US20130030225A1 - Methods and compositions for inhibiting vinyl aromatic monomer polymerization - Google Patents
Methods and compositions for inhibiting vinyl aromatic monomer polymerization Download PDFInfo
- Publication number
- US20130030225A1 US20130030225A1 US13/628,536 US201213628536A US2013030225A1 US 20130030225 A1 US20130030225 A1 US 20130030225A1 US 201213628536 A US201213628536 A US 201213628536A US 2013030225 A1 US2013030225 A1 US 2013030225A1
- Authority
- US
- United States
- Prior art keywords
- recited
- vinyl aromatic
- aromatic monomer
- substituted
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000178 monomer Substances 0.000 title claims abstract description 46
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 33
- 229920002554 vinyl polymer Polymers 0.000 title claims abstract description 28
- 239000000203 mixture Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 40
- -1 quinone methide derivative Chemical class 0.000 claims abstract description 31
- AZQWKYJCGOJGHM-UHFFFAOYSA-N para-benzoquinone Natural products O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 claims abstract description 16
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical group SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 12
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 claims description 5
- HCUWXYBKPSKTAB-UHFFFAOYSA-N 4-benzylidene-2,6-ditert-butylcyclohexa-2,5-dien-1-one Chemical compound C1=C(C(C)(C)C)C(=O)C(C(C)(C)C)=CC1=CC1=CC=CC=C1 HCUWXYBKPSKTAB-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 239000003495 polar organic solvent Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 3
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000003884 phenylalkyl group Chemical group 0.000 claims description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 8
- 238000003860 storage Methods 0.000 abstract description 4
- 239000003112 inhibitor Substances 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 0 [1*]C1=C/C(=C(/[3*])[H])C=C([2*])C1=O Chemical compound [1*]C1=C/C(=C(/[3*])[H])C=C([2*])C1=O 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000012719 thermal polymerization Methods 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- METWAQRCMRWDAW-UHFFFAOYSA-N 2,6-diethylphenol Chemical compound CCC1=CC=CC(CC)=C1O METWAQRCMRWDAW-UHFFFAOYSA-N 0.000 description 1
- NAILKKRDWBJCNH-UHFFFAOYSA-N 2,6-dipropylphenol Chemical compound CCCC1=CC=CC(CCC)=C1O NAILKKRDWBJCNH-UHFFFAOYSA-N 0.000 description 1
- VMZVBRIIHDRYGK-UHFFFAOYSA-N 2,6-ditert-butyl-4-[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VMZVBRIIHDRYGK-UHFFFAOYSA-N 0.000 description 1
- AKNMPWVTPUHKCG-UHFFFAOYSA-N 2-cyclohexyl-6-[(3-cyclohexyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(C2CCCCC2)=CC(C)=CC=1CC(C=1O)=CC(C)=CC=1C1CCCCC1 AKNMPWVTPUHKCG-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- GPNYZBKIGXGYNU-UHFFFAOYSA-N 2-tert-butyl-6-[(3-tert-butyl-5-ethyl-2-hydroxyphenyl)methyl]-4-ethylphenol Chemical compound CC(C)(C)C1=CC(CC)=CC(CC=2C(=C(C=C(CC)C=2)C(C)(C)C)O)=C1O GPNYZBKIGXGYNU-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- BFZOTKYPSZSDEV-UHFFFAOYSA-N 4-butan-2-yl-2,6-ditert-butylphenol Chemical compound CCC(C)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BFZOTKYPSZSDEV-UHFFFAOYSA-N 0.000 description 1
- MQVDCVRWVSDQNN-UHFFFAOYSA-N 4-methyl-2-(1-methylcyclohexyl)phenol Chemical compound CC1=CC=C(O)C(C2(C)CCCCC2)=C1 MQVDCVRWVSDQNN-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/20—Use of additives, e.g. for stabilisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F12/02—Monomers containing only one unsaturated aliphatic radical
- C08F12/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F12/06—Hydrocarbons
- C08F12/08—Styrene
Definitions
- the invention pertains to methods and compositions for inhibiting the undesired polymerization of vinyl aromatic monomers, such as styrene monomer, during processes such as monomer preparation, and purification, and during storage and shipment of products containing such monomers.
- vinyl aromatic monomers such as styrene monomer
- Polystyrene is a thermoplastic with many desirable characteristics. It is clear, transparent, readily colored and easily fabricated.
- the family of styrene polymers includes polystyrene itself, copolymers of styrene with other vinyl monomers, polymers of derivatives of styrene and mixtures of polystyrene and styrene-containing copolymers with elastomers.
- ABS acrylonitrile, butadiene-styrene resins
- styrene plastics are commonly used for packaging, including foams and films, coatings, in appliance fabrication, for housewares and toys, lighting fixtures and in construction materials.
- styrene monomer readily polymerizes when heated or exposed to light. Heat polymerization is rapid. In fact, polymerization increases with increasing temperature. This polymerization is undesirable during many stages of the manufacturing, processing, handling, storage and use of styrene monomers.
- styrene Common industrial methods for producing styrene include a variety of purification processes, including distillation, to remove impurities.
- purification operations carried out at elevated temperatures result in an increased rate of undesired polymerization.
- Polymerization, such as thermal polymerization, during the monomer purification process results not only in loss of desired monomer end- product, but also in loss of production efficiency caused by polymer formation or agglomeration on process equipment. In heat requiring operations, such agglomeration adversely affects heat transfer efficiency.
- a method for inhibiting the polymerization of a vinyl aromatic monomer such as styrene monomer, i.e., ethylbenzene.
- the method comprises adding an effective polymerization inhibiting amount of a combined treatment to the monomer medium.
- the combined treatment comprises (A) a quinone methide derivative and (B) a phenol compound. From about 1-10,000 ppm of (A) and (B) collectively is brought into contact with the requisite vinyl aromatic monomer based on 1 million parts of the monomer.
- the method may, in other aspects of the invention, comprise the step of heating the monomer and, in another aspect of the invention, the monomer may be distilled to remove impurities therefrom.
- a vinyl aromatic monomer anti-polymerization composition which comprises a liquid carrier and dissolved or dispersed therein (A) a quinone methide derivative and (B) a phenol compound.
- the quinone methide derivative is 2,6-di-tert- butyl-4-benzylidene-cyclohexa-2,5-dienone.
- the phenol compound (B) is 2,6-di-t-butylphenol.
- a liquid carrier such as a non-polar organic solvent is provided with the combined treatment (A) and (B) dissolved or dispersed therein.
- both a quinone methide derivative A) and a phenol compound B) are conjointly utilized to inhibit polymerization of a vinyl aromatic monomer such as styrene.
- the quinone methide derivatives generally have the formula:
- R 1 and R 2 are independently H, C 4 to C 18 alkyl; C 5 to C 12 cycloalkyl; or C 7 to C 15 phenylalkyl.
- R 1 and R 2 are tert-butyl, tert-amyl, tert-octyl, cyclohexyl, ⁇ -methylbenzyl or ⁇ , ⁇ -dimethylbenzyl; with tert-butyl, tert-amyl or tert-octyl most preferred.
- R 3 is preferably aryl, or aryl substituted with C 1 to C 6 alkyl, alkoxy, hydroxy, nitro, amino, carboxy, or mixtures thereof.
- the quinone methide derivative is 2,6-di-tert-butyl-4- benzylidene-cyclohexa-2,5-dienone.
- the phenol compounds B) that may be utilized generally have the formula:
- R 4 and R 5 may be the same or different and are chosen from C 1 -C 20 alkyl, C 1 -C 30 alkaryl and substituted C 1 -C 30 alkaryl, R 6 , when present, is selected from C 1 -C 20 alkyl, thiophenol, substituted thiophenol, C 1 -C 40 alkanoic acid ester, C 1 -C 30 alkaryl, substituted C 1 -C 30 alkaryl, C 1 -C 6 alkylamino, C 1 -C 6 alkoxy, amine, polynuclear aryl and substituted polynuclear aryl.
- the preferred phenol B) compound is 2,6-di-t-butylphenol.
- exemplary phenols include 2,6-dipropylphenol, 2,6-diethylphenol and 2,6-dimethylphenol.
- compositions of the present invention are effective at inhibiting polymerization of vinyl aromatic monomers under processing conditions.
- processing conditions include but are not limited to preparation, purification, distillation and vacuum distillation processes.
- Styrene for example, is typically processed at temperatures between 95° C. and 125° C.
- the compositions of the present invention are effective at inhibiting the polymerization of styrene over this range of temperatures.
- the vinyl aromatic monomers that are treated by the compositions of the present invention include but are not limited to styrene, bromostyrene, divinylbenzene, and ⁇ -methylstyrene.
- the compositions of the present invention are particularly efficacious at inhibiting the polymerization of styrene monomer.
- the total amount of quinone methide derivative A) and phenolic compound B) used in the methods of the present invention is that amount which is sufficient to inhibit polymerization of vinyl aromatic monomers. This amount will vary according to the conditions under which the vinyl aromatic monomer is being processed, contaminants in the system and the temperature of the system. At higher processing temperatures and higher monomer contamination, larger amounts of the inhibiting composition are required.
- the term “effective inhibiting amount” is that amount which is effective at inhibiting vinyl aromatic monomer polymerization.
- this amount ranges from about 1 part to about 10,000 parts of quinone methide derivative and phenolic compound, collectively, per 1 million parts of monomer. Most preferably, this amount will range from about 1 to 1,000 parts per million parts monomer.
- the weight ratio of quinone methide derivative to phenolic compound will generally range from about 90:10 to about 10:90. Most preferred is a weight ratio of about 70:30.
- compositions of the present invention can be introduced into the vinyl aromatic monomer by any conventional method at any point of the processing system, either as separate and individual ingredients or as a combination of ingredients.
- compositions of the present invention may be added to the vinyl aromatic monomer as either a dispersion or as a solution using a suitable liquid carrier or solvent.
- a suitable liquid carrier or solvent Any solvent that is compatible with the individual ingredients of the composition and the vinyl aromatic monomer to be treated may be employed. It is often desirable to dissolve the inhibitors in the monomer to which the inhibitor is being added to avoid introducing additional impurities in the monomer.
- Exemplary liquid carriers include non-polar organic solvents, such as heavy aromatic naphtha and xylene.
- the method of the present invention can control the fouling of processing equipment, such as the equipment used in separation and purification processes of styrene monomer, which is due to or caused by the polymerization of the monomer.
- the instant invention may be used as both a process inhibitor, which is employed during preparation and processing (e.g., employing heat) of the styrene monomer (i.e., ethylbenzene), and as a product inhibitor, which is combined with the styrene monomer in order to inhibit polymerization during storage and handling.
- a 250 ml RB flask-equipped with an Ar gas inlet, water cooled condenser and sample outlet was charged with 110 ml of styrene and the candidate polymerization inhibitor(s). [600 ppm (w/v)].
- the flask was purged with Argon for 10 minutes.
- the flask was then immersed into an oil-bath thermostatically controlled at 115-120° C. and heated with purging Ar continuously. Once the temperature reached 115° C., the stop clock was started and this time was considered as time zero.
- About 5 ml of the sample was removed from the flask at varying time intervals for up to 4 hours and measured precisely before pouring into about 40 ml methanol to precipitate out the styrene polymer.
- the precipitated polystyrene was filtered with a gas membrane filter that was pre-weighed before use. The polymer was dried at 100° C. and weighed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Methods and compositions are provided for inhibiting the polymerization of a vinyl aromatic monomer, such as styrene monomer, during elevated temperature processing thereof or during storage or shipment of polymer containing product. The compositions comprise a combination of a quinone methide derivative A) and a phenol compound B). The methods comprise adding from about 1-10,000 ppm of the combination to the monomer containing medium, per one million parts of the monomer.
Description
- The present application is a divisional of allowed U.S. patent application Ser. No. 12/793,226 filed Jun. 3, 2010.
- The invention pertains to methods and compositions for inhibiting the undesired polymerization of vinyl aromatic monomers, such as styrene monomer, during processes such as monomer preparation, and purification, and during storage and shipment of products containing such monomers.
- Polystyrene is a thermoplastic with many desirable characteristics. It is clear, transparent, readily colored and easily fabricated. The family of styrene polymers includes polystyrene itself, copolymers of styrene with other vinyl monomers, polymers of derivatives of styrene and mixtures of polystyrene and styrene-containing copolymers with elastomers.
- ABS (acrylonitrile, butadiene-styrene) resins have enjoyed tremendous commercial popularity for many years as durable, temperature and solvent resistant elastomers. On the other hand, styrene plastics are commonly used for packaging, including foams and films, coatings, in appliance fabrication, for housewares and toys, lighting fixtures and in construction materials.
- It is well known that styrene monomer readily polymerizes when heated or exposed to light. Heat polymerization is rapid. In fact, polymerization increases with increasing temperature. This polymerization is undesirable during many stages of the manufacturing, processing, handling, storage and use of styrene monomers.
- Common industrial methods for producing styrene include a variety of purification processes, including distillation, to remove impurities. Unfortunately, purification operations carried out at elevated temperatures result in an increased rate of undesired polymerization. Polymerization, such as thermal polymerization, during the monomer purification process, results not only in loss of desired monomer end- product, but also in loss of production efficiency caused by polymer formation or agglomeration on process equipment. In heat requiring operations, such agglomeration adversely affects heat transfer efficiency.
- In accordance with aspect of the invention, a method is provided for inhibiting the polymerization of a vinyl aromatic monomer such as styrene monomer, i.e., ethylbenzene. The method comprises adding an effective polymerization inhibiting amount of a combined treatment to the monomer medium. The combined treatment comprises (A) a quinone methide derivative and (B) a phenol compound. From about 1-10,000 ppm of (A) and (B) collectively is brought into contact with the requisite vinyl aromatic monomer based on 1 million parts of the monomer. The method may, in other aspects of the invention, comprise the step of heating the monomer and, in another aspect of the invention, the monomer may be distilled to remove impurities therefrom.
- In another aspect of the invention, a vinyl aromatic monomer anti-polymerization composition is provided which comprises a liquid carrier and dissolved or dispersed therein (A) a quinone methide derivative and (B) a phenol compound.
- In another embodiment, the quinone methide derivative is 2,6-di-tert- butyl-4-benzylidene-cyclohexa-2,5-dienone.
- In another aspect of the invention, the phenol compound (B) is 2,6-di-t-butylphenol.
- In another exemplary embodiment, a liquid carrier such as a non-polar organic solvent is provided with the combined treatment (A) and (B) dissolved or dispersed therein.
- In accordance with the invention, both a quinone methide derivative A) and a phenol compound B) are conjointly utilized to inhibit polymerization of a vinyl aromatic monomer such as styrene.
- The quinone methide derivatives generally have the formula:
- wherein:
- R1 and R2 are independently H, C4 to C18 alkyl; C5 to C12 cycloalkyl; or C7 to C15 phenylalkyl.
- Preferably, R1 and R2 are tert-butyl, tert-amyl, tert-octyl, cyclohexyl, α-methylbenzyl or α,α-dimethylbenzyl; with tert-butyl, tert-amyl or tert-octyl most preferred.
- R3 is preferably aryl, or aryl substituted with C1 to C6 alkyl, alkoxy, hydroxy, nitro, amino, carboxy, or mixtures thereof.
- Means for preparing these compounds may be found in U.S. Pat. No. 4,032,547, the contents of which are wholly incorporated by reference to herein.
- Preferably, the quinone methide derivative is 2,6-di-tert-butyl-4- benzylidene-cyclohexa-2,5-dienone.
- The phenol compounds B) that may be utilized generally have the formula:
- wherein R4 and R5 may be the same or different and are chosen from C1-C20 alkyl, C1-C30 alkaryl and substituted C1-C30 alkaryl, R6, when present, is selected from C1-C20 alkyl, thiophenol, substituted thiophenol, C1-C40 alkanoic acid ester, C1-C30 alkaryl, substituted C1-C30 alkaryl, C1-C6 alkylamino, C1-C6 alkoxy, amine, polynuclear aryl and substituted polynuclear aryl.
- At present, the preferred phenol B) compound is 2,6-di-t-butylphenol. Exemplary phenols include 2,6-dipropylphenol, 2,6-diethylphenol and 2,6-dimethylphenol. Also mentioned as exemplary are the hindered phenols in accord with the above formula wherein R4, R5 and R6 are all present. These include:
-
- 2,6-di-t-butyl-4-methylphenol
- 4,4′-thiobis-(6-t-butyl-2-methylphenol)
- octadecyl 3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate
- 4,4′-methylenebis(2,6-di-t-butylphenol)
- 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene
- 2,6-di-t-butyl-α-dimethylamino-p-cresol
- 2,6-di-t-butyl-4-secbutylphenol
- 2,2′-methylenebis(4-ethyl-6-t-butylphenol)
- 2,2′-methylenebis(4-methyl-6-t-butylphenol)
- 2,2′-methylenebis(6-(1-methylcyclohexyl)-p-cresol; and
- 2,2′-methylenebis(4-methyl-6-cyclohexylphenol)
- The compositions of the present invention are effective at inhibiting polymerization of vinyl aromatic monomers under processing conditions. These processing conditions include but are not limited to preparation, purification, distillation and vacuum distillation processes.
- Styrene, for example, is typically processed at temperatures between 95° C. and 125° C. The compositions of the present invention are effective at inhibiting the polymerization of styrene over this range of temperatures.
- The vinyl aromatic monomers that are treated by the compositions of the present invention include but are not limited to styrene, bromostyrene, divinylbenzene, and α-methylstyrene. The compositions of the present invention are particularly efficacious at inhibiting the polymerization of styrene monomer.
- The total amount of quinone methide derivative A) and phenolic compound B) used in the methods of the present invention is that amount which is sufficient to inhibit polymerization of vinyl aromatic monomers. This amount will vary according to the conditions under which the vinyl aromatic monomer is being processed, contaminants in the system and the temperature of the system. At higher processing temperatures and higher monomer contamination, larger amounts of the inhibiting composition are required.
- For purposes of the present invention, the term “effective inhibiting amount” is that amount which is effective at inhibiting vinyl aromatic monomer polymerization. Preferably, this amount ranges from about 1 part to about 10,000 parts of quinone methide derivative and phenolic compound, collectively, per 1 million parts of monomer. Most preferably, this amount will range from about 1 to 1,000 parts per million parts monomer.
- Accordingly, it is possible to produce a more effective vinyl aromatic monomer polymerization inhibiting treatment than is obtained by the use of either compound by itself when measured at comparable treatment levels. This synergism or enhanced activity between components allows for the concentration of each of the components to be lowered and the total quantity of polymerization inhibitor required, particularly at higher temperatures, may be lowered while achieving a commensurate level of polymerization inhibition.
- As such, the weight ratio of quinone methide derivative to phenolic compound will generally range from about 90:10 to about 10:90. Most preferred is a weight ratio of about 70:30.
- The compositions of the present invention can be introduced into the vinyl aromatic monomer by any conventional method at any point of the processing system, either as separate and individual ingredients or as a combination of ingredients.
- The compositions of the present invention may be added to the vinyl aromatic monomer as either a dispersion or as a solution using a suitable liquid carrier or solvent. Any solvent that is compatible with the individual ingredients of the composition and the vinyl aromatic monomer to be treated may be employed. It is often desirable to dissolve the inhibitors in the monomer to which the inhibitor is being added to avoid introducing additional impurities in the monomer. Exemplary liquid carriers include non-polar organic solvents, such as heavy aromatic naphtha and xylene.
- The method of the present invention can control the fouling of processing equipment, such as the equipment used in separation and purification processes of styrene monomer, which is due to or caused by the polymerization of the monomer. The instant invention may be used as both a process inhibitor, which is employed during preparation and processing (e.g., employing heat) of the styrene monomer (i.e., ethylbenzene), and as a product inhibitor, which is combined with the styrene monomer in order to inhibit polymerization during storage and handling.
- The invention will now be described in conjunction with the following examples which should be viewed as being illustrative of the invention and should not be deemed to limit the invention in any manner
- The effect of a combined treatment of QM (Quinone Methide) and 2,6-di-tert butyl phenol on the thermal polymerization of styrene at 115-120° C. was evaluated by comparing polymer formation utilizing the following procedure.
- A 250 ml RB flask-equipped with an Ar gas inlet, water cooled condenser and sample outlet was charged with 110 ml of styrene and the candidate polymerization inhibitor(s). [600 ppm (w/v)]. The flask was purged with Argon for 10 minutes. The flask was then immersed into an oil-bath thermostatically controlled at 115-120° C. and heated with purging Ar continuously. Once the temperature reached 115° C., the stop clock was started and this time was considered as time zero. About 5 ml of the sample was removed from the flask at varying time intervals for up to 4 hours and measured precisely before pouring into about 40 ml methanol to precipitate out the styrene polymer. The precipitated polystyrene was filtered with a gas membrane filter that was pre-weighed before use. The polymer was dried at 100° C. and weighed.
- Styrene Polymerization Results are Shown in Table 1.
-
TABLE I Amount of polystyrene formation at 115-120° C. as a function of time for a resultant retarder dosage of about 600 ppm with different ratios of 2,6-tertiary butyl phenol (DTBP) and QM. Polymer wt. in mg QM + 2,6- QM + 2,6- QM + 2,6- QM + 2,6- QM + 2,6- QM + 2,6- QM DTBP DTBP DTBP DTBP DTBP DTBP Time in (pure) (569.3 ppm: (479.98 ppm: (450.24 ppm: (420.22 ppm: (387.3 ppm: (300.07 ppm: minutes 600 ppm 31.68 ppm) 119.07 ppm) 149.94 ppm) 180.45 ppm) 210.78 ppm) 298.71 ppm) 60 19.58 15.80 12.60 10.1 6.8 13.60 16.20 120 42.85 34.90 24.80 23.2 15.0 29.00 34.50 180 70.75 59.00 41.10 40.1 26.4 50.30 58.60 240 105.85 89.20 60.60 60.5 40.0 76.20 90.30 QM 100.00 94.73 80.12 75.02 69.96 64.76 50.11 (%) 2,6- 0.00 5.27 19.88 24.98 30.04 35.24 49.89 DTBP (%) - While we have shown and described herein certain embodiments of the invention, it is intended that these be covered as well as any change or modification therein which may be made without departing from the spirit and scope of the invention as defined in the appended claims.
Claims (16)
1. A method for inhibiting the polymerization of vinyl aromatic monomer comprising adding to said monomer an effective polymerization inhibiting amount of a compound comprising (A) a quinone methide derivative having the formula
wherein:
R1 and R2 are independently H, C4 to C18 alkyl; C5 to C12 cycloaklyl; or C7 to C15 phenylalkyl, and
R3 is aryl, or aryl substituted with C1 to C6 alkyl, alkoxy, hydroxy, nitro, amino, carboxy, or mixtures thereof; and
(B) a phenol compound having the formula
wherein R4 and R5 may be the same or different and are chosen from C1-C20 alkyl, C1-C30 alkaryl and substituted C1-C30 alkaryl; R6 is selected from C1-C20 alkyl, thiophenol, substituted thiophenol, C1-C40 alkanoic acid ester, C1-C30 alkaryl, substituted C1-C30 alkaryl, C1-C6 alkylamino, C1-C6 alkoxy, amine, polynuclear aryl and substituted polynuclear aryl.
2. The method as recited in claim 1 wherein the weight ratio of A to B is about 90:10 to about 10:90.
3. The method as recited in claim 2 wherein said quinone methide derivative A) is 2,6-di-tert-butyl-4-benzylidene-cyclohexa-2,5-dienone.
4. The method as recited in claim 3 wherein said phenol compound B) is 2,6-di-tert-butyl phenol.
5. The method as recited in claim 4 wherein from about 1,-10,000 ppm of A and B collectively is brought into contact with said vinyl aromatic monomer, based on 1 million parts of said vinyl aromatic monomer.
6. The method as recited in claim 5 wherein said vinyl aromatic monomer comprises styrene monomer.
7. The method as recited in claim 5 wherein the weight ratio of A:B is about 70:30.
8. The method as recited in claim 7 further comprising the step of heating said styrene monomer.
9. The method as recited in claim 7 further comprising the step of distilling said styrene monomer to remove impurities therefrom.
10. Vinyl aromatic monomer anti-polymerization composition comprising a liquid carrier and dissolved or dispersed therein A) a quinone methide derivative having the formula
wherein:.
R1 and R2 are independently H, C4 to C18 alkyl; C5 to C12 cycloaklyl; or C7 to C15 phenylalkyl, and
R3 is aryl, or aryl substituted with C1 to C6 alkyl, alkoxy, hydroxy, nitro, amino, carboxy, or mixtures thereof; and
(B) a phenol compound having the formula
wherein R4 and R5 may be the same or different and are chosen from C1-C20 alkyl, C1-C30 alkaryl and substituted C1-C30 alkaryl; R6 is selected from C1-C20 alkyl, thiophenol, substituted thiophenol, C1-C40 alkanoic acid ester, C1-C30 alkaryl, substituted C1-C30 alkaryl, C1-C6 alkylamino, C1-C6 alkoxy, amine, polynuclear aryl and substituted polynuclear aryl.
11. Vinyl aromatic monomer anti-polymerization composition as recited in claim 10 wherein A) and B) are present in a weight ratio of about 90:10 to about 10:90.
12. Vinyl aromatic monomer anti-polymerization composition as recited in claim 11 wherein said quinone methide derivative A) is 2,6-di-tert-butyl-4- benzylidene-cyclohexa-2,5-dienone.
13. Vinyl aromatic monomer anti-polymerization composition as recited in claim 12 wherein said phenol compound B) is 2,6-di-tert-butyl phenol.
14. Vinyl aromatic monomer anti-polymerization composition as recited in claim 12 wherein said liquid carrier comprises a non-polar organic solvent and wherein A) and B) are both dissolved in said solvent.
15. Vinyl aromatic monomer anti-polymerization composition as recited in claim 14 wherein said non-polar organic solvent comprises heavy aromatic naphtha or xylene.
16. Vinyl aromatic monomer anti-polymerization composition as recited in claim 10 further comprising styrene monomer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/628,536 US20130030225A1 (en) | 2010-06-03 | 2012-09-27 | Methods and compositions for inhibiting vinyl aromatic monomer polymerization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/793,226 US8298440B2 (en) | 2010-06-03 | 2010-06-03 | Methods and compositions for inhibiting vinyl aromatic monomer polymerization |
US13/628,536 US20130030225A1 (en) | 2010-06-03 | 2012-09-27 | Methods and compositions for inhibiting vinyl aromatic monomer polymerization |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/793,226 Division US8298440B2 (en) | 2010-06-03 | 2010-06-03 | Methods and compositions for inhibiting vinyl aromatic monomer polymerization |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130030225A1 true US20130030225A1 (en) | 2013-01-31 |
Family
ID=44626629
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/793,226 Active 2030-10-19 US8298440B2 (en) | 2010-06-03 | 2010-06-03 | Methods and compositions for inhibiting vinyl aromatic monomer polymerization |
US13/628,536 Abandoned US20130030225A1 (en) | 2010-06-03 | 2012-09-27 | Methods and compositions for inhibiting vinyl aromatic monomer polymerization |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/793,226 Active 2030-10-19 US8298440B2 (en) | 2010-06-03 | 2010-06-03 | Methods and compositions for inhibiting vinyl aromatic monomer polymerization |
Country Status (14)
Country | Link |
---|---|
US (2) | US8298440B2 (en) |
EP (1) | EP2576718B1 (en) |
JP (1) | JP5683692B2 (en) |
KR (1) | KR101877069B1 (en) |
AR (1) | AR081555A1 (en) |
BR (1) | BR112012028981B1 (en) |
CA (1) | CA2800495C (en) |
ES (1) | ES2621605T3 (en) |
MX (1) | MX2012014075A (en) |
MY (1) | MY158328A (en) |
PL (1) | PL2576718T3 (en) |
SG (1) | SG185758A1 (en) |
TW (1) | TWI501947B (en) |
WO (1) | WO2011152961A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130204053A1 (en) * | 2012-02-02 | 2013-08-08 | General Electric Company | Methods and compositions for styrene inhibition via in situ generation of quinone methides |
CN109651040A (en) * | 2017-10-12 | 2019-04-19 | 中国石油化工股份有限公司 | Higher alkyne compound polymerization inhibitor |
CN110878209A (en) * | 2018-09-05 | 2020-03-13 | 中国石油化工股份有限公司 | Environment-friendly polymerization inhibitor for styrene rectification system and application thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104718181B (en) | 2012-08-24 | 2018-01-30 | 多尔夫凯塔尔化学制品(I)私人有限公司 | For controlling and suppressing the quinone methides derivative of monomer polymerization and the composition of amine, as well as preparation method and application thereof |
WO2014130008A1 (en) * | 2013-02-19 | 2014-08-28 | General Electric Company | Use of aliphatic nitroso compounds as inhibitors of radical polymerization of activated vinyl monomers |
JP6530868B2 (en) * | 2016-02-13 | 2019-06-12 | ドルフ ケタール ケミカルズ (インディア)プライヴェート リミテッド | Composition for controlling and inhibiting polymerization of vinyl aromatic monomers and method of use thereof |
CN116553996A (en) * | 2023-07-07 | 2023-08-08 | 吉林金海化工新材料有限公司 | Polymerization inhibitor and application thereof |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3741906A (en) * | 1971-12-17 | 1973-06-26 | Exxon Research Engineering Co | Hindered phenoxy radicals |
US4040911A (en) * | 1976-01-02 | 1977-08-09 | Gulf Research & Development Company | Process for inhibiting the polymerization of styrene |
US4032547A (en) | 1976-02-23 | 1977-06-28 | Gulf Research & Development Company | Quinone alkide synthesis system |
US4929778A (en) | 1989-06-05 | 1990-05-29 | Betz Laboratories, Inc. | Methods and compositions for inhibiting styrene polymerization |
US5470440A (en) | 1994-04-19 | 1995-11-28 | Betz Laboratories, Inc. | Method for inhibiting vinyl aromatic monomer polymerization |
US5616774A (en) * | 1995-04-14 | 1997-04-01 | Ciba-Geigy Corporation | Inhibition of unsaturated monomers with 7-aryl quinone methides |
EP0744392A1 (en) * | 1995-05-26 | 1996-11-27 | Ciba-Geigy Ag | A new one-pot process for the preparation of 7-aryl-2,6-disubstituted quinone methides |
JPH09227608A (en) * | 1996-02-22 | 1997-09-02 | Asahi Chem Ind Co Ltd | Production of styrene-acrylonitrile resin |
CN1232472A (en) * | 1996-09-04 | 1999-10-20 | 陶氏化学公司 | Incorporation of free radical inhibitors in polyolefins |
US6024894A (en) | 1998-03-25 | 2000-02-15 | Betzdearborn Inc. | Compositions and methods for inhibiting vinyl aromatic monomer polymerization |
EP1332196A1 (en) * | 2000-10-16 | 2003-08-06 | Uniroyal Chemical Company, Inc. | Blends of quinone alkide and nitroxyl compounds as polymerization inhibitors |
US20030065177A1 (en) * | 2001-08-08 | 2003-04-03 | Crompton Corporation, A Corporation Of The State Of Delaware | High boiling inhibitors for distillable, polymerizable monomers |
US6960279B2 (en) * | 2002-05-06 | 2005-11-01 | Fina Technology, Inc. | Method for stabilizing vinyl aromatic monomers using selected polymerization inhibitors and polymers prepared therewith |
US6926820B2 (en) | 2002-09-20 | 2005-08-09 | G.E. Betz, Inc. | Inhibition of viscosity increase and fouling in hydrocarbon streams including unsaturation |
WO2004083156A1 (en) * | 2003-03-17 | 2004-09-30 | Hakuto Co., Ltd. | Polymerization inhibitor for aromatic vinyl compounds and method for inhibiting the polymerization of the compounds |
JP2004352735A (en) * | 2003-05-27 | 2004-12-16 | Techno Network Shikoku Co Ltd | Manufacturing method of radical polymer |
US7128826B2 (en) | 2003-07-31 | 2006-10-31 | General Electric Company | Polymerization inhibitor for styrene dehydrogenation units |
DE102007052891A1 (en) * | 2007-11-02 | 2009-05-07 | Evonik Degussa Gmbh | Process for the stabilization of olefinically unsaturated monomers |
JP5139103B2 (en) * | 2008-02-05 | 2013-02-06 | 京セラドキュメントソリューションズ株式会社 | Electrophotographic photosensitive member and image forming apparatus |
JP5266991B2 (en) * | 2008-09-11 | 2013-08-21 | コニカミノルタビジネステクノロジーズ株式会社 | Electrophotographic photosensitive member and image forming apparatus using the same |
-
2010
- 2010-06-03 US US12/793,226 patent/US8298440B2/en active Active
-
2011
- 2011-05-10 SG SG2012086864A patent/SG185758A1/en unknown
- 2011-05-10 JP JP2013513183A patent/JP5683692B2/en active Active
- 2011-05-10 MX MX2012014075A patent/MX2012014075A/en not_active Application Discontinuation
- 2011-05-10 EP EP11721893.3A patent/EP2576718B1/en active Active
- 2011-05-10 ES ES11721893.3T patent/ES2621605T3/en active Active
- 2011-05-10 CA CA2800495A patent/CA2800495C/en active Active
- 2011-05-10 PL PL11721893T patent/PL2576718T3/en unknown
- 2011-05-10 KR KR1020127031218A patent/KR101877069B1/en active Active
- 2011-05-10 WO PCT/US2011/035934 patent/WO2011152961A2/en active Application Filing
- 2011-05-10 MY MYPI2012004898A patent/MY158328A/en unknown
- 2011-05-10 BR BR112012028981-0A patent/BR112012028981B1/en active IP Right Grant
- 2011-05-30 TW TW100118905A patent/TWI501947B/en active
- 2011-06-01 AR ARP110101886A patent/AR081555A1/en active IP Right Grant
-
2012
- 2012-09-27 US US13/628,536 patent/US20130030225A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130204053A1 (en) * | 2012-02-02 | 2013-08-08 | General Electric Company | Methods and compositions for styrene inhibition via in situ generation of quinone methides |
US8901362B2 (en) * | 2012-02-02 | 2014-12-02 | General Electric Company | Methods and compositions for styrene inhibition via in situ generation of quinone methides |
CN109651040A (en) * | 2017-10-12 | 2019-04-19 | 中国石油化工股份有限公司 | Higher alkyne compound polymerization inhibitor |
CN110878209A (en) * | 2018-09-05 | 2020-03-13 | 中国石油化工股份有限公司 | Environment-friendly polymerization inhibitor for styrene rectification system and application thereof |
Also Published As
Publication number | Publication date |
---|---|
PL2576718T3 (en) | 2017-11-30 |
BR112012028981A2 (en) | 2016-07-26 |
WO2011152961A3 (en) | 2013-08-22 |
MX2012014075A (en) | 2013-01-25 |
KR20130122517A (en) | 2013-11-07 |
SG185758A1 (en) | 2012-12-28 |
US20110297878A1 (en) | 2011-12-08 |
TWI501947B (en) | 2015-10-01 |
CA2800495C (en) | 2019-07-09 |
EP2576718A2 (en) | 2013-04-10 |
TW201202192A (en) | 2012-01-16 |
CA2800495A1 (en) | 2011-12-08 |
KR101877069B1 (en) | 2018-07-10 |
EP2576718B1 (en) | 2017-01-11 |
US8298440B2 (en) | 2012-10-30 |
MY158328A (en) | 2016-09-30 |
BR112012028981B1 (en) | 2020-10-20 |
AR081555A1 (en) | 2012-10-03 |
JP2013539473A (en) | 2013-10-24 |
ES2621605T3 (en) | 2017-07-04 |
WO2011152961A2 (en) | 2011-12-08 |
JP5683692B2 (en) | 2015-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130030225A1 (en) | Methods and compositions for inhibiting vinyl aromatic monomer polymerization | |
CA1323634C (en) | Methods and compositions for inhibiting styrene polymerization | |
KR100500179B1 (en) | Compositions for polymerization inhibition of vinyl aromatic monomers and methods for polymerization inhibition | |
US5648574A (en) | Compositions and methods for inhibiting vinyl aromatic monomer polymerization | |
US6024894A (en) | Compositions and methods for inhibiting vinyl aromatic monomer polymerization | |
US20160052840A1 (en) | Methods and compositions for inhibiting polystyrene formation during styrene production | |
US6592722B2 (en) | Polymerization inhibitor for vinyl-containing materials | |
US8901362B2 (en) | Methods and compositions for styrene inhibition via in situ generation of quinone methides | |
EP3898566B1 (en) | Hydroxylated quinone antipolymerants and methods of using | |
US20150361013A1 (en) | Use of aliphatic nitroso compounds as inhibitors of radical polymerization of activated vinyl monomers | |
US9884795B2 (en) | Quinone compounds for inhibiting monomer polymerization | |
US8551364B2 (en) | Process for inhibiting polymerization of an aromatic vinyl compound | |
US4389285A (en) | Process inhibitor for readily polymerizable ethylenically unsaturated aromatic compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAI, VINOD KUMAR;ELDIN, SHERIF;KING, MARY;AND OTHERS;SIGNING DATES FROM 20121008 TO 20130308;REEL/FRAME:030200/0033 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |