US20130034500A1 - Cationic Steroid Antimicrobial Compositions and Methods of Use - Google Patents
Cationic Steroid Antimicrobial Compositions and Methods of Use Download PDFInfo
- Publication number
- US20130034500A1 US20130034500A1 US13/538,676 US201213538676A US2013034500A1 US 20130034500 A1 US20130034500 A1 US 20130034500A1 US 201213538676 A US201213538676 A US 201213538676A US 2013034500 A1 US2013034500 A1 US 2013034500A1
- Authority
- US
- United States
- Prior art keywords
- csa
- infection
- reactivation
- pathogenesis
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 116
- -1 Cationic Steroid Chemical class 0.000 title claims abstract description 66
- 230000000845 anti-microbial effect Effects 0.000 title claims abstract description 13
- 239000000203 mixture Substances 0.000 title claims description 117
- 208000015181 infectious disease Diseases 0.000 claims abstract description 158
- 230000008506 pathogenesis Effects 0.000 claims abstract description 118
- 241000700586 Herpesviridae Species 0.000 claims abstract description 98
- 208000024891 symptom Diseases 0.000 claims abstract description 72
- 230000007170 pathology Effects 0.000 claims abstract description 59
- 230000003247 decreasing effect Effects 0.000 claims abstract description 40
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 32
- 238000001727 in vivo Methods 0.000 claims abstract description 27
- 238000000338 in vitro Methods 0.000 claims abstract description 14
- 230000007420 reactivation Effects 0.000 claims description 123
- 238000011282 treatment Methods 0.000 claims description 63
- 239000003795 chemical substances by application Substances 0.000 claims description 50
- 230000003405 preventing effect Effects 0.000 claims description 28
- 102000004169 proteins and genes Human genes 0.000 claims description 23
- 108090000623 proteins and genes Proteins 0.000 claims description 23
- 210000004027 cell Anatomy 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 22
- 210000001519 tissue Anatomy 0.000 claims description 20
- 150000003431 steroids Chemical group 0.000 claims description 19
- 239000004480 active ingredient Substances 0.000 claims description 17
- 230000001603 reducing effect Effects 0.000 claims description 17
- 238000009472 formulation Methods 0.000 claims description 16
- 210000000056 organ Anatomy 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 13
- YDYLISNLJUDIGF-GXDYCHSMSA-N n-[(4r)-4-[(3r,5s,7r,8r,9s,10s,12s,13r,14s,17r)-3,7,12-tris(3-aminopropoxy)-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentyl]octan-1-amine Chemical compound C([C@H]1C[C@H]2OCCCN)[C@H](OCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CCCNCCCCCCCC)[C@@]2(C)[C@@H](OCCCN)C1 YDYLISNLJUDIGF-GXDYCHSMSA-N 0.000 claims description 10
- 230000001154 acute effect Effects 0.000 claims description 9
- 230000001684 chronic effect Effects 0.000 claims description 8
- AUUTYQUDFHNMLF-PBHGWEEKSA-N n'-[3-[[(4r)-4-[(3r,5s,7r,8r,9s,10s,12s,13r,14s,17r)-3,7,12-tris(3-aminopropoxy)-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentyl]amino]propyl]propane-1,3-diamine Chemical compound C([C@H]1C[C@H]2OCCCN)[C@H](OCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCCNCCCNCCCN)C)[C@@]2(C)[C@@H](OCCCN)C1 AUUTYQUDFHNMLF-PBHGWEEKSA-N 0.000 claims description 7
- 239000013060 biological fluid Substances 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 210000002919 epithelial cell Anatomy 0.000 claims description 5
- 210000000981 epithelium Anatomy 0.000 claims description 5
- 210000002865 immune cell Anatomy 0.000 claims description 5
- 210000003061 neural cell Anatomy 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 101710091045 Envelope protein Proteins 0.000 claims description 4
- 102000003886 Glycoproteins Human genes 0.000 claims description 4
- 108090000288 Glycoproteins Proteins 0.000 claims description 4
- 101710186352 Probable membrane antigen 3 Proteins 0.000 claims description 4
- 101710181078 Probable membrane antigen 75 Proteins 0.000 claims description 4
- 101710188315 Protein X Proteins 0.000 claims description 4
- 101710178472 Tegument protein Proteins 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 4
- 101150072608 CVC1 gene Proteins 0.000 claims description 3
- 108090000565 Capsid Proteins Proteins 0.000 claims description 3
- 101710132601 Capsid protein Proteins 0.000 claims description 3
- 102100023321 Ceruloplasmin Human genes 0.000 claims description 3
- 101710170470 Glycoprotein 42 Proteins 0.000 claims description 3
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 claims description 3
- 101150102071 TRX1 gene Proteins 0.000 claims description 3
- 101710098841 Tegument protein UL47 Proteins 0.000 claims description 3
- 101710192266 Tegument protein VP22 Proteins 0.000 claims description 3
- 101150087840 UL11 gene Proteins 0.000 claims description 3
- 101150036407 UL14 gene Proteins 0.000 claims description 3
- 101150042088 UL16 gene Proteins 0.000 claims description 3
- 101150104047 UL17 gene Proteins 0.000 claims description 3
- 101150105144 UL21 gene Proteins 0.000 claims description 3
- 101150085237 UL36 gene Proteins 0.000 claims description 3
- 101150036065 UL37 gene Proteins 0.000 claims description 3
- 101150044021 UL41 gene Proteins 0.000 claims description 3
- 101150117989 UL46 gene Proteins 0.000 claims description 3
- 101150053996 UL47 gene Proteins 0.000 claims description 3
- 101150004685 UL48 gene Proteins 0.000 claims description 3
- 101150066971 UL49 gene Proteins 0.000 claims description 3
- 101150085955 US11 gene Proteins 0.000 claims description 3
- 210000004400 mucous membrane Anatomy 0.000 claims description 2
- 102100021696 Syncytin-1 Human genes 0.000 claims 2
- 101000920778 Homo sapiens DNA excision repair protein ERCC-8 Proteins 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 205
- 230000000694 effects Effects 0.000 abstract description 57
- 230000002411 adverse Effects 0.000 abstract description 41
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 344
- 241000700584 Simplexvirus Species 0.000 description 223
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 183
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 141
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 130
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 112
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 89
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 87
- 239000000243 solution Substances 0.000 description 85
- 238000005160 1H NMR spectroscopy Methods 0.000 description 84
- 239000011159 matrix material Substances 0.000 description 83
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 83
- 229940035024 thioglycerol Drugs 0.000 description 83
- 239000000047 product Substances 0.000 description 79
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 76
- 235000019439 ethyl acetate Nutrition 0.000 description 70
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 66
- 239000012267 brine Substances 0.000 description 60
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 60
- 239000000284 extract Substances 0.000 description 56
- 239000000725 suspension Substances 0.000 description 56
- 239000002904 solvent Substances 0.000 description 52
- 239000011734 sodium Substances 0.000 description 50
- 239000007832 Na2SO4 Substances 0.000 description 44
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 44
- 229910052938 sodium sulfate Inorganic materials 0.000 description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 44
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 42
- 239000003921 oil Substances 0.000 description 38
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 37
- 235000019198 oils Nutrition 0.000 description 37
- 239000000377 silicon dioxide Substances 0.000 description 36
- 229910052681 coesite Inorganic materials 0.000 description 34
- 229910052906 cristobalite Inorganic materials 0.000 description 34
- 229910052682 stishovite Inorganic materials 0.000 description 34
- 229910052905 tridymite Inorganic materials 0.000 description 34
- 238000002255 vaccination Methods 0.000 description 34
- 238000004587 chromatography analysis Methods 0.000 description 33
- 239000000843 powder Substances 0.000 description 29
- 229910004809 Na2 SO4 Inorganic materials 0.000 description 27
- 239000011521 glass Substances 0.000 description 25
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 22
- 239000008194 pharmaceutical composition Substances 0.000 description 22
- 230000001225 therapeutic effect Effects 0.000 description 22
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 21
- 241000700605 Viruses Species 0.000 description 18
- 239000007787 solid Substances 0.000 description 18
- 230000000069 prophylactic effect Effects 0.000 description 15
- 239000000741 silica gel Substances 0.000 description 15
- 229910002027 silica gel Inorganic materials 0.000 description 15
- 229910010084 LiAlH4 Inorganic materials 0.000 description 14
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 14
- 230000000670 limiting effect Effects 0.000 description 14
- 239000012280 lithium aluminium hydride Substances 0.000 description 14
- 239000002244 precipitate Substances 0.000 description 14
- 238000010898 silica gel chromatography Methods 0.000 description 14
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 13
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 13
- 230000006872 improvement Effects 0.000 description 13
- 0 *.B.C.[1*]C1C([2*])C([3*])C([4*])C2([5*])C([6*])C([7*])C3([8*])C([10*])(C([11*])C([12*])C4([13*])C([17*])C([16*])C([15*])C43[14*])C12[9*].[2HH] Chemical compound *.B.C.[1*]C1C([2*])C([3*])C([4*])C2([5*])C([6*])C([7*])C3([8*])C([10*])(C([11*])C([12*])C4([13*])C([17*])C([16*])C([15*])C43[14*])C12[9*].[2HH] 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 12
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 12
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 150000001413 amino acids Chemical group 0.000 description 12
- 230000009286 beneficial effect Effects 0.000 description 12
- 239000012230 colorless oil Substances 0.000 description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 12
- 238000011285 therapeutic regimen Methods 0.000 description 12
- 241001529453 unidentified herpesvirus Species 0.000 description 12
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 11
- 230000008901 benefit Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 125000006239 protecting group Chemical group 0.000 description 11
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 10
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 10
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 10
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical group BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 10
- 229940024606 amino acid Drugs 0.000 description 10
- 235000001014 amino acid Nutrition 0.000 description 10
- 239000004599 antimicrobial Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000004440 column chromatography Methods 0.000 description 10
- 238000000605 extraction Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 10
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 10
- RIWRFSMVIUAEBX-UHFFFAOYSA-N n-methyl-1-phenylmethanamine Chemical compound CNCC1=CC=CC=C1 RIWRFSMVIUAEBX-UHFFFAOYSA-N 0.000 description 10
- VCMJCVGFSROFHV-WZGZYPNHSA-N tenofovir disoproxil fumarate Chemical compound OC(=O)\C=C\C(O)=O.N1=CN=C2N(C[C@@H](C)OCP(=O)(OCOC(=O)OC(C)C)OCOC(=O)OC(C)C)C=NC2=C1N VCMJCVGFSROFHV-WZGZYPNHSA-N 0.000 description 10
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 125000003282 alkyl amino group Chemical group 0.000 description 9
- 230000000840 anti-viral effect Effects 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 9
- 239000002552 dosage form Substances 0.000 description 9
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 9
- QWAXKHKRTORLEM-UGJKXSETSA-N saquinavir Chemical compound C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 QWAXKHKRTORLEM-UGJKXSETSA-N 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 239000004380 Cholic acid Substances 0.000 description 8
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 8
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 8
- XQSPYNMVSIKCOC-NTSWFWBYSA-N Emtricitabine Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1O[C@@H](CO)SC1 XQSPYNMVSIKCOC-NTSWFWBYSA-N 0.000 description 8
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 8
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 8
- 208000029082 Pelvic Inflammatory Disease Diseases 0.000 description 8
- 206010035664 Pneumonia Diseases 0.000 description 8
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 8
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 125000002431 aminoalkoxy group Chemical group 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- AXRYRYVKAWYZBR-GASGPIRDSA-N atazanavir Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)[C@@H](O)CN(CC=1C=CC(=CC=1)C=1N=CC=CC=1)NC(=O)[C@@H](NC(=O)OC)C(C)(C)C)C1=CC=CC=C1 AXRYRYVKAWYZBR-GASGPIRDSA-N 0.000 description 8
- 239000003637 basic solution Substances 0.000 description 8
- 229960002471 cholic acid Drugs 0.000 description 8
- 235000019416 cholic acid Nutrition 0.000 description 8
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 8
- 239000012039 electrophile Substances 0.000 description 8
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 8
- 230000002458 infectious effect Effects 0.000 description 8
- NQDJXKOVJZTUJA-UHFFFAOYSA-N nevirapine Chemical compound C12=NC=CC=C2C(=O)NC=2C(C)=CC=NC=2N1C1CC1 NQDJXKOVJZTUJA-UHFFFAOYSA-N 0.000 description 8
- 239000003755 preservative agent Substances 0.000 description 8
- 208000010201 Exanthema Diseases 0.000 description 7
- 206010037660 Pyrexia Diseases 0.000 description 7
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 7
- XNKLLVCARDGLGL-JGVFFNPUSA-N Stavudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1C=C[C@@H](CO)O1 XNKLLVCARDGLGL-JGVFFNPUSA-N 0.000 description 7
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 7
- 125000005096 aminoalkylaminocarbonyl group Chemical group 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 230000027455 binding Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 201000005884 exanthem Diseases 0.000 description 7
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 7
- 125000001188 haloalkyl group Chemical group 0.000 description 7
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002480 mineral oil Substances 0.000 description 7
- 235000010446 mineral oil Nutrition 0.000 description 7
- QAGYKUNXZHXKMR-HKWSIXNMSA-N nelfinavir Chemical compound CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-HKWSIXNMSA-N 0.000 description 7
- 230000001717 pathogenic effect Effects 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 206010037844 rash Diseases 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 7
- 238000011269 treatment regimen Methods 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- CNPVJJQCETWNEU-CYFREDJKSA-N (4,6-dimethyl-5-pyrimidinyl)-[4-[(3S)-4-[(1R)-2-methoxy-1-[4-(trifluoromethyl)phenyl]ethyl]-3-methyl-1-piperazinyl]-4-methyl-1-piperidinyl]methanone Chemical compound N([C@@H](COC)C=1C=CC(=CC=1)C(F)(F)F)([C@H](C1)C)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)N=CN=C1C CNPVJJQCETWNEU-CYFREDJKSA-N 0.000 description 6
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 6
- HSBKFSPNDWWPSL-CAHLUQPWSA-N 4-amino-5-fluoro-1-[(2r,5s)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]pyrimidin-2-one Chemical compound C1=C(F)C(N)=NC(=O)N1[C@H]1C=C[C@@H](CO)O1 HSBKFSPNDWWPSL-CAHLUQPWSA-N 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- 108010074604 Epoetin Alfa Proteins 0.000 description 6
- 206010019233 Headaches Diseases 0.000 description 6
- 208000004898 Herpes Labialis Diseases 0.000 description 6
- 102000002265 Human Growth Hormone Human genes 0.000 description 6
- 108010000521 Human Growth Hormone Proteins 0.000 description 6
- 239000000854 Human Growth Hormone Substances 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 229910020284 Na2SO4.10H2O Inorganic materials 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000000443 aerosol Substances 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 125000004103 aminoalkyl group Chemical group 0.000 description 6
- 125000005123 aminoalkylcarboxy group Chemical group 0.000 description 6
- 229960003942 amphotericin b Drugs 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 6
- 229960002656 didanosine Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 125000005416 guanidinoalkyloxy group Chemical group 0.000 description 6
- 231100000869 headache Toxicity 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 238000011321 prophylaxis Methods 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 6
- 229960002555 zidovudine Drugs 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 201000006082 Chickenpox Diseases 0.000 description 5
- 239000004471 Glycine Substances 0.000 description 5
- 208000007514 Herpes zoster Diseases 0.000 description 5
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 5
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 108010050904 Interferons Proteins 0.000 description 5
- 102000014150 Interferons Human genes 0.000 description 5
- 208000025865 Ulcer Diseases 0.000 description 5
- 206010046980 Varicella Diseases 0.000 description 5
- MCGSCOLBFJQGHM-SCZZXKLOSA-N abacavir Chemical compound C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 MCGSCOLBFJQGHM-SCZZXKLOSA-N 0.000 description 5
- 229960004150 aciclovir Drugs 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 229960001830 amprenavir Drugs 0.000 description 5
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 5
- 239000003708 ampul Substances 0.000 description 5
- 239000003443 antiviral agent Substances 0.000 description 5
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 5
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- XPOQHMRABVBWPR-ZDUSSCGKSA-N efavirenz Chemical compound C([C@]1(C2=CC(Cl)=CC=C2NC(=O)O1)C(F)(F)F)#CC1CC1 XPOQHMRABVBWPR-ZDUSSCGKSA-N 0.000 description 5
- 239000003480 eluent Substances 0.000 description 5
- 239000012894 fetal calf serum Substances 0.000 description 5
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 150000003840 hydrochlorides Chemical class 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- CBVCZFGXHXORBI-PXQQMZJSSA-N indinavir Chemical compound C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 CBVCZFGXHXORBI-PXQQMZJSSA-N 0.000 description 5
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- 239000006072 paste Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 229960001852 saquinavir Drugs 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 231100000397 ulcer Toxicity 0.000 description 5
- 229960005486 vaccine Drugs 0.000 description 5
- 229960000523 zalcitabine Drugs 0.000 description 5
- VRPJIFMKZZEXLR-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxycarbonylamino]acetic acid Chemical compound CC(C)(C)OC(=O)NCC(O)=O VRPJIFMKZZEXLR-UHFFFAOYSA-N 0.000 description 4
- GWNOTCOIYUNTQP-FQLXRVMXSA-N 4-[4-[[(3r)-1-butyl-3-[(r)-cyclohexyl(hydroxy)methyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undecan-9-yl]methyl]phenoxy]benzoic acid Chemical compound N([C@@H](C(=O)N1CCCC)[C@H](O)C2CCCCC2)C(=O)C1(CC1)CCN1CC(C=C1)=CC=C1OC1=CC=C(C(O)=O)C=C1 GWNOTCOIYUNTQP-FQLXRVMXSA-N 0.000 description 4
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 4
- AXRYRYVKAWYZBR-UHFFFAOYSA-N Atazanavir Natural products C=1C=C(C=2N=CC=CC=2)C=CC=1CN(NC(=O)C(NC(=O)OC)C(C)(C)C)CC(O)C(NC(=O)C(NC(=O)OC)C(C)(C)C)CC1=CC=CC=C1 AXRYRYVKAWYZBR-UHFFFAOYSA-N 0.000 description 4
- 108010019625 Atazanavir Sulfate Proteins 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 4
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 4
- 108010036239 CD4-IgG(2) Proteins 0.000 description 4
- DLYVTEULDNMQAR-SRNOMOOLSA-N Cholic Acid Methyl Ester Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CCC(=O)OC)[C@@]2(C)[C@@H](O)C1 DLYVTEULDNMQAR-SRNOMOOLSA-N 0.000 description 4
- 206010010071 Coma Diseases 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 4
- 108010032976 Enfuvirtide Proteins 0.000 description 4
- 208000001688 Herpes Genitalis Diseases 0.000 description 4
- 208000009889 Herpes Simplex Diseases 0.000 description 4
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 4
- 241000701041 Human betaherpesvirus 7 Species 0.000 description 4
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 4
- 241000701027 Human herpesvirus 6 Species 0.000 description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 4
- 206010061598 Immunodeficiency Diseases 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 102000000588 Interleukin-2 Human genes 0.000 description 4
- KJHKTHWMRKYKJE-SUGCFTRWSA-N Kaletra Chemical compound N1([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=2C=CC=CC=2)NC(=O)COC=2C(=CC=CC=2C)C)CC=2C=CC=CC=2)CCCNC1=O KJHKTHWMRKYKJE-SUGCFTRWSA-N 0.000 description 4
- 208000007993 Kaposi Varicelliform Eruption Diseases 0.000 description 4
- 208000008771 Lymphadenopathy Diseases 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 201000009906 Meningitis Diseases 0.000 description 4
- 208000003926 Myelitis Diseases 0.000 description 4
- 208000028389 Nerve injury Diseases 0.000 description 4
- 206010030216 Oesophagitis Diseases 0.000 description 4
- 206010068319 Oropharyngeal pain Diseases 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 229930012538 Paclitaxel Natural products 0.000 description 4
- 208000007542 Paresis Diseases 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- 201000007100 Pharyngitis Diseases 0.000 description 4
- 206010035742 Pneumonitis Diseases 0.000 description 4
- 206010036774 Proctitis Diseases 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 208000014604 Specific Language disease Diseases 0.000 description 4
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 4
- RLAHNGKRJJEIJL-RFZPGFLSSA-N [(2r,4r)-4-(2,6-diaminopurin-9-yl)-1,3-dioxolan-2-yl]methanol Chemical compound C12=NC(N)=NC(N)=C2N=CN1[C@H]1CO[C@@H](CO)O1 RLAHNGKRJJEIJL-RFZPGFLSSA-N 0.000 description 4
- WOZSCQDILHKSGG-UHFFFAOYSA-N adefovir depivoxil Chemical compound N1=CN=C2N(CCOCP(=O)(OCOC(=O)C(C)(C)C)OCOC(=O)C(C)(C)C)C=NC2=C1N WOZSCQDILHKSGG-UHFFFAOYSA-N 0.000 description 4
- 108700025316 aldesleukin Proteins 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 201000007201 aphasia Diseases 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 229940099352 cholate Drugs 0.000 description 4
- 206010009887 colitis Diseases 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010511 deprotection reaction Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 4
- 229960004242 dronabinol Drugs 0.000 description 4
- 206010014197 eczema herpeticum Diseases 0.000 description 4
- 206010014599 encephalitis Diseases 0.000 description 4
- QDGZDCVAUDNJFG-FXQIFTODSA-N entecavir (anhydrous) Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@@H](CO)C1=C QDGZDCVAUDNJFG-FXQIFTODSA-N 0.000 description 4
- 208000006881 esophagitis Diseases 0.000 description 4
- PYGWGZALEOIKDF-UHFFFAOYSA-N etravirine Chemical compound CC1=CC(C#N)=CC(C)=C1OC1=NC(NC=2C=CC(=CC=2)C#N)=NC(N)=C1Br PYGWGZALEOIKDF-UHFFFAOYSA-N 0.000 description 4
- 229960002049 etravirine Drugs 0.000 description 4
- 206010016256 fatigue Diseases 0.000 description 4
- 229960003142 fosamprenavir Drugs 0.000 description 4
- MLBVMOWEQCZNCC-OEMFJLHTSA-N fosamprenavir Chemical compound C([C@@H]([C@H](OP(O)(O)=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 MLBVMOWEQCZNCC-OEMFJLHTSA-N 0.000 description 4
- 201000004946 genital herpes Diseases 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- ZRALSGWEFCBTJO-UHFFFAOYSA-N guanidine group Chemical group NC(=N)N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 4
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 4
- 206010019465 hemiparesis Diseases 0.000 description 4
- 208000006454 hepatitis Diseases 0.000 description 4
- 231100000283 hepatitis Toxicity 0.000 description 4
- 201000005473 herpetic whitlow Diseases 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- 201000006747 infectious mononucleosis Diseases 0.000 description 4
- 206010023332 keratitis Diseases 0.000 description 4
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 4
- KMCBHFNNVRCAAH-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine oxide;2-[dodecyl(dimethyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-].CCCCCCCCCCCC[N+](C)(C)CC([O-])=O KMCBHFNNVRCAAH-UHFFFAOYSA-N 0.000 description 4
- 230000008764 nerve damage Effects 0.000 description 4
- 125000004043 oxo group Chemical group O=* 0.000 description 4
- 239000005022 packaging material Substances 0.000 description 4
- 229960001592 paclitaxel Drugs 0.000 description 4
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 239000012279 sodium borohydride Substances 0.000 description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 description 4
- 208000003265 stomatitis Diseases 0.000 description 4
- SUJUHGSWHZTSEU-FYBSXPHGSA-N tipranavir Chemical compound C([C@@]1(CCC)OC(=O)C([C@H](CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)=C(O)C1)CC1=CC=CC=C1 SUJUHGSWHZTSEU-FYBSXPHGSA-N 0.000 description 4
- 230000000472 traumatic effect Effects 0.000 description 4
- 229950009860 vicriviroc Drugs 0.000 description 4
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 3
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 3
- AMKGKYQBASDDJB-UHFFFAOYSA-N 9$l^{2}-borabicyclo[3.3.1]nonane Chemical compound C1CCC2CCCC1[B]2 AMKGKYQBASDDJB-UHFFFAOYSA-N 0.000 description 3
- FEJUGLKDZJDVFY-UHFFFAOYSA-N 9-borabicyclo[3.3.1]nonane Substances C1CCC2CCCC1B2 FEJUGLKDZJDVFY-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KCBAMQOKOLXLOX-BSZYMOERSA-N CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O Chemical compound CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O KCBAMQOKOLXLOX-BSZYMOERSA-N 0.000 description 3
- QAGYKUNXZHXKMR-UHFFFAOYSA-N CPD000469186 Natural products CC1=C(O)C=CC=C1C(=O)NC(C(O)CN1C(CC2CCCCC2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 QAGYKUNXZHXKMR-UHFFFAOYSA-N 0.000 description 3
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 3
- 102100038199 Desmoplakin Human genes 0.000 description 3
- XPOQHMRABVBWPR-UHFFFAOYSA-N Efavirenz Natural products O1C(=O)NC2=CC=C(Cl)C=C2C1(C(F)(F)F)C#CC1CC1 XPOQHMRABVBWPR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 102100034349 Integrase Human genes 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 206010067152 Oral herpes Diseases 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- HDOVUKNUBWVHOX-QMMMGPOBSA-N Valacyclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCOC(=O)[C@@H](N)C(C)C)C=N2 HDOVUKNUBWVHOX-QMMMGPOBSA-N 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 229960004748 abacavir Drugs 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 229960004099 azithromycin Drugs 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 208000020670 canker sore Diseases 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 229960002626 clarithromycin Drugs 0.000 description 3
- 229940125904 compound 1 Drugs 0.000 description 3
- 229940125782 compound 2 Drugs 0.000 description 3
- 229940125833 compound 23 Drugs 0.000 description 3
- 229940125877 compound 31 Drugs 0.000 description 3
- 229940125898 compound 5 Drugs 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 229960005319 delavirdine Drugs 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 229960003804 efavirenz Drugs 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000010931 ester hydrolysis Methods 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 229960004884 fluconazole Drugs 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 229960002963 ganciclovir Drugs 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 229960001936 indinavir Drugs 0.000 description 3
- 229940079322 interferon Drugs 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 229960003350 isoniazid Drugs 0.000 description 3
- 229960004130 itraconazole Drugs 0.000 description 3
- 229960001627 lamivudine Drugs 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- IOMMMLWIABWRKL-WUTDNEBXSA-N nazartinib Chemical compound C1N(C(=O)/C=C/CN(C)C)CCCC[C@H]1N1C2=C(Cl)C=CC=C2N=C1NC(=O)C1=CC=NC(C)=C1 IOMMMLWIABWRKL-WUTDNEBXSA-N 0.000 description 3
- 229960000884 nelfinavir Drugs 0.000 description 3
- 229960000689 nevirapine Drugs 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 210000001331 nose Anatomy 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000003380 propellant Substances 0.000 description 3
- 229960001225 rifampicin Drugs 0.000 description 3
- 229960000311 ritonavir Drugs 0.000 description 3
- 239000003419 rna directed dna polymerase inhibitor Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 description 3
- 229940093257 valacyclovir Drugs 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- NIDRYBLTWYFCFV-FMTVUPSXSA-N (+)-calanolide A Chemical compound C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-FMTVUPSXSA-N 0.000 description 2
- TXIOIJSYWOLKNU-FLQODOFBSA-N (1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-(3-carboxy-3-methylbutanoyl)oxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid;(2r,3r,4r,5s)-6-(methylamino)hexane-1 Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.C1C[C@H](OC(=O)CC(C)(C)C(O)=O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C TXIOIJSYWOLKNU-FLQODOFBSA-N 0.000 description 2
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 2
- YJLIKUSWRSEPSM-WGQQHEPDSA-N (2r,3r,4s,5r)-2-[6-amino-8-[(4-phenylphenyl)methylamino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1CNC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O YJLIKUSWRSEPSM-WGQQHEPDSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- DBPMWRYLTBNCCE-UHFFFAOYSA-N 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1h-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione Chemical compound C1=2C(OC)=CN=C(OC)C=2NC=C1C(=O)C(=O)N(CC1)CCN1C(=O)C1=CC=CC=C1 DBPMWRYLTBNCCE-UHFFFAOYSA-N 0.000 description 2
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 2
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 2
- PAYROHWFGZADBR-UHFFFAOYSA-N 2-[[4-amino-5-(5-iodo-4-methoxy-2-propan-2-ylphenoxy)pyrimidin-2-yl]amino]propane-1,3-diol Chemical compound C1=C(I)C(OC)=CC(C(C)C)=C1OC1=CN=C(NC(CO)CO)N=C1N PAYROHWFGZADBR-UHFFFAOYSA-N 0.000 description 2
- MBRHNTMUYWQHMR-UHFFFAOYSA-N 2-aminoethanol;6-cyclohexyl-1-hydroxy-4-methylpyridin-2-one Chemical compound NCCO.ON1C(=O)C=C(C)C=C1C1CCCCC1 MBRHNTMUYWQHMR-UHFFFAOYSA-N 0.000 description 2
- YZHIXLCGPOTQNB-UHFFFAOYSA-N 2-methyl-furan-3-carbothioic acid [4-chloro-3-(3-methyl-but-2-enyloxy)-phenyl]-amide Chemical compound C1=C(Cl)C(OCC=C(C)C)=CC(NC(=S)C2=C(OC=C2)C)=C1 YZHIXLCGPOTQNB-UHFFFAOYSA-N 0.000 description 2
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- WCFJUSRQHZPVKY-UHFFFAOYSA-N 3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)NCCC(O)=O WCFJUSRQHZPVKY-UHFFFAOYSA-N 0.000 description 2
- GSNHKUDZZFZSJB-HLMSNRGBSA-N 4,4-Difluoro-N-[(1S)-3-[(1R,5S)-3-[3-methyl-5-(propan-2-yl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]octan-8-yl]-1-phenylpropyl]cyclohexane-1-carboximidic acid Chemical compound CC(C)C1=NN=C(C)N1C1C[C@H](N2CC[C@H](NC(=O)C3CCC(F)(F)CC3)C=3C=CC=CC=3)CC[C@H]2C1 GSNHKUDZZFZSJB-HLMSNRGBSA-N 0.000 description 2
- YLDCUKJMEKGGFI-QCSRICIXSA-N 4-acetamidobenzoic acid;9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one;1-(dimethylamino)propan-2-ol Chemical compound CC(O)CN(C)C.CC(O)CN(C)C.CC(O)CN(C)C.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(NC=NC2=O)=C2N=C1 YLDCUKJMEKGGFI-QCSRICIXSA-N 0.000 description 2
- HSBKFSPNDWWPSL-VDTYLAMSSA-N 4-amino-5-fluoro-1-[(2s,5r)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]pyrimidin-2-one Chemical compound C1=C(F)C(N)=NC(=O)N1[C@@H]1C=C[C@H](CO)O1 HSBKFSPNDWWPSL-VDTYLAMSSA-N 0.000 description 2
- WZRJTRPJURQBRM-UHFFFAOYSA-N 4-amino-n-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide;5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1.COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 WZRJTRPJURQBRM-UHFFFAOYSA-N 0.000 description 2
- DQOGWKZQQBYYMW-LQGIGNHCSA-N 5-methyl-6-[(3,4,5-trimethoxyanilino)methyl]quinazoline-2,4-diamine;(2s,3s,4s,5r,6s)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O.COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 DQOGWKZQQBYYMW-LQGIGNHCSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- WVLHHLRVNDMIAR-IBGZPJMESA-N AMD 070 Chemical compound C1CCC2=CC=CN=C2[C@H]1N(CCCCN)CC1=NC2=CC=CC=C2N1 WVLHHLRVNDMIAR-IBGZPJMESA-N 0.000 description 2
- 102100039864 ATPase family AAA domain-containing protein 2 Human genes 0.000 description 2
- 206010000087 Abdominal pain upper Diseases 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- UXCAQJAQSWSNPQ-XLPZGREQSA-N Alovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](F)C1 UXCAQJAQSWSNPQ-XLPZGREQSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- BQXUPNKLZNSUMC-YUQWMIPFSA-N CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 Chemical compound CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 BQXUPNKLZNSUMC-YUQWMIPFSA-N 0.000 description 2
- NIDRYBLTWYFCFV-IUUKEHGRSA-N Calanolide A Natural products C1=CC(C)(C)OC2=C1C(O[C@H](C)[C@H](C)[C@@H]1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-IUUKEHGRSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- VWFCHDSQECPREK-LURJTMIESA-N Cidofovir Chemical compound NC=1C=CN(C[C@@H](CO)OCP(O)(O)=O)C(=O)N=1 VWFCHDSQECPREK-LURJTMIESA-N 0.000 description 2
- 229940126639 Compound 33 Drugs 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 241000282575 Gorilla Species 0.000 description 2
- 101000933041 His1 virus (isolate Australia/Victoria) Major capsid protein Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000887284 Homo sapiens ATPase family AAA domain-containing protein 2 Proteins 0.000 description 2
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 2
- 101000920686 Homo sapiens Erythropoietin Proteins 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 206010022004 Influenza like illness Diseases 0.000 description 2
- 108010078049 Interferon alpha-2 Proteins 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 208000007766 Kaposi sarcoma Diseases 0.000 description 2
- 241001313288 Labia Species 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 241000282553 Macaca Species 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 241000282579 Pan Species 0.000 description 2
- 108010071384 Peptide T Proteins 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000282405 Pongo abelii Species 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 2
- 239000004147 Sorbitan trioleate Substances 0.000 description 2
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- SUJUHGSWHZTSEU-UHFFFAOYSA-N Tipranavir Natural products C1C(O)=C(C(CC)C=2C=C(NS(=O)(=O)C=3N=CC(=CC=3)C(F)(F)F)C=CC=2)C(=O)OC1(CCC)CCC1=CC=CC=C1 SUJUHGSWHZTSEU-UHFFFAOYSA-N 0.000 description 2
- 101150010086 VP24 gene Proteins 0.000 description 2
- WPVFJKSGQUFQAP-GKAPJAKFSA-N Valcyte Chemical compound N1C(N)=NC(=O)C2=C1N(COC(CO)COC(=O)[C@@H](N)C(C)C)C=N2 WPVFJKSGQUFQAP-GKAPJAKFSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- SPXSEZMVRJLHQG-XMMPIXPASA-N [(2R)-1-[[4-[(3-phenylmethoxyphenoxy)methyl]phenyl]methyl]pyrrolidin-2-yl]methanol Chemical compound C(C1=CC=CC=C1)OC=1C=C(OCC2=CC=C(CN3[C@H](CCC3)CO)C=C2)C=CC=1 SPXSEZMVRJLHQG-XMMPIXPASA-N 0.000 description 2
- ZWBTYMGEBZUQTK-PVLSIAFMSA-N [(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,32-tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(32),2,4,9,19,21,24,26,30-nonaene-28,4'-piperidine]-13-yl] acetate Chemical compound CO[C@H]1\C=C\O[C@@]2(C)Oc3c(C2=O)c2c4NC5(CCN(CC(C)C)CC5)N=c4c(=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)c(O)c2c(O)c3C ZWBTYMGEBZUQTK-PVLSIAFMSA-N 0.000 description 2
- ZGDKVKUWTCGYOA-URGPHPNLSA-N [4-[4-[(z)-c-(4-bromophenyl)-n-ethoxycarbonimidoyl]piperidin-1-yl]-4-methylpiperidin-1-yl]-(2,4-dimethyl-1-oxidopyridin-1-ium-3-yl)methanone Chemical compound C=1C=C(Br)C=CC=1C(=N/OCC)\C(CC1)CCN1C(CC1)(C)CCN1C(=O)C1=C(C)C=C[N+]([O-])=C1C ZGDKVKUWTCGYOA-URGPHPNLSA-N 0.000 description 2
- GLWHPRRGGYLLRV-XLPZGREQSA-N [[(2s,3s,5r)-3-azido-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](N=[N+]=[N-])C1 GLWHPRRGGYLLRV-XLPZGREQSA-N 0.000 description 2
- WMHSRBZIJNQHKT-FFKFEZPRSA-N abacavir sulfate Chemical compound OS(O)(=O)=O.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1.C=12N=CN([C@H]3C=C[C@@H](CO)C3)C2=NC(N)=NC=1NC1CC1 WMHSRBZIJNQHKT-FFKFEZPRSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229960003205 adefovir dipivoxil Drugs 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 229960005310 aldesleukin Drugs 0.000 description 2
- 229950004424 alovudine Drugs 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 229940098178 ambisome Drugs 0.000 description 2
- 229950005846 amdoxovir Drugs 0.000 description 2
- AOPRFYAPABFRPU-UHFFFAOYSA-N amino(imino)methanesulfonic acid Chemical compound NC(=N)S(O)(=O)=O AOPRFYAPABFRPU-UHFFFAOYSA-N 0.000 description 2
- 229940059312 androderm Drugs 0.000 description 2
- 229940062331 androgel Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 229940121357 antivirals Drugs 0.000 description 2
- 208000002399 aphthous stomatitis Diseases 0.000 description 2
- 229950006356 aplaviroc Drugs 0.000 description 2
- RYMCFYKJDVMSIR-RNFRBKRXSA-N apricitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1S[C@H](CO)OC1 RYMCFYKJDVMSIR-RNFRBKRXSA-N 0.000 description 2
- 229940030139 aptivus Drugs 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229960003277 atazanavir Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 229940098166 bactrim Drugs 0.000 description 2
- 229940002637 baraclude Drugs 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 229940087430 biaxin Drugs 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- NIDRYBLTWYFCFV-UHFFFAOYSA-N calanolide F Natural products C1=CC(C)(C)OC2=C1C(OC(C)C(C)C1O)=C1C1=C2C(CCC)=CC(=O)O1 NIDRYBLTWYFCFV-UHFFFAOYSA-N 0.000 description 2
- PMDQGYMGQKTCSX-HQROKSDRSA-L calcium;[(2r,3s)-1-[(4-aminophenyl)sulfonyl-(2-methylpropyl)amino]-3-[[(3s)-oxolan-3-yl]oxycarbonylamino]-4-phenylbutan-2-yl] phosphate Chemical compound [Ca+2].C([C@@H]([C@H](OP([O-])([O-])=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 PMDQGYMGQKTCSX-HQROKSDRSA-L 0.000 description 2
- YQXCVAGCMNFUMQ-UHFFFAOYSA-N capravirine Chemical compound C=1C(Cl)=CC(Cl)=CC=1SC1=C(C(C)C)N=C(COC(N)=O)N1CC1=CC=NC=C1 YQXCVAGCMNFUMQ-UHFFFAOYSA-N 0.000 description 2
- 229950008230 capravirine Drugs 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000679 carrageenan Substances 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 229940113118 carrageenan Drugs 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 229960004375 ciclopirox olamine Drugs 0.000 description 2
- 229960000724 cidofovir Drugs 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229960002227 clindamycin Drugs 0.000 description 2
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 2
- 229940047766 co-trimoxazole Drugs 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 229940014461 combivir Drugs 0.000 description 2
- 229940126543 compound 14 Drugs 0.000 description 2
- 229940127271 compound 49 Drugs 0.000 description 2
- 210000000795 conjunctiva Anatomy 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229940055354 copegus Drugs 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 239000006184 cosolvent Substances 0.000 description 2
- 229940088900 crixivan Drugs 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 108060002021 cyanovirin N Proteins 0.000 description 2
- 230000000120 cytopathologic effect Effects 0.000 description 2
- 229940087451 cytovene Drugs 0.000 description 2
- 229960005107 darunavir Drugs 0.000 description 2
- CJBJHOAVZSMMDJ-HEXNFIEUSA-N darunavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1[C@@H]2CCO[C@@H]2OC1)C1=CC=CC=C1 CJBJHOAVZSMMDJ-HEXNFIEUSA-N 0.000 description 2
- 229940094111 depo-testosterone Drugs 0.000 description 2
- 229960000633 dextran sulfate Drugs 0.000 description 2
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 2
- 229940063123 diflucan Drugs 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229960000735 docosanol Drugs 0.000 description 2
- 229940115080 doxil Drugs 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 229950006528 elvucitabine Drugs 0.000 description 2
- 229960000366 emtricitabine Drugs 0.000 description 2
- 229940001018 emtriva Drugs 0.000 description 2
- 229960002062 enfuvirtide Drugs 0.000 description 2
- 229960000980 entecavir Drugs 0.000 description 2
- 229940072253 epivir Drugs 0.000 description 2
- 229960003388 epoetin alfa Drugs 0.000 description 2
- 229940089118 epogen Drugs 0.000 description 2
- 229940019131 epzicom Drugs 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 229960004396 famciclovir Drugs 0.000 description 2
- GGXKWVWZWMLJEH-UHFFFAOYSA-N famcyclovir Chemical compound N1=C(N)N=C2N(CCC(COC(=O)C)COC(C)=O)C=NC2=C1 GGXKWVWZWMLJEH-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 229960005102 foscarnet Drugs 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229940099052 fuzeon Drugs 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 210000000609 ganglia Anatomy 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229940097709 hepsera Drugs 0.000 description 2
- SZWIAFVYPPMZML-YNEHKIRRSA-N heptyl n-[5-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-oxo-1,4-dihydro-1,3,5-triazin-2-yl]carbamate Chemical compound C1NC(NC(=O)OCCCCCCC)=NC(=O)N1[C@@H]1O[C@H](CO)[C@@H](O)C1 SZWIAFVYPPMZML-YNEHKIRRSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 102000044890 human EPO Human genes 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 2
- 229950010245 ibalizumab Drugs 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229940065638 intron a Drugs 0.000 description 2
- 229940088976 invirase Drugs 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- VHVPQPYKVGDNFY-ZPGVKDDISA-N itraconazole Chemical compound O=C1N(C(C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-ZPGVKDDISA-N 0.000 description 2
- 229940112586 kaletra Drugs 0.000 description 2
- 229960004125 ketoconazole Drugs 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 229940113354 lexiva Drugs 0.000 description 2
- 239000011981 lindlar catalyst Substances 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- GSNHKUDZZFZSJB-QYOOZWMWSA-N maraviroc Chemical compound CC(C)C1=NN=C(C)N1[C@@H]1C[C@H](N2CC[C@H](NC(=O)C3CCC(F)(F)CC3)C=3C=CC=CC=3)CC[C@H]2C1 GSNHKUDZZFZSJB-QYOOZWMWSA-N 0.000 description 2
- 229960004710 maraviroc Drugs 0.000 description 2
- 229940099262 marinol Drugs 0.000 description 2
- 229940090004 megace Drugs 0.000 description 2
- 229960001786 megestrol Drugs 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 210000002161 motor neuron Anatomy 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229940027817 mycobutin Drugs 0.000 description 2
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 2
- 210000001989 nasopharynx Anatomy 0.000 description 2
- 229960003255 natamycin Drugs 0.000 description 2
- NCXMLFZGDNKEPB-FFPOYIOWSA-N natamycin Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C[C@@H](C)OC(=O)/C=C/[C@H]2O[C@@H]2C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 NCXMLFZGDNKEPB-FFPOYIOWSA-N 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 229940101014 nebupent Drugs 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229940063708 neutrexin Drugs 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 229940072250 norvir Drugs 0.000 description 2
- 229960000988 nystatin Drugs 0.000 description 2
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 2
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229940002988 pegasys Drugs 0.000 description 2
- 108010092853 peginterferon alfa-2a Proteins 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- XDRYMKDFEDOLFX-UHFFFAOYSA-N pentamidine Chemical compound C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 XDRYMKDFEDOLFX-UHFFFAOYSA-N 0.000 description 2
- 229960004448 pentamidine Drugs 0.000 description 2
- YBVNFKZSMZGRAD-UHFFFAOYSA-N pentamidine isethionate Chemical compound OCCS(O)(=O)=O.OCCS(O)(=O)=O.C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 YBVNFKZSMZGRAD-UHFFFAOYSA-N 0.000 description 2
- 229920001432 poly(L-lactide) Polymers 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229940029359 procrit Drugs 0.000 description 2
- 229940087463 proleukin Drugs 0.000 description 2
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 229940053146 rebetol Drugs 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 210000000664 rectum Anatomy 0.000 description 2
- 230000033458 reproduction Effects 0.000 description 2
- 229940063627 rescriptor Drugs 0.000 description 2
- 229940064914 retrovir Drugs 0.000 description 2
- 229940107904 reyataz Drugs 0.000 description 2
- 229960000329 ribavirin Drugs 0.000 description 2
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 2
- ATEBXHFBFRCZMA-VXTBVIBXSA-N rifabutin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC(=C2N3)C(=O)C=4C(O)=C5C)C)OC)C5=C1C=4C2=NC13CCN(CC(C)C)CC1 ATEBXHFBFRCZMA-VXTBVIBXSA-N 0.000 description 2
- 229960000885 rifabutin Drugs 0.000 description 2
- 229940063639 rifadin Drugs 0.000 description 2
- 229940049560 rimactane Drugs 0.000 description 2
- 102200046712 rs752492870 Human genes 0.000 description 2
- 210000001044 sensory neuron Anatomy 0.000 description 2
- 229940048278 septra Drugs 0.000 description 2
- 229940117012 serostim Drugs 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229960004532 somatropin Drugs 0.000 description 2
- 229960000391 sorbitan trioleate Drugs 0.000 description 2
- 235000019337 sorbitan trioleate Nutrition 0.000 description 2
- 229940063138 sporanox Drugs 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229960001203 stavudine Drugs 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 229940054565 sustiva Drugs 0.000 description 2
- 206010042772 syncope Diseases 0.000 description 2
- 229960004556 tenofovir Drugs 0.000 description 2
- 229960001355 tenofovir disoproxil Drugs 0.000 description 2
- 229960004693 tenofovir disoproxil fumarate Drugs 0.000 description 2
- 229960003604 testosterone Drugs 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229960000838 tipranavir Drugs 0.000 description 2
- 229940035307 toposar Drugs 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 150000005691 triesters Chemical class 0.000 description 2
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 2
- 229960001082 trimethoprim Drugs 0.000 description 2
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 2
- 229960001099 trimetrexate Drugs 0.000 description 2
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229940111527 trizivir Drugs 0.000 description 2
- 229940008349 truvada Drugs 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 2
- 229960000604 valproic acid Drugs 0.000 description 2
- 229940023080 viracept Drugs 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 230000009447 viral pathogenesis Effects 0.000 description 2
- 229940098802 viramune Drugs 0.000 description 2
- 229940100050 virazole Drugs 0.000 description 2
- 229940053728 vitrasert Drugs 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 229940087450 zerit Drugs 0.000 description 2
- 229940052255 ziagen Drugs 0.000 description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 2
- 229940072251 zithromax Drugs 0.000 description 2
- 229940107931 zovirax Drugs 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 1
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 1
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 1
- ABJSOROVZZKJGI-OCYUSGCXSA-N (1r,2r,4r)-2-(4-bromophenyl)-n-[(4-chlorophenyl)-(2-fluoropyridin-4-yl)methyl]-4-morpholin-4-ylcyclohexane-1-carboxamide Chemical compound C1=NC(F)=CC(C(NC(=O)[C@H]2[C@@H](C[C@@H](CC2)N2CCOCC2)C=2C=CC(Br)=CC=2)C=2C=CC(Cl)=CC=2)=C1 ABJSOROVZZKJGI-OCYUSGCXSA-N 0.000 description 1
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 description 1
- BLSQLHNBWJLIBQ-OZXSUGGESA-N (2R,4S)-terconazole Chemical compound C1CN(C(C)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2N=CN=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 BLSQLHNBWJLIBQ-OZXSUGGESA-N 0.000 description 1
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 1
- PILPQAMQDMXSBY-NSHDSACASA-N (2s)-6-amino-2-[bis[(2-methylpropan-2-yl)oxycarbonyl]amino]hexanoic acid Chemical group CC(C)(C)OC(=O)N(C(=O)OC(C)(C)C)[C@H](C(O)=O)CCCCN PILPQAMQDMXSBY-NSHDSACASA-N 0.000 description 1
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 1
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 1
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 1
- YQOLEILXOBUDMU-KRWDZBQOSA-N (4R)-5-[(6-bromo-3-methyl-2-pyrrolidin-1-ylquinoline-4-carbonyl)amino]-4-(2-chlorophenyl)pentanoic acid Chemical compound CC1=C(C2=C(C=CC(=C2)Br)N=C1N3CCCC3)C(=O)NC[C@H](CCC(=O)O)C4=CC=CC=C4Cl YQOLEILXOBUDMU-KRWDZBQOSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- MPIPASJGOJYODL-SFHVURJKSA-N (R)-isoconazole Chemical compound ClC1=CC(Cl)=CC=C1[C@@H](OCC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 MPIPASJGOJYODL-SFHVURJKSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- 125000006002 1,1-difluoroethyl group Chemical group 0.000 description 1
- AFNXATANNDIXLG-SFHVURJKSA-N 1-[(2r)-2-[(4-chlorophenyl)methylsulfanyl]-2-(2,4-dichlorophenyl)ethyl]imidazole Chemical compound C1=CC(Cl)=CC=C1CS[C@H](C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 AFNXATANNDIXLG-SFHVURJKSA-N 0.000 description 1
- ZCJYUTQZBAIHBS-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-{[4-(phenylsulfanyl)benzyl]oxy}ethyl]imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C=CC(SC=2C=CC=CC=2)=CC=1)CN1C=NC=C1 ZCJYUTQZBAIHBS-UHFFFAOYSA-N 0.000 description 1
- PZBPKYOVPCNPJY-UHFFFAOYSA-N 1-[2-(allyloxy)-2-(2,4-dichlorophenyl)ethyl]imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=C)CN1C=NC=C1 PZBPKYOVPCNPJY-UHFFFAOYSA-N 0.000 description 1
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 1
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- OCAPBUJLXMYKEJ-UHFFFAOYSA-N 1-[biphenyl-4-yl(phenyl)methyl]imidazole Chemical compound C1=NC=CN1C(C=1C=CC(=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 OCAPBUJLXMYKEJ-UHFFFAOYSA-N 0.000 description 1
- VMKOFRJSULQZRM-UHFFFAOYSA-N 1-bromooctane Chemical compound CCCCCCCCBr VMKOFRJSULQZRM-UHFFFAOYSA-N 0.000 description 1
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 1
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 1
- JLGKQTAYUIMGRK-UHFFFAOYSA-N 1-{2-[(7-chloro-1-benzothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C2=CC=CC(Cl)=C2SC=1)CN1C=NC=C1 JLGKQTAYUIMGRK-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- FQMZXMVHHKXGTM-UHFFFAOYSA-N 2-(1-adamantyl)-n-[2-[2-(2-hydroxyethylamino)ethylamino]quinolin-5-yl]acetamide Chemical compound C1C(C2)CC(C3)CC2CC13CC(=O)NC1=CC=CC2=NC(NCCNCCO)=CC=C21 FQMZXMVHHKXGTM-UHFFFAOYSA-N 0.000 description 1
- GGZQLTVZPOGLCC-UHFFFAOYSA-N 2-(2-bromoethyl)-1,3-dioxolane Chemical compound BrCCC1OCCO1 GGZQLTVZPOGLCC-UHFFFAOYSA-N 0.000 description 1
- CHZXTOCAICMPQR-UHFFFAOYSA-N 2-(2-bromoethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCBr)C(=O)C2=C1 CHZXTOCAICMPQR-UHFFFAOYSA-N 0.000 description 1
- VKJCJJYNVIYVQR-UHFFFAOYSA-N 2-(3-bromopropyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCCBr)C(=O)C2=C1 VKJCJJYNVIYVQR-UHFFFAOYSA-N 0.000 description 1
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 1
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 1
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 1
- HUADITLKOCMHSB-AVQIMAJZSA-N 2-butan-2-yl-4-[4-[4-[4-[[(2s,4r)-2-(2,4-difluorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N(C(C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@H]3O[C@@](CN4N=CN=C4)(OC3)C=3C(=CC(F)=CC=3)F)=CC=2)C=C1 HUADITLKOCMHSB-AVQIMAJZSA-N 0.000 description 1
- SLAMLWHELXOEJZ-UHFFFAOYSA-M 2-nitrobenzoate Chemical compound [O-]C(=O)C1=CC=CC=C1[N+]([O-])=O SLAMLWHELXOEJZ-UHFFFAOYSA-M 0.000 description 1
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 1
- TZZDVPMABRWKIZ-MFTLXVFQSA-N 3-[6-[4-[[1-[4-[(1R,2S)-6-hydroxy-2-phenyl-1,2,3,4-tetrahydronaphthalen-1-yl]phenyl]piperidin-4-yl]methyl]piperazin-1-yl]-3-oxo-1H-isoindol-2-yl]piperidine-2,6-dione Chemical compound OC=1C=C2CC[C@@H]([C@@H](C2=CC=1)C1=CC=C(C=C1)N1CCC(CC1)CN1CCN(CC1)C=1C=C2CN(C(C2=CC=1)=O)C1C(NC(CC1)=O)=O)C1=CC=CC=C1 TZZDVPMABRWKIZ-MFTLXVFQSA-N 0.000 description 1
- HZLHRDBTVSZCBS-UVJJDBRNSA-N 4-[(e)-(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]-2-methylaniline;hydrochloride Chemical compound Cl.C1=CC(=N)C(C)=C\C1=C(C=1C=C(C)C(N)=CC=1)/C1=CC=C(N)C=C1 HZLHRDBTVSZCBS-UVJJDBRNSA-N 0.000 description 1
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 1
- WDYVUKGVKRZQNM-UHFFFAOYSA-N 6-phosphonohexylphosphonic acid Chemical compound OP(O)(=O)CCCCCCP(O)(O)=O WDYVUKGVKRZQNM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- 208000031873 Animal Disease Models Diseases 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 description 1
- IYHHRZBKXXKDDY-UHFFFAOYSA-N BI-605906 Chemical compound N=1C=2SC(C(N)=O)=C(N)C=2C(C(F)(F)CC)=CC=1N1CCC(S(C)(=O)=O)CC1 IYHHRZBKXXKDDY-UHFFFAOYSA-N 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- QPVYEWNKIRELOD-UHFFFAOYSA-N CN.CN.CN Chemical compound CN.CN.CN QPVYEWNKIRELOD-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010020326 Caspofungin Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 239000004099 Chlortetracycline Substances 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 229940126657 Compound 17 Drugs 0.000 description 1
- 229940127007 Compound 39 Drugs 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 101100049549 Enterobacteria phage P4 sid gene Proteins 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- CTETYYAZBPJBHE-UHFFFAOYSA-N Haloprogin Chemical compound ClC1=CC(Cl)=C(OCC#CI)C=C1Cl CTETYYAZBPJBHE-UHFFFAOYSA-N 0.000 description 1
- 208000029433 Herpesviridae infectious disease Diseases 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000282620 Hylobates sp. Species 0.000 description 1
- 241000282596 Hylobatidae Species 0.000 description 1
- 239000005795 Imazalil Substances 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 208000032420 Latent Infection Diseases 0.000 description 1
- TYMRLRRVMHJFTF-UHFFFAOYSA-N Mafenide Chemical compound NCC1=CC=C(S(N)(=O)=O)C=C1 TYMRLRRVMHJFTF-UHFFFAOYSA-N 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010029803 Nosocomial infection Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101100272976 Panax ginseng CYP716A53v2 gene Proteins 0.000 description 1
- UOZODPSAJZTQNH-UHFFFAOYSA-N Paromomycin II Natural products NC1C(O)C(O)C(CN)OC1OC1C(O)C(OC2C(C(N)CC(N)C2O)OC2C(C(O)C(O)C(CO)O2)N)OC1CO UOZODPSAJZTQNH-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- JNTOCHDNEULJHD-UHFFFAOYSA-N Penciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(CCC(CO)CO)C=N2 JNTOCHDNEULJHD-UHFFFAOYSA-N 0.000 description 1
- NCXMLFZGDNKEPB-UHFFFAOYSA-N Pimaricin Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCC(C)OC(=O)C=CC2OC2CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 NCXMLFZGDNKEPB-UHFFFAOYSA-N 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 229940123573 Protein synthesis inhibitor Drugs 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 1
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 1
- PSLUFJFHTBIXMW-WYEYVKMPSA-N [(3r,4ar,5s,6s,6as,10s,10ar,10bs)-3-ethenyl-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-6-(2-pyridin-2-ylethylcarbamoyloxy)-5,6,6a,8,9,10-hexahydro-2h-benzo[f]chromen-5-yl] acetate Chemical compound O([C@@H]1[C@@H]([C@]2(O[C@](C)(CC(=O)[C@]2(O)[C@@]2(C)[C@@H](O)CCC(C)(C)[C@@H]21)C=C)C)OC(=O)C)C(=O)NCCC1=CC=CC=N1 PSLUFJFHTBIXMW-WYEYVKMPSA-N 0.000 description 1
- ZCEMBZFRWOWBPO-SMPZIAKUSA-N [H][C@@]12CC(=C)CC[C@]1(C)[C@@]1([H])C/C(=N\O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)OC)CC[C@@]3([H])[C@]1([H])/C(=N\O)C2.[H][C@@]12CC(=O)CC[C@]1(C)[C@@]1([H])CC(=O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)OC)CC[C@@]3([H])[C@]1([H])C(=O)C2.[H][C@@]12C[C@H](N)CC[C@]1(C)[C@@]1([H])C[C@H](N)[C@]3(C)[C@@H]([C@H](C)CCC(=O)O)CC[C@@]3([H])[C@]1([H])[C@H](N)C2 Chemical compound [H][C@@]12CC(=C)CC[C@]1(C)[C@@]1([H])C/C(=N\O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)OC)CC[C@@]3([H])[C@]1([H])/C(=N\O)C2.[H][C@@]12CC(=O)CC[C@]1(C)[C@@]1([H])CC(=O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)OC)CC[C@@]3([H])[C@]1([H])C(=O)C2.[H][C@@]12C[C@H](N)CC[C@]1(C)[C@@]1([H])C[C@H](N)[C@]3(C)[C@@H]([C@H](C)CCC(=O)O)CC[C@@]3([H])[C@]1([H])[C@H](N)C2 ZCEMBZFRWOWBPO-SMPZIAKUSA-N 0.000 description 1
- KPYQIXTYQUGJDK-HFCDPSCMSA-N [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H](C(C)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OC(C)=O)[C@]3(C)[C@@H](C(C)=O)CC[C@@]3([H])[C@]1([H])[C@H](OC(C)=O)C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OC(C)=O)[C@]3(C)[C@@H](C4(C)OCCO4)CC[C@@]3([H])[C@]1([H])[C@H](OC(C)=O)C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OCC=C)[C@]3(C)[C@@H](C4(C)OCCO4)CC[C@@]3([H])[C@]1([H])[C@H](OCC=C)C2.[H][C@@]12C[C@H](OCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCOCC)[C@]3(C)[C@@H](C(C)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCO)C2.[H][C@@]12C[C@H](OCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCOCC)[C@]3(C)[C@@H](C4(C)OCCO4)CC[C@@]3([H])[C@]1([H])[C@H](OCCCO)C2 Chemical compound [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H](C(C)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OC(C)=O)[C@]3(C)[C@@H](C(C)=O)CC[C@@]3([H])[C@]1([H])[C@H](OC(C)=O)C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OC(C)=O)[C@]3(C)[C@@H](C4(C)OCCO4)CC[C@@]3([H])[C@]1([H])[C@H](OC(C)=O)C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OCC=C)[C@]3(C)[C@@H](C4(C)OCCO4)CC[C@@]3([H])[C@]1([H])[C@H](OCC=C)C2.[H][C@@]12C[C@H](OCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCOCC)[C@]3(C)[C@@H](C(C)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCO)C2.[H][C@@]12C[C@H](OCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCOCC)[C@]3(C)[C@@H](C4(C)OCCO4)CC[C@@]3([H])[C@]1([H])[C@H](OCCCO)C2 KPYQIXTYQUGJDK-HFCDPSCMSA-N 0.000 description 1
- VFRVBNYVMIOWQC-KTMIEVQASA-N [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H]([C@H](C)CCCBr)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H]([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H]([C@H](C)CCCOCCC[C@@H](C)[C@H]4CC[C@@]5([H])C6[C@H](OCCCN=[N+]=[N-])CC7C[C@H](C)CC[C@]7(C)[C@@]6([H])C[C@H](C)[C@]45C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](NCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](NCOCC)[C@]3(C)[C@@H]([C@H](C)CCCOCCC[C@@H](C)[C@H]4CC[C@@]5([H])[C@]6([H])[C@@H](NCOCC)C[C@]7([H])C[C@H](OCCCN)CC[C@]7(C)[C@@]6([H])C[C@H](OCCCN)[C@]45[H])CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2 Chemical compound [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H]([C@H](C)CCCBr)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H]([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](C)[C@]3(C)[C@@H]([C@H](C)CCCOCCC[C@@H](C)[C@H]4CC[C@@]5([H])C6[C@H](OCCCN=[N+]=[N-])CC7C[C@H](C)CC[C@]7(C)[C@@]6([H])C[C@H](C)[C@]45C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](NCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](NCOCC)[C@]3(C)[C@@H]([C@H](C)CCCOCCC[C@@H](C)[C@H]4CC[C@@]5([H])[C@]6([H])[C@@H](NCOCC)C[C@]7([H])C[C@H](OCCCN)CC[C@]7(C)[C@@]6([H])C[C@H](OCCCN)[C@]45[H])CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2 VFRVBNYVMIOWQC-KTMIEVQASA-N 0.000 description 1
- GVVDQNROCUQNNI-UXJUOVRESA-N [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OCC=C)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCC=C)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)OC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](OCCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCCC)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCOS(C)(=O)=O)C2.[H][C@@]12C[C@H](OCCO)CC[C@]1(C)[C@@]1([H])C[C@H](OCCO)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCO)C2 Chemical compound [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OCC=C)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCC=C)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)OC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](OCCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCCC)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCOS(C)(=O)=O)C2.[H][C@@]12C[C@H](OCCO)CC[C@]1(C)[C@@]1([H])C[C@H](OCCO)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCO)C2 GVVDQNROCUQNNI-UXJUOVRESA-N 0.000 description 1
- LBYJTSLEHMNZKO-NMENCIFZSA-N [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OCC=C)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCC=C)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](OCCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCCC)[C@]3(C)[C@@H]([C@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCOS(C)(=O)=O)C2.[H][C@@]12C[C@H](OCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCO)CC[C@]1(C)[C@@]1([H])C[C@H](OCCO)[C@]3(C)[C@@H]([C@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCO)C2 Chemical compound [H][C@@]12C[C@H](C)CC[C@]1(C)[C@@]1([H])C[C@H](OCC=C)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCC=C)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](OCCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCCC)[C@]3(C)[C@@H]([C@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCOS(C)(=O)=O)C2.[H][C@@]12C[C@H](OCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCO)CC[C@]1(C)[C@@]1([H])C[C@H](OCCO)[C@]3(C)[C@@H]([C@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCO)C2 LBYJTSLEHMNZKO-NMENCIFZSA-N 0.000 description 1
- YWHHBOQQGRCQOX-RATVXXPBSA-N [H][C@@]12C[C@H](NCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](NCOCC)[C@]3(C)[C@@H](C(C)O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2 Chemical compound [H][C@@]12C[C@H](NCOCC)CC[C@]1(C)[C@@]1([H])C[C@H](NCOCC)[C@]3(C)[C@@H](C(C)O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2 YWHHBOQQGRCQOX-RATVXXPBSA-N 0.000 description 1
- PPWSTSSAJLJNOO-CCVSQXAISA-N [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)N(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)O)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](OC(=O)CC)CC[C@]1(C)[C@@]1([H])C[C@H](OC(=O)CC)[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OC(=O)CNC(=O)OC(C)(C)C)C2.[H][C@@]12C[C@H](OC(=O)CCl=N)CC[C@]1(C)[C@@]1([H])C[C@H](OC(=O)CCl=N)[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OC(=O)CNCl)C2 Chemical compound [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)N(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCC(=O)O)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@@H]([C@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](O)C2.[H][C@@]12C[C@H](OC(=O)CC)CC[C@]1(C)[C@@]1([H])C[C@H](OC(=O)CC)[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OC(=O)CNC(=O)OC(C)(C)C)C2.[H][C@@]12C[C@H](OC(=O)CCl=N)CC[C@]1(C)[C@@]1([H])C[C@H](OC(=O)CCl=N)[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OC(=O)CNCl)C2 PPWSTSSAJLJNOO-CCVSQXAISA-N 0.000 description 1
- PYDLNVCRAJXLMT-YEJRNFBISA-N [H][C@@]12C[C@H](OCCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCCC)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCOS(C)(=O)=O)C2.[H][C@@]12C[C@H](OCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCN)[C@]3(C)[C@@H]([C@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCN)C2.[H][C@@]12C[C@H](OCC[N+]#[C-])CC[C@]1(C)[C@@]1([H])C[C@H](OCC[N+]#[C-])[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCC#N)C2.[H][C@@]12C[C@H](OCC[N+]#[C-])CC[C@]1(C)[C@@]1([H])C[C@H](OCC[N+]#[C-])[C@]3(C)[C@@H]([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCC#N)C2 Chemical compound [H][C@@]12C[C@H](OCCC)CC[C@]1(C)[C@@]1([H])C[C@H](OCCC)[C@]3(C)[C@@H]([C@@H](C)CCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCOS(C)(=O)=O)C2.[H][C@@]12C[C@H](OCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCN)[C@]3(C)[C@@H]([C@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCN)C2.[H][C@@]12C[C@H](OCC[N+]#[C-])CC[C@]1(C)[C@@]1([H])C[C@H](OCC[N+]#[C-])[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCC#N)C2.[H][C@@]12C[C@H](OCC[N+]#[C-])CC[C@]1(C)[C@@]1([H])C[C@H](OCC[N+]#[C-])[C@]3(C)[C@@H]([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCC#N)C2 PYDLNVCRAJXLMT-YEJRNFBISA-N 0.000 description 1
- BBKHKTPZYZQHFR-QNKPZGIFSA-N [H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCCCCCN)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCOS(C)(=O)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCOS(C)(=O)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2 Chemical compound [H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCCCCCN)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCOS(C)(=O)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCOS(C)(=O)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2 BBKHKTPZYZQHFR-QNKPZGIFSA-N 0.000 description 1
- MNBDBABYADHAFD-OOJQVAPXSA-N [H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCN)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCOS(C)(=O)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2 Chemical compound [H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCN)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)C([C@H](C)CCCNCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCNCCCCNC(=O)OC(C)(C)C)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)C([C@H](C)CCCOS(C)(=O)=O)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2 MNBDBABYADHAFD-OOJQVAPXSA-N 0.000 description 1
- MYGRAEISNPPVMN-DJFLTEBXSA-N [H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)[C@@H]([C@@H](C)CCCOCCCCCCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2 Chemical compound [H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN)[C@]3(C)[C@@H]([C@@H](C)CCCOCCCCCCCC)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN)C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCCN=[N+]=[N-])C2 MYGRAEISNPPVMN-DJFLTEBXSA-N 0.000 description 1
- WUBAHCZCSKPACO-DWCXUTSBSA-N [H][C@@]12C[C@H](OCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCN)[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCN)C2.[H][C@@]12C[C@H](OCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCN=[N+]=[N-])C2 Chemical compound [H][C@@]12C[C@H](OCCN)CC[C@]1(C)[C@@]1([H])C[C@H](OCCN)[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCN)C2.[H][C@@]12C[C@H](OCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCN(C)CC4=CC=CC=C4)CC[C@@]3([H])[C@]1([H])[C@H](OCCN=[N+]=[N-])C2.[H][C@@]12C[C@H](OCCN=[N+]=[N-])CC[C@]1(C)[C@@]1([H])C[C@H](OCCN=[N+]=[N-])[C@]3(C)[C@@H]([C@@H](C)CCCO)CC[C@@]3([H])[C@]1([H])[C@H](OCCN=[N+]=[N-])C2 WUBAHCZCSKPACO-DWCXUTSBSA-N 0.000 description 1
- WVOXGIJZXCLKNR-YQBQRZTFSA-N [H][C@]12CC(=O)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](O)CC1C[C@H](O)CC[C@@]12C.[H][C@]12CC(=O)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](OCCN)CC1C[C@H](OCCN)CC[C@@]12C.[H][C@]12CC3(OCCO3)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](O)CC1C[C@H](O)CC[C@@]12C.[H][C@]12CC3(OCCO3)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](OCCN)CC1C[C@H](OCCN)CC[C@@]12C Chemical compound [H][C@]12CC(=O)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](O)CC1C[C@H](O)CC[C@@]12C.[H][C@]12CC(=O)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](OCCN)CC1C[C@H](OCCN)CC[C@@]12C.[H][C@]12CC3(OCCO3)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](O)CC1C[C@H](O)CC[C@@]12C.[H][C@]12CC3(OCCO3)[C@]3(C)[C@@H](C(C)C)CC[C@@]3([H])C1[C@H](OCCN)CC1C[C@H](OCCN)CC[C@@]12C WVOXGIJZXCLKNR-YQBQRZTFSA-N 0.000 description 1
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 1
- VSHBHDIKPQHDHQ-UHFFFAOYSA-N actofunicone Natural products COC(=O)C1=CC(OC)=CC(OC)=C1C(=O)C1=COC(CC(C)OC(C)=O)=CC1=O VSHBHDIKPQHDHQ-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000011558 animal model by disease Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000003602 anti-herpes Effects 0.000 description 1
- 229940124397 anti-herpes virus drug Drugs 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 1
- 229960003644 aztreonam Drugs 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 229960002206 bifonazole Drugs 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- ABJKWBDEJIDSJZ-UHFFFAOYSA-N butenafine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)CC1=CC=C(C(C)(C)C)C=C1 ABJKWBDEJIDSJZ-UHFFFAOYSA-N 0.000 description 1
- 229960002962 butenafine Drugs 0.000 description 1
- SWLMUYACZKCSHZ-UHFFFAOYSA-N butoconazole Chemical compound C1=CC(Cl)=CC=C1CCC(SC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 SWLMUYACZKCSHZ-UHFFFAOYSA-N 0.000 description 1
- 229960005074 butoconazole Drugs 0.000 description 1
- 229940067596 butylparaben Drugs 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 229960003034 caspofungin Drugs 0.000 description 1
- JYIKNQVWKBUSNH-WVDDFWQHSA-N caspofungin Chemical compound C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 JYIKNQVWKBUSNH-WVDDFWQHSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 230000005101 cell tropism Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- CYDMQBQPVICBEU-UHFFFAOYSA-N chlorotetracycline Natural products C1=CC(Cl)=C2C(O)(C)C3CC4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-UHFFFAOYSA-N 0.000 description 1
- 229960004475 chlortetracycline Drugs 0.000 description 1
- CYDMQBQPVICBEU-XRNKAMNCSA-N chlortetracycline Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-XRNKAMNCSA-N 0.000 description 1
- 235000019365 chlortetracycline Nutrition 0.000 description 1
- 239000002812 cholic acid derivative Substances 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 229960003749 ciclopirox Drugs 0.000 description 1
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229940125758 compound 15 Drugs 0.000 description 1
- 229940126142 compound 16 Drugs 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 229940126208 compound 22 Drugs 0.000 description 1
- 229940125961 compound 24 Drugs 0.000 description 1
- 229940125846 compound 25 Drugs 0.000 description 1
- 229940125851 compound 27 Drugs 0.000 description 1
- 229940127204 compound 29 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125878 compound 36 Drugs 0.000 description 1
- 229940125807 compound 37 Drugs 0.000 description 1
- 229940127573 compound 38 Drugs 0.000 description 1
- 229940126540 compound 41 Drugs 0.000 description 1
- 229940125844 compound 46 Drugs 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960003077 cycloserine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- ZNRVRJLOYAQJBW-UHFFFAOYSA-N dehydro-5beta-cholic acid methyl ester Natural products C1CC(=O)CC2CC(=O)C3C4CCC(C(C)CCC(=O)OC)C4(C)C(=O)CC3C21C ZNRVRJLOYAQJBW-UHFFFAOYSA-N 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- BFXLJWUGRPGMFU-UHFFFAOYSA-N dipropoxyphosphinothioyl n,n-diethylcarbamodithioate;sulfane Chemical compound S.CCCOP(=S)(OCCC)SC(=S)N(CC)CC BFXLJWUGRPGMFU-UHFFFAOYSA-N 0.000 description 1
- 208000037771 disease arising from reactivation of latent virus Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229960003913 econazole Drugs 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229960002125 enilconazole Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- VEVFSWCSRVJBSM-HOFKKMOUSA-N ethyl 4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine-1-carboxylate Chemical compound C1CN(C(=O)OCC)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 VEVFSWCSRVJBSM-HOFKKMOUSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 229960001274 fenticonazole Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 229960000690 flutrimazole Drugs 0.000 description 1
- QHMWCHQXCUNUAK-UHFFFAOYSA-N flutrimazole Chemical compound C1=CC(F)=CC=C1C(N1C=NC=C1)(C=1C(=CC=CC=1)F)C1=CC=CC=C1 QHMWCHQXCUNUAK-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 1
- 229960001906 haloprogin Drugs 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- RCBVKBFIWMOMHF-UHFFFAOYSA-L hydroxy-(hydroxy(dioxo)chromio)oxy-dioxochromium;pyridine Chemical compound C1=CC=NC=C1.C1=CC=NC=C1.O[Cr](=O)(=O)O[Cr](O)(=O)=O RCBVKBFIWMOMHF-UHFFFAOYSA-L 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229960004849 isoconazole Drugs 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- RENRQMCACQEWFC-UGKGYDQZSA-N lnp023 Chemical compound C1([C@H]2N(CC=3C=4C=CNC=4C(C)=CC=3OC)CC[C@@H](C2)OCC)=CC=C(C(O)=O)C=C1 RENRQMCACQEWFC-UGKGYDQZSA-N 0.000 description 1
- 229960002422 lomefloxacin Drugs 0.000 description 1
- ZEKZLJVOYLTDKK-UHFFFAOYSA-N lomefloxacin Chemical compound FC1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNC(C)C1 ZEKZLJVOYLTDKK-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 229960003640 mafenide Drugs 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- ZNRVRJLOYAQJBW-QIGXKWAMSA-N methyl (4r)-4-[(5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-3,7,12-trioxo-1,2,4,5,6,8,9,11,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pentanoate Chemical compound C1CC(=O)C[C@H]2CC(=O)[C@H]3[C@@H]4CC[C@H]([C@H](C)CCC(=O)OC)[C@@]4(C)C(=O)C[C@@H]3[C@]21C ZNRVRJLOYAQJBW-QIGXKWAMSA-N 0.000 description 1
- VSHBHDIKPQHDHQ-NSHDSACASA-N methyl 2-[6-[(2s)-2-acetyloxypropyl]-4-oxopyran-3-carbonyl]-3,5-dimethoxybenzoate Chemical compound COC(=O)C1=CC(OC)=CC(OC)=C1C(=O)C1=COC(C[C@H](C)OC(C)=O)=CC1=O VSHBHDIKPQHDHQ-NSHDSACASA-N 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 229960004313 naftifine Drugs 0.000 description 1
- OZGNYLLQHRPOBR-DHZHZOJOSA-N naftifine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OZGNYLLQHRPOBR-DHZHZOJOSA-N 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000004311 natamycin Substances 0.000 description 1
- 235000010298 natamycin Nutrition 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229960000808 netilmicin Drugs 0.000 description 1
- ZBGPYVZLYBDXKO-HILBYHGXSA-N netilmycin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@]([C@H](NC)[C@@H](O)CO1)(C)O)NCC)[C@H]1OC(CN)=CC[C@H]1N ZBGPYVZLYBDXKO-HILBYHGXSA-N 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229940127073 nucleoside analogue Drugs 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 229960003483 oxiconazole Drugs 0.000 description 1
- QRJJEGAJXVEBNE-MOHJPFBDSA-N oxiconazole Chemical compound ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)\CN1C=NC=C1 QRJJEGAJXVEBNE-MOHJPFBDSA-N 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229960001914 paromomycin Drugs 0.000 description 1
- UOZODPSAJZTQNH-LSWIJEOBSA-N paromomycin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO UOZODPSAJZTQNH-LSWIJEOBSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229960001179 penciclovir Drugs 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229940068917 polyethylene glycols Drugs 0.000 description 1
- 229940096015 polygam s/d Drugs 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229960001589 posaconazole Drugs 0.000 description 1
- RAGOYPUPXAKGKH-XAKZXMRKSA-N posaconazole Chemical compound O=C1N([C@H]([C@H](C)O)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@H]3C[C@@](CN4N=CN=C4)(OC3)C=3C(=CC(F)=CC=3)F)=CC=2)C=C1 RAGOYPUPXAKGKH-XAKZXMRKSA-N 0.000 description 1
- 229960004839 potassium iodide Drugs 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 239000000007 protein synthesis inhibitor Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- ZDYVRSLAEXCVBX-UHFFFAOYSA-N pyridinium p-toluenesulfonate Chemical compound C1=CC=[NH+]C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 ZDYVRSLAEXCVBX-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229950005137 saperconazole Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 229960005429 sertaconazole Drugs 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229960003600 silver sulfadiazine Drugs 0.000 description 1
- UEJSSZHHYBHCEL-UHFFFAOYSA-N silver(1+) sulfadiazinate Chemical compound [Ag+].C1=CC(N)=CC=C1S(=O)(=O)[N-]C1=NC=CC=N1 UEJSSZHHYBHCEL-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 229960002607 sulconazole Drugs 0.000 description 1
- 229960005404 sulfamethoxazole Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 1
- 229960002722 terbinafine Drugs 0.000 description 1
- 229960000580 terconazole Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 229960004546 thiabendazole Drugs 0.000 description 1
- 239000004308 thiabendazole Substances 0.000 description 1
- 235000010296 thiabendazole Nutrition 0.000 description 1
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 1
- 239000003803 thymidine kinase inhibitor Substances 0.000 description 1
- 229960004214 tioconazole Drugs 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 125000002640 tocopherol group Chemical class 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 229960004880 tolnaftate Drugs 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 229940075466 undecylenate Drugs 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229940010343 valcyte Drugs 0.000 description 1
- 229960002149 valganciclovir Drugs 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229940099259 vaseline Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 230000007419 viral reactivation Effects 0.000 description 1
- 230000029302 virus maturation Effects 0.000 description 1
- 230000005727 virus proliferation Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
- A61K31/568—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/575—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/18—Testing for antimicrobial activity of a material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/01—DNA viruses
- G01N2333/03—Herpetoviridae, e.g. pseudorabies virus
Definitions
- the invention relates to methods for decreasing or inhibiting Herpesviridae (HV) infection or pathogenesis of a cell in vitro, ex vivo or in vivo, a symptom or pathology associated with a herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo, or an adverse side effect of herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo.
- a method of the invention includes treating a subject with an invention compound (e.g., cationic steroid antimicrobial or CSA).
- an invention compound e.g., cationic steroid antimicrobial or CSA
- Vaccination has remained the best method for preventing virus spread.
- the herpes simplex virus (HV) candidate vaccines tested till now were mostly purified subunit vaccines and/or recombinant envelope glycoproteins (such as gB and gD).
- HV herpes simplex virus
- gB and gD recombinant envelope glycoproteins
- Cationic steroid antimicrobials were developed as functional mimics of endogenous peptide antibiotics such as LL-37.
- a series of CSAs have been developed and CSAs are highly active against specific lipid-enveloped viruses including herpesviridae (HV) (e.g., herpes simplex virus).
- HV herpesviridae
- Antiviral activities of multiple CSAs have been measured, and active and inactive forms have been identified.
- FIG. 1 is a drawing showing compounds of the invention.
- FIG. 2 is a drawing showing compounds CSA-26 and CSA-46.
- FIG. 3 is a drawing showing compound 134.
- FIG. 4 is a drawing showing compound CSA-10.
- FIG. 5 is a dr awing showing compound 140.
- FIG. 6 is a drawing showing compound CSA-31.
- FIG. 7 is a drawing showing compounds 352-354.
- FIG. 8 is a drawing showing compounds 341-343 and 324-327.
- FIG. 9 is a drawing showing compounds 358.
- FIG. 10 is a drawing showing various compounds of the invention (CSAs).
- FIG. 11 shows antiviral activity of CSA-8, CSA-13, CSA-31 and CSA-54, as determined by a viral killing assay.
- HV herpesviridae
- HV herpesviridae
- a method of the invention includes treating a subject with an invention compound (e.g., cationic steroid antimicrobial or CSA), wherein the subject is in need of treatment with CSA anti-herpesviridae (HV) activity or function, in order to provide the subject with a beneficial effect or improvement.
- a method of the invention includes providing a subject with protection against a herpesviridae (HV) infection or pathogenesis by administering a composition comprising a sufficient amount of CSA to provide the subject with protection against a herpesviridae (HV) infection or pathogenesis.
- a method of the invention includes treating a subject for herpesviridae (HV) infection or pathogenesis by administering a composition comprising a sufficient amount of CSA to treat the subject for the herpesviridae (HV) infection or pathogenesis.
- a method of the invention includes decreasing susceptibility of a subject to a herpesviridae (HV) infection or pathogenesis by administering a composition comprising a sufficient amount of CSA to decrease susceptibility of the subject to a herpesviridae (HV) infection or pathogenesis.
- Methods of the invention include administering CSA prior to, concurrently with, or following contact of the subject with, exposure of the subject to, infection with or reactivation of a herpesviridae (HV); and administering CSA prior to, concurrently with, or following development of a symptom or pathology associated with or caused by herpesviridae (HV) infection or reactivation.
- a compound of the invention e.g., CSA
- CSA is administered prior to (prophylaxis), concurrently with or following infection, contact or exposure of the subject to HV, or reactivation of HV (therapeutic).
- the invention treatment methods therefore include, among other things, therapeutic and prophylactic methods.
- Subjects can be contacted with, administered ex vivo or in vivo delivered a compound of the invention (e.g., GSA) prior to, concurrently with or following HV exposure or contact, HV infection, development of a symptom or pathology associated with or caused by a HV infection or pathogenesis, or reactivation of HV from latency.
- a compound of the invention e.g., GSA
- terapéutica and grammatical variations thereof means the subject has a herpesviridae (HV) infection, for example, the subject exhibits one or more symptoms or pathologies associated with or caused by an acute or chronic HV infection, reactivation or pathogenesis as set forth herein or known in the art.
- HV herpesviridae
- therapeutic also includes a subject that has been exposed to or contacted with HV but may not exhibit one or more symptoms or pathologies associated with or caused by acute or chronic HV infection, reactivation or pathogenesis, as set forth herein or known in the art.
- “Prophylaxis” and grammatical variations thereof refer to contact, administration or in vivo delivery to a subject prior to a known contact with or exposure to herpesviridae (HV). In situations where it is not known if a subject has been contacted with or exposed to HV, contact with, administration or in vivo delivery of a compound to a subject occurs prior to manifestation or onset of a symptom associated with or caused by HV infection or pathogenesis.
- HV herpesviridae
- the effect of contact with, administration or in vivo delivery of a compound of the invention can be to eliminate, prevent, inhibit, decrease or reduce the probability of or susceptibility towards developing an HV infection, reactivation or pathogenesis, or a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis.
- the term “associated with,” when used in reference to the relationship between a symptom, pathology or adverse side effect of herpesviridae (HV), means that the symptom, pathology or side effect is caused by HV infection, reactivation from latency, or pathogenesis, or is a secondary effect of HV infection, reactivation from latency, or pathogenesis.
- a symptom, pathology or side effect that is present in a subject may therefore be the direct result of or caused by the herpesviridae (HV) infection, reactivation or pathogenesis, or may be clue at least in part to the subject reacting or responding to HV infection, reactivation, or pathogenesis (e.g., the immunological response).
- a symptom or pathology that occurs during a herpesviridae (HV) infection, reactivation or pathogenesis may be due in part to an inflammatory response of the subject.
- the invention also provides methods for decreasing or preventing an adverse side effect caused by vaccination of a subject with or against a herpesviridae (HV).
- a method includes administering a sufficient amount of CSA to the subject to decrease or prevent an adverse side effect caused by vaccination with a herpesviridae (HV).
- the herpesviridae comprises an alpha-, beta- or gamma-herpesvirus (e.g., herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella zoster virus (VZV/HHV-3), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpes virus-6, -7 or -8 (HHV-6, HHV-7, or HHV-81 Kaposi's sarcoma herpesvirus/KSHV)).
- HSV-1 herpes simplex virus-1
- HSV-2 herpes simplex virus-2
- VZV/HHV-3 varicella zoster virus
- CMV cytomegalovirus
- EBV Epstein-Barr virus
- human herpes virus-6, -7 or -8 HHV-6, HHV-7, or HHV-81 Kaposi's sarcoma herpesvirus/KSHV
- HV Herpesviridae
- a biological fluid e.g., mucus, saliva, blood, serum, plasma, cerebrospinal fluid, urine, or placenta
- a tissue or organ comprising a transplant
- an immune cell, tissue or organ, mucosal cell, tissue or organ, neural cell, tissue or organ, or epithelial cell, tissue or organ in a biological fluid (e.g., mucus, saliva, blood, serum, plasma, cerebrospinal fluid, urine, or placenta); in a tissue or organ comprising a transplant; in an immune cell, tissue or organ, mucosal cell, tissue or organ, neural cell, tissue or organ, or epithelial cell, tissue or organ.
- an immune cell is a T cell or a B cell
- a mucosal cell or tissue is mouth, buccal cavity, labia, nasopharynx, esophagus, trachea, lung, stomach, small intestine, vagina, rectum, or colon
- a neural cell or tissue is ganglia, motor or sensory neuron
- an epithelial cell or tissue is nose, fingers, ears, cornea, conjunctiva, skin or dermis.
- a CSA is selected from: CSA-7, CSA-8, CSA-10, CSA-11, CSA-13, CSA-15, CSA-17, CSA-21, CSA-25, CSA-26, CSA-31, CSA-46, CSA-54 and CSA-59, as set forth in FIG. 10 .
- a CSA does not have a charged group at position C24 or a CSA has a hydrophobic moiety at position C24 (e.g., a lipid).
- a CSA has a charged group at position C7.
- a CSA comprises a multimer (e.g., a dimer, trimer, tetramer or higher order polymer).
- a CSA has a shorter tether length between the steroid scaffold and any amine group at positions C3, C7 or C12, relative to the tether length between the steroid scaffold and any amine group at positions C3, C7 or C12 of CSA-7, CSA-8, CSA-10, CSA-11, CSA-13, CSA-15, CSA-17, CSA-21, CSA-25, CSA-26, CSA-31, CSA-46, CSA-54 or CSA-59, as set forth in FIG. 10 .
- Methods of treatment include reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more adverse side effects associated with herpesviridae (HV) vaccination (e.g., a live or attenuated pathogenic or non-pathogenic HV, a vaccine comprising an HV protein, such as glycoprotein D, etc.).
- HV herpesviridae
- Non-limiting examples of adverse side affects associated with HV vaccination treatable with a compound of the invention include fatigue, weakness, headache, fever, stomach ache/nausea, flu-like symptoms, rash, vomiting, inflammation (cerebral or ocular) and fainting.
- HV Herpesviridae
- HV includes any strain or isolate or subtype or a species of HV, or combination of strains or isolates or subtypes or species of herpesviruses.
- Particular examples are infectious or pathogenic viruses.
- HV the subject of treatment with an invention compound e.g., CSA
- HV include, for example, live or attenuated pathogenic and non-pathogenic HV.
- Exemplary I-IV include, alpha-, beta- and gamma-herpesvirus.
- alpha-virus include herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2) and varicella zoster virus (VZV/HHV-3).
- beta- and gamma-herpesvirus include cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpes virus-6, -7 and -8 (HHV-6, HHV-7, or HHV-8/Kaposi's sarcoma herpesvirus/KSHV).
- Methods of the invention include methods of treatment that results in a beneficial effect.
- beneficial effects include providing a subject with partial or complete protection against HV infection, reactivation or pathogenesis, or a symptom caused by a HV infection, reactivation or pathogenesis (e.g., inhibit or reduce probability or susceptibility).
- beneficial effects also include reducing, decreasing, inhibiting, delaying or preventing HV infection, reactivation or pathogenesis, and reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with a HV infection, reactivation or pathogenesis.
- beneficial effects also include reducing, decreasing, amounts of, or inhibiting, delaying or preventing increases in HV titer or viral load, proliferation or replication.
- beneficial effects include reducing, decreasing, inhibiting, delaying, ameliorating or preventing onset, progression, severity, duration, frequency, probability or susceptibility of a subject to HV infection, reactivation or pathogenesis, or accelerating, facilitating or hastening recovery of a subject from HV infection, reactivation or pathogenesis or one or more associated symptoms or pathologies.
- Methods of the invention therefore include providing a beneficial or therapeutic effect to a subject, for example, reducing, decreasing, inhibiting, delaying, ameliorating or preventing onset, progression, severity, duration, frequency or probability of HV infection, reactivation or pathogenesis or one or more symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis; reducing, decreasing, inhibiting, delaying or preventing increases in HV titer, viral load, replication, proliferation, or an amount of a viral protein of one or more HV strains or isolates or subtypes.
- Stabilizing the infection, reactivation, or a symptom or pathology thereof, or preventing, inhibiting or delaying reactivation, worsening or progression of infection, reactivation or a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis, or progression of the underlying HV infection, are also included in various embodiments of the methods of the invention.
- Invention methods are applicable to providing a subject with protection against HV infection, reactivation or pathogenesis, treating a subject for HV infection, reactivation and pathogenesis; and decreasing susceptibility or inhibiting HV reactivation from latency in a subject.
- the invention methods are therefore applicable to HV infection that is in an active state, latent state or reactivated state.
- infection when used in reference to means a initial or primary infection.
- An infection may be “infectious” in the sense that HV infects other sites in the infected host subject, or contagious to other subjects (cross-infection), or may be latent, in which case HV does not generally infect other sites or is contagious to other subjects.
- initial/primary infection is usually either asymptomatic or causes mild pathogenesis or symptoms; only a small proportion of subjects develop more severe clinical illness.
- Primary infection is self-limiting in immunocompetent patients.
- primary HV infection in immunocompromised subjects e.g., immunosuppressant treatment, HIV+, newborns/neonates, pregnant, elderly subjects, etc.
- Latency Following a primary or initial HV infection, the virus establishes “latency,” in the host subject which allows the virus to evade immune clearance and remain in the host subject, and infection is lifelong. In the latent state HV does not typically cause illness or symptoms, there is little if any viral replication and the subject is not infectious or contagious. Latency, also referred to as “latent infection” may occur in a different cell type from that of the initial/primary HV infection.
- reactivation when used in reference to HV, means activation of HV in the host subject following a period of latency. Reactivation is associated with increased viral replication and proliferation in an HV infected host subject, who becomes infectious and contagious again. Symptoms and pathologies associated with or caused by HV reactivation may or may not be the same type, severity, frequency or duration as initial HV infection and subsequent pathogenesis. For example, VZV/HHV-3 causes chickenpox (primary infection) and shingles (reactivation). Reactivation can be milder (e.g., asymptomatic) than an initial HV infection/pathogenesis, in which case it would not be obvious whether a host subject is in a latent or reactivated state.
- HV reactivation In immunocompetent host subjects reactivation is typically mild, whereas in immunocompromised host subjects, symptoms associated with or caused by reactivation can be severe and lead to death. Thus, clinical manifestations associated with reactivation may be different from that observed with an initial/primary infection. Accordingly, a single HV can cause different clinical symptoms or pathologies.
- One symptom of HV reactivation is the appearance of “cold sores” around mucosal areas (e.g., mouth, lips, tongue, genitalia, etc.). Reactivation occurs periodically and can be induced by stress, immune suppression, etc.
- HV herpesviridae
- PID pelvic inflammatory disease
- the methods of the invention including, among other methods, providing a subject with protection against a herpesviridae (HV) infection, reactivation or pathogenesis, treatment of a herpesviridae (HV) infection, reactivation or pathogenesis, or a symptom or pathology associated with or caused by herpesviridae (HV) infection, reactivation or pathogenesis, or decreasing susceptibility of a subject to a herpesviridae (HV) infection, reactivation or pathogenesis, can therefore result in an improvement in the subjects' condition.
- HV herpesviridae
- An improvement is therefore any objective or subjective reduction, decrease, inhibition, delay, ameliorating or prevention of onset, progression, severity, duration, frequency or probability of one or more symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis (e.g., illness), or virus titer, viral load, replication, proliferation, or an amount of a viral protein.
- An improvement would also include reducing, inhibiting or preventing increases in virus titer, viral load, replication, proliferation, or an amount of a viral protein of one or more HV strains or isolates or subtypes or species.
- An improvement would further include stabilizing a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis, or inhibiting, decreasing, delaying or preventing a worsening or progression of the symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis, or progression of the underlying HV infection.
- An improvement can therefore be, for example, in any of lesions, ulcers, canker sore, cold sore, rash, boils, Gingivostomatitis, Herpetic whitlow Traumatic herpes ( herpes gladiatorum ), Eczema herpeticum, fever, fatigue, headache, sore throat, swollen lymph nodes, pneumonitis, pneumonia, hepatitis, meningitis, myelitis, Encephalitis, keratitis, Genital herpes, esophagitis, dysphasia, hemiparesis, coma, shingles, chicken pox, mononucleosis, chronic or acute pelvic inflammatory disease (PID), proctitis, colitis, nerve damage and death to any degree or for any duration of time (hours, days, weeks, months, years, or cure).
- PID pelvic inflammatory disease
- An improvement would also include reducing or eliminating a need, dosage amount or frequency of another treatment, such as an antiviral drug or other agent used for treating a subject having or at risk of having a herpesviridae (HV) infection, reactivation or pathogenesis, a symptom or pathology associated with or caused by herpesviridae (HV) infection, reactivation or pathogenesis, or decreasing or preventing an adverse side effect caused by vaccination with or against a herpesviridae (HV).
- HV herpesviridae
- Non-limiting exemplary HV treatments that may be eliminated or used at reduced doses or frequencies of administration include protease inhibitors, reverse transcriptase inhibitors, virus fusion inhibitors and virus entry inhibitors.
- Additional non-limiting exemplary HV and other treatments include AK602, AMD070, APV, ATV, ATZ, AVX754, AZT, Abacavir, Acyclovir, Adefovir dipivoxil, Adriamycin, Agenerase, Aldesleukin, Alovudine, AmBisome, Amdoxovir, Amphocin, Amphotec, Amphotericin B, Ampligen, Amprenavir, Androderm, Androgel, Aptivus, Atazanavir, Azithromycin, BMS-488043, Bactrim, Baraclude, Biaxin, BufferGel, C31G, CD4-IgG2, CPV, CS, Calanolide A, Capravirine, Carbopol 974P, Carrageenan, Carraguard, Cellulose sulfate, Cidofovir, Clarithromycin, Combivir, Copegus, Cotrimoxazole, Crixivan,
- Non-limiting exemplary treatments include cytokines, chemokines, interferons and interleukins.
- HV treatments include an antibody that binds to an HV protein, such as an envelope protein (e.g., glycoprotein gp42, gp350, gpK8.1A, B, C, D, E, H, L (gB, gC, gD, gE, gH, gL)), tegument protein (e.g., UL17, UL36, UL37, UL48, UL49, US11, UL11, UL14, UL16, UL21, UL41, UL46, UL47, VP13/14, VP16, VP22, etc.), capsid protein (e.g., VP5, VP19c, VP21, VP23, VP24, VP26, etc.), core protein or polymerase.
- Still further non-limiting exemplary HV treatments include vaccination, such
- a treatment or improvement need not be complete ablation of any particular infection, reactivation, pathogenesis, symptom, pathology or adverse side effect, or all of the infection, reactivation, pathology, symptoms, pathologies or adverse side effects associated with or caused by HV infection, reactivation or pathogenesis, or vaccination with or against HV.
- treatment may be any objective or subjective measurable or detectable anti-virus effect or improvement in a treated subject.
- reducing, inhibiting decreasing, eliminating, delaying, halting or preventing a progression or worsening of the infection, reactivation or pathogenesis, a symptom or pathology of the infection, reactivation or pathogenesis, or an adverse side effect caused by vaccination is a satisfactory outcome.
- a compound of the invention may reduce, inhibit, delay formation of, or stabilize lesions, ulcers, canker sores, or cold sores, but not have a measurable effect on rash, boils, Gingivostomatitis, Herpetic whitlow Traumatic herpes ( herpes gladiatorum ), Eczema herpeticum, fever, fatigue, headache, sore throat, swollen lymph nodes, pneumonitis, pneumonia, hepatitis, meningitis, myelitis, Encephalitis, keratitis, Genital herpes, esophagitis, dysphasia, hemiparesis, coma, shingles, chicken pox, mononucleosis, chronic or acute pelvic inflammatory disease (PID), proctitis, colitis, nerve damage or death.
- PID pelvic inflammatory disease
- a compound of the invention reduces fever or fatigue, without a detectable improvement in one or more other symptoms or pathologies.
- a satisfactory clinical endpoint is achieved when there is an incremental improvement in the subject's condition or a partial reduction or a stabilization of a HV infection, reactivation, pathogenesis or a symptom, pathology or adverse side effect thereof, or an inhibition or prevention of worsening or progression of the HV infection, reactivation, pathogenesis, symptom, pathology or adverse side effect thereof (stabilizing one or more symptoms or pathologies), over a short or long duration (hours, days, weeks, months, years, or cure).
- a compound of the invention e.g., CSA
- CSA CSA
- a “sufficient amount” or “effective amount” or an “amount sufficient” or an “amount effective” refers to an amount that provides, in single or multiple doses, alone or in combination with one or more other compounds, treatments, agents (e.g., a drug) or therapeutic regimens, a long term or a short term detectable or measurable improvement or beneficial effect to a given subject of any degree or for any time period or duration (e.g., for minutes, hours, days, months, years, or cured).
- a “sufficient amount” or “effective amount” therefore includes decreasing, reducing, inhibiting, preventing, or delaying onset; decreasing, reducing, inhibiting, delaying, or preventing a progression or worsening of or reducing, relieving, ameliorating, or alleviating, severity, frequency, duration, susceptibility or probability of HV infection, reactivation or pathogenesis, one or more symptoms associated with or caused by HV infection, reactivation or pathogenesis, or an adverse side effect of vaccination with or against a HV or an HV treatment.
- hastening a subject's recovery from HV infection, reactivation or pathogenesis, one or more symptoms associated with or caused by HV infection, reactivation or pathogenesis, or an adverse side effect of vaccination with or against a HV or an HV treatment is considered to be a sufficient or effective amount.
- beneficial effects and indicia of therapeutic and prophylactic benefit are as set forth herein and are known to the skilled artisan.
- a sufficient amount or an effective amount can but need not be provided in a single administration and can but need not be administered alone (i.e., without a second drug, agent, treatment or therapeutic regimen), or in combination with another compound, agent, treatment or therapeutic regimen.
- a sufficient amount or an effective amount need not be sufficient or effective if given in single or multiple doses without a second compound, treatment, agent, or therapeutic regimen, since additional doses, amounts, frequency or duration of administration above and beyond such doses, or additional compounds, agents, treatments or therapeutic regimens may be included in order to be effective or sufficient in a given subject.
- a sufficient amount or an effective amount need not be effective in each and every subject, nor a majority of subjects in a given group or population.
- a sufficient amount or an effective amount means sufficiency or effectiveness in a particular subject, not a group or the general population. As is typical for such methods, some subjects will exhibit a greater or less response to a method of the invention than other subjects.
- Amounts, frequencies or duration also considered sufficient and effective and are therefore beneficial are those that result in the elimination or a reduction in amount, frequency or duration of another compound, agent, treatment or therapeutic regimen.
- a compound of the invention is considered as having a beneficial or therapeutic effect if contact, administration or delivery in vivo results in the use of a lesser amount, frequency or duration of another compound, agent, treatment or therapeutic regimen to treat the infection, pathogenesis, symptom or pathology, or adverse side effect of vaccination.
- any compound, agent, treatment (e.g., a biologically active ingredient) or other therapeutic regimen having a beneficial, additive, synergistic or complementary activity or effect can be formulated or used in combination with or in addition to the invention compounds (e.g., CSAs).
- the compound, agent, treatment or therapeutic regimen is for providing a subject with protection against HV infection, reactivation or pathogenesis; treating a subject for HV infection, reactivation or pathogenesis; decreasing susceptibility of a subject to a HV infection, reactivation or pathogenesis; or decreasing or preventing an adverse side effect caused by HV vaccination or an HV treatment.
- compositions of the invention include CSA combinations with other CSAs, CSA combinations with other agents or treatments (e.g., biologically active ingredients such as anti-herpesvirus drugs, such as acyclovir, herpesvirus proteins, herpesvirus antibodies, herpesvirus vaccines, etc.), and methods of the invention include contact with, administration in vitro or in vivo, with another compound (e.g., another CSA or biologically active ingredient), agent, treatment or therapeutic regimen appropriate for the condition to be treated.
- agents or treatments e.g., biologically active ingredients such as anti-herpesvirus drugs, such as acyclovir, herpesvirus proteins, herpesvirus antibodies, herpesvirus vaccines, etc.
- methods of the invention include contact with, administration in vitro or in vivo, with another compound (e.g., another CSA or biologically active ingredient), agent, treatment or therapeutic regimen appropriate for the condition to be treated.
- the compound e.g., another CSA or biologically active ingredient
- agent, treatment or therapeutic regimen appropriate may be used in accordance with the prophylactic and therapeutic treatment methods, as well as methods for decreasing or preventing an adverse side effect caused by HV vaccination or HV treatment, as set forth herein, prior to, concurrently or following contacting or administering a compound of the invention (e.g., CSA) in vitro or in vivo.
- a compound of the invention e.g., CSA
- combination compositions and methods include protease inhibitors, reverse transcriptase inhibitors, virus fusion inhibitors and virus entry inhibitors. Additional examples of combination compositions and methods include other treatments such as AK602, AMD070, APV, ATV, ATZ, AVX754, AZT, Abacavir, Acyclovir, Adefovir dipivoxil, Adriamycin, Agenerase, Aldesleukin, Alovudine, AmBisome, Amdoxovir, Amphocin, Amphotec, Amphotericin B, Ampligen, Amprenavir, Androderm, Androgel, Aptivus, Atazanavir, Azithromycin, BMS-488043, Bactrim, Baraclude, Biaxin, BufferGel, C31G, CD4-IgG2, CPV, CS, Calanolide A, Capravirine, Carbopol 974P, Carrageenan, Carraguard, Cellulose sulf
- combination compositions and methods include an herpesvirus protein or antibodies that bind to herpesvirus proteins.
- a pool of HV proteins or HV binding antibodies e.g., monoclonal or polyclonal
- an additional herpesvirus protein is an envelope protein (e.g., glycoprotein gp42, gp350, gpK8.1A, B, C, D, E, H, L (gB, gC, gD, gE, gH, gL)), tegument protein (e.g., UL17, UL36, UL37, UL48, UL49, US11, UL11, UL14, UL16, UL21, UL41, UL46, UL47, VP13/14, VP16, VP22, etc.), capsid protein (e.g., VP5, VP19c, VP21, VP23, VP24, VP26, etc.), core protein or polymerase.
- envelope protein e.g., glycoprotein gp42, gp350, gpK8.1A, B, C, D, E, H, L (gB, gC, gD, gE, g
- Antibodies include proteins that bind to other molecules (antigens) via heavy and light chain variable domains, V H and V L , respectively.
- An antibody is any polyclonal or monoclonal immunoglobulin molecule, or mixture thereof, such as IgM, IgG, IgA, IgE, IgD, and any subclass thereof, such as IgG 1 , IgG 2 , IgG 3 , IgG 4 , etc.
- a monoclonal antibody refers to an antibody that is based upon, obtained from or derived from a single clone, including any eukaryotic, prokaryotic, or phage clone.
- An antibody also includes a functional (e.g., binding) fragment or subsequence, such as, for example, Fab, Fab′, F(ab′) 2 , Fv, Fd, scFv and sdFv, unless otherwise expressly stated.
- a functional (e.g., binding) fragment or subsequence such as, for example, Fab, Fab′, F(ab′) 2 , Fv, Fd, scFv and sdFv, unless otherwise expressly stated.
- Antibodies include those specific or selective for binding to an HV protein or a homolog. That is, binding to proteins other than the HV protein or a homolog is such that the binding does not significantly interfere with detection of the HV protein or homolog, unless such other proteins have a similar or same epitope the HV protein or homolog that is recognized by the HV antibody. Selective binding can be distinguished from non-selective binding using specificity, affinity and other binding assays, competitive and non-competitive, known in the art.
- Antibodies include “human” forms, which mean that the amino acid sequence of the antibody is fully human or can or do exist in a human antibody.
- An antibody that is non-human may be made fully human by substituting non-human amino acid residues with amino acid residues that can or do exist in a human antibody.
- Amino acid residues present in human antibodies, CDR region maps and human antibody consensus residues are known in the art (see, e.g., Kabat, Sequences of Proteins of Immunological Interest, 4 th Ed. US Department of Health and Human Services. Public Health Service (1987); Chothia and Lesk J. Mol. Biol. 186:651 (1987); Padlan Mol. Immunol. 31:169 (1994); and Padlan Mol. Immunol. 28:489 (1991)).
- Antibodies include “human” forms, which means that the amino acid sequence of the antibody has non-human amino acid residues (e.g., mouse, rat, goat, rabbit, etc.) of one or more complementarity determining regions (CDRs) that specifically bind to the desired antigen in an acceptor human immunoglobulin molecule, and one or more human amino acid residues in the Fv framework region (FR), which are amino acid residues that flank the CDRs.
- CDRs complementarity determining regions
- Antibodies referred to as “primatized” in the art are within the meaning of “humanized” as used herein, except that the acceptor human immunoglobulin molecule and framework region amino acid residues may be any primate amino acid residue (e.g., ape, gibbon, gorilla, chimpanzees orangutan, macaque), in addition to any human residue.
- Antibodies include “chimeric” forms, which means that the amino acid sequence of the antibody contains one or more portions that are derived from, obtained or isolated from, or based upon two or more different species. That is, for example, a portion of the antibody may be human (e.g., a constant region) and another portion of the antibody may be non-human (e.g., a murine heavy or light chain variable region). Thus, a chimeric antibody is a molecule in which different portions of the antibody are of different species origins. Unlike a humanized antibody, a chimeric antibody can have the different species sequences in any region of the antibody.
- subject refers to an animal, typically mammalian animals, such as but not limited to non-human primates (apes, gibbons, gorillas, chimpanzees, orangutans, macaques), domestic animals (dogs and cats), a farm animals (chickens, ducks, horses, cows, goats, sheep, pigs), experimental animal (mouse, rat, rabbit, guinea pig) and humans.
- Subjects include animal models, for example, a mouse model of herpesvirus infection (e.g., alpha, beta- or gamma-herpesvirus).
- Subjects include naturally occurring or non-naturally occurring mutated or non-human genetically engineered (e.g., transgenic or knockout) animals.
- Subjects further include animals having or at risk of having a chronic or acute HV infection, reactivation or pathogenesis, symptom or pathology of HV infection, reactivation or pathogenesis, or adverse side effect caused by vaccination with or against HV or an HV treatment.
- Subjects can be any age.
- a subject e.g., human
- a subject can be a newborn, infant, toddler, child, teenager, or adult, e.g., 50 years or older.
- Subjects include those in need of a method of the invention, e.g., in need of a therapeutic or prophylactic treatment.
- a subject is considered to be in need of a method of the invention where a method is likely to provide some benefit to a subject.
- Various benefits provided to a subject are as set forth herein and known in the art for HV infection, reactivation or pathogenesis, symptoms or pathologies caused by or associated with HV infection, reactivation or pathogenesis, and adverse side effects caused by vaccination with or against a HV or treatment of HV.
- Subjects appropriate for treatment include those having HV infection, reactivation or pathogenesis or currently or previously having any symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis (e.g., diagnosed as HV+), HV vaccination or an HV treatment, Target subjects therefore include subjects infected with HV that are infectious or contagious, subjects infected with HV that is in a latent state, and subjects in which HV is or has been reactivated from latency. Thus, subjects that have been exposed to a HV (e.g., subjects that do produce an antibody against an HV protein) are appropriate targets.
- Such subjects may or may not have developed one or more adverse symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis, regardless of the virus type, timing or degree of onset, progression, severity, frequency, duration of any infection, pathogenesis, symptom, pathology or adverse side effect.
- a subject may therefore be symptomatic or asymptomatic for HV infection, reactivation or pathogenesis.
- Subjects appropriate for treatment also include those at risk of HV infection, reactivation or pathogenesis or at risk of having or developing a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis.
- Candidate subjects therefore include subjects that have been exposed to or contacted with HV, or that are at risk of exposure to or contact with HV, regardless of the type, timing or extent of exposure or contact.
- the invention methods are therefore applicable to a subject who is at risk of HV infection, reactivation or pathogenesis, but has not yet been exposed to or contacted with herpesviridae (HV).
- HV herpesviridae
- subjects that have not been exposed to a HV e.g., subjects that do not produce an antibody against an HV protein
- Prophylactic methods are therefore included.
- Subjects targeted for prophylaxis can be at increased risk (probability or susceptibility) of herpesviridae (HV) infection or pathogenesis, as set forth here
- At risk subjects appropriate for treatment include subjects exposed to other subjects having an HV infection or reactivation (infectious or contagious), or where the risk of HV infection is increased due to changes in virus infectivity or cell tropism, immunological susceptibility (e.g., an immunocompromised subject), or environmental risk.
- At risk subjects appropriate for treatment therefore include human subjects exposed to or at risk of exposure to other humans that have HV infection or reactivation (infectious or contagious), or are at risk of a HV infection or reactivation (infectious or contagious).
- Subjects also appropriate for treatment also include those vaccinated against or a candidate for vaccination against HV (e.g., vaccinated with live or attenuated HV or an HV protein or antibody that binds to an HV protein).
- Subjects therefore include vaccinated subjects that have not or have been exposed to or contacted with HV, as well as candidate subjects for vaccination that have not or have been exposed to or contacted with HV, regardless of the type, timing or extent of exposure or contact.
- a subject can be administered a compound of the invention (e.g., CSA) prior to, concurrently with, or following vaccination (e.g., within 0-2, 2-4, 4-12 or 12-24 hours or days of vaccination).
- Subjects further include immunocompromised subjects due to an immunological disorder (e.g., autoimmunity) or disease, or an immune-suppressing treatment (e.g., cyclophosphamide).
- an immunological disorder e.g., autoimmunity
- an immune-suppressing treatment e.g., cyclophosphamide
- Subjects also include those having been exposed to or diagnosed as HV+.
- Subjects further include those receiving or candidates for a tissue or organ transplant.
- Compounds of the invention can be incorporated into pharmaceutical compositions or formulations. Such pharmaceutical compositions/formulations are useful for administration to a subject, in vivo or ex vivo.
- compositions and formulations include carriers or excipients for administration to a subject.
- pharmaceutically acceptable and “physiologically acceptable” mean a biologically compatible formulation, gaseous, liquid or solid, or mixture thereof, which is suitable for one or more routes of administration, in vivo delivery or contact.
- a formulation is compatible in that it does not destroy activity of an active ingredient therein (e.g., a GSA), or induce adverse side effects that fax outweigh any prophylactic or therapeutic effect or benefit.
- Such formulations include solvents (aqueous or non-aqueous), solutions (aqueous or non-aqueous), emulsions (e.g., oil-in-water or water-in-oil), suspensions, syrups, elixirs, dispersion and suspension media, coatings, isotonic and absorption promoting or delaying agents, compatible with pharmaceutical administration or in vivo contact or delivery.
- Aqueous and non-aqueous solvents, solutions and suspensions may include suspending agents and thickening agents.
- Such pharmaceutically acceptable carriers include tablets (coated or uncoated), capsules (hard or soft), microbeads, powder, granules and crystals.
- Supplementary active compounds e.g., preservatives, antibacterial, antiviral and antifungal agents
- the formulations may, for convenience, be prepared or provided as a unit dosage form. Preparation techniques include bringing into association the active ingredient (e.g., GSA) and a pharmaceutical carrier(s) or excipient(s). In general, formulations are prepared by uniformly and intimately associating the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product. For example, a tablet may be made by compression or molding.
- Compressed tablets may be prepared by compressing, in a suitable machine, an active ingredient (e.g., a CSA) in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent. Molded tablets may be produced by molding, in a suitable apparatus, a mixture of powdered compound (e.g., CSA) moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide a slow or controlled release of the active ingredient therein.
- an active ingredient e.g., a CSA
- a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent.
- Molded tablets may be produced by molding, in a suitable apparatus
- Cosolvents and adjuvants may be added to the formulation.
- cosolvents contain hydroxyl groups or other polar groups, for example, alcohols, such as isopropyl alcohol; glycols, such as propylene glycol, polyethyleneglycol, polypropylene glycol, glycol ether; glycerol; polyoxyethylene alcohols and polyoxyethylene fatty acid esters.
- Adjuvants include, for example, surfactants such as, soya lecithin and oleic acid; sorbitan esters such as sorbitan trioleate; and polyvinylpyrrolidone.
- Supplementary active compounds e.g., preservatives, antioxidants, antimicrobial agents including biocides and biostats such as antibacterial, antiviral and antifungal agents
- Preservatives and other additives include, for example, antimicrobials, anti-oxidants, chelating agents and inert gases (e.g., nitrogen).
- Pharmaceutical compositions may therefore include preservatives, antimicrobial agents, anti-oxidants, chelating agents and inert gases.
- Preservatives can be used to inhibit microbial growth or increase stability of the active ingredient thereby prolonging the shelf life of the pharmaceutical formulation.
- Suitable preservatives include, for example, EDTA, EGTA, benzalkonium chloride or benzoic acid or benzoates, such as sodium benzoate.
- Antioxidants include, for example, ascorbic acid, vitamin A, vitamin E, tocopherols, and similar vitamins or provitamins.
- An antimicrobial agent or compound directly or indirectly inhibits, reduces, delays, halts, eliminates, arrests, suppresses or prevents contamination by or growth, infectivity, replication, proliferation, reproduction, of a pathogenic or non-pathogenic microbial organism.
- Classes of antimicrobials include, antibacterial, antiviral, antifungal and antiparasitics.
- Antimicrobials include agents and compounds that kill or destroy (-cidal) or inhibit (-static) contamination by or growth, infectivity, replication, proliferation, reproduction of the microbial organism.
- antibacterials include penicillins (e.g., penicillin G, ampicillin, methicillin, oxacillin, and amoxicillin), cephalosporins (e.g., cefadroxil, ceforanid, cefotaxime, and ceftriaxone), tetracyclines (e.g., doxycycline, chlortetracycline, minocycline, and tetracycline), aminoglycosides (e.g., amikacin, gentamycin, kanamycin, neomycin, streptomycin, netilmicin, paromomycin and tobramycin), macrolides (e.g., azithromycin, clarithromycin, and erythromycin), fluoroquinolones (e.g., ciprofloxacin, lomefloxacin, and norfloxacin), and other antibiotics including chloramphenicol, clindamycin, cycloser
- anti-virals include reverse transcriptase inhibitors; protease inhibitors; thymidine kinase inhibitors; sugar or glycoprotein synthesis inhibitors; structural protein synthesis inhibitors; nucleoside analogues; and viral maturation inhibitors.
- anti-virals include those set forth above and, nevirapine, delavirdine, efavirenz, saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, zidovudine (AZT), stavudine (d4T), lamivudine (3TC), didanosine (DDE), zalcitabine (ddC), abacavir, acyclovir, penciclovir, valacyclovir, ganciclovir, 1,-D-ribofuranosyl-1,2,4-triazole-3 carboxamide, 9->2-hydroxy-ethoxy methylguanine, adamantanamine, 5-iodo-2′-deoxyuridine, trifluorothymidine, interferon and adenine arabinoside.
- antifungals include agents such as benzoic acid, undecylenic alkanolamide, ciclopiroxolamine, polyenes, imidazoles, allylamine, thicarbamates, amphotericin B, butylparaben, clindamycin, econaxole, ammolfine, butenafine, naftifine, terbinafine, ketoconazole, elubiol, econazole, econaxole, itraconazole, isoconazole, miconazole, sulconazole, clotrimazole, enilconazole, oxiconazole, tioconazole, terconazole, butoconazole, thiabendazole, voriconazole, saperconazole, sertaconazole, fenticonazole, posaconazole, bifonazole, fluconazole, flutrimazole, nyl
- compositions can optionally be formulated to be compatible with a particular route of administration.
- routes of administration include administration to a biological fluid, an immune cell (e.g., T or B cell) or tissue, mucosal cell or tissue (e.g., mouth, buccal cavity, labia, nasopharynx, esophagus, trachea, lung, stomach, small intestine, vagina, rectum, or colon), neural cell or tissue (e.g., ganglia, motor or sensory neurons) or epithelial cell or tissue (e.g., nose, fingers, ears, cornea, conjunctiva, skin or dermis).
- an immune cell e.g., T or B cell
- mucosal cell or tissue e.g., mouth, buccal cavity, labia, nasopharynx, esophagus, trachea, lung, stomach, small intestine, vagina, rectum, or colon
- neural cell or tissue e.g.
- compositions include carriers (excipients, diluents, vehicles or filling agents) suitable for administration to any cell, tissue or organ, in vivo, ex vivo (e.g., tissue or organ transplant) or in vitro, by various routes and delivery, locally, regionally or systemically.
- Exemplary routes of administration for contact or in vivo delivery which a compound of the invention (e.g., CSA) can optionally be formulated include inhalation, respiration, intubation, intrapulmonary instillation, oral (buccal, sublingual, mucosal), intrapulmonary, rectal, vaginal, intrauterine, intradermal, topical, dermal, parenteral (e.g., subcutaneous, intramuscular, intravenous, intradermal, intraocular, intratracheal and epidural), intranasal, intrathecal, intraarticular, intracavity, transdermal, iontophoretic, ophthalmic, optical (e.g., corneal), intraglandular, intraorgan, intralymphatic.
- parenteral e.g., subcutaneous, intramuscular, intravenous, intradermal, intraocular, intratracheal and epidural
- parenteral e.g., subcutaneous, intramuscular, intravenous, intradermal, intrao
- Formulations suitable for parenteral administration include aqueous and non-aqueous solutions, suspensions or emulsions of the compound, which may include suspending agents and thickening agents, which preparations are typically sterile and can be isotonic with the blood of the intended recipient.
- aqueous carriers include water, saline (sodium chloride solution), dextrose (e.g., Ringer's dextrose), lactated Ringer's, fructose, ethanol, animal, vegetable or synthetic oils.
- non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose).
- the formulations may be presented in unit-dose or multi-dose kits, for example, ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring addition of a sterile liquid carrier, for example, water for injections, prior to use.
- penetrants can be included in the pharmaceutical composition.
- Penetrants are known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- the active ingredient can be formulated into aerosols, sprays, ointments, salves, gels, pastes, lotions, oils or creams as generally known in the art.
- compositions typically include ointments, creams, lotions, pastes, gels, sprays, aerosols or oils
- Carriers which may be used include Vaseline, lanolin, polyethylene glycols, alcohols, transdermal enhancers, and combinations thereof.
- An exemplary topical delivery system is a transdermal patch containing an active ingredient (e.g., CSA).
- compositions include capsules, cachets, lozenges, tablets or troches, as powder or granules.
- Oral administration formulations also include a solution or a suspension (e.g., aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion).
- compositions can be formulated in a dry powder for delivery, such as a fine or a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner by inhalation through the airways or nasal passage.
- effective dry powder dosage levels typically fall in the range of about 10 to about 100 mg.
- Appropriate formulations, wherein the carrier is a liquid, for administration, as for example, a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient.
- aerosol and spray delivery systems and devices also referred to as “aerosol generators” and “spray generators,” such as metered dose inhalers (MDI), nebulizers (ultrasonic, electronic and other nebulizers), nasal sprayers and dry powder inhalers can be used.
- MDIs typically include an actuator, a metering valve, and a container that holds a suspension or solution, propellant, and surfactant (e.g., oleic acid, sorbitan trioleate, lecithin).
- surfactant e.g., oleic acid, sorbitan trioleate, lecithin
- MDIs typically use liquid propellant and typically, MDIs create droplets that are 15 to 30 microns in diameter, optimized to deliver doses of 1 microgram to 10 mg of a therapeutic.
- Nebulizers are devices that turn medication into a fine mist inhalable by a subject through a face mask that covers the mouth and nose. Nebulizers provide small droplets and high mass output for delivery to upper and lower respiratory airways. Typically, nebulizers create droplets down to about 1 micron in diameter.
- DPI Dry-powder inhalers
- DPIs can be used to deliver the compounds of the invention, either alone or in combination with a pharmaceutically acceptable carrier.
- DPIs deliver active ingredient to airways and lungs while the subject inhales through the device.
- DPIs typically do not contain propellants or other ingredients, only medication, but may optionally include other components.
- DPIs are typically breath-activated, but may involve air or gas pressure to assist delivery.
- compositions can be included as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
- a suitable base comprising, for example, cocoa butter or a salicylate.
- pharmaceutical compositions can be included as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient (e.g., CSA) a carrier, examples of appropriate carriers which are known in the art.
- active ingredient e.g., CSA
- compositions and methods of the invention are known in the art (see, e.g., Remington: The Science and Practice of Pharmacy (2003) 20 th ed., Mack Publishing Co., Easton, Pa.; Remington's Pharmaceutical Sciences (1990) 18 th ed., Mack Publishing Co., Easton, Pa.; The Merck Index (1996) 12 th ed., Merck Publishing Group, Whitehouse, N.J.; Pharmaceutical Principles of Solid Dosage Forms (1993), Technonic Publishing Co., Inc., Lancaster, Pa.; Ansel and Stoklosa, Pharmaceutical Calculations (2001) 11 th ed., Lippincott Williams & Wilkins, Baltimore, Md.; and Poznansky et al., Drug Delivery Systems (1980), R. L. Juliano, ed., Oxford, N.Y., pp. 253-315).
- a “unit dosage form” as used herein refers to a physically discrete unit suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of compound optionally in association with a pharmaceutical carrier (excipient, diluent, vehicle or filling agent) which, when administered in one or more doses, is calculated to produce a desired effect (e.g., prophylactic or therapeutic effect or benefit).
- Unit dosage forms can contain a daily dose or unit, daily sub-dose, or an appropriate fraction thereof, of an administered compound (e.g., CSA).
- Unit dosage forms also include, for example, capsules, troches, cachets, lozenges, tablets, ampules and vials, which may include a composition in a freeze-dried or lyophilized state; a sterile liquid carrier, for example, can be added prior to administration or delivery in vivo.
- Unit dosage forms additionally include, for example, ampules and vials with liquid compositions disposed therein.
- Unit dosage forms further include compounds for transdermal administration, such as “patches” that contact with the epidermis of the subject for an extended or brief period of time.
- the individual unit dosage forms can be included in multi-dose kits or containers. Pharmaceutical formulations can be packaged in single or multiple unit dosage forms for ease of administration and uniformity of dosage.
- Compounds of the invention can be administered in accordance with the methods at any frequency as a single bolus or multiple dose e.g., one, two, three, four, five, or more times hourly, daily, weekly, monthly or annually or between about 1 to 10 days, weeks, months, or for as long as appropriate. Exemplary frequencies are typically from 1-7 times, 1-5 times, 1-3 times, 2-times or once, daily, weekly or monthly. Timing of contact, administration ex vivo or in vivo delivery can be dictated by the infection, reactivation, pathogenesis, symptom, pathology or adverse side effect to be treated. For example, an amount can be administered to the subject substantially contemporaneously with, or within about 1-60 minutes or hours of the onset of a symptom or adverse side effect of HV infection, reactivation, pathogenesis, vaccination or treatment.
- Doses may vary depending upon whether the treatment is therapeutic or prophylactic, the onset, progression, severity, frequency, duration, probability of or susceptibility of the symptom, the type of virus infection, reactivation or pathogenesis to which treatment is directed, clinical endpoint desired, previous, simultaneous or subsequent treatments, general health, age, gender or race of the subject, bioavailability, potential adverse systemic, regional or local side effects, the presence of other disorders or diseases in the subject, and other factors that will be appreciated by the skilled artisan (e.g., medical or familial history). Dose amount, frequency or duration may be increased or reduced, as indicated by the clinical outcome desired, status of the infection, reactivation, pathology or symptom, or any adverse side effects of the treatment or therapy. The skilled artisan will appreciate the factors that may influence the dosage, frequency and timing required to provide an amount sufficient or effective for providing a prophylactic or therapeutic effect or benefit.
- a compound of the invention e.g., CSA
- CSA CSA
- a compound of the invention will be administered as soon as practical, typically within 0-72 hours after a subject is exposed to or contacted with HV, or within 0-72 hours after development of one or more symptoms or pathologies associated with HV infection, reactivation or pathogenesis (e.g., onset of lesions, ulcers, canker sores, cold sores, rash, boils, etc.) or a symptom associated with or caused by HV.
- reactivation or pathogenesis e.g., onset of lesions, ulcers, canker sores, cold sores, rash, boils, etc.
- a compound of the invention can be administered immediately or within 0-72 after suspected contact with, or 0-4 weeks, e.g., 1-3 weeks, prior to anticipated or possible exposure to or contact or infection with or reactivation of HV.
- a compound can be administered prior to, concurrently with or following immunization/vaccination of the subject.
- Doses can be based upon current existing treatment protocols (e.g., acyclovir), empirically determined, determined using animal disease models or optionally in human clinical studies.
- initial study doses can be based upon animal studies, such as a mouse, which weighs about 30 grams, and the amount of compound administered to achieve a prophylactic or therapeutic effect or benefit.
- the dose can be adjusted according to the mass of a subject, and will generally be in a range from about 0.1-1 ug/kg, 1-10 ug/kg, 10-25 ug/kg, 25-50 ug/kg, 50-100 ug/kg, 100-500 ug/kg, 500-1,000 ug/kg, 1-5 mg/kg, 5-10 mg/kg, 10-20 mg/kg, 20-50 mg/kg, 50-100 mg/kg, 100-250 mg/kg, 250-500 mg/kg, or more, of subject body weight, two, three, four, or more times per hour, day, week, month or annually.
- doses can be more or less, as appropriate, for example, 0.00001 mg/kg of subject body weight to about 10,000.0 mg/kg of subject body weight, about 0.001 mg/kg, to about 100 mg/kg, about 0.01 mg/kg, to about 10 mg/kg, or about 0.1 mg/kg, to about 1 mg/kg of subject body weight over a given time period, e.g., 1, 2, 3, 4, 5 or more hours, days, weeks, months, years.
- a subject may be administered in single bolus or in divided/metered doses, which can be adjusted to be more or less according to the various consideration set forth herein and known in the art.
- Dose amount, frequency or duration may be increased or reduced, as indicated by the status of the HV infection, reactivation or pathogenesis, associated symptom or pathology, or any adverse side effect(s) of vaccination, treatment or anti-HV therapy.
- dose amount, frequency or duration can be reduced.
- kits including compounds of the invention (e.g., CSA), combination compositions and pharmaceutical compositions/formulations thereof, packaged into a suitable packaging material.
- a kit includes packaging material, a cationic steroid antimicrobial (CSA) and instructions.
- CSA cationic steroid antimicrobial
- the instructions are for administering the CSA to: provide a subject with protection against a herpesviridae (HV) infection, reactivation or pathogenesis; treat a subject for herpesviridae (HV) infection, reactivation or pathogenesis; decrease susceptibility of a subject to a herpesviridae (HV) infection, reactivation or pathogenesis; decrease, inhibit, ameliorate or prevent onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis; or decrease or prevent an adverse side effect caused by vaccination of a subject with a herpesviridae (HV) or a herpesviridae (HV) treatment.
- HV herpesviridae
- HV herpesviridae
- the term “packaging material” refers to a physical structure housing one or more components of the kit.
- the packaging material can maintain the components sterilely, and can be made of material commonly used for such purposes (e.g., paper, corrugated fiber, glass, plastic, foil, ampules, vials, tubes, etc.).
- a kit can contain a plurality of components, e.g., two or more compounds of the invention alone or in combination with an anti-HV agent or treatment (e.g., an anti-viral, a herpesvirus protein or an antibody that binds to a herpesvirus protein, HV vaccine, etc.) or drug, optionally sterile.
- an anti-HV agent or treatment e.g., an anti-viral, a herpesvirus protein or an antibody that binds to a herpesvirus protein, HV vaccine, etc.
- drug optionally sterile.
- a kit optionally includes a label or insert including a description of the components (type, amounts, doses, etc.), instructions for use in vitro, in vivo, or ex vivo, and any other components therein.
- Labels or inserts include “printed matter,” e.g., paper or cardboard, or separate or affixed to a component, a kit or packing material (e.g., a box), or attached to an ampule, tube or vial containing a kit component.
- Labels or inserts can additionally include a computer readable medium, such as a disk (e.g., floppy diskette, hard disk, ZIP disk), optical disk such as CD- or DVD-ROM/RAM, DVD, MP3, magnetic tape, or an electrical storage media such as RAM and ROM or hybrids of these such as magnetic/optical storage media, FLASH media or memory type cards.
- a computer readable medium such as a disk (e.g., floppy diskette, hard disk, ZIP disk), optical disk such as CD- or DVD-ROM/RAM, DVD, MP3, magnetic tape, or an electrical storage media such as RAM and ROM or hybrids of these such as magnetic/optical storage media, FLASH media or memory type cards.
- Labels or inserts can include identifying information of one or more components therein, dose amounts, clinical pharmacology of the active ingredient(s) including mechanism of action, pharmacokinetics and pharmacodynamics. Labels or inserts can include information identifying manufacturer, lot numbers, manufacturer location and date, expiration dates.
- Labels or inserts can include information on a condition, disorder or disease (e.g., virus pathogenesis or infection) for which a kit component may be used.
- Labels or inserts can include instructions for a clinician or subject for using one or more of the kit components in a method, treatment protocol or therapeutic/prophylactic regimen, including the methods of the invention.
- Instructions can include amounts of compound, frequency or duration of administration, and instructions for practicing any of the methods, treatment protocols or prophylactic or therapeutic regimes described herein.
- Exemplary instructions include, instructions for treating HV infection, reactivation or pathogenesis. Kits of the invention therefore can additionally include labels or instructions for practicing any of the methods of the invention described herein including treatment, screening or other methods.
- a kit can include a compound of the invention (e.g., CSA) that has one or more anti-HV activities as set forth herein, together with instructions for administering the compound in a prophylactic or therapeutic treatment method of the invention, for example to a subject in need of such treatment.
- exemplary instructions include administering the CSA to: provide a subject with protection against a HV infection, reactivation or pathogenesis; treat a subject for HV infection, reactivation or pathogenesis; decrease susceptibility of a subject to a HV infection, reactivation or pathogenesis; or decrease or prevent an adverse side effect caused by vaccination of a subject with or against a HV or an HV treatment.
- Labels or inserts can include information on any effect or benefit a kit component may provide, such as a prophylactic or therapeutic effect or benefit.
- a label or insert could provide a description of one or more symptoms which can be improved, i.e., reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with a HV infection, reactivation or pathogenesis, or one or more adverse side effects associated with HV vaccination or an HV treatment.
- HV symptoms and pathologies are as set forth herein or known in the art (e.g., lesions, ulcers, canker sore, cold sore, rash, boils, Gingivostomatitis, Herpetic whitlow Traumatic herpes ( herpes gladiatorum ), Eczema herpeticum, fever, fatigue, headache, sore throat, swollen lymph nodes, pneumonitis, pneumonia, hepatitis, meningitis, myelitis, Encephalitis, keratitis, Genital herpes, esophagitis, dysphasia, hemiparesis, coma, shingles, chicken pox, mononucleosis, chronic or acute pelvic inflammatory disease (PID), proctitis, colitis, nerve damage, death, etc.), Adverse side effects associated with HV vaccination are as set forth herein or known in the art (e.g., fatigue, weakness, headache, fever, stomach ache/nausea,
- Labels or inserts can include information on potential adverse side effects of treatment. Labels or inserts can further include warnings to the clinician or subject regarding situations or conditions where a subject should stop or reduce use of a particular kit component. Adverse side effects could also occur when the subject has, will be or is currently taking one or more other medications that may be incompatible with a compound of the invention, or the subject has, will be or is currently undergoing another treatment protocol or therapeutic regimen which would be incompatible with the compound and, therefore, labels or inserts could include information regarding such side effects or incompatibilities.
- Invention kits can additionally include a buffering agent, or a preservative or a stabilizing agent in a pharmaceutical formulation containing a compound of the invention.
- a buffering agent or a preservative or a stabilizing agent in a pharmaceutical formulation containing a compound of the invention.
- Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package.
- Invention kits can be designed for cold storage.
- kits can include components, such as devices for practicing a method of the invention or administering a compound of the invention (e.g., GSA) to a subject, ex vivo or in vivo.
- the device can be a delivery device, such as a syringe, a compressible (e.g., squeezable) tube or dermal patch for mucosal, skin/dermis or corneal delivery, or an aerosol delivery device for administration to lungs or airways.
- Compounds useful in accordance with the invention are described herein, both generically and with particularity, and in U.S. Pat. Nos. 6,350,738; 6,486,148; and 6,767,904, which are incorporated herein by reference.
- Compounds include steroid derivatives, such as cationic steroid antimicrobials (CSA) that exhibit one or more anti-herpesviridae (HV) activities or functions.
- CSA cationic steroid antimicrobials
- HV anti-herpesviridae
- Additional compounds of the invention having one or more anti-herpesviridae (HV) activities or functions are described and can be characterized using the assays set forth herein and in the art.
- CSA cationic steroid antimicrobials
- fused rings A, B, C, and D are independently saturated or fully or partially unsaturated; and each of R 1 through R 4 , R 6 , R 7 , R 11 , R 12 , R 15 , R 16 , and R 17 is independently selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, (C1-C10) alkylcarboxy-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkylamino, (C1-C10) alkylamino-(C1-C10) alkylamino-(C1-C10) alkylamino, a substituted or unsubstituted (C1-C10) aminoal
- R 5 , R 8 , R 9 , R 10 , R 13 , and R 14 is each independently: deleted when one of fused rings A, B, C, or D is unsaturated so as to complete the valency of the carbon atom at that site, or selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted aryl, C1-C10 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, oxo, a linking group attached to a second steroid, a substituted or unsubstituted (C1-C10) aminoalkyloxy, a substituted or unsubsti
- R 1 through R 14 is an amino protecting group, and provided that at least two of R 1 through R 14 are independently selected from the group consisting of a substituted or unsubstituted (C1-C10) aminoalkyloxy, (C1-C10) alkylcarboxy-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkylamino, (C1-C10) alkylamino-(C1-C10) alkylamino-(C1-C10) alkylamino, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted arylamino-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkylaminocarbonyl, (C1-
- a “ring” as used herein can be heterocyclic or carbocyclic.
- saturated used herein refers to the fused ring of formula I having each atom in the fused ring either hydrogenated or substituted such that the valency of each atom is filled.
- unsaturated used herein refers to the fused ring of formula I where the valency of each atom of the fused ring may not be filled with hydrogen or other substituents. For example, adjacent carbon atoms in the fused ring can be doubly bound to each other.
- Unsaturation can also include deleting at least one of the following pairs and completing the valency of the ring carbon atoms at these deleted positions with a double bond; such as R 5 and R 9 ; R 8 and R 10 ; and R 13 and R 14 .
- unsubstituted refers to a moiety having each atom hydrogenated such that the valency of each atom is filled.
- halo refers to a halogen atom such as fluorine, chlorine, bromine, or iodine.
- amino acid side chains include but are not limited to H (glycine), methyl (alanine), —CH 2 —(C ⁇ O)—NH 2 (asparagine), —CH 2 —SH (cysteine), and —CH(OH)CH 3 (threonine).
- An alkyl group is a branched or unbranched hydrocarbon that may be substituted or unsubstituted.
- branched alkyl groups include isopropyl, sec-butyl, isobutyl, tert-butyl, sec-pentyl, isopentyl, tert-pentyl, isohexyl.
- Substituted alkyl groups may have one, two, three or more substituents, which may be the same or different, each replacing a hydrogen atom.
- Substituents are halogen (e.g., F, Cl, Br, and I), hydroxyl, protected hydroxyl, amino, protected amino, carboxy, protected carboxy, cyano, methylsulfonylamino, alkoxy, acyloxy, nitro, and lower haloalkyl.
- halogen e.g., F, Cl, Br, and I
- substituted refers to moieties having one, two, three or more substituents, which may be the same or different, each replacing a hydrogen atom.
- substituents include but are not limited to halogen (e.g., F, Cl, Br, and I), hydroxyl, protected hydroxyl, amino, protected amino, carboxy, protected carboxy, cyano, methylsulfonylamino, alkoxy, alkyl, aryl, aralkyl, acyloxy, nitro, and lower haloalkyl.
- An aryl group is a C6-20 aromatic ring, wherein the ring is made of carbon atoms (e.g., C6-C14, C6-10 aryl groups).
- haloalkyl include fluoromethyl, di chloromethyl, trifluoromethyl, 1,1-difluoroethyl, and 2,2-dibromoethyl.
- An aralkyl group is a group containing 6-20 carbon atoms that has at least one aryl ring and at least one alkyl or alkylene chain connected to that ring.
- An example of an aralkyl group is a benzyl group.
- a linking group is any divalent moiety used to link a compound of formula to another steroid, e.g., a second compound of formula I.
- An example of a linking group is (C1-C10) alkyloxy-(C1-C10) alkyl.
- Amino-protecting groups are known to those skilled in the art. In general, the species of protecting group is not critical, provided that it is stable to the conditions of any subsequent reaction(s) on other positions of the compound and can be removed at the appropriate point without adversely affecting the remainder of the molecule. In addition, a protecting group may be substituted for another after substantive synthetic transformations are complete. Clearly, where a compound differs from a compound disclosed herein only in that one or more protecting groups of the disclosed compound has been substituted with a different protecting group, that compound is within the invention. Further examples and conditions are found in T. W. Greene, Protective Groups in Organic Chemistry, (1st ed., 1981, 2nd ed., 1991).
- the invention also includes compounds comprising a ring system of at least 4 fused rings, where each of the rings has from 5-7 atoms.
- the ring system has two faces, and contains 3 chains attached to the same face.
- Each of the chains contains a nitrogen-containing group that is separated from the ring system by at least one atom; the nitrogen-containing group is an amino group, e.g., a primary amino group, or a guanidino group.
- the compound can also contain a hydrophobic group, such as a substituted (C3-10) aminoalkyl group, a (C1-10) alkyloxy (C3-10) alkyl group, or a (C1-10) alkylamino (C3-10)alkyl group, attached to the steroid backbone.
- the compound may have the formula V, where each of the three chains containing nitrogen-containing groups is independently selected from R 1 through R 4 , R 6 , R 7 , R 11 , R 12 , R 15 , R 16 , R 17 , and R 18 , defined below.
- each of fused rings A, B, C, and D is independently saturated, or is fully or partially unsaturated, provided that at least two of A, B, C, and D are saturated, wherein rings A, B, C, and D form a ring system; each of m, n, p, and q is independently 0 or 1; each of R 1 through R 4 , R 6 , R 7 , R 11 , R 12 , R 15 , R 16 , R 17 , and R 18 is independently selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, (C1-C10)alkylcarboxy-(C1-C10 alkyl, (C1-C10) alkylamino-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10)
- P.G. is an amino protecting group: and each of R 5 , R 8 , R 9 , R 10 , R 13 , and R 14 is independently: deleted when one of fused rings A, B, C, or D is unsaturated so as to complete the valency of the carbon atom at that site, or selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted aryl, C1-C10 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, oxo, a linking group attached to a second steroid, a substituted or unsubstituted (C1-C10) aminoalkyloxy, a
- R 1 through R 4 , R 6 , R 7 , R 11 , R 12 , R 15 , R 16 , R 17 , and R 18 are disposed on the same face of the ring system and are independently selected from the group consisting of a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted (C1-C10) aminoalkyloxy, (C1-C10) alkylcarboxy-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkylamino, (C1-C10) alkylamino-(C1-C10) alkylamino-(C1-C10) alkylamino, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted arylamino-(C1-C10) alkyl, a substituted or unsubstituted aryla
- Compounds of the invention include but are not limited to compounds having amine or guanidine groups covalently attached to a steroid backbone or scaffold at any carbon position, e.g., cholic acid.
- a group is covalently attached at any one, or more, of positions C3, C7 and C12 of the steroid backbone or scaffold.
- a group is absent from any one, or more, of positions C3, C7 and C12 of the steroid backbone or scaffold.
- tether or “tethered,” when used in reference to a compound of the invention, refers to the chain of atoms between the steroid backbone or scaffold and a terminal amino or guanidine group.
- a tether is covalently attached at any one, or more, of positions C3, C7 and C12.
- a tether is lacking at any one, or more, of positions C3, C7 and C12.
- a tether length may include the heteroatom (O or N) covalently attached to the steroid backbone.
- ring systems can also be used, e.g., 5-member fused rings.
- Compounds with backbones having a combination of 5- and 6-membered rings are also included in the invention.
- Amine or guanidine groups can be separated from the backbone by at least one, two, three, four or more atoms.
- the backbone can be used to orient the amine or guanidine groups on one face, or plane, of the steroid. For example, a scheme showing a compound having primary amino groups on one face, or plane, of a backbone is shown below:
- a method includes the step of contacting a compound of formula IV,
- R 1 through R 14 are hydroxyl, and the remaining moieties on the fused rings A, B, C, and D are defined for formula I, with an electrophile to produce an alkyl ether compound of formula IV, wherein at least two of R 1 through R 14 are (C1-C10)alkyloxy.
- the alkyl ether compounds are converted into an amino precursor compound wherein at least two of R 1 through R 14 are independently selected from the group consisting of (C1-C10) azidoalkyloxy and (C1-C10) cyanoalkyloxy and the amino precursor compound is reduced to form a compound of formula I.
- the electrophiles used in a method include but are not limited to 2-(2-bromoethyl)-1,3-dioxolane, 2-iodoacetamide, 2-chloroacetamide, N-(2-bromoethyl)phthalimide, N-(3-bromopropyl)phthalimide, and allybromide.
- An exemplary electrophile is allylbromide.
- the invention also includes methods of producing a compound of formula I where at least two of R 1 through R 14 are (C1-C10) guanidoalkyloxy.
- a method includes contacting a compound of formula IV, where at least two of R 1 through R 14 are hydroxyl, with an electrophile to produce an alkyl ether compound of formula IV, where at least two of R 1 through R 14 are (C1-C10)alkyloxy.
- the allyl ether compound is converted into an amino precursor compound where at least two of R 1 through R 14 are independently selected from the group consisting of (C1-C10) azidoalkyloxy and (C1-C10) cyanoalkyloxy.
- the amino precursor compound is reduced to produce an aminoalkyl ether compound wherein at least two of R 1 through R 14 are (C1-C10) aminoalkyloxy.
- the aminoalkyl ether compound is contacted with a guanidino producing electrophile to form a compound of formula I.
- guanidino producing electrophile refers to an electrophile used to produce a guanidino compound of formula I.
- An example of an guanidino producing electrophile is HSO 3 —C(NH)—NH 2 .
- the invention also includes methods of producing a compound of formula I where at least two of R 1 through R 14 are H2N—HC(Q5)-C(O)—O— and Q5 is the side chain of any amino acid.
- a method includes the step of contacting a compound of formula IV, where at least two of R 1 through R 14 are hydroxyl, with a protected amino acid to produce a protected amino acid compound of formula IV where at least two of at least two of R 1 through R 14 are P.G.-HN—HC(Q5)-C(O)—O— and Q5 is the side chain of any amino acid and P.G. is an amino protecting group. The protecting group of the protected amino acid compound is removed to form a compound of formula I.
- Methods for identifying a candidate agent for treating a subject for a HV infection, reactivation or pathogenesis, for decreasing susceptibility of a subject to a HV infection, reactivation or pathogenesis, for decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies caused by or associated with HV infection or pathogenesis or reactivation from latency, and for decreasing or preventing an adverse side effect caused by vaccination of a subject with or against a HV or a HV treatment, are provided.
- a method includes providing a test agent comprising a cationic steroid antimicrobial (CSA); contacting the test agent with HV and ascertaining whether the test agent inhibits HV infection or pathogenesis, or reactivation from latency.
- a test agent identified as inhibiting HV infection or pathogenesis or reactivation from latency is a candidate agent for treating a subject for HV infection, reactivation or pathogenesis.
- a test agent identified as inhibiting HV infection, reactivation or pathogenesis is also a candidate agent for decreasing susceptibility of a subject to a HV infection, reactivation or pathogenesis.
- a test agent identified is further a candidate agent for decreasing.
- test agent identified is moreover a candidate agent for decreasing or preventing an adverse side effect caused by or associated with vaccination of a subject with a HV or a HV treatment.
- the subject is a mammal.
- a mammal can comprise an animal model for HV infection, reactivation or pathogenesis.
- GenBank citations and ATCC citations cited herein are incorporated by reference in their entirety. In case of conflict, the specification, including definitions, will control.
- a compound includes a plurality of compounds and reference to “an anti-herpesviridae (HV) effect, activity or function” can include reference to one or more effects, activities or functions, and so forth.
- HV anti-herpesviridae
- references to a range of 90-100% includes 91%, 92%, 93%, 94%, 95%, 95%, 97%, etc., as well as 91.1%, 91.2%, 91.3%, 91.4%, 91.5%, etc., 92.1%, 92.2%, 92.3%, 92.4%, 92.5%, etc., and so forth.
- Reference to a range of 0-72 hrs includes 1, 2, 3, 4, 5, 6, 7 hrs, etc., as well as 1, 2, 3, 4, 5, 6, 7 minutes, etc., and so forth.
- Reference to a range of 0-72 hrs includes 1, 2, 3, 4, 5, 6, 7 hrs, etc., as well as 1, 2, 3, 4, 5, 6, 7 minutes, etc., and so forth.
- Reference to a range of doses such as 0.1-1 ug/kg, 1-10 ug/kg, 10-25 ug/kg, 25-50 ug/kg, 50-100 ug/kg, 100-500 ug/kg, 500-1,000 ug/kg, 1-5 mg/kg, 5-10 mg/kg, 10-20 mg/kg, 20-50 mg/kg, 50-100 mg/kg, 100-250 mg/kg, 250-500 mg/kg, includes 0.11-0.9 ug/kg, 2-9 ug/kg, 11.5-24.5 ug/kg, 26-49 ug/kg, 55-90 ug/kg, 125-400 ug/kg, 750-800 ug/kg, 1.1-4.9 mg/kg, 6-9 mg/kg, 11.5-19.5 mg/kg, 21-49 mg/
- the invention is generally disclosed herein using affirmative language to describe the numerous embodiments.
- the invention also includes embodiments in which subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, or procedures.
- the invention is generally not expressed herein in terms of what the invention does not include aspects that are not expressly excluded in the invention are nevertheless disclosed herein.
- CSA compounds and intermediates were characterized using the following instruments: 1 H and 13 C NMR spectra were recorded on a Varian Gemini 2000 (200 MHz), Varian Unity 300 (300 MHz), or Varian VXR 500 (500 MHz) spectrometer and are referenced to TMS, residual CHCl 3 ( 1 H) or CDCl 3 ( 13 C), or residual CHD 2 OD ( 1 H), or CD 3 OD ( 13 C), IR spectra were recorded on a Perkin Elmer 1600 FTIR instrument. Mass spectrometric data were obtained on a JOEL SX 102A spectrometer. THE solvent was dried over Na/benzophenone and CH 2 Cl 2 was dried over CaH 2 prior to use. Other reagents and solvents were obtained commercially and were used as received.
- This example includes a description of one or more exemplary synthetic procedures for obtaining Compounds 1-5, 13-20 and 22-27.
- HCl salt of compound 1 Compound 1 was dissolved in a minimum amount of CH 2 Cl 2 and excess HCl in ether was added. Solvent and excess HCl were removed in vacuo and a noncrystalline white powder was obtained.
- HCl salt of compound 2 Compound 2 was dissolved in a minimum amount of CH 2 Cl 2 and excess HCl in ether was added. Removal of the solvent and excess HCl gave a noncrystalline white powder.
- HCl salt of compound 4 Compound 4 was dissolved in minimum amount of CH 2 Cl 2 and MeOH followed by addition of excess HCl in ether. The solvent was removed by N 2 flow, and the residue was subjected to high vacuum overnight. The desired product was obtained as noncrystalline white powder.
- HCl salt of compound 5 Compound 5 was dissolved in minimum amount of CH 2 Cl 2 and MeOH followed by the addition of excess HCl in ether. The solvent and excess HCl were removed by N 2 flow and the residue was subject to high vacuum overnight. The desired product was obtained as noncrystalline white powder.
- Compound CSA-26 was synthesized according to Scheme 1 and Example 1 using 7-deoxycholic acid in place of cholic acid and methyl cholate.
- This example includes a description of one or more exemplary synthetic procedures for obtaining Compounds 3, 28 and 29.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 6, 7 and 30-33.
- Compound 31 Compound 30 (2.4 g, 4.7 mmol) was added to a suspension of LiAlH 4 (0.18 g, 4.7 mmol) in THF (50 mL). The mixture was refluxed for 24 hours, then cooled to 0° C. An aqueous solution of Na 2 SO 4 was carefully added until the grey color of the mixture dissipated. The salts were filtered out, and the filtrate was concentrated in vacuo to yield 2.1 g of a white solid (88%). The product proved to be of sufficient purity for further reactions. m.p.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 8, CSA-7, CSA-8 and 34-40.
- Nitrobenzoate (2.75 g, 3.5 mmol) was dissolved in CH 2 Cl 2 (40 mL) and MeOH (20 mL) and 20% aqueous NaOH (5 mL) were added. The mixture was heated up to 60° C. for 24 hours. Water (100 mL) was introduced and extracted with EtOAc. The combined extracts were washed with brine and dried over anhydrous Na 2 SO 4 . The desired product (1.89 g, 85% yield) was obtained as white solid after SiO 2 chromatography (3% MeOH in CH 2 Cl 2 as eluent). m.p.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds CSA-11 and 43-47.
- Precursor compound 41 was prepared following the method reported by D. H. R. Barton, J. Wozniak, S. Z. Zard, Tetrahedron, 1989, vol. 45, 3741-3754. A mixture of 41 (1.00 g, 2.10 mmol), ethylene glycol (3.52 mL, 63 mmol) and p-TsOH (20 mg, 0.105 mmol) was refluxed in benzene under N 2 for 16 hours. Water formed during the reaction was removed by a Dean-Stark moisture trap. The cooled mixture was washed with NaHCO 3 solution (50 mL) and extracted with Et 2 O (50 mL, 2 ⁇ 30 mL).
- Compound CSA-11 Compound 47 (0.191 g, 0.319 mmol) was dissolved in dry THF (20 mL) followed by the addition of LiAlH 4 (60.4 mg, 1.59 mmol). The grey suspension was stirred under N 2 at room temperature for 12 hours. Na 2 SO 4 .10H 2 O powder was carefully added. After the grey color in the suspension disappeared, anhydrous Na 2 SO 4 was added and the precipitate was filtered out. After the removal of solvent, the residue was purified by column chromatography (silica gel, MeOH/CH 2 Cl 2 /28% NH 3 .H 2 O 3:3:1).
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds CSA-10 and 48-497
- Compound 49 Compound 48 (0.191 g, 0.269 mmol) and 23 (0.295 g, 0.459 mmol) was dissolved in DMF (3 mL, distilled over BaO at 6 mm Hg before use) followed by the addition of NaH (0.054 g, 60% in mineral oil). The suspension was stirred under N 2 at room temperature for 24 hours. H2 O (100 mL) was added to quench excess NaH and the mixture was then extracted with Et 2 O (40 mL, 3 ⁇ 20 mL) and the combined extracts were washed with brine and dried over anhydrous Na z SO 4 .
- Compound CSA-10 Compound 49 (0.219 g, 0.173 mmol) was dissolved in dry THF (10 mL) followed by the addition of LiAlH 4 (65 mg, 1.73 mmol). The grey suspension was stirred under N 2 at room temperature for 12 hours. Na 2 SO 4 .10H 2 O powder was carefully added. After the grey color in the suspension disappeared, anhydrous Na 2 SO 4 was added and the precipitate was filtered out. After the removal of solvent, the residue was purified by column chromatography (silica gel, MeOH/CH 2 Cl 2 /28% NH 3 .H 2 O 2.5:2.5:1).
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 111-113 and 116a-d.
- Compounds 111, CSA-17, and 113 Representative procedure: preparation of CSA-17.
- Compound 116b (0.092 g, 0.134 mmol) was dissolved in THF (10 mL) followed by the addition of LiAlH 4 (0.031 g, 0.81 mmol). The suspension was stirred under N2 for 12 hr. Na 2 SO 4 .10H 2 O (about 1 g) was then carefully added. After the gray color in the suspension dissipated, anhydrous Na 2 SO 4 was added, and the precipitate was removed by filtration.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 106 and 124.
- the alcohol (0.124 g, 0.216 mmol) was dissolved in dry THF (20 mL) followed by the addition of LiAlH 4 (33 mg, 0.866 mmol).
- the gray suspension was stirred under N 2 for 12 hr. Na 2 SO 4 .10 H 2 O (about 2 g) was carefully added. After the gray color in the suspension dissipated, anhydrous Na 2 SO 4 was added and the precipitate was removed by filtration. After the removal of solvent, the residue was purified by column chromatography (SiO 2 , MeOH/CH 2 Cl 2 /28% NH 3 .H 2 O 2.5:2.5:1). After concentration of the relevant fractions, 1 M HCl (2 mL) was added to dissolve the milky residue.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 109 and 126-129.
- Compound 126 Compound 126 (2.30 g, 3.52 mmol) was dissolved in MeOH (50 mL) and CH 2 Cl 2 (100 mL). A small amount of Et 3 N was added, and the solution was cooled to ⁇ 78° C. Ozone was bubbled through the solution until a blue color persisted. Me 2 S (4 mL) was introduced followed by the addition of NaBH 4 (0.266 g, 0.703 mmol) in MeOH (10 mL). The resulting solution was allowed to warm and stir overnight. The solution was concentrated in vacuo, and brine (60 mL) was added.
- Compound 109 Compound 129 (0.245 g, 0.391 mmol) was dissolved in THF (30 mL) followed by the addition of LiAlH 4 (59 mg, 1.56 mmol). The gray suspension was stirred under N 2 12 hr. Na 2 SO 4 .10H 2 O powder (about 1 g) was carefully added. After the gray color in the suspension dissipated, anhydrous Na 2 SO 4 was added and the precipitate was removed by filtration. After the removal of solvent, the residue was purified by silica gel chromatography (CH 2 Cl 2 /MeOH/28% NH 3 .H 2 O 10:5:1 then 10:5:1.5).
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 108 and 130.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds CSA-21, 133-134 and CSA-15.
- Compound CSA-21 Compound 115 (0.118 g, 0.183 mmol) was dissolved in dry CH 2 Cl 2 (10 mL), and SO 3 pyridine complex (0.035 g, 0.22 mmol) was added. The suspension was stirred for 12 hr. The solvent was removed in vacuo to give white powder. To the white powder was added 1 M HCl (10 mL) and the resulting mixture was extracted with CH 2 Cl 2 (4 ⁇ 10 mL). The combined extracts were dried over anhydrous Na 2 SO 4 . The desired product (0.11 g, 84%) was obtained as a pale yellow oil after silica gel chromatography (10% MeOH in CH 2 Cl 2 ).
- Compound CSA-46 was prepared using the methods of CSA-13, substituting 7-deoxycholic steroid backbone precursor in place of cholic acid.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 203a-b, 207a-c, 209a-c, 210a-b and CSA-31.
- Triamides of glycine and (3-alanine (207a and 207b, respectively) were formed using the same reaction conditions (Scheme 12). Triamides with ⁇ -branched amino acids could also be formed. For example, under the conditions described, a triamide with bis-BOC-lysine side chains was formed (compound 207c).
- the C24 esters of 207a-c were hydrolyzed with LiOH in THF and methanol to give alcohols 208a-c. Deprotection using HCl in dioxane (208a-c) gave triamides 209a-c in good yield.
- alcohols 208a and 208b were mesylated and reacted with benzylmethyl amine. Deprotection of the resulting compounds with HCl in dioxane gave triamides 210a and 210b (Scheme 12).
- Compound CSA-31 was prepared by analogy to compounds 210a and 210b.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 302, 312-321, 324-326, 328-331 and 341-343.
- Compound 302 Compound 308 (5 ⁇ -cholanic acid 3,7,12-trione methyl ester) was prepared from methyl cholate and pyridinium dichromate in near quantitative yield from methyl cholate.
- Compound 308 can also be prepared as described in Pearson et al., J. Chem. Soc. Perkins Trans. 1 1985, 267; Mitra et al., J. Org. Chem. 1968, 33, 175; and Takeda et al., J. Biochem. (Tokyo) 1959, 46, 1313.
- Compound 308 was treated with hydroxyl amine hydrochloride and sodium acetate in refluxing ethanol for 12 hr (as described in Hsieh et al., Bioorg. Med. Chem. 1995, 3, 823), giving 309 in 97% yield.
- the resulting suspension was made alkaline by adding solid KOH.
- the suspension was filtered and the solids were washed with MeOH.
- the combined filtrate and washings were combined and concentrated in vacuo.
- the resulting solid was suspended in 6% aqueous KOH (100 mL) and extracted with CH 2 Cl 2 (4 ⁇ 75 mL).
- the combined extracts were dried over Na 2 SO 4 and solvent was removed in vacuo to give 1.14 g of a white solid.
- the mixture was chromatographed on silica gel (CH 2 Cl 2 /MeOH/NH 4 OH 12:6:1) giving 302 (0.282 g, 33% yield), 3 (0.066 g, 8% yield), 4 (0.118 g, 14% yield).
- Octanyl cholate (328) Cholic acid (3.14 g, 7.43 mmol) and 10-camphorsulfonic acid (0.52 g, 2.23 mmol) were dissolved in octanol (3.5 mL, 23.44 mmol). The solution was warmed to 40-50° C. in oil bath under vacuum (about 13 mm/Hg). After 14 h, the remaining octanol was evaporated under high vacuum. The crude product was purified via chromatography (silica gel, 5% MeOH in CH 2 Cl 2 ) to afford the desired product (2.81 g, 73% yield) as a white powder.
- Benzyl cholate (312) Cholic acid (4.33 g, 10.62 mmol) and 10-caphorsulfonic acid (0.493 g, 2.21 mmol) were dissolved in benzyl alcohol (1.97 mL, 19.3 mmol). The suspension was heated to 50° C., in oil bath and stirred under vacuum (about 13 mm/Hg) for 16 h. Excess benzyl alcohol was removed in vacuo, and the crude product was chromatographed (silica gel, 5% MeOH in CH 2 Cl 2 ) to give the desire product as a white powder (4.23 g, 81% yield).
- This example includes data indicating the stability of Compounds 352-354 under acidic, neutral and basic conditions.
- the amines are expected to be protonated and the compounds showed relative stability. At higher pH, the amines were less strongly protonated and became involved in ester hydrolysis.
- the ⁇ -aminobutyric acid-derived compound was especially susceptible to hydrolysis, presumably yielding pyrrolidone.
- the compounds are believed to hydrolyse to give cholic acid, choline or octanol, and glycine, beta-alanine, or pyrrolidone, depending on the particular compound.
- hydroxyl groups on cholic acid can be converted into amine groups as described in in Hsieh et al. (Synthesis and DNA Binding Properties of C3-, C12-, and C24-Substituted Amino-Steroids Derived from Bile Acids, Biorganic and Medicinal Chemistry, 1995, vol. 6, 823-838).
- This example includes various materials and methods. This example also includes data indicating that the CSAs have anti-herpesvirus activity.
- HSV Human Herpes Simplex Virus Type 2
- E-MEM Eagles Minimum Essential Media
- FCS fetal calf serum
- penicillin/streptomycin Freshly trypsinized lung fibroblasts were grown 3 days to confluence and inoculated with approximately 1 plaque-forming unit (PFU) per cell in culture medium. Cells were checked daily for cytopathic effects. The supernatant was harvested after 48-72 hours of incubation at 37° C. in 5% CO 2 , freeze thawed five times and centrifuged 15 minutes at 1000 RPM.
- PFU plaque-forming unit
- Virus adsorption took place for 1 hour at 37° C. in 5% CO 2 and was followed by the addition of E-MEM with 2.5% FCS. After 48 hours of incubation, cytopathic effects were observed, media was removed and cells fixed with formalin-crystal violet. Plaques were visualized on an Inverted Nikon Microscope under 1.3 ⁇ 10 magnification. Virus stocks were stored at ⁇ 70° C. until us.
- BS-C-1 African Green Monkey Kidney Cells, ATCC CCL-26 cells were seeded at 2 ⁇ 10 5 cells/well in 24 well plates and allowed to grow to confluence overnight at 37° C., 5% CO 2 in E-MEM with 10% FCS and 1% penicillin/streptomycin.
- CSA-8, CSA-13, CSA-31 and CSA-54 were used in 7 dilutions from 1-100 ⁇ M. ( FIG. 1 ).
- Each of the CSAs were added to an eppendorf tube containing 1 ⁇ 10 3 PFU HSV and incubated for 24 hours at 37° C. in a volume not to exceed 0.1 ml. Growth media was removed from the cell sheet and rinsed once using E-MEM with 2.5% FCS.
- the virus:CSA solution was added to the cells and adsorbed for 1 hour at 37° C. and 5% CO 2 .
- Growth media was added to 0.5 ml and incubated for 48 hours. Media was then removed and cells fixed with formalin-crystal violet. The antiviral activity of these CSA was determined by counting viral forming plaques within the wells and multiplying by the dilution factors used ( FIG. 11 ).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Steroid Compounds (AREA)
Abstract
The invention provides methods for decreasing or inhibiting herpesviridae (HV) infection or pathogenesis of a cell in vitro, ex vivo or in vivo, a symptom or pathology associated with a herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo, or an adverse side effect of herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo. In one embodiment, a method of the invention includes treating a subject with an invention compound (e.g., cationic steroid antimicrobial or CSA).
Description
- This application claims the benefit of priority of provisional application Ser. No. 60/764,129, filed Feb. 1, 2006, which is expressly incorporated herein by reference.
- Work described herein was supported in part by grants N01-AI-40029, awarded by the National Institutes of Health. The United States Government may have certain rights in this invention.
- The invention relates to methods for decreasing or inhibiting Herpesviridae (HV) infection or pathogenesis of a cell in vitro, ex vivo or in vivo, a symptom or pathology associated with a herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo, or an adverse side effect of herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo. In one embodiment, a method of the invention includes treating a subject with an invention compound (e.g., cationic steroid antimicrobial or CSA).
- Vaccination has remained the best method for preventing virus spread. The herpes simplex virus (HV) candidate vaccines tested till now were mostly purified subunit vaccines and/or recombinant envelope glycoproteins (such as gB and gD). In various animal studies, protection against acute virus challenge was demonstrated along with the reduction of the extent of latency, when established in the immunized host. However, the immunotherapeutic effect of herpes vaccines seems less convincing.
- Cationic steroid antimicrobials (CSAs) were developed as functional mimics of endogenous peptide antibiotics such as LL-37. A series of CSAs have been developed and CSAs are highly active against specific lipid-enveloped viruses including herpesviridae (HV) (e.g., herpes simplex virus). Antiviral activities of multiple CSAs have been measured, and active and inactive forms have been identified.
-
FIG. 1 is a drawing showing compounds of the invention. -
FIG. 2 is a drawing showing compounds CSA-26 and CSA-46. -
FIG. 3 is adrawing showing compound 134. -
FIG. 4 is a drawing showing compound CSA-10. -
FIG. 5 is a drawing showing compound 140. -
FIG. 6 is a drawing showing compound CSA-31. -
FIG. 7 is a drawing showing compounds 352-354. -
FIG. 8 is a drawing showing compounds 341-343 and 324-327. -
FIG. 9 is a drawing showingcompounds 358. -
FIG. 10 is a drawing showing various compounds of the invention (CSAs). -
FIG. 11 shows antiviral activity of CSA-8, CSA-13, CSA-31 and CSA-54, as determined by a viral killing assay. - In accordance with the invention, there are provided methods for decreasing or inhibiting herpesviridae (HV) infection or pathogenesis of a cell in vitro, ex vivo or in vivo, a symptom or pathology associated with a herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo, or an adverse side effect of herpesviridae (HV) infection or pathogenesis in vitro, ex vivo or in vivo. In one embodiment, a method of the invention includes treating a subject with an invention compound (e.g., cationic steroid antimicrobial or CSA), wherein the subject is in need of treatment with CSA anti-herpesviridae (HV) activity or function, in order to provide the subject with a beneficial effect or improvement. In another embodiment, a method of the invention includes providing a subject with protection against a herpesviridae (HV) infection or pathogenesis by administering a composition comprising a sufficient amount of CSA to provide the subject with protection against a herpesviridae (HV) infection or pathogenesis. In a further embodiment, a method of the invention includes treating a subject for herpesviridae (HV) infection or pathogenesis by administering a composition comprising a sufficient amount of CSA to treat the subject for the herpesviridae (HV) infection or pathogenesis. In an additional embodiment, a method of the invention includes decreasing susceptibility of a subject to a herpesviridae (HV) infection or pathogenesis by administering a composition comprising a sufficient amount of CSA to decrease susceptibility of the subject to a herpesviridae (HV) infection or pathogenesis. Methods of the invention include administering CSA prior to, concurrently with, or following contact of the subject with, exposure of the subject to, infection with or reactivation of a herpesviridae (HV); and administering CSA prior to, concurrently with, or following development of a symptom or pathology associated with or caused by herpesviridae (HV) infection or reactivation. In various aspects, a compound of the invention (e.g., CSA) is administered prior to (prophylaxis), concurrently with or following infection, contact or exposure of the subject to HV, or reactivation of HV (therapeutic).
- The invention treatment methods therefore include, among other things, therapeutic and prophylactic methods. Subjects can be contacted with, administered ex vivo or in vivo delivered a compound of the invention (e.g., GSA) prior to, concurrently with or following HV exposure or contact, HV infection, development of a symptom or pathology associated with or caused by a HV infection or pathogenesis, or reactivation of HV from latency.
- The term “therapeutic” and grammatical variations thereof means the subject has a herpesviridae (HV) infection, for example, the subject exhibits one or more symptoms or pathologies associated with or caused by an acute or chronic HV infection, reactivation or pathogenesis as set forth herein or known in the art. The term “therapeutic” also includes a subject that has been exposed to or contacted with HV but may not exhibit one or more symptoms or pathologies associated with or caused by acute or chronic HV infection, reactivation or pathogenesis, as set forth herein or known in the art.
- “Prophylaxis” and grammatical variations thereof refer to contact, administration or in vivo delivery to a subject prior to a known contact with or exposure to herpesviridae (HV). In situations where it is not known if a subject has been contacted with or exposed to HV, contact with, administration or in vivo delivery of a compound to a subject occurs prior to manifestation or onset of a symptom associated with or caused by HV infection or pathogenesis. In such a method, the effect of contact with, administration or in vivo delivery of a compound of the invention (e.g., CSA) can be to eliminate, prevent, inhibit, decrease or reduce the probability of or susceptibility towards developing an HV infection, reactivation or pathogenesis, or a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis.
- As used herein, the term “associated with,” when used in reference to the relationship between a symptom, pathology or adverse side effect of herpesviridae (HV), means that the symptom, pathology or side effect is caused by HV infection, reactivation from latency, or pathogenesis, or is a secondary effect of HV infection, reactivation from latency, or pathogenesis. A symptom, pathology or side effect that is present in a subject may therefore be the direct result of or caused by the herpesviridae (HV) infection, reactivation or pathogenesis, or may be clue at least in part to the subject reacting or responding to HV infection, reactivation, or pathogenesis (e.g., the immunological response). For example, a symptom or pathology that occurs during a herpesviridae (HV) infection, reactivation or pathogenesis may be due in part to an inflammatory response of the subject.
- The invention also provides methods for decreasing or preventing an adverse side effect caused by vaccination of a subject with or against a herpesviridae (HV). In one embodiment, a method includes administering a sufficient amount of CSA to the subject to decrease or prevent an adverse side effect caused by vaccination with a herpesviridae (HV). In one aspect, the herpesviridae (HV) comprises an alpha-, beta- or gamma-herpesvirus (e.g., herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2), varicella zoster virus (VZV/HHV-3), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpes virus-6, -7 or -8 (HHV-6, HHV-7, or HHV-81 Kaposi's sarcoma herpesvirus/KSHV)).
- Herpesviridae (HV) is typically found in biological fluids, cells, tissues or organs, in vivo. Accordingly, HV present in any biological fluid, cell, tissue or organ, is treatable with the invention compounds and methods, locally, regionally or systemically. In particular embodiments, HV is present in a biological fluid (e.g., mucus, saliva, blood, serum, plasma, cerebrospinal fluid, urine, or placenta); in a tissue or organ comprising a transplant; in an immune cell, tissue or organ, mucosal cell, tissue or organ, neural cell, tissue or organ, or epithelial cell, tissue or organ. In particular aspects, an immune cell is a T cell or a B cell; a mucosal cell or tissue is mouth, buccal cavity, labia, nasopharynx, esophagus, trachea, lung, stomach, small intestine, vagina, rectum, or colon; a neural cell or tissue is ganglia, motor or sensory neuron; and an epithelial cell or tissue is nose, fingers, ears, cornea, conjunctiva, skin or dermis.
- In particular embodiments of the compounds and methods of the invention, a CSA is selected from: CSA-7, CSA-8, CSA-10, CSA-11, CSA-13, CSA-15, CSA-17, CSA-21, CSA-25, CSA-26, CSA-31, CSA-46, CSA-54 and CSA-59, as set forth in
FIG. 10 . In other embodiments, a CSA does not have a charged group at position C24 or a CSA has a hydrophobic moiety at position C24 (e.g., a lipid). In additional embodiments, a CSA has a charged group at position C7. In further embodiments, a CSA comprises a multimer (e.g., a dimer, trimer, tetramer or higher order polymer). In yet additional embodiments, a CSA has a shorter tether length between the steroid scaffold and any amine group at positions C3, C7 or C12, relative to the tether length between the steroid scaffold and any amine group at positions C3, C7 or C12 of CSA-7, CSA-8, CSA-10, CSA-11, CSA-13, CSA-15, CSA-17, CSA-21, CSA-25, CSA-26, CSA-31, CSA-46, CSA-54 or CSA-59, as set forth inFIG. 10 . - Methods of treatment include reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more adverse side effects associated with herpesviridae (HV) vaccination (e.g., a live or attenuated pathogenic or non-pathogenic HV, a vaccine comprising an HV protein, such as glycoprotein D, etc.). Non-limiting examples of adverse side affects associated with HV vaccination treatable with a compound of the invention include fatigue, weakness, headache, fever, stomach ache/nausea, flu-like symptoms, rash, vomiting, inflammation (cerebral or ocular) and fainting.
- Methods of the invention, including, for example, prophylactic and therapeutic treatment methods, as well as methods for decreasing or preventing an adverse side effect caused by vaccination with or against herpesvirus, are applicable to HV generally, more specifically, the members of the family Herpesviridae. Herpesviridae (HV) includes any strain or isolate or subtype or a species of HV, or combination of strains or isolates or subtypes or species of herpesviruses. Particular examples are infectious or pathogenic viruses. Specific non-limiting examples of HV the subject of treatment with an invention compound (e.g., CSA) include, for example, live or attenuated pathogenic and non-pathogenic HV. Exemplary I-IV include, alpha-, beta- and gamma-herpesvirus. Particular non-limiting examples of alpha-virus include herpes simplex virus-1 (HSV-1), herpes simplex virus-2 (HSV-2) and varicella zoster virus (VZV/HHV-3). Particular non-limiting examples of beta- and gamma-herpesvirus include cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpes virus-6, -7 and -8 (HHV-6, HHV-7, or HHV-8/Kaposi's sarcoma herpesvirus/KSHV).
- Methods of the invention include methods of treatment that results in a beneficial effect. Particular non-limiting examples of beneficial effects include providing a subject with partial or complete protection against HV infection, reactivation or pathogenesis, or a symptom caused by a HV infection, reactivation or pathogenesis (e.g., inhibit or reduce probability or susceptibility). Particular non-limiting examples of beneficial effects also include reducing, decreasing, inhibiting, delaying or preventing HV infection, reactivation or pathogenesis, and reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with a HV infection, reactivation or pathogenesis. Additional non-limiting examples of beneficial effects also include reducing, decreasing, amounts of, or inhibiting, delaying or preventing increases in HV titer or viral load, proliferation or replication. Further non-limiting particular examples of beneficial effects include reducing, decreasing, inhibiting, delaying, ameliorating or preventing onset, progression, severity, duration, frequency, probability or susceptibility of a subject to HV infection, reactivation or pathogenesis, or accelerating, facilitating or hastening recovery of a subject from HV infection, reactivation or pathogenesis or one or more associated symptoms or pathologies.
- Methods of the invention therefore include providing a beneficial or therapeutic effect to a subject, for example, reducing, decreasing, inhibiting, delaying, ameliorating or preventing onset, progression, severity, duration, frequency or probability of HV infection, reactivation or pathogenesis or one or more symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis; reducing, decreasing, inhibiting, delaying or preventing increases in HV titer, viral load, replication, proliferation, or an amount of a viral protein of one or more HV strains or isolates or subtypes. Stabilizing the infection, reactivation, or a symptom or pathology thereof, or preventing, inhibiting or delaying reactivation, worsening or progression of infection, reactivation or a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis, or progression of the underlying HV infection, are also included in various embodiments of the methods of the invention.
- Invention methods are applicable to providing a subject with protection against HV infection, reactivation or pathogenesis, treating a subject for HV infection, reactivation and pathogenesis; and decreasing susceptibility or inhibiting HV reactivation from latency in a subject. The invention methods are therefore applicable to HV infection that is in an active state, latent state or reactivated state.
- The term “infection,” when used in reference to means a initial or primary infection. An infection may be “infectious” in the sense that HV infects other sites in the infected host subject, or contagious to other subjects (cross-infection), or may be latent, in which case HV does not generally infect other sites or is contagious to other subjects. In immunocompetent subjects, initial/primary infection is usually either asymptomatic or causes mild pathogenesis or symptoms; only a small proportion of subjects develop more severe clinical illness. Primary infection is self-limiting in immunocompetent patients. In contrast, primary HV infection in immunocompromised subjects (e.g., immunosuppressant treatment, HIV+, newborns/neonates, pregnant, elderly subjects, etc.), can result in severe symptoms and even be fatal.
- Following a primary or initial HV infection, the virus establishes “latency,” in the host subject which allows the virus to evade immune clearance and remain in the host subject, and infection is lifelong. In the latent state HV does not typically cause illness or symptoms, there is little if any viral replication and the subject is not infectious or contagious. Latency, also referred to as “latent infection” may occur in a different cell type from that of the initial/primary HV infection.
- The term “reactivation,” when used in reference to HV, means activation of HV in the host subject following a period of latency. Reactivation is associated with increased viral replication and proliferation in an HV infected host subject, who becomes infectious and contagious again. Symptoms and pathologies associated with or caused by HV reactivation may or may not be the same type, severity, frequency or duration as initial HV infection and subsequent pathogenesis. For example, VZV/HHV-3 causes chickenpox (primary infection) and shingles (reactivation). Reactivation can be milder (e.g., asymptomatic) than an initial HV infection/pathogenesis, in which case it would not be obvious whether a host subject is in a latent or reactivated state. In immunocompetent host subjects reactivation is typically mild, whereas in immunocompromised host subjects, symptoms associated with or caused by reactivation can be severe and lead to death. Thus, clinical manifestations associated with reactivation may be different from that observed with an initial/primary infection. Accordingly, a single HV can cause different clinical symptoms or pathologies. One symptom of HV reactivation is the appearance of “cold sores” around mucosal areas (e.g., mouth, lips, tongue, genitalia, etc.). Reactivation occurs periodically and can be induced by stress, immune suppression, etc.
- Specific examples of symptoms and pathologies associated with or caused by herpesviridae (HV) infection, reactivation or pathogenesis, whose onset, progression, severity, frequency, duration or probability can be reduced, decreased inhibited, delayed ameliorated or prevented include, for example, lesions, ulcers, canker sore, cold sore, rash, boils, Gingivostomatitis, Herpetic whitlow Traumatic herpes (herpes gladiatorum), Eczema herpeticum, fever, fatigue, headache, sore throat, swollen lymph nodes, pneumonitis, pneumonia, hepatitis, meningitis, myelitis, Encephalitis, keratitis, Genital herpes, esophagitis, dysphasia, hemiparesis, coma, shingles, chicken pox, mononucleosis, chronic or acute pelvic inflammatory disease (PID), proctitis, colitis, nerve damage and death. Other symptoms and pathologies of HV infection, reactivation or pathogenesis, are known in the art and treatment thereof in accordance with the invention is provided.
- The methods of the invention, including, among other methods, providing a subject with protection against a herpesviridae (HV) infection, reactivation or pathogenesis, treatment of a herpesviridae (HV) infection, reactivation or pathogenesis, or a symptom or pathology associated with or caused by herpesviridae (HV) infection, reactivation or pathogenesis, or decreasing susceptibility of a subject to a herpesviridae (HV) infection, reactivation or pathogenesis, can therefore result in an improvement in the subjects' condition. An improvement is therefore any objective or subjective reduction, decrease, inhibition, delay, ameliorating or prevention of onset, progression, severity, duration, frequency or probability of one or more symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis (e.g., illness), or virus titer, viral load, replication, proliferation, or an amount of a viral protein. An improvement would also include reducing, inhibiting or preventing increases in virus titer, viral load, replication, proliferation, or an amount of a viral protein of one or more HV strains or isolates or subtypes or species. An improvement would further include stabilizing a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis, or inhibiting, decreasing, delaying or preventing a worsening or progression of the symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis, or progression of the underlying HV infection. An improvement can therefore be, for example, in any of lesions, ulcers, canker sore, cold sore, rash, boils, Gingivostomatitis, Herpetic whitlow Traumatic herpes (herpes gladiatorum), Eczema herpeticum, fever, fatigue, headache, sore throat, swollen lymph nodes, pneumonitis, pneumonia, hepatitis, meningitis, myelitis, Encephalitis, keratitis, Genital herpes, esophagitis, dysphasia, hemiparesis, coma, shingles, chicken pox, mononucleosis, chronic or acute pelvic inflammatory disease (PID), proctitis, colitis, nerve damage and death to any degree or for any duration of time (hours, days, weeks, months, years, or cure).
- An improvement would also include reducing or eliminating a need, dosage amount or frequency of another treatment, such as an antiviral drug or other agent used for treating a subject having or at risk of having a herpesviridae (HV) infection, reactivation or pathogenesis, a symptom or pathology associated with or caused by herpesviridae (HV) infection, reactivation or pathogenesis, or decreasing or preventing an adverse side effect caused by vaccination with or against a herpesviridae (HV). Thus, reducing an amount of another treatment for HV infection, reactivation or pathogenesis, a symptom or pathology associated with or caused by HV, or an adverse side effect caused by vaccination with or against a HV is considered to provide a benefit and, therefore, is considered within the invention methods. Non-limiting exemplary HV treatments that may be eliminated or used at reduced doses or frequencies of administration include protease inhibitors, reverse transcriptase inhibitors, virus fusion inhibitors and virus entry inhibitors. Additional non-limiting exemplary HV and other treatments include AK602, AMD070, APV, ATV, ATZ, AVX754, AZT, Abacavir, Acyclovir, Adefovir dipivoxil, Adriamycin, Agenerase, Aldesleukin, Alovudine, AmBisome, Amdoxovir, Amphocin, Amphotec, Amphotericin B, Ampligen, Amprenavir, Androderm, Androgel, Aptivus, Atazanavir, Azithromycin, BMS-488043, Bactrim, Baraclude, Biaxin, BufferGel, C31G, CD4-IgG2, CPV, CS, Calanolide A, Capravirine, Carbopol 974P, Carrageenan, Carraguard, Cellulose sulfate, Cidofovir, Clarithromycin, Combivir, Copegus, Cotrimoxazole, Crixivan, Cyanovirin-N, Cytovene, DAPD, DLV, DPC 817, DS, Delavirdine, Depo-Testosterone, Dextran sulfate, Didanosine, Diflucan, Docosanol, Doxil, Doxorubicin, Dronabinol, EFV, Efavirenz, Elvucitabine, Emtricitabine, Emtriva, Enfuvirtide, Entecavir, Epivir, Epoetin alfa, Epogen, Epzicom, Etopophos (phosphate salt), Etoposide, Etravirine, Famcyclovir, Fluconazole, Foscarnet, Fortovase, Fosamprenavir, Fungizone, Fuzeon, GSK-873,140 (aplaviroc), GW433908, Gammar-P, Ganciclovir, Growth hormone, Human growth hormone, HEC, Hepsera, Hivid, Hydroxyethyl cellulose, IDV, IGIV, Interleukin-2 (IL-2), INH, Immune Globulin, Indinavir, Interferon alfa-2, Intron A (2b), Invirase, Isoniazid, Isoprinosine, Itraconazole, KP-1461, Kaletra, L-000870810, LPV/RTV, Lamivudine, Lexiva, Marinol, Megace, Megestrol, Mycobutin, NFV, NVP, Naphthalene 2-sulfonate polymer, Nebupent, Nelfinavir, Neutrexin, Nevirapine, New-Fill, Norvir, Nydrazid, Onxol, PA-457, PMPA, PRO2000, PRO542, Paclitaxel, Paxene, Pegasys (2a), Pentamidine, Peptide T, Poly(I)-Poly(C12U), Poly-L-lactic acid, Polygam SID, Procrit, Proleukin, RCV, RTV, RVT, Racivir, Rebetol, Rescriptor, Retrovir, Reverset, Reyataz, Ribavirin, Rifabutin, Rifadin, Rifampin, Rimactane, Ritonavir, Roferon-A (2a), SCH-C, SCH-D (vicriviroc), SQV, Saquinavir, Savvy, Sculptra, Septra, Serostim, Somatropin, Sporanox, Stavudine, Sulfarnethoxazole, Sustanon, Sustiva, T-20, TDF, THC, TMC114, TMC125, TNX-355, Taxol, Tenofovir, Tenofovir disoproxil fumarate, Testosterone, Tipranavir, Toposar, Trimethoprim, Trimetrexate, Trizivir, Truvada, UC-781, UK-427,857 (maraviroc), Ushercell, Valacyclovir, Vaicyte, Valgancielovir, Valproic acid, VePesid, Vicriviroc, Vidabrine, Videx, Viracept, Viramune, Virazole, Viread, Vitrasert, ZDV, Zalcitabine, Zerit, Ziagen, Zidovudine, Zithromax, Zovirax, D4T, ddC, β-LFddC, P-LFd4C, DDI, f-APV, 3TC and human erythropoietin (EPO). Further non-limiting exemplary treatments include cytokines, chemokines, interferons and interleukins. Yet additional non-limiting exemplary HV treatments include an antibody that binds to an HV protein, such as an envelope protein (e.g., glycoprotein gp42, gp350, gpK8.1A, B, C, D, E, H, L (gB, gC, gD, gE, gH, gL)), tegument protein (e.g., UL17, UL36, UL37, UL48, UL49, US11, UL11, UL14, UL16, UL21, UL41, UL46, UL47, VP13/14, VP16, VP22, etc.), capsid protein (e.g., VP5, VP19c, VP21, VP23, VP24, VP26, etc.), core protein or polymerase. Still further non-limiting exemplary HV treatments include vaccination, such as with an attenuated or live HV.
- A treatment or improvement need not be complete ablation of any particular infection, reactivation, pathogenesis, symptom, pathology or adverse side effect, or all of the infection, reactivation, pathology, symptoms, pathologies or adverse side effects associated with or caused by HV infection, reactivation or pathogenesis, or vaccination with or against HV. Rather, treatment may be any objective or subjective measurable or detectable anti-virus effect or improvement in a treated subject. Thus, reducing, inhibiting decreasing, eliminating, delaying, halting or preventing a progression or worsening of the infection, reactivation or pathogenesis, a symptom or pathology of the infection, reactivation or pathogenesis, or an adverse side effect caused by vaccination is a satisfactory outcome. For example, a compound of the invention (e.g., CSA) may reduce, inhibit, delay formation of, or stabilize lesions, ulcers, canker sores, or cold sores, but not have a measurable effect on rash, boils, Gingivostomatitis, Herpetic whitlow Traumatic herpes (herpes gladiatorum), Eczema herpeticum, fever, fatigue, headache, sore throat, swollen lymph nodes, pneumonitis, pneumonia, hepatitis, meningitis, myelitis, Encephalitis, keratitis, Genital herpes, esophagitis, dysphasia, hemiparesis, coma, shingles, chicken pox, mononucleosis, chronic or acute pelvic inflammatory disease (PID), proctitis, colitis, nerve damage or death. Another example is where a compound of the invention reduces fever or fatigue, without a detectable improvement in one or more other symptoms or pathologies. Thus, a satisfactory clinical endpoint is achieved when there is an incremental improvement in the subject's condition or a partial reduction or a stabilization of a HV infection, reactivation, pathogenesis or a symptom, pathology or adverse side effect thereof, or an inhibition or prevention of worsening or progression of the HV infection, reactivation, pathogenesis, symptom, pathology or adverse side effect thereof (stabilizing one or more symptoms or pathologies), over a short or long duration (hours, days, weeks, months, years, or cure).
- In the methods of the invention in which there is a desired outcome, for example, a therapeutic or prophylactic method that provides an objective or subjective improvement in a HV infection, reactivation or pathogenesis, a symptom or pathology associated with or caused by HV, or an adverse side effect caused by vaccination with or against HV or an HV treatment, a compound of the invention (e.g., CSA) can be administered in a sufficient or effective amount. As used herein, a “sufficient amount” or “effective amount” or an “amount sufficient” or an “amount effective” refers to an amount that provides, in single or multiple doses, alone or in combination with one or more other compounds, treatments, agents (e.g., a drug) or therapeutic regimens, a long term or a short term detectable or measurable improvement or beneficial effect to a given subject of any degree or for any time period or duration (e.g., for minutes, hours, days, months, years, or cured).
- A “sufficient amount” or “effective amount” therefore includes decreasing, reducing, inhibiting, preventing, or delaying onset; decreasing, reducing, inhibiting, delaying, or preventing a progression or worsening of or reducing, relieving, ameliorating, or alleviating, severity, frequency, duration, susceptibility or probability of HV infection, reactivation or pathogenesis, one or more symptoms associated with or caused by HV infection, reactivation or pathogenesis, or an adverse side effect of vaccination with or against a HV or an HV treatment. In addition, hastening a subject's recovery from HV infection, reactivation or pathogenesis, one or more symptoms associated with or caused by HV infection, reactivation or pathogenesis, or an adverse side effect of vaccination with or against a HV or an HV treatment is considered to be a sufficient or effective amount. Various beneficial effects and indicia of therapeutic and prophylactic benefit are as set forth herein and are known to the skilled artisan.
- A sufficient amount or an effective amount can but need not be provided in a single administration and can but need not be administered alone (i.e., without a second drug, agent, treatment or therapeutic regimen), or in combination with another compound, agent, treatment or therapeutic regimen. In addition, a sufficient amount or an effective amount need not be sufficient or effective if given in single or multiple doses without a second compound, treatment, agent, or therapeutic regimen, since additional doses, amounts, frequency or duration of administration above and beyond such doses, or additional compounds, agents, treatments or therapeutic regimens may be included in order to be effective or sufficient in a given subject.
- A sufficient amount or an effective amount need not be effective in each and every subject, nor a majority of subjects in a given group or population. Thus, a sufficient amount or an effective amount means sufficiency or effectiveness in a particular subject, not a group or the general population. As is typical for such methods, some subjects will exhibit a greater or less response to a method of the invention than other subjects.
- Amounts, frequencies or duration also considered sufficient and effective and are therefore beneficial are those that result in the elimination or a reduction in amount, frequency or duration of another compound, agent, treatment or therapeutic regimen. For example, a compound of the invention is considered as having a beneficial or therapeutic effect if contact, administration or delivery in vivo results in the use of a lesser amount, frequency or duration of another compound, agent, treatment or therapeutic regimen to treat the infection, pathogenesis, symptom or pathology, or adverse side effect of vaccination.
- Any compound, agent, treatment (e.g., a biologically active ingredient) or other therapeutic regimen having a beneficial, additive, synergistic or complementary activity or effect can be formulated or used in combination with or in addition to the invention compounds (e.g., CSAs). In various embodiments, the compound, agent, treatment or therapeutic regimen is for providing a subject with protection against HV infection, reactivation or pathogenesis; treating a subject for HV infection, reactivation or pathogenesis; decreasing susceptibility of a subject to a HV infection, reactivation or pathogenesis; or decreasing or preventing an adverse side effect caused by HV vaccination or an HV treatment. Thus, compositions of the invention include CSA combinations with other CSAs, CSA combinations with other agents or treatments (e.g., biologically active ingredients such as anti-herpesvirus drugs, such as acyclovir, herpesvirus proteins, herpesvirus antibodies, herpesvirus vaccines, etc.), and methods of the invention include contact with, administration in vitro or in vivo, with another compound (e.g., another CSA or biologically active ingredient), agent, treatment or therapeutic regimen appropriate for the condition to be treated. The compound (e.g., another CSA or biologically active ingredient), agent, treatment or therapeutic regimen appropriate may be used in accordance with the prophylactic and therapeutic treatment methods, as well as methods for decreasing or preventing an adverse side effect caused by HV vaccination or HV treatment, as set forth herein, prior to, concurrently or following contacting or administering a compound of the invention (e.g., CSA) in vitro or in vivo.
- Examples of such combination compositions and methods include protease inhibitors, reverse transcriptase inhibitors, virus fusion inhibitors and virus entry inhibitors. Additional examples of combination compositions and methods include other treatments such as AK602, AMD070, APV, ATV, ATZ, AVX754, AZT, Abacavir, Acyclovir, Adefovir dipivoxil, Adriamycin, Agenerase, Aldesleukin, Alovudine, AmBisome, Amdoxovir, Amphocin, Amphotec, Amphotericin B, Ampligen, Amprenavir, Androderm, Androgel, Aptivus, Atazanavir, Azithromycin, BMS-488043, Bactrim, Baraclude, Biaxin, BufferGel, C31G, CD4-IgG2, CPV, CS, Calanolide A, Capravirine, Carbopol 974P, Carrageenan, Carraguard, Cellulose sulfate, Cidofovir, Clarithromycin, Combivir, Copegus, Cotrimoxazole, Crixivan, Cyanovirin-N, Cytovene, DAPD, DLV, DPC 817, DS, Delavirdine, Depo-Testosterone, Dextran sulfate, Didanosine, Diflucan, Docosanol, Doxil, Doxorubicin, Dronabinol, EFV, Efavirenz, Elvucitabine, Emtricitabine, Emtriva, Enfuvirtide, Entecavir, Epivir, Epoetin alfa, Epogen, Epzicom, Etopophos (phosphate salt), Etoposide, Etravirine, Famcyclovir, Fluconazole, Foscarnet, Fortovase, Fosamprenavir, Fungizone, Fuzeon, GSK-873,140 (aplaviroc), GW433908, Gammar-P, Ganciclovir, Growth hormone, Human growth hormone, HEC, Hepsera, Hivid, Hydroxyethyl cellulose, IDV, IGIV, Interleukin-2 (IL-2), INH, Immune Globulin, Indinavir, Interferon alfa-2, Intron A (2b), Invirase, Isoniazid, Isoprinosine, Itraconazole, KP-1461, Kaletra, L-000870810, LPV/RTV, Lamivudine, Lexiva, Marinol, Megace, Megestrol, Mycobutin, NFV, NVP, Naphthalene 2-sulfonate polymer, Nebupent, Nelfinavir, Neutrexin, Nevirapine, New-Fill, Norvir, Nydrazid, Onxol, PA-457, PMPA, PRO2000, PRO542, Paclitaxel, Panne, Pegasys (2a), Pentamidine, Peptide T, Poly(I)-Poly(C12U), Poly-L-lactic acid, Polygam S/D, Procrit, Proleukin, RCV, RTV, RVT, Racivir, Rebetol, Rescriptor, Retrovir, Reverset, Reyataz, Ribavirin, Rifabutin, Rifadin, Rifampin, Rimactane, Ritonavir, Roferon-A (2a), SCH-C, SCH-D (vicriviroc), SQV, Saquinavir, Savvy, Sculptra, Septra, Serostim, Somatropin, Sporanox, Stavudine, Sulfamethoxazole, Sustanon, Sustiva, T-20, TDF, THC, TMC114, TMC125, TNX-355, Taxol, Tenofovir, Tenofovir disoproxil fumarate, Testosterone, Tipranavir, Toposar, Trimethoprim, Trimetrexate, Trizivir, Truvada, UC-781, UK-427,857 (maraviroc), Ushercell, Valacyclovir, Valcyte, Valganciclovir, Valproic acid, VePesid, Vicriviroc, Vidabrine, Videx, Viracept, Viramune, Virazole, Viread, Vitrasert, ZDV, Zalcitabine, Zerit, Ziagen, Zidovudine, Zithromax, Zovirax, D4T, ddC, J3-LFddC, P-LFd4C, DDI, f-APV, 3TC and human erythropoietin (EPO). Further examples of combination compositions and methods include cytokines, chemokines, interferons and interleukins.
- Yet additional examples of combination compositions and methods include an herpesvirus protein or antibodies that bind to herpesvirus proteins. A pool of HV proteins or HV binding antibodies (e.g., monoclonal or polyclonal) can be combined with a compound of the invention or administered separately (prior to, concurrently with or following) administration of a compound in accordance with the invention. In particular embodiments, an additional herpesvirus protein is an envelope protein (e.g., glycoprotein gp42, gp350, gpK8.1A, B, C, D, E, H, L (gB, gC, gD, gE, gH, gL)), tegument protein (e.g., UL17, UL36, UL37, UL48, UL49, US11, UL11, UL14, UL16, UL21, UL41, UL46, UL47, VP13/14, VP16, VP22, etc.), capsid protein (e.g., VP5, VP19c, VP21, VP23, VP24, VP26, etc.), core protein or polymerase.
- Antibodies include proteins that bind to other molecules (antigens) via heavy and light chain variable domains, VH and VL, respectively. An antibody is any polyclonal or monoclonal immunoglobulin molecule, or mixture thereof, such as IgM, IgG, IgA, IgE, IgD, and any subclass thereof, such as IgG1, IgG2, IgG3, IgG4, etc. A monoclonal antibody, refers to an antibody that is based upon, obtained from or derived from a single clone, including any eukaryotic, prokaryotic, or phage clone. An antibody also includes a functional (e.g., binding) fragment or subsequence, such as, for example, Fab, Fab′, F(ab′)2, Fv, Fd, scFv and sdFv, unless otherwise expressly stated.
- Antibodies include those specific or selective for binding to an HV protein or a homolog. That is, binding to proteins other than the HV protein or a homolog is such that the binding does not significantly interfere with detection of the HV protein or homolog, unless such other proteins have a similar or same epitope the HV protein or homolog that is recognized by the HV antibody. Selective binding can be distinguished from non-selective binding using specificity, affinity and other binding assays, competitive and non-competitive, known in the art.
- Antibodies include “human” forms, which mean that the amino acid sequence of the antibody is fully human or can or do exist in a human antibody. An antibody that is non-human may be made fully human by substituting non-human amino acid residues with amino acid residues that can or do exist in a human antibody. Amino acid residues present in human antibodies, CDR region maps and human antibody consensus residues are known in the art (see, e.g., Kabat, Sequences of Proteins of Immunological Interest, 4th Ed. US Department of Health and Human Services. Public Health Service (1987); Chothia and Lesk J. Mol. Biol. 186:651 (1987); Padlan Mol. Immunol. 31:169 (1994); and Padlan Mol. Immunol. 28:489 (1991)).
- Antibodies include “human” forms, which means that the amino acid sequence of the antibody has non-human amino acid residues (e.g., mouse, rat, goat, rabbit, etc.) of one or more complementarity determining regions (CDRs) that specifically bind to the desired antigen in an acceptor human immunoglobulin molecule, and one or more human amino acid residues in the Fv framework region (FR), which are amino acid residues that flank the CDRs. Antibodies referred to as “primatized” in the art are within the meaning of “humanized” as used herein, except that the acceptor human immunoglobulin molecule and framework region amino acid residues may be any primate amino acid residue (e.g., ape, gibbon, gorilla, chimpanzees orangutan, macaque), in addition to any human residue.
- Antibodies include “chimeric” forms, which means that the amino acid sequence of the antibody contains one or more portions that are derived from, obtained or isolated from, or based upon two or more different species. That is, for example, a portion of the antibody may be human (e.g., a constant region) and another portion of the antibody may be non-human (e.g., a murine heavy or light chain variable region). Thus, a chimeric antibody is a molecule in which different portions of the antibody are of different species origins. Unlike a humanized antibody, a chimeric antibody can have the different species sequences in any region of the antibody.
- The term “subject” refers to an animal, typically mammalian animals, such as but not limited to non-human primates (apes, gibbons, gorillas, chimpanzees, orangutans, macaques), domestic animals (dogs and cats), a farm animals (chickens, ducks, horses, cows, goats, sheep, pigs), experimental animal (mouse, rat, rabbit, guinea pig) and humans. Subjects include animal models, for example, a mouse model of herpesvirus infection (e.g., alpha, beta- or gamma-herpesvirus). Subjects include naturally occurring or non-naturally occurring mutated or non-human genetically engineered (e.g., transgenic or knockout) animals. Subjects further include animals having or at risk of having a chronic or acute HV infection, reactivation or pathogenesis, symptom or pathology of HV infection, reactivation or pathogenesis, or adverse side effect caused by vaccination with or against HV or an HV treatment. Subjects can be any age. For example, a subject (e.g., human) can be a newborn, infant, toddler, child, teenager, or adult, e.g., 50 years or older.
- Subjects include those in need of a method of the invention, e.g., in need of a therapeutic or prophylactic treatment. A subject is considered to be in need of a method of the invention where a method is likely to provide some benefit to a subject. Various benefits provided to a subject are as set forth herein and known in the art for HV infection, reactivation or pathogenesis, symptoms or pathologies caused by or associated with HV infection, reactivation or pathogenesis, and adverse side effects caused by vaccination with or against a HV or treatment of HV.
- Subjects appropriate for treatment include those having HV infection, reactivation or pathogenesis or currently or previously having any symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis (e.g., diagnosed as HV+), HV vaccination or an HV treatment, Target subjects therefore include subjects infected with HV that are infectious or contagious, subjects infected with HV that is in a latent state, and subjects in which HV is or has been reactivated from latency. Thus, subjects that have been exposed to a HV (e.g., subjects that do produce an antibody against an HV protein) are appropriate targets. Such subjects may or may not have developed one or more adverse symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis, regardless of the virus type, timing or degree of onset, progression, severity, frequency, duration of any infection, pathogenesis, symptom, pathology or adverse side effect. A subject may therefore be symptomatic or asymptomatic for HV infection, reactivation or pathogenesis.
- Subjects appropriate for treatment also include those at risk of HV infection, reactivation or pathogenesis or at risk of having or developing a symptom or pathology associated with or caused by HV infection, reactivation or pathogenesis. Candidate subjects therefore include subjects that have been exposed to or contacted with HV, or that are at risk of exposure to or contact with HV, regardless of the type, timing or extent of exposure or contact. The invention methods are therefore applicable to a subject who is at risk of HV infection, reactivation or pathogenesis, but has not yet been exposed to or contacted with herpesviridae (HV). Thus, subjects that have not been exposed to a HV (e.g., subjects that do not produce an antibody against an HV protein) are appropriate targets. Prophylactic methods are therefore included. Subjects targeted for prophylaxis can be at increased risk (probability or susceptibility) of herpesviridae (HV) infection or pathogenesis, as set forth herein and known in the art.
- At risk subjects appropriate for treatment include subjects exposed to other subjects having an HV infection or reactivation (infectious or contagious), or where the risk of HV infection is increased due to changes in virus infectivity or cell tropism, immunological susceptibility (e.g., an immunocompromised subject), or environmental risk. At risk subjects appropriate for treatment therefore include human subjects exposed to or at risk of exposure to other humans that have HV infection or reactivation (infectious or contagious), or are at risk of a HV infection or reactivation (infectious or contagious).
- Subjects also appropriate for treatment also include those vaccinated against or a candidate for vaccination against HV (e.g., vaccinated with live or attenuated HV or an HV protein or antibody that binds to an HV protein). Subjects therefore include vaccinated subjects that have not or have been exposed to or contacted with HV, as well as candidate subjects for vaccination that have not or have been exposed to or contacted with HV, regardless of the type, timing or extent of exposure or contact. A subject can be administered a compound of the invention (e.g., CSA) prior to, concurrently with, or following vaccination (e.g., within 0-2, 2-4, 4-12 or 12-24 hours or days of vaccination).
- Subjects further include immunocompromised subjects due to an immunological disorder (e.g., autoimmunity) or disease, or an immune-suppressing treatment (e.g., cyclophosphamide). Subjects also include those having been exposed to or diagnosed as HV+. Subjects further include those receiving or candidates for a tissue or organ transplant.
- Compounds of the invention, including CSAs, can be incorporated into pharmaceutical compositions or formulations. Such pharmaceutical compositions/formulations are useful for administration to a subject, in vivo or ex vivo.
- Pharmaceutical compositions and formulations include carriers or excipients for administration to a subject. As used herein the terms “pharmaceutically acceptable” and “physiologically acceptable” mean a biologically compatible formulation, gaseous, liquid or solid, or mixture thereof, which is suitable for one or more routes of administration, in vivo delivery or contact. A formulation is compatible in that it does not destroy activity of an active ingredient therein (e.g., a GSA), or induce adverse side effects that fax outweigh any prophylactic or therapeutic effect or benefit.
- Such formulations include solvents (aqueous or non-aqueous), solutions (aqueous or non-aqueous), emulsions (e.g., oil-in-water or water-in-oil), suspensions, syrups, elixirs, dispersion and suspension media, coatings, isotonic and absorption promoting or delaying agents, compatible with pharmaceutical administration or in vivo contact or delivery. Aqueous and non-aqueous solvents, solutions and suspensions may include suspending agents and thickening agents. Such pharmaceutically acceptable carriers include tablets (coated or uncoated), capsules (hard or soft), microbeads, powder, granules and crystals. Supplementary active compounds (e.g., preservatives, antibacterial, antiviral and antifungal agents) can also be incorporated into the compositions.
- The formulations may, for convenience, be prepared or provided as a unit dosage form. Preparation techniques include bringing into association the active ingredient (e.g., GSA) and a pharmaceutical carrier(s) or excipient(s). In general, formulations are prepared by uniformly and intimately associating the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product. For example, a tablet may be made by compression or molding. Compressed tablets may be prepared by compressing, in a suitable machine, an active ingredient (e.g., a CSA) in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent. Molded tablets may be produced by molding, in a suitable apparatus, a mixture of powdered compound (e.g., CSA) moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide a slow or controlled release of the active ingredient therein.
- Cosolvents and adjuvants may be added to the formulation. Non-limiting examples of cosolvents contain hydroxyl groups or other polar groups, for example, alcohols, such as isopropyl alcohol; glycols, such as propylene glycol, polyethyleneglycol, polypropylene glycol, glycol ether; glycerol; polyoxyethylene alcohols and polyoxyethylene fatty acid esters. Adjuvants include, for example, surfactants such as, soya lecithin and oleic acid; sorbitan esters such as sorbitan trioleate; and polyvinylpyrrolidone.
- Supplementary active compounds (e.g., preservatives, antioxidants, antimicrobial agents including biocides and biostats such as antibacterial, antiviral and antifungal agents) can also be incorporated into the compositions. Preservatives and other additives include, for example, antimicrobials, anti-oxidants, chelating agents and inert gases (e.g., nitrogen). Pharmaceutical compositions may therefore include preservatives, antimicrobial agents, anti-oxidants, chelating agents and inert gases.
- Preservatives can be used to inhibit microbial growth or increase stability of the active ingredient thereby prolonging the shelf life of the pharmaceutical formulation. Suitable preservatives are known in the art and include, for example, EDTA, EGTA, benzalkonium chloride or benzoic acid or benzoates, such as sodium benzoate. Antioxidants include, for example, ascorbic acid, vitamin A, vitamin E, tocopherols, and similar vitamins or provitamins.
- An antimicrobial agent or compound directly or indirectly inhibits, reduces, delays, halts, eliminates, arrests, suppresses or prevents contamination by or growth, infectivity, replication, proliferation, reproduction, of a pathogenic or non-pathogenic microbial organism. Classes of antimicrobials include, antibacterial, antiviral, antifungal and antiparasitics. Antimicrobials include agents and compounds that kill or destroy (-cidal) or inhibit (-static) contamination by or growth, infectivity, replication, proliferation, reproduction of the microbial organism.
- Exemplary antibacterials (antibiotics) include penicillins (e.g., penicillin G, ampicillin, methicillin, oxacillin, and amoxicillin), cephalosporins (e.g., cefadroxil, ceforanid, cefotaxime, and ceftriaxone), tetracyclines (e.g., doxycycline, chlortetracycline, minocycline, and tetracycline), aminoglycosides (e.g., amikacin, gentamycin, kanamycin, neomycin, streptomycin, netilmicin, paromomycin and tobramycin), macrolides (e.g., azithromycin, clarithromycin, and erythromycin), fluoroquinolones (e.g., ciprofloxacin, lomefloxacin, and norfloxacin), and other antibiotics including chloramphenicol, clindamycin, cycloserine, isoniazid, rifampin, vancomycin, aztreonam, clavulanic acid, imipenem, polymyxin, bacitracin, amphotericin and nystatin.
- Particular non-limiting classes of anti-virals include reverse transcriptase inhibitors; protease inhibitors; thymidine kinase inhibitors; sugar or glycoprotein synthesis inhibitors; structural protein synthesis inhibitors; nucleoside analogues; and viral maturation inhibitors. Specific non-limiting examples of anti-virals include those set forth above and, nevirapine, delavirdine, efavirenz, saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, zidovudine (AZT), stavudine (d4T), lamivudine (3TC), didanosine (DDE), zalcitabine (ddC), abacavir, acyclovir, penciclovir, valacyclovir, ganciclovir, 1,-D-ribofuranosyl-1,2,4-triazole-3 carboxamide, 9->2-hydroxy-ethoxy methylguanine, adamantanamine, 5-iodo-2′-deoxyuridine, trifluorothymidine, interferon and adenine arabinoside.
- Exemplary antifungals include agents such as benzoic acid, undecylenic alkanolamide, ciclopiroxolamine, polyenes, imidazoles, allylamine, thicarbamates, amphotericin B, butylparaben, clindamycin, econaxole, ammolfine, butenafine, naftifine, terbinafine, ketoconazole, elubiol, econazole, econaxole, itraconazole, isoconazole, miconazole, sulconazole, clotrimazole, enilconazole, oxiconazole, tioconazole, terconazole, butoconazole, thiabendazole, voriconazole, saperconazole, sertaconazole, fenticonazole, posaconazole, bifonazole, fluconazole, flutrimazole, nystatin, pimaricin, amphotericin B, flucytosine, natamycin, tolnaftate, mafenide, dapsone, caspofungin, actofunicone, griseofulvin, potassium iodide, Gentian Violet, ciclopirox, ciclopirox olamine, haloprogin, ketoconazole, undecylenate, silver sulfadiazine, undecylenic acid, undecylenic alkanolamide and Carbol-Fuchsin.
- Pharmaceutical compositions can optionally be formulated to be compatible with a particular route of administration. Exemplary routes of administration include administration to a biological fluid, an immune cell (e.g., T or B cell) or tissue, mucosal cell or tissue (e.g., mouth, buccal cavity, labia, nasopharynx, esophagus, trachea, lung, stomach, small intestine, vagina, rectum, or colon), neural cell or tissue (e.g., ganglia, motor or sensory neurons) or epithelial cell or tissue (e.g., nose, fingers, ears, cornea, conjunctiva, skin or dermis). Thus, pharmaceutical compositions include carriers (excipients, diluents, vehicles or filling agents) suitable for administration to any cell, tissue or organ, in vivo, ex vivo (e.g., tissue or organ transplant) or in vitro, by various routes and delivery, locally, regionally or systemically.
- Exemplary routes of administration for contact or in vivo delivery which a compound of the invention (e.g., CSA) can optionally be formulated include inhalation, respiration, intubation, intrapulmonary instillation, oral (buccal, sublingual, mucosal), intrapulmonary, rectal, vaginal, intrauterine, intradermal, topical, dermal, parenteral (e.g., subcutaneous, intramuscular, intravenous, intradermal, intraocular, intratracheal and epidural), intranasal, intrathecal, intraarticular, intracavity, transdermal, iontophoretic, ophthalmic, optical (e.g., corneal), intraglandular, intraorgan, intralymphatic.
- Formulations suitable for parenteral administration include aqueous and non-aqueous solutions, suspensions or emulsions of the compound, which may include suspending agents and thickening agents, which preparations are typically sterile and can be isotonic with the blood of the intended recipient. Non-limiting illustrative examples of aqueous carriers include water, saline (sodium chloride solution), dextrose (e.g., Ringer's dextrose), lactated Ringer's, fructose, ethanol, animal, vegetable or synthetic oils. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose). The formulations may be presented in unit-dose or multi-dose kits, for example, ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring addition of a sterile liquid carrier, for example, water for injections, prior to use.
- For transmucosal or transdermal administration (e.g., topical contact), penetrants can be included in the pharmaceutical composition. Penetrants are known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. For transdermal administration, the active ingredient can be formulated into aerosols, sprays, ointments, salves, gels, pastes, lotions, oils or creams as generally known in the art.
- For topical administration, for example, to skin, pharmaceutical compositions typically include ointments, creams, lotions, pastes, gels, sprays, aerosols or oils, Carriers which may be used include Vaseline, lanolin, polyethylene glycols, alcohols, transdermal enhancers, and combinations thereof. An exemplary topical delivery system is a transdermal patch containing an active ingredient (e.g., CSA).
- For oral administration, pharmaceutical compositions include capsules, cachets, lozenges, tablets or troches, as powder or granules. Oral administration formulations also include a solution or a suspension (e.g., aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion).
- For airway or nasal administration, pharmaceutical compositions can be formulated in a dry powder for delivery, such as a fine or a coarse powder having a particle size, for example, in the range of 20 to 500 microns which is administered in the manner by inhalation through the airways or nasal passage. Depending on delivery device efficiency, effective dry powder dosage levels typically fall in the range of about 10 to about 100 mg. Appropriate formulations, wherein the carrier is a liquid, for administration, as for example, a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient.
- For airway or nasal administration, aerosol and spray delivery systems and devices, also referred to as “aerosol generators” and “spray generators,” such as metered dose inhalers (MDI), nebulizers (ultrasonic, electronic and other nebulizers), nasal sprayers and dry powder inhalers can be used. MDIs typically include an actuator, a metering valve, and a container that holds a suspension or solution, propellant, and surfactant (e.g., oleic acid, sorbitan trioleate, lecithin). Activation of the actuator causes a predetermined amount to be dispensed from the container in the form of an aerosol, which is inhaled by the subject. MDIs typically use liquid propellant and typically, MDIs create droplets that are 15 to 30 microns in diameter, optimized to deliver doses of 1 microgram to 10 mg of a therapeutic. Nebulizers are devices that turn medication into a fine mist inhalable by a subject through a face mask that covers the mouth and nose. Nebulizers provide small droplets and high mass output for delivery to upper and lower respiratory airways. Typically, nebulizers create droplets down to about 1 micron in diameter.
- Dry-powder inhalers (DPI) can be used to deliver the compounds of the invention, either alone or in combination with a pharmaceutically acceptable carrier. DPIs deliver active ingredient to airways and lungs while the subject inhales through the device. DPIs typically do not contain propellants or other ingredients, only medication, but may optionally include other components. DPIs are typically breath-activated, but may involve air or gas pressure to assist delivery.
- For rectal administration, pharmaceutical compositions can be included as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate. For vaginal administration, pharmaceutical compositions can be included as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient (e.g., CSA) a carrier, examples of appropriate carriers which are known in the art.
- Pharmaceutical formulations and delivery systems appropriate for the compositions and methods of the invention are known in the art (see, e.g., Remington: The Science and Practice of Pharmacy (2003) 20th ed., Mack Publishing Co., Easton, Pa.; Remington's Pharmaceutical Sciences (1990) 18th ed., Mack Publishing Co., Easton, Pa.; The Merck Index (1996) 12th ed., Merck Publishing Group, Whitehouse, N.J.; Pharmaceutical Principles of Solid Dosage Forms (1993), Technonic Publishing Co., Inc., Lancaster, Pa.; Ansel and Stoklosa, Pharmaceutical Calculations (2001) 11th ed., Lippincott Williams & Wilkins, Baltimore, Md.; and Poznansky et al., Drug Delivery Systems (1980), R. L. Juliano, ed., Oxford, N.Y., pp. 253-315).
- Compounds of the invention (e.g., CSAs), including pharmaceutical formulations can be packaged in unit dosage forms for ease of administration and uniformity of dosage. A “unit dosage form” as used herein refers to a physically discrete unit suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of compound optionally in association with a pharmaceutical carrier (excipient, diluent, vehicle or filling agent) which, when administered in one or more doses, is calculated to produce a desired effect (e.g., prophylactic or therapeutic effect or benefit). Unit dosage forms can contain a daily dose or unit, daily sub-dose, or an appropriate fraction thereof, of an administered compound (e.g., CSA). Unit dosage forms also include, for example, capsules, troches, cachets, lozenges, tablets, ampules and vials, which may include a composition in a freeze-dried or lyophilized state; a sterile liquid carrier, for example, can be added prior to administration or delivery in vivo. Unit dosage forms additionally include, for example, ampules and vials with liquid compositions disposed therein. Unit dosage forms further include compounds for transdermal administration, such as “patches” that contact with the epidermis of the subject for an extended or brief period of time. The individual unit dosage forms can be included in multi-dose kits or containers. Pharmaceutical formulations can be packaged in single or multiple unit dosage forms for ease of administration and uniformity of dosage.
- Compounds of the invention (e.g., CSAs) can be administered in accordance with the methods at any frequency as a single bolus or multiple dose e.g., one, two, three, four, five, or more times hourly, daily, weekly, monthly or annually or between about 1 to 10 days, weeks, months, or for as long as appropriate. Exemplary frequencies are typically from 1-7 times, 1-5 times, 1-3 times, 2-times or once, daily, weekly or monthly. Timing of contact, administration ex vivo or in vivo delivery can be dictated by the infection, reactivation, pathogenesis, symptom, pathology or adverse side effect to be treated. For example, an amount can be administered to the subject substantially contemporaneously with, or within about 1-60 minutes or hours of the onset of a symptom or adverse side effect of HV infection, reactivation, pathogenesis, vaccination or treatment.
- Doses may vary depending upon whether the treatment is therapeutic or prophylactic, the onset, progression, severity, frequency, duration, probability of or susceptibility of the symptom, the type of virus infection, reactivation or pathogenesis to which treatment is directed, clinical endpoint desired, previous, simultaneous or subsequent treatments, general health, age, gender or race of the subject, bioavailability, potential adverse systemic, regional or local side effects, the presence of other disorders or diseases in the subject, and other factors that will be appreciated by the skilled artisan (e.g., medical or familial history). Dose amount, frequency or duration may be increased or reduced, as indicated by the clinical outcome desired, status of the infection, reactivation, pathology or symptom, or any adverse side effects of the treatment or therapy. The skilled artisan will appreciate the factors that may influence the dosage, frequency and timing required to provide an amount sufficient or effective for providing a prophylactic or therapeutic effect or benefit.
- Typically, for therapeutic treatment, a compound of the invention (e.g., CSA) will be administered as soon as practical, typically within 0-72 hours after a subject is exposed to or contacted with HV, or within 0-72 hours after development of one or more symptoms or pathologies associated with HV infection, reactivation or pathogenesis (e.g., onset of lesions, ulcers, canker sores, cold sores, rash, boils, etc.) or a symptom associated with or caused by HV.
- For prophylactic treatment, a compound of the invention can be administered immediately or within 0-72 after suspected contact with, or 0-4 weeks, e.g., 1-3 weeks, prior to anticipated or possible exposure to or contact or infection with or reactivation of HV. For prophylactic treatment in connection with immunization/vaccination of a subject, a compound can be administered prior to, concurrently with or following immunization/vaccination of the subject.
- Doses can be based upon current existing treatment protocols (e.g., acyclovir), empirically determined, determined using animal disease models or optionally in human clinical studies. For example, initial study doses can be based upon animal studies, such as a mouse, which weighs about 30 grams, and the amount of compound administered to achieve a prophylactic or therapeutic effect or benefit. The dose can be adjusted according to the mass of a subject, and will generally be in a range from about 0.1-1 ug/kg, 1-10 ug/kg, 10-25 ug/kg, 25-50 ug/kg, 50-100 ug/kg, 100-500 ug/kg, 500-1,000 ug/kg, 1-5 mg/kg, 5-10 mg/kg, 10-20 mg/kg, 20-50 mg/kg, 50-100 mg/kg, 100-250 mg/kg, 250-500 mg/kg, or more, of subject body weight, two, three, four, or more times per hour, day, week, month or annually. Of course, doses can be more or less, as appropriate, for example, 0.00001 mg/kg of subject body weight to about 10,000.0 mg/kg of subject body weight, about 0.001 mg/kg, to about 100 mg/kg, about 0.01 mg/kg, to about 10 mg/kg, or about 0.1 mg/kg, to about 1 mg/kg of subject body weight over a given time period, e.g., 1, 2, 3, 4, 5 or more hours, days, weeks, months, years. A subject may be administered in single bolus or in divided/metered doses, which can be adjusted to be more or less according to the various consideration set forth herein and known in the art.
- Dose amount, frequency or duration may be increased or reduced, as indicated by the status of the HV infection, reactivation or pathogenesis, associated symptom or pathology, or any adverse side effect(s) of vaccination, treatment or anti-HV therapy. For example, once control or a particular endpoint is achieved, for example, reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms associated with a HV infection, reactivation or pathogenesis of one or more symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis, dose amount, frequency or duration can be reduced.
- The invention provides kits including compounds of the invention (e.g., CSA), combination compositions and pharmaceutical compositions/formulations thereof, packaged into a suitable packaging material. In one embodiment, a kit includes packaging material, a cationic steroid antimicrobial (CSA) and instructions. In various aspects, the instructions are for administering the CSA to: provide a subject with protection against a herpesviridae (HV) infection, reactivation or pathogenesis; treat a subject for herpesviridae (HV) infection, reactivation or pathogenesis; decrease susceptibility of a subject to a herpesviridae (HV) infection, reactivation or pathogenesis; decrease, inhibit, ameliorate or prevent onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with or caused by HV infection, reactivation or pathogenesis; or decrease or prevent an adverse side effect caused by vaccination of a subject with a herpesviridae (HV) or a herpesviridae (HV) treatment.
- The term “packaging material” refers to a physical structure housing one or more components of the kit. The packaging material can maintain the components sterilely, and can be made of material commonly used for such purposes (e.g., paper, corrugated fiber, glass, plastic, foil, ampules, vials, tubes, etc.). A kit can contain a plurality of components, e.g., two or more compounds of the invention alone or in combination with an anti-HV agent or treatment (e.g., an anti-viral, a herpesvirus protein or an antibody that binds to a herpesvirus protein, HV vaccine, etc.) or drug, optionally sterile.
- A kit optionally includes a label or insert including a description of the components (type, amounts, doses, etc.), instructions for use in vitro, in vivo, or ex vivo, and any other components therein. Labels or inserts include “printed matter,” e.g., paper or cardboard, or separate or affixed to a component, a kit or packing material (e.g., a box), or attached to an ampule, tube or vial containing a kit component. Labels or inserts can additionally include a computer readable medium, such as a disk (e.g., floppy diskette, hard disk, ZIP disk), optical disk such as CD- or DVD-ROM/RAM, DVD, MP3, magnetic tape, or an electrical storage media such as RAM and ROM or hybrids of these such as magnetic/optical storage media, FLASH media or memory type cards.
- Labels or inserts can include identifying information of one or more components therein, dose amounts, clinical pharmacology of the active ingredient(s) including mechanism of action, pharmacokinetics and pharmacodynamics. Labels or inserts can include information identifying manufacturer, lot numbers, manufacturer location and date, expiration dates.
- Labels or inserts can include information on a condition, disorder or disease (e.g., virus pathogenesis or infection) for which a kit component may be used. Labels or inserts can include instructions for a clinician or subject for using one or more of the kit components in a method, treatment protocol or therapeutic/prophylactic regimen, including the methods of the invention. Instructions can include amounts of compound, frequency or duration of administration, and instructions for practicing any of the methods, treatment protocols or prophylactic or therapeutic regimes described herein. Exemplary instructions include, instructions for treating HV infection, reactivation or pathogenesis. Kits of the invention therefore can additionally include labels or instructions for practicing any of the methods of the invention described herein including treatment, screening or other methods. Thus, for example, a kit can include a compound of the invention (e.g., CSA) that has one or more anti-HV activities as set forth herein, together with instructions for administering the compound in a prophylactic or therapeutic treatment method of the invention, for example to a subject in need of such treatment. Exemplary instructions include administering the CSA to: provide a subject with protection against a HV infection, reactivation or pathogenesis; treat a subject for HV infection, reactivation or pathogenesis; decrease susceptibility of a subject to a HV infection, reactivation or pathogenesis; or decrease or prevent an adverse side effect caused by vaccination of a subject with or against a HV or an HV treatment.
- Labels or inserts can include information on any effect or benefit a kit component may provide, such as a prophylactic or therapeutic effect or benefit. For example, a label or insert could provide a description of one or more symptoms which can be improved, i.e., reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with a HV infection, reactivation or pathogenesis, or one or more adverse side effects associated with HV vaccination or an HV treatment. HV symptoms and pathologies are as set forth herein or known in the art (e.g., lesions, ulcers, canker sore, cold sore, rash, boils, Gingivostomatitis, Herpetic whitlow Traumatic herpes (herpes gladiatorum), Eczema herpeticum, fever, fatigue, headache, sore throat, swollen lymph nodes, pneumonitis, pneumonia, hepatitis, meningitis, myelitis, Encephalitis, keratitis, Genital herpes, esophagitis, dysphasia, hemiparesis, coma, shingles, chicken pox, mononucleosis, chronic or acute pelvic inflammatory disease (PID), proctitis, colitis, nerve damage, death, etc.), Adverse side effects associated with HV vaccination are as set forth herein or known in the art (e.g., fatigue, weakness, headache, fever, stomach ache/nausea, flu-like symptoms, rash, vomiting, inflammation (cerebral or ocular), fainting, etc.)
- Labels or inserts can include information on potential adverse side effects of treatment. Labels or inserts can further include warnings to the clinician or subject regarding situations or conditions where a subject should stop or reduce use of a particular kit component. Adverse side effects could also occur when the subject has, will be or is currently taking one or more other medications that may be incompatible with a compound of the invention, or the subject has, will be or is currently undergoing another treatment protocol or therapeutic regimen which would be incompatible with the compound and, therefore, labels or inserts could include information regarding such side effects or incompatibilities.
- Invention kits can additionally include a buffering agent, or a preservative or a stabilizing agent in a pharmaceutical formulation containing a compound of the invention. Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package. Invention kits can be designed for cold storage.
- Invention kits can include components, such as devices for practicing a method of the invention or administering a compound of the invention (e.g., GSA) to a subject, ex vivo or in vivo. The device can be a delivery device, such as a syringe, a compressible (e.g., squeezable) tube or dermal patch for mucosal, skin/dermis or corneal delivery, or an aerosol delivery device for administration to lungs or airways.
- Compounds useful in accordance with the invention, are described herein, both generically and with particularity, and in U.S. Pat. Nos. 6,350,738; 6,486,148; and 6,767,904, which are incorporated herein by reference. Compounds include steroid derivatives, such as cationic steroid antimicrobials (CSA) that exhibit one or more anti-herpesviridae (HV) activities or functions. The skilled artisan will recognize the compounds within the generic formula set forth herein. Additional compounds of the invention having one or more anti-herpesviridae (HV) activities or functions are described and can be characterized using the assays set forth herein and in the art.
- Compounds of formula I, also referred to as cationic steroid antimicrobials (CSA), comprise:
- wherein:
fused rings A, B, C, and D are independently saturated or fully or partially unsaturated; and
each of R1 through R4, R6, R7, R11, R12, R15, R16, and R17 is independently selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, (C1-C10) alkylcarboxy-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkylamino, (C1-C10) alkylamino-(C1-C10) alkylamino-(C1-C10) alkylamino, a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted arylamino-(C1-C10) alkyl, (C1-C10) haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, oxo, a linking group attached to a second steroid, a substituted or unsubstituted (C1-C10) aminoalkyloxy, a substituted or unsubstituted (C1-C10) aminoalkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted (C1-C10) aminoalkylaminocarbonyl, a substituted or unsubstituted (C1-C10) aminoalkylcarhoxamido, H2N—HC(Q5)-C(O)—O—, H2N—HC(Q5)-C(O)—N(H)—, (C1-C10) azidoalkyloxy, (C1-C10) cyanoalkyloxy, P.G.-HN—HC(Q5)-C(O)—O—, (C1-C10) guanidinoalkyl oxy, (C1-C10) quaternaryammoniumalkylcarboxy, and (C1-C10) guanidinoalkyl carboxy, where Q5 is a side chain of any amino acid (including the side chain of glycine, i.e., H), P.G. is an amino protecting group, and
R5, R8, R9, R10, R13, and R14 is each independently: deleted when one of fused rings A, B, C, or D is unsaturated so as to complete the valency of the carbon atom at that site, or
selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted aryl, C1-C10 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, oxo, a linking group attached to a second steroid, a substituted or unsubstituted (C1-C10) aminoalkyloxy, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted (C1-C10) aminoalkylaminocarbonyl, H2N—HC(Q5)-C(O)—O—, H2N—HC(Q5)-C(O)—N(H), (C1-C10) azidoalkyloxy, (C1-C10) cyanoalkyloxy, P.G.-HN—HC(Q5)-C(O)—O—, (C1-C10) guanidinoalkyloxy, and (C1-C10) guanidinoalkylcarboxy, where Q5 is a side chain of any amino acid, P.G. is an amino protecting group, and
provided that at least two of R1 through R14 are independently selected from the group consisting of a substituted or unsubstituted (C1-C10) aminoalkyloxy, (C1-C10) alkylcarboxy-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkylamino, (C1-C10) alkylamino-(C1-C10) alkylamino-(C1-C10) alkylamino, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted arylamino-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkylaminocarbonyl, (C1-C10) quaternaryammonium alkylcarboxy, H2N—HC(Q5)-C(O)—O—, H2N—HC(Q5)-C(O)—N(H)—, (C1-C10) azidoalkyloxy, (C1-C10) cyanoalkyloxy, P.G.-HN—HC(Q5)-C(O)—O—, (C1-C10) guanidinoalkyloxy, and (C1-C10) guanidinoalkylcarboxy; or a pharmaceutically acceptable salt thereof. - A “ring” as used herein can be heterocyclic or carbocyclic. The term “saturated” used herein refers to the fused ring of formula I having each atom in the fused ring either hydrogenated or substituted such that the valency of each atom is filled. The term “unsaturated” used herein refers to the fused ring of formula I where the valency of each atom of the fused ring may not be filled with hydrogen or other substituents. For example, adjacent carbon atoms in the fused ring can be doubly bound to each other. Unsaturation can also include deleting at least one of the following pairs and completing the valency of the ring carbon atoms at these deleted positions with a double bond; such as R5 and R9; R8 and R10; and R13 and R14.
- The term “unsubstituted” used herein refers to a moiety having each atom hydrogenated such that the valency of each atom is filled.
- The term “halo” used herein refers to a halogen atom such as fluorine, chlorine, bromine, or iodine.
- Examples of amino acid side chains include but are not limited to H (glycine), methyl (alanine), —CH2—(C═O)—NH2 (asparagine), —CH2—SH (cysteine), and —CH(OH)CH3 (threonine).
- An alkyl group is a branched or unbranched hydrocarbon that may be substituted or unsubstituted. Examples of branched alkyl groups include isopropyl, sec-butyl, isobutyl, tert-butyl, sec-pentyl, isopentyl, tert-pentyl, isohexyl. Substituted alkyl groups may have one, two, three or more substituents, which may be the same or different, each replacing a hydrogen atom. Substituents are halogen (e.g., F, Cl, Br, and I), hydroxyl, protected hydroxyl, amino, protected amino, carboxy, protected carboxy, cyano, methylsulfonylamino, alkoxy, acyloxy, nitro, and lower haloalkyl.
- The term “substituted” used herein refers to moieties having one, two, three or more substituents, which may be the same or different, each replacing a hydrogen atom. Examples of substituents include but are not limited to halogen (e.g., F, Cl, Br, and I), hydroxyl, protected hydroxyl, amino, protected amino, carboxy, protected carboxy, cyano, methylsulfonylamino, alkoxy, alkyl, aryl, aralkyl, acyloxy, nitro, and lower haloalkyl.
- An aryl group is a C6-20 aromatic ring, wherein the ring is made of carbon atoms (e.g., C6-C14, C6-10 aryl groups). Examples of haloalkyl include fluoromethyl, di chloromethyl, trifluoromethyl, 1,1-difluoroethyl, and 2,2-dibromoethyl.
- An aralkyl group is a group containing 6-20 carbon atoms that has at least one aryl ring and at least one alkyl or alkylene chain connected to that ring. An example of an aralkyl group is a benzyl group.
- A linking group is any divalent moiety used to link a compound of formula to another steroid, e.g., a second compound of formula I. An example of a linking group is (C1-C10) alkyloxy-(C1-C10) alkyl.
- Amino-protecting groups are known to those skilled in the art. In general, the species of protecting group is not critical, provided that it is stable to the conditions of any subsequent reaction(s) on other positions of the compound and can be removed at the appropriate point without adversely affecting the remainder of the molecule. In addition, a protecting group may be substituted for another after substantive synthetic transformations are complete. Clearly, where a compound differs from a compound disclosed herein only in that one or more protecting groups of the disclosed compound has been substituted with a different protecting group, that compound is within the invention. Further examples and conditions are found in T. W. Greene, Protective Groups in Organic Chemistry, (1st ed., 1981, 2nd ed., 1991).
- The invention also includes compounds comprising a ring system of at least 4 fused rings, where each of the rings has from 5-7 atoms. The ring system has two faces, and contains 3 chains attached to the same face. Each of the chains contains a nitrogen-containing group that is separated from the ring system by at least one atom; the nitrogen-containing group is an amino group, e.g., a primary amino group, or a guanidino group. The compound can also contain a hydrophobic group, such as a substituted (C3-10) aminoalkyl group, a (C1-10) alkyloxy (C3-10) alkyl group, or a (C1-10) alkylamino (C3-10)alkyl group, attached to the steroid backbone.
- For example, the compound may have the formula V, where each of the three chains containing nitrogen-containing groups is independently selected from R1 through R4, R6, R7, R11, R12, R15, R16, R17, and R18, defined below.
- where:
each of fused rings A, B, C, and D is independently saturated, or is fully or partially unsaturated, provided that at least two of A, B, C, and D are saturated, wherein rings A, B, C, and D form a ring system;
each of m, n, p, and q is independently 0 or 1;
each of R1 through R4, R6, R7, R11, R12, R15, R16, R17, and R18 is independently selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, (C1-C10)alkylcarboxy-(C1-C10 alkyl, (C1-C10) alkylamino-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkylamino, (C1-C10 alkylamino-(C1-C10) alkylamino-(C1-C10) alkylamino, a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted arylamino-(C1-C10) alkyl, (C1-C10) haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, oxo, a linking group attached to a second steroid, a substituted or unsubstituted (C1-C10) aminoalkyloxy, a substituted or unsubstituted (C1-C10) aminoalkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted (C1-C10) aminoalkylaminocarbonyl, a substituted or unsubstituted (C1-C10) aminoalkylcarboxamido, H2N—HC(Q5)-C(O)—O—, H2N—HC(Q5)-C(O)—N(H)—, (C1-C10) azidoalkyloxy, (C1-C10) cyanoalkyloxy, P.G.-HN—HC(Q5)-C(O)—O—, (C1-C10) guanidinoalkyl oxy, (C1-C10) quaternaryammoniumalkylcarboxy, and (C1-C10) guanidinoalkyl carboxy, where Q5 is a side chain of any amino acid (including a side chain of glycine, i.e., H). P.G. is an amino protecting group: and
each of R5, R8, R9, R10, R13, and R14 is independently: deleted when one of fused rings A, B, C, or D is unsaturated so as to complete the valency of the carbon atom at that site, or selected from the group consisting of hydrogen, hydroxyl, a substituted or unsubstituted (C1-C10) alkyl, (C1-C10) hydroxyalkyl, (C1-C10) alkyloxy-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted aryl, C1-C10 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, oxo, a linking group attached to a second steroid, a substituted or unsubstituted (C1-C10) aminoalkyloxy, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted (C1-C10) aminoalkylaminocarbonyl, H2N—HC(Q5)-C(O)—O—, H2N—HC(Q5)-C(O)—O—N(H), (C1-C10) azidoalkyloxy, (C1-C10) cyanoalkyloxy, P. G.-HN—HC(Q5)-C(O)—O—, (C1-C10) guanidinoalkyloxy, and (C1-C10) guanidinoalkylcarboxy, where Q5 is a side chain of any amino acid, P.G. is an amino protecting group,
provided that at least three of R1 through R4, R6, R7, R11, R12, R15, R16, R17, and R18 are disposed on the same face of the ring system and are independently selected from the group consisting of a substituted or unsubstituted (C1-C10) aminoalkyl, a substituted or unsubstituted (C1-C10) aminoalkyloxy, (C1-C10) alkylcarboxy-(C1-C10) alkyl, (C1-C10) alkylamino-(C1-C10) alkylamino, (C1-C10) alkylamino-(C1-C10) alkylamino-(C1-C10) alkylamino, a substituted or unsubstituted (C1-C10) aminoalkylcarboxy, a substituted or unsubstituted arylamino-(C1-C10) alkyl, a substituted or unsubstituted (C1-C10) aminoalkyloxy-(C1-C10) aminoalkylaminocarbonyl, a substituted or unsubstituted (C1-C10) aminoalkylaminocarbonyl, a substituted or unsubstituted (C1-C5) amino alkylcarboxamido, a (C1-C10) quaternaryammoniumalkylcarboxy, H2N—HC(Q5)-C(O)—O—, H2N—HC(Q5)-C(O)—N(H)—, (C1-C10) azidoalkyloxy, (C1-C10) cyanoalkylox, P.G.-HN—HC(Q5)-C(O)—O—, (C1-C10) guanidinoalkyloxy, and a (C1-C10) guanidinoalkylcarboxy; or a pharmaceutically acceptable salt thereof. In various aspects, at least two, or at least, three, of m, n, p, and q are 1. - Compounds set forth herein preserve certain stereochemical and electronic characteristics found in steroids. The term “same configuration” as used herein refers to substituents on the fused steroid having the same stereochemical orientation. For example substituents R3, R7 and R12 are all β-substituted or α-substituted.
- Compounds of the invention include but are not limited to compounds having amine or guanidine groups covalently attached to a steroid backbone or scaffold at any carbon position, e.g., cholic acid. In various embodiments, a group is covalently attached at any one, or more, of positions C3, C7 and C12 of the steroid backbone or scaffold. In additional embodiments, a group is absent from any one, or more, of positions C3, C7 and C12 of the steroid backbone or scaffold.
- Compounds of the invention that include such groups can include a tether, the tether having variable chain length or size. As used herein, the terms “tether” or “tethered,” when used in reference to a compound of the invention, refers to the chain of atoms between the steroid backbone or scaffold and a terminal amino or guanidine group. In various embodiments, a tether is covalently attached at any one, or more, of positions C3, C7 and C12. In additional embodiments, a tether is lacking at any one, or more, of positions C3, C7 and C12. A tether length may include the heteroatom (O or N) covalently attached to the steroid backbone.
- Other ring systems can also be used, e.g., 5-member fused rings. Compounds with backbones having a combination of 5- and 6-membered rings are also included in the invention. Amine or guanidine groups can be separated from the backbone by at least one, two, three, four or more atoms. The backbone can be used to orient the amine or guanidine groups on one face, or plane, of the steroid. For example, a scheme showing a compound having primary amino groups on one face, or plane, of a backbone is shown below:
- Methods of synthesizing compounds of formula I are provided, wherein for example, at least two of R1 through R14 are independently selected from the group consisting of a substituted or unsubstituted (C1-C10) aminoalkyloxy. In one embodiment, a method includes the step of contacting a compound of formula IV,
- where at least two of R1 through R14 are hydroxyl, and the remaining moieties on the fused rings A, B, C, and D are defined for formula I, with an electrophile to produce an alkyl ether compound of formula IV, wherein at least two of R1 through R14 are (C1-C10)alkyloxy. The alkyl ether compounds are converted into an amino precursor compound wherein at least two of R1 through R14 are independently selected from the group consisting of (C1-C10) azidoalkyloxy and (C1-C10) cyanoalkyloxy and the amino precursor compound is reduced to form a compound of formula I.
- The electrophiles used in a method include but are not limited to 2-(2-bromoethyl)-1,3-dioxolane, 2-iodoacetamide, 2-chloroacetamide, N-(2-bromoethyl)phthalimide, N-(3-bromopropyl)phthalimide, and allybromide. An exemplary electrophile is allylbromide.
- The invention also includes methods of producing a compound of formula I where at least two of R1 through R14 are (C1-C10) guanidoalkyloxy. In one embodiment, a method includes contacting a compound of formula IV, where at least two of R1 through R14 are hydroxyl, with an electrophile to produce an alkyl ether compound of formula IV, where at least two of R1 through R14 are (C1-C10)alkyloxy. The allyl ether compound is converted into an amino precursor compound where at least two of R1 through R14 are independently selected from the group consisting of (C1-C10) azidoalkyloxy and (C1-C10) cyanoalkyloxy. The amino precursor compound is reduced to produce an aminoalkyl ether compound wherein at least two of R1 through R14 are (C1-C10) aminoalkyloxy. The aminoalkyl ether compound is contacted with a guanidino producing electrophile to form a compound of formula I.
- The term “guanidino producing electrophile” used herein refers to an electrophile used to produce a guanidino compound of formula I. An example of an guanidino producing electrophile is HSO3—C(NH)—NH2.
- The invention also includes methods of producing a compound of formula I where at least two of R1 through R14 are H2N—HC(Q5)-C(O)—O— and Q5 is the side chain of any amino acid. In one embodiment, a method includes the step of contacting a compound of formula IV, where at least two of R1 through R14 are hydroxyl, with a protected amino acid to produce a protected amino acid compound of formula IV where at least two of at least two of R1 through R14 are P.G.-HN—HC(Q5)-C(O)—O— and Q5 is the side chain of any amino acid and P.G. is an amino protecting group. The protecting group of the protected amino acid compound is removed to form a compound of formula I.
- Exemplary non-limiting synthesis schemes for preparing compounds of the invention include the following:
- Compounds of the invention and precursors to the compounds according to the invention are available commercially, e.g., from Sigma-Aldrich Co., St, Louis; MO; and Research Plus, Inc., Manasquan, N.J. Other compounds according to the invention can be synthesized according to methods disclosed herein, in U.S. Pat. Nos. 6,350,738; 6,486,148; and 6,767,904, and in the art.
- Methods for identifying a candidate agent for treating a subject for a HV infection, reactivation or pathogenesis, for decreasing susceptibility of a subject to a HV infection, reactivation or pathogenesis, for decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies caused by or associated with HV infection or pathogenesis or reactivation from latency, and for decreasing or preventing an adverse side effect caused by vaccination of a subject with or against a HV or a HV treatment, are provided. In one embodiment, a method includes providing a test agent comprising a cationic steroid antimicrobial (CSA); contacting the test agent with HV and ascertaining whether the test agent inhibits HV infection or pathogenesis, or reactivation from latency. A test agent identified as inhibiting HV infection or pathogenesis or reactivation from latency is a candidate agent for treating a subject for HV infection, reactivation or pathogenesis. A test agent identified as inhibiting HV infection, reactivation or pathogenesis is also a candidate agent for decreasing susceptibility of a subject to a HV infection, reactivation or pathogenesis. A test agent identified is further a candidate agent for decreasing. inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with or caused by HV infection or pathogenesis or reactivation from latency. A test agent identified is moreover a candidate agent for decreasing or preventing an adverse side effect caused by or associated with vaccination of a subject with a HV or a HV treatment. In various aspects, the subject is a mammal. For example, a mammal can comprise an animal model for HV infection, reactivation or pathogenesis.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or study of the present invention, suitable methods and materials are described herein.
- All of the features disclosed herein may be combined in any combination. Each feature disclosed in the specification may be replaced by an alternative feature serving a same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, disclosed features (e.g., compound structures) are an example of a genus of equivalent or similar features.
- All applications, publications, patents and other references, GenBank citations and ATCC citations cited herein are incorporated by reference in their entirety. In case of conflict, the specification, including definitions, will control.
- As used herein, the singular forms “a”, “and,” and “the” include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to “a compound” includes a plurality of compounds and reference to “an anti-herpesviridae (HV) effect, activity or function” can include reference to one or more effects, activities or functions, and so forth.
- As used herein, all numerical values or numerical ranges include integers within such ranges and fractions of the values or the integers within ranges unless the context clearly indicates otherwise. Thus, to illustrate, reference to a range of 90-100%, includes 91%, 92%, 93%, 94%, 95%, 95%, 97%, etc., as well as 91.1%, 91.2%, 91.3%, 91.4%, 91.5%, etc., 92.1%, 92.2%, 92.3%, 92.4%, 92.5%, etc., and so forth, Reference to a range of 0-72 hrs, includes 1, 2, 3, 4, 5, 6, 7 hrs, etc., as well as 1, 2, 3, 4, 5, 6, 7 minutes, etc., and so forth. Reference to a range of 0-72 hrs, includes 1, 2, 3, 4, 5, 6, 7 hrs, etc., as well as 1, 2, 3, 4, 5, 6, 7 minutes, etc., and so forth. Reference to a range of doses, such as 0.1-1 ug/kg, 1-10 ug/kg, 10-25 ug/kg, 25-50 ug/kg, 50-100 ug/kg, 100-500 ug/kg, 500-1,000 ug/kg, 1-5 mg/kg, 5-10 mg/kg, 10-20 mg/kg, 20-50 mg/kg, 50-100 mg/kg, 100-250 mg/kg, 250-500 mg/kg, includes 0.11-0.9 ug/kg, 2-9 ug/kg, 11.5-24.5 ug/kg, 26-49 ug/kg, 55-90 ug/kg, 125-400 ug/kg, 750-800 ug/kg, 1.1-4.9 mg/kg, 6-9 mg/kg, 11.5-19.5 mg/kg, 21-49 mg/kg, 55-90 mg/kg, 125-200 mg/kg, 275.5-450.1 mg/kg, etc.
- The invention is generally disclosed herein using affirmative language to describe the numerous embodiments. The invention also includes embodiments in which subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, or procedures. Thus, even though the invention is generally not expressed herein in terms of what the invention does not include aspects that are not expressly excluded in the invention are nevertheless disclosed herein.
- A number of embodiments of the invention have been described. Nevertheless, one skilled in the art, without departing from the spirit and scope of the invention, can make various changes and modifications of the invention to adapt it to various usages and conditions. For example, salts, esters, ethers and amides of invnetion compounds disclosed herein are within the scope of this invention. Accordingly, the following examples are intended to illustrate but not limit the scope of invention described in the claims.
- CSA compounds and intermediates were characterized using the following instruments: 1H and 13C NMR spectra were recorded on a Varian Gemini 2000 (200 MHz), Varian Unity 300 (300 MHz), or Varian VXR 500 (500 MHz) spectrometer and are referenced to TMS, residual CHCl3 (1H) or CDCl3 (13C), or residual CHD2OD (1H), or CD3OD (13C), IR spectra were recorded on a Perkin Elmer 1600 FTIR instrument. Mass spectrometric data were obtained on a JOEL SX 102A spectrometer. THE solvent was dried over Na/benzophenone and CH2Cl2 was dried over CaH2 prior to use. Other reagents and solvents were obtained commercially and were used as received.
- This example includes a description of one or more exemplary synthetic procedures for obtaining Compounds 1-5, 13-20 and 22-27.
- Compound 13: To a 1 L round-bottom flask were added methyl cholate (30.67 g, 72.7 mmol) in dry THF (600 mL) and LiAlH4 (4.13 g, 109 mmol). After reflux for 48 hours, saturated aqueous Na2SO4 (100 mL) was introduced slowly, and the resulted precipitate was filtered out and washed with hot THF and MeOH. Recrystallization from MeOH gave colorless crystals of 13 (28.0 g, 98% yield). m.p. 236.5-238° C.; IR (KBr) 3375, 2934, 1373, 1081 cm−1; 1H NMR (CDCl3/MeOH-d4, 200 MHz) δ 3.98 (bs, 1H), 3.83 (bs, 1H), 3.60-3.46 (m, 2H), 3.38 (bs, 5H), 2.30-2.10 (m, 2H), 2.05-1.05 (series of multiplets, 22H), 1.03 (bs, 3H), 0.92 (s, 3H), 0.71 (s, 3H); 13C NMR (CDCl3/MeOH-d4, 50 MHz) δ 73.89, 72.44, 68.99, 63.51, 48.05, 47.12, 42.49, 40.37, 39.99, 36.62, 36.12, 35.58, 35.40, 32.77, 30.69, 30.04, 29.02, 28.43, 27.27, 23.96, 23.08, 18.00, 13.02; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 417.2992 (55.3%); calcd. 417.2981.
- Compound 14: To a round-bottom flask were added 13 (28.2 g, 71.7 mmol) in DMF (300 ml), Et3 N (20 mL, 143.4 mmol), trityl chloride (25.98 g, 93.2 mmol) and DMAP (0.13 g, 1.07 mmol). The mixture was stirred at 50° C. under N2 for 30 hours followed by the introduction of water (1000 mL) and extraction with EtOAc (5×200 mL). The combined extracts were washed with water and brine and then dried over MgSO4. After removal of solvent in vacuo, the residue was purified using SiO2 chromatography (CH2Cl2, Et2O and MeOH as eluents) to give 14 as a pale yellow solid (31.9 g, 70% yield). m.p. 187° C. (decomposition); IR (KBr) 3405, 2935, 1448, 1075 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.46-7.42 (m, 6H), 7.32-7.17 (m, 9H), 3.97 (bs, 1H), 3.83 (bs, 1H), 3.50-3.38 (m, 1H), 3.01 (bs, 1H), 2.94 (dd, J=14.2, 12.2 Hz, 2H), 2.64 (bs, 1H), 2.51 (bs, 1H), 2.36-2.10 (m, 2H), 2.00-1.05 (series of multiplets, 22H), 096 (d, J=5.8 Hz, 3H), 0.87 (s, 3H), 0.64 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 144.77, 128.93, 127.91, 127.01, 86.43, 73.35, 72.06, 68.66, 64.28, 47.47, 46.53, 41.74, 41.62, 39.64, 35.57, 35.46, 34.91, 34.82, 32.40, 30.55, 28.21, 27.69, 26.80, 26.45, 23.36, 22.59, 17.83, 12.61; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 659.4069 (100%); calcd. 659.4076.
- Compound 15: To a round-bottom flask were added 14 (20.0 g, 31.4 mmol) in dry TI-IF (600 mL) and NaH (60% in mineral oil, 6.3 g, 157.2 mmol). The mixture was refluxed for 30 min under N2 followed by addition of allyl bromide (27 mL, 314 mmol). After 60 hours of reflux, additional Nail (3 eq.) and allyl bromide (4 eq.) were added. Following another 50 hours of reflux, water (20 mL) was introduced slowly followed by addition of 1% HCl until the aqueous layer became neutral. The mixture was then extracted with ether (3×100 mL) and the combined extracts were washed with water (100 mL) and brine (2×100 mL). The ether solution was dried over anhydrous Na2SO4, and after removal of solvent, the residue was purified using SiO2 chromatography (hexanes and EtOAc/hexanes 1:8 as eluents) to give 15 (22.76 g, 96% yield) as a pale yellow glass. IR (neat) 2930, 1448, 1087 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.48-7.30 (m, 6H), 7.32-7.14 (m, 9H), 6.04-5.80 (m, 3H), 5.36-5.04 (series of multiplets, 6H), 4.14-3.94 (m, 4H), 3.74 (td, J=13.8, 5.8 Hz, 2H), 3.53 (bs, 1H), 3.20-2.94 (m, 3H), 3.31 (hs, 1H), 2.38-1.90 (m, 4H), 1.90-0.96 (series of multiplets, 20H), 0.90 (d, J=5.4 Hz, 3H), 0.89 (s, 3H), 0.64 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 144.83, 136.27, 136.08, 128.94, 127.90, 126.98, 116.46, 115.70, 86.42, 80.94, 79.29, 74.98, 69.52, 69.39, 68.86, 64.39, 46.51, 46.42, 42.67, 42.14, 39.92, 35.63, 35.51, 35.13, 32.45, 28.98, 28.09, 27.66, 27.57, 26.72, 23.32, 23.11, 17.92, 12.69; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 779.5013 (86.1%); calcd. 779.5015.
- Compound 16: To a three-necked round bottom flask was added 15 (3.34 g, 4.4 mmol) in CH2Cl2 (200 mL) and methanol (100 mL). Through the cold solution (−78° C.) ozone was bubbled through until a blue color persisted. Excess ozone was removed with oxygen flow. The mixture was left in a dry ice-acetone bath for an hour. Methyl sulfide (2.4 mL) was added and 15 minutes later, the mixture was treated with NaBH4 (1.21 g, 32 mmol) in 5% aqueous NaOH solution (10 mL)/methanol (10 mL) and allowed to warm to room temperature. The mixture was washed with brine (3×50 mL), and the combined brine wash was extracted with CH2Cl2 (2×50 mL). The organic solution was dried over MgSO4. After SiO2 chromatography (MeOH (5%) in CH2 Cl2), 3.30 g (95% yield) of 16 was isolated as an oil. IR (neat) 3358, 2934, 1448, 1070 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.50-7.42 (m, 6H), 7.32-7.17 (m, 9H), 3.80-2.96 (series of multiplets, 20H), 2.25-0.96 (series of multiplets, 24H), 0.89 (bs, 6H), 0.65 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 144.73, 128.88, 127.87, 126.96, 86.38, 81.05, 79.75, 76.59, 70.33, 69.66, 69.30, 64.20, 62.25, 62.16, 62.03, 46.77, 46.36, 42.63, 41.77, 39.60, 35.43, 35.23, 35.05, 34.89, 32.42, 28.91, 27.93, 27.56, 27.15, 26.68, 23.35, 22.98, 22.85, 18.15, 12.60; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 791.4860 (100%), calcd. 791.4863.
- Compound 17: To a round-bottom flask was added 16 (1.17 g, 1.55 mmol) in dry THF (30 mL) under N2 in ice-bath followed by 9-BBN/THF solution (0.5 M, 10.2 mL, 5.51 mmol). The mixture was stirred at room temperature for 12 hours. Aqueous NaOH (20%) (2 mL) and hydrogen peroxide (30%) (2 mL) were added in sequence. The mixture was refluxed for 1 hour followed by the addition of brine (60 mL) and extraction with EtOAc (4×30 mL). The combined extracts were dried over anhydrous Na2 SO4. The product (1.01 g, 80% yield) was obtained as a colorless oil after SiO2 chromatography (5% MeOH in CH2 Cl2). IR (neat) 3396, 2936, 1448, 1365, 1089 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.50-7.42 (m, 6H), 7.34-7.16 (m, 9H), 3.90-3.56 (m, 13H), 3.50 (bs, 1H), 3.40-2.96 (series of multiplets, 6H), 2.30-0.94 (series of multiplets, 30H), 0.90 (s, 3H), 0.88 (d, Hz, 3H), 0.64 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 144.73, 128.88, 127.85, 126.94, 86.36, 80.52, 78.90, 76.36, 66.82, 66.18, 65.77, 64.22, 61.53, 61.41, 61.34, 46.89, 46.04, 42.60, 41.59, 39.60, 35.37, 35.27, 34.88, 32.75, 32, 44, 32.31, 28.82, 27.65, 27.48, 27.13, 26.77, 23.35, 22.74, 22.38, 18.08, 12.48; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 833.5331 (100%), calcd. 833.5332.
- Compound 18: To a round-bottom flask were added 16 (3.30 g, 4.29 mmol) in CH2Cl2 (150 mL) and NEt3 (2.09 mL, 15.01 mmol). The mixture was put in ice-bath under N2 followed by addition of mesyl chloride (1.10 mL, 14.16 mmol). After 30 minutes, water (30 mL) and brine (200 mL) were added. The CH2Cl2 layer was washed with brine (2×50 mL) and dried over anhydrous Na2SO4. The combined aqueous mixture was extracted with EtOAc (3×100 mL). The combined extracts were washed with brine and dried over anhydrous Na2SO4. The desired product (3.35 g, 78% yield) was isolated as a pale yellow oil after SiO2 chromatography (EtOAc/hexanes 1:1). IR (neat) 2937, 1448, 1352, 1174, 1120, 924 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.52-7.40 (m, 6H), 7.34-7.20, (m, 9H), 4.42-4.24 (m, 6H), 3.90-3.64 (m, 4H), 3.60-3.30 (m, 4H), 3.24-3.00 (m, 3H), 3.10 (s, 6H), 3.05 (s, 3H), 2.20-1.96 (m, 3H) 1.96-1.60 (m, 8H), 1.60-0.94 (series of multiplets, 13H), 0.91 (bs, 6H), 0.65 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 114.68, 128.85, 127.85, 126.96, 86.37, 81.37, 79.58, 76.58, 69.95, 69.43, 69.34, 66.52, 66.31, 65.59, 64.11, 46.80, 46.20, 42.65, 41.48, 39.35, 37.82, 37, 48, 35.36, 34.92, 34.73, 32.37, 28.66, 28.01, 27.44, 27.03, 26.72, 23.17, 22.91, 22.72, 18.13, 12.50; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 1205.4176 (81.5%), calcd. 1205.4189.
- Compound 19: To a round-bottom flask were added 17 (1.01 g, 1.25 mmol) in CH2Cl2 (50 mL) and NEt3 (0.608 mL, 4.36 mmol). The mixture was put in ice-bath under N2 followed by addition of mesyl chloride (0.318 mL, 4.11 mmol). After 30 minutes, water (10 mL) and then brine (80 mL) were added. The CH2 Cl2 layer was washed with brine (2×20 mL) and dried over anhydrous Na2SO4. The combined aqueous mixture was extracted with EtOAc (3×40 mL). The combined extracts were washed with brine and dried over anhydrous Na2 SO4. The desired product (1.07 g, 82%) was isolated as a pale yellowish oil after SiO2 chromatography (EtOAc/hexanes 1:1). IR (neat) 2938, 1356, 1176, 1112 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.46-7.43, (m, 6H), 7.32-7.22 (m, 9H), 4.40-4.31 (m, 6H), 3.72-3.64 (m, 2H), 3.55 (dd, J=6.3, 5.8 Hz, 2H), 3.51 (bs, 1H), 3.32-3.14 (m, 3H), 3.14-2.92 (m, 3H), 3.01 (s, 3H), 3.01 (s, 3H), 3.00 (s, 3H), 2.10-1.92 (m, 10H), 1.92-1.58 (m, 8H), 1.56-0.92 (series of multiplets, 12H), 0.90 (s, 3H), 0.89 (d, J=5.4 Hz, 3H), 0.64 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 144.67, 128.85, 127.85, 126.96, 86.42, 81.06, 79.83, 76.81, 68.12, 68.06, 68.02, 64.26, 64.06, 63.42, 46.76, 46.38, 42.73, 41.87, 39.73, 37, 44, 37.32, 37.29, 35.52, 35.48, 35.32, 35.06, 32.53, 30.55, 30.28, 30.02, 29.15, 27.96, 27.69, 27.61, 26.75, 23.52, 23.02, 18.17, 12.64; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 1067.4672 (100%), calcd. 1067.4659.
- Compound 20: To a round-bottom flask were added 18 (1.50 g, 1.50 mmol) in dry DMSO (20 mL) and NaN3 (0.976 g, 15 mmol). The mixture was heated to 80° C. and stirred under N2 overnight then diluted with water (100 mL). The resulted aqueous mixture was extracted with EtOAc (3×50 mL), and the combined extracts washed with brine and dried over anhydrous Na2 SO4. The desired product (0.83 g, 66% yield) was isolated as a clear glass after SiO2 chromatography (EtOAc/hexanes 1:5). IR (neat) 2935, 2106, 1448, 1302, 1114 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.50-7.42 (m, 6H), 7.36-7.20 (m, 9H), 3.84-3.70 (m, 2H), 3.65 (t, J=4.9 Hz, 2H), 3.55 (bs, 1H), 3.44-3.08 (m, 10H), 3.02 (t, J=6.4 Hz, 2H), 2.38-0.96 (series of multiplets, 24H), 0.92 (d, J=5.6 Hz, 3H), 0.91 (s, 3H), 0.65 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 114.84, 128.97, 127.92, 126.99, 86.42, 81.24, 80.12, 76.59, 67.84, 67.29, 66.66, 64.36, 51.67, 51.44, 51.18, 46.53, 46.23, 42.21, 41.93, 39.73, 35, 66, 35.36, 35.06, 34.78, 32.40, 28.95, 27.76, 27.39, 26.87, 23.45, 22.98, 22.92, 17.98, 12.53; HRFAB-MS (thioglycerol+ Na+ matrix) m/e: ([M+Na]+) 866.5040 (100%), calcd. 866.5057.
- Compound 22: To a round-bottom flask were added 20 (830 mg, 0.984 mmol) in MeOH (30 mL) and CH2 Cl2 (30 mL) and p-toluenesulfonic acid (9.35 mg, 0.0492 mmol). The solution was stirred at room temperature for 2.5 hours then saturated aqueous NaHCO3 (10 mL) was introduced. Brine (30 mL) was added, and the mixture was extracted with EtOAc (4×20 mL). The combined extracts were dried over anhydrous Na2 SO4. The desired product (0.564 g, 95% yield) was isolated as a pale yellowish oil after SiO2 chromatography (EtOAc/hexanes 1:2). IR (neat) 3410, 2934, 2106, 1301, 1112 cm−1; 1H NMR (CDCl3, 200 MHz) δ 3.80-3.54 (m, 7H), 3.44-3.20 (m, 10H), 2.35-0.96 (series of multiplets, 24H), 0.95 (d, J=6.4 Hz, 3H), 0.92 (s, 3H), 0.68 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 81.10, 80.01, 76.60, 67.75, 67.16, 66.56, 63.63, 51.57, 51.34, 51.06, 46.29, 46.12, 42.12, 41.81, 39.60, 35.55, 35.23, 34.94, 34.66, 31.75, 29.48, 28.81, 27.72, 27.66, 27.29, 23.32, 22.86, 22.80, 17.85, 12.39; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 624.3965 (100%), calcd. 624.3962.
- Compound 23: To a round-bottom flask were added 19 (1.07 g, 1.025 mmol) and NaN3 (0.666 g, 10.25 mmol) followed the introduction of dry DMSO (15 mL). The mixture was heated up to 80° C. under N2 overnight. After the addition of H2 O (100 mL), the mixture was extracted with EtOAc (4×40 mL) and the combined extracts were washed with brine (2×50 mL) and dried over anhydrous Na2 SO4. After removal of solvent, the residue was dissolved in MeOH (15 mL) and CH2 Cl2 (15 mL) followed by the addition of catalytic amount of p-toluenesulfonic acid (9.75 mg, 0.051 mmol). The solution was stirred at room temperature for 2.5 hours before the addition of saturated NaHCO3 solution (15 mL). After the addition of brine (60 mL), the mixture was extracted with EtOAc (5×30 mL). The combined extracts were washed with brine (50 mL) and dried over anhydrous Na2SO4. The desired product (0.617 g, 94% yield for two steps) was obtained as a yellowish oil after SiO2 chromatography (EtOAc/hexanes 1:2). IR (neat) 3426, 2928, 2094, 1456, 1263, 1107 cm−1; 1H NMR (CDCl3, 300 MHz) δ 3.68-3.56 (m, 3H), 3.56-3.34 (series of multiplets, 10H), 3.28-3.00 (series of multiplets, 4H), 2.20-2.00 (m, 3H), 1.98-1.55 (series of multiplets, 15H), 1.55-0.96 (series of multiplets, 13H), 0.92 (d, J=6.6 Hz, 3H), 0.89 (s, 3H), 0.66 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.63, 79.79, 76.04, 64.99, 64.45, 64.30, 63.72, 49.01, 48.94, 48.74, 46.49, 46.39, 42.70, 41.98, 39.80, 35.65, 35.42, 35.28, 35.08, 31.99, 29.78, 29.75, 29.70, 29.49, 29.06, 27.87, 27.79. 27.65, 23.53, 23.04, 22.85, 18.05, 12.59; HRFAB-MS (thioglycerol+Na matrix) m/e: ([M+Na]+) 666.4415 (100%), calcd. 666.4431.
- Compound 24: To a round-bottom flask were added 22 (0.564 g, 0.938 mmol) in CH2Cl2 (30 mL) and NEt3 (0.20 mL, 1.40 mmol). The mixture was put in ice-bath under N2 followed by addition of mesyl chloride (0.087 mL, 1.13 mmol). After 30 minutes, water (20 mL) and brine (100 mL) were added. The CH2 Cl2 layer was washed with brine (2×20 mL) and dried over anhydrous Na2 SO4. The combined aqueous mixture was extracted with EtOAc (3×30 mL). The combined extracts were washed with brine and dried over anhydrous Na2 SO4. The desired product (0.634 g, 99% yield) was isolated as a pale yellowish oil after SiO2 chromatography (EtOAc/hexanes 1:2). JR (neat) 2935, 2106, 1356, 1175, 1113 cm−1; NMR (CDCl3, 300 MHz) δ 4.20 (t, J=6.8 Hz, 2H), 3.80-3.75 (m, 1H), 3.70-3.64 (m, 3H), 3.55 (bs, 1H), 3.44-3.01 (m, 10H), 3.00 (s, 3H), 2.32-2.17 (m, 3H), 2.06-2.03 (m, 1H), 1.90-0.88 (series of multiplets, 20H), 0.95 (d, J=6.6 Hz, 3H), 0.91 (s, 3H), 0.68 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.90, 79.86, 76.43, 70.78, 67.64, 66.99, 66.48, 51.50, 51.26, 50.97, 46.05, 45.96, 42.08, 41.71, 39.51, 37.33, 35.15, 34.86, 34.60, 31.34, 28.73, 27.62, 27.59, 27.51, 25.68, 23.22, 22.80, 22.70, 17.62, 12.33; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 702.3741 (100%), calcd. 702.3737.
- Compound 25: To a round-bottom flask were added 23 (0.617 g, 0.96 mmol) in CH2 (30 mL) and NEt3 (0.20 mL, 1.44 mmol). The mixture was put in ice-bath under N2 followed by addition of mesyl chloride (0.089 mL, 1.15 mmol). After 30 minutes, water (20 mL) and brine (120 mL) were added. The CH2 Cl2 layer was washed with brine (2×20 mL) and dried over anhydrous Na2 SO4. The combined aqueous mixture was extracted with EtOAc (3×30 mL). The combined extracts were washed with brine and dried over anhydrous Na2 SO4. The desired product (0.676 g, 97% yield) was isolated as a pale yellowish oil after removal of solvent. IR (neat) 2934, 2094, 1454, 1360, 1174, 1112 cm−1; 1H NMR (CDCl3, 300 MHz) δ 4.17 (t, J=6.6 Hz, 2H), 3.65-3.28 (series of multiplets, 11H), 3.64-3.00 (series of multiplets, 4H), 2.97 (s, 3H), 2.18-1.96 (series of multiplets, 16H), 1.54-0.94 (series of multiplets, 11H), 0.89 (d, Hz, 3H), 0.86 (s, 3H), 0.63 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.47, 79.67, 75.92, 70.84, 64.90, 64.37, 64.17, 48.90, 48.86, 48.66, 46.32, 46.26, 42.63, 41.87, 39.70, 37.39, 35.34, 35.28, 35.20, 34.99, 31.61, 29.68, 29.60, 28.96, 27.78, 27.68, 27.57, 25.79, 23.41, 22.95, 22.74, 17.82, 12.50; HRFAB-MS (thioglycerol matrix) m/e: ([M+H]+) 722.4385 (22.1%), calcd. 722.4387.
- Compound 26: To a 50 mL round-bottom flask was added 24 (0.634 g, 0.936 mmol) and N-benzylmethylamine (2 mL). The mixture was heated under N2 at 80° C. overnight. Excess N-benzylmethylamine was removed under vacuum, and the residue was subjected to SiO2 chromatography (EtOAc/hexanes 1:2). The desired product (0.6236 g, 95% yield) was isolated as a pale yellow oil. IR (neat) 2935, 2106, 1452, 1302, 1116 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.32-7.24 (m, 5H), 3.80-3.76 (m, 1H), 3.70-3.60 (m, 3H), 3.54 (bs, 1H), 3.47 (s, 2H), 3.42-3.10 (m, 10H), 2.38-2.05 (m, 5H), 2.17 (s, 3H), 2.02-0.88 (series of multiplet, 21H), 0.93 (d, J=7.0 Hz, 3H), 0.91 (s, 3H), 0.66 (s, 3H); 13C NMR (CDCl3, 50 MHz) δ 139.60, 129.34, 128.38, 127.02, 81.22, 80.10, 76.71, 67.85, 67.29, 66.65, 62.45, 58.38, 51.65, 51.44, 51.16, 46.50, 46.21, 42.40, 42.20, 41.93, 39.72, 35, 80, 35.34, 35.05, 34.76, 33.65, 28.93, 27082, 27.75, 27.38, 24.10, 23.45, 22.98, 22.91, 18.05, 12.50; HRFAB-MS (thioglycerol+Na4 matrix) m/e: ([M−H]+) 703.4748 (90.2%), calcd. 703.4772; ([M+H]+) 705.4911 (100%), calcd. 705.4928; ([M+Na]+) 727.4767 (1.5%), calcd. 727.4748.
- Compound 27: To a 50 mL round-bottom flask was added 25 (0.676 g, 0.937 mmol) and N-benzylmethylamine (2 mL). The mixture was heated under N2 at 80° C. overnight. Excess N-benzylmethylamine was removed under vacuum and the residue was subjected to SiO2 chromatography (EtOAc/hexanes 1:2). The desired product (0.672 g, 96% yield) was isolated as a pale yellow oil. IR (neat) 2934, 2096, 1452, 1283, 1107 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.34-7.20 (m, 5H), 3.68-3.37 (series of multiplets, 13H), 3.28-3.04 (m, 4H), 2.33 (t, Hz, 2H), 2.18 (s, 3H), 2.20-2.00 (m, 3H), 1.96-1.56 (series of multiplets, 14H), 1.54-1.12 (m, 10H), 1.10-0.96 (m, 3H), 0.91 (d, J=8.7 Hz, 3H), 0.89 (s, 3H), 0.65 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 139.48, 129.23, 128.30, 126.96, 80.66, 79.81, 76.08, 65.00, 64.46, 64.34, 62.50, 58.37, 49.02, 48.95, 48.75, 46.65, 46.40, 42.69, 42.43, 42.00, 39.83, 35.86, 35.45, 35.30, 35.10, 33.83, 29.81, 29.78, 29.72, 29.09, 27.88, 27.81, 27.66, 24.19, 23.57, 23.06, 22.87, 18.15, 12.62; HRFAB-MS (thioglycerol matrix) m/e: ([M+H]+) 747.5406 (77.2%), calcd. 747.5398.
- Compound 1: To a round-bottom flask were added 26 (0.684 g, 0.971 mmol) in dry THF (30 mL) and LiAlH4 (113.7 mg, 3.0 mmol) under N2. The mixture was stirred at room temperature for 12 hours, and then Na2SO4.10 H2O powder (10 g) was added slowly. After the grey color disappeared, the mixture was filtered through Celite and washed with dry THF. The product (0.581 g, 95% yield) was obtained as a colorless glass. IR (neat) 3372, 2937, 1558, 1455, 1362, 1102 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.34-7.20 (m, 5H), 3.68-3.48 (m, 5H), 3.47 (s, 2H), 3.29 (bs, 1H), 3.22-3.00 (m, 3H), 2.96-2.80 (m, 6H), 2.32 (t, J=6.8, 5.4 Hz, 2H), 2.17 (s, 3H), 2.20-2.00 (m, 3H), 1.96-0.96 (series of multiplets, 27H), 0.93 (d, J=6.8 Hz, 3H), 0.90, (s, 3H), 0.67 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 139.50, 129.22, 128.31, 126.96, 80.76, 79.85, 76.10, 70.90, 70.33, 70.24, 62.48, 58.27, 46.55, 46.45, 42.72, 42.58, 42.33, 41.99, 39.77, 35.78, 35.37, 35.01, 33.73, 29.07, 27.95, 27.71, 24.06, 23.46, 22.99, 18.14, 12.55; HRFAB-MS (thioglycerol matrix) m/e: ([M+H]+) 627.5211 (100%), calcd. 627.5213.
- HCl salt of compound 1:
Compound 1 was dissolved in a minimum amount of CH2 Cl2 and excess HCl in ether was added. Solvent and excess HCl were removed in vacuo and a noncrystalline white powder was obtained. 1H NMR (methanol-d4/15% (CDCl3, 300 MHz) δ 7.61-7.57 (m, 2H), 7.50-7.48 (m, 3H), 4.84 (bs, 10H), 4.45 (bs, 1H), 4.30 (bs, 1H), 3.96-3.82 (m, 2H), 3.78-3.69 (m, 2H), 3.66 (bs, 1H), 3.59-3.32 (series of multiplets, 4H), 3.28-3.02 (m, 8H), 2.81 (s, 3 PT), 2.36-2.15 (m, 4H), 2.02-1.68 (m, 8H), 1.64-0.90 (series of multiplets, 12H), 1.01 (d, J=6.35 Hz, 3H), 0.96 (s, 3H), 0.73 (s, 3H); 13C NMR (methanol-d4/15% (CDCl3, 75 MHz) δ 132.31, 131.20, 130.92, 130.40, 83.13, 81.09, 78, 48, 65.54, 64.98, 64.11, 60.87, 57.66, 47.51, 46.91, 43.52, 43.00, 41.38, 41.19, 41.16, 40, 75, 40.30, 36.37, 36.08, 36.00, 35.96, 33.77, 29.68, 29.34, 28.65, 28.37, 24.42, 24.25, 23.33, 21.51, 18.80, 13.04. - Compound 2: To a round-bottom flask were added 27 (0.82 g, 1.10 mmol) in dry THF (150 mL) and LiAlH4 (125 mg, 3.30 mmol) under N2. The mixture was stirred at room temperature for 12 hours and Na2 SO4.10 H2O powder (10 g) was added slowly. After the grey color disappeared, the mixture was filtered through a cotton plug and washed with dry THF. TI-IF was removed in vacuo and the residue dissolved in CH2 Cl2 (50 mL). After filtration, the desired product was obtained as a colorless glass (0.73 g, 99% yield). IR (neat) 3362, 2936, 2862, 2786, 1576, 1466, 1363, 1103 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.32-7.23 (m, 5H), 3.67-3.63 (m, 1H), 3.60-3.57 (m, 1H), 3.53 (t, J=6.4 Hz, 2H), 3.47 (s, 2H), 3.46 (bs, 1H), 3.24-3.17 (m, 2H), 3.12-2.99 (m, 2H), 2.83-2.74 (series of multiplets, 6H), 2.30 (t, J=7.3 Hz, 2H), 2.15 (s, 3H), 2.20-2.00 (m, 3H), 1.95-1.51 (series of multiplets, 20H), 1.51-1.08, (series of multiplets, 10H), 1.06-0.80 (m, 3H), 0.87 (d, J=8.1 Hz, 3H), 0.86 (s, 3H), 0.61 (s, 3H); 13C NMR (CDCl3, 75 MHz).
- 139.35, 129.16, 128.22, 126.88, 80.44, 79.29, 75.96, 66.70, 66.52, 66.12, 62.45, 58.26, 46.76, 46.27, 42.69, 42.41, 42.02, 40.68, 40.10, 40.02, 39.82, 35.84, 35.47, 35.30, 35.06, 34.15, 34.09, 34.03, 33.80, 28.96, 27.93, 27.75, 27.71, 24.32, 23.53, 23.03, 22.75, 18.17, 12.58; HRFAH-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 691.5504 (38.5%), calcd. 691.5502.
- HCl salt of compound 2:
Compound 2 was dissolved in a minimum amount of CH2 Cl2 and excess HCl in ether was added. Removal of the solvent and excess HCl gave a noncrystalline white powder. NMR (methanol-d4/15% (CDCl3, 300 MHz) δ 7.60-7.59 (m, 2H), 7.50-7.47 (m, 3H), 4.82 (bs, 10H), 4.43 (bs, 1 FT), 4.32 (bs, 1H), 3.85-3.79 (m, 1H), 3.75-3.68 (m, 1H), 3.64 (t, J=5.74 Hz, 2H), 3.57 (bs, 1H), 3.36-3.28 (m, 2H), 3.25-3.00 (series of multiplets, 10H), 2.82 (s, 3H), 2.14-1.68 (series of multiplets, 19H), 1.65-1.15 (series of multiplets, 11H), 0.98 (d, J=6.6 Hz, 3H), 0.95 (s, 3H), 0.72 (s, 3H); 13C NMR (methanol-d4/15% (CDCl3, 75 MHz) δ 132.21, 131.10, 130.58, 130.28, 81.96, 80.72, 77.60, 66.84, 66.58, 66.12, 61.03, 57.60, 44.16, 42.77, 40.62, 39.57, 39.43, 36.28, 36.03, 35.96, 35.78, 33.65, 29.48, 29.27, 29.11, 29.01, 28.61, 28.56, 28.35, 24.25, 23.56, 23.30, 21.17, 18.64, 12.90. - Compound 4: A suspension of 1 (79.1 mg, 0.126 mmol) and aminoiminomethanesulfonic acid (50.15 mg, 0.404 mmol) in methanol and chloroform was stirred at room temperature for 24 hours, and the suspension became clear. An ether solution of HCl (1 M, 1 mL) was added followed by the removal of solvent with N2 flow. The residue was dissolved in H2 O (5 mL) followed by the addition of 20% aqueous NaOH (0.5 mL). The resulting cloudy mixture was extracted with CH2Cl2 (4×5 mL). The combined extracts were dried over anhydrous Na2SO4. Removal of solvent gave the desired product (90 mg, 95%) as white powder. m.p. 111-112° C. IR (neat) 3316, 2937, 1667, 1650, 1556, 1454, 1348, 1102 cm−1; 1H NMR (5% methanol-d4/CDCl3, 300 MHz) δ 7.26-7.22 (m, 5H), 4.37 (bs, 3H), 3.71-3.51 (series of multiplets, 5H), 3.44 (s, 2H), 3.39-3.10 (series of multiplets, 10H), 2.27 (t, J=6.83 Hz, 2H), 2.13 (s, 3H), 2.02-0.94 (series of multiplets, 33H), 0.85 (d, J=5.62 Hz, 3H), 0.84 (s, 3H), 0.61 (s, 3H); 13C NMR (5% methanol-d4/CDCl3, 75 MHz) δ 158.54, 158.48, 158.43, 138.27, 129.47, 128.32, 127.19, 81.89, 80.30, 77.34, 69.02, 68.46, 67, 21, 62.36, 58.00, 47.36, 46, 18, 43.26, 43.00, 42.73, 42.18, 41.48, 39.32, 35.55, 34.97, 34.89, 34, 67, 33.63, 28.93, 28.28, 27.53, 27.16, 23.96, 23.28, 23.16, 22.77, 18, 36, 12.58; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 753.5858 (100%), calcd. 753.5867.
- HCl salt of compound 4: Compound 4 was dissolved in minimum amount of CH2Cl2 and MeOH followed by addition of excess HCl in ether. The solvent was removed by N2 flow, and the residue was subjected to high vacuum overnight. The desired product was obtained as noncrystalline white powder. 1H NMR (methanol-d4/20% (CDCl3, 300 MHz) δ 7.58 (bs, 2H), 7.50-7.48 (m, 3H), 4.76 (bs, 13H), 4.45 (d, J=12.9 Hz, 1H), 4.27 (dd, 1 H, J=12.9, 5.4 Hz), 3.82-3.00 (series of multiplets, 17H), 2.81-2.80 (m, 3H), 2.20-1.02 (series of multiplets, 27H), 0.98 (d, J=6.59 Hz, 3H), 0.95 (s, 3H), 0.72 (s, 3H); 13C NMR (methanol-d4/20% CDCl3, 75 MHz) δ 158.88, 158.72, 132.00, 131.96, 130.98, 130.15, 82.51, 81.07, 78.05, 68.50, 68.02, 67.94, 67.10, 60.87, 60.53, 57.38, 47, 16, 46.91, 43.91, 43.11, 43.01, 42.91, 42.55, 40.28, 39.88, 39.95, 35.90, 35.73, 35.64, 33.53, 29.18, 28.35, 27.99, 24.02, 23.30, 21.35, 18.52, 18.44, 13.06.
- Compound 5: A suspension of 2 (113 mg, 0.169 mmol) and aminoiminomethanesulfonic acid (67.1 mg, 0.541 mmol) in methanol and chloroform was stirred at room temperature for 24 hours. HCl in ether (1 M, 1 mL) was added followed by the removal of solvent with N2 flow. The residue was subject to high vacuum overnight and dissolved in H2O (5 mL) followed by the addition of 20% NaOH solution (1.0 mL). The resulting mixture was extracted with CH2 Cl2 (5×5 mL). The combined extracts were dried over anhydrous Na2 SO4, Removal of solvent gave desired the product (90 mg, 95% yield) as a white solid. m.p. 102-104° C. IR (neat) 3332, 3155, 2939, 2863, 1667, 1651, 1558, 1456, 1350, 1100 cm−1; 1H NMR (5% methanol-d4/CDCl3, 300 MHz) i 7.35-7.24 (m, 5H), 3.75-3.64 (m, 1H), 3.57 (bs, 5H), 3.50 (s, 2H), 3.53-3.46 (m, 1H), 3.40-3.10 (series of multiplets, 14H), 2.34 (t, J=7.31 Hz, 2H), 2.19 (s, 3H), 2.13-0.96 (series of multiplets, 36H), 0.91 (bs, 6H), 0.66 (s, 3H); 13C NMR (5% methanol-d4/CDCl3, 75 MHz) 157.49, 157.31, 157.23, 138.20, 129.52, 128.34, 127.23, 81.17, 79.19, 76.42, 65.63, 65.03, 64.70, 62.36, 58.02, 47.23, 46.24, 42.89, 42.18, 41.45, 39.45, 39.40, 39.30, 38.71, 35.61, 35.55, 35.02, 34.82, 33.69, 29.87, 29.59, 29.42, 28.84, 27.96, 27.56, 23.95, 23.40, 22.82, 22.64, 18.28, 12.54; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 795.6356 (84.3%), calcd. 795.6337.
- HCl salt of compound 5: Compound 5 was dissolved in minimum amount of CH2 Cl2 and MeOH followed by the addition of excess HCl in ether. The solvent and excess HCl were removed by N2 flow and the residue was subject to high vacuum overnight. The desired product was obtained as noncrystalline white powder. 1H NMR (methanol-d4/10% CDCl3, 300 MHz) δ 7.62-7.54 (m, 2H), 7.48-7.44 (m, 3H), 4.84 (bs, 16H), 4.46 (d, J=12.7 Hz, 1H), 4.26 (dd, J=12.7, 3.42 Hz, 1H), 3.78-3.56 (series of multiplets, 5H), 3.38-3.05 (series of multiplets, 13H), 2.80 (d, 3H), 2.19-2.04 (m, 3H), 2.02-1.04 (series of multiplets, 30H), 0.98 (d, J=6.35 Hz, 3H), 0.95 (s, 3H), 0.72 (s, 3H); 13C NMR (methanol-d4/10% CDCl3, 75 MHz) δ 158.75, 158.67, 132.32, 131.24, 130.83, 130.43, 82.49, 81.02, 77.60, 66.47, 65.93, 61.19, 60.85, 57.69, 47.79, 47.60, 44.29, 43.07, 40.86, 40.42, 40.19, 40.09, 39.76, 36.68, 36.50, 36.15, 35.94, 33.91, 30.75, 30.46, 29.74, 29.33, 28.71, 24.41, 24.03, 23.38, 22.21, 22.16, 18.59, 18.52, 13.09.
- Compound CSA-26 was synthesized according to
Scheme 1 and Example 1 using 7-deoxycholic acid in place of cholic acid and methyl cholate. - This example includes a description of one or more exemplary synthetic procedures for obtaining
Compounds 3, 28 and 29. - Compound 28: A suspension of 19 (0.641 g, 0.614 mmol) and KCN (0.40 g, 6.14 mmol) in anhydrous DMSO (5 mL) was stirred under N2 at 80° C. overnight followed by the addition of H2 O (50 mL). The aqueous mixture was extracted with EtOAc (4×20 mL). The combined extracts were washed with brine once, dried over anhydrous Na2 SO4 and concentrated in vacuo. The residue was dissolved in CH2 Cl2 (3 mL) and MeOH (3 mL) and catalytic amount of p-toluenesulfonic acid (5.84 mg, 0.03 mmol) was added. The solution was stirred at room temperature for 3 hours before the introduction of saturated NaHCO3 solution (10 mL). After the addition of brine (60 mL), the mixture was extracted with EtOAc (4×30 mL). The combined extracts were washed with brine once and dried over anhydrous Na2 SO4 and concentrated. The residue afforded the desired product (0.342 g, 92% yield) as pale yellowish oil after column chromatography (silica gel, EtOAc/hexanes 2:1). IR (neat) 3479, 2936, 2864, 2249, 1456, 1445, 1366, 1348, 1108 cm−1H NMR (CDCl3, 300 MHz) δ 3.76-3.53 (m, 7H), 3.32-3.06 (series of multiplets, 4H), 2.57-2.46 (m, 6H), 2.13-1.00 (series of multiplets, 31H), 0.93 (d, J=6.35 Hz, 3H), 0.90 (s, 3H), 0.67 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 119.91, 119.89, 80.75, 79.65, 76.29, 65.83, 65.37, 65.19, 63.63, 46, 57, 46.44, 42.77, 41.79, 39.71, 35.63, 35.26, 35.02, 32.00, 29.46, 29.03, 27.96, 27.74, 26.64, 26.42, 26.12, 23.56, 22.98, 22.95, 18.24, 14.65. 14.54, 14.30, 12.60; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 618.4247 (67.8%), calcd. 618.4247.
- Compound 29: To a solution of 28 (0.34 g, 0.57 mmol) in dry CH2 Cl2 (15 mL) under N2 at 0° C. was added NEt3 (119.5 μL, 0.857 mmol) followed by the addition of mesyl chloride (53.1.mu.L, 0.686 mmol). The mixture was allowed to stir at 0° C. for 30 minutes before the addition of H2 O (6 mL). After the introduction of brine (60 mL), the aqueous mixture was extracted with EtOAc (4×20 mL). The combined extracts were washed with brine once, dried over anhydrous Na2 SO4 and concentrated. To the residue was added N-benzylmethyl amine (0.5 mL) and the mixture was stirred under N2 at 80° C. overnight. Excess N-benzylmethylamine was removed in vacuo and the residue was subject to column chromatography (silica gel, EtOAc/hexanes 2:1 followed by EtOAc) to afford product (0.35 g, 88% yield) as a pale yellow oil. IR (neat) 2940, 2863, 2785, 2249, 1469, 1453, 1366, 1348, 1108 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.34-7.21 (m, 5H), 3.76-3.69 (m, 1H), 3.64-3.50 (m, 4H), 3.48 (s, 2H), 3.31-3.05 (series of multiplets, 4H), 2.52-2.46 (m, 6H), 2.33 (t, J=7.32 H, 2 Hz), 2.18 (s, 3H), 2.13-0.95 (series of multiplets, 30H), 0.91 (d, J=6.80 H, 3 Hz), 0.90 (s, 3H), 0.66 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 139.37, 129.17, 128.26, 126.93, 119.96, 119.91, 80.73, 79.59, 76.26, 65.79, 65.35, 65.13, 62.47, 58.25, 46.74, 46.40, 42.72, 42.38, 41.76, 39.68, 35.78, 35.22, 34.98, 33.79, 28.99, 27.92, 27.71, 26.63, 26.38, 26.09, 24.21, 23.54, 22.96, 22.90, 18.28, 14.62, 14.51, 14.26, 12.58; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 699.5226 (100%), calcd. 699.5213.
- Compound 3: A solution of 29 (0.074 g, 0.106 mmol) in anhydrous THF (10 mL) was added dropwise to a mixture of AlCl3 (0.1414 g, 1.06 mmol) and LiAlH4 (0.041 g, 1.06 mmol) in dry THF (10 mL). The suspension was stirred for 24 hours followed by the addition of 20% NaOH aqueous solution (2 mL) at ice-bath temperature. Anhydrous Na2 SO4 was added to the aqueous slurry. The solution was filtered and the precipitate washed twice with THF. After removal of solvent, the residue was subject to column chromatography (silica gel, MeOH/CH2 Cl2 1:1 followed by MeOH/CH2 Cl2/NH3.H2 O 4:4:1) to afford the desired product (0.038 g, 50% yield) as a clear oil. IR (neat) 3362, 2935, 2863, 2782, 1651, 1574, 1568, 1557, 1471, 1455, 1103 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.32-7.22 (m, 5H), 3.60-3.02 (series of broad multiplets, 18H), 2.90-2.70 (m, 5H), 2.33 (t, J=7.20 Hz, 2H), 2.24-2.04 (m, 3H), 2.18 (s, 3H), 1.96-0.96 (series of multiplets, 30H), 0.90 (d, J=7.57 Hz, 3H), 0.89 (s, 3H), 0.64 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 139.44, 129.24, 128.31, 126.97, 80.63, 79.65, 75.97, 68.44, 68.00. 67.96, 62.54, 58.40, 46.77, 46.30, 42.73, 42.43, 42.07, 41.92, 41.74, 41.72, 39.81, 35.82, 35.48, 35.07, 33.84, 31.04, 30.30, 30.10, 29.03, 28.11, 27.82, 27.81, 27.74, 27.67, 27.64, 24.31, 23.50, 23.04, 22.93, 18.22, 12.63; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 711.6139 (100%), calcd. 711.6152; ([M+Na]+) 733.5974 (46.1%), calcd. 733.5972.
- This example includes a description of one or more exemplary synthestic procedures for obtaining
Compounds 6, 7 and 30-33. - Compound 30: Cholic acid (3.0 g, 7.3 mmol) was dissolved in CH2Cl2 (50 mL) and methanol (5 mL). Dicyclohexylcarbodiimide (DCC) (1.8 g, 8.8 mmol) was added followed by N-hydroxysuccinimide (about 100 mg) and benzylmethylamine (1.1 g, 8.8 mmol). The mixture was stirred for 2 hours, then filtered. The filtrate was concentrated and chromatographed (SiO2, 3% MeOH in CH2Cl2) to give 3.0 g of a white solid (81% yield). m.p. 184-186° C.; IR (neat) 3325, 2984, 1678 cm−1; 1H NMR (CDCl3, 200 MHz) δ 7.21 (m, 5H), 4.51 (m, 2H), 3.87 (m, 1H), 3.74 (m, 2H), 3.36 (m, 2H), 2.84 (s, 3H), 2.48-0.92 (series of multiplets, 28H), 0.80 (s, 3H), 0.58 (d, J=6.5 Hz, 3H); 13C NMR (CDCl3, 50 MHz) δ 174.30, 173.94, 137.36, 136.63, 128.81, 128.46, 127.85, 127.50, 127.18, 126.28, 72.96, 71.76, 68.35, 53.39, 50.65, 48.77, 46.91, 46.33, 41.44, 39.36, 39.18, 35.76, 35.27, 34.76, 33.87, 31.54, 34.19, 31.07, 30.45, 28.11, 27.63, 26.14, 25.59, 24.92, 23.26, 17.51, 12.41; FAB-MS (thioglycerol+Na4 matrix) m/e: ([M+H]+) 512 (100%), calcd. 512.
- Compound 31: Compound 30 (2.4 g, 4.7 mmol) was added to a suspension of LiAlH4 (0.18 g, 4.7 mmol) in THF (50 mL). The mixture was refluxed for 24 hours, then cooled to 0° C. An aqueous solution of Na2SO4 was carefully added until the grey color of the mixture dissipated. The salts were filtered out, and the filtrate was concentrated in vacuo to yield 2.1 g of a white solid (88%). The product proved to be of sufficient purity for further reactions. m.p. 70-73° C.; IR (neat) 3380, 2983, 1502 cm−1H NMR (CDCl3, 300 MHz) δ 7.23 (m, 5H), 3.98 (bs, 2H), 3.81 (m, 3H), 3.43 (m, 3H), 2.74 (m, 2H), 2.33 (m, 3H), 2.25 (s, 3H), 2.10-0.90 (series of multiplets, 24H), 0.98 (s, 3H), 0.78 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 135.72, 129.63, 128.21, 128.13, 125.28, 72.91, 71, 63, 62.05, 60.80, 56.79, 47.00, 46.23, 41.44, 40.81, 39.41, 35.42, 35.24, 34.63, 34.02, 33.22, 31.73, 30.17, 29, 33, 29.16, 28.02, 27.49, 26.17, 25.55, 23.10, 22.48, 22.33, 17.54, 12.65; FAB-MS (thioglycerol matrix) m/e: 498 (100%), calcd. 498.
- Compound 32: Compound 31 (0.36 g, 0.72 mmol) was dissolved in CH2Cl2 (15 mL) and Bocglycine (0.51 g, 2.89 mmol), DCC (0.67 g, 3.24 mmol) and dimethylaminopyridine (DMAP) (about 100 mg) were added. The mixture was stirred under N2 for 4 hours then filtered. After concentration and chromatography (SiO2, 5% MeOH in CH2Cl2), the product was obtained as a 0.47 g of a clear glass (68%). 1H NMR (CDCl3, 300 MHz) δ 7.30 (m, 5H), 5.19 (bs, 1H), 5.09 (bs, 3H), 5.01 (bs, 1H), 4.75 (m, 1H), 4.06-3.89 (m, 6H), 2.33 (m, 2H), 2.19 (s, 3H) 2.05-1.01 (series of multiplets, 26H), 1.47 (s, 9H), 1.45 (s, 18H), 0.92 (s, 3H), 0.80 (d, J=6.4 Hz, 3H), 0.72 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 170.01, 169.86, 169.69, 155.72, 155.55, 139.90, 129.05, 128.17, 126.88, 79.86, 76.53, 75.09, 72.09, 62, 35, 57.88, 47.78, 45.23, 43.12, 42.79, 42.16, 40.81, 37.94, 35.51, 34.69, 34.57, 34.36, 33.30, 31.31, 29.66, 28.80, 28.34, 27.22, 26.76, 25.61, 24.02, 22.83, 22.47, 17.93, 12.19; FAB-MS (thioglycerol matrix) m/e: ([M+H]+) 970 (100%), calcd. 970.
- Compound 33: Compound 31 (0.39 g, 0.79 mmol) was dissolved in CH2Cl2 (15 mL) and Boc-β-alanine (0.60 g, 3.17 mmol), DCC (0.73 g, 3.56 mmol) and dimethylaminopyridine (DMAP) (about 100 mg) were added. The mixture was stirred under N2 for 6 hours then filtered. After concentration and chromatography (SiO2, 5% MeOH in CH2Cl2), the product was obtained as a 0.58 g of a clear glass (72%). IR (neat) 3400, 2980, 1705, 1510 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.27 (m, 5H), 5.12 (bs, 4H), 4.93 (bs, 1H), 4.71 (m, 1H), 3.40 (m, 12H), 2.59-2.48 (m, 6H), 2.28 (m, 2H), 2.17 (s, 3H), 2.05-1.01 (series of multiplets, 26H), 1.40 (s, 27H), 0.90 (s, 3H), 0.77 (d, J=6.1 Hz, 3H), 0.70 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 171.85, 171.50, 171.44, 155.73, 138.62, 129.02, 128.09, 126.87, 79.18, 75.53, 74.00, 70.91, 62.20, 57.67, 47.84, 44.99, 43.28, 41.98, 40.73, 37.67, 36.12, 34.94, 34.65, 34.47, 34.20, 33.29, 31.23, 29.57, 28.74, 28.31, 28.02, 27.86, 27.12, 26.73, 25.46, 24.86, 23.95, 22.77, 22.39, 17.91, 12.14; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 1011.6619 (100%), calcd. 1011.6634.
- Compound 6: Compound 32 (0.15 g, 0.15 mmol) was stirred with excess 4 N HCl in dioxane for 40 minutes. The dioxane and HCl were removed in vacuo leaving 0.12 g of a clear glass (about 100%). 1H NMR (CD3OD, 300 MHz) δ 7.62 (bs, 2H), 7.48 (bs, 3H), 5.30 (bs, 1H), 5.11 (bs, 1H), 4.72 (bs (1H), 4.46 (m, 1H), 4.32 (m, 1H) 4.05-3.91 (m, 4H), 3.10 (m, 2H), 2.81 (s, 3H), 2.15-1.13 (series of multiplets, 25H), 1.00 (s, 3H), 0.91 (bs, 3H), 0.82 (s, 3H). 13C NMR (CD3OD, 125 MHz) δ 166.86, 166.50, 131.09, 130.18, 129.17, 128.55, 76.60, 75.43, 72.61, 72.04, 70.40, 66.22, 60.07, 58.00, 57.90, 54.89, 54.76, 46.44, 44.64, 43.39, 42.22, 38.56, 36.78, 34.14, 33.92, 33.84, 31.82, 30.54, 29.67, 28.79, 27.96, 26.79, 26.00, 24.99, 23.14, 22.05, 21.82, 19.91, 17.27, 11.60; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M-4 Cl-3 H]+) 669.4576 (100%), calcd. 669.4591.
- Compound 7: Compound 33 (0.20 g, 0.20 mmol) was stirred with excess 4 N HCl in dioxane for 40 minutes. The dioxane and HCl were removed in vacuo leaving 0.12 g of a clear glass (about 100%). 1H NMR (CD3OD, 500 MHz) δ 7.58 (bs, 2H), 7.49 (bs, 3H), 5.21 (bs, 1H), 5.02 (bs, 1H), 4.64 (m, 1H), 4.44 (m, 1H), 4.28 (m, 1H), 3.30-2.84 (m, 14H), 2.80 (s, 3H), 2.11-1.09 (series of multiplets, 25H), 0.99 (s, 3H), 0.89 (d, Hz, 3H), 0.80 (s, 3H); 13C NMR (CD3 OD, 125 MHz) δ 171.92, 171.56, 171.49, 132.44, 131.32, 131.02, 130.51, 78.13, 76.61, 61.45, 57.94, 46.67, 44.80, 42.36, 40.85, 39.33, 37.03, 36.89, 36.12, 36.09, 35.79, 35.63, 33.81, 33.10, 32.92, 32.43, 30.28, 28.43, 28.04, 26.65, 24.02, 22.86, 21.98, 18.70, 12.68; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M-4 Cl-3 H]+) 711.5069 (43%), calcd. 711.5061.
- This example includes a description of one or more exemplary synthestic procedures for obtaining
Compounds 8, CSA-7, CSA-8 and 34-40. - Compound 34: Diisopropyl azodicarboxylate (DIAD) (1.20 mL, 6.08 mmol) was added to triphenylphosphine (1.60 g, 6.08 mmol) in THF (100 mL) at 0° C. and was stirred for half an hour during which time the yellow solution became a paste. Compound 14 (2.58 g, 4.06 mmol) and p-nitrobenzoic acid (0.81 g, 4.87 mmol) were dissolved in THF (50 mL) and added to the paste. The resulted mixture was stirred at ambient temperature overnight. Water (100 mL) was added and the mixture was made slightly basic by adding NaHCO3 solution followed by extraction with EtOAc (3×50 mL). The combined extracts were washed with brine once and dried over anhydrous Na2 SO4. The desired product (232 g, 85% yield) was obtained as white powder after SiO2 chromatography (Et2O/hexanes 1:2). m.p. 207-209° C.; IR (KBr) 3434, 3056, 2940, 2868, 1722, 1608, 1529, 1489, 1448, 1345 cm−1; NMR (CDCl3, 300 MI-1z) δ 8.30-8.26 (m, 2H), 8.21-8.16 (m, 2H), 7.46-7.42 (m, 6H), 7.31-7.18 (m, 9H) 5.33 (bs, 1H), 4.02 (bs, 1H), 3.90 (bs, 1H), 3.09-2.97 (m, 2H), 2.68 (td, J=14.95, 2.56 Hz, 1H), 2.29-2.19 (m, 1H), 2.07-1.06 (series of multiplets, 24H), 1.01 (s, 3H), 0.98 (d, J=6.6 Hz, 3H), 0.70 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 164.21, 150.56, 144.70, 136.79, 130.77, 128.88, 127.86, 126.98, 123.70, 86.47, 73.24, 73.00, 68.70, 64.22, 47.79, 46.79, 42.15, 39.76, 37.47, 35.52, 35.34, 34.23, 33.79, 32.46, 31.12, 28.74, 27.71, 26.85, 26.30, 25.16, 23.41, 17.98, 12.77; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 808.4203 (53.8%), calcd. 808.4189. Nitrobenzoate (2.75 g, 3.5 mmol) was dissolved in CH2Cl2 (40 mL) and MeOH (20 mL) and 20% aqueous NaOH (5 mL) were added. The mixture was heated up to 60° C. for 24 hours. Water (100 mL) was introduced and extracted with EtOAc. The combined extracts were washed with brine and dried over anhydrous Na2 SO4. The desired product (1.89 g, 85% yield) was obtained as white solid after SiO2 chromatography (3% MeOH in CH2 Cl2 as eluent). m.p. 105-106° C.; IR (KBr) 3429, 3057, 2936, 1596, 1489, 1447, 1376, 1265, 1034, 704 cm−1; NMR (CDCl3, 300 MHz) δ 7.46-7.42 (m, 6H), 7.32-7.19 (m, 9H), 4.06 (bs, 1H), 3.99 (bs, 1H), 3.86 (bd, J=2.44 Hz, 1H), 3.09-2.97 (m, 2H), 2.47 (td, J=14.03, 2.44 Hz, 1H), 2.20-2.11 (m, 1H), 2.04-1.04 (series of multiplets, 25H), 0.97 (d, J=6.59 Hz, 3H), 0.94 (s, 3H), 0.68 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 144.70, 128.88, 127.86, 126.97, 86.45, 73.31, 68.84, 67.10, 64.23, 47.71, 46.74, 42.10, 39.70, 36.73, 36.73, 36.15, 35.53, 35.45, 34.45, 32.46, 29.93, 28.67, 27.86, 27.71, 26.87, 26.04, 23.43, 23.16, 17.94, 12.75; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 659.4064 (100%), calcd. 659.4076.
- Compound 35: To a round-bottom flask were added 34 (2.0 g, 3.14 mmol), NaH (60% in mineral oil, 3.8 g, 31.4 mmol) and THF (150 mL). The suspension was refluxed for 2 hours followed by the addition of allyl bromide (2.72 mL, 31.4 mL). After refluxing for 28 hours, another 10 eq. of Nail and allyl bromide were added. After 72 hours, another 10 eq. of NaH and allyl bromide were added. After 115 hours, TLC showed almost no starting material or intermediates. Water (100 mL) was added to the suspension carefully, followed by extraction with EtOAc (5×50 mL). The combined extracts were washed with brine and dried over anhydrous Na2SO4. The desired product (1.81 g, 79% yield) was obtained as a yellowish glass after SiO2 chromatography (5% EtOAc/hexanes). IR (neat) 3060, 3020, 2938, 2865, 1645, 1596, 1490, 1448, 1376, 1076, 705 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.46-7.42 (m, 6H), 7.31-7.18 (m, 9H), 6.06-5.85 (m, 3H), 5.35-5.20 (m, 3H), 5.15-5.06 (m, 3H), 4.10-4.00 (m, 2H), 3.93-3.90 (m, 2H), 3.85-3.79 (ddt, J=13.01, 4.88, 1.59 Hz, 1H), 3.73-3.66 (ddt, J=13.01, 5.38, 1.46 Hz, 1H), 3.58 (bs, 1H), 3.54 (bs, 1H), 3.32 (d, J=2.93 Hz, 1H), 3.07-2.96 (m, 2H), 2.36 (td, J=13.67, 2.68 Hz, 1H), 2.24-2.10 (m, 2H), 2.03-1.94 (m, 1H), 1.87-0.86 (series of multiplets, 20H), 0.91 (s, 3H), 0.90 (d, J=6.83 Hz, 3H), 0.64 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 144.77, 136.29, 136.21, 136.13, 128.90, 127.86, 126.94, 116.13, 115.51, 115.42, 86.44, 81.11, 75, 65, 73.92, 69.40, 68.81, 64.43, 46.68, 46.54, 42.93, 39.93, 36.98, 35.66, 35.14, 35.14, 32.83, 32.54, 30.48, 28.51, 27.72, 27.64, 26.82, 24.79, 23.65, 23.43, 23.40, 18.07, 12.80; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 757.5185 (12.9%), calcd. 757.5196.
- Compound 36: Ozone was bubbled through a solution of 35 (0.551 g, 0.729 mmol) in CH2 Cl2 (40 mL) and MeOH (20 mL) at −78° C. until the solution turned a deep blue. Excess ozone was blown off with oxygen. Methylsulfide (1 mL) was added followed by the addition of NaBH4 (0.22 g, 5.80 mmol) in 5% NaOH solution and methanol. The resulted mixture was stirred overnight at room temperature and washed with brine. The brine was then extracted with EtOAc (3×20 mL). The combined extracts were dried over Na2SO4. The desired product (0.36 g, 65% yield) was obtained as a colorless glass after SiO2 chromatography (5% MeOH/CH2 Cl2). IR (neat) 3396, 3056, 2927, 1596, 1492, 1462, 1448, 1379, 1347, 1264, 1071 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.46-7.42 (m, 6H), 7.32-7.18 (m, 9H), 3.77-3.57 (series of multiplets, 10H), 3.48-3.44 (m, 2H), 3.36-3.30 (m, 2H), 3.26-3.20 (m, 1H), 3.04-2.99 (m, 2H), 2.37-0.95 (series of multiplets, 27 H), 0.92 (s, 3H), 0.91 (d, J=6.59 Hz, 3H), 0.67 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 144.69, 128.87, 127.84, 126.94, 86.44, 81.05, 76.86, 74.65, 69.91, 69.22, 68.77, 64.24, 62.44, 62.42, 62.26, 46.92, 46.54, 42.87, 39, 73, 36.86, 35.52, 35.13, 32.82, 32.54, 30.36, 28.71, 27.61, 27.44, 26.79, 24.82, 23.51, 23.38, 23.31, 18.28, 12.74; HRFAB-MS (thioglycerol+Na+ matrix) ride: ([M+Na]+) 791.4844 (96.4%), calcd. 791.4863.
- Compound 37: NEt3 (0.23 mL, 1.66 mmol) was added to a solution of 36 (0.364 g, 0.47 mmol) in dry CH2 Cl2 (30 mL) at 0° C. under N2 followed by the introduction of mesyl chloride (0.12 mL, 1.56 mmol). The mixture was stirred for 10 minutes and H2 O (10 mL) added to quench the reaction, followed by extraction with EtOAc (3×30 mL). The combined extracts were washed with brine and dried over anhydrous Na2 SO4. SiO2 chromatography (EtOAc/hexanes 1:1) gave the desired product (0.411 g, 86% yield) as white glass. IR (neat) 3058, 3029, 2939, 2868, 1491, 1461, 1448, 1349, 1175, 1109, 1019 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.46-7.42 (m, 6H), 7.31-7.19 (m, 9H), 4.35-4.26 (m, 6H), 3.84-3.74 (m, 2H), 3.64-3.56 (m, 4H), 3.49-3.34 (m, 3H), 3.06 (s, 3H), 3.04 (s, 3H), 3.02 (s, 3H), 3.09-2.95 (m, 2H), 2.28 (bt, J=14.89 Hz, 1H), 2.09-0.86 (series of multiplets, 21H), 0.92 (s, 3H), 0.90 (d, J=6.78 Hz, 3H), 0.66 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 144.66, 128.86, 127.86, 126.97, 86.46, 81.28, 77.18, 75.00, 70.14, 69.89, 69.13, 66.49, 65.85, 65.72, 64.22, 47.06, 46.35, 42.77, 39.58, 37.81, 37.64, 37.55, 36.75, 35.48, 35.02, 32.59, 32.52, 30.27, 28.43, 27.56, 27.52, 26, 92, 24.62, 23.34, 23.25, 23.10, 18.24, 12.64; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 1025.4207 (100%), calcd. 1025.4189.
- Compound 38: The suspension of 37 (0.227 g, 0.227 mmol) and NaN3 (0.147 g, 2.27 mmol) in dry DMSO (5 mL) was stirred at 80° C. overnight, diluted with H2 O (50 mL) and extracted with EtOAc (3×20 mL). The extracts were washed with brine once and dried over anhydrous Na2 SO4. SiO2 chromatography (EtOAc/hexanes 1:8) afforded the desired product (0.153 g, 80% yield) as a yellow oil. IR (neat) 2929, 2866, 2105, 1490, 1466, 1448, 1107, 705 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.46-7.42 (m, 6H), 7.32-7.19 (m, 9H), 3.80-3.74 (m, 1H), 3.70-3.55 (series of multiplets, 5H), 3.41-3.19 (series of multiplets, 9H), 3.04-2.98 (m, 2H), 2.41 (td, J=13.1, 2.44 Hz, 1H), 2.29-2.14 (m, 2 H), 2.04-0.86 (series of multiplets, 20H), 0.93 (s, 3H), 0.91 (d, J=6.60 Hz, 3H), 0.66 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 144.78, 128.93, 127.87, 126.96, 86.46, 81.30, 77.16, 75.21, 67.99, 67.44, 67.03, 64.41, 51.64, 51.57, 51, 33, 46.71, 46.30, 42.35, 39.75, 36.72, 35.64, 35.20, 32.52, 32.42, 30.17, 28.63, 27.80, 27.22, 26.90, 24.80, 23.55, 23.30, 23.24, 18.23, 12.65; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 866.5049 (96.9%), calcd. 866.5057.
- Compound 39: p-Toluenesulfonic acid (1.72 mg) was added into the solution of 38 (0.153 g, 0.18 mmol) in CH2 Cl2 (5 mL) and MeOH (5 mL), and the mixture was stirred for 2.5 hours. Saturated NaHCO3 solution (5 mL) was introduced followed by the introduction of brine (30 mL). The aqueous mixture was extracted with EtOAc and the combined extracts washed with brine and dried over Na2 SO4. The desired product (0.10 g, 92% yield) was obtained as a pale yellowish oil after SiO2 chromatography (EtOAc/hexanes 1:3). IR (neat) 3426, 2926, 2104, 1467, 1441, 1347, 1107 cm−1; 1H NMR (CDCl3, 300 MHz) δ 3.81-3.74 (m, 1H), 3.71-3.54 (m, 7H), 3.41-3.19 (m, 9H), 2.41 (td, J=13.61, 2.32 Hz, 1H), 2.30-2.14 (m, 2H), 2.07-1.98 (m, 1H), 1.94-0.95 (series of multiplets, 21H), 0.95 (d, J=6.35 Hz, 3H), 0.93 (s, 3H), 0.69 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 81.22, 77.08, 75.13, 67.94, 67.36, 66, 97, 63.76, 51.59, 51.51, 51.26, 46.51, 46.24, 42.31, 39.68, 36.64, 35.58, 35.12, 32.34, 31.92, 30.11, 29.55, 28.54, 27.82, 27.16, 24, 75, 23.47, 23.23, 23.18, 18.15, 12.56; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 624.3966 (54.9%), calcd. 624.3962.
- Compound 40: To a solution of 39 (0.10 g, 0.166 mmol) in CH2Cl2 (8 mL) at 0° C. was added NEt3 (34.8 μL, 0.25 mmol) under N2 followed by the introduction of mesyl chloride (15.5.mu.L, 0.199 mmol). The mixture was stirred 15 minutes. Addition of H2O (3 mL) and brine (20 mL) was followed by extraction with EtOAc (4×10 mL). The combined extracts were washed with brine once and dried over Na2 SO4. After removal of solvent, the residue was mixed with N-benzylmethylamine (0.5 mL) and heated to 80° C. under N2 overnight. Excess N-benzyl methylamine was removed in vacuo and the residue was subjected to SiO2 chromatography (EtOAc/hexanes 1:4) to give the product (0.109 g, 93% yield) as a yellow oil. IR (neat) 2936, 2784, 2103, 1467, 1442, 1346, 1302, 1106, 1027 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.32-7.23 (m, 5H), 3.81-3.74 (m, 1H), 3.71-3.55 (m, 5H), 3.47 (s, 2H), 3.41-3.19 (m, 9H), 2.46-2.11 (m, 5H), 2.18 (s, 3H), 2.03-0.85 (series of multiplets, 20H), 0.93 (s, 3H), 0.93 (d, J=6.35 Hz, 3H,), 0.67 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 139.54, 129.26, 128.32, 126.97, 81.26, 77.12, 75.17, 67.98, 67.42, 67.00, 62.50, 58.41, 51.61, 51.54, 51.29, 46.66, 46.28, 42.46, 42.32, 39.72, 36.68, 35.76, 35.16, 33.75, 32.38, 30.15, 28.59, 27.85, 27.19, 24.77, 24, 15, 23, 53, 23.28, 23.22, 18.28, 12.60; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 705.4929 (100%), calcd. 705.4928.
- Compound 8: A suspension of 40 (0.109 g, 0.155 mmol) and LiAlH4 (23.5 mg, 0.62 mmol) in THF (20 mL) was stirred under N2 overnight. Na2 SO4.10H2 O was carefully added and stirred until no grey color persisted. Anhydrous Na2SO4 was added and the white precipitate was filtered out and rinsed with dry THF. After removal of solvent, the residue was dissolved in minimum CH2Cl2 and filtered. The desired product (0.091 g, 94% yield) was obtained as a colorless oil after the solvent was removed. IR (neat) 3371, 3290, 3027, 2938, 2862, 2785, 1586, 1493, 1453, 1377, 1347, 1098 cm−1; 1H NMR (CDCl3, 300 MHz) δ 7.31-7.21 (m, 5H), 3.65-3.53 (m, 4H), 3.47 (s, 2H), 3.42-3.34 (m, 2H), 3.30 (bs, 1H), 3.26-3.20 (m, 1H), 3.14-3.09 (m, 1H), 2.89-2.81 (m, 6H), 2.39-2.27 (m, 3H), 2.17 (s, 3H), 2.15-0.88 (series of multiplets, 29H), 0.93 (d, J=6.59 Hz, 3H), 0.92 (s, 3H), 0.67 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 139.34, 129.16, 128.24, 126.90, 80.75, 76.44, 74.29, 70.58, 69.88, 69.75, 62.47, 58.27, 46.66, 46.47, 42.75, 42.63, 42.51, 42.35, 39.77, 36.87, 35.73, 35.04, 33.77, 32.90, 30.38, 28.71, 27.70, 27.32, 24.89, 24.09, 23.53, 23.36, 23.25, 18.24, 12.62; HRFAB-MS (thioglycerol+Na4 matrix) m/e: ([M+H]+) 627.5199 (23.3%), calcd. 627.5213.
- Compound CSA-7: To a solution of 23 (0.18 g, 0.28 mmol) in dry DMF (4 mL) were added NaH (0.224 g, 60% in mineral oil, 5.60 mmol) and 1-bromo octane (0.48 mL, 2.80 mmol). The suspension was stirred under N2 at 65° C. overnight followed by the introduction of H2 O (60 mL) and extraction with ether (4×20 mL). The combined extracts were washed with brine and dried over Na2 SO4. SiO2 chromatography (hexanes and 5% EtOAc in hexanes) afforded the desired product (0.169 g, 80% yield) as a pale yellowish oil. IR (neat) 2927, 2865, 2099, 1478, 1462, 1451, 1350, 1264, 1105; 1H NMR (CDCl3, 300 MHz) δ 3.69-3.35 (series of multiplets, 15H), 3.26-3.02 (series of multiplets, 4H), 2.19-2.02 (m, 3H), 1.97-1.16 (series of multiplets, 37H), 1.12-0.99 (m, 2H), 0.92-0.86 (m, 9H), 0.65 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.69, 79.84, 76.13, 71.57, 71.15, 65.07, 64.49, 64.39, 49.08, 48.99, 48.80, 46.68, 46.45, 42.72, 42.05, 39.88, 35.74, 35.49, 35.36, 35.14, 32.42, 32.03, 30.01, 29.85, 29.81, 29.76, 29.67, 29.48, 29.14, 27.92, 27.80, 27.70, 26.58, 26.42, 23.59, 23.09, 22.92, 22.86, 18.11, 14.31, 12.65; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 778.5685 (22.1%), calcd. 778.5683. The triazide (0.169 g, 0.224 mmol) and LiAlH4 (0.025 g, 0.67 mmol) were suspended in anhydrous THF (10 mL) and stirred under N2 at room temperature overnight followed by careful introduction of Na2 SO4 hydrate. After the grey color disappeared, anhydrous Na2 SO4 was added and stirred. The white precipitate was removed by filtration and washed with THF. After removal of solvent, the residue was dissolved in 1 M hydrochloric acid and the aqueous solution was extracted with ether (5 mL) once. The aqueous solution was then made basic by adding 20% aqueous NaOH solution followed by extraction with Et2 O (4×5 mL). The combined extracts were washed, dried and concentrated. The residue was then subject to SiO2 chromatography (MeOH/CH2Cl2 (1:1) followed by MeOH/CH2Cl2/NH3. H2 O (4:4:1)) to afford the desired product (0.091 g, 60% yield) as a colorless oil. ER (neat) 3361, 2927, 2855, 1576, 1465, 1351, 1105 cm−1; 1H NMR (CD3OD, 300 MHz) δ 4.86 (bs, 6H), 3.77-3.72 (m, 1 H), 3.70-3.61 (m, 1H), 3.57-3.53 (m, 3H), 3.43-3.38 (m, 4H), 3.34-3.27 (m, 2H), 3.18-3.10 (m, 2H), 2.84-2.71 (m, 6H), 2.22-2.07 (m, 3H), 2.00-1.02 (series of multiplets, 39H), 097-0.88 (m, 9H), 0.71 (s, 3H); 13C NMR (CD3 OD, 75 MHz) δ 82.20, 81.00, 77.62, 72.52, 72.06, 68.00, 67.92, 67.39, 48.20, 47.53, 44.26, 43.40, 41.42, 41.15, 40.84, 40.35, 36.88, 36.73, 36.42, 36.11, 34.24, 34.05, 33.94, 33.67, 33.17, 30.95, 30.72, 30.62, 29.81, 29.35, 28.87, 28.79, 27.51, 24.57, 23.90, 23.83, 23.44, 18.76, 14.62, 13.07; HRFAB-MS (thioglycerol matrix) m/e: ([M+H]+) 678.6133 (100%), calcd. 678.6149.
- Compound CSA-8: A suspension of 23 (0.126 g, 0.196 mmol) and LiAlH4 (0.037 g, 0.98 mmol) in THF (40 mL) was stirred at room temperature under N2 overnight followed by careful addition of Na2SO4.10H2O. After the grey color in the suspension disappeared, anhydrous Na2SO4 was added and stirred until organic layer became clear. The white precipitate was removed by filtration and washed with twice THF. The THF was removed in vacuo, and the residue was subject to SiO2 chromatography (MeOH/CH2Cl2/NH3/H2O (4:4:1)) to afford the desired product (0.066 g, 60% yield) as a colorless oil. IR (neat) 3365, 2933, 2865, 1651, 1471, 1455, 1339, 1103 cm−1; 1H NMR (CDCl3/30% CD3OD, 300 MHz) δ 4.43 (bs, 7H), 3.74-3.68 (m, 1H), 3.66-3.60 (m, 1H), 3.57-3.50 (m, 5H), 3.34-3.25 (M, 2H), 3.17-3.06 (M, 2H), 2.84-2.74 (M, 6H), 2.19-2.01 (M, 3H), 1.97-0.96 (series of multiplets, 27H), 0.94 (d, J=7.2 Hz, 3H), 0.92 (s, 3H), 0.69 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.44, 79.27, 75.77, 66.59, 66.53, 65.86, 62, 51, 46.21, 45.84, 42.55, 41.53, 40.09, 39.43, 39.31, 39.02, 35.16, 34.93, 34, 86, 34.57, 32.93, 32.71, 31.57, 28.66, 28.33, 27.64, 27.22, 23.04, 22.40, 22.29, 17.60, 11.98; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 566.4889 (8.9%), calcd. 566.4897.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds CSA-11 and 43-47.
- Compound 43: Precursor compound 41 was prepared following the method reported by D. H. R. Barton, J. Wozniak, S. Z. Zard, Tetrahedron, 1989, vol. 45, 3741-3754. A mixture of 41 (1.00 g, 2.10 mmol), ethylene glycol (3.52 mL, 63 mmol) and p-TsOH (20 mg, 0.105 mmol) was refluxed in benzene under N2 for 16 hours. Water formed during the reaction was removed by a Dean-Stark moisture trap. The cooled mixture was washed with NaHCO3 solution (50 mL) and extracted with Et2O (50 mL, 2×30 mL). The combined extracts were washed with brine and dried over anhydrous Na2 SO4. Removal of the solvent gave the product (1.09 g, 100%) as a white glass. IR (neat) 2939, 2876, 1735, 1447, 1377, 1247, 1074, 1057, 1039 cm−1; 1H NMR (CDCl3, 300 MHz) δ 5.10 (t, J=2.70 Hz, 1H), 4.92 (d, J=2.69 Hz, 1H), 4.63-4.52 (m, 1H), 3.98-3.80 (m, 4H), 2.32 (t, J=9.51 Hz, 1H), 2.13 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.00-1.40 (series of multiplets, 15H), 1.34-0.98 (m, 3H), 1.20 (s, 3H), 0.92 (s, 3H), 0.82 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ170.69, 170.63, 170.47, 111.38, 75.07, 74.23, 70.85, 64.95, 63.43, 49.85, 44, 73, 43.39, 41.11, 37.37, 34.84, 34.80, 34.52, 31.42, 29.18, 27.02, 25.41, 24.16, 22.72, 22.57, 22.44, 21.73, 21.63, 13.40; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 521.3106 (38.6%), calcd. 521.3114. The triacetate (1.09 g, 2.10 mmol) was dissolved in MeOH (50 mL). NaOH (0.84 g, 21 mmol) was added to the solution. The suspension was then refluxed under N2 for 24 hours. MeOH was then removed in vacuo and the residue was dissolved in Et2 O (100 mL) and washed with H2O, brine, and then dried over anhydrous Na2 SO4. The desired product (0.80 g, 96% yield) was obtained as white solid after removal of solvent. m.p. 199-200° C. IR (neat) 3396, 2932, 1462, 1446, 1371, 1265, 1078, 1055 cm−1; 1H NMR (10% CD3 OD in CDCl3, 300 MHz) δ 4.08-3.83 (series of multiplets, 9H), 3.44-3.34 (m, 1H), 2.41 (t, J=9.28 Hz, 1H), 2.22-2.10 (m, 2 H), 1.96-1.50 (series of multiplets, 12H), 1.45-0.96 (series of multiplets, 4H), 1.32 (s, 3H), 0.89 (s, 3H), 0.78 (s, 3H); 13C NMR (10% CD3OD in CDCl3, 75 MHz) δ 112.11, 72.35, 71.57, 68.09, 64.54, 63.24, 49.36, 45.90, 41.48, 41.45, 39.18, 38.79, 35.29, 34.71, 34.45, 29.90, 27.26, 26.60, 23.65, 22.54, 22.44, 22.35, 13.46; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 417.2622 (87.3%), calcd. 417.2617.
- Compound 44: To a round-bottom flask were added 43 (0.80 g, 2.03 mmol) and dry THF (100 mL) followed by the addition of NaH (60% in mineral oil, 0.81 g, 20.3 mmol). The suspension was refluxed under N2 for 30 minutes before the addition of allyl bromide (1.75 mL, 20.3 mmol). After 48 hours of reflux, another 10 eq. of NaH and allyl bromide were added. After another 48 hours, TLC showed no intermediates left. Cold water (50 mL) was added to the cooled suspension. The resulted mixture was extracted with Et2O (60 mL, 2×30 mL). The combined extracts were washed with brine and dried over anhydrous Na2SO4. SiO2 column chromatography (6% EtOAc in hexanes) gave the desired product (0.94 g, 90% yield) as a pale yellow oil. IR (neat) 3076, 2933, 2866, 1645, 1446, 1423, 1408, 1368, 1289, 1252, 1226, 1206, 1130, 1080, 1057 cm−1; 1H NMR (CDCl3, 300 MHz) δ 6.02-5.84 (m, 3H), 5.31-5.04 (m, 6H), 4.12-4.05 (m, 2H), 4.01-3.81 (m, 7H), 3.70 (dd, J=12.94, 5.62 Hz, 1H), 3.55 (t, J=2.56 Hz, 1H), 3.33 (d, J=2.93 Hz, 1H), 3.18-3.08 (m, 1H), 2.65 (t, J=10.01 Hz, 1H), 2.32-2.14 (m, 3H), 1.84-1.45 (series of multiplets, 10H), 1.41-1.22 (m, 3H), 1.27 (s, 3H), 1.14-0.92 (m, 2H), 0.89 (s, 3H), 0.75 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 136.38, 136.07, 136.00, 116.31, 115.54, 115.38, 112.34, 80.07, 79.22, 75.05, 69.83, 69.34, 68.82, 65.14, 63.24, 48.80, 45.96, 42.47, 42.15, 39.40, 35.55, 35, 16, 35.15, 29.04, 28.22, 27.52, 24.21, 23.38, 23.11, 22.95, 22.58, 13.79; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 537.3549 (100%), calcd. 537.3556.
- Compound 45: To the solution of 44 (0.94 g, 1.83 mmol) in dry THF (50 mL) was added 9-BBN (0.5 M solution in THF, 14.7 mL, 7.34 mmol) and the mixture was stirred under N2 at room temperature for 12 hours before the addition of 20% NaOH solution (4 mL) and 30% H2 O2 solution (4 mL). The resulted mixture was then refluxed for an hour followed by the addition of brine (100 mL) and extracted with EtOAc (4×30 mL). The combined extracts were dried over anhydrous Na2SO4. After the removal of solvent, the residue was purified by SiO2 column chromatography (EtOAc followed by 10% MeOH in CH2Cl2) to give the product (0.559 g, 54% yield) as a colorless oil. IR (neat) 3410, 2933, 2872, 1471, 1446, 1367, 1252, 1086 cm−1; 1H NMR (CDCl3, 300 MHz) δ 4.02-3.52 (series of multiplets, 17H), 3.41-3.35 (m, 1H), 3.29 (d, J=2.44 Hz, 1H), 3.22-3.15 (m, 3H), 2.58 (t, J=10.01 Hz, 1H), 2.27-1.95 (m, 3H), 1.83-1.48 (series of multiplets, 16H), 1.40-0.93 (series of multiplets, 5H), 1.27 (s, 3H), 0.90 (s, 3H), 0.75 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 112.41, 80.09, 79.09, 76.31, 66.70, 66.02, 65.93, 64.80, 63.26, 61.53, 61.25, 60.86, 48.59, 45.80, 42.51, 41.72, 39.10, 35.36, 35.02, 34.98, 32.87, 32.52, 32.40, 28.88, 27.94, 27.21, 24.33, 23.02, 22.84 (2 C's), 22.44, 13.69; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 591.3881 (100%), calcd. 591.3873.
- Compound 46: To a solution of 45 (0.559 g, 0.98 mmol) in acetone (40 mL) and water (4 mL) was added PPTS (0.124 g, 0.49 mmol) and the solution was refluxed under N2 for 16 hours. The solvent was removed under reduced pressure. Water (40 mL) was then added to the residue and the mixture was extracted with EtOAc (40 mL, 2×20 mL). The combined extracts were washed with brine, dried and evaporated to dryness. SiO2 column chromatography (8% MeOH in CH2Cl2) of the residue afforded the desired product (0.509 g, 98% yield) as clear oil. IR (neat) 3382, 2941, 2876, 1699, 1449, 1366, 1099 cm+1; 1H NMR (CDCl3, 300 MHz) δ 3.83-3.72 (m, 8H), 3.66 (t, J=5.62 Hz, 2H), 3.54 (bs, 2H), 3.43-3.28 (m, 4H), 3.24-3.12 (m, 2H), 2.26-2.00 (m, 4H), 2.08 (s, 3H), 1.98-1.50 (series of multiplets, 15H), 1.42-0.96 (series of multiplets, 6H), 0.90 (s, 3H), 0.62 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 210.49, 78.87 (2 C's), 76.30, 66.86, 66.18, 65.69, 61.74, 61.43, 60.71, 55.31, 48.05, 43.02, 41.58, 39.53, 35.28, 35.09, 34.96, 32.77, 32.70, 32.31, 31.12, 28.72, 27.88, 27.14, 23.47, 22.75, 22.47, 22.34, 13.86; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 547.3624 (100%), calcd. 547.3611.
- Compound 47: To a solution of 46 (0.18 g, 0.344 mmol) in dry CH2Cl2 (10 mL) at 0° C. was added Et3 N (0.168 mL, 1.20 mmol) followed by the addition of mesyl chloride (0.088 mL, 1.13 mmol). After 10 minutes, H2O (3 mL) and brine (30 mL) were added. The mixture was extracted with EtOAc (30 mL, 2×10 mL) and the extracts were washed with brine and dried over anhydrous Na2 SO4. After removal of solvent, the residue was dissolved in DMSO (5 mL) and NaN3 (0.233 g, 3.44 mmol). The suspension was heated up to 50° C. under N2 for 12 hours. H2 O (50 mL) was added to the cool suspension and the mixture was extracted with EtOAc (30 mL, 2×10 mL) and the extracts were washed with brine and dried over anhydrous Na2 SO4. SiO2 column chromatography (EtOAc/hexanes 1:5) afforded the product (0.191 g, 88% yield for two steps) as a pale yellow oil. IR (neat) 2933, 2872, 2096, 1702, 1451, 1363, 1263, 1102 cm−1; 1H NMR (CDCl3, 300 MHz) δ 3.72-3.64 (m, 2H), 3.55-3.24 (series of multiplets, 11H), 3.18-3.02 (m, 2H), 2.22-2.02 (m, 4H), 2.08 (s, 3H), 1.95-1.46 (series of multiplets, 15H), 1.38-0.96 (series of multiplets, 6H), 0.89 (s, 3H), 0.62 (s, 3H); 13C NMR (CDCl3, 75 MHz) S 210.36, 79.69, 79.22, 75.98, 65.08, 64.80, 64.53, 55.31, 48.93, 48.86, 48.76, 48.06, 43.03, 41.91, 39.66, 35.44, 35.31, 35.12, 31.04, 29.77, 29.69, 29.67, 28.99, 28.10, 27.65, 23.60, 22.99, 22.95, 22.50, 14.00; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 622.3820 (100%), calcd. 622.3805.
- Compound CSA-11: Compound 47 (0.191 g, 0.319 mmol) was dissolved in dry THF (20 mL) followed by the addition of LiAlH4 (60.4 mg, 1.59 mmol). The grey suspension was stirred under N2 at room temperature for 12 hours. Na2SO4.10H2O powder was carefully added. After the grey color in the suspension disappeared, anhydrous Na2SO4 was added and the precipitate was filtered out. After the removal of solvent, the residue was purified by column chromatography (silica gel, MeOH/CH2Cl2/28% NH3.H2 O 3:3:1). After most of the solvent was rotavapped off from the fractions collected, 5% HCl solution (2 mL) was added to dissolve the milky residue. The resulted clear solution was then extracted with Et2O (2×10 mL). 20% NaOH solution was then added until the solution became strongly basic. CH2Cl2 (20 mL, 2×10 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4 and removal of solvent gave the desired product (0.115 g, 69% yield) as a colorless oil. From 1H NMR it appears that this compound was a mixture of two stereoisomers at C20 with a ratio of approximately 9:1. The stereoisomers were not separated, but used as recovered. Spectra for the most abundant isomer: IR (neat) 3353, 2926, 2858, 1574, 1470, 1366, 1102 cm−1; 1H NMR (20% CDCl3 in CD3 OD, 300 MHz) δ 4.69 (bs, 7H), 3.76-3.69 (m, 1H), 3.63-3.53 (m, 5 H), 3.50-3.40 (m, 1H), 3.29 (bs, 1H), 3.18-3.07 (m, 2H), 2.94-2.83 (m, 1H), 2.81-2.66 (m, 5H), 2.23-2.06 (m, 4H), 1.87-1.50 (series of multiplets, 15H), 1.39-0.96 (series of multiplets, 6H), 1.11 (d, J=6.10 Hz, 3H), 0.93 (s, 3H), 0.75 (s, 3H); 13C NMR (20% CDCl3 in CD3 OD, 75 MHz) δ 81.46, 80.67, 77.32, 70.68, 67.90, 67.66, 67.18, 50.32, 47.17, 43.30, 43.06, 40.74, 40.64, 40.38, 40.26, 36.31, 36.28, 35.93, 34.30, 34.02, 33.29, 29.63, 29.31, 28.43, 26.10, 24.67, 24.09, 23.96, 23.50, 13.30 for the major isomer; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 524.4431 (64.2%), calcd. 524.4427.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds CSA-10 and 48-497
- Compound 48: To a solution of 23 (0.15 g, 0.233 mmol) in dry CH2 Cl2 (15 mL) at 0° C. was added Et3 N (48.8 μL, 0.35 mmol) followed by the addition of CH3SO2Cl (21.7 μL, 0.28 mmol). The mixture was stirred for 15 minutes before H2O (3 mL) was added. Saturated NaCl solution (20 mL) was then added, and the mixture was extracted with EtOAc (40 mL, 2×20 mL). The combined extracts were washed with brine and dried over anhydrous Na2SO4. The solvent was rotovapped off and to the residue were added NaBr (0.12 g, 1.17 mmol) and DMF (10 mL). The suspension was heated up to 80° C. under N2 for 2 hours. DMF was removed under vacuum and the residue was chromatographed on silica (EtOAc/hexanes 1:10) to give the desired product (0.191 g, 97% yield) as a pale yellow oil. 1H NMR (CDCl3, 300 MHz) δ 3.69-3.35 (series of multiplets, 13H), 3.28-3.02 (series of multiplets, 4H), 2.18-2.04 (m, 3H), 2.00-1.60 (series of multiplets, 16H), 1.58-0.96 (series of multiplets, 11H), 0.92 (d, J=6.34 Hz, 3H), 0.89 (s, 3H), 0.66 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.62, 79.81, 76.08, 65.07, 64.50, 64.34, 49.03, 48.98, 48.79, 46.49, 46.46, 42.73, 42.02, 39.85, 35.47, 35.34, 35.12, 34.79, 34.72, 29.82, 29.80, 29.74, 29.11, 27.91, 27.78, 27.69, 23.55, 23.07, 22.88, 18.10, 12.62; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M−H]+) 706.3609 (63.1%), calcd. 706.3591; 704.3616 (52.8%), calcd. 704.3611.
- Compound 49: Compound 48 (0.191 g, 0.269 mmol) and 23 (0.295 g, 0.459 mmol) was dissolved in DMF (3 mL, distilled over BaO at 6 mm Hg before use) followed by the addition of NaH (0.054 g, 60% in mineral oil). The suspension was stirred under N2 at room temperature for 24 hours. H2 O (100 mL) was added to quench excess NaH and the mixture was then extracted with Et2O (40 mL, 3×20 mL) and the combined extracts were washed with brine and dried over anhydrous Naz SO4. The desired product (0.177 g, 52% yield based on compound 23) was obtained as a pale yellow oil after SiO2 chromatography (EtOAc/hexanes 1:6, then 1:2). IR (neat) 2940, 2862, 2095, 1472, 1456, 1362, 1263, 1113 cm−1; 1H NMR (CDCl3, 300 MHz) δ 3.68-3.35 (series of multiplets, 26H), 3.28-3.02 (series of multiplets, 8H), 2.20-2.04 (m, 6H), 1.96-1.60 (series of multiplets, 30H), 1.52-0.98 (series of multiplets, 12H), 0.91 (d, J=6.59 Hz, 6H), 0.89 (s, 6H), 0.65 (s, 6H); 13C NMR (CDCl3, 75 MHz) δ 80.68, 79.83, 76.13, 71.71, 65.06, 64.48, 64.39, 49.08, 48.98, 48.80, 46.64, 46.44, 42.71, 42.04, 39.88, 35.73, 35.49, 35.36, 35.14, 32.41, 29.84, 29.81, 29.76, 29.14, 27.92, 27.78, 27.69, 26.58, 23.59, 23.08, 22.92, 18.12, 12.64.
- Compound CSA-10: Compound 49 (0.219 g, 0.173 mmol) was dissolved in dry THF (10 mL) followed by the addition of LiAlH4 (65 mg, 1.73 mmol). The grey suspension was stirred under N2 at room temperature for 12 hours. Na2SO4.10H2O powder was carefully added. After the grey color in the suspension disappeared, anhydrous Na2SO4 was added and the precipitate was filtered out. After the removal of solvent, the residue was purified by column chromatography (silica gel, MeOH/CH2Cl2/28% NH3.H2O 2.5:2.5:1). After most of the solvent was rotavapped off from the fractions collected, 5% HCl solution (2 mL) was added to dissolve the milky residue. The resulted clear solution was then extracted with Et2O (2×10 mL). 20% NaOH solution was then added until the solution became strongly basic. CH2Cl2 (20 mL, 2×10 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4 and removal of solvent gave the desired product (0.147 g, 76% yield) as a white glass. 1R (neat) 3364, 3287, 2934, 2861, 1596, 1464, 1363, 1105 cm−1; 1H NMR (20% CDCl3 in CD3OD, 500 MHz) δ 4.74 (bs, 12H), 3.75-3.70 (m, 2H), 3.65-3.61 (m, 2H), 3.57-3.52 (m, 6H), 3.40 (t, J=3.60 Hz, 4H), 3.30 (bs, 4H), 3.16-3.10 (m, 4H), 2.84-2.73 (m, 12H), 2.18-2.07 (m, 6H), 1.97-1.61 (series of multiplets, 30H), 1.58-0.98 (series of multiplets, 24H), 0.95 (d, Hz, 6H), 0.94 (s, 6H), 0.70 (s, 6H); 13C NMR (20% CDCl3 in CD3OD, 125 MHz) δ 81.70, 80.52, 77.09, 72.34, 67.75 (2 C's), 67.07, 47.80, 47.13, 43.76, 42.87, 41.20, 40.65, 40.58, 40.14, 36.43, 36.25, 36.08, 35.77, 34.15, 33.87 (2 C's), 33.18, 29.55, 28.92, 28.47, 28.42, 27.25, 24.27, 23.54, 23.41, 18.70, 13.07; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 1113.9625 (68.8%), calcd. 1113.9610.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 111-113 and 116a-d.
- Compounds 116a-d: Representative procedure: preparation of 116b. NaH (0.06 g, 60% in mineral oil, 1.49 mmol) and propyl bromide (0.136 mL, 1.49 mmol) were added to a DMF solution of compound 23 (described in Li et al., J. Am. Chem. Soc. 1998, 120, 2961) (0.096 g, 0.149 mmol). The suspension was stirred under N2 for 24 hr. H2O (20 mL) was added, and the mixture was extracted with hexanes (3×10 mL). The combined extracts were dried over Na2SO4 and concentrated in vacuo. Silica gel chromatography (10% EtOAc in hexanes) afforded the desired product (92 mg, 90% yield) as a pale yellow oil. 1H NMR (CDCl3, 500 MHz) δ 3.68-3.64 (m, 1H), 3.61-3.57 (m, 1H), 3.52 (t, J=6.1 Hz, 2H), 3.49 (bs, 1H), 3.46-3.35 (m, 10H), 3.25 (d, J=2.4 Hz, 1H), 3.23-3.19 (m, 1H), 3.16-3.11 (m, 1H), 3.09-3.03 (m, 1H), 2.17-2.03 (m, 3H), 1.95-1.55 (m, 17H), 1.51-1.40 (m, 4H), 1.38-1.17 (m, 5H), 1.11-0.96 (m, 3H), 0.93-0.89 (m, 9H), 0.65 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.64, 79.79, 76.08, 72.67, 71.59, 65.01, 64.44, 64.33, 49.04, 48.94, 48.75, 46.61, 46.40, 42.68, 42.00, 39.83, 35.72, 35.45, 35.30, 35.10, 32.38, 29.81, 29.77, 29.72, 29.09, 27.88, 27.76, 27.65, 26.52, 23.55, 23.12, 23.04, 22.87, 18.06, 12.60, 10.79; HRFAB-MS (thioglycerol+Na+ matrix) m/e ([M+Na]+) 708.4910 (23.5%), calcd. 708.4920.
-
Compounds 111, CSA-17, and 113: Representative procedure: preparation of CSA-17. Compound 116b (0.092 g, 0.134 mmol) was dissolved in THF (10 mL) followed by the addition of LiAlH4 (0.031 g, 0.81 mmol). The suspension was stirred under N2 for 12 hr. Na2SO4.10H2O (about 1 g) was then carefully added. After the gray color in the suspension dissipated, anhydrous Na2SO4 was added, and the precipitate was removed by filtration. Concentration and silica gel chromatography (CH2Cl2/MeOH/28% NH3.H2O 12:6:1, then 10:5:1) yielded a glass which was dissolved in 1 M HCl (2 mL). The resulting clear solution was washed with Et2O (2×10 mL). 20% NaOH solution was added to the aqueous phase until the solution became strongly basic. CH2Cl2 (3×10 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4 and concentrated in vacuo to give the desired product (0.045 g, 55% yield) as a white glass. 1H NMR (about 20% CDCl3 in CD3OD, 500 MHz) δ 4.73 (bs, 6H), 3.74-3.70 (m, 1H), 3.65-3.61 (m, 1H), 3.55 (t, J=6.3 Hz, 2H), 3.42-3.38 (m, 4H), 3.33-3.30 (m, 2H), 3.16-3.10 (m, 2H), 2.83-2.73 (m, 6H), 2.18-2.06 (m, 3H), 1.96-1.20 (series of multiplets, 26H), 1.12-0.98 (m, 3H), 0.95-0.92 (m, 9H), 0.70 (s, 3H); 13C NMR (about 20% CDCl3 in CD3OD, 75 MHz) δ 81.67, 80.49, 77.04, 73.44, 72.28, 67.77, 67.71, 67.06, 47.74, 47.08, 43.75, 42.82, 41.21, 40.60, 40.56, 40.12, 36.47, 36.19, 36.04, 35.74, 34.09, 33.82, 33.78, 33.16, 29.49, 28.87, 28.43, 27.18, 24.22, 23.66, 23.49, 23.40, 18.64, 13.04, 11.03; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 608.5348 (100%), calcd. 608.5330. 111: 1H NMR (about 20% CDCl3 in CD3OD, 500 MHz) δ 4.79 (bs, 6H), 3.74-3.71 (m, 1H), 3.66-3.62 (m, 1H), 3.55 (t, J=6.1 Hz, 2H), 3.52 (bs, 1H), 3.38-3.28 (series of multiplets, 4H), 3.33 (s, 3H), 3.16-3.10 (m, 2H), 2.83-2.72 (m, 6H), 2.19-2.07 (m, 3H), 1.97-1.62 (series of multiplets, 15H), 1.58-1.20 (series of multiplets, 9H), 1.13-0.98 (m, 3H), 0.95 (d, J=6.3 Hz, 3H), 0.93 (s, 3H), 0.70 (s, 3H); 13C NMR (about 20% CDCl3 in CD3OD, 75 MHz) δ 81.82, 80.65, 77.20, 74.43, 67.85, 67.18, 58.90, 47.80, 47.22, 43.91, 43.01, 41.31, 40.78, 40.69, 40.22, 36.63, 36.35, 36.18, 35.86, 34.27, 33.97, 33, 26, 29.60, 29.03, 28.58, 28.53, 27.14, 24.33, 23.61, 23.45, 18.68, 13.06; HRFAB-MS (thioglycerol+Na+ matrix) rule ([M+Na]4) 602.4855 (100%), calcd. 602.4873. 113: 1H NMR (about 50% CDCl3 in CD3OD, 500 MHz) δ 4.08 (bs, 6H), 3.71-3.67 (m, 1H), 3.62-3.58 (m, 1H), 3.53 (t, Hz, 2H), 3.49 (bs, 1H), 3.43-3.38 (m, 4H), 3.31-3.27 (m, 2H), 3.14-3.07 (m, 2H), 2.83-2.73 (m, 6H), 2.16-2.03 (m, 3H), 1.93-1.17 (series of multiplets, 30H), 1.10-0.96 (m, 3H), 0.93-0.89 (m, 9H), 0.67 (s, 3H); 13C NMR (about 50% CDCl3 in CD3OD, 75 MHz) δ 80.51, 79.35, 75.85, 71.29, 70.83, 66.73, 66.62, 65.96, 46.68, 45.98, 42.59, 41.63, 40.20, 39.53, 39.43, 39.21, 35.34, 35.04, 35.00, 34.71, 33.11, 32.90, 32.82, 32.00, 29, 15, 28.49, 28.15, 27.75, 27.35, 26.22, 23.18, 22.60, 22.45, 22.34, 17.77, 13.75, 12.22; HRFAB-MS (thioglycerol+Na+ matrix) m/e ([M+H]+) 636.5679 (100%), calcd. 636.5669. - This example includes a description of one or more exemplary synthestic procedures for obtaining
Compounds 106 and 124. - Compound 124: Compound 47 (0.256 g, 0.489 mmol) was dissolved in CH2Cl2 (10 mL), and cooled to 0° C. followed by the addition of Na2HPO4 (0.69 g, 4.89 mmol) and urea-hydrogen peroxide complex (UHP) (0.069 g, 0.733 mmol). Trifluoroacetic anhydride (TFAA) (0.138 mL, 0.977 mmol) was then added dropwise. The suspension was stirred for 12 hr, and additional UHP (23 mg, 0.25 mmol) and TFAA (0.069 mL, 0.49 mmol) were added. After another 12 hr, H2O (30 mL) was added, and the resulting mixture was extracted with EtOAc (3×20 mL). The combined extracts were washed with brine (50 mL), dried over anhydrous Na2SO4, and concentrated in vacuo. SiO2 chromatography (EtOAc/hexanes 1:5) afforded the desired product (0.145 g, 55% yield) as a colorless oil. 1H NMR (CDCl3, 300 MHz) δ 5.21 (dd, J=9.3 and 7.3 Hz, 1H), 3.70-3.57 (m, 2H), 3.55 (t, J=6.0 Hz, 2H), 3.43-3.37 (m, 6H), 3.32-3.25 (m, 3H), 3.17-3.02 (m, 2H), 2.28-2.05 (m, 4H), 2.03 (s, 3H), 1.86-1.19 (series of multiples, 19H), 0.97 (dd, J=14.5 and 3.3 Hz, 1H), 0.90 (s, 3H), 0.78 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 171.08, 79.71, 78.03, 75.72, 75.53, 65.41, 65.04, 64.53, 48.79, 48.70, 46.49, 41.92, 39.44, 37.81, 35.45, 35.22, 35.10, 29.73, 29.63, 28.89, 28.33, 27.50, 27.34, 23.39, 22.97, 22.92, 21.28, 12.72; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M−H]+) 614.3798 (24.5%), calcd. 614.3778.
- Compound 106: Compound 124 (0.145 g, 0.236 mmol) was dissolved in CH2Cl2 (2 mL) and MeOH (1 mL). 20% NaOH solution (0.2 mL) was added. The mixture was stirred for 12 hr, and anhydrous Na2SO4 was used to remove water. After concentration in vacuo, the residue was purified by silica gel chromatography (EtOAc/hexanes 1:3) to afford the desired product (0.124 g, 92% yield) as a colorless oil. 1H NMR (CDCl3, 300 MHz) δ 4.29 (bs, 1H), 3.69-3.60 (m, 2H), 3.52 (t, J=6.0 Hz, 2H), 3.45-3.32 (m, 8H), 3.26 (d, J=2.7 Hz, 1H), 3.17-3.02 (m, 2H), 2.19-1.94 (m, 4H), 1.90-1.62 (series of multiplets, 13H), 1.57-1.20 (series of multiplets, 7H), 0.97 (dd, J=14.3 and 3.1 Hz, 1H), 0.90 (s, 3H), 0.73 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 79.69, 78.03, 75.47, 73.38, 65, 46, 65.00, 64.47, 48.87, 48.68, 46.83, 41.93, 39.71, 37.87, 35.43, 35.20, 35.09, 29.96, 29.69, 29.59, 29.53, 28.89, 28.44, 27.48, 23.72, 22.91, 22.71, 11.77. The alcohol (0.124 g, 0.216 mmol) was dissolved in dry THF (20 mL) followed by the addition of LiAlH4 (33 mg, 0.866 mmol). The gray suspension was stirred under N2 for 12 hr. Na2SO4.10 H2O (about 2 g) was carefully added. After the gray color in the suspension dissipated, anhydrous Na2SO4 was added and the precipitate was removed by filtration. After the removal of solvent, the residue was purified by column chromatography (SiO2, MeOH/CH2Cl2/28% NH3.H2O 2.5:2.5:1). After concentration of the relevant fractions, 1 M HCl (2 mL) was added to dissolve the milky residue. The resulting clear solution was washed with Et2O (2×10 mL). To the aqueous phase, 20% NaOH solution was added until the solution became strongly basic. CH2Cl2 (20 mL, 2×10 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4 and removal of solvent gave the desired product (0.050 g, 47% yield) as a colorless oil. 1H NMR (20% CDCl3 in CD3OD, 300 MHz) δ 4.77 (s, 7H), 4.25 (t, J=8.5 Hz, 1H), 3.75-3.68 (m, 1H), 3.66-3.58 (m, 1H). 3.55 (t, J=6.1 Hz, 2H), 3.48-3.41 (m, 1H), 3.34 (bs, 1H), 3.30 (d, J=3.6 Hz, 1H), 3.17-3.08 (m, 2H), 2.86-2.70 (m, 6H), 2.20-1.91 (m, 4H), 1.88-1.16 (series of multiplets, 19H), 1.00 (dd, J=−14.2 and 3.0 Hz, 1H), 0.93 (s, 3H), 0.73 (s, 3H); 13C NMR (20% CDCl3 in CD3OD, 75 MHz) δ 80.62, 79.12, 76.74, 73.77, 68.50, 67.79, 67.17, 47.69, 43.04, 40.76, 40.64, 40.62, 40.22, 39.01, 36.32, 36.25, 35.94, 34.27, 33, 97, 33.72, 30.13, 29.53, 28.43, 24.48, 23.58, 23.40, 12.38; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 496.4108 (100%), calcd. 496.4114.
- This example includes a description of one or more exemplary synthestic procedures for obtaining
Compounds 109 and 126-129. - Compound 126: Compound 125 (2.30 g, 3.52 mmol) was dissolved in MeOH (50 mL) and CH2Cl2 (100 mL). A small amount of Et3N was added, and the solution was cooled to −78° C. Ozone was bubbled through the solution until a blue color persisted. Me2S (4 mL) was introduced followed by the addition of NaBH4 (0.266 g, 0.703 mmol) in MeOH (10 mL). The resulting solution was allowed to warm and stir overnight. The solution was concentrated in vacuo, and brine (60 mL) was added. The mixture was extracted with EtOAc (40 ml, 2×30 mL), and the combined extracts were washed with brine and dried over anhydrous Na2SO4. Silica gel chromatography (EtOAc) afforded the product (1.24 g, 76% yield) as a white solid. m.p. 219-220 C.; 1H NMR (CDCl3, 300 MHz) δ 5.10 (t, J=2.8 Hz, 1H), 4.90 (d, J=2.7 Hz, 1H), 3.73-3.59 (m, 2H), 3.56-3.44 (m, 1H), 2.13 (s, 3H), 2.09 (s, 3H), 2.07-0.95 (series of multiplets, 23H), 0.91 (s, 3H), 0.83 (d, J=6.3 Hz, 3H), 0.74 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 170.84, 170.82, 75.63, 71.77, 71.03, 60.73, 48.10, 45.26, 43.54, 41.16, 38.78, 37.89, 35.00, 34.43, 32.26, 31.50, 30.60, 29.07, 27.50, 25.70, 22.96, 22.71, 21.81, 21.63, 18.18, 12.35; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 465.3197 (20%), calcd. 465.3216.
- Compound 127: Compound 126 (1.24 g, 2.67 mmol) was dissolved in MeOH (30 mL), and NaOH (0.54 g, 13.4 mmol) was added. The suspension was refluxed under N2 for 24 hr. The MeOH was removed in vacuo followed by the addition of H2O (50 mL). The precipitate was filtered, washed with H2O and then dried in vacuo to give a white solid (1.02 g). This solid was dissolved in DMF (40 mL) followed by the sequential addition of NEt3 (1.12 mL, 8.02 mmol), DMAP (16.3 mg, 0.13 mmol) and trityl chloride (1.49 g, 5.34 mmol). The suspension was stirred under N2 for 12 hr and then heated up to 50° C. for 24 hr. H2O (100 mL) was added to the cooled suspension, and the mixture was extracted with EtOAc (3×50 mL). The combined extracts were washed with brine (100 mL), dried over anhydrous Na2SO4, and concentrated in vacuo. Silica gel chromatography (EtOAc) afforded the product (1.20 g, 72% yield) as a pale yellow glass. To this glass was added dry THF (80 mL) and NaH (60% in mineral oil, 0.77 g, 19.3 mmol). The suspension was refluxed under N2 for half an hour before the introduction of allylbromide (1.67 mL, 19.3 mmol). After 48 hr at reflux, another 10 eq. of Nail and allylbromide were introduced. After another 48 hr, the reaction mixture was cooled and H2O (100 mL) was slowly added. The resulting mixture was extracted with hexanes (3×50 mL), and the combined extracts were washed with brine (100 mL) and dried over anhydrous Na2SO4. Silica gel chromatography (5% EtOAc in hexanes) afforded the product (1.27 g, 64% yield for all three steps) as a clear glass. 1H NMR (CDCl3, 300 MHz) δ 7.46-7.43 (m, 6H), 7.29-7.16 (m, 9H), 5.98-5.81 (m, 3H), 5.29-5.18 (m, 3H), 5.14-5.03 (m, 3H), 4.11-3.97 (m, 4H), 3.75-3.67 (m, 2H), 3.49 (bs, 1H), 3.32-3.13 (d, J=2.4 Hz, 1H), 3.20-3.13 (m, 2H), 3.00 (m, 1H), 2.33-2.12 (m, 3H), 2.03-0.92 (series of multiplets, 19H), 0.88 (s, 3H), 0.78 (d, J=6.6 Hz, 3H), 0.65 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 144.71, 136.08, 136.04, 135.94, 128.80, 127.76, 126.86, 116.30, 115.57, 86.53, 80.77, 79.20, 74.96, 69.42, 69.34, 68.81, 62.00, 46.87, 46.48, 42.67, 42.11, 39.90, 36.15, 35.50, 35.14, 35.10, 33.23, 28.99, 28.09, 27.75, 27.56, 23.36, 23.32, 23.12, 18.24, 12.66; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 765.4875 (100%), calcd. 765.4859.
- Compound 128: To a THF (40 mL) solution of 127 (1.27 g, 1.71 mmol) was added 9-BBN (0.5 M solution in THF, 17.1 mL). The mixture was stirred for 12 hr before the addition of NaOH (20% solution, 10 mL) and H2O2 (30% solution, 10 mL). The resulted mixture was refluxed for 1 hr followed by the addition of brine (100 mL) and extraction with EtOAc (4×30 mL). The combined extracts were dried over anhydrous Na2SO4 and concentrated in vacuo. Silica gel chromatography (5% MeOH in CH2Cl2) afforded the product (1.26 g, 93% yield) as a clear glass. 1H NMR (5% CD3OD in CDCl3, 300 MHz) □ 7.46-7.43 (m, 6H), 7.32-7.20 (m, 9H), 3.94 (s, 3H), 3.78-3.56 (m, 10H), 3.48 (bs, 1H), 3.32-3.26 (m, 2H), 3.24-3.12 (m, 3H), 3.00 (dd, J=8.2 and 6.1 Hz, 1H), 2.23-1.96 (m, 3H), 1.90-0.95 (series of multiplets, 25H), 0.90 (s, 3H), 0.77 (d, J=6.6 Hz, 3H), 0.66 (s, 3H); 13C NMR (5% CD3OD in CDCl3, 75 MHz) δ 144.52, 128.64, 127.64, 126.76, 86.43, 80.55, 79.31, 77.65, 77.23, 76.80, 76.06, 66.17, 66.01, 65.41, 61.93, 61, 20, 60.73, 60.39, 47.29, 46.08, 42.65, 41.62, 39.49, 36.02, 35.10, 34.89, 34.77, 32.89, 32.71, 32.41, 32.26, 28.68, 27.70, 27.51, 27.19, 23.26, 22.66, 22.50, 18.23, 12.34; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 819.5169 (100%), calcd. 819.5099.
- Compound 129: To a CH2Cl2 (50 mL) solution of compound 128 (1.26 g, 1.58 mmol) at 0° C. was added Et3N (0.92 mL, 6.60 mmol) followed by mesyl chloride (0.47 mL, 6.05 mmol). After 15 minutes, H2O (10 mL) was followed by brine (80 mL). The mixture was extracted with EtOAc (60 mL, 2×30 mL) and the combined extracts were dried over anhydrous Na2SO4. After removal of solvent in vacuo, the residue was dissolved in DMSO (10 mL) and NaN3 (1.192 g, 18.3 mmol) was added. The suspension was heated to 60° C. under N2 overnight. H2O (100 mL) was added, and the mixture was extracted with EtOAc (3×40 mL). The combined extracts were washed with brine and dried over anhydrous Na2SO4. Removal of the solvent in vacuo afforded a pale yellow oil. The oil was dissolved in MeOH (10 mL) and CH2Cl2 (20 mL) and TsOH (17.4 mg, 0.092 mmol) was added. After 12 hr, saturated aqueous NaHCO3 (20 mL) and brine (50 mL) were added and the mixture was extracted with EtOAc (3×40 mL). The combined extracts were washed with brine (50 mL) and dried over anhydrous Na2SO4. Silica gel chromatography (EtOAc/hexanes 1:3) afforded the desired product (0.934, 94%) as a pale yellow oil. 1H NMR (CDCl3, 500 MHz) δ 3.75-3.70 (m, 1H), 3.68-3.63 (m, 2H), 3.62-3.57 (m, 1H), 3.53 (t, J=6.1 Hz, 2H), 3.50 (bs, 1H), 3.46-3.38 (m, 6H), 3.26 (d, J=2.4 Hz, 1H), 3.24-3.20 (m, 1H), 3.16-3.12 (m, 1H), 3.10-3.04 (m, 1H), 2.17-2.04 (m, 3H), 1.96-1.63 (m, 14H), 1.53-1.45 (m, 3H), 1.35-1.20 (m, 7H), 1.08-1.00 (m, 1H), 0.97-0.88 (m, 1H), 0.94 (d, J=6.8 Hz, 3H), 0.89 (s, 3H), 0.67 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.64, 79.81, 76.06, 65.05, 64.49, 64.34, 61.03, 49.02, 48.98, 48.78, 46.93, 46.53, 42.76, 42.01, 39.83, 39.14, 35.46, 35.33, 35.12, 32.97, 29.79, 29.73, 29.10, 27.90, 27.68, 23.56, 23.06, 22.88, 18.24, 12.60; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 652.4285 (100%), calcd. 652.4295.
- Compound 109: Compound 129 (0.245 g, 0.391 mmol) was dissolved in THF (30 mL) followed by the addition of LiAlH4 (59 mg, 1.56 mmol). The gray suspension was stirred under N2 12 hr. Na2SO4.10H2O powder (about 1 g) was carefully added. After the gray color in the suspension dissipated, anhydrous Na2SO4 was added and the precipitate was removed by filtration. After the removal of solvent, the residue was purified by silica gel chromatography (CH2Cl2/MeOH/28% NH3.H2O 10:5:1 then 10:5:1.5). The solvent was removed from relevant fractions, and 1 M HCl (4 mL) was added to dissolve the residue. The resulting clear solution was extracted with Et2O (3×10 mL). 20% NaOH solution was added until the solution became strongly basic. CH2Cl2 (4×10 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4, and removal of solvent in vacuo gave the desired product (0.15 g, 71% yield) as a colorless oil. 1H NMR (about 20% CD3OD in CDCl3, 500 MHz) δ 4.73 (bs, 7H), 3.74-3.70 (m, 1H), 3.65-3.60 (m, 2H), 3.56-3.52 (m, 4H), 3.31-3.28 (m, 2H), 3.16-3.09 (m, 2H), 2.82-2.71 (m, 6H), 2.19-2.06 (m, 3H), 1.97-1.66 (series of multiplets, 15H), 1.58-1.48 (m, 3H), 1.38-0.98 (m, 7H), 0.96 (d, J=6.8 Hz, 3H), 0.93 (s, 3H), 0.71 (s, 3H); 13C NMR (about 20% CD3OD in CDCl3, 75 MHz) δ 81.80, 80.60, 77.17, 67.88, 67.86, 67.18, 60.73, 48, 11, 47.28, 43.93, 42.99, 41, 34, 40.76, 40.72, 40.24, 39.70, 36.33, 36.18, 35.86, 34.29, 33.99, 33.96, 33.83, 29.60, 29.00, 28.57, 28.54, 24.33, 23.59, 23.48, 18.86, 13.04; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 552.4756 (100%), calcd. 552.4772.
- This example includes a description of one or more exemplary synthestic procedures for obtaining
Compounds 108 and 130. - Compound 130: o-NO2C6H4SeCN (0.094 g, 0.21 mmol) and Bu3P (0.095 mL, 0.38 mmol) were stirred in dry THF (5 mL) at 0° C. for 1/2 hr followed by the addition of compound 129 (0.10 g, 0.159 mmol) in THF (2 mL). The suspension was stirred for 1 hr followed by the addition of H2O2 (30% aqueous solution, 2 mL). The mixture was stirred for 12 hr followed by extraction with hexanes (4×10 mL). The combined extracts were dried over anhydrous Na2SO4. The desired product (0.035 g, 36% yield) was obtained as pale yellowish oil after silical gel chromatography (10% EtOAc/hexanes). 1H NMR CDCl3, 500 MHz) δ 5.73-5.66 (ddd, J=17.1, 10.2, 8.3 Hz, 1H), 4.90 (dd, J=17.1, 2.0 Hz, 1H), 4.82 (dd, J=10.2 Hz, 1.96 Hz, 1H), 3.68-3.64 (m, 1H), 3.62-3.58 (m, 1H), 3.54-3.26 (m, 9H), 3.25-3.22 (m, 2H), 3.15-3.11 (m, 1H), 3.10-3.04 (m, 1H), 2.17-1.62 (series of multiplets, 18H), 1.51-1.43 (m, 2H), 1.35-1.18 (m, 4H), 1.06-0.91 (m, 2H), 1.02 (d, J=6.3 Hz, 3H), 0.90 (s, 3H), 0.68 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 145.50, 111.72, 80.60, 79.82, 76.09, 65.06, 64.50, 64.45, 49.05, 48.97, 48.79, 46.43, 46.13, 42.76, 42.03, 41.30, 39.84, 35.49, 35.34, 35.15, 29.82, 29.80, 29.75, 29.11, 28.00, 27.84, 27.68, 23.56, 23.08, 22.95, 19.79, 12.87; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 634.4167 (90.6%), calcd. 634.4169.
- Compound 108: Compound 130 (0.105 g, 0.172 mmol) was dissolved in CH2Cl2 (5 mL) and MeOH (5 mL) at −78° C. O3 was bubbled into the solution for ca. 20 min. Me2S (1 mL) was added followed, and the solvent was removed in vacuo. The residue was dissolved in THF (15 mL), and LiAlH4 (0.033 g, 0.86 mmol) was added. The suspension was stirred for 12 hr. Na2SO4.10H2O (about 2 g) was carefully added. After the gray color of the suspension dissipated, anhydrous Na2SO4 was added and the precipitate was removed by filtration. Concentration and silica gel chromatography (CH2Cl2/MeOH/28% NH3.H2O 10:5:1.5 then 9:6:1.8) yielded a white glass. To this material was added 1 M HCl (4 mL). The resulting clear solution was washed with Et2O (3×10 mL). 20% NaOH solution was added to the aqueous phase until the solution became strongly basic. CH2Cl2 (4×10 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4 and removal of solvent gave the desired product (0.063 g, 68% yield) as a colorless oil. 1H NMR (about 10% CD3OD in CDCl3, 500 MHz) δ 4.76 (bs, 7H), 3.75-3.71 (m, 1H), 3.66-3.62 (m, 1H), 3.58-3.52 (m, 4H), 3.33-3.29 (m, 2H), 3.22 (dd, J=10.5 and 7.6 Hz, 1H), 3.15-3.09 (m, 2H), 2.81 (t, J=6.8 Hz, 2H), 2.76-2.71 (m, 4H), 2.19-2.08 (m, 3H), 2.00-1.66 (series of multiplets, 14H), 1.58-1.45 (m, 3H), 1.40-1.08 (m, 5H), 1.03 (d, J=6.8 Hz, 3H), 1.02-0.96 (m, 1H), 0.93 (s, 3H), 0.72 (s, 3H); 13C NMR (about 10% CD3OD in CDCl3, 75 MHz) δ 81.74, 80.64, 77.23, 67.95, 67.87, 67.18, 47.32, 44.59, 43.72, 43.01, 41.26, 40.80, 40.71, 40.23, 40.02, 36.36, 36.20, 35.87, 34.27, 33.99, 33.90, 29.60, 29.05, 28.58, 28.08, 24.49, 23.62, 23.46, 16.84, 13.12; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 538.4578 (4.7%), calcd. 538.4584.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds CSA-21, 133-134 and CSA-15.
- Compound CSA-21: Compound 115 (0.118 g, 0.183 mmol) was dissolved in dry CH2Cl2 (10 mL), and SO3 pyridine complex (0.035 g, 0.22 mmol) was added. The suspension was stirred for 12 hr. The solvent was removed in vacuo to give white powder. To the white powder was added 1 M HCl (10 mL) and the resulting mixture was extracted with CH2Cl2 (4×10 mL). The combined extracts were dried over anhydrous Na2SO4. The desired product (0.11 g, 84%) was obtained as a pale yellow oil after silica gel chromatography (10% MeOH in CH2Cl2). 1H NMR (about 10% CD3OD in CDCl3, 500 MHz) δ 4.03 (t, J=6.8 Hz, 2H), 3.69-3.65 (m, 1H), 3.62-3.58 (m, 1H), 3.55 (t, J=6.1 Hz, 2H), 3.51 (bs, 1H), 3.46-3.38 (m, 6H), 3.27 (d, J=2.4 Hz, 1H), 3.26-3.21 (m, 1H), 3.18-3.07 (m, 2H), 2.18-2.03 (m, 3H), 1.95-1.47 (series of multiplets, 19H), 1.40-0.96 (series of multiplets, 9H), 0.92 (d, J=6.8 Hz, 3H), 0.91 (s, 3H), 0.66 (s, 3H); 13C NMR (about 10% CD3OD in CDCl3, 75 MHz) δ 80.43, 79.68, 75.87, 69.30, 64.82, 64.32, 64.14, 48.78, 48.73, 48.50, 46.44, 46.21, 42.49, 41.76, 39.61, 35.36, 35.17, 35.06, 34.85, 31.73, 29.53, 29.46, 29.44, 28.84, 27.68, 27.48, 27.38, 25.91, 23.30, 22.75, 22.66, 17.70, 12.32; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M−H+2Na]+) 768.3831 (100%), calcd. 768.3843. The azides were reduced by treating the triazide (0.11 g, 0.15 mmol) with Ph3 P (0.20 g, 0.77 mmol) in THF (10 mL) and H2O (1 mL). The mixture was stirred for 3 days. The solvent was removed in vacuo, and the residue was purified by silica gel chromatography (CH2Cl2/MeOH/28% NH3.H2O 12:6:1 then 10:5:1.5) to afford the desired product (0.077 g, 78% yield) as a glass. HCl in Et2O (1 M, 0.5 mL) was added to the glass to give the corresponding HCl salt. 1H NMR (about 10% CDCl3 in CD3OD, 500 MHz) δ 4.81 (s, 10H), 4.07-3.97 (m, 2H), 3.82 (bs, 1H), 3.71 (bs, 1H), 3.65 (t, J=5.2 Hz, 2H), 3.57 (bs, 1H), 3.37-3.30 (m, 2H), 3.22-3.02 (m, 8H), 2.12-1.71 (series of multiplets, 17H), 1.65-1.01 (series of multiplets, 13H), 0.97 (d, J=6.8 Hz, 3H), 0.94 (s, 3H), 0.73 (s, 3H); 13C NMR (about 10% CDCl3 in CD3OD, 75 MHz) δ 81.89, 80.58, 77.50, 70.04, 66.71, 66.56, 66.02, 47, 11, 46.76, 44.20, 42.66, 40.50, 39.60, 39.40, 36.24, 36.11, 35.89, 35.67, 32.28, 29.38, 29.23, 29.10, 28.94, 28.49, 26.06, 24.21, 23.46, 23.30, 18.50, 12.86; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 668.4271 (100%), calcd. 668.4258.
- Compound CSA-13: The mesylate derived from 23 (0.19 g, 0.264 mmol) was stirred with excess octyl amine (2 mL) at 80° C. for 12 hr. After removal of octylamine in vacuo, the residue was chromatographed (silica gel, EtOAc/hexanes 1:4 with 2% Et3 N) to afford the desired product (0.19 g, 95% yield) as a pale yellow oil. NMR (CDCl3, 300 MHz) δ 3.69-3.37 (series of multiplets, 11H), 3.26-3.00 (m, 4H), 2.61-2.53 (m, 4H), 2.20-2.02 (m, 3H), 1.98-0.99 (series of multiplets, 40H), 0.92-0.85 (m, 9H), 0.65 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.60, 79.74, 76.05, 64.97, 64.40, 64.28, 50.79, 50.25, 49.00, 48.90, 48.71, 46.47, 46.34, 42.65, 41.96, 39.80, 35.77, 35.41, 35.27, 35.05, 33.73, 31.96, 30.25, 29.76, 29, 74, 29.67, 29.39, 29.05, 27.84, 27.61, 27.55, 26.70, 23.50, 23.00, 22.82, 22.79, 18.06, 14.23, 12.54; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 755.6012 (100%), calcd. 755.6024. The triazide (0.18 g, 0.239 mmol) was dissolved in THF (10 mL) and EtOH (10 mL). Lindlar catalyst (44 mg) was added, and the suspension was shaken under H2 (50 psi) for 12 hr. After removal of the solvent in vacuo, the residue was purified by silica gel chromatography (CH2Cl2/MeOH/28% NH3.H2O 10:5:1, then 10:5:1.5). To the product, 1 M HCl (2 mL) and the resulting clear solution was extracted with Et2O (2×10 mL). 20% NaOH solution was added until the solution became strongly basic. CH2Cl2 (20 mL, 2×10 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4, and removal of solvent in vacuo gave the desired product (0.114 g, 68% yield) as a clear oil. 1H NMR (about 20% CDCl3 in CD3OD, 500 MHz) δ 4.79 (bs, 7H), 3.74-3.70 (m, 1H), 3.66-3.61 (m, 1H), 3.56-3.51 (m, 3H), 3.31-3.29 (m, 2H), 3.16-3.09 (m, 2H), 2.88-2.72 (m, 6H), 2.59-2.51 (m, 4H), 2.18-2.07 (m, 3H), 1.97-1.66 (series of multiplets, 14H), 1.62-0.97 (series of multiplets, 25H), 0.95 (d, J=6.3 Hz, 3H), 0.93 (s, 3H), 0.89 (t, J=6.8 Hz, 3H), 0.70 (s, 3H); 13C NMR (about 20% CDCl3 in CD3OD, 75 MHz) δ 81.82, 80.63, 77.23, 67.85, 67.19, 51.20, 50.69, 47.82, 47.24, 43.92, 43.01, 41.30, 40.80, 40.68, 40.22, 36.74, 36.38, 36.20, 35.87, 34.66, 34.15, 33.87, 32.90, 30.54, 30.39, 30.30, 29.64, 29.03, 28.59, 28.41, 26.96, 24.37, 23.65, 23, 48, 18.75, 14.63, 13.09; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 677.6309 (46.6%), calcd. 677.6309.
- Compound CSA-46: Compound CSA-46 was prepared using the methods of CSA-13, substituting 7-deoxycholic steroid backbone precursor in place of cholic acid.
- Compound 134: Compound CSA-13 (0.08 g, 0.12 mmol) was dissolved in CHCl3 (5 mL) and MeOH (5 mL), aminoiminosulfonic acid (0.045 g, 0.36 mmol) was added, and the suspension was stirred for 12 hr. The solvent was removed in vacuo, and the residue was dissolved in 1 M HCl (6 mL) and H2O (10 mL). The solution was washed with Et2O (3×5 mL), and 20% NaOH solution was then added dropwise until the solution became strongly basic. The basic mixture was extracted with CH2Cl2 (4×5 mL). The combined extracts were dried over anhydrous Na2SO4 and concentrated in vacuo to give the desired product (0.087 g, 91% yield) as a white glass. 1H NMR (about 20% CDCl3 in CD3OD, 500 MHz) δ 4.96 (bs, 13H), 3.74-3.68 (m, 1H), 3.65-3.50 (m, 4H), 3.38-3.18 (series of multiplets, 10H), 2.60-2.50 (m, 4H), 2.15-1.99 (m, 3H), 1.88-1.72 (m, 14H), 1.60-0.99 (series of multiplets, 25H), 0.94 (bs, 6H), 0.89 (1, J=6.6 Hz, 3H), 0.71 (s, 3H); 13C NMR (about 20% CDCl3 in CD3OD, 75 MHz) δ 159.00, 158.87, 158.72, 81.68, 79.93, 76.95, 66.59, 65.93, 65.45, 50.82, 50.40, 47.64, 46.94, 43.67, 42.27, 40.18, 39.25, 36.19, 35.66, 35.40, 34.21, 32.45, 30.51, 30.26, 30.18, 30.10, 29.86, 29.35, 28.71, 28.15, 28.00, 26.87, 23.94, 23.44, 23.23, 23.12, 18.61, 14.42, 12.98; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 803.6958 (18.4%), calcd. 803.6953.
- Compound CSA-15: The mesylate derived from 23 (0.092 g, 0.128 mmol) was dissolved in DMSO (2 mL) followed by the addition of NaN3 (0.0167 g, 0.256 mmol). The suspension was heated to 70° C., for 12 hr. H2O (20 mL) was added to the cooled suspension, and the mixture was extracted with EtOAc/hexanes (1:1) (20 mL, 3×10 mL). The combined extracts were washed with brine (30 mL), dried over anhydrous Na2SO4, and concentrated in vacuo to give the product (0.081 g, 95% yield) as a pale yellow oil. 1H NMR (CDCl3, 300 MHz) δ 3.69-3.36 (m, 11H), 3.25-3.02 (m, 6H), 2.20-2.02 (m, 3H), 1.97-1.60 (m, 15H), 1.55-0.98 (m, 13H), 0.92 (d, J=6.3 Hz, 3H), 0.89 (s, 3H), 0.66 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 80.59, 79.77, 76.03, 65.01, 64.46, 64.30, 52.12, 48.99, 48.95, 48.76, 46.44, 46.42, 42.70, 41.99, 39.82, 35.56, 35.44, 35.31, 35.09, 33.09, 29.79, 29.77, 29.71, 29.08, 27.88, 27.78, 27.66, 25.65, 23.53, 23.03, 22.85, 18.00, 12.58; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 691.4512 (100%), calcd. 691.4496. The tetraazide (0.081 g, 0.12 mmol) was dissolved in THF (5 mL) and EtOH (10 mL). Lindlar catalyst (30 mg) was added, and the suspension was shaken under H2 (50 psi) for 12 hr. After removal of the solvent in vacuo, the residue was purified by silica gel chromatography (CH2Cl2/MeOH/28% NH3.H2O 5:3:1, then 2:2:1). To the product, 1M HCl (2 mL) was added, and the resulting solution was washed with Et2O (2×10 mL). 20% NaOH solution was added to the aqueous phase until the solution became strongly basic. CH2Cl2 (10 mL, 2×5 mL) was used to extract the basic solution. The combined extracts were dried over anhydrous Na2SO4, and concentration in vacuo gave the desired product (0.044 g, 64% yield) as a colorless oil. 1H NMR (about 20% CDCl3 in CD3OD, 500 MHz) δ 4.79 (bs, 8H), 3.74-3.70 (m, 1H), 3.66-3.62 (m, 1H), 3.56-3.52 (m, 3H), 3.31-3.27 (m, 2H), 3.16-3.10 (m, 2H), 2.82-2.70 (m, 6H), 2.64-2.54 (m, 2H), 2.19-2.07 (m, 3H), 1.99-1.66 (series of multiplets, 14H), 1.58-0.96 (series of multiplets, 13H), 0.96 (d, J=6.6 Hz, 3H), 0.93 (s, 3H), 0.70 (s, 3H); 13C NMR (about 20% CDCl3 in CD3OD, 75 MHz) δ 81.96, 90.76, 77.33, 67.92, 67.26, 47.84, 47.33, 44.04, 43.24, 43.15, 41.40, 40.91, 40.78, 40.29, 36.82, 36.48, 36.28, 35.96, 34.39, 34.11, 30.59, 29.69, 29.13, 28.68, 28.64, 24.43, 23.69, 23.48, 18.77, 13.06; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+H]+) 565.5041 (100%), calcd. 565.5057.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 203a-b, 207a-c, 209a-c, 210a-b and CSA-31.
- Compounds 203a-b, 207a-c, 208a-c, 209a-c, and 210a-b: BOC-glycine was reacted with DCC, DMAP and cholic acid derivative 201 (Scheme 11) to give triester 202a in good yield. A similar reaction incorporating BOC-β-alanine was also successful, giving 202b. Deprotection of 202a and 202b with HCl in dioxane, followed by purification (SiO2 chromatography with a CH2Cl2 MeOH/NH4OH eluent), gave triesters 203a and 203b in good yield.
- Triamides of glycine and (3-alanine (207a and 207b, respectively) were formed using the same reaction conditions (Scheme 12). Triamides with α-branched amino acids could also be formed. For example, under the conditions described, a triamide with bis-BOC-lysine side chains was formed (compound 207c). The C24 esters of 207a-c were hydrolyzed with LiOH in THF and methanol to give alcohols 208a-c. Deprotection using HCl in dioxane (208a-c) gave triamides 209a-c in good yield. In addition, alcohols 208a and 208b were mesylated and reacted with benzylmethyl amine. Deprotection of the resulting compounds with HCl in dioxane gave triamides 210a and 210b (Scheme 12). Compound CSA-31 was prepared by analogy to compounds 210a and 210b.
- This example includes a description of one or more exemplary synthestic procedures for obtaining Compounds 302, 312-321, 324-326, 328-331 and 341-343.
- Compound 302: Compound 308 (5β-
cholanic acid - A 250 ml three neck flask was charged with glyme (100 ml); to this was added 309 (1.00 g, 2.16 mmol) and sodium borohydride (2.11 g, 55.7 mmol). TiCl4 (4.0 mL, 36.4 mmol) was added to the mixture slowly under nitrogen at 0° C. The resulting green mixture was stirred at room temperature for 24 hours and then refluxed for another 12 h. The flask was cooled in an ice bath, and ammonium hydroxide (100 mL) was added. The resulting mixture was stirred for 6 hours at room temperature. Conc. HCl (60 mL) was added slowly, and the acidic mixture was stirred for 8 hours. The resulting suspension was made alkaline by adding solid KOH. The suspension was filtered and the solids were washed with MeOH. The combined filtrate and washings were combined and concentrated in vacuo. The resulting solid was suspended in 6% aqueous KOH (100 mL) and extracted with CH2Cl2 (4×75 mL). The combined extracts were dried over Na2SO4 and solvent was removed in vacuo to give 1.14 g of a white solid. The mixture was chromatographed on silica gel (CH2Cl2/MeOH/NH4OH 12:6:1) giving 302 (0.282 g, 33% yield), 3 (0.066 g, 8% yield), 4 (0.118 g, 14% yield).
- Compound 302: m.p. 200-202° C.; NMR (about 10% CDCl3 in CD3OD, 300 MHz) δ 4.81 (bs, 7H), 3.57-3.49 (m, 2H), 3.14 (t, J=3.2 Hz, 1H), 2.97 (bs, 1H), 2.55-2.50 (m, 1H), 2.15-2.10 (m, 1H), 1.95-1.83 (m, 3H), 1.74-0.99 (series of multiplets, 20H), 1.01 (d, J=6.4 Hz, 3H), 0.95 (s, 3H), 0.79 (s, 3H); 13C NMR (10% CDCl3 in CD3OD, 75 MHz) δ 63.28, 55.01, 52.39, 49.20, 48.69, 47.00, 43.24, 42.77, 41.03, 40.27, 36.82, 36.35, 35.75, 35.12, 32.77, 31.36, 30.10, 28.54, 27.88, 26.96, 24.35, 23.38, 18.18, 14.23, HRFAB-MS (thioglycerol+Na+ matrix) m/e; ([M+H]+) 392.3627 (100%); calcd. 392.3641.
- Octanyl cholate (328): Cholic acid (3.14 g, 7.43 mmol) and 10-camphorsulfonic acid (0.52 g, 2.23 mmol) were dissolved in octanol (3.5 mL, 23.44 mmol). The solution was warmed to 40-50° C. in oil bath under vacuum (about 13 mm/Hg). After 14 h, the remaining octanol was evaporated under high vacuum. The crude product was purified via chromatography (silica gel, 5% MeOH in CH2Cl2) to afford the desired product (2.81 g, 73% yield) as a white powder. 1H NMR (CDCl3, 500 MHz) δ 4.06 (t, J=6.7 Hz, 2H), 3.98 (s, 1H), 3.86 (s, 1H), 3.48-3.44 (m, 1H), 2.41-2.34 (m, 1H), 2.28-2.18 (m, 3H), 1.98-1.28 (series of multiplets, 35H), 0.99 (d, J=3.3 Hz, 3H), 0.90 (s, 3H), 0.89 (t, J=7 Hz, 3H), 0.69 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 154.38, 73.18, 72.14, 68.63, 56.07, 50.02, 49, 32, 47.07, 46, 74, 41.96, 41.67, 39.84, 39.76, 35.66, 35.45, 34.95, 34.86, 34.15, 32.97, 32.91, 31.65, 31.11, 30.68, 28.39, 27.78, 26.66, 26.52, 25.82, 25.70, 25.54, 25.15, 24.95, 23.45, 22.69, 17.77, 12.71; HRFAB-MS (thioglycerol+Na+ matrix) m/e; ([M+Na]+) 543.4015 (100%), calcd. 543.4026.
- Representative synthesis of compounds 329-331: Octanyl cholate (328) (0.266 g, 0.511 mmol), N-t-Boc-glycine (0.403 g, 2.298 mmol), DCC (0.474 g, 2.298 mmol) and DMAP (0.0624 g, 0.051 mmol) were mixed in CH2Cl2 (15 mL) for 3 h. The resulting white precipitate was removed by filtration. The filtrate was concentrated, and the product was purified by chromatography (silica gel, EtOAc/Hexane 1:2) to afford the desired product (0.481 g, 95% yield) as a white powder. Compound 329 1H NMR (CDCl3, 300 MHz) 5.18 (br, 3H), 5.01 (s, 1H), 4.61 (m, 1H), 4.04 (t, J=6.5 Hz, 2H), 3.97-3.88 (series of multiplets, 6H), 2.39-2.15 (series of multiplets, 2H), 2.06-1.02 (series of multiplets, 35H), 1.46 (s, 18H), 1.45 (s, 9H), 0.93 (s, 3H), 0.88 (t, J=6.7 Hz, 3H), 0.81 (d, J=6 Hz, 3H), 0.74 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ174.26, 170.19, 169.9, 169.78, 155.87, 155.67, 79.95, 76.47, 75.167, 72.11, 64.55, 47.40, 45.28, 43.17, 42.86, 40.82, 37.94, 34.71, 34.63, 34, 43, 31.86, 31.340, 31.20, 30.76, 29.29, 29.25, 28.80, 28.72, 28.42, 28.06, 27.96, 27.19, 26.81, 26.29, 26.012, 25.66, 22.87, 22.71, 22.57, 17.55, 14.18, 12.27; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 1014.6261 (100%), calcd. 1014.6242. Compound 330: 1H NMR (CDCl3, 500 MHz) δ 5.10 (s, 1H), 4.92 (d, J=2.44 Hz, 1H), 4.55 (m, 1H), 4.00 (t, J=6.8 Hz, 2H), 3.39-3.33 (series of multiplets, 6H), 2.595-2.467 (series of multiplets, 6H), 2.31-2.12 (series of multiplets, 2H), 2.01-1.00 (series of multiplets, 37H), 1.39 (s, 27H), 0.88 (s, 3H), 0.84 (t, J=6.8 Hz, 3H), 0.76 (d, J=6.3 Hz, 3H), 0.69 (s, 3H); 13C NMR (CDCl3, 75 MHz) δ 174.16, 172.10, 171.78, 171.67, 155.95, 79.45, 75.67, 74.21, 71.10, 64.63, 47.79, 45.27, 43.52, 40.97, 37.92, 36.35, 35.14, 35.05, 34.90, 34.71, 34.46, 31.91, 31.45, 30.95, 29, 35, 29.31, 28.96, 28.78, 28.56, 28.55, 27, 22, 26.98, 26.269, 25.71, 23.00, 22.77, 22.64, 17.75, 14.24, 12.39; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 1056.6702 (100%), calcd. 1056.6712. Compound 331 13C NMR (CDCl3, 125 MHz) δ174.00, 172.75, 172.41, 172.30, 156.03, 79.00, 75.28, 73.79, 70.77, 64.39, 47.43, 45.04, 43.21, 40.76, 40.00, 39.93, 37.78, 34.74, 34.62, 34.23, 32.19, 32.01, 31.70, 31.24, 30.77, 29.13, 29.10, 28.67, 38.58, 28.38, 25.86, 25, 37, 22.56, 22.38, 17.51, 14.05, 12.13; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 1098.7181 (100%), calcd. 1098.7181.
- Representative synthesis of compounds 341-343: To compound 329 (0.463 g, 0.467 mmol) was added HCl in dioxane (0.3 mL, 4.0 M). After stirring the mixture for 30 min, the excess HCl and solvent were removed in vacuo. The product was isolated, after chromatography (silica gel, CH2Cl2/MeOH/NH3,H2O 10:1.2:0.1) as a (0.271 g, 84%) pale oil. The trihydrochloride salt of 341 was prepared by addition of HCl in dioxane and evaporation of excess HCl and dioxane in vacuo giving a white powder. Compound 341: 1H NMR (CDCl3 with about 10% CD3OD, 500 MHz) δ 5.16 (s, 1H), 4.99 (t, J=3.6 Hz, 1H), 4.61 (m, 1H), 4.04 (t, J=6.8 Hz, 2H), 3.51-3.36 (m, 6H), 2.34-2.15 (m, 2H), 2.00-1.05 (series of multiplets, 40H), 0.93 (s, 3H), 0.88 (t, J=7.1 Hz, 3H), 0.80 (d, J=3.2 Hz, 3H), 0.74 (s, 3H); 13C NMR (CDCl3 and about 10% CD3OD, 75 MHz) δ 174.32, 173.92, 173.81, 76.08, 74.67, 71.61, 64.73, 47.64, 45.39, 44.41, 43.49, 40, 97, 37.99, 34.99, 34.77, 34.71, 34.52, 31.96, 31.54, 31.35, 30.96, 29.39, 29, 36, 29.02, 28.82, 27.32, 27.11, 26.11, 25.83, 23.01, 22.82, 22.69, 17.79, 14.28, 12.41; HRFAB-MS (thioglycerol+Na+ matrix) mile: ([M+Na]+) 714.4651 (100%), calcd. 714.4669. Compound 342: 1H NMR (CDCl3 and about 10% CD3OD, 300 MHz) δ 5.142 (s, 1H), 4.96 (d, J=2.7 Hz, 1H), 4.60, (m, 1H), 4.04 (t, J=6.6 Hz, 2H), 3.07-2.95 (series of multiplets, 6H), 2.56-2.43 (series of multiplets, 6H), 2.38-2.13 (series of multiplets, 2H), 2.07-1.02 (series of multiplets, 36H), 0.92 (s, 3H), 0.88 (t, J=6.6 Hz, 3H), 0.82 (d, J=6.6 Hz, 3H), 0.73 (s, 3H); 13C NMR (CDCl3 and CD3OD, 75 MHz) δ 174.29, 172.29, 171.98, 171.92, 75.52, 74.09, 70.98, 64.67, 47.78, 45.26, 43.52, 40.98, 38.73, 38.62, 38.35, 38.07, 38.03, 37.99, 35.01, 34.81, 34.77, 34.49, 31.92, 31.50, 31.40, 30.99, 29.36, 29.33, 28.93, 28.80, 27.43, 26.96, 26.08, 25.56, 23.07, 22.79, 22.62, 17.73, 14.25, 12.34; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 714.4651 (100%), calcd. 714.4669. Compound 343: 1H NMR (CDCl3 and CD3OD, 500 MHz) δ 5.12 (s, 1H) 4.93 (s, 1H), 4.59 (m, 1H), 4.04 (t, J=7 Hz, 2H), 2.79-2.69 (series of multiplets, 6H), 2.4621-2.2999 (series of multiplets, 6H), 2.2033-1.0854 (series of multiplets, 42H), 0.94 (s, 2H), 0.91 (s, 1H), 0.88 (t, J=7 Hz, 3H), 0.82 (d, J=6.4 Hz, 3H), 0.75 (s, 3H); 13C NMR (CDCl3 and CD3OD, 75 MHz) δ 174.70, 171.97, 171.86, 171.75, 76.10, 74.55, 71.56, 64.85, 47.96, 45.31, 43.37, 40.87, 38.09, 34.86, 34.80, 34.73, 34.46, 32.84, 32.62, 32.27, 31.87, 31.75, 31.42, 31.08, 29.31, 29.28, 29.26, 28.78, 28.73, 27.38, 26.91, 26.05, 25.37, 23.24, 23.15, 22.95, 22.74, 22.71, 22.43, 17.78, 14.11, 12.28; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 798.5624 (100%), calcd. 798.5609.
- Benzyl cholate (312): Cholic acid (4.33 g, 10.62 mmol) and 10-caphorsulfonic acid (0.493 g, 2.21 mmol) were dissolved in benzyl alcohol (1.97 mL, 19.3 mmol). The suspension was heated to 50° C., in oil bath and stirred under vacuum (about 13 mm/Hg) for 16 h. Excess benzyl alcohol was removed in vacuo, and the crude product was chromatographed (silica gel, 5% MeOH in CH2Cl2) to give the desire product as a white powder (4.23 g, 81% yield). 1H NMR (CDCl3, 500 MHz) δ 7.34-7.33 (m, 5H), 5.10 (d, J=1.5 Hz, 2H), 3.92 (s, 1H), 3.81 (s, 1H), 3.42 (s, 1H), 3.40 (br, m, 3H), 2.44-2.38 (m, 1H), 2.31-2.25 (m, 1H), 2.219 (t, J=12 Hz, 2H), 0.96 (d, J=5.5 Hz, 3H), 0.86 (s, 3H), 0.63 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ174.25, 136.30, 128.66, 128.63, 128.32, 128.28, 128.24, 73.18, 71.98, 68.54, 66.18, 47.14, 46.56, 41.69, 39.65, 35.51, 35.37, 34.91, 34.84, 31.49, 31.08, 30.50, 28.31, 27.62, 26.47, 23.35, 22.65, 22.60, 17.42, 12.63, 12.57; HRFAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 521.3235 (100%), calcd. 521.3242.
- Representative synthesis of compounds 313-315: Benzyl cholate (312) (0.248 g, 0.499 mmol), N-t-Boc-glycine (0.404 g, 2.30 mmol), DCC (0.338 g, 1.49 mmol) and DMAP (0.051 g, 0.399 mmol) were added to CH2Cl2 (15 mL), and the suspension was stirred for 16 h. The resulting white precipitate was removed by filtration, and the filtrate was concentrated. The product was obtained after chromatorgraphy (silica gel, EtOAc/Hexane 0.6:1) as a white powder (0.329 g, 68%). Compound 313: 1H NMR (CDCl3, 300 MHz) δ 7.34-7.33 (m, 5H), 5.16 (s, 1H), 5.08 (dd, J=22.5 Hz, 12.3 Hz, 4H), 5.00 (s, 1H), 4.60 (m, 1H), 4.04-3.81 (series of multiplets, 6H), 2.43-1.01 (series of multiplets, 25H), 1.46 (s, 9H), 1.44 (s, 18H), 0.92 (s, 3H), 0.797 (d, J=5.7 Hz, 3H), 0.69 (s, 1H); 13C NMR (CDCl3, 75 MHz) δ 173.99, 170.25, 170.05, 169.85, 155.73, 136.19, 128.69, 128.45, 128.35, 80.06, 77.65, 77.23, 76.80, 76.53, 75.24, 72.19, 66.29, 47.46, 45.35, 43.24, 42.91, 40.89, 38.00, 34.79, 34.66, 34.49, 31.43, 31.25, 30.77, 28.88, 28.40, 27.23, 26.89, 25.74, 22.94, 22.65, 17.61, 12.32; FAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 992.5468 (100%), calcd. 992.5460.
- Representative synthesis of compounds 316-318: Compound 313 (0.505 g, 0.520 mmol) and Pd (5 wt. % on active carbon, 0.111 g, 0.0521 mmol) were added to MeOH (5 mL). The suspension was stirred under H2 (50 psi) for 20 hours. The solids were removed by filtration and the filtrate was concentrated. Purification of the product via chromatography (silica gel, 5% MeOH in CH2Cl2) gave a white powder (0.450 g, 98% yield). Compound 316: 1H NMR (CDCl3, 500 MHz) δ 5.20 (s, 1H), 5.12 (br., 2H), 4.92 (s, 1H), 4.55 (m, 1H), 3.98-3.83 (series of multiplets, 6H), 2.30-2.13 (series of multiplets, 2H), 1.96-0.98 (series of multiplets, 30H), 1.40 (s, 9H), 1.39 (s, 18H), 0.87 (s, 3H), 0.76 (d, Hz, 3H), 0.68 (s, 3H); 13C NMR (CDCl3 75 MHz) δ174.11, 165.60, 165.41, 165.22, 151.28, 151.14, 75.48, 75.26, 71.81, 70.57, 67.50, 45.95, 42.58, 40.65, 38.52, 38.16, 36.17, 33.28, 30.01, 29.78, 26.71, 26.42, 25.95, 24.16, 23.78, 23.40, 23.31, 22.55, 22.16, 21.03, 18.23, 17.93, 12.91, 7.61; FAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 902.4997 (21%), calcd. 902.4990.
- Representative synthesis of compounds 319-321: Compound 316 (0.375 g, 0.427 mmol), DCC (0.105 g, 0.512 mmol) and DMAP (0.062 g, 0.512 mmol) and N,N-dimethylethanolamine (0.09 ml, 0.896 mmol) were added to CH2Cl2 (15 mL). The mixture for 16 h, and solvent and excess N,N-dimethylethanolamine were removed in vacuo. The product was purified via chromatography (silica gel EtOAc/hexane/Et3 N, 12:10:0.6) giving a white powder (0.330 g, 82% yield). 1H NMR (CDCl3 and about 10% CD3OD, 500 MHz) δ 5.18 (s, 1H), 5.00 (s, 1H), 4.19 (t, J=5.0 Hz, 2H), 3.92 (s, 3H), 3.81 (s, 3H), 2.62 (t, J=10 Hz, 2H), 2.30 (s, 6H), 1.47 (s, 9H), 1.47 (s, 1H), 1.45 (s, 1H), 2.12-1.05 (series of multiplets, 27H), 0.96 (s, 3H), 0.84 (d, J=10.5 Hz, 3H), 0.78 (s, 3H); 13C NMR (CDCl3 and about 10% CD3OD, 125 MHz) δ174.19, 170.05, 169.87, 156.21, 79.36, 79.27, 76.06, 76.90, 71.80, 61.19, 57.04, 46.88, 44.87, 44.67, 44.53, 42, 78, 42.15, 42.01, 40.43, 37.47, 34.32, 34.11, 33.92, 33.35, 33.25, 30.74, 30.56, 30.16, 28.40, 27.67, 27.62, 26.73, 26.19, 25.18, 25, 10, 24.72, 24.49, 22.29, 21.81, 16.76, 11.56; FAB-MS (thioglycerol+Na+ matrix) m/e: ([M+Na]+) 973.5723 (100%), calcd, 973.5725. The white solid from the previous reaction (0.680 g, 0.714 mmol) and MeI (1 M in CH2Cl2, 1.5 mL) were stirred together for 2 h. The solvent and excess MeI were removed in vacuo giving a white solid (0.812 g about 100%). The product was carried on without further purification.
- Representative synthesis of compounds 324-326: Compound 319 (0.812 g, 0.714 mmol) was dissolved in CH2Cl2 (5 mL) and trifluoroacetic acid (0.5 mL) was added. The mixture was stirred for 16 min. The solvent and excess acid were removed in vacuo, and the resulting oil was chromatographed (silica gel, CH2Cl2/MeOH/NH3.H2O 4:4:1) to give the desired product as a pale glass (0.437 g, 90% yield). Addition of HCl (2 M in ethyl ether, 2.5 mL) gave the trihydrochloride salt of 324 as a pale yellow powder. Compound 324: 1H NMR (50% CDCl3, 50% CD3OD, 300 MHz) δ 5.43 (s, 1H), 5.24 (s, 1H), 4.84 (m, 1H), 4.66 (m, 2H), 4.16-3.96 (series of multiplets, 6H), 3.88 (m, 2H), 3.37 (s, 9H), 0.67 (s, 3H), 0.59 (d, J=6.3 Hz, 3H), 0.56 (s, 3H); 13C NMR (50% CDCl3, 50% CD3OD, 75 MHz) □ 173.47, 167.06, 167.01, 166.70, 78.01, 76.49, 73.78, 64.98, 57.67, 53.36, 47.49, 46.99, 45.61, 43.28, 40.83, 40.23, 40.10, 37.69, 34.80, 34.48, 34.28, 31.03, 30.63, 30.44, 28.94, 27.05, 26.56, 25.50, 22.53, 21.56, 16.95, 11.37; FAB-MS (thioglycerol+Na+ matrix) m/e: ([M-I]+) 665.4475 (85.6%), calcd 665.4489.
Compounds compounds - This example includes data indicating the stability of Compounds 352-354 under acidic, neutral and basic conditions.
- Compounds 352-354 were dissolved in 50 mM phosphate buffered water (pH 2.0, 7.0 or 12.0) at approximately 10 mM concentrations. The structures of compounds 352-354 are given in
FIG. 9 . Decomposition of the compounds was observed via HPLC (cyano-silica column, 0.15% TFA water-acetonitrile gradient elution). Table 15 shows the stabilities (half-lives) of compounds 352-354 in phosphate buffer at room temperature, pH 2.0, pH 7.0 and pH 12.0. These compounds were used since they contain a chromophore that facilitated monitoring of decomposition by absorption methods common in the HPLC apparatus used. - At low pH, the amines are expected to be protonated and the compounds showed relative stability. At higher pH, the amines were less strongly protonated and became involved in ester hydrolysis. The γ-aminobutyric acid-derived compound was especially susceptible to hydrolysis, presumably yielding pyrrolidone. In general, the compounds are believed to hydrolyse to give cholic acid, choline or octanol, and glycine, beta-alanine, or pyrrolidone, depending on the particular compound.
- Decomposition through ester hydrolysis yielded compounds that were less polar and easily separable from the starting compounds. Initially, only one benezene-containing decomposition product was observed; at longer reaction times, two other decomposition products were observed which presumably corresponded to sequential ester hydrolysis.
- This example includes a description of additional exemplary synthetic procedures for producing compounds of formula I. In one example, hydroxyl groups on cholic acid can be converted into amine groups as described in in Hsieh et al. (Synthesis and DNA Binding Properties of C3-, C12-, and C24-Substituted Amino-Steroids Derived from Bile Acids, Biorganic and Medicinal Chemistry, 1995, vol. 6, 823-838).
- Compounds of formula I prepared as shown in the following Scheme.
- This example includes various materials and methods. This example also includes data indicating that the CSAs have anti-herpesvirus activity.
- Human Herpes Simplex Virus Type 2 (HSV) was grown and passaged in Human Embryonic Lung Fibroblasts in Eagles Minimum Essential Media (E-MEM) culture media with 2.5% fetal calf serum (FCS), and 1% penicillin/streptomycin, Freshly trypsinized lung fibroblasts were grown 3 days to confluence and inoculated with approximately 1 plaque-forming unit (PFU) per cell in culture medium. Cells were checked daily for cytopathic effects. The supernatant was harvested after 48-72 hours of incubation at 37° C. in 5% CO2, freeze thawed five times and centrifuged 15 minutes at 1000 RPM. For HSV titration, ten-fold dilutions of stock were made and 0.1 ml of each dilution was added to the fibroblast cell sheets in 24 well tissue culture plates. Virus adsorption took place for 1 hour at 37° C. in 5% CO2 and was followed by the addition of E-MEM with 2.5% FCS. After 48 hours of incubation, cytopathic effects were observed, media was removed and cells fixed with formalin-crystal violet. Plaques were visualized on an Inverted Nikon Microscope under 1.3×10 magnification. Virus stocks were stored at −70° C. until us.
- Viral Killing Assay:
- BS-C-1 (African Green Monkey Kidney Cells, ATCC CCL-26) cells were seeded at 2×105 cells/well in 24 well plates and allowed to grow to confluence overnight at 37° C., 5% CO2 in E-MEM with 10% FCS and 1% penicillin/streptomycin. CSA-8, CSA-13, CSA-31 and CSA-54 were used in 7 dilutions from 1-100 μM. (
FIG. 1 ). Each of the CSAs were added to an eppendorf tube containing 1×103 PFU HSV and incubated for 24 hours at 37° C. in a volume not to exceed 0.1 ml. Growth media was removed from the cell sheet and rinsed once using E-MEM with 2.5% FCS. The virus:CSA solution was added to the cells and adsorbed for 1 hour at 37° C. and 5% CO2. Growth media was added to 0.5 ml and incubated for 48 hours. Media was then removed and cells fixed with formalin-crystal violet. The antiviral activity of these CSA was determined by counting viral forming plaques within the wells and multiplying by the dilution factors used (FIG. 11 ).
Claims (34)
1. A method for providing a subject with protection against a herpesviridae (HV) infection or pathogenesis, comprising administering a sufficient amount of cationic steroid antimicrobial (CSA) to provide the subject with protection against herpesviridae (HV) infection or pathogenesis.
2. A method for treating a subject in need of treatment for herpesviridae (HV) infection or pathogenesis, comprising administering a sufficient amount of cationic steroid antimicrobial (CSA) to treat the subject for the herpesviridae (HV) infection or pathogenesis.
3. A method for decreasing susceptibility or inhibiting herpesviridae (HV) reactivation from latency in a subject, comprising administering a sufficient amount of cationic steroid antimicrobial (CSA) to decrease susceptibility or inhibit herpesviridae (HV) reactivation from latency in the subject.
4. The method of claim 1 , wherein the CSA is administered prior to, concurrently with, or following infection of the subject with HV, exposure to or contact of the subject with HV, or reactivation of HV.
5. The method of claim 1 , wherein the CSA is administered prior to, concurrently with, or following development of a symptom or pathology of acute or chronic HV infection, or reactivation of HV from latency.
6. The method of claim 1 , wherein the CSA is administered to a biological fluid, an immune cell or tissue, mucosal cell or tissue, neural cell or tissue, or epithelial cell or tissue.
7. The method of claim 1 , wherein the HV is present in a biological fluid, cell, tissue or organ.
8-9. (canceled)
10. The method of claim 1 , wherein the HV is present in an immune cell tissue or organ, mucosal cell, tissue or organ, neural cell, tissue or organ, or epithelial cell, tissue or organ.
11-14. (canceled)
15. The method of claim 1 , wherein the HV comprises an alpha-herpesvirus, beta-herpesvirus or gamma-herpesvirus.
16-17. (canceled)
18. The method of any of claim 1 , wherein the CSA is selected from CSA-7, CSA-8, CSA-10, CSA-11, CSA-13, CSA-15, CSA-17, CSA-21, CSA-25, CSA-26, CSA-31, CSA-46, CSA-54 and CSA-59, as set forth in FIG. 10 .
19-24. (canceled)
25. The method of claim 1 , wherein the CSA has a shorter tether length between the steroid scaffold and the amine groups at positions C3, C7 and C12, relative to the tether length of CSA-7, CSA-8, CSA-10, CSA-11, CSA-13, CSA-15, CSA-17, CSA-21, CSA-25, CSA-26, CSA-31, CSA-46, CSA-54 or CSA-59, as set forth in FIG. 10 .
26. The method of claim 1 , wherein the CSA comprises a pharmaceutically acceptable carrier or excipient.
27. The method of claim 1 , wherein the CSA comprises a sterile formulation.
28. The method of claim 1 , wherein the CSA comprises a composition comprising one or more additional CSAs or biologically active ingredients.
29-46. (canceled)
47. The method of claim 1 , further comprising administering to the subject an additional CSA or treatment.
48-52. (canceled)
53. The method of claim 47 , wherein the additional treatment comprises an antibody that binds to an HV protein.
54. The method of claim 53 , wherein the HV protein is selected from: envelope protein, tegument protein, capsid protein, core protein and polymerase.
55. The method of claim 54 , wherein the envelope protein comprises glycoprotein gp42, gp350, gpK8.1A, B, C, D, E, H, L (gB, gC, gD, gE, gH, gL).
56. The method of claim 54 , wherein the tegument protein comprises: UL17, UL36, UL37, UL48, UL49, US11, UL11, UL14, UL16, UL21, UL41, UL46, UL47, VP13/14, VP16 and VP22.
57-59. (canceled)
60. A method for decreasing or inhibiting herpesviridae (HV) infection of a cell or herpesviridae (HV) reactivation from latency, in vitro or in vivo, comprising administering a composition comprising a sufficient amount of cationic steroid antimicrobial (CSA) to inhibit herpesviridae (HV) infection of the cell.
61-65. (canceled)
66. A method for reducing, decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with or caused by herpesviridae (HV) infection or pathogenesis, or reactivation of herpesviridae (HV) from latency, in a subject, comprising administering a sufficient amount of CSA-7, CSA-8, CSA-10, CSA-11, CSA-13, CSA-15, CSA-17, CSA-21, CSA-25, CSA-26, CSA-31, CSA-46, CSA-54 and CSA-59, as set forth in FIG. 10 , to decrease, inhibit, ameliorate or prevent onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with or caused by herpesviridae (HV) infection or pathogenesis, or reactivation of herpesviridae (HV) from latency in the subject.
67. (canceled)
68. A method for identifying a candidate agent for treating a subject for an HV infection or pathogenesis, or reactivation from latency, comprising:
a) providing a test agent, said test agent comprising a cationic steroid antimicrobial (CSA);
b) contacting said test agent with HV and ascertaining whether the test agent inhibits HV infection or pathogenesis, or reactivation from latency, wherein a test agent identified as inhibiting HV infection or pathogenesis or reactivation from latency is a candidate agent for treating a subject for HV infection or pathogenesis.
69. A method for identifying a candidate agent for decreasing susceptibility or inhibiting HV reactivation from latency, comprising:
a) providing a test agent, said test agent comprising a cationic steroid antimicrobial (CSA);
b) contacting said test agent with HV and ascertaining whether the test agent decreases susceptibility or inhibits HV reactivation from latency, wherein a test agent identified as decreasing susceptibility or inhibiting HV reactivation from latency is a candidate agent for decreasing susceptibility or inhibiting HV reactivation from latency.
70. A method for identifying a candidate agent for decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies caused by or associated with HV infection or pathogenesis or reactivation from latency comprising:
a) providing a test agent, said test agent comprising a cationic steroid antimicrobial (CSA);
b) administering said test agent to a subject infected with or exposed to HV and ascertaining whether the test agent decreases, inhibits, ameliorates or prevents onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with or caused by HV infection or pathogenesis, or reactivation from latency, wherein a test agent identified is a candidate agent for decreasing, inhibiting, ameliorating or preventing onset, severity, duration, progression, frequency or probability of one or more symptoms or pathologies associated with or caused by HV infection or pathogenesis or reactivation from latency.
71-72. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/538,676 US20130034500A1 (en) | 2006-02-01 | 2012-06-29 | Cationic Steroid Antimicrobial Compositions and Methods of Use |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76412906P | 2006-02-01 | 2006-02-01 | |
US11/669,803 US20070190558A1 (en) | 2006-02-01 | 2007-01-31 | Cationic Steroid Antimicrobial Compositions and Methods of Use |
US12/876,993 US8211879B2 (en) | 2006-02-01 | 2010-09-07 | Cationic steroid antimicrobial compositions and methods of use |
US13/538,676 US20130034500A1 (en) | 2006-02-01 | 2012-06-29 | Cationic Steroid Antimicrobial Compositions and Methods of Use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/876,993 Continuation US8211879B2 (en) | 2006-02-01 | 2010-09-07 | Cationic steroid antimicrobial compositions and methods of use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130034500A1 true US20130034500A1 (en) | 2013-02-07 |
Family
ID=38318649
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/669,803 Abandoned US20070190558A1 (en) | 2006-02-01 | 2007-01-31 | Cationic Steroid Antimicrobial Compositions and Methods of Use |
US12/876,993 Expired - Fee Related US8211879B2 (en) | 2006-02-01 | 2010-09-07 | Cationic steroid antimicrobial compositions and methods of use |
US13/538,676 Abandoned US20130034500A1 (en) | 2006-02-01 | 2012-06-29 | Cationic Steroid Antimicrobial Compositions and Methods of Use |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/669,803 Abandoned US20070190558A1 (en) | 2006-02-01 | 2007-01-31 | Cationic Steroid Antimicrobial Compositions and Methods of Use |
US12/876,993 Expired - Fee Related US8211879B2 (en) | 2006-02-01 | 2010-09-07 | Cationic steroid antimicrobial compositions and methods of use |
Country Status (2)
Country | Link |
---|---|
US (3) | US20070190558A1 (en) |
WO (1) | WO2007089906A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014151411A1 (en) * | 2013-03-15 | 2014-09-25 | Brigham Young University | Methods for treating inflammation, autoimmune disorders and pain |
WO2016172543A1 (en) * | 2015-04-22 | 2016-10-27 | Savage Paul B | Methods for the synthesis of ceragenins |
WO2018086757A1 (en) | 2016-11-11 | 2018-05-17 | Sew-Eurodrive Gmbh & Co. Kg | Planetary gearbox having a ring gear accommodated in a housing part |
CN110101682A (en) * | 2019-05-17 | 2019-08-09 | 南京望知星医药科技有限公司 | A kind of tenofovir and its preparation process |
US10959433B2 (en) | 2017-03-21 | 2021-03-30 | Brigham Young University | Use of cationic steroidal antimicrobials for sporicidal activity |
US11253634B2 (en) | 2016-03-11 | 2022-02-22 | Brigham Young University | Cationic steroidal antibiotic compositions for the treatment of dermal tissue |
US11286276B2 (en) | 2014-01-23 | 2022-03-29 | Brigham Young University | Cationic steroidal antimicrobials |
US11524015B2 (en) | 2013-03-15 | 2022-12-13 | Brigham Young University | Methods for treating inflammation, autoimmune disorders and pain |
US11690855B2 (en) | 2013-10-17 | 2023-07-04 | Brigham Young University | Methods for treating lung infections and inflammation |
US12186328B2 (en) | 2019-05-23 | 2025-01-07 | Brigham Young University | Use of CSA compounds to stimulate stem cells and hair growth |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070190558A1 (en) * | 2006-02-01 | 2007-08-16 | Savage Paul B | Cationic Steroid Antimicrobial Compositions and Methods of Use |
EP2303026B1 (en) | 2008-06-17 | 2020-09-09 | Brigham Young University | Cationic steroid antimicrobial diagnostic, detection, screening and imaging methods |
WO2012061648A1 (en) * | 2010-11-03 | 2012-05-10 | Brigham Young University | Storage-stable, anti-microbial compositions including ceragenin compounds and methods of use |
US8871021B2 (en) | 2011-03-08 | 2014-10-28 | Staker & Parson Companies | Concrete mixtures including carbon encapsulating admixture |
BR112014001444A2 (en) | 2011-07-20 | 2017-07-18 | Univ Brigham Young | hydrophobic ceragenin compounds and devices incorporating the same |
US8932614B2 (en) | 2011-08-25 | 2015-01-13 | Paul B. Savage | Incorporation of particulate ceragenins in polymers |
US9694019B2 (en) | 2011-09-13 | 2017-07-04 | Brigham Young University | Compositions and methods for treating bone diseases and broken bones |
CA2852989C (en) | 2011-09-13 | 2021-06-29 | Brigham Young University | Compositions for treating bone diseases and broken bones |
KR101966293B1 (en) * | 2011-09-13 | 2019-04-08 | 브라이엄 영 유니버시티 | Products for healing of tissue wounds |
US9603859B2 (en) | 2011-09-13 | 2017-03-28 | Brigham Young University | Methods and products for increasing the rate of healing of tissue wounds |
CN104379120A (en) * | 2011-12-21 | 2015-02-25 | 布莱阿姆青年大学 | Oral care compositions |
US9533063B1 (en) | 2012-03-01 | 2017-01-03 | Brigham Young University | Aerosols incorporating ceragenin compounds and methods of use thereof |
US10039285B2 (en) | 2012-05-02 | 2018-08-07 | Brigham Young University | Ceragenin particulate materials and methods for making same |
NZ707003A (en) | 2012-10-17 | 2016-04-29 | Univ Brigham Young | Treatment and prevention of mastitis |
AU2014203882B2 (en) | 2013-01-07 | 2016-06-23 | Brigham Young University | Methods for reducing cellular proliferation and treating certain diseases |
US10568893B2 (en) | 2013-03-15 | 2020-02-25 | Brigham Young University | Methods for treating inflammation, autoimmune disorders and pain |
US9387215B2 (en) | 2013-04-22 | 2016-07-12 | Brigham Young University | Animal feed including cationic cholesterol additive and related methods |
CA2844321C (en) | 2014-02-27 | 2021-03-16 | Brigham Young University | Cationic steroidal antimicrobial compounds |
US9867836B2 (en) | 2014-03-13 | 2018-01-16 | Brigham Young University | Lavage and/or infusion using CSA compounds for increasing fertility in a mammal |
US10220045B2 (en) | 2014-03-13 | 2019-03-05 | Brigham Young University | Compositions and methods for forming stabilized compositions with reduced CSA agglomeration |
US9931350B2 (en) | 2014-03-14 | 2018-04-03 | Brigham Young University | Anti-infective and osteogenic compositions and methods of use |
US9686966B2 (en) | 2014-04-30 | 2017-06-27 | Brigham Young University | Methods and apparatus for cleaning or disinfecting a water delivery system |
US10238665B2 (en) | 2014-06-26 | 2019-03-26 | Brigham Young University | Methods for treating fungal infections |
US10441595B2 (en) | 2014-06-26 | 2019-10-15 | Brigham Young University | Methods for treating fungal infections |
US10227376B2 (en) | 2014-08-22 | 2019-03-12 | Brigham Young University | Radiolabeled cationic steroid antimicrobials and diagnostic methods |
US10155788B2 (en) | 2014-10-07 | 2018-12-18 | Brigham Young University | Cationic steroidal antimicrobial prodrug compositions and uses thereof |
CN104745649B (en) * | 2015-02-28 | 2018-03-09 | 苏州汉酶生物技术有限公司 | A kind of biological preparation method of fosamprenavir intermediate |
CN108136213A (en) * | 2015-04-22 | 2018-06-08 | 布莱阿姆青年大学 | Plug draws the synthetic method of Jining |
WO2016172553A1 (en) * | 2015-04-22 | 2016-10-27 | Savage Paul B | Methods for the synthesis of ceragenins |
US9434759B1 (en) | 2015-05-18 | 2016-09-06 | Brigham Young University | Cationic steroidal antimicrobial compounds and methods of manufacturing such compounds |
CN107179288A (en) * | 2017-07-03 | 2017-09-19 | 中国人民解放军第三军医大学 | The detection method of S-IgA in a kind of saliva |
CN117402202B (en) * | 2023-12-15 | 2024-02-13 | 成都贝诺科成生物科技有限公司 | Compound, preparation method and application thereof, pharmaceutical composition containing compound and medical device coating |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3322627A (en) * | 1964-09-03 | 1967-05-30 | Merck & Co Inc | Method of treating herpes simplex infections with 5-methylamino-2'-deoxyuridine, and compositions therefor |
US4605648A (en) * | 1985-08-15 | 1986-08-12 | Price E Pendleton | Treatment of Herpes Simplex viruses |
US4847283A (en) * | 1983-01-10 | 1989-07-11 | Harendza Harinxma Alfred J | Ointment and method for treating skin lesions due to herpes virus |
US5855872A (en) * | 1992-06-22 | 1999-01-05 | Libin; Barry M. | Compositions for treating herpes simplex virus infections |
US20020019376A1 (en) * | 1998-03-06 | 2002-02-14 | Brigham Young University, A Utah Corporation | Steroid derived antibiotics |
US6369101B1 (en) * | 1999-02-26 | 2002-04-09 | Regents Of The University Of Minnesota | Therapeutic method to treat herpes virus infection |
US20020091278A1 (en) * | 1998-03-06 | 2002-07-11 | Savage Paul B. | Steroid derived antibiotics |
US20040220114A1 (en) * | 1999-03-23 | 2004-11-04 | Ahlem Clarence Nathaniel | Pharmaceutical compositions and treatment methods |
US20050009848A1 (en) * | 2003-07-10 | 2005-01-13 | Icn Pharmaceuticals Switzerland Ltd. | Use of antivirals against inflammatory bowel diseases |
US7754705B2 (en) * | 2006-02-01 | 2010-07-13 | Brigham Young University | Cationic steroid antimicrobial compositions and methods of use |
US20110091376A1 (en) * | 2008-06-17 | 2011-04-21 | Brigham Young University | Catatonic steroid antimicrobial diagnostic, detection, screening and imaging methods |
US8211879B2 (en) * | 2006-02-01 | 2012-07-03 | Brigham Young University | Cationic steroid antimicrobial compositions and methods of use |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3014895B2 (en) * | 1993-06-02 | 2000-02-28 | 株式会社日立製作所 | Video camera |
WO1996008270A2 (en) * | 1994-09-13 | 1996-03-21 | Magainin Pharmaceuticals Inc. | Method for inhibiting sexually transmitted diseases using magaining antimicrobials or squalamine compounds |
US5763430A (en) * | 1995-06-07 | 1998-06-09 | Magainin Pharmaceuticals Inc. | Method of treating a viral infection by administering a steroid compound |
US6143738A (en) * | 1995-06-07 | 2000-11-07 | Magainin Pharmaceuticals, Inc. | Therapeutic uses for an aminosterol compound |
US20040033582A1 (en) * | 2002-06-03 | 2004-02-19 | Manling-Ma Edmonds | Human single nucleotide polymorphisms |
-
2007
- 2007-01-31 US US11/669,803 patent/US20070190558A1/en not_active Abandoned
- 2007-01-31 WO PCT/US2007/002793 patent/WO2007089906A2/en active Application Filing
-
2010
- 2010-09-07 US US12/876,993 patent/US8211879B2/en not_active Expired - Fee Related
-
2012
- 2012-06-29 US US13/538,676 patent/US20130034500A1/en not_active Abandoned
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3322627A (en) * | 1964-09-03 | 1967-05-30 | Merck & Co Inc | Method of treating herpes simplex infections with 5-methylamino-2'-deoxyuridine, and compositions therefor |
US4847283A (en) * | 1983-01-10 | 1989-07-11 | Harendza Harinxma Alfred J | Ointment and method for treating skin lesions due to herpes virus |
US4605648A (en) * | 1985-08-15 | 1986-08-12 | Price E Pendleton | Treatment of Herpes Simplex viruses |
US5855872A (en) * | 1992-06-22 | 1999-01-05 | Libin; Barry M. | Compositions for treating herpes simplex virus infections |
US6486148B2 (en) * | 1998-03-06 | 2002-11-26 | Brigham Young University | Steroid derived antibiotics |
US7598234B2 (en) * | 1998-03-06 | 2009-10-06 | Brigham Young University | Steroid derived antibiotics |
US6350738B1 (en) * | 1998-03-06 | 2002-02-26 | Brigham Young University | Steroid derived antibiotics |
US20020091278A1 (en) * | 1998-03-06 | 2002-07-11 | Savage Paul B. | Steroid derived antibiotics |
US20020019376A1 (en) * | 1998-03-06 | 2002-02-14 | Brigham Young University, A Utah Corporation | Steroid derived antibiotics |
US6767904B2 (en) * | 1998-03-06 | 2004-07-27 | Bringham Young University | Steroid derived antibiotics |
US20050032765A1 (en) * | 1998-03-06 | 2005-02-10 | Brigham Young University, A Utah Corporation | Steroid derived antibiotics |
US6369101B1 (en) * | 1999-02-26 | 2002-04-09 | Regents Of The University Of Minnesota | Therapeutic method to treat herpes virus infection |
US20040220114A1 (en) * | 1999-03-23 | 2004-11-04 | Ahlem Clarence Nathaniel | Pharmaceutical compositions and treatment methods |
US20050075321A1 (en) * | 1999-03-23 | 2005-04-07 | Ahlem Clarence Nathaniel | Neurological disorder treatment methods |
US20050009848A1 (en) * | 2003-07-10 | 2005-01-13 | Icn Pharmaceuticals Switzerland Ltd. | Use of antivirals against inflammatory bowel diseases |
US7754705B2 (en) * | 2006-02-01 | 2010-07-13 | Brigham Young University | Cationic steroid antimicrobial compositions and methods of use |
US8211879B2 (en) * | 2006-02-01 | 2012-07-03 | Brigham Young University | Cationic steroid antimicrobial compositions and methods of use |
US20110091376A1 (en) * | 2008-06-17 | 2011-04-21 | Brigham Young University | Catatonic steroid antimicrobial diagnostic, detection, screening and imaging methods |
Non-Patent Citations (9)
Title |
---|
Andrei G, Snoeck R. Emerging drugs for varicella-zoster virus infections. Expert Opin Emerg Drugs. 2011 Sep;16(3):507-35. Epub 2011 Jun 24. * |
De Clercq E. Dancing with chemical formulae of antivirals: A panoramic view (Part 2). Biochem Pharmacol. 2013 Sep 23. * |
Ding B, Guan Q, Walsh JP, Boswell JS, Winter TW, Winter ES, Boyd SS, Li C, Savage PB. Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. J Med Chem. 2002 Jan 31;45(3):663-9. * |
Ding B, Taotofa U, Orsak T, Chadwell M, Savage PB. Synthesis and characterization of peptide-cationic steroid antibiotic conjugates. Org Lett. 2004 Sep 30;6(20):3433-6. * |
Gershon AA. Varicella zoster vaccines and their implications for development of HSV vaccines. Virology. 2013 Jan 5;435(1):29-36. * |
Howell MD, Streib JE, Kim BE, Lesley LJ, Dunlap AP, Geng D, Feng Y, Savage PB, Leung DY. Ceragenins: a class of antiviral compounds to treat orthopox infections. J Invest Dermatol. 2009 Nov;129(11):2668-75. Epub 2009 Jun 11. * |
Pollard JE, Snarr J, Chaudhary V, Jennings JD, Shaw H, Christiansen B, Wright J, Jia W, Bishop RE, Savage PB. In vitro evaluation of the potential for resistance development to ceragenin CSA-13. J Antimicrob Chemother. 2012 Nov;67(11):2665-72. doi: 10.1093/jac/dks276. Epub 2012 Aug 16. * |
Prichard MN, et. al. Synthesis and antiviral activities of methylenecyclopropane analogs with 6-alkoxy and 6-alkylthio substitutions that exhibit broad-spectrum antiviral activity against human herpesviruses. Antimicrob Agents Chemother. 2013 Aug;57(8):3518-27. Epub 2013 May 13. * |
Rahaus M, Augustinski K, Castells M, Desloges N. Application of a new bivalent Marek's disease vaccine does not interfere with infectious bronchitis or Newcastle disease vaccinations and proves efficacious. Avian Dis. 2013 Jun;57(2 Suppl):498-502. * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014151411A1 (en) * | 2013-03-15 | 2014-09-25 | Brigham Young University | Methods for treating inflammation, autoimmune disorders and pain |
US11524015B2 (en) | 2013-03-15 | 2022-12-13 | Brigham Young University | Methods for treating inflammation, autoimmune disorders and pain |
US11739116B2 (en) | 2013-03-15 | 2023-08-29 | Brigham Young University | Methods for treating inflammation, autoimmune disorders and pain |
US11690855B2 (en) | 2013-10-17 | 2023-07-04 | Brigham Young University | Methods for treating lung infections and inflammation |
US11286276B2 (en) | 2014-01-23 | 2022-03-29 | Brigham Young University | Cationic steroidal antimicrobials |
WO2016172543A1 (en) * | 2015-04-22 | 2016-10-27 | Savage Paul B | Methods for the synthesis of ceragenins |
US11253634B2 (en) | 2016-03-11 | 2022-02-22 | Brigham Young University | Cationic steroidal antibiotic compositions for the treatment of dermal tissue |
WO2018086757A1 (en) | 2016-11-11 | 2018-05-17 | Sew-Eurodrive Gmbh & Co. Kg | Planetary gearbox having a ring gear accommodated in a housing part |
US10959433B2 (en) | 2017-03-21 | 2021-03-30 | Brigham Young University | Use of cationic steroidal antimicrobials for sporicidal activity |
CN110101682A (en) * | 2019-05-17 | 2019-08-09 | 南京望知星医药科技有限公司 | A kind of tenofovir and its preparation process |
US12186328B2 (en) | 2019-05-23 | 2025-01-07 | Brigham Young University | Use of CSA compounds to stimulate stem cells and hair growth |
Also Published As
Publication number | Publication date |
---|---|
WO2007089906A3 (en) | 2007-11-15 |
US8211879B2 (en) | 2012-07-03 |
US20070190558A1 (en) | 2007-08-16 |
WO2007089906A2 (en) | 2007-08-09 |
US20100330086A1 (en) | 2010-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8211879B2 (en) | Cationic steroid antimicrobial compositions and methods of use | |
CA2640584C (en) | Cationic steroid antimicrobial compositions and methods of use | |
US7754705B2 (en) | Cationic steroid antimicrobial compositions and methods of use | |
US20070191322A1 (en) | Cationic Steroid Microbial Compositions and Methods of Use | |
US9943614B2 (en) | Cationic steroid antimicrobial diagnostic, detection, screening and imaging methods | |
US9505800B2 (en) | Extended triterpene derivatives | |
US20220356196A1 (en) | Antiviral compounds | |
JP6155285B2 (en) | C-3 cycloalkenyl triterpenoid having HIV maturation inhibitory activity | |
US6369101B1 (en) | Therapeutic method to treat herpes virus infection | |
CN114085243A (en) | Pyrrolo [1,2-f ] [1,2,4] triazines useful for the treatment of respiratory syncytial virus infection | |
EP2508511A1 (en) | Inhibitors of viral replication, their process of preparation and their therapeutical uses | |
US11701369B2 (en) | Polymeric bile acid derivatives inhibit Hepatitis B and D virus and NTCP transport | |
TWI867455B (en) | Compounds and methods for treatment of viral infections | |
TW202448482A (en) | Phospholipid compounds and methods of making and using the same | |
DK2851368T3 (en) | COMPLEX COMPOUNDS OF GERMANIUM, PROCEDURES FOR PRODUCING THEREOF, AND PHARMACEUTICALS | |
CN113214262B (en) | Compound containing guanidine group, and preparation method and application thereof | |
KR20240155327A (en) | Antiviral compounds and methods for their preparation and use | |
AU2019292599B2 (en) | Triterpene amine derivatives | |
EP0470995A1 (en) | Use of steroidal compounds as anti-fungal agents. | |
PL203312B1 (en) | Novel fusidic acid derivatives | |
TWI855578B (en) | Antiviral compounds and methods of making and using the same | |
CH651035A5 (en) | ESTER OF 2-TENOILMERCAPTOPROPIONYL GLYCINE WITH SUBSTITUTED HYDROXYBENZENES, PROCEDURE FOR ITS PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING IT. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |