902599A (en) 1996-02-20 1999-05-11 Massachusetts Institute Of Technology Biodegradable polymer networks for use in orthopedic and dental applications
US6946133B1 (en) 1996-03-20 2005-09-20 The United States Of America As Represented By The Department Of Health And Human Services Prostate specific antigen oligo-epitope peptide
EP0900380B1 (en) 1996-04-26 2003-07-09 Rijksuniversiteit te Leiden Methods for selecting and producing t cell peptide epitopes and vaccines incorporating said selected epitopes
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5922695A (en) 1996-07-26 1999-07-13 Gilead Sciences, Inc. Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavarilability
EP1006798A4 (en) 1996-09-05 2003-03-05 Massachusetts Inst Technology COMPOSITIONS AND METHODS FOR THE TREATMENT OF NEUROLOGICAL DISORDERS AND NEURODEGENERATIVE DISEASES
EP0938315B9 (en) 1996-10-25 2008-02-20 Minnesota Mining And Manufacturing Company Immune response modifier compounds for treatment of th2 mediated and related diseases
US6042820A (en) 1996-12-20 2000-03-28 Connaught Laboratories Limited Biodegradable copolymer containing α-hydroxy acid and α-amino acid units
WO1998037919A1 (en) 1997-02-28 1998-09-03 University Of Iowa Research Foundation USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE IN THE TREATMENT OF LPS-ASSOCIATED DISORDERS
DE69841122D1 (en) 1997-03-10 2009-10-15 Coley Pharm Gmbh Use of non-methylated CpG dinucleotide in combination with aluminum as adjuvants
US6211159B1 (en) 1997-04-11 2001-04-03 University Of Toronto Flagellin gene, FlaC of campylobacter
US6060082A (en) 1997-04-18 2000-05-09 Massachusetts Institute Of Technology Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery
AU7690898A (en) 1997-05-20 1998-12-11 Ottawa Civic Hospital Loeb Research Institute Vectors and methods for immunization or therapeutic protocols
US5837752A (en) 1997-07-17 1998-11-17 Massachusetts Institute Of Technology Semi-interpenetrating polymer networks
US6989435B2 (en) 1997-09-11 2006-01-24 Cambridge University Technical Services Ltd. Compounds and methods to inhibit or augment an inflammatory response
DK1017721T3 (en) 1997-09-16 2009-04-20 Univ Oregon Health & Science Recombinant MHC molecules that can be used to manipulate antigen-specific T cells
DE19745950A1 (en) 1997-10-17 1999-04-22 Dds Drug Delivery Service Ges Drug carrier particle for site specific drug delivery, especially to CNS
KR100613634B1 (en) 1997-11-28 2006-08-18 다이닛본 스미토모 세이야꾸 가부시끼가이샤 Novel heterocyclic compounds
US6197229B1 (en) 1997-12-12 2001-03-06 Massachusetts Institute Of Technology Method for high supercoiled DNA content microspheres
US6254890B1 (en) 1997-12-12 2001-07-03 Massachusetts Institute Of Technology Sub-100nm biodegradable polymer spheres capable of transporting and releasing nucleic acids
FR2775435B1 (en) 1998-02-27 2000-05-26 Bioalliance Pharma NANOPARTICLES COMPRISING AT LEAST ONE POLYMER AND AT LEAST ONE COMPOUND CAPABLE OF COMPLEXING ONE OR MORE ACTIVE INGREDIENTS
US6232287B1 (en) 1998-03-13 2001-05-15 The Burnham Institute Molecules that home to various selected organs or tissues
US6506577B1 (en) 1998-03-19 2003-01-14 The Regents Of The University Of California Synthesis and crosslinking of catechol containing copolypeptides
US6686446B2 (en) 1998-03-19 2004-02-03 The Regents Of The University Of California Methods and compositions for controlled polypeptide synthesis
US6632922B1 (en) 1998-03-19 2003-10-14 The Regents Of The University Of California Methods and compositions for controlled polypeptide synthesis
US6218371B1 (en) 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
WO1999056755A1 (en) 1998-05-06 1999-11-11 University Of Iowa Research Foundation Methods for the prevention and treatment of parasitic infections and related diseases using cpg oligonucleotides
SE9801923D0 (en) 1998-05-29 1998-05-29 Independent Pharmaceutical Ab Nicotine vaccine
US6693086B1 (en) 1998-06-25 2004-02-17 National Jewish Medical And Research Center Systemic immune activation method using nucleic acid-lipid complexes
US6242589B1 (en) 1998-07-14 2001-06-05 Isis Pharmaceuticals, Inc. Phosphorothioate oligonucleotides having modified internucleoside linkages
PT1100468E (en) 1998-07-29 2006-07-31 Chiron Corp MICROPARTICLES WITH ADSORVENT SURFACES, PROCESSES OF MANUFACTURE AND USE OF THE SAME
DE19839214C1 (en) 1998-08-28 2000-05-25 Aventis Res & Tech Gmbh & Co Process for the production of spherical microparticles with a smooth surface which consist wholly or partly of at least one water-insoluble linear polysaccharide, and microparticles obtainable by this process and their use
US6306640B1 (en) 1998-10-05 2001-10-23 Genzyme Corporation Melanoma antigenic peptides
KR100731820B1 (en) 1998-10-05 2007-06-25 파멕사 에이/에스 New Methods for Therapeutic Vaccination
JP2003519084A (en) 1998-10-16 2003-06-17 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム vaccine
EP1126826B3 (en) 1998-11-02 2019-05-15 Alkermes Pharma Ireland Limited Multiparticulate modified release composition of methylphenidate
US7521068B2 (en) 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
WO2000032626A1 (en) 1998-11-25 2000-06-08 Regents Of The University Of Minnesota Methods of using epitope peptides of human pathogens
CN1193791C (en) 1998-11-30 2005-03-23 希托斯生物技术股份公司 ordered molecualr presentation of antigens, method of preparation and use
US6232082B1 (en) 1998-12-01 2001-05-15 Nabi Hapten-carrier conjugates for treating and preventing nicotine addiction
KR20010101420A (en) 1999-01-08 2001-11-14 캐롤린 에이. 베이츠 Formulations and Methods for Treatment of Mucosal Associated Conditions With an Immune Response Modifier
US7238711B1 (en) 1999-03-17 2007-07-03 Cambridge University Technical Services Ltd. Compounds and methods to inhibit or augment an inflammatory response
US6444192B1 (en) 1999-02-05 2002-09-03 The Regents Of The University Of California Diagnostic imaging of lymph structures
US6558951B1 (en) 1999-02-11 2003-05-06 3M Innovative Properties Company Maturation of dendritic cells with immune response modifying compounds
DE60015084T2 (en) 1999-02-26 2006-02-16 Chiron S.R.L. IMPROVEMENT OF BACTERIC ACIDITY OF NEISSERIA ANTIGENES CG-CONTAINING OLIGONUCLEOTIDES
DE60014076T2 (en) 1999-04-19 2005-10-13 Glaxosmithkline Biologicals S.A. ADJUVANS COMPOSITION, CONTAINING SAPONINE AND AN IMMUNOSTIMULATORY OLIGONUCLEOTIDE
EP1181053A2 (en) 1999-05-06 2002-02-27 Genetics Institute, Inc. Use of soluble costimulatory molecules to enhance immune responses
US6800296B1 (en) 1999-05-19 2004-10-05 Massachusetts Institute Of Technology Modification of surfaces using biological recognition events
US6815170B1 (en) 1999-06-30 2004-11-09 John Wayne Cancer Institute Methods for lymph node identification
EP1202671A4 (en) 1999-08-13 2004-11-10 Point Biomedical Corp Microparticles useful as ultrasonic contrast agents and for lymphatic system
CA2388055A1 (en) 1999-09-25 2001-04-05 University Of Iowa Research Foundation Immunostimulatory nucleic acids
US7223398B1 (en) 1999-11-15 2007-05-29 Dynavax Technologies Corporation Immunomodulatory compositions containing an immunostimulatory sequence linked to antigen and methods of use thereof
CA2391534A1 (en) 1999-11-15 2001-05-25 Drug Innovation & Design, Inc. Selective cellular targeting: multifunctional delivery vehicles
US7462354B2 (en) 1999-12-28 2008-12-09 Pharmexa Inc. Method and system for optimizing minigenes and peptides encoded thereby
JP2004501340A (en) 2000-01-13 2004-01-15 ナノスフェアー インコーポレイテッド Oligonucleotide-attached nanoparticles and methods of use
AT409085B (en) * 2000-01-28 2002-05-27 Cistem Biotechnologies Gmbh PHARMACEUTICAL COMPOSITION FOR IMMUNULATING AND PRODUCING VACCINES
US20050020525A1 (en) 2002-02-20 2005-01-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20050032733A1 (en) 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
US8202979B2 (en) 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
MXPA02008361A (en) 2000-02-28 2004-05-17 Genesegues Inc Nanocapsule encapsulation system and method.
US7157437B2 (en) 2000-03-10 2007-01-02 Dynavax Technologies Corporation Methods of ameliorating symptoms of herpes infection using immunomodulatory polynucleotide sequences
US7129222B2 (en) 2000-03-10 2006-10-31 Dynavax Technologies Corporation Immunomodulatory formulations and methods for use thereof
US20030129251A1 (en) 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
SE0000933D0 (en) 2000-03-21 2000-03-21 Independent Pharmaceutica Ab Method of producing 6-substituted (S) -nicotine derivatives and intermediate compounds
EP1278542A2 (en) 2000-05-05 2003-01-29 Cytos Biotechnology AG Molecular antigen arrays and vaccines
US7192725B2 (en) 2000-05-19 2007-03-20 University Of Toronto Flagellin gene, flaC of Campylobacter
US6610713B2 (en) 2000-05-23 2003-08-26 North Shore - Long Island Jewish Research Institute Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
US20020099013A1 (en) * 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
CA2319928A1 (en) 2000-09-18 2002-03-18 Vasogen Ireland Limited Apoptosis-mimicking synthetic entities and use thereof in medical treatments
EP2292632A3 (en) 2000-09-26 2012-07-25 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
WO2002100325A2 (en) 2000-10-13 2002-12-19 Ligocyte Pharmaceuticals, Inc. Polyvalent nanoparticles
GB0025414D0 (en) 2000-10-16 2000-11-29 Consejo Superior Investigacion Nanoparticles
EP1326638B9 (en) 2000-10-18 2008-02-20 GlaxoSmithKline Biologicals S.A. Vaccines against cancers
CA2426692C (en) 2000-10-19 2011-01-25 Eidgenossische Technische Hochschule Zurich Block copolymers for multifunctional self-assembled systems
US7592008B2 (en) 2000-11-20 2009-09-22 The Board Of Trustees Of The University Of Illinois, A Body Corporate And Politic Of The State Of Illinois Membrane scaffold proteins
WO2006091720A2 (en) 2000-12-08 2006-08-31 3M Innovative Properties Company Compositions and methods for targeted delivery of immune response modifiers
CN1293192C (en) 2000-12-27 2007-01-03 戴纳瓦克斯技术公司 Immunoregulation polynucleotide and using method thereof
US7264810B2 (en) 2001-01-19 2007-09-04 Cytos Biotechnology Ag Molecular antigen array
US7097837B2 (en) 2001-02-19 2006-08-29 Pharmexa A/S Synthetic vaccine agents
US20030175950A1 (en) 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US7314624B2 (en) 2001-06-05 2008-01-01 The Regents Of The University Of Michigan Nanoemulsion vaccines
EP2241309A3 (en) 2001-07-10 2012-12-26 Corixa Corporation Methods for encapsulation of proteins and adjuants in microspheres
JP4607452B2 (en) 2001-08-07 2011-01-05 ダイナバックス テクノロジーズ コーポレイション Immunomodulating composition, formulation and method of use thereof
WO2003020797A1 (en) 2001-08-30 2003-03-13 The Regents Of The University Of California Transition metal initiators for controlled poly (beta-peptide) synthesis from beta-lactam monomers
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
DE60229659D1 (en) 2001-11-07 2008-12-11 Cytos Biotechnology Ag ANTIGEN RASTER CONTAINS RANKL FOR THE TREATMENT OF BONE DISEASES
CA2466492A1 (en) 2001-11-07 2003-05-15 Cytos Biotechnology Ag Antigen arrays presenting il-5, il-13 or eotaxin for treatment of allergic eosinophilic diseases
US8088388B2 (en) 2002-02-14 2012-01-03 United Biomedical, Inc. Stabilized synthetic immunogen delivery system
AU2003215316A1 (en) 2002-02-20 2003-09-09 Chiron Corporation Microparticles with adsorbed polypeptide-containing molecules
US20030232013A1 (en) 2002-02-22 2003-12-18 Gary Sieckman Therapeutic and diagnostic targeting of cancers cells with tumor homing peptides
ES2543710T3 (en) 2002-04-04 2015-08-21 Zoetis Belgium S.A. Immunostimulatory oligonucleotides containing G and U
US20040038303A1 (en) 2002-04-08 2004-02-26 Unger Gretchen M. Biologic modulations with nanoparticles
US7285289B2 (en) 2002-04-12 2007-10-23 Nagy Jon O Nanoparticle vaccines
US20080233181A1 (en) 2002-04-12 2008-09-25 Nagy Jon O Nanoparticle adjuvants for sub-unit vaccines
ATE394674T1 (en) 2002-04-22 2008-05-15 Univ Florida FUNCTIONALIZED NANOPARTICLES AND METHODS OF USE
US20040092470A1 (en) 2002-06-18 2004-05-13 Leonard Sherry A. Dry powder oligonucleotide formualtion, preparation and its uses
US20040142887A1 (en) 2002-07-10 2004-07-22 Chengji Cui Antigen-polymer compositions
RU2324704C2 (en) 2002-07-17 2008-05-20 Цитос Байотекнолоджи Аг Antigen molecular massifs
WO2004009116A2 (en) 2002-07-18 2004-01-29 Cytos Biotechnology Ag Hapten-carrier conjugates comprising virus like particles and uses thereof
JP4644488B2 (en) 2002-07-19 2011-03-02 サイトス・バイオテクノロジー・アクチェンゲゼルシャフト Vaccine composition comprising amyloid beta 1-6 antigen array
CA2495570C (en) 2002-08-15 2012-12-04 3M Innovative Properties Company Immunostimulatory compositions and methods of stimulating an immune response
US7488792B2 (en) 2002-08-28 2009-02-10 Burnham Institute For Medical Research Collagen-binding molecules that selectively home to tumor vasculature and methods of using same
WO2004022594A2 (en) 2002-09-06 2004-03-18 Cytos Biotechnology Ag Immune modulatory compounds and methods
WO2004053056A2 (en) 2002-09-24 2004-06-24 University Of Kentucky Research Foundation Nanoparticle-based vaccine delivery system containing adjuvant
US7008411B1 (en) 2002-09-30 2006-03-07 Advanced Cardiovascular Systems, Inc. Method and apparatus for treating vulnerable plaque
NO20024755D0 (en) 2002-10-03 2002-10-03 Amersham Health As Method
JP2006512927A (en) 2002-12-11 2006-04-20 コーリー ファーマシューティカル グループ,インコーポレイテッド 5 'CPG nucleic acids and methods of use thereof
SE0203687D0 (en) 2002-12-13 2002-12-13 Ian Harwigsson Med Adagit Fa Pharmaceutical Porous Particles
DK1575977T3 (en) 2002-12-23 2009-11-09 Dynavax Tech Corp Immunostimulatory sequence oligonucleotides and methods for using them
JP2006512391A (en) 2002-12-30 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Combination immunostimulant
EP1581904A2 (en) 2003-01-08 2005-10-05 Xencor, Inc. Novel proteins with altered immunogenicity
US20040156846A1 (en) 2003-02-06 2004-08-12 Triton Biosystems, Inc. Therapy via targeted delivery of nanoscale particles using L6 antibodies
WO2004071459A2 (en) 2003-02-13 2004-08-26 3M Innovative Properties Company Methods and compositions related to irm compounds and toll-like receptor 8
WO2004071493A1 (en) 2003-02-17 2004-08-26 Peter Burkhard Peptidic nanoparticles as drug delivery and antigen display systems
US20040191215A1 (en) 2003-03-25 2004-09-30 Michael Froix Compositions for induction of a therapeutic response
WO2004084871A1 (en) 2003-03-26 2004-10-07 Ltt Bio-Pharma Co., Ltd. Intravenous nanoparticles for targenting drug delivery and sustained drug release
AU2004224762B2 (en) 2003-03-26 2009-12-24 Kuros Us Llc Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use
CA2521682A1 (en) 2003-04-10 2004-12-16 3M Innovative Properties Company Delivery of immune response modifier compounds using metal-containing particulate support materials
US7731967B2 (en) 2003-04-30 2010-06-08 Novartis Vaccines And Diagnostics, Inc. Compositions for inducing immune responses
US7727969B2 (en) 2003-06-06 2010-06-01 Massachusetts Institute Of Technology Controlled release nanoparticle having bound oligonucleotide for targeted delivery
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
EP1646427A1 (en) 2003-07-22 2006-04-19 Cytos Biotechnology AG Cpg-packaged liposomes
US20050042298A1 (en) 2003-08-20 2005-02-24 Pardridge William M. Immunonanoparticles
JP5097400B2 (en) 2003-09-03 2012-12-12 デンドリセラピューティクス、インク. Combined vaccine
US7943179B2 (en) 2003-09-23 2011-05-17 Massachusetts Institute Of Technology pH triggerable polymeric particles
US7771726B2 (en) 2003-10-08 2010-08-10 New York University Use of synthetic glycolipids as universal adjuvants for vaccines against cancer and infectious diseases
US20080160089A1 (en) 2003-10-14 2008-07-03 Medivas, Llc Vaccine delivery compositions and methods of use
DE10347710B4 (en) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Recombinant vaccines and their use
EP1678476A4 (en) 2003-10-20 2007-05-23 Univ Rice William M PROCESS FOR PRODUCING MICROCAPSULES FROM POLYMERS AND CHARGED NANOPARTICLES
AP2006003611A0 (en) 2003-10-30 2006-06-30 Coley Pharm Gmbh C-class oligonucleotide analogs with enhanced immunostimulatory potency
JP2007512355A (en) 2003-11-21 2007-05-17 アルザ コーポレイション Gene delivery mediated by liposome-DNA complexes surface-modified with cleavable PEG
US20070116768A1 (en) 2003-12-09 2007-05-24 Michael Chorny Sustained release preparations composed of biocompatible complex microparticles
KR102005840B1 (en) 2003-12-19 2019-07-31 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography
WO2005065418A2 (en) 2003-12-31 2005-07-21 Board Of Regents, The University Of Texas System Compositions and methods of use of targeting peptides for diagnosis and therapy
US20070087986A1 (en) 2004-01-26 2007-04-19 Brett Premack Compositions and methods for enhancing immunity by chemoattractant adjuvants
AU2005230938A1 (en) 2004-02-19 2005-10-20 Coley Pharmaceutical Gmbh Immunostimulatory viral RNA oligonucleotides
JP2007532572A (en) 2004-04-09 2007-11-15 スリーエム イノベイティブ プロパティズ カンパニー Methods, compositions and preparations for delivering immune response modifiers
ES2246695B1 (en) 2004-04-29 2007-05-01 Instituto Cientifico Y Tecnologico De Navarra, S.A. STIMULATING COMPOSITION OF THE IMMUNE RESPONSE THAT INCLUDES NANOPARTICLES BASED ON A COPYLIMER OF METHYL VINYL ETER AND MALEIC ANHYDRIDE.
WO2005108425A1 (en) 2004-05-10 2005-11-17 Cytos Biotechnology Ag Il-23 p19 antigen array and uses thereof
WO2005118626A2 (en) 2004-06-01 2005-12-15 Innogenetics N.V. Peptides for inducing a ctl and/or htl response to hepatitis c virus
DK1767216T3 (en) 2004-06-11 2012-09-03 Riken Regulatory cell ligand drug contained in liposome
CA2571899A1 (en) 2004-07-01 2006-08-03 Yale University Targeted and high density drug loaded polymeric materials
WO2006014579A2 (en) 2004-07-08 2006-02-09 The Regents Of California Enhancing class i antigen presentation with synthetic sequences
US8017151B2 (en) 2004-09-07 2011-09-13 Board Of Regents Of The University Of Nebraska By And Behalf Of The University Of Nebraska Medical Center Amphiphilic polymer-protein conjugates and methods of use thereof
CN101824034A (en) 2004-09-14 2010-09-08 诺华疫苗和诊断公司 imidazoquinoline compounds
CN1692943A (en) 2004-09-17 2005-11-09 四川大学 Preparation and Application of CpG DNA Molecular Anti-infection Immune Preparation
WO2006037979A2 (en) 2004-10-01 2006-04-13 Midatech Limited Nanoparticles comprising antigens and adjuvants and immunogenic structure
WO2006042146A2 (en) 2004-10-07 2006-04-20 Emory University Multifunctional nanoparticles conjugates and their use
MY159370A (en) 2004-10-20 2016-12-30 Coley Pharm Group Inc Semi-soft-class immunostimulatory oligonucleotides
EP1809335A2 (en) 2004-10-25 2007-07-25 Cytos Biotechnology AG Gastric inhibitory polypeptide (gip) antigen arrays and uses thereof
US20090123471A1 (en) 2004-10-29 2009-05-14 Cytos Biotechnology Ag T-Cadherin antigen arrays and uses thereof
WO2007001448A2 (en) 2004-11-04 2007-01-04 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
EP1814587A2 (en) 2004-11-05 2007-08-08 The General Hospital Corporation Purposeful movement of human migratory cells away from an agent source
ES2434029T3 (en) 2004-11-15 2013-12-13 Novartis Vaccines And Diagnostics, Inc. Immunogenic compositions containing anthrax antigen, biodegradable polymer microparticles, and immunological adjuvant containing polynucleotide
US20060111271A1 (en) 2004-11-24 2006-05-25 Cerny Erich H Active and passive immunization against pharmacologically active hapten molecules using a synthetic carrier compound composed of similar elements
US20070292386A9 (en) 2004-12-02 2007-12-20 Campbell Robert L Vaccine formulations for intradermal delivery comprising adjuvants and antigenic agents
NZ555590A (en) 2004-12-13 2009-07-31 Cytos Biotechnology Ag Compositions comprising a VLP and IL-15 protein
ATE544774T1 (en) 2004-12-14 2012-02-15 Alnylam Pharmaceuticals Inc RNAI MODULATION OF MLL-AF4 AND USES THEREOF
US20060257359A1 (en) 2005-02-28 2006-11-16 Cedric Francois Modifying macrophage phenotype for treatment of disease
CN101189339A (en) 2005-03-22 2008-05-28 美得思达健康有限公司 Delivery systems and methods for diagnosis and treatment of cardiovascular disease
US7709001B2 (en) 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US20080305161A1 (en) 2005-04-13 2008-12-11 Pfizer Inc Injectable depot formulations and methods for providing sustained release of nanoparticle compositions
WO2006116458A2 (en) 2005-04-26 2006-11-02 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhances immunostimulatory activity
JP2008540363A (en) 2005-05-04 2008-11-20 ノクソン・フアルマ・アクチエンゲゼルシヤフト New use of Spiegelmer
CA2608086A1 (en) 2005-05-10 2006-11-16 Emory University Strategies for delivery of active agents using micelles and particles
US9290617B2 (en) 2005-07-06 2016-03-22 Molly S. Shoichet Method of biomolecule immobilization on polymers using click-type chemistry
CA2618807C (en) 2005-08-12 2015-01-06 University Health Network Methods and devices for lymphatic targeting
JP2009507049A (en) 2005-09-09 2009-02-19 北京徳科瑞医薬科技有限公司 Nanomicelle formulation of vinca alkaloid anticancer drug encapsulated in polyethylene glycol derivative of phospholipid
ES2536103T3 (en) 2005-11-25 2015-05-20 Zoetis Belgium S.A. Immunostimulatory oligonucleotides
CA2631714C (en) 2005-12-02 2014-09-16 Novartis Ag Nanoparticles for use in immunogenic compositions
AU2006325225B2 (en) 2005-12-14 2013-07-04 Cytos Biotechnology Ag Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity
US9267937B2 (en) 2005-12-15 2016-02-23 Massachusetts Institute Of Technology System for screening particles
US7842312B2 (en) 2005-12-29 2010-11-30 Cordis Corporation Polymeric compositions comprising therapeutic agents in crystalline phases, and methods of forming the same
JP2009525341A (en) 2006-01-31 2009-07-09 メディバス エルエルシー Vaccine delivery compositions and methods of use
US8021689B2 (en) * 2006-02-21 2011-09-20 Ecole Polytechnique Federale de Lausanne (“EPFL”) Nanoparticles for immunotherapy
WO2007100699A2 (en) 2006-02-24 2007-09-07 Novartis Ag Microparticles containing biodegradable polymer and cationic polysaccharide for use in immunogenic compositions
US20100010217A1 (en) 2006-03-23 2010-01-14 Valiante Nicholas M Methods for the preparation of imidazole-containing compounds
CA2648099C (en) 2006-03-31 2012-05-29 The Brigham And Women's Hospital, Inc System for targeted delivery of therapeutic agents
US20100247653A1 (en) 2006-04-11 2010-09-30 Hans Lautenschlager Nanoparticles containing nicotine and/or cotinine, dispersions, and use thereof
WO2007133807A2 (en) 2006-05-15 2007-11-22 Massachusetts Institute Of Technology Polymers for functional particles
WO2007137117A2 (en) 2006-05-17 2007-11-29 Massachusetts Institute Of Technology Aptamer-directed drug delivery
SG172696A1 (en) 2006-06-12 2011-07-28 Cytos Biotechnology Ag Processes for packaging oligonucleotides into virus-like particles of rna bacteriophages
JP2010502766A (en) 2006-06-16 2010-01-28 フロリダ アトランティック ユニヴァーシティ Chitin microparticles as an adjuvant
US20100028381A1 (en) 2006-06-19 2010-02-04 3M Innovative Properties Company Formulation for delivery of immune response modifiers
WO2007150030A2 (en) 2006-06-23 2007-12-27 Massachusetts Institute Of Technology Microfluidic synthesis of organic nanoparticles
US20100144845A1 (en) 2006-08-04 2010-06-10 Massachusetts Institute Of Technology Oligonucleotide systems for targeted intracellular delivery
WO2008019366A2 (en) 2006-08-07 2008-02-14 Ludwig Institute For Cancer Research Methods and compositions for increased priming of t-cells through cross-presentation of exogenous antigens
RU2413506C2 (en) 2006-08-11 2011-03-10 Панацея Биотек Лимитед Particles for active ingredient delivery, method for making thereof and based compositions
WO2008033432A2 (en) 2006-09-12 2008-03-20 Coley Pharmaceutical Group, Inc. Immune modulation by chemically modified ribonucleosides and oligoribonucleotides
WO2008036981A1 (en) 2006-09-22 2008-03-27 Dana-Farber Cancer Research, Inc. Methods for treating mica-related disorders
AU2007306936B2 (en) 2006-10-12 2014-02-06 The University Of Queensland Compositions and methods for modulating immune responses
US20100303723A1 (en) 2006-11-20 2010-12-02 Massachusetts Institute Of Technology Drug delivery systems using fc fragments
AU2007333225B2 (en) 2006-12-08 2014-06-12 Massachusetts Institute Of Technology Delivery of nanoparticles and/or agents to cells
WO2008071774A1 (en) 2006-12-14 2008-06-19 Cytos Biotechnology Ag Purification process for coat protein of rna bacteriophages
US20080149123A1 (en) 2006-12-22 2008-06-26 Mckay William D Particulate material dispensing hairbrush with combination bristles
EP2115140B8 (en) 2007-01-31 2017-01-25 Chongxi Yu Positively charged water-soluble prodrugs of 1H-imidazo[4,5-c]quinolin-4-amines and related compounds with very high skin penetration rates
PT2510946E (en) 2007-02-07 2015-11-23 Univ California Conjugates of synthetic tlr agonists and uses therefor
EP2134830A2 (en) 2007-02-09 2009-12-23 Massachusetts Institute of Technology Oscillating cell culture bioreactor
WO2008115641A2 (en) 2007-02-15 2008-09-25 Yale University Modular nanoparticles for adaptable vaccines
CA2680227C (en) 2007-03-07 2021-01-26 Uti Limited Partnership Compositions and methods for the prevention and treatment of autoimmune conditions
US20100151031A1 (en) 2007-03-23 2010-06-17 Desimone Joseph M Discrete size and shape specific organic nanoparticles designed to elicit an immune response
US11246831B2 (en) 2007-03-30 2022-02-15 Particle Sciences, Inc. Particle formulations and uses thereof
EP2144600A4 (en) 2007-04-04 2011-03-16 Massachusetts Inst Technology POLY TARGETING FRACTIONS (AMINO ACID)
WO2008124634A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
EP2134740A2 (en) 2007-04-09 2009-12-23 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
EP2146747A1 (en) 2007-04-12 2010-01-27 Emory University Novel strategies for delivery of active agents using micelles and particles
EP1982729A1 (en) 2007-04-20 2008-10-22 Cytos Biotechnology AG Vaccination Regimen for B-Cell Vaccines
ES2411059T3 (en) 2007-05-31 2013-07-04 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Targeted HPV epitopes of T cells that infiltrate cervical malignancies for use in vaccines
US8778847B2 (en) 2007-06-13 2014-07-15 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Immunogenic peptides of influenza virus
BRPI0815395A2 (en) 2007-08-15 2015-02-10 Circassia Ltd COMPOSITION, VECTOR, PRODUCT, PHARMACEUTICAL FORMULATION, IN VITRO METHOD TO DETERMINE IF T-CELLS RECOGNIZE A POLYPEPTIDE, AND IN VITRO METHOD TO DETERMINE IF AN INDIVIDUAL IS OR IS AT RISK.
US8394914B2 (en) 2007-08-24 2013-03-12 Board Of Trustees Of Michigan State University Functional polyglycolide nanoparticles derived from unimolecular micelles
JP2011500569A (en) 2007-10-12 2011-01-06 マサチューセッツ インスティテュート オブ テクノロジー Vaccine nanotechnology
ES2664753T3 (en) 2007-12-07 2018-04-23 Glaxosmithkline Biologicals Sa Immune response induction compositions
CA2713879C (en) 2008-02-01 2020-01-07 Alpha-O Peptides Ag Self-assembling peptide nanoparticles useful as vaccines
WO2009108807A1 (en) 2008-02-26 2009-09-03 The Regents Of The University Of California Glycopeptides and methods of making and using them
KR101617790B1 (en) * 2008-02-26 2016-05-03 아파르나 바이오사이언시스 Engineered Tunable Nanoparticles for Delivery of Therapeutics, Diagnostics, and Experimental Compounds and Related Compositions for Therapeutic Use
EP2262489A2 (en) 2008-02-28 2010-12-22 Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts Hollow nanoparticles and uses thereof
WO2009111588A1 (en) 2008-03-04 2009-09-11 Liquidia Technologies, Inc. Immunomodulator particles and methods of treating
US20090297621A1 (en) 2008-06-03 2009-12-03 Abbott Cardiovascular Systems Inc. Microparticles For The Treatment Of Disease
AU2009268923B2 (en) 2008-06-16 2015-09-17 Pfizer Inc. Drug loaded polymeric nanoparticles and methods of making and using same
US8613951B2 (en) 2008-06-16 2013-12-24 Bind Therapeutics, Inc. Therapeutic polymeric nanoparticles with mTor inhibitors and methods of making and using same
WO2010003009A2 (en) 2008-07-01 2010-01-07 Emory University Synergistic induction of humoral and cellular immunity by combinatorial activation of toll-like receptors
EP2328614A1 (en) 2008-08-06 2011-06-08 Novartis AG Microparticles for use in immunogenic compositions
WO2010018132A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Compounds
UA103195C2 (en) 2008-08-11 2013-09-25 Глаксосмитклайн Ллк PURCHASE DERIVATIVES FOR THE APPLICATION IN THE TREATMENT OF ALLERGIES, INFLAMMATORY AND INFECTIOUS DISEASES
EA201100114A1 (en) 2008-08-11 2011-10-31 ГЛАКСОСМИТКЛАЙН ЭлЭлСи DERIVATIVES OF PURIN FOR USE IN THE TREATMENT OF ALLERGIC, INFLAMMATORY AND INFECTIOUS DISEASES
JP5519670B2 (en) 2008-08-11 2014-06-11 グラクソスミスクライン エルエルシー Purine derivatives for the treatment of allergic, inflammatory and infectious diseases
US20110092961A1 (en) * 2008-08-13 2011-04-21 Searete Llc Artificial cells
WO2010018384A1 (en) 2008-08-15 2010-02-18 Circassia Limited T-cell antigen peptide from allergen for stimulation of il-10 production
US8323696B2 (en) 2008-08-29 2012-12-04 Ecole Polytechnique Federale De Lausanne Nanoparticles for immunotherapy
US8889635B2 (en) 2008-09-30 2014-11-18 The Regents Of The University Of Michigan Dendrimer conjugates
US10369204B2 (en) 2008-10-02 2019-08-06 Dako Denmark A/S Molecular vaccines for infectious disease
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8343498B2 (en) 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
US8343497B2 (en) * 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
WO2010047839A1 (en) 2008-10-25 2010-04-29 Aura Biosciences Modified plant virus particles and uses therefor
JP5661735B2 (en) 2009-04-01 2015-01-28 ユニバーシティ オブ マイアミ Vaccine composition and method of use thereof
CN102686244A (en) 2009-04-21 2012-09-19 西莱克塔生物科技公司 Immunonanotherapeutics providing a Th1-biased response
GB0907989D0 (en) * 2009-05-08 2009-06-24 Hybrid Systems Ltd Multivalent adjuvant display
WO2010138192A2 (en) 2009-05-27 2010-12-02 Selecta Biosciences, Inc. Nanocarriers possessing components with different rates of release
US20120164189A1 (en) 2009-07-07 2012-06-28 Balu-Iyer Sathy V Lipidic Compositions for Induction of Immune Tolerance
US8653155B2 (en) * 2009-08-13 2014-02-18 Boston Scientific Scimed, Inc. Polymers having lipophilic hydrocarbon and biodegradable polymeric segments
KR20120059572A (en) 2009-08-26 2012-06-08 셀렉타 바이오사이언시즈, 인크. Compositions that induce t cell help
ES2780156T3 (en) 2009-12-15 2020-08-24 Pfizer Therapeutic compositions of polymeric nanoparticles with high glass transition temperature or high molecular weight copolymers
WO2011085231A2 (en) 2010-01-08 2011-07-14 Selecta Biosciences, Inc. Synthetic virus-like particles conjugated to human papillomavirus capsid peptides for use as vaccines
US20110229556A1 (en) 2010-03-19 2011-09-22 Massachusetts Institute Of Technology Lipid-coated polymer particles for immune stimulation
US20110272836A1 (en) 2010-04-12 2011-11-10 Selecta Biosciences, Inc. Eccentric vessels
US20110262491A1 (en) 2010-04-12 2011-10-27 Selecta Biosciences, Inc. Emulsions and methods of making nanocarriers
AU2011258147B2 (en) 2010-05-26 2016-11-17 Selecta Biosciences, Inc. Nanocarrier compositions with uncoupled adjuvant
WO2012024629A1 (en) 2010-08-20 2012-02-23 Selecta Biosciences, Inc. Synthetic nanocarrier vaccines comprising proteins obtained or derived from human influenza a virus hemagglutinin
US20120070493A1 (en) 2010-08-23 2012-03-22 Selecta Biosciences, Inc. Targeted multi-epitope dosage forms for induction of an immune response to antigens
EA201390660A1 (en) 2010-11-05 2013-11-29 Селекта Байосайенсиз, Инк. MODIFIED NICOTINE COMPOUNDS AND RELATED METHODS
US20120171229A1 (en) 2010-12-30 2012-07-05 Selecta Biosciences, Inc. Synthetic nanocarriers with reactive groups that release biologically active agents
AU2012236937B2 (en) 2011-03-25 2017-06-08 Selecta Biosciences, Inc. Osmotic mediated release synthetic nanocarriers
CN107029213A (en) 2011-04-29 2017-08-11 西莱克塔生物科技公司 Tolerogenesis for producing CD8+ regulatory T cells synthesizes nano-carrier
WO2013019648A1 (en) 2011-07-29 2013-02-07 Selecta Biosciences, Inc. Control of antibody responses to synthetic nanocarriers
US20130059009A1 (en) 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Compositions and methods for producing antigen-specific induced tolerogenic dendritic cells with synthetic nanocarriers
CN110251676A (en) 2013-05-03 2019-09-20 西莱克塔生物科技公司 It reduces or prevents to synthesize nano-carrier in response to the anaphylactoid tolerogenesis of non-allergenicity antigen
DK3003306T3 (en) 2013-06-04 2020-11-30 Selecta Biosciences Inc REPEATED ADMINISTRATION OF NON-IMMUNOSUPRESSIVE ANTIGEN-SPECIFIC IMMUNTER THERAPISTS
US20160220501A1 (en) 2015-02-03 2016-08-04 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins
US20150359865A1 (en) 2014-06-17 2015-12-17 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for t-cell-mediated autoimmune disease
CA2953507A1 (en) 2014-06-25 2015-12-30 Selecta Biosciences, Inc. Methods and compositions for treatment with synthetic nanocarriers and immune checkpoint inhibitors
AU2015311704B2 (en) 2014-09-07 2021-12-09 Selecta Biosciences, Inc. Methods and compositions for attenuating gene editing anti-viral transfer vector immune responses
KR102656139B1 (en) 2014-11-05 2024-04-11 셀렉타 바이오사이언시즈, 인크. Methods and compositions related to the use of low hlb surfactants in the production of synthetic nanocarriers comprising a rapalog
JP7417354B2 (en) 2016-03-11 2024-01-18 セレクタ バイオサイエンシーズ インコーポレーテッド PEGylated uricase formulation and dosage
US20180071394A1 (en) 2016-08-25 2018-03-15 Selecta Biosciences, Inc. Polyester polymer matrices for the delivery of allergens
US20180085319A1 (en) 2016-09-27 2018-03-29 Takashi Kei Kishimoto Methods and compositions for treating cancer

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223201A1 (en) * 2009-04-21 2011-09-15 Selecta Biosciences, Inc. Immunonanotherapeutics Providing a Th1-Biased Response
US20110020388A1 (en) * 2009-05-27 2011-01-27 Selecta Biosciences, Inc. Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
US8629151B2 (en) 2009-05-27 2014-01-14 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US9006254B2 (en) 2009-05-27 2015-04-14 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US9884112B2 (en) 2009-05-27 2018-02-06 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US20110110965A1 (en) * 2009-08-26 2011-05-12 Selecta Biosciences, Inc. Compositions that induce t cell help
US9066978B2 (en) 2010-05-26 2015-06-30 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US9764031B2 (en) 2010-05-26 2017-09-19 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US9994443B2 (en) 2010-11-05 2018-06-12 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
US11020424B2 (en) 2010-11-12 2021-06-01 Oncour Pharma, Inc. Modified immune-modulating particles
US10471093B2 (en) 2010-11-12 2019-11-12 Cour Pharmaceuticals Development Company. Modified immune-modulating particles
US10004802B2 (en) 2011-04-29 2018-06-26 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells
US9265815B2 (en) 2011-04-29 2016-02-23 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers
US9295718B2 (en) 2011-04-29 2016-03-29 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins
US9289477B2 (en) 2011-04-29 2016-03-22 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce cytotoxic T lymphocyte responses
US9987354B2 (en) 2011-04-29 2018-06-05 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells
US9289476B2 (en) 2011-04-29 2016-03-22 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for allergy therapy
US9993548B2 (en) 2011-04-29 2018-06-12 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for inducing regulatory B cells
US11235057B2 (en) 2011-04-29 2022-02-01 Selecta Biosciences, Inc. Methods for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses
US10039822B2 (en) 2011-04-29 2018-08-07 Selecta Biosciences, Inc. Method for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses
US11779641B2 (en) 2011-04-29 2023-10-10 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for allergy therapy
US11717569B2 (en) 2011-04-29 2023-08-08 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers
US8652487B2 (en) 2011-04-29 2014-02-18 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for inducing regulatory B cells
US10441651B2 (en) 2011-04-29 2019-10-15 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells
US10420835B2 (en) 2011-04-29 2019-09-24 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells
US10933129B2 (en) 2011-07-29 2021-03-02 Selecta Biosciences, Inc. Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses
US10201596B2 (en) 2012-06-21 2019-02-12 Northwestern University Peptide conjugated particles for the treatment of allergy
US11826407B2 (en) 2012-06-21 2023-11-28 Northwestern University Peptide conjugated particles
US11413337B2 (en) 2012-06-21 2022-08-16 Northwestern University Peptide conjugated particles for the treatment of inflammation
US11045492B2 (en) 2013-03-13 2021-06-29 Oncour Pharma, Inc. Immune-modifying nanoparticles for the treatment of inflammatory diseases
US10357482B2 (en) 2013-05-03 2019-07-23 Selecta Biosciences, Inc. Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity
US10357483B2 (en) 2013-05-03 2019-07-23 Selecta Biosciences, Inc. Methods comprising dosing combinations for reducing undesired humoral immune responses
US10335395B2 (en) 2013-05-03 2019-07-02 Selecta Biosciences, Inc. Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance
US10434088B2 (en) 2013-05-03 2019-10-08 Selecta Biosciences, Inc. Methods related to administering immunosuppressants and therapeutic macromolecules at a reduced pharmacodynamically effective dose
US11298342B2 (en) 2013-05-03 2022-04-12 Selecta Biosciences, Inc. Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity
US10668053B2 (en) 2013-05-03 2020-06-02 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce or prevent anaphylaxis in response to a non-allergenic antigen
US9616113B2 (en) 2013-08-13 2017-04-11 Northwestern University Peptide conjugated particles
US11160851B2 (en) 2013-08-13 2021-11-02 Northwestern University Peptide conjugated particles
US11129881B2 (en) 2013-08-13 2021-09-28 Northwestern University Peptide conjugated particles
US10617747B2 (en) 2013-08-13 2020-04-14 Northwestern University Peptide conjugated particles
US11389517B2 (en) 2013-08-13 2022-07-19 Northwestern University Peptide conjugated particles
US10188711B2 (en) 2013-08-13 2019-01-29 Northwestern University Peptide conjugated particles
US9522180B2 (en) 2013-08-13 2016-12-20 Northwestern University Peptide conjugated particles
US11633422B2 (en) 2014-09-07 2023-04-25 Selecta Biosciences, Inc. Methods and compositions for attenuating anti-viral transfer vector immune responses
US10071114B2 (en) 2014-09-07 2018-09-11 Selecta Biosciences, Inc. Methods and compositions for attenuating gene expression modulating anti-viral transfer vector immune responses
US10046064B2 (en) 2014-09-07 2018-08-14 Selecta Biosciences, Inc. Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses
US11426451B2 (en) 2017-03-11 2022-08-30 Selecta Biosciences, Inc. Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant
US12194078B2 (en) 2017-03-11 2025-01-14 Cartesian Therapeutics, Inc. Methods and compositions related to combined treatment with anti-inflammatories and synthetic nanocarriers comprising an immunosuppressant
WO2022052212A1 (en) * 2020-09-14 2022-03-17 苏州大学 Use of fluorinated polyethylenimine in preparation of vaccine or preparation for preventing or treating diseases caused by viruses or bacteria

Also Published As

Publication number Publication date
WO2013019648A1 (en) 2013-02-07
WO2013019669A2 (en) 2013-02-07
CN109125722A (en) 2019-01-04
KR20140050698A (en) 2014-04-29
EP2736537A4 (en) 2015-04-15
WO2013019658A3 (en) 2013-04-25
AU2012290306A1 (en) 2014-01-23
US20130028857A1 (en) 2013-01-31
CA2843274A1 (en) 2013-02-07
BR112014002139A2 (en) 2017-02-21
CN109172819A (en) 2019-01-11
WO2013019669A3 (en) 2013-07-04
AU2012290306B2 (en) 2017-08-17
EP2736537A2 (en) 2014-06-04
US10933129B2 (en) 2021-03-02
AU2017261562A1 (en) 2017-12-07
CN103702687A (en) 2014-04-02
JP2018030837A (en) 2018-03-01
IL230269B (en) 2020-04-30
IL273674A (en) 2020-05-31
MX2014001142A (en) 2014-02-27
JP2014521687A (en) 2014-08-28
AU2019236653A1 (en) 2019-10-17
EA201490381A1 (en) 2014-06-30
US20130028941A1 (en) 2013-01-31
WO2013019658A2 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
US20130039954A1 (en) Control of antibody responses to synthetic nanocarriers
US9764031B2 (en) Dose selection of adjuvanted synthetic nanocarriers

Legal Events

Date Code Title Description
AS Assignment

Owner name: SELECTA BIOSCIENCES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCNAMEE PITTET, LYNNELLE ANN;ALTREUTER, DAVID H.;GAO, YUN;AND OTHERS;SIGNING DATES FROM 20120802 TO 20120820;REEL/FRAME:028994/0191

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载