US20130029416A1 - Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny - Google Patents
Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny Download PDFInfo
- Publication number
- US20130029416A1 US20130029416A1 US13/553,064 US201213553064A US2013029416A1 US 20130029416 A1 US20130029416 A1 US 20130029416A1 US 201213553064 A US201213553064 A US 201213553064A US 2013029416 A1 US2013029416 A1 US 2013029416A1
- Authority
- US
- United States
- Prior art keywords
- cells
- glucose
- insulin
- ips
- derived
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 85
- 239000008103 glucose Substances 0.000 title claims abstract description 82
- 210000004263 induced pluripotent stem cell Anatomy 0.000 title claims description 22
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 title abstract description 119
- 229940125396 insulin Drugs 0.000 title abstract description 62
- 102000004877 Insulin Human genes 0.000 title abstract description 58
- 108090001061 Insulin Proteins 0.000 title abstract description 58
- 230000003248 secreting effect Effects 0.000 title abstract description 9
- LUZOFMGZMUZSSK-LRDDRELGSA-N (-)-indolactam V Chemical compound C1[C@@H](CO)NC(=O)[C@H](C(C)C)N(C)C2=CC=CC3=C2C1=CN3 LUZOFMGZMUZSSK-LRDDRELGSA-N 0.000 claims abstract description 45
- LUZOFMGZMUZSSK-UHFFFAOYSA-N Indolactam-V Natural products C1C(CO)NC(=O)C(C(C)C)N(C)C2=CC=CC3=C2C1=CN3 LUZOFMGZMUZSSK-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 35
- 210000004027 cell Anatomy 0.000 claims description 376
- 229920001184 polypeptide Polymers 0.000 claims description 63
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 63
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 63
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 claims description 49
- 102100040918 Pro-glucagon Human genes 0.000 claims description 49
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 claims description 47
- 108010075254 C-Peptide Proteins 0.000 claims description 40
- 239000008280 blood Substances 0.000 claims description 35
- 210000002660 insulin-secreting cell Anatomy 0.000 claims description 33
- 108020004707 nucleic acids Proteins 0.000 claims description 21
- 102000039446 nucleic acids Human genes 0.000 claims description 21
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 20
- 108700021430 Kruppel-Like Factor 4 Proteins 0.000 claims description 13
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 claims description 13
- 210000001082 somatic cell Anatomy 0.000 claims description 13
- 101150086694 SLC22A3 gene Proteins 0.000 claims description 11
- 238000012258 culturing Methods 0.000 claims description 9
- 210000005260 human cell Anatomy 0.000 claims description 7
- 210000000601 blood cell Anatomy 0.000 claims description 6
- 210000002966 serum Anatomy 0.000 claims description 6
- 101001094700 Homo sapiens POU domain, class 5, transcription factor 1 Proteins 0.000 claims description 5
- 210000003491 skin Anatomy 0.000 claims description 5
- 101150111214 lin-28 gene Proteins 0.000 claims description 4
- 101001030211 Homo sapiens Myc proto-oncogene protein Proteins 0.000 claims description 3
- 108091057508 Myc family Proteins 0.000 claims description 3
- 210000003292 kidney cell Anatomy 0.000 claims description 3
- 210000005229 liver cell Anatomy 0.000 claims description 3
- 210000000663 muscle cell Anatomy 0.000 claims description 3
- 210000004958 brain cell Anatomy 0.000 claims description 2
- 210000002216 heart Anatomy 0.000 claims description 2
- 102000053563 human MYC Human genes 0.000 claims description 2
- 102000052983 human POU5F1 Human genes 0.000 claims description 2
- 210000004072 lung Anatomy 0.000 claims description 2
- 210000002784 stomach Anatomy 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 10
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 abstract description 2
- 230000004069 differentiation Effects 0.000 description 84
- 230000014509 gene expression Effects 0.000 description 68
- 108090000623 proteins and genes Proteins 0.000 description 55
- 239000013598 vector Substances 0.000 description 49
- 210000001900 endoderm Anatomy 0.000 description 45
- 210000002950 fibroblast Anatomy 0.000 description 38
- 210000004369 blood Anatomy 0.000 description 32
- 239000002609 medium Substances 0.000 description 32
- VOUAQYXWVJDEQY-QENPJCQMSA-N 33017-11-7 Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)NCC(=O)NCC(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)CCC1 VOUAQYXWVJDEQY-QENPJCQMSA-N 0.000 description 29
- 102000004864 Fibroblast growth factor 10 Human genes 0.000 description 29
- 108090001047 Fibroblast growth factor 10 Proteins 0.000 description 29
- 210000004039 endoderm cell Anatomy 0.000 description 29
- 208000015181 infectious disease Diseases 0.000 description 28
- QASFUMOKHFSJGL-LAFRSMQTSA-N Cyclopamine Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H](CC2=C3C)[C@@H]1[C@@H]2CC[C@@]13O[C@@H]2C[C@H](C)CN[C@H]2[C@H]1C QASFUMOKHFSJGL-LAFRSMQTSA-N 0.000 description 25
- QASFUMOKHFSJGL-UHFFFAOYSA-N cyclopamine Natural products C1C=C2CC(O)CCC2(C)C(CC2=C3C)C1C2CCC13OC2CC(C)CNC2C1C QASFUMOKHFSJGL-UHFFFAOYSA-N 0.000 description 25
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 24
- 229930002330 retinoic acid Natural products 0.000 description 24
- 206010012601 diabetes mellitus Diseases 0.000 description 23
- 230000008672 reprogramming Effects 0.000 description 23
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 22
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 22
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 21
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 21
- 210000002242 embryoid body Anatomy 0.000 description 21
- 238000012744 immunostaining Methods 0.000 description 21
- 210000001519 tissue Anatomy 0.000 description 21
- 102100029284 Hepatocyte nuclear factor 3-beta Human genes 0.000 description 19
- 101001062347 Homo sapiens Hepatocyte nuclear factor 3-beta Proteins 0.000 description 19
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 19
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 18
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 18
- 229960001727 tretinoin Drugs 0.000 description 18
- 102100020677 Krueppel-like factor 4 Human genes 0.000 description 17
- 101710126211 POU domain, class 5, transcription factor 1 Proteins 0.000 description 17
- 238000005755 formation reaction Methods 0.000 description 17
- 230000006698 induction Effects 0.000 description 17
- 101710183548 Pyridoxal 5'-phosphate synthase subunit PdxS Proteins 0.000 description 16
- 108010023082 activin A Proteins 0.000 description 16
- 210000003734 kidney Anatomy 0.000 description 16
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 15
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 15
- 101001139134 Homo sapiens Krueppel-like factor 4 Proteins 0.000 description 15
- 102100041030 Pancreas/duodenum homeobox protein 1 Human genes 0.000 description 15
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 14
- 102000013275 Somatomedins Human genes 0.000 description 14
- 210000003981 ectoderm Anatomy 0.000 description 14
- 239000012091 fetal bovine serum Substances 0.000 description 14
- 210000000130 stem cell Anatomy 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- DWJXYEABWRJFSP-XOBRGWDASA-N DAPT Chemical compound N([C@@H](C)C(=O)N[C@H](C(=O)OC(C)(C)C)C=1C=CC=CC=1)C(=O)CC1=CC(F)=CC(F)=C1 DWJXYEABWRJFSP-XOBRGWDASA-N 0.000 description 13
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 13
- 238000011977 dual antiplatelet therapy Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 13
- 229960004666 glucagon Drugs 0.000 description 13
- 210000003716 mesoderm Anatomy 0.000 description 13
- 238000010186 staining Methods 0.000 description 13
- 239000013603 viral vector Substances 0.000 description 13
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 12
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 210000002510 keratinocyte Anatomy 0.000 description 12
- 238000010361 transduction Methods 0.000 description 12
- 230000026683 transduction Effects 0.000 description 12
- 102000051325 Glucagon Human genes 0.000 description 11
- 108060003199 Glucagon Proteins 0.000 description 11
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 11
- 239000002775 capsule Substances 0.000 description 11
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 11
- 210000003470 mitochondria Anatomy 0.000 description 11
- 229960000553 somatostatin Drugs 0.000 description 11
- 230000002269 spontaneous effect Effects 0.000 description 11
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 10
- 241000283973 Oryctolagus cuniculus Species 0.000 description 10
- 102000005157 Somatostatin Human genes 0.000 description 10
- 108010056088 Somatostatin Proteins 0.000 description 10
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 10
- 125000003275 alpha amino acid group Chemical group 0.000 description 10
- 238000009795 derivation Methods 0.000 description 10
- 210000001654 germ layer Anatomy 0.000 description 10
- 230000028327 secretion Effects 0.000 description 10
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 10
- 108091035539 telomere Proteins 0.000 description 10
- 210000003411 telomere Anatomy 0.000 description 10
- 102000055501 telomere Human genes 0.000 description 10
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 9
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 9
- 108091006299 SLC2A2 Proteins 0.000 description 9
- 102000004243 Tubulin Human genes 0.000 description 9
- 108090000704 Tubulin Proteins 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 230000003828 downregulation Effects 0.000 description 9
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 9
- 238000003365 immunocytochemistry Methods 0.000 description 9
- 108010082117 matrigel Proteins 0.000 description 9
- 230000001105 regulatory effect Effects 0.000 description 9
- 238000003757 reverse transcription PCR Methods 0.000 description 9
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 8
- 101000652324 Homo sapiens Transcription factor SOX-17 Proteins 0.000 description 8
- 206010043276 Teratoma Diseases 0.000 description 8
- 102100030243 Transcription factor SOX-17 Human genes 0.000 description 8
- 238000000684 flow cytometry Methods 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 8
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 108020005196 Mitochondrial DNA Proteins 0.000 description 7
- 101150079937 NEUROD1 gene Proteins 0.000 description 7
- 108700020297 NeuroD Proteins 0.000 description 7
- 102100032063 Neurogenic differentiation factor 1 Human genes 0.000 description 7
- 239000012979 RPMI medium Substances 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 230000005754 cellular signaling Effects 0.000 description 7
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 238000002493 microarray Methods 0.000 description 7
- 230000000394 mitotic effect Effects 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 102100028096 Homeobox protein Nkx-6.2 Human genes 0.000 description 6
- 101000578254 Homo sapiens Homeobox protein Nkx-6.1 Proteins 0.000 description 6
- 101000578258 Homo sapiens Homeobox protein Nkx-6.2 Proteins 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 229930040373 Paraformaldehyde Natural products 0.000 description 6
- 238000010240 RT-PCR analysis Methods 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 239000012894 fetal calf serum Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229920002866 paraformaldehyde Polymers 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 5
- 102100035364 Growth/differentiation factor 3 Human genes 0.000 description 5
- 101001023986 Homo sapiens Growth/differentiation factor 3 Proteins 0.000 description 5
- 101001083543 Homo sapiens Host cell factor 1 Proteins 0.000 description 5
- 102100030355 Host cell factor 1 Human genes 0.000 description 5
- 230000001464 adherent effect Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 210000001671 embryonic stem cell Anatomy 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000010185 immunofluorescence analysis Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- WDHRPWOAMDJICD-FOAQWNCLSA-N n-[2-[(3'r,3'as,6's,6as,6bs,7'ar,9r,11as,11br)-3',6',10,11b-tetramethyl-3-oxospiro[1,2,4,6,6a,6b,7,8,11,11a-decahydrobenzo[a]fluorene-9,2'-3,3a,5,6,7,7a-hexahydrofuro[3,2-b]pyridine]-4'-yl]ethyl]-6-(3-phenylpropanoylamino)hexanamide Chemical compound C([C@@H](C)C[C@@H]1[C@@H]2[C@H]([C@]3(C(=C4C[C@@H]5[C@@]6(C)CCC(=O)CC6=CC[C@H]5[C@@H]4CC3)C)O1)C)N2CCNC(=O)CCCCCNC(=O)CCC1=CC=CC=C1 WDHRPWOAMDJICD-FOAQWNCLSA-N 0.000 description 5
- 210000000496 pancreas Anatomy 0.000 description 5
- 230000009758 senescence Effects 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- LAQPKDLYOBZWBT-NYLDSJSYSA-N (2s,4s,5r,6r)-5-acetamido-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,3r,4r,5r)-5-acetamido-1,2-dihydroxy-6-oxo-4-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}hexan-3-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4-hydroxy-6-[(1r,2r)-1,2,3-trihydrox Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]([C@@H](NC(C)=O)C=O)[C@@H]([C@H](O)CO)O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O)[C@@H](CO)O1 LAQPKDLYOBZWBT-NYLDSJSYSA-N 0.000 description 4
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 101000603702 Homo sapiens Neurogenin-3 Proteins 0.000 description 4
- 102100038553 Neurogenin-3 Human genes 0.000 description 4
- 108010076181 Proinsulin Proteins 0.000 description 4
- 241000713880 Spleen focus-forming virus Species 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000000762 glandular Effects 0.000 description 4
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 4
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- -1 hTERT Proteins 0.000 description 4
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000035800 maturation Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 239000012583 B-27 Supplement Substances 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- 102000029816 Collagenase Human genes 0.000 description 3
- 108060005980 Collagenase Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 3
- 101710173663 Glucagon-1 Proteins 0.000 description 3
- 101100510266 Homo sapiens KLF4 gene Proteins 0.000 description 3
- 102100024392 Insulin gene enhancer protein ISL-1 Human genes 0.000 description 3
- 241000713666 Lentivirus Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 102000052651 Pancreatic hormone Human genes 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108010017842 Telomerase Proteins 0.000 description 3
- 108091035715 XIST (gene) Proteins 0.000 description 3
- 210000004504 adult stem cell Anatomy 0.000 description 3
- 230000031016 anaphase Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000001054 cardiac fibroblast Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 229960002424 collagenase Drugs 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000002124 endocrine Effects 0.000 description 3
- 210000005175 epidermal keratinocyte Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 210000003953 foreskin Anatomy 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000000411 inducer Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000010208 microarray analysis Methods 0.000 description 3
- 230000002438 mitochondrial effect Effects 0.000 description 3
- 230000006852 mitochondrial response to stress Effects 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 239000004025 pancreas hormone Substances 0.000 description 3
- 229940032957 pancreatic hormone Drugs 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000011506 response to oxidative stress Effects 0.000 description 3
- 239000012679 serum free medium Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000003146 transient transfection Methods 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 102100028550 40S ribosomal protein S4, Y isoform 1 Human genes 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 2
- 102100033392 ATP-dependent RNA helicase DDX3Y Human genes 0.000 description 2
- 102000055025 Adenosine deaminases Human genes 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- 102100039410 Eukaryotic translation initiation factor 1A, Y-chromosomal Human genes 0.000 description 2
- 101100180045 Gallus gallus ISL1 gene Proteins 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000696103 Homo sapiens 40S ribosomal protein S4, Y isoform 1 Proteins 0.000 description 2
- 101000870664 Homo sapiens ATP-dependent RNA helicase DDX3Y Proteins 0.000 description 2
- 101001036335 Homo sapiens Eukaryotic translation initiation factor 1A, Y-chromosomal Proteins 0.000 description 2
- 101100137155 Homo sapiens POU5F1 gene Proteins 0.000 description 2
- 101000808590 Homo sapiens Probable ubiquitin carboxyl-terminal hydrolase FAF-Y Proteins 0.000 description 2
- 101000984042 Homo sapiens Protein lin-28 homolog A Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 102000011782 Keratins Human genes 0.000 description 2
- 108010076876 Keratins Proteins 0.000 description 2
- 108700005089 MHC Class I Genes Proteins 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 101800001268 Pancreatic hormone Proteins 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 102100038600 Probable ubiquitin carboxyl-terminal hydrolase FAF-Y Human genes 0.000 description 2
- 102100025460 Protein lin-28 homolog A Human genes 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 210000001766 X chromosome Anatomy 0.000 description 2
- 108091007416 X-inactive specific transcript Proteins 0.000 description 2
- 108700029634 Y-Linked Genes Proteins 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 238000011717 athymic nude mouse Methods 0.000 description 2
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 2
- 210000003995 blood forming stem cell Anatomy 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 108091092328 cellular RNA Proteins 0.000 description 2
- 230000008668 cellular reprogramming Effects 0.000 description 2
- 230000010094 cellular senescence Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000005757 colony formation Effects 0.000 description 2
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 230000003436 cytoskeletal effect Effects 0.000 description 2
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 2
- 102000004419 dihydrofolate reductase Human genes 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 239000012595 freezing medium Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 210000001647 gastrula Anatomy 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000007417 hierarchical cluster analysis Methods 0.000 description 2
- 238000001889 high-resolution electron micrograph Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 210000003963 intermediate filament Anatomy 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000005060 membrane bound organelle Anatomy 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000031864 metaphase Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000008437 mitochondrial biogenesis Effects 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000003387 muscular Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000031877 prophase Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000016853 telophase Effects 0.000 description 2
- 238000011222 transcriptome analysis Methods 0.000 description 2
- 238000003151 transfection method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZXXTYLFVENEGIP-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;3,7-dihydropurine-2,6-dione Chemical compound O=C1NC(N)=NC2=C1NC=N2.O=C1NC(=O)NC2=C1NC=N2 ZXXTYLFVENEGIP-UHFFFAOYSA-N 0.000 description 1
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical group O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 102100040958 Aconitate hydratase, mitochondrial Human genes 0.000 description 1
- 101710196692 Actin A Proteins 0.000 description 1
- 102000010825 Actinin Human genes 0.000 description 1
- 108010063503 Actinin Proteins 0.000 description 1
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 101000964894 Bos taurus 14-3-3 protein zeta/delta Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102100038902 Caspase-7 Human genes 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 101100239628 Danio rerio myca gene Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 102100037126 Developmental pluripotency-associated protein 4 Human genes 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101001091269 Escherichia coli Hygromycin-B 4-O-kinase Proteins 0.000 description 1
- 108010011459 Exenatide Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100033039 Glutathione peroxidase 1 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000965314 Homo sapiens Aconitate hydratase, mitochondrial Proteins 0.000 description 1
- 101000824278 Homo sapiens Acyl-[acyl-carrier-protein] hydrolase Proteins 0.000 description 1
- 101000741014 Homo sapiens Caspase-7 Proteins 0.000 description 1
- 101000983528 Homo sapiens Caspase-8 Proteins 0.000 description 1
- 101000980898 Homo sapiens Cell division cycle-associated protein 4 Proteins 0.000 description 1
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 1
- 101000881868 Homo sapiens Developmental pluripotency-associated protein 4 Proteins 0.000 description 1
- 101001014936 Homo sapiens Glutathione peroxidase 1 Proteins 0.000 description 1
- 101001053263 Homo sapiens Insulin gene enhancer protein ISL-1 Proteins 0.000 description 1
- 101000595198 Homo sapiens Podocalyxin Proteins 0.000 description 1
- 101000713275 Homo sapiens Solute carrier family 22 member 3 Proteins 0.000 description 1
- 101000685323 Homo sapiens Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial Proteins 0.000 description 1
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 1
- 101000851815 Homo sapiens p53-regulated apoptosis-inducing protein 1 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 102000012330 Integrases Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 101150070299 KLF4 gene Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 101710177504 Kit ligand Proteins 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100335081 Mus musculus Flt3 gene Proteins 0.000 description 1
- 101150012532 NANOG gene Proteins 0.000 description 1
- 108700020479 Pancreatic hormone Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010069381 Platelet Endothelial Cell Adhesion Molecule-1 Proteins 0.000 description 1
- 102100036031 Podocalyxin Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 102220587512 Putative uncharacterized protein FLJ13197_H87Q_mutation Human genes 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108020003564 Retroelements Proteins 0.000 description 1
- 239000012891 Ringer solution Substances 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 102100023537 Solute carrier family 2, facilitated glucose transporter member 2 Human genes 0.000 description 1
- 101150037203 Sox2 gene Proteins 0.000 description 1
- 101001091268 Streptomyces hygroscopicus Hygromycin-B 7''-O-kinase Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 102100023155 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial Human genes 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 108700029631 X-Linked Genes Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 102000006646 aminoglycoside phosphotransferase Human genes 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000006538 anaerobic glycolysis Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- 238000007622 bioinformatic analysis Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 210000004718 centriole Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002038 chemiluminescence detection Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 208000012106 cystic neoplasm Diseases 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010217 densitometric analysis Methods 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 238000012137 double-staining Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000010201 enrichment analysis Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229960001519 exenatide Drugs 0.000 description 1
- 235000020937 fasting conditions Nutrition 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 101150030521 gI gene Proteins 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 102000044493 human CDCA4 Human genes 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 210000001704 mesoblast Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 102100036520 p53-regulated apoptosis-inducing protein 1 Human genes 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000009894 physiological stress Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0676—Pancreatic cells
- C12N5/0677—Three-dimensional culture, tissue culture or organ culture; Encapsulated cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/46—Amines, e.g. putrescine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/90—Serum-free medium, which may still contain naturally-sourced components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/98—Xeno-free medium and culture conditions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/99—Serum-free medium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/119—Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/16—Activin; Inhibin; Mullerian inhibiting substance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/335—Glucagon; Glucagon-like peptide [GLP]; Exendin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/385—Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/41—Hedgehog proteins; Cyclopamine (inhibitor)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/415—Wnt; Frizzeled
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/602—Sox-2
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/603—Oct-3/4
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/604—Klf-4
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/605—Nanog
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/606—Transcription factors c-Myc
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/608—Lin28
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/727—Kinases (EC 2.7.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
Definitions
- This document relates to methods and materials involved in differentiating induced pluripotent stem (iPS) cells into glucose-responsive, insulin-secreting progeny.
- iPS induced pluripotent stem
- this document relates to the use of indolactam V (ILV) and glucagon like peptide-1 (GLP-1) to produce glucose-responsive, insulin-secreting progeny from iPS cells.
- ILV indolactam V
- GLP-1 glucagon like peptide-1
- ES cells are characterized by the ability of self-renewal and differentiation into a diverse range of cell types.
- the two broad types of mammalian stem cells are embryonic stem (ES) cells and adult stem cells.
- ES embryonic stem
- Adult stem cells or progenitor cells replenish specialized cells to repair or maintain regenerative organs.
- Most adult stem cells are lineage-restricted and generally referred to by their tissue origin, such as adipose-derived stem cells.
- ES cell lines are derived from the epiblast tissue of the inner cell mass of a blastocyst or early morula stage embryos.
- ES cells are pluripotent and give rise to derivatives of the three germinal layers, i.e., the ectoderm, endoderm, and mesoderm.
- This document provides methods and materials related to differentiating iPS cells into glucose-responsive, insulin-secreting progeny.
- this document provides methods and material for using ILV and GLP-1 to produce glucose-responsive, insulin-secreting progeny from iPS cells.
- culturing iPS cells in the presence of a collection of agents that include ILV and GLP-1 can result in the production of glucose-responsive, insulin-producing cells.
- an ILV and GLP-1-enriched pancreatogenic cocktail can be used under feeder cell-free conditions to produce glucose-responsive, insulin-producing cells from human iPS cells.
- Autologous iPS cell derivation and iPS cell differentiation into insulin-producing cells can allow modeling of patient-specific disease pathogenesis and can lead to personalized approaches for type 1 diabetes cell therapy with iPS-derived islet-like cells.
- one aspect of this document features a method for obtaining a population of glucose-responsive, insulin-secreting cells from a population of induced pluripotent stem cells.
- the method comprises, or consists essentially of, culturing the induced pluripotent stem cells with medium comprising indolactam V and glucagon like peptide-1 under conditions to obtain the population of glucose-responsive, insulin-secreting cells.
- the medium can lack serum.
- the medium can lack feeder cells.
- the medium can lack non-human feeder cells.
- the induced pluripotent stem cells can be induced pluripotent stem cells that were obtained using one or more polypeptides or nucleic acid encoding the one or more polypeptides selected from the group consisting of a Oct3/4 polypeptide, a Sox family polypeptide, a Klf family polypeptide, a Myc family polypeptide, a Nanog polypeptide, and a Lin28 polypeptide.
- the induced pluripotent stem cells can be induced pluripotent stem cells that were induced from somatic cells.
- the somatic cells can be selected from the group consisting of skin, lung, heart, stomach, brain, liver, blood, kidney, and muscle cells.
- the induced pluripotent stem cells can comprise exogenous nucleic acid encoding a human Oct4 polypeptide, a human Sox2 polypeptide, a human Klf4 polypeptide, and a human c-Myc polypeptide.
- the glucose-responsive, insulin-secreting cells can secrete greater than 50 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
- the glucose-responsive, insulin-secreting cells can secrete greater than 200 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
- the glucose-responsive, insulin-secreting cells can secrete between about 50 and 250 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
- the glucose-responsive, insulin-secreting cells can be human cells.
- the medium can comprise greater than 300 nM of indolactam V.
- the medium can comprise greater than 55 nM of glucagon like peptide-1.
- the culturing can be performed for more than 25 days.
- this document features a population of glucose-responsive, insulin-secreting cells derived from induced pluripotent stem cells, wherein the glucose-responsive, insulin-secreting cells are produced by culturing the induced pluripotent stem cells with medium comprising indolactam V and glucagon like peptide-1 under conditions that result in the formation of the population of glucose-responsive, insulin-secreting cells.
- the medium can comprise greater than 300 nM of indolactam V.
- the medium can comprise greater than 55 nM of glucagon like peptide-1.
- the culturing can be performed for more than 25 days.
- the population of glucose-responsive, insulin-secreting cells can secrete greater than 50 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
- the population of glucose-responsive, insulin-secreting cells can secrete greater than 200 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
- the population of glucose-responsive, insulin-secreting cells can secrete between about 50 and 250 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
- the glucose-responsive, insulin-secreting cells can be human cells.
- FIG. 1 Generation of Human iPS Clones from BJ and HCF Fibroblasts.
- A Lentiviral vector-mediated delivery of OCT3/4, SOX2, KLF4, and c-MYC resulted in iPS-like colony formation.
- SNL feeder cells SNL feeder cells,
- uninfected HCF fibroblasts SNL feeder cells,
- HCF-derived iPS-like colony at two weeks post-infection iv) iPS-like cells with high magnification.
- iPS cells exhibited morphology similar to human ES cells, characterized by large nuclei and scant cytoplasm, (v) uninfected BJ fibroblasts, (vi) BJ fibroblasts-derived iPS-like colony at two weeks after infection, (vii) image of a BJ-derived clone expanded on feeder cells, (viii) high magnification image of BJ-derived clone. (B) Feeder-free generation of human iPS cells allowed visualization of the early reprogramming events.
- BJ fibroblasts Uninfected BJ fibroblasts, (ii) an early stage iPS-like colony in vector-transduced BJ cells one week after infection, (iii) high magnification image of BJ fibroblast-derived iPS-like colony.
- C Morphology of iPS clones cultured under feeder-free conditions. BJ#SA was established on SNL feeder cells, while HCF#1 and BJ#1 were derived feeder-free.
- HCF#1, BJ#SA and BJ#1 cultured under feeder-free conditions expressed high levels of alkaline phosphatase (AP).
- AP alkaline phosphatase
- FIG. 2 Feeder-free generation of human iPS cells allowed visualization of the early reprogramming events.
- BJ and MRC5 fibroblasts were infected with lentiviral vectors expressing OCT4, SOX2, KLF4 and c-MYC (4 factor). After four days of infection, cells were replated on Matrigel coated plates.
- i. Uninfected BJ fibroblasts ii. BJ fibroblast-derived iPS-like colony at 7 days after infection, iii. BJ fibroblast-derived iPS-like colony at 8 days after infection, iv.
- the colony shown in (iii) was positive for alkaline phosphatase, v. MRC5-derived iPS-like colonies at 12 days after vector transduction, vi.
- the same colonies shown in (v) were positive for alkaline phosphatase at 15 days after infection.
- FIG. 3 Expression of Pluripotency-Associated Genes in Putative iPS Clones.
- HCF- and BJ-derived iPS clones were analyzed for expression of pluripotency markers by immunostaining HCF#1 and BJ#SA cells were positive for pluripotency markers SSEA4, TRA-1-60, TRA-1-81, OCT4, SOX2, KLF4, and NANOG, while no notable staining was observed for SSEA1.
- Cells were counterstained with 4′, 6-diamidino-2-phenylindole (DAPI).
- C HCF- and BJ-derived iPS-like clones were analyzed for pluripotency-associated gene expression by RT-PCR. Total cellular RNA from parental BJ and HCF fibroblasts and no template (water) samples were included as controls. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene transcript was amplified as an internal RNA control.
- Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene transcript was amplified as an internal RNA control.
- FIG. 4 Spontaneous Differentiation of HCF- and BJ Fibroblast-derived iPS Cells into Cells of Three Embryonic Germ Layers.
- A In vitro differentiation of HCF#1, BJ#1, and BJ#SA clones in suspension culture as embryoid bodies (EB) was followed by monolayer culture for spontaneous differentiation. HCF#1, BJ#1, and BJ#SA clones generated EBs with varying sizes. Cells of ectoderm, endoderm, and mesoderm lineages were confirmed by beta III tubulin (green stain was used), FOXA2 (red stain was used), and CD31 (PECAM-1) (green stain was used), respectively. Cells were counterstained with DAPI.
- FIG. 5 Differentiation of Human iPS Cells into Pancreatic Endoderm Cells.
- A Schematic representation of the stepwise differentiation protocol for generation of islet-like clusters from human iPS cells.
- DE definitive endoderm
- GTE gut tube endoderm
- PP pancreatic progenitor
- EN endocrine hormone expressing cells
- CYC KAAD-cyclopamine
- RA all-trans retinoic acid
- ILV indolactam V
- HGF hepatocyte growth factor
- IGF insulin like growth factor
- GLP-1 glucagon-like peptide-1.
- B Induction of definitive endoderm cells.
- iPS cells were treated with activin A and Wnt3a for one day, followed by activin A with 2% FBS for two days. iPS-derived cells were immunostained with antibodies against SOX17 (green stain was used) and FOXA2 (red stain was used). Cells were counterstained by DAPI. Bars indicate 20 ⁇ m.
- C Flow cytometric analyses of iPS-derived definitive endoderm cells. iPS-derived definitive endoderm cells were dissociated and stained with anti-SOX17 antibody. Staining with the secondary antibody alone was used as a control.
- iPS-derived definitive endoderm cells were treated with FGF10, CYC, RA, and ILV for induction of pancreatic endoderm and immunofluorescence analysis was performed to detect, PDX1 (red stain was used), NEUROD1 (red stain was used), and NGN3 (red stain was used).
- FIG. 6 Differentiation of BJ#1 and BJ#SA Clones into Definitive Endoderm Cells.
- BJ#1 and BJ#SA cells were treated with activin A and Wnt3a for one day, followed by activin A stimulation in the presence of 2% FBS for two days for generation of definitive endoderm cells.
- A BJ#SA derived definitive endoderm cells were immunostained with antibodies against SOX17 (a green stain was used) and FOXA2 (a red stain was used).
- B BJ#1 derived definitive endoderm cells were stained with antibody against SOX17. Cells were counterstained by DAPI. Bars indicate 20 mm.
- C Flow cytometric analyses of iPS-derived definitive endoderm cells. iPS-derived definitive endoderm cells were dissociated and stained with anti-SOX17 antibody. Staining with the secondary antibody alone was used as a control.
- FIG. 7 Efficient Differentiation of iPS Cells into Pancreatic Endoderm Cells.
- iPS-derived definitive endoderm cells were treated with FGF10, CYC, RA, and ILV for induction of pancreatic endoderm.
- FGF10 FGF10
- CYC CYC
- RA RA
- ILV ILV
- immunofluorescence analysis was performed to detect pancreatic endoderm markers, PDX1 (a red stain was used) and NEUROD1 (a red stain was used) from BJ#SA-derived cells.
- FIG. 8 Successful Differentiation of Human iPS Cells into Pancreatic Hormone-expressing Cells.
- A Induction of stage-specific pancreatic genes through guided differentiation. RT-PCR analysis was performed to determine the expression of key pancreatic genes at different stages of differentiation. Undifferentiated human iPS cells (d0), definitive endoderm cells after treatment with activin A and Wnt3a (d3), foregut endoderm cells induced with FGF10 and CYC (d9), pancreatic endoderm cells were generated after exposure with FGF10, RA, CYC, and ILV (d18) and islet-like clusters in presence of HGF, IGF, and GLP-1. Human pancreas RNA was used as a positive control.
- FIG. 9 Sustained PDX1 Expression and Glucose-Responsive C-Peptide Secretion by iPS-derived Islet-like Cells.
- A iPS-derived islet-like cells demonstrated beta cell characteristics.
- Double-staining of iPS-derived islet-like cells revealed co-localization of insulin (green stain was used) and C-peptide (red stain was used), indicating de novo insulin synthesis.
- Some cells were double-positive for insulin (green stain was used) and somatostatin (red stain was used).
- Sustained PDX1 expression red stain was used) in the iPS-derived insulin-producing cells after differentiation.
- iPS-derived islet-like cells were counterstained with DAPI.
- B Flow cytometric analysis of iPS-derived islet-like cells for insulin expression. iPS-derived islet-like clusters were dissociated with TrypLE, and analyzed for insulin expression by an anti-human insulin antibody. Insulin staining was observed in HCF#1-derived islet-like clusters.
- C Glucose-responsive C-peptide secretion by the iPS-derived islet-like clusters. The islet-like clusters were sequentially exposed to low (2.5 mM), intermediate (10 mM), and high concentrations (27.7 mM) of glucose.
- HCF#1-derived islet-like cells were collected and analyzed for C-peptide secretion by ELISA. Error bars indicate standard deviation.
- (D) Glucose-responsive C-peptide secretion by HCF#1-derived islet-like clusters generated with pancreatogenic cocktails including GLP-1 and ILV (left), GLP-1 without ILV (middle), or ILV without GLP-1 (right). The islet-like clusters were sequentially exposed to low (2.5 mM), intermediate (10 mM), and high concentrations (27.7 mM) of glucose. Cumulative C-peptide secretion upon glucose stimulation with 10 mM and 27.7 mM were shown. Error bars indicate standard deviation.
- FIG. 10 Formation of Islet-like Clusters in BJ#1 and BJ#SA-derived Cells. iPS-derived pancreatic endoderm cells were differentiated into islet-like cells with HGF, IGF, DAPT and GLP-1. (A) Islet-like clusters formed in differentiated BJ#1 and BJ#SA cells. (B) Flow cytometric analysis of iPS-derived islet-like cells for insulin expression. iPS-derived islet-like clusters were dissociated with TrypLE, and analyzed for insulin expression by an anti-human insulin antibody. Insulin staining was observed in BJ#1 and BJ#SA-derived islet-like clusters.
- FIG. 11 Reprogramming of human hematopoietic progenitor and peripheral blood mononuclear cells.
- HPCs and PBMCs were cultured in a serum-free medium and transduced with lentiviral vectors expressing four stemness factors at an MOI of 5. Representative phase-contrast images of HPCs before transduction (left panel) and 7 day post-infection (left panel) are shown. Representative HPC- (left panel) and PBMC- (right panel) derived colonies with characteristic morphologies of reprogrammed cells are shown.
- HPC and PBMC-derived iPSC clones were further characterized through immunocytochemistry analysis using a panel of antibodies against pluripotency-associated markers. All clones stained positive for the markers including SSEA-4, TRA-1-60, OCT4, and NANOG.
- FIG. 12 Efficient expansion of HSC/PBMC-derived iPSC clones under feeder- and serum-free conditions.
- A Long-term time-lapse images of an iPSC #HPC-A1 colony were obtained using Nikon BioStation IMQ. Time is shown in hours in the upper right corner, and cell count is shown in the bottom right corner of each panel.
- B Frequent mitotic events were observed during time-lapse imaging. Dividing cells and daughter cells are indicated by downward pointing arrows and upward pointing arrows, respectively. Time is shown in minutes in the upper right corner of each panel.
- FIG. 13 Transmission electron microscopic images of blood-derived iPS cells.
- HCF fibroblast primary human fibroblasts
- HCF1 iPS HCF-derived
- HPC-derived HPC-derived
- FIG. 13 Transmission electron microscopic images of blood-derived iPS cells.
- A Representative high-resolution electron micrographs of primary human fibroblasts (HCF fibroblast), HCF-derived (HCF1 iPS), and HPC-derived (HPC-A1) iPSCs are shown. Mitochondria (MT) and nucleus (N) structures are denoted in the micrographs.
- MT Mitochondria
- N nucleus
- Frequent mitotic events were observed in the blood-derived iPSCs. Mother and daughter centrioles are represented by the arrowhead and arrow symbols, respectively. Scale bars are represented in ⁇ m.
- FIG. 14 Global gene expression profiles of blood-derived iPSCs.
- A Dendrogram describing the unsupervised hierarchal clustering of primary keratinocytes (SW3 HK and SW3 HK), and keratinocyte (HK)-, fibroblast (FB)-, HPC- and PBMC-derived iPSCs.
- B Genome-wide gene expression patterns of HPC- and PBMC-derived iPSC clones were compared with those of HPCs (GSM178554), PBMCs (GSM452255), verified epidermal keratinocyte-derived iPSCs (SW4#N1, upper panels), or embryonic stem cells (H9 cells, GSM190779).
- FIG. 15 Differentiation of blood-derived iPSCs in vitro and in vivo.
- A Blood-derived iPSC clones were spontaneously differentiated through embryoid body formation, and analyzed via immunocytochemistry for lineage markers for three embryonic germ layers (endoderm FOXA2, mesoderm CD31 and ectoderm beta-III-tubulin).
- B Transplantation of iPSCs into renal capsule of SCID-beige mice resulted in teratoma formation. Tissue histology of teratomas demonstrated the cells of three germ layers including glandular-, muscular-, and neural rosette-like tissues.
- C Schematic diagram describing the stepwise guided differentiation protocol for iPSC differentiation into islet-like cells.
- FIG. 16 Expression of pluripotency-associated markers in HK-derived iPS clones.
- A Early-passage HK cells (left panel) were infected with lentivirus (LV) vector encoding OCT4, SOX2, KLF4, and c-MYC. Seven days post-infection (center panel), early iPS-like colonies were detected (right panel in higher magnification).
- B HK-derived iPS clones were either derived from patients who were non-diabetic (ND) or type 2 diabetic (T2D). iPS clones, cultured under feeder-free conditions, exhibited human ES-like morphologies, while expressing high levels of alkaline phosphatase (AP).
- ND non-diabetic
- T2D type 2 diabetic
- FIG. 17 Pluripotency of HK-derived iPS cells verified through spontaneous differentiation in vitro and in vivo.
- A HK-derived iPS clones were analyzed via immunocytochemistry for lineage markers for three germ layers (endoderm, mesoderm and ectoderm). Scale bars indicate 50 ⁇ m.
- B Transplant of HK-derived iPS cells into the kidney capsule of SCID-beige mice resulted in teratoma formation. Pictures of harvested kidneys (with or without iPS transplant) are shown.
- C H&E staining demonstrated multiple lineages within the complex architecture of the tumor, including muscle, adipose, immature neuroepithelium, and glandular tissues.
- FIG. 18 Variations in gene expression profile upon induced pluripotency.
- A Dendrogram describing the unsupervised hierarchal clustering of patient-derived HK cells and HK-derived iPS cells.
- B Global gene expression patterns of HK-derived iPS clones were compared with their parental HK cells (upper panels), or with that of human embryonic stem cells (H9, lower panels, GSM190779), upon RNA microarray analysis.
- C Heatmap showing the up-regulation and down-regulation (high—black; low—white) of pluripotency-associated genes in HK- and HK-derived iPS clones. The four factors used to induce pluripotency are indicated.
- FIG. 19 Morphological variations of patient-derived iPS cells upon reprogramming.
- A High-resolution electron micrographs of HK cells before (SW4 parental HK and SW8 parental HK) and after (SW4 #N1, SW3 #B, SW8 #20I, and SW10 #5P) induced pluripotency. Representative micrograph of a verified fibroblast-derived iPS cell is also included. Scale bars represent 2 ⁇ m.
- C Endoplasmic reticulum and the Golgi structures in HK and HK-derived iPS cells are shown.
- Scale bars represent 0.5 ⁇ m.
- D Mature mitochondria with well-developed cristae in parental HK cells (SW8 parental) and immature mitochondria in iPS clones (SW3 #B, SW8 #20I, and SW10 #5P) are indicated by arrows. Keratin intermediate filaments in parental HK cells are indicated by arrowheads. Scale bars represent 0.5 ⁇ m.
- FIG. 20 Mitochondrial and oxidative-stress response gene expression in induced pluripotency.
- A Relative cytochrome B (CYTB) and NADH mitochondrial DNA (mtDNA) copy numbers before (parental) and after (iPS) reprogramming.
- mtDNA copy numbers were normalized to total genomic DNA and represented as a percentage of parental cell mtDNA copy number.
- FIG. 21 Comparison of telomerase activity, cellular senescence, and programmed cell death in HK cells before and after induced pluripotency.
- A RT-PCR analysis of TERT-specific transcripts in parental HK cells and iPS clones. GAPDH was used as control.
- B Telomere lengths in HK and HK-derived iPS cells were determined by the terminal restriction fragment lengths. Southern blot analysis and corresponding telomere fragment lengths derived from densitometric quantification are shown.
- C Schematic representation of key senescence- and apoptosis-regulating pathways.
- FIG. 22 Guided in vitro differentiation of patient iPS cells into insulin-producing islet-like cells.
- iPS cells differentiated through step-wise differentiation, were analyzed by immunocytochemistry for stage-specific markers at day 5 (A), 14 (B), 24 (C) and 29 (D and E). Scale bars indicate 50 ⁇ m for A, B, C and E (left panel), and 10 ⁇ m for D and E (right panel).
- F RT-PCR analysis of the mRNA of SW4#N1 clone, harvested at differentiation day 0, 16, and 29, confirmed the expression of insulin (INS), glucagon (GCG), somatostatin (SST), and glucose transporter 2 (GLUT2) on day 29.
- ⁇ -tubulin was used as control (TUBUA).
- This document provides methods and materials related to differentiating iPS cells into glucose-responsive, insulin-secreting progeny. For example, this document provides methods and material for using ILV and GLP-1 to produce glucose-responsive, insulin-secreting progeny from iPS cells.
- iPS cells can be obtained using polypeptides from a species that is the same species from which the cells (e.g., somatic cells) were obtained.
- An example of such iPS cells includes human somatic cells that were induced to form iPS cells using human polypeptides.
- iPS cells can be obtained using polypeptides from a species that is different from the species from which the cells (e.g., somatic cells) were obtained.
- An example of such iPS cells includes human cells that were induced to form iPS cells using mouse polypeptides.
- an iPS cell provided herein can be a human cell that was induced to form an iPS cell using non-human polypeptides (e.g., polypeptides of mouse, rat, pig, dog, or monkey origin).
- non-human polypeptides e.g., polypeptides of mouse, rat, pig, dog, or monkey origin.
- the polypeptides used to induce the formation of iPS cells can include any combination of Oct3/4 polypeptides, Sox family polypeptides (e.g., Sox2 polypeptides), Klf family of polypeptides (e.g., Klf4 polypeptides), Myc family polypeptides (e.g., c-Myc), Nanog polypeptides, and Lin28 polypeptides.
- Sox family polypeptides e.g., Sox2 polypeptides
- Klf family of polypeptides e.g., Klf4 polypeptides
- Myc family polypeptides e.g., c-Myc
- Nanog polypeptides e.g., c-Myc
- Lin28 polypeptides e.g., Lin28 polypeptides.
- nucleic acid vectors designed to express Oct3/4, Sox2, Klf4, and c-Myc polypeptides can be used to obtain iPS cells
- Oct3/4, Sox2, Klf4, and c-Myc polypeptides can be directly delivered into target cells to obtain iPS cells using a polypeptide transfection method (e.g., liposome or electroporation).
- nucleic acid vectors designed to express Oct3/4, Sox2, and Klf4 polypeptides, and not a c-Myc polypeptide can be used to obtain iPS cells.
- Oct3/4, Sox2, and Klf4 polypeptides can be directly delivered into target cells to obtain iPS cells using a polypeptide transfection method.
- An Oct3/4 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC117435 (e.g., GI No.
- An Sox2 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC013923 (e.g., GI No. 33869633).
- a Klf4 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC029923 (e.g., GI No. 20987475).
- a c-Myc polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC000141 (e.g., GI No. 12652778).
- a Nanog polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC099704.1 (e.g., GI No. 71043476).
- a Lin28 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC028566 (e.g., GI No. 33872076).
- iPS cells skin, lung, heart, liver, blood, kidney, or muscle cells can be used to obtain iPS cells.
- Such cells can be obtained from any type of mammal including, without limitation, humans, mice, rats, dogs, cats, cows, pigs, or monkeys.
- any stage of the mammal can be used, including mammals at the embryo, neonate, newborn, or adult stage.
- fibroblasts obtained from an adult human patient can be used to obtain iPS cells.
- Such iPS cells can be used to treat that same human patient (or to treat a different human) or can be used to create differentiated cells that can be used to treat that same human patient (or a different human).
- somatic cells from a human patient can be treated as described herein to obtain iPS cells.
- the obtained iPS cells can be differentiated into glucose-responsive, insulin-producing cells as described herein that can be implanted into that same human patient.
- nucleic acid e.g., nucleic acid encoding polypeptides designed to induce iPS cell formation from somatic cells
- nucleic acid encoding polypeptides e.g., Oct3/4, Sox2, Klf4, and c-Myc polypeptides
- iPS cells e.g., non-embryonic stem cells or somatic cells
- recombinant viruses that can infect cells, or liposomes or other non-viral methods such as electroporation, microinjection, transposons, phage integrases, or calcium phosphate precipitation, that are capable of delivering nucleic acids to cells.
- the exogenous nucleic acid that is delivered typically is part of a vector in which a regulatory element such as a promoter is operably linked to the nucleic acid of interest.
- the promoter can be constitutive or inducible.
- constitutive promoters include cytomegalovirus (CMV) promoter and the Rous sarcoma virus promoter.
- CMV cytomegalovirus
- inducible refers to both up-regulation and down regulation.
- An inducible promoter is a promoter that is capable of directly or indirectly activating transcription of one or more DNA sequences or genes in response to an inducer. In the absence of an inducer, the DNA sequences or genes will not be transcribed.
- the inducer can be a chemical agent such as a protein, metabolite, growth regulator, phenolic compound, or a physiological stress imposed directly by, for example heat, or indirectly through the action of a pathogen or disease agent such as a virus.
- Additional regulatory elements include, but are not limited to, polyadenylation sequences, translation control sequences (e.g., an internal ribosome entry segment, IRES), enhancers, or introns. Such elements may not be necessary, although they can increase expression by affecting transcription, stability of the mRNA, translational efficiency, or the like. Such elements can be included in a nucleic acid construct as desired to obtain optimal expression of the nucleic acids in the cells. Sufficient expression, however, can sometimes be obtained without such additional elements.
- Vectors also can include other elements.
- a vector can include a nucleic acid that encodes a signal peptide such that the encoded polypeptide is directed to a particular cellular location (e.g., the cell surface) or a nucleic acid that encodes a selectable marker.
- Non-limiting examples of selectable markers include puromycin, adenosine deaminase (ADA), aminoglycoside phosphotransferase (neo, G418, APH), dihydrofolate reductase (DHFR), hygromycin-B-phosphotransferase, thymidine kinase (TK), and xanthin-guanine phosphoribosyltransferase (XGPRT). Such markers are useful for selecting stable transformants in culture.
- ADA adenosine deaminase
- DHFR dihydrofolate reductase
- TK thymidine kinase
- XGPRT xanthin-guanine phosphoribosyltransferase
- viral vectors can be used to introduce sternness-related factors such as Oct3/4, Klf4, Sox2 and c-Myc.
- viral vectors include, without limitation, vectors based on DNA or RNA viruses such as adenovirus, adeno-associated virus (AAV), retroviruses, lentiviruses, vaccinia virus, measles viruses, herpes viruses, baculoviruses, and papilloma virus vectors. See, Kay et al., Proc. Natl. Acad. Sci. USA, 94:12744-12746 (1997) for a review of viral and non-viral vectors.
- AAV adeno-associated virus
- Viral vectors can be modified so the native tropism and pathogenicity of the virus has been altered or removed.
- the genome of a virus also can be modified to increase its infectivity and to accommodate packaging of the nucleic acid encoding the polypeptide of interest.
- iPS cells can be obtained using viral vectors that do not integrate into the genome of the cells.
- viral vectors include, without limitation, adenoviral vectors, AAV vectors, baculovirus vectors, and herpesvirus vectors.
- cells obtained from a human can be provided nucleic acid encoding human Oct3/4, Sox2, Klf4, and c-Myc polypeptides using viral vectors that do not integrate the exogenous nucleic acid into the cells.
- the iPS cells can be maintained in culture such that the iPS cells are devoid of the exogenous nucleic acid.
- non-viral vectors can be used to introduce stemness-related factors such as Oct3/4, Klf4, Sox2, and c-Myc.
- examples of non-viral vectors include, without limitation, vectors based on plasmid DNA or RNA, retroelement, transposon, and episomal vectors.
- Non-viral vectors can be delivered to cells via liposomes, which are artificial membrane vesicles.
- the composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used.
- the physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.
- Transduction efficiency of liposomes can be increased by using dioleoylphosphatidylethanolamine during transduction. See, Felgner et al., J. Biol. Chem., 269:2550-2561 (1994). High efficiency liposomes are commercially available. See, for example, SuperFect® from Qiagen (Valencia, Calif.).
- iPS cells can be obtained using culture conditions that do not involve the use of serum, feeder cells, or serum and feeder cells.
- cells obtained from a human can be provided nucleic acid encoding human Oct3/4, Sox2, Klf4, and c-Myc polypeptides and cultured using media lacking serum (e.g., human or non-human serum) and lacking feeder cells (e.g., human or non-human feeder cells).
- iPS cells can be exposed to ILV and GLP-1.
- human iPS cells can be cultured in the presence of retinoic acid (e.g., all-trans retinoic acid; RA), an FGF10 polypeptide, KAAD-cyclopamine (CYC), and ILV for a period of time (e.g., about 5 to 15 days, about 6 to 15 days, about 5 to 13 days, about 6 to 13 days, about 7 to 12 days, or about 8 to 11 days).
- retinoic acid e.g., all-trans retinoic acid; RA
- FGF10 polypeptide e.g., KAAD-cyclopamine (CYC)
- ILV e.g., ILV for a period of time (e.g., about 5 to 15 days, about 6 to 15 days, about 5 to 13 days, about 6 to 13 days, about 7 to 12 days, or about 8 to 11 days).
- the resulting cells can be cultured in the presence of an hepatocyte growth factor (HGF) polypeptide, an insulin like growth factor (IGF) polypeptide, N—[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and GLP-1 for a period of time (e.g., about 10 to 30 days, about 12 to 30 days, about 14 to 30 days, about 10 to 25 days, about 14 to 25 days, or about 15 to 24 days) sufficient to result in a population of glucose-responsive, insulin-secreting cells.
- HGF hepatocyte growth factor
- IGF insulin like growth factor
- GLP-1 GLP-1
- iPS cells e.g., human iPS cells
- iPS cells can be cultured in the presence of RA, FGF10, CYC, ILV, HGF, IGF, DAPT, and GLP-1 for a period of time (e.g., about 10 to 30 days, about 12 to 30 days, about 14 to 30 days, about 10 to 25 days, about 14 to 25 days, or about 15 to 24 days) sufficient to result in a population of glucose-responsive, insulin-secreting cells.
- a period of time e.g., about 10 to 30 days, about 12 to 30 days, about 14 to 30 days, about 10 to 25 days, about 14 to 25 days, or about 15 to 24 days
- An FGF10 polypeptide can have the amino acid sequence set forth in GenBank® GI No. 255090638.
- An HGF polypeptide can have the amino acid sequence set forth in GenBank® GI No. 188595715.
- a IGF polypeptide can have the amino acid sequence set forth in GenBank® GI No. 163659904.
- a GLP-1 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers NM — 002054.3 (e.g., GI No. 291190799).
- any appropriate amount of these agents can be used to obtain glucose-responsive, insulin-secreting cells from iPS cells.
- these agents can be used to obtain glucose-responsive, insulin-secreting cells from iPS cells.
- Any appropriate method can be used to determine whether or not cells formed from iPS cells are glucose-responsive, insulin-secreting cells.
- a C-peptide release assay can be performed to confirm the formation of glucose-responsive, insulin-secreting cells.
- the glucose-responsive, insulin-secreting cells can be administered to a patient to treat, for example, diabetes (e.g., type 1 diabetes).
- diabetes e.g., type 1 diabetes
- iPS-derived pancreatic endoderm cells or glucose-responsive islet-like cells can be transplanted into a human under a renal capsule, liver, fat pad, or subcutaneously.
- Human neonatal foreskin fibroblasts (BJ1) (ATCC#CRL-2522) and primary human cardiac fibroblasts (HCF) (ScienCell #6300) were seeded one day before infection in wells of 6 well plates with DMEM containing 10% FBS, Penicillin (100 U/mL) and Streptomycin (100 ⁇ g/mL) (Pen/Strep) (complete DMEM).
- Fibroblasts were infected with lentiviral vectors expressing OCT4, SOX2, KLF4, and c-MYC at a multiplicity of infection about 5 each. After 12 hours of viral infection, cells were fed with fresh complete DMEM.
- Vector-transduced cells were replated 4 days after infection at 5 ⁇ 10 4 cells per 100 mm dish on mitomycin-C treated SNL feeder cells in complete DMEM. Next day, the medium was replaced with the serum-free HEScGRO medium (Millipore #SCM020) supplemented with basic fibroblast growth factor (bFGF, 20 ng/mL; Peprotech). Cells were fed with fresh HEScGRO medium every two days. Putative iPS colonies, which began to appear 3-4 weeks after vector transduction, were picked based on size and human embryonic stem cell-like colony morphology, and expanded through dissociation with the cell dissociation buffer (Invitrogen #13151014). BJ1-derived iPS clones, BJ#SA and BJ#SD, were generated on SNL feeder cells. Established iPS clones were maintained in feeder-free condition.
- iPS cells were maintained in a feeder cell-free medium, which contained HEScGRO with 25% of mTeSR1 medium (Stemcell Technologies #05850) and 20 ng/mL of bFGF (iPS medium).
- HEScGRO with 25% of mTeSR1 medium
- bFGF bFGF
- iPS medium was replaced with fresh iPS medium every two days. Putative iPS colonies were observed 1-2 weeks after vector transduction. iPS clones were picked based on morphology and size. iPS clones were expanded with cell dissociation buffer and passaged at a 1:2-1:8 split ratio every 3-7 days depending on cell density. BJ#1, HCF#1, and HCF#6 iPS clones were generated and maintained under feeder cell-free conditions.
- iPS cells were fixed for 20 minutes at room temperature (RT) in 4% paraformaldehyde (PFA) in PBS, washed in PBS, and blocked for 30 minutes with 5% FBS in PBST (PBS with 0.1% Tween-20 (Sigma). Cells were stained with primary antibodies overnight at 4° C., rinsed by PBS, and incubated with secondary antibodies 1 hour at RT (Martinez-Fernandez et al., Circ. Res., 105:648-656 (2009)). Cells at different stages of differentiation were fixed and stained with primary and secondary antibodies.
- RT room temperature
- PFA paraformaldehyde
- PBST PBS with 0.1% Tween-20
- Texas Red-conjugated donkey-anti-rabbit IgG Jackson Laboratories #711-075-152
- Texas Red conjugated donkey-anti-mouse IgG Jackson Laboratories #715-075-151
- FITC conjugated donkey-anti-rabbit IgG Jackson Laboratories #711-095-152
- FITC conjugated donkey-anti-mouse IgG Jackson Laboratories #715-095-151
- DAPI was used for counterstaining Stained cells were analyzed using confocal laser-scanning microscopy (Zeiss, LSM 510 confocal scanning laser system).
- Alkaline phosphatase staining was performed with an Alkaline Phosphatase Detection Kit (Millipore) as described elsewhere (Martinez-Fernandez et al., Circ. Res., 105:648-656 (2009)).
- iPS clones were dissociated using collagenase IV and plated on low adhesion plates in basal HEScGRO medium (SCM 021) without bFGF.
- Embryoid bodies were cultured as suspension for 7-14 days and were adherent in knockout DMEM with 20% FBS for an additional 7-14 days.
- DMEM basal HEScGRO medium
- immunofluorescence analysis cells were fixed and stained (Martinez-Fernandez et al., Circ. Res., 105:648-656 (2009)).
- Primary antibodies were: FOXA2 for endoderm, beta III tubulin (Abcam #41489) for ectoderm and CD31 (Santa Cruz Biotechnology #SC1506) for mesoderm, while Texas Red-conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-075-152) and FITC-conjugated donkey-anti-chicken IgG (Jackson Laboratories #703-095-155) were used as secondary antibodies.
- teratoma formation assay was performed using an approved protocol. iPS cells were injected subcutaneously into the flank skin of 2-3 months old athymic nude mice at 500,000 cells/50 ⁇ L medium. Tumor growth was observed 4-6 weeks after injection. Tumors were processed by rapid freezing, cut as cryosections, and stained with hematoxylin and eosin dyes (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)).
- human iPS clones were treated with 25 ng/mL Wnt3a (R&D systems) and 100 ng/mL activin A (Peprotech) in advanced RPMI (A-RPMI, Invitrogen) with Pen/Strep for 1 day, followed by treatment with 100 ng/mL activin A in A-RPMI supplemented with 0.2% FBS (Invitrogen) for two days.
- A-RPMI advanced RPMI
- FBS Invitrogen
- cells were cultured in A-RPMI medium containing 50 ng/mL FGF10 (R&D systems), 0.25 ⁇ M KAAD-cyclopamine (CYC), and 2% FBS for 2 days.
- step six cells were cultured in the presence of 50 ng/mL hepatocyte growth factor (HGF) (R&D systems), 50 ng/mL Insulin-like growth factor 1 (IGF-1) (R&D systems) and 55 nM GLP-1 in CMRL-1066 medium (Invitrogen) with 1 ⁇ B27 for 6 days. All experiments were repeated more than three times.
- HGF hepatocyte growth factor
- IGF-1 Insulin-like growth factor 1
- CMRL-1066 medium Invitrogen
- a C-peptide release assay was performed by incubating derived islet-like clusters in Krebs-Ringer solution with bicarbonate and HEPES (KRBH; 129 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl 2 , 1.2 mM KH 2 PO 4 , 1.2 mM MgSO 4 , 5 mM NaHCO 3 , 10 mM HEPES, and 0.1% (wt/vol) BSA).
- Single-cell suspensions of differentiating human iPS cells were obtained by dissociating cells with TrypLE (Invitrogen #12605) at 37° C. Intracellular antibody staining was performed using BD Cytofix/Cytoperm and BD Perm/Wash buffer. The following antibodies were used: mouse-anti-SOX17 (R&D Systems #MAB1924), guinea pig-anti-insulin (Dako Cytomation #A0564), goat-anti-mouse Alexa Fluor 488 (Invitrogen #A11029), and donkey-anti-guinea pig-Cy5 (Jackson ImmunoResearch Laboratories #706-176-148). Flow cytometry data were acquired on a Becton Dickinson FACS Calibur and analyzed using Flowjo software.
- HCF and BJ fibroblasts were infected with lentiviral vectors encoding OCT4, SOX2, KLF4, and c-MYC, and transduced cells re-seeded on mitomycin C-inactivated SNL feeder cells or replated on matrigel-coated plates to ensure feeder cell-free culture.
- SNL feeder cells On SNL feeder cells, reprogrammed colonies, characterized by distinct morphology of sharp-edged, flat, tightly-packed structures were visible 2 weeks after viral vector transduction ( FIG. 1A ). Under feeder cell-free conditions, similar colonies were observed as early as day 6 after viral vector infection ( FIG. 1B ) with clusters of 30-50 cells expressing alkaline phosphatase ( FIG. 2 ). The number of expandable colonies formed on feeders or on non-feeders plates were 5 to 20 clones per 10 5 transduced cells. Identified colonies were picked at 3 to 6 weeks to allow sufficient growth after viral transduction.
- FIG. 1C Over 3-9 months or 30-90 passages, putative iPS clones cultured under feeder cell-free and serum-free conditions exhibited a distinctive morphology similar to that of human ES cells over long-term culture ( FIG. 1C ).
- RT-PCR of total cellular RNA further demonstrated induction of endogenous pluripotency-associated genes, including OCT4, SOX2, GDF3, telomerase (TERT), KLF4, c-MYC, and NANOG ( FIG. 3C ).
- endogenous pluripotency-associated genes including OCT4, SOX2, GDF3, telomerase (TERT), KLF4, c-MYC, and NANOG.
- Human iPS clones were assayed, through embryoid body (EB) formation, for the ability to spontaneously differentiate in vitro into cells of the three embryonic germ layers. All iPS clones assayed formed EBs ( FIG. 4A ). After variable times in suspension, EBs were transferred to adherent conditions and further cultured. Immunostaining for lineage-specific markers confirmed that human iPS cells differentiated into ectoderm (beta-III tubulin, FIG. 4A ), endoderm (FOXA2, FIG. 4A ) and mesoderm (CD31, FIG. 4A ) lineages. Moreover, in vivo human iPS cells formed teratomas after injection into nude mice.
- Normal differentiation of a pluripotent precursor into lineage-specified pancreatic endodermal tissue encompasses multiple steps.
- verified iPS cells were treated first with activin A and Wnt3a for generation of definitive endoderm cells, and then with FGF10 and CYC for derivation of gut tube endoderm ( FIG. 5A ).
- Derived cells were further treated with FGF10, RA, and CYC in the absence or presence of ILV for generation of pancreatic endoderm, followed by culture in HGF, IGF, and DAPT in the absence or presence of GLP-1 for generation of pancreatic hormone-expressing cells ( FIG. 5A ).
- PDX1 and NEUROD1 transcripts which were found only after treatment with FGF10, RA, CYC, and ILV, further confirmed the generation of iPS-derived pancreatic endoderm cells upon differentiation ( FIG. 8A ).
- an additional step of differentiation was used.
- the iPS-derived pancreatic endoderm were initially treated with HGF, IGF, Exendin-4, and DAPT; however, resulting cells failed produce detectable C-peptide secretion (data not shown).
- GLP-1 which is described elsewhere (Buteau et al., Diabetes, 52:124-132 (2003)) was included.
- RT-PCR revealed positive gene expression of pancreatic hormones, including insulin, glucagon (GCG), and somatostatin (SST), and islet cell-specific marker genes PDX1, NKX6.1, ISL1, and NEUROD1 and glucose transporter 2 (GLUT2) ( FIG. 8A ).
- pancreatic hormones including insulin, glucagon (GCG), and somatostatin (SST)
- RT-PCR analysis was performed for c-MYC, GDF3, hTERT, NANOG, SOX2, and KLF4. It was found that c-MYC, GDF3, hTERT, and NANOG gene expression levels gradually decreased during differentiation, while these gene transcripts were absent in the human pancreas ( FIG. 8B ).
- SOX2 and KLF4 gene expression remained throughout iPS differentiation, in line with expression of these two genes in the human pancreas ( FIG. 8B ).
- the targeted down-regulation of pluripotency genes along with sequential expression of pancreas-specific genes collectively indicated that human iPS cells are capable of undergoing guided differentiation in vitro into islet-like cells, with the observed combined expression of GLUT-2, NKX6.1, and NEUROD1 further suggesting derivation of tissue with properties of functional beta cells.
- iPS-derived pancreatic endoderm cells During treatment with RA, FGF10, CYC, and ILV, iPS-derived pancreatic endoderm cells started to form spheroid-like cell clusters, which reached maximum size and number following further maturation with HGF, IGF, DAPT, and GLP-1 ( FIG. 8C ).
- the three dimensional morphology resembled pancreatic islet-like clusters (Ramiya et al., Nat. Med., 6:278-282 (2000)), and selected clones yielded clusters ( FIG. 8C ) strongly positive for C-peptide expression ( FIG. 8D ).
- iPS-derived islet-like cells that did not organize into typical clusters also expressed insulin, C-peptide, and glucagon ( FIG.
- FIG. 9A (i) The presence of insulin/C-peptide co-expressing cells ( FIG. 9A (i)) confirmed the potential for de novo insulin synthesis and excluded the possible artifact of insulin uptake from the media. Also, insulin-glucagon double positive cells were not observed, indicating that the expression pattern of iPS-derived hormone-expressing islet-like cells is consistent with normal pancreatic beta-cell development. Although few insulin and somatostatin double-positive cells were found (FIG. 9 A(ii)), characteristic of immature islet cells, the results provided herein indicate successful differentiation of iPS cells into hormone-expressing islet-like cells.
- FIG. 9A (iii) When the insulin-positive population was quantified by flow cytometry, 1.3%, 0.7%, and 0.8% of distinct clones-derived islet-like cells were insulin-positive ( FIGS. 9B and 10 ).
- iPS-derived islet-like cells differentiated without ILV or GLP-1 failed to secrete C-peptide in response to glucose challenge ( FIG. 9D ). Although clonal variation in responsiveness was observed, iPS-derived islet-like clusters were typically capable to secrete C-peptide in response to glucose stimulation.
- HPC peripheral blood hematopoietic progenitor cells
- Pluripotency-associated factor-expressing lentiviral vectors pSIN-OCT4, pSIN-SOX2, pSIN-KLF4, and pSIN-cMYC, were described elsewhere (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). These vectors were produced by transient transfection of 293T cells. Vector titers were determined by immunostaining (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)).
- HPCs and PBMCs were cultured overnight in StemSpan H3000 serum-free medium (StemCell Technologies), which contained only human-derived or recombinant human proteins, supplemented with StemSpan CC100 cytokine cocktail (StemCell Technologies). Cultures were then transduced with four sternness factor-expressing lentiviral vectors overnight. One third of the culture supernatants were carefully removed and replaced daily with H3000 growth medium supplemented with CC100 cytokine cocktail. At 3 days after vector infection, cells were transferred to Matrigel (BD Bioscience)-coated culture plates.
- StemSpan H3000 serum-free medium StemSpan H3000 serum-free medium
- StemSpan CC100 cytokine cocktail StemSpan CC100 cytokine cocktail
- HEScGRO medium 100 mL, Millipore
- mTeSR-1 maintenance media 25 mL, Stemcell Technologies
- the reprogrammed cells began to form colonies with iPS morphology.
- cultures were treated with Cell Dissociation Buffer (Invitrogen) for 5 to 10 minutes to help lift clones, and individual iPSC-like clones were carefully picked up by a P200 pipette and placed into Matrigel-coated wells in a 96-well plate.
- iPSC culture medium was replaced daily, and differentiated cells in the cultures were manually removed with a pipette tip. As the clones grew, cultures were expanded into larger culture plates for further characterization. Clones were preserved using Xeno-FREEzeTM Human Embryonic Stem Cell Freezing Medium (Millipore). A verified iPSC clone, HCF1, from primary human fibroblast (HCF) cells, was described elsewhere (Thatava et al., Gene Ther., 18:283-293 (2011)). Primary human keratinocytes and keratinocyte-derived iPSC clones were also used as controls.
- iPSC For immunostaining of iPSC, cells were fixed for 20 minutes at room temperature in 4% paraformaldehyde solution in PBS, washed several times in PBS, and blocked for 30 minutes in PBS with 5% fetal bovine serum. Cells were then stained with primary antibodies overnight at 4° C., rinsed by PBS, and incubated with secondary antibodies for 1 hour at room temperature. For immunostaining of differentiated cells, cells at different stages of differentiation were fixed and stained with primary and secondary antibodies.
- SSEA-4 and TRA-1-60 (Millipore #SCR001), OCT4 (Cell Signaling Technology #2750), NANOG (Abcam #ab21624), mouse anti-SOX17 (R&D Systems #MAB1924), rabbit anti-HNF3 beta/FOXA2 (Millipore #07-633), rabbit anti-PDX1 (Santa Cruz Biotechnology#sc-25403), and mouse anti-insulin (Sigma #12018).
- Texas Red-conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-075-152), Texas Red-conjugated donkey-anti-mouse IgG (Jackson Laboratories #715-075-151), FITC-conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-095-152), and FITC-conjugated donkey-anti-mouse IgG (Jackson Laboratories #715-095-151) were used as secondary antibodies.
- DAPI was used for counter staining Stained cells were analyzed using confocal laser-scanning microscope (Zeiss, LSM 510 confocal scanning laser system).
- iPSC clones were dissociated using collagenase IV for 30 minutes and plated on low adhesion plates in basal HEScGRO medium without bFGF.
- Embryoid bodies EBs were cultured as suspension for 7-10 days and adherent in DMEM with 20% FBS for additional 7-10 days.
- DMEM basal HEScGRO medium without bFGF.
- EBs Embryoid bodies
- cells were fixed with 4% PFA for 20 minutes at room temperature. Immunostaining was performed as described above.
- SCID-beige mice were anesthetized, and the kidney was externalized for iPS transplantation under the kidney capsule. A small incision was made in the kidney capsule, and a blunt needle was used to create a pocket under the kidney capsule. Following iPSC injection into the pocket, the kidney was placed back into the abdomen, and the incision closed with vicryl suture. Mice were maintained for 4 weeks and sacrificed for harvesting normal and iPS-transplanted kidneys. OTC-embedded frozen tissues were cryo-sectioned for H&E staining
- iPSC insulin-producing cells as reported elsewhere with several modifications (Thatava et al., Gene Ther., 18:283-293 (2011)).
- human iPSC clones were treated with 25 ng/mL Wnt3a (R&D systems) and 100 ng/mL activin A (Peprotech) in advanced RPMI (Invitrogen) with Pen/Strep for 1 day, followed by treatment with 100 ng/mL activin A in advanced RPMI supplemented with 0.2% fetal calf serum (FCS) (Invitrogen) for two days.
- Wnt3a R&D systems
- activin A Pen/Strep
- FCS fetal calf serum
- step two cells were cultured in high glucose DMEM (Invitrogen), supplemented with 20% (v/v) advanced RPMI medium containing 50 ng/mL FGF10 (R&D systems), 0.25 ⁇ M KAAD-cyclopamine (CYC), and 2% FCS for 2 days. Cells were then treated with 50 ng/mL FGF10, 0.25 ⁇ M CYC, and 2 ⁇ M all-trans Retinoic Acid (RA) (Sigma) in high glucose DMEM (Invitrogen) supplemented with 20% advanced RPMI, Pen/Strep, 1 ⁇ B27 supplement (Invitrogen) for 4 days at step three.
- high glucose DMEM Invitrogen
- step five differentiation medium included 10 ⁇ M DAPT (Sigma) and 55 nM GLP-1 in DMEM (high glucose) with 20% advanced RPMI and 1 ⁇ B27 and culture lasted 6 days.
- step six cells were cultured in the presence of 50 ng/mL hepatocyte growth factor (HGF) (R&D systems), 50 ng/ml insulin-like growth factor 1 (IGF-1) (R&D systems), and 55 nM GLP-1 in CMRL-1066 medium (Invitrogen) with 1 ⁇ B27 for 8 days. All differentiation experiments were performed in triplicate, and repeated at least two times.
- HGF hepatocyte growth factor
- IGF-1 insulin-like growth factor 1
- CMRL-1066 medium Invitrogen
- T-test was performed to analyze the significance of the changes (p ⁇ 0.05) in the normalized gene expression levels between HK and iPSC clones, or between blood-derived iPSC clones and HK- and FB-derived iPSC clones.
- Heatmap Builder software (provided by Dr. Euan Ashley, Stanford School of Medicine) was used to generate a heatmap for the transcriptome data set.
- the registered GEO transcriptome database (GSM551202, human ES H9 cells; GSM452255, freshly isolated PBMC; GSM178554, mobilized HPCs) were used to analyze the similarities between blood-derived iPSC and human ES cells or non-reprogrammed PBMCs and HPCs.
- HPCs and PBMCs were cultured overnight in a serum-free medium with CC100 cytokine cocktail (recombinant Flt-3, SCF, IL-3 and IL-6), and transduced with four stemness factor-expressing lentiviral vectors at an MOI of 5 each.
- CC100 cytokine cocktail recombinant Flt-3, SCF, IL-3 and IL-6
- transduced cells were transferred to Matrigel-coated culture plates at day 3 post-infection, a subset of cells attached to the plate.
- small, reprogrammed colonies characterized by the morphology of sharp-edged, flat and tightly-packed cells, were observed ( FIG. 11A ). No iPSC-like colony formation was observed in untransduced cells ( FIG. 11A ).
- FIG. 12A Long-term time-lapse imaging demonstrated efficient iPSC expansion under feeder-free and serum-free conditions, with a 23.7 hour average cell doubling time ( FIG. 12A ). Frequent mitotic events were observed in derived iPSC colonies ( FIG. 12B ), and the duration of mitotic events (from prophase to telophase) was approximately 60 minutes ( FIGS. 12B and 12C ).
- FIG. 13B In accordance with the cinemicrography analysis, frequent mitotic events were observed in blood-derived iPSCs cells ( FIG. 13B ).
- the global gene-expression patterns of blood-derived iPSCs were more similar to those in human ES H9 cells and HK-derived iPSCs, rather than non-reprogrammed HSCs or PBMCs ( FIG. 14B ). Similar to HK- and FB-derived iPSC clones, expression of pluripotency-associated genes, such as OCT4, SOX2, NANOG, LIN28, and TERT, were markedly up-regulated in HPC- and PBMC-derived iPSC clones ( FIG. 14C ).
- XIST is on the X chromosome and XIST RNA plays a major role in silencing one of the pair of X chromosomes in female cells (Nagano and Fraser, Cell, 145:178-181 (2011)), while USP9Y, EIF1AY, DDX3Y, and RPS4Y1 are Y-linked genes. Since HK and HK-derived iPSC clones were from female patients, while HCF1, HPC-A1, PBMC-S1 and PBMC-S2 were from male patients, the observed variations in X- and Y-linked genes between blood- and non-blood-derived iPSC clones were likely due to the difference in gender of these iPSC clones.
- HPC- and PBMC-derived iPSC clones were assayed for the ability to spontaneously differentiate in vitro into cells of three embryonic germ layers through embryoid body (EB) formation. All the iPSC clones assayed formed EBs. After 7 to 10 days in suspension, EBs were transferred to a Matrigel-coated plate, and spontaneously differentiated cells were expanded under adherent conditions. Immunostaining for lineage-specific markers revealed that blood-derived iPSCs differentiated into cells of three germ layers including beta-III tubulin-positive ectoderm, FOXA2-positive endoderm, and CD31-positive mesoderm cells ( FIG. 15A ).
- iPSCs were transplanted under the kidney capsule of SCID-beige mice. Following transplantation of 1 million cells, iPSCs formed cystic tumors within 4 weeks ( FIG. 13B ). Upon gross inspection, iPSC-derived tumors demonstrated a complex cellular architecture with prominent vascularization and nonvascularized solid tissues. Histological analysis revealed iPSC differentiation into endoderm lineages composed of glandular-like tissue, mesoderm lineages indicated by muscle-like tissue and ectoderm lineages denoted by neural rosette-like structures ( FIG. 15B ), which verified the multi-lineage differentiation capability of blood-derived iPSCs.
- pancreatic differentiation potentials of blood-derived iPSCs was examined.
- a guided iPSC differentiation protocol with indolactam V (ILV) and GLP-1 was used as set forth above.
- Blood-derived iPSC clones were first stimulated with actin A and Wnt3a to form definitive endoderm cells.
- Immunostaining revealed the efficient induction of definitive endoderm markers SOX17 and FOXA2 in iPSC-derived cells at day 5 of differentiation ( FIG. 13C ).
- Derived definitive endoderm cells were further differentiated in DMEM/advanced RPMI medium containing FGF10, CYC, and 2% FBS (v/v) for 2 days, and maintained in high glucose DMEM/advanced RPMI medium supplemented with FGF10, CYC, RA, and 1 ⁇ B27 for an additional 4 days. Cells were then cultured in the presence of FGF10, ILV, GLP-1, and 1 ⁇ B27 in DMEM/advanced RPMI medium for 4 days. After this step, derived cells expressed pancreatic endoderm markers, PDX1 and NKX6.1 ( FIG. 15D ).
- iPSC-derived pancreatic endoderm cells Further differentiation of iPSC-derived pancreatic endoderm cells was performed in DMEM/advanced RPMI medium supplemented with DAPT, GLP-1, and 1 ⁇ B27 for 6 days, followed by the final maturation step in the CMRL-1066 medium containing HGF, IGF-1, GLP-1, and 1 ⁇ B27 for an additional 8 days. Insulin-positive iPSC progeny were sporadically detected ( FIG. 15D ). High levels of intracellular C-peptide (230-320 pM), a byproduct of proinsulin processing during insulin secretion, were also detected in the final differentiation stage iPSC progeny by C-Peptide ELISA. These results demonstrate successful differentiation of blood-derived iPSCs into insulin-expressing cells in vitro.
- results provided herein demonstrate the feasibility of iPSC derivation from GMP-grade mobilized HPCs and unmobilized PBMCs.
- HPCs and PBMCs enabled time-effective iPSC derivation, as the cells did not require long-term expansion before reprogramming.
- blood-derived iPSCs were basically indistinguishable from iPSCs from other cell sources.
- HPCs and PBMCs can be used as described herein as ideal somatic cell sources for clinical-grade iPSC derivation.
- results provided herein demonstrate the feasibility of generating insulin-producing cells from blood-derived iPSCs.
- blood-derived iPSCs In contrast to skin biopsies, which involve an invasive procedure, the use of blood cells allows minimally invasive tissue procurement for iPSC derivation. Since diabetic patients often experience poor wound healing, the minimally invasive iPSC derivation from blood cell sources would be particularly advantageous for the generation of clinical-grade iPSCs from diabetic patients.
- Skin specimens from surgical pathology from nondiabetic and type 2 diabetic (T2D) individuals were enzymatically processed. Using sterile techniques, skin samples were incubated overnight at 4° C. in dispase (25 U/mL) to cleave epidermis from dermis. The epidermal layer was then placed into a recombinant trypsin/EDTA solution (Invitrogen, Carlsbad, Calif.,) and incubated for 30 min at 37° C. Trypsin/EDTA was neutralized with a trypsin inhibitor (Invitrogen, Carlsbad, Calif.), and epidermal pieces were pipetted to release epidermal cells.
- trypsin/EDTA Trypsin/EDTA was neutralized with a trypsin inhibitor (Invitrogen, Carlsbad, Calif.), and epidermal pieces were pipetted to release epidermal cells.
- the suspension was then passed through a 70 ⁇ m cell strainer and pelleted.
- Cell viability was determined by the trypan blue exclusion method.
- Cells were seeded in a plate coated with an animal component-free (ACF) coating matrix (Invitrogen). Selective trypsinization removed fibroblasts at about 6 minutes, while human keratinocytes (HK) were dissociated at about 20 minutes.
- HK cell populations were then grown in EpiLife Medium and S7 growth supplement (Invitrogen, Carlsbad, Calif.) in 5% CO 2 and 95% air at 37° C. HK cells were maintained semi-confluent in low calcium media.
- Lentiviral vectors pSIN-OCT4, pSIN-SOX2, pSIN-KLF4, and pSIN-cMYC, were manufactured as described elsewhere to express pluripotency factors from an internal spleen focus-forming virus (SFFV) promoter (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). HIV vectors were produced by transient transfection of 293T cells. To minimize calcium-mediated differentiation of HK cells during vector infection, lentiviral vectors were concentrated by ultracentrifugation and re-suspended in PBS (Sakuma et al., Hum. Gene Ther., 21:1665-1673 (2010)).
- Lentiviral titers were determined by immunostaining (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). Human HK cells were grown in vitro in ACF EpiLife Medium in a matrix-coated plate. Cultures were transduced overnight with human OCT4, SOX2, KLF4, and cMYC expressing lentiviral vectors (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). Culture supernatants were replaced daily with ACF media.
- HEScGRO medium 100 mL, Millipore, Billerica, Mass.
- mTeSR-1 maintenance media 25 mL, Stemcell Technologies, Vancouver, BC, Canada
- iPS culture medium was replaced daily and differentiated cells in cultures manually removed. As clones grew, cultures were expanded into larger culture plates for further characterization. iPS clones were preserved using Xeno-FREEzeTM Human Embryonic Stem Cell Freezing Medium (Millipore, Billerica, Mass.).
- iPS clones were dissociated using collagenase IV (Stemcell Technologies) for 30 minutes and plated on low adhesion plates in basal HEScGRO medium without bFGF.
- Embryoid bodies were cultured as suspensions for 7-14 days, and grown adherent in DMEM with 20% FBS for additional 7-14 days.
- iPS clones were treated with 25 ng/mL Wnt3a (R&D systems) and 100 ng/mL activin A (Peprotech) in advanced RPMI (Invitrogen) with Pen/Strep for 1 day, followed by treatment with 100 ng/mL activin A in advanced RPMI supplemented with 0.2% fetal calf serum (FCS) (Invitrogen) for two days.
- FCS fetal calf serum
- cells were cultured in high glucose DMEM (Invitrogen), supplemented with 20% (v/v) advanced RPMI medium containing 50 ng/mL FGF10 (R&D systems), 0.25 ⁇ M KAAD-cyclopamine (CYC), and 2% FCS for 2 days.
- Differentiation medium including 10 ⁇ M DAPT (Sigma) and 55 nM GLP-1 in DMEM (high glucose) with 20% advanced-RPMI and 1 ⁇ B27 was used to culture cells for the next 6 days. Finally, cells were cultured in 50 ng/mL hepatocyte growth factor (HGF) (R&D systems), 50 ng/mL insulin-like growth factor 1 (IGF-1) (R&D systems), and 55 nM GLP-1 in CMRL-1066 medium (Invitrogen) with 1 ⁇ B27 for 8 days.
- HGF hepatocyte growth factor
- IGF-1 insulin-like growth factor 1
- CMRL-1066 medium Invitrogen
- iPS cells were fixed for 20 minutes at room temperature in 4% paraformaldehyde (PFA), washed in PBS, and blocked for 30 minutes in PBST (PBS with 0.1% Tween-20 (Sigma) and 5% FBS). Cells were stained with primary antibodies overnight at 4° C., rinsed by PBS, and incubated with secondary antibodies for 1 hour at room temperature. Separately, cells at different stages of differentiation were fixed and stained with primary and secondary antibodies.
- PFA paraformaldehyde
- Primary and secondary antibodies used for characterization were: SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 (Millipore #SCR001), OCT4 (Cell Signaling Technology #2750), SOX2 (Cell Signaling Technology #2748), KLF4 (Abcam #ab26648), NANOG (Abcam #ab21624), anti-SOX17 (R&D Systems #MAB1924), anti-HNF3 beta/FOXA2 (Millipore #07-633), anti-PDX1 (Santa Cruz Biotechnology#sc-25403), and anti-insulin (Sigma #12018).
- Texas Red-conjugated anti-rabbit IgG Jackson Laboratories #711-075-152
- Texas Red-conjugated anti-mouse IgG Jackson Laboratories #715-075-151
- FITC-conjugated anti-rabbit IgG Jackson Laboratories #711-095-152
- FITC-conjugated anti-mouse IgG Jackson Laboratories #715-095-151
- Alkaline phosphatase staining was performed with an Alkaline Phosphatase Detection Kit (Millipore).
- Antibodies FOXA2 for endoderm, beta III tubulin (Abcam #41489) for ectoderm and CD31 (Santa Cruz Biotechnology # SC1506) for mesoderm were used to immunostain embryoid body-derived cells.
- SCID-beige mice were anesthetized, and the kidney exposed for iPS transplantation under the kidney capsule. To this end, a small incision was made in the kidney capsule, and a blunt needle was used to create a pocket under the kidney capsule. Following iPS cell injection, the kidney was placed back into the abdomen, and the incision closed. Mice were maintained for 4 weeks and sacrificed for harvesting normal and iPS-transplanted kidneys. OTC-embedded frozen tissues were cryo-sectioned for H&E staining
- mitochondria-specific primer pairs CYTB, CCTAGCCATGCACTACTCACCAGACGCCT (SEQ ID NO:39), CTGTCTACTGAGTAGCCTCCTCAGATTC (SEQ ID NO:40); and NADH, TCACCAAAGAGCCCCTAAAACCCGCCACATCTA (SEQ ID NO:41), TAAGGGTGGAGAGGTTAAAGGAGC (SEQ ID NO:42)
- TCACCAAAGAGCCCCTAAAACCCGCCACATCTA SEQ ID NO:41
- TAAGGGTGGAGAGGTTAAAGGAGC SEQ ID NO:42
- RNA was isolated using TRIzol (Invitrogen) and further purified using RNeasy Plus spin columns (QIAGEN). Turbo DNA-free DNase (Ambion, Austin, Tex.) was used to digest all genomic DNA that could lead to false positive gene expression results. RNA quantity and purity were measured with a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, Del.), and RNA integrity was determined using the Agilent 2100 Bioanalyzer (Santa Clara, Calif.).
- Microarray analysis was performed using the Affymetrix HG-U133 Plus2 GeneChip Array platform (Affymetrix, Santa Clara, Calif.). Data were preprocessed using MicroArray Pre-Processing workflow, and hierarchical clustering was performed by Pearson Dissimilarity.
- the data set of parental HK cells from three patients SW3, SW4 and SW8 were compared with those of three iPS clones from the same patients (SW3 #B, SW4 #N1, and SW8 #20I). Student's t-test was performed to assess significance (p ⁇ 0.05) in normalized gene expression levels between HK and HK-derived iPS clones.
- the Heatmap Builder software (provided by Dr.
- Total genomic DNA was isolated from patient-derived HK and iPS cells using QIAGEN DNeasy Blood & Tissue Kit. Telomere length was determined using TeloTAGGG telomere length assay (Roche). Genomic DNA digestion, Southern blotting, and chemiluminescence detection was performed as per established protocols. Densitometric analysis was performed on Adobe Photoshop, and terminal restriction fragment lengths were determined by ⁇ (OD i )/ ⁇ (OD i /L), where OD i and L were the optical density and length of fragment, respectively.
- Lentiviral vectors encoding human OCT4, SOX2, KLF4, and c-MYC at an approximate multiplicity of infection of 5 each, transduced early passage human keratinocytes (HK cells) derived from 56 to 78 year-old individuals with or without T2D.
- HK cells transduced early passage human keratinocytes
- FIG. 16A Under serum-free and feeder-free conditions, within 1 to 2 weeks after viral vector infection, small reprogrammed colonies, characterized by a sharp-edged, flat, tightly-packed morphology, were apparent ( FIG. 16A ). Individual colonies were picked based on size and morphology at 3 to 5 weeks after viral transduction, and expanded.
- Structurally derived clones resembled human ES or fibroblast-derived iPS cells and expressed high levels of the stemness marker alkaline phosphatase ( FIG. 16B ).
- Immunocytochemistry further validated robust expression of diverse pluripotency markers, including SSEA-4, TRA-1-60, TRA-1-81, OCT4, SOX2, KLF4, and NANOG in HK-derived iPS clones regardless of patient age and status of diabetes ( FIG. 16C ).
- the obtained yield was 2 to 10 expandable clones per 10 5 transduced cells with maintained pluripotent markers and absence of replicative crisis even at 7 months post-initial vector infection (up to passage 60).
- HK-derived iPS clones from diabetic and non-diabetic patients spontaneously differentiated in vitro into cells of all three germ layers within embryoid body (EB) formations FIG. 17 .
- EB embryoid body
- HK-derived iPS cells differentiated into ectoderm (beta-III tubulin), endoderm (FOXA2), and mesoderm (CD31) as detected by immunostaining for lineage-specific markers FIG. 17A .
- ectoderm beta-III tubulin
- endoderm FOXA2
- CD31 mesoderm
- HK-derived iPS cells transplanted under the kidney capsule of SCID-beige mice at a dose of 1 million cells gave rise to 1-2 cm outgrowth within 4 weeks ( FIG. 17B ).
- Tissue histology revealed iPS differentiation into mesoderm lineages indicated by muscle and adipocytes ( FIG. 17C ), ectoderm lineages denoted by neuroepithelium-like tissues ( FIG. 17C ), and endoderm lineages composed of glandular tissue ( FIG. 17C ).
- Unbiased scan of the genome-wide transcriptome revealed distinct global gene-expression patterns in parental HK versus HK-derived iPS clones ( FIG. 18 ).
- the dendrogram of unsupervised one-way hierarchical clustering analysis demonstrated that HK-derived iPS cells from different patients clustered together, and branched out from parental origin ( FIG. 18A ).
- FIG. 18B Consistent with acquisition of a pluripotent transcriptome, gene expression patterns of HK-derived iPS cells were overall similar to those of human ES H9 cells, and different from parental counterparts.
- FIG. 18C Induction of key pluripotency genes, such as OCT4, SOX2, NANOG, LIN28, telomerase (TERT), DPPA4, and PODXL, were also evident in iPS clones ( FIG. 18C ). Further analysis revealed upon reprogramming significantly up-regulated proto-oncogenes (N-MYC and KIT), pluripotency-maintenance factor FGF-2, and the receptor for FGF-2 (FGFR1), whereas cytoskeletal and keratin-encoding genes were down-regulated across HK-derived iPS clones ( FIG. 18D ). Similar to ES cells, which are known to express minimal levels of MHC class I genes, HK-derived iPS cells exhibited marked down-regulation of these genes ( FIG.
- transcriptome 18E Bioinformatic analysis of transcriptome data identified pathways involved in epithelial-to-mesenchymal transition and cytoskeletal remodeling as most significantly affected networks in response to reprogramming of HK cells, in line with genuine redirection of cell fate. No notable difference was observed in the transcriptome of iPS clones from non-diabetic and diabetic patients.
- Parental HK cells were 25 to 40 ⁇ m in diameter, while derived iPS cells were 10 to 15 ⁇ m, characterized by scant cytoplasm and regularly condensed chromatin ( FIG. 19A ) with frequent mitotic events ( FIG. 19B ).
- the cytosol of HK cells was densely packed with membrane-bound organelles ( FIG. 19C , left panel) and keratin intermediate filaments.
- FIG. 19C right panel.
- HK-derived iPS cells In HK cells, mitochondria appeared mainly tubular-shaped and showed well-developed cristae. In contrast, mostly globular immature mitochondrial remnants, characterized by unorganized cristae, were found in HK-derived iPS cells ( FIG. 19D ) as in verified fibroblast-derived iPS clones ( FIG. 19A ). No notable difference was observed in morphologies of mitochondria between iPS clones from non-diabetic and diabetic patients.
- the copy number of mitochondrial DNA before and after reprogramming revealed a 30 to 60% reduction in the abundance of mitochondrial DNA in iPS compared to HK cells ( FIG. 20A ).
- Immunostaining with mitochondrial probes detected mitochondria-specific signals in individual iPS cells ( FIGS. 20B and 20C ) and no significant changes in expression of nuclear-encoded mitochondrial biogenesis factors ( FIG. 20D ).
- Transcriptome analysis further revealed that genes encoding the mitochondrial/oxidative stress response pathway are highly expressed in HK cells from elderly patients, yet markedly down-regulated in derived iPS cells ( FIG. 20F ).
- RT-PCR verified increased levels of TERT-specific transcripts in HK-derived iPS cells ( FIG. 21A ).
- TRF telomere restriction fragment
- HK-derived iPS clones were initially induced to form definitive endoderm by treatment with activin A and Wnt3a for 1 day followed by culture in activin A and 2% FBS for 4 additional days. Immunostaining revealed efficient induction in iPS-derived cells of SOX17 and FOXA2, markers of definitive endoderm ( FIG. 22A ). Similar results were observed with iPS clones generated from diabetic or non-diabetic patients. Next, the efficiency of definitive endoderm transformation into pancreatic endoderm was evaluated. As shown in FIG. 22B , prominent nucleus-localized signals for pancreatic endoderm, namely PDX1 and NKX6.1, were found in iPS-derived cells at day 14 of differentiation.
- iPS-derived pancreatic endoderm cells were further differentiated for 6 days, followed by maturation in HGF, IGF-1, and GLP-1 for additional 8 days.
- insulin-producing cells were sporadically detected in iPS-derived progeny ( FIG. 22C ), while more prominent immunostaining for insulin was evident after final maturation at day 29 ( FIGS. 22D and 22E ).
- FIGS. 22D and 22E Similar to pancreatic beta cells which co-express insulin and PDX1, the majority of iPS-derived insulin-expressing cells exhibited nuclear-localized PDX1 signals ( FIGS. 22D and 22E ). High levels of intracellular C-peptide (250-290 pM), a byproduct of proinsulin protein processing, were detected in iPS progeny by ELISA, while RT-PCR revealed positive gene expression of key pancreatic factors, including insulin (INS), glucagon (GCG), and somatostatin (SST), and glucose transporter 2 (GLUT2) ( FIG. 22F ). Thus, HK-derived iPS cells differentiated into hormone-producing pancreatic islet-like cells.
- INS insulin
- GCG glucagon
- SST somatostatin
- GLUT2 glucose transporter 2
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Transplantation (AREA)
- Developmental Biology & Embryology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
This document provides methods and materials related to differentiating iPS cells into glucose-responsive, insulin-secreting progeny. For example, methods and material for using indolactam V (ILV) and glucagon like peptide-1 (GLP-1) to produce glucose-responsive, insulin-secreting progeny from iPS cells are provided.
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 61/510,818, filed Jul. 22, 2011. The disclosure of the prior application is considered part of (and is incorporated by reference in) the disclosure of this application.
- 1. Technical Field
- This document relates to methods and materials involved in differentiating induced pluripotent stem (iPS) cells into glucose-responsive, insulin-secreting progeny. For example, this document relates to the use of indolactam V (ILV) and glucagon like peptide-1 (GLP-1) to produce glucose-responsive, insulin-secreting progeny from iPS cells.
- 2. Background Information
- Stem cells are characterized by the ability of self-renewal and differentiation into a diverse range of cell types. The two broad types of mammalian stem cells are embryonic stem (ES) cells and adult stem cells. Adult stem cells or progenitor cells replenish specialized cells to repair or maintain regenerative organs. Most adult stem cells are lineage-restricted and generally referred to by their tissue origin, such as adipose-derived stem cells. ES cell lines are derived from the epiblast tissue of the inner cell mass of a blastocyst or early morula stage embryos. ES cells are pluripotent and give rise to derivatives of the three germinal layers, i.e., the ectoderm, endoderm, and mesoderm.
- This document provides methods and materials related to differentiating iPS cells into glucose-responsive, insulin-secreting progeny. For example, this document provides methods and material for using ILV and GLP-1 to produce glucose-responsive, insulin-secreting progeny from iPS cells. As described herein, culturing iPS cells in the presence of a collection of agents that include ILV and GLP-1 can result in the production of glucose-responsive, insulin-producing cells. For example, an ILV and GLP-1-enriched pancreatogenic cocktail can be used under feeder cell-free conditions to produce glucose-responsive, insulin-producing cells from human iPS cells. Autologous iPS cell derivation and iPS cell differentiation into insulin-producing cells can allow modeling of patient-specific disease pathogenesis and can lead to personalized approaches for
type 1 diabetes cell therapy with iPS-derived islet-like cells. - In general, one aspect of this document features a method for obtaining a population of glucose-responsive, insulin-secreting cells from a population of induced pluripotent stem cells. The method comprises, or consists essentially of, culturing the induced pluripotent stem cells with medium comprising indolactam V and glucagon like peptide-1 under conditions to obtain the population of glucose-responsive, insulin-secreting cells. The medium can lack serum. The medium can lack feeder cells. The medium can lack non-human feeder cells. The induced pluripotent stem cells can be induced pluripotent stem cells that were obtained using one or more polypeptides or nucleic acid encoding the one or more polypeptides selected from the group consisting of a Oct3/4 polypeptide, a Sox family polypeptide, a Klf family polypeptide, a Myc family polypeptide, a Nanog polypeptide, and a Lin28 polypeptide. The induced pluripotent stem cells can be induced pluripotent stem cells that were induced from somatic cells. The somatic cells can be selected from the group consisting of skin, lung, heart, stomach, brain, liver, blood, kidney, and muscle cells. The induced pluripotent stem cells can comprise exogenous nucleic acid encoding a human Oct4 polypeptide, a human Sox2 polypeptide, a human Klf4 polypeptide, and a human c-Myc polypeptide. The glucose-responsive, insulin-secreting cells can secrete greater than 50 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose. The glucose-responsive, insulin-secreting cells can secrete greater than 200 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose. The glucose-responsive, insulin-secreting cells can secrete between about 50 and 250 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose. The glucose-responsive, insulin-secreting cells can be human cells. The medium can comprise greater than 300 nM of indolactam V. The medium can comprise greater than 55 nM of glucagon like peptide-1. The culturing can be performed for more than 25 days.
- In another aspect, this document features a population of glucose-responsive, insulin-secreting cells derived from induced pluripotent stem cells, wherein the glucose-responsive, insulin-secreting cells are produced by culturing the induced pluripotent stem cells with medium comprising indolactam V and glucagon like peptide-1 under conditions that result in the formation of the population of glucose-responsive, insulin-secreting cells. The medium can comprise greater than 300 nM of indolactam V. The medium can comprise greater than 55 nM of glucagon like peptide-1. The culturing can be performed for more than 25 days. The population of glucose-responsive, insulin-secreting cells can secrete greater than 50 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose. The population of glucose-responsive, insulin-secreting cells can secrete greater than 200 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose. The population of glucose-responsive, insulin-secreting cells can secrete between about 50 and 250 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose. The glucose-responsive, insulin-secreting cells can be human cells.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
-
FIG. 1 . Generation of Human iPS Clones from BJ and HCF Fibroblasts. (A) Lentiviral vector-mediated delivery of OCT3/4, SOX2, KLF4, and c-MYC resulted in iPS-like colony formation. (i) SNL feeder cells, (ii) uninfected HCF fibroblasts, (iii) HCF-derived iPS-like colony at two weeks post-infection, (iv) iPS-like cells with high magnification. iPS cells exhibited morphology similar to human ES cells, characterized by large nuclei and scant cytoplasm, (v) uninfected BJ fibroblasts, (vi) BJ fibroblasts-derived iPS-like colony at two weeks after infection, (vii) image of a BJ-derived clone expanded on feeder cells, (viii) high magnification image of BJ-derived clone. (B) Feeder-free generation of human iPS cells allowed visualization of the early reprogramming events. (i) Uninfected BJ fibroblasts, (ii) an early stage iPS-like colony in vector-transduced BJ cells one week after infection, (iii) high magnification image of BJ fibroblast-derived iPS-like colony. (C) Morphology of iPS clones cultured under feeder-free conditions. BJ#SA was established on SNL feeder cells, whileHCF# 1 andBJ# 1 were derived feeder-free. (D)HCF# 1, BJ#SA andBJ# 1 cultured under feeder-free conditions expressed high levels of alkaline phosphatase (AP). -
FIG. 2 . Feeder-free generation of human iPS cells allowed visualization of the early reprogramming events. For feeder-free iPS generation, BJ and MRC5 fibroblasts were infected with lentiviral vectors expressing OCT4, SOX2, KLF4 and c-MYC (4 factor). After four days of infection, cells were replated on Matrigel coated plates. i. Uninfected BJ fibroblasts, ii. BJ fibroblast-derived iPS-like colony at 7 days after infection, iii. BJ fibroblast-derived iPS-like colony at 8 days after infection, iv. The colony shown in (iii) was positive for alkaline phosphatase, v. MRC5-derived iPS-like colonies at 12 days after vector transduction, vi. The same colonies shown in (v) were positive for alkaline phosphatase at 15 days after infection. -
FIG. 3 . Expression of Pluripotency-Associated Genes in Putative iPS Clones. (A) and (B) HCF- and BJ-derived iPS clones were analyzed for expression of pluripotency markers byimmunostaining HCF# 1 and BJ#SA cells were positive for pluripotency markers SSEA4, TRA-1-60, TRA-1-81, OCT4, SOX2, KLF4, and NANOG, while no notable staining was observed for SSEA1. Cells were counterstained with 4′, 6-diamidino-2-phenylindole (DAPI). Control (m) and Control (r); control cells treated with FITC-conjugated secondary antibodies against mouse IgG and rabbit IgG. Scale bars indicate 20 μm. (C) HCF- and BJ-derived iPS-like clones were analyzed for pluripotency-associated gene expression by RT-PCR. Total cellular RNA from parental BJ and HCF fibroblasts and no template (water) samples were included as controls. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene transcript was amplified as an internal RNA control. -
FIG. 4 . Spontaneous Differentiation of HCF- and BJ Fibroblast-derived iPS Cells into Cells of Three Embryonic Germ Layers. (A) In vitro differentiation ofHCF# 1,BJ# 1, and BJ#SA clones in suspension culture as embryoid bodies (EB) was followed by monolayer culture for spontaneous differentiation.HCF# 1,BJ# 1, and BJ#SA clones generated EBs with varying sizes. Cells of ectoderm, endoderm, and mesoderm lineages were confirmed by beta III tubulin (green stain was used), FOXA2 (red stain was used), and CD31 (PECAM-1) (green stain was used), respectively. Cells were counterstained with DAPI. Scale bars on right 50 μm and left 20 μm. (B) Teratoma formation. iPS cells 500,000 were injected subcutaneously into athymic nude mice. Tumor growth was detected only from sites injected with iPS cells. After 3 months tumors were harvested. Scale bar indicates 2 mm. (C) H&E staining of teratoma sections demonstrated multiple lineages within the complex architecture of the tumor, including ectoderm (glandular tissue), endoderm (adipose tissue), and mesoderm (muscular tissue) tissues. -
FIG. 5 . Differentiation of Human iPS Cells into Pancreatic Endoderm Cells. (A) Schematic representation of the stepwise differentiation protocol for generation of islet-like clusters from human iPS cells. DE, definitive endoderm; GTE, gut tube endoderm; PP, pancreatic progenitor; EN, endocrine hormone expressing cells; CYC, KAAD-cyclopamine; RA, all-trans retinoic acid; ILV, indolactam V; HGF, hepatocyte growth factor; IGF, insulin like growth factor; and GLP-1, glucagon-like peptide-1. (B) Induction of definitive endoderm cells. iPS cells were treated with activin A and Wnt3a for one day, followed by activin A with 2% FBS for two days. iPS-derived cells were immunostained with antibodies against SOX17 (green stain was used) and FOXA2 (red stain was used). Cells were counterstained by DAPI. Bars indicate 20 μm. (C) Flow cytometric analyses of iPS-derived definitive endoderm cells. iPS-derived definitive endoderm cells were dissociated and stained with anti-SOX17 antibody. Staining with the secondary antibody alone was used as a control. (D) iPS-derived definitive endoderm cells were treated with FGF10, CYC, RA, and ILV for induction of pancreatic endoderm and immunofluorescence analysis was performed to detect, PDX1 (red stain was used), NEUROD1 (red stain was used), and NGN3 (red stain was used). -
FIG. 6 . Differentiation ofBJ# 1 and BJ#SA Clones into Definitive Endoderm Cells.BJ# 1 and BJ#SA cells were treated with activin A and Wnt3a for one day, followed by activin A stimulation in the presence of 2% FBS for two days for generation of definitive endoderm cells. (A) BJ#SA derived definitive endoderm cells were immunostained with antibodies against SOX17 (a green stain was used) and FOXA2 (a red stain was used). (B)BJ# 1 derived definitive endoderm cells were stained with antibody against SOX17. Cells were counterstained by DAPI. Bars indicate 20 mm. (C) Flow cytometric analyses of iPS-derived definitive endoderm cells. iPS-derived definitive endoderm cells were dissociated and stained with anti-SOX17 antibody. Staining with the secondary antibody alone was used as a control. -
FIG. 7 . Efficient Differentiation of iPS Cells into Pancreatic Endoderm Cells. iPS-derived definitive endoderm cells were treated with FGF10, CYC, RA, and ILV for induction of pancreatic endoderm. On day 17 of differentiation, immunofluorescence analysis was performed to detect pancreatic endoderm markers, PDX1 (a red stain was used) and NEUROD1 (a red stain was used) from BJ#SA-derived cells. -
FIG. 8 . Successful Differentiation of Human iPS Cells into Pancreatic Hormone-expressing Cells. (A) Induction of stage-specific pancreatic genes through guided differentiation. RT-PCR analysis was performed to determine the expression of key pancreatic genes at different stages of differentiation. Undifferentiated human iPS cells (d0), definitive endoderm cells after treatment with activin A and Wnt3a (d3), foregut endoderm cells induced with FGF10 and CYC (d9), pancreatic endoderm cells were generated after exposure with FGF10, RA, CYC, and ILV (d18) and islet-like clusters in presence of HGF, IGF, and GLP-1. Human pancreas RNA was used as a positive control. No template (water) was included as negative control. (B) Down-regulation of pluripotency-associated genes upon differentiation. RT-PCR analysis was performed to analyze the expression of pluripotency genes (c-MYC, GDF3, hTERT and NANOG) after stepwise differentiation. The same RNA samples asFIG. 8A were used. (C) Formation of islet-like clusters in HCF#1-derived cells upon differentiation. iPS-derived pancreatic endoderm were differentiated into islet-like cells with HGF, IGF, DAPT, and GLP-1. Prominent islet-like cluster formation was observed in HCF#1-derived cells. (D) Islet-like clusters expressed high levels of human C-peptide. (E) Detection of pancreatic hormones insulin, C-peptide and glucagon in iPS-derived islet-like cells. Immunofluorescence analysis identified iPS-derived islet-like cells which expressed insulin (green stain was used), C-peptide (red stain was used), and glucagon (red stain was used). -
FIG. 9 . Sustained PDX1 Expression and Glucose-Responsive C-Peptide Secretion by iPS-derived Islet-like Cells. (A) iPS-derived islet-like cells demonstrated beta cell characteristics. (i) Double-staining of iPS-derived islet-like cells revealed co-localization of insulin (green stain was used) and C-peptide (red stain was used), indicating de novo insulin synthesis. (ii) Some cells were double-positive for insulin (green stain was used) and somatostatin (red stain was used). (iii) Sustained PDX1 expression (red stain was used) in the iPS-derived insulin-producing cells after differentiation. Cells were counterstained with DAPI. (B) Flow cytometric analysis of iPS-derived islet-like cells for insulin expression. iPS-derived islet-like clusters were dissociated with TrypLE, and analyzed for insulin expression by an anti-human insulin antibody. Insulin staining was observed in HCF#1-derived islet-like clusters. (C) Glucose-responsive C-peptide secretion by the iPS-derived islet-like clusters. The islet-like clusters were sequentially exposed to low (2.5 mM), intermediate (10 mM), and high concentrations (27.7 mM) of glucose. Supernatants of HCF#1-derived islet-like cells were collected and analyzed for C-peptide secretion by ELISA. Error bars indicate standard deviation. (D) Glucose-responsive C-peptide secretion by HCF#1-derived islet-like clusters generated with pancreatogenic cocktails including GLP-1 and ILV (left), GLP-1 without ILV (middle), or ILV without GLP-1 (right). The islet-like clusters were sequentially exposed to low (2.5 mM), intermediate (10 mM), and high concentrations (27.7 mM) of glucose. Cumulative C-peptide secretion upon glucose stimulation with 10 mM and 27.7 mM were shown. Error bars indicate standard deviation. -
FIG. 10 . Formation of Islet-like Clusters inBJ# 1 and BJ#SA-derived Cells. iPS-derived pancreatic endoderm cells were differentiated into islet-like cells with HGF, IGF, DAPT and GLP-1. (A) Islet-like clusters formed indifferentiated BJ# 1 and BJ#SA cells. (B) Flow cytometric analysis of iPS-derived islet-like cells for insulin expression. iPS-derived islet-like clusters were dissociated with TrypLE, and analyzed for insulin expression by an anti-human insulin antibody. Insulin staining was observed inBJ# 1 and BJ#SA-derived islet-like clusters. -
FIG. 11 . Reprogramming of human hematopoietic progenitor and peripheral blood mononuclear cells. (A) HPCs and PBMCs were cultured in a serum-free medium and transduced with lentiviral vectors expressing four stemness factors at an MOI of 5. Representative phase-contrast images of HPCs before transduction (left panel) and 7 day post-infection (left panel) are shown. Representative HPC- (left panel) and PBMC- (right panel) derived colonies with characteristic morphologies of reprogrammed cells are shown. (B) HPC and PBMC-derived iPSC clones were further characterized through immunocytochemistry analysis using a panel of antibodies against pluripotency-associated markers. All clones stained positive for the markers including SSEA-4, TRA-1-60, OCT4, and NANOG. -
FIG. 12 . Efficient expansion of HSC/PBMC-derived iPSC clones under feeder- and serum-free conditions. (A) Long-term time-lapse images of an iPSC #HPC-A1 colony were obtained using Nikon BioStation IMQ. Time is shown in hours in the upper right corner, and cell count is shown in the bottom right corner of each panel. (B) Frequent mitotic events were observed during time-lapse imaging. Dividing cells and daughter cells are indicated by downward pointing arrows and upward pointing arrows, respectively. Time is shown in minutes in the upper right corner of each panel. (C) High magnification images of a dividing cell at different stages of mitosis (prophase, prometaphase, metaphase, anaphase, and telophase) are indicated in arrows. Time is shown in minutes in the upper right corner of each panel. -
FIG. 13 . Transmission electron microscopic images of blood-derived iPS cells. (A) Representative high-resolution electron micrographs of primary human fibroblasts (HCF fibroblast), HCF-derived (HCF1 iPS), and HPC-derived (HPC-A1) iPSCs are shown. Mitochondria (MT) and nucleus (N) structures are denoted in the micrographs. (B) Frequent mitotic events were observed in the blood-derived iPSCs. Mother and daughter centrioles are represented by the arrowhead and arrow symbols, respectively. Scale bars are represented in μm. -
FIG. 14 . Global gene expression profiles of blood-derived iPSCs. (A) Dendrogram describing the unsupervised hierarchal clustering of primary keratinocytes (SW3 HK and SW3 HK), and keratinocyte (HK)-, fibroblast (FB)-, HPC- and PBMC-derived iPSCs. (B) Genome-wide gene expression patterns of HPC- and PBMC-derived iPSC clones were compared with those of HPCs (GSM178554), PBMCs (GSM452255), verified epidermal keratinocyte-derived iPSCs (SW4#N1, upper panels), or embryonic stem cells (H9 cells, GSM190779). (C) Heatmap demonstrating the relative expression levels ((high—black; low—white) of pluripotency-associated genes in primary keratinocytes (HK) and iPS cells from HK, FB or blood cell sources. The changes in gene expression levels in blood-derived iPSCs, relative to those in HK cells, were calculated using the microarray data from three primary HK cells and three blood-derived iPSCs, and shown as fold-increase in iPSCs. Statistically significant changes are indicated by asterisks (p<0.05). (D) Heatmap showing the top 100 differentially expressed genes between non-reprogrammed HK and blood-derived iPSC clones (high—black; low—white). Highly expressed in non-reprogrammed cells and blood-derived iPSCs are shown in upper and lower panels, respectively. Genes with notable differences in gene expression patterns between HK/FB-derived and blood-derived iPSCs are indicated by the gene symbols on the right. -
FIG. 15 . Differentiation of blood-derived iPSCs in vitro and in vivo. (A) Blood-derived iPSC clones were spontaneously differentiated through embryoid body formation, and analyzed via immunocytochemistry for lineage markers for three embryonic germ layers (endoderm FOXA2, mesoderm CD31 and ectoderm beta-III-tubulin). (B) Transplantation of iPSCs into renal capsule of SCID-beige mice resulted in teratoma formation. Tissue histology of teratomas demonstrated the cells of three germ layers including glandular-, muscular-, and neural rosette-like tissues. (C) Schematic diagram describing the stepwise guided differentiation protocol for iPSC differentiation into islet-like cells. DE, definitive endoderm; PG, primitive gut; PE, pancreatic endoderm; ISL, islet-like cells; ActA, Actinin A; Wnt, Wnt3a; FGF10,fibroblast growth factor 10; CYC, cyclopamine; RA, all trans retinoic acid; ILV, indolactam V; GLP-1, glucagon-like peptide-1; HGF1, hepatocyte growth factor-1 and IGF, insulin-like growth factor-1. (D) Through the guided differentiation protocol, HSC- or PBMC-derived iPSC clones were induced to definitive endoderm (day 5), pancreatic endoderm (day 10) and insulin-producing islet-like cells (day 24). Immunostaining demonstrated the expression of stage-specific markers in iPSC progeny at day 5 (FOXA2 and SOX17), day 10 (NKX6.1 and PDX1) and day 24 (INS). Scale bars indicate 50 μm. -
FIG. 16 . Expression of pluripotency-associated markers in HK-derived iPS clones. (A) Early-passage HK cells (left panel) were infected with lentivirus (LV) vector encoding OCT4, SOX2, KLF4, and c-MYC. Seven days post-infection (center panel), early iPS-like colonies were detected (right panel in higher magnification). (B) HK-derived iPS clones were either derived from patients who were non-diabetic (ND) ortype 2 diabetic (T2D). iPS clones, cultured under feeder-free conditions, exhibited human ES-like morphologies, while expressing high levels of alkaline phosphatase (AP). (C) Patient HK-derived iPS clones were further characterized through immunocytochemistry analysis using a panel of pluripotency markers. All clones were negative for SSEA-1 expression, while staining positive for pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, SOX2, KLF4, and NANOG. Scale bars represent 100 μm. -
FIG. 17 . Pluripotency of HK-derived iPS cells verified through spontaneous differentiation in vitro and in vivo. (A) HK-derived iPS clones were analyzed via immunocytochemistry for lineage markers for three germ layers (endoderm, mesoderm and ectoderm). Scale bars indicate 50 μm. (B) Transplant of HK-derived iPS cells into the kidney capsule of SCID-beige mice resulted in teratoma formation. Pictures of harvested kidneys (with or without iPS transplant) are shown. (C) H&E staining demonstrated multiple lineages within the complex architecture of the tumor, including muscle, adipose, immature neuroepithelium, and glandular tissues. -
FIG. 18 . Variations in gene expression profile upon induced pluripotency. (A) Dendrogram describing the unsupervised hierarchal clustering of patient-derived HK cells and HK-derived iPS cells. (B) Global gene expression patterns of HK-derived iPS clones were compared with their parental HK cells (upper panels), or with that of human embryonic stem cells (H9, lower panels, GSM190779), upon RNA microarray analysis. (C) Heatmap showing the up-regulation and down-regulation (high—black; low—white) of pluripotency-associated genes in HK- and HK-derived iPS clones. The four factors used to induce pluripotency are indicated. The changes in gene expression levels in iPS cells, relative to those in parental HK cells, were calculated using microarray data from three parental HK cells and three HK-derived iPS cells, and shown as fold-induction in iPS cells. Statistically significant changes are indicated by asterisks (p<0.05). HK cells originally expressed high levels of endogenous KLF4 and c-MYC, resulting in down-regulation of these two key reprogramming factors in derived iPS cells. (D) Heatmap showing the top 15 genes which were up-regulated (upper panel) or down-regulated (lower panel) upon reprogramming. Statistically significant changes are indicated by asterisks (p<0.05). (E) Comparison of the major histocompatibility complex (MHC) class I gene expression profiles between HK and iPS cells. Statistically significant changes are indicated by asterisks (p<0.05). -
FIG. 19 . Morphological variations of patient-derived iPS cells upon reprogramming. (A) High-resolution electron micrographs of HK cells before (SW4 parental HK and SW8 parental HK) and after (SW4 #N1, SW3 #B, SW8 #20I, andSW10 # 5P) induced pluripotency. Representative micrograph of a verified fibroblast-derived iPS cell is also included. Scale bars represent 2 μm. (B) Mitotic events of two iPS clones were shown (left panel in metaphase; right panel in anaphase). Scale bars represent 2 μm. (C) Endoplasmic reticulum and the Golgi structures in HK and HK-derived iPS cells are shown. Scale bars represent 0.5 μm. (D) Mature mitochondria with well-developed cristae in parental HK cells (SW8 parental) and immature mitochondria in iPS clones (SW3 #B, SW8 #20I, andSW10 # 5P) are indicated by arrows. Keratin intermediate filaments in parental HK cells are indicated by arrowheads. Scale bars represent 0.5 μm. -
FIG. 20 . Mitochondrial and oxidative-stress response gene expression in induced pluripotency. (A) Relative cytochrome B (CYTB) and NADH mitochondrial DNA (mtDNA) copy numbers before (parental) and after (iPS) reprogramming. mtDNA copy numbers were normalized to total genomic DNA and represented as a percentage of parental cell mtDNA copy number. (B) Immunocytochemistry analysis of iPS clone SW4 #N1 with mitochondrial marker AIF and (C) iPS clones SW4 #N1 andSW10 # 5P with MitoTracker (Molecular Probes) staining (D) Heatmap demonstrating up and down-regulation of genes involved in mitochondrial biogenesis upon reprogramming (high—black; low—white). No statistically significant change was observed in any of the genes listed. (E) Heatmap (high—black; low—white) of expression profiles for genes involved in glycolysis, anaerobic glycolysis, and citric acid cycle were compared between parental HK and HK-derived iPS cells. Statistically significant changes are indicated by asterisks (p<0.05). (F) RNA expression profiles of genes involved in the mitochondrial/oxidative stress response pathway between parental HK and iPS cells are shown. Statistically significant changes are indicated by asterisks (p<0.05). -
FIG. 21 . Comparison of telomerase activity, cellular senescence, and programmed cell death in HK cells before and after induced pluripotency. (A) RT-PCR analysis of TERT-specific transcripts in parental HK cells and iPS clones. GAPDH was used as control. (B) Telomere lengths in HK and HK-derived iPS cells were determined by the terminal restriction fragment lengths. Southern blot analysis and corresponding telomere fragment lengths derived from densitometric quantification are shown. (C) Schematic representation of key senescence- and apoptosis-regulating pathways. (D) Changes in expression levels of key genes, involved in cellular senescence or apoptosis, were determined using the microarray data of three parental HK cells and three HK-derived iPS cells, and fold induction of individual genes in iPS cells, relative to those in parental HK cells, are shown. Statistically significant changes are indicated by asterisks (p<0.05). -
FIG. 22 . Guided in vitro differentiation of patient iPS cells into insulin-producing islet-like cells. iPS cells, differentiated through step-wise differentiation, were analyzed by immunocytochemistry for stage-specific markers at day 5 (A), 14 (B), 24 (C) and 29 (D and E). Scale bars indicate 50 μm for A, B, C and E (left panel), and 10 μm for D and E (right panel). (F) RT-PCR analysis of the mRNA of SW4#N1 clone, harvested atdifferentiation day day 29. α-tubulin was used as control (TUBUA). - This document provides methods and materials related to differentiating iPS cells into glucose-responsive, insulin-secreting progeny. For example, this document provides methods and material for using ILV and GLP-1 to produce glucose-responsive, insulin-secreting progeny from iPS cells.
- Any appropriate method can be used to obtain iPS cells. For example, iPS cells can be obtained using polypeptides from a species that is the same species from which the cells (e.g., somatic cells) were obtained. An example of such iPS cells includes human somatic cells that were induced to form iPS cells using human polypeptides. In some cases, iPS cells can be obtained using polypeptides from a species that is different from the species from which the cells (e.g., somatic cells) were obtained. An example of such iPS cells includes human cells that were induced to form iPS cells using mouse polypeptides. Other examples include human cells that were induced to form iPS cells using rat, dog, cow, pig, or monkey (e.g., Rhesus monkey) polypeptides. In some cases, an iPS cell provided herein can be a human cell that was induced to form an iPS cell using non-human polypeptides (e.g., polypeptides of mouse, rat, pig, dog, or monkey origin).
- The polypeptides used to induce the formation of iPS cells can include any combination of Oct3/4 polypeptides, Sox family polypeptides (e.g., Sox2 polypeptides), Klf family of polypeptides (e.g., Klf4 polypeptides), Myc family polypeptides (e.g., c-Myc), Nanog polypeptides, and Lin28 polypeptides. For example, nucleic acid vectors designed to express Oct3/4, Sox2, Klf4, and c-Myc polypeptides can be used to obtain iPS cells. In some cases, Oct3/4, Sox2, Klf4, and c-Myc polypeptides can be directly delivered into target cells to obtain iPS cells using a polypeptide transfection method (e.g., liposome or electroporation). In one embodiment, nucleic acid vectors designed to express Oct3/4, Sox2, and Klf4 polypeptides, and not a c-Myc polypeptide, can be used to obtain iPS cells. In some cases, Oct3/4, Sox2, and Klf4 polypeptides can be directly delivered into target cells to obtain iPS cells using a polypeptide transfection method. An Oct3/4 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC117435 (e.g., GI No. 109659099). An Sox2 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC013923 (e.g., GI No. 33869633). A Klf4 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC029923 (e.g., GI No. 20987475). A c-Myc polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC000141 (e.g., GI No. 12652778). A Nanog polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC099704.1 (e.g., GI No. 71043476). A Lin28 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers BC028566 (e.g., GI No. 33872076).
- Any appropriate cell type can be used to obtain iPS cells. For example, skin, lung, heart, liver, blood, kidney, or muscle cells can be used to obtain iPS cells. Such cells can be obtained from any type of mammal including, without limitation, humans, mice, rats, dogs, cats, cows, pigs, or monkeys. In addition, any stage of the mammal can be used, including mammals at the embryo, neonate, newborn, or adult stage. For example, fibroblasts obtained from an adult human patient can be used to obtain iPS cells. Such iPS cells can be used to treat that same human patient (or to treat a different human) or can be used to create differentiated cells that can be used to treat that same human patient (or a different human). For example, somatic cells from a human patient can be treated as described herein to obtain iPS cells. The obtained iPS cells can be differentiated into glucose-responsive, insulin-producing cells as described herein that can be implanted into that same human patient.
- Any appropriate method can be used to introduce nucleic acid (e.g., nucleic acid encoding polypeptides designed to induce iPS cell formation from somatic cells) into a cell. For example, nucleic acid encoding polypeptides (e.g., Oct3/4, Sox2, Klf4, and c-Myc polypeptides) designed to induce the formation of iPS cells from other cells (e.g., non-embryonic stem cells or somatic cells) can be transferred to the cells using recombinant viruses that can infect cells, or liposomes or other non-viral methods such as electroporation, microinjection, transposons, phage integrases, or calcium phosphate precipitation, that are capable of delivering nucleic acids to cells. The exogenous nucleic acid that is delivered typically is part of a vector in which a regulatory element such as a promoter is operably linked to the nucleic acid of interest. The promoter can be constitutive or inducible. Non-limiting examples of constitutive promoters include cytomegalovirus (CMV) promoter and the Rous sarcoma virus promoter. As used herein, “inducible” refers to both up-regulation and down regulation. An inducible promoter is a promoter that is capable of directly or indirectly activating transcription of one or more DNA sequences or genes in response to an inducer. In the absence of an inducer, the DNA sequences or genes will not be transcribed. The inducer can be a chemical agent such as a protein, metabolite, growth regulator, phenolic compound, or a physiological stress imposed directly by, for example heat, or indirectly through the action of a pathogen or disease agent such as a virus.
- Additional regulatory elements that may be useful in vectors, include, but are not limited to, polyadenylation sequences, translation control sequences (e.g., an internal ribosome entry segment, IRES), enhancers, or introns. Such elements may not be necessary, although they can increase expression by affecting transcription, stability of the mRNA, translational efficiency, or the like. Such elements can be included in a nucleic acid construct as desired to obtain optimal expression of the nucleic acids in the cells. Sufficient expression, however, can sometimes be obtained without such additional elements.
- Vectors also can include other elements. For example, a vector can include a nucleic acid that encodes a signal peptide such that the encoded polypeptide is directed to a particular cellular location (e.g., the cell surface) or a nucleic acid that encodes a selectable marker. Non-limiting examples of selectable markers include puromycin, adenosine deaminase (ADA), aminoglycoside phosphotransferase (neo, G418, APH), dihydrofolate reductase (DHFR), hygromycin-B-phosphotransferase, thymidine kinase (TK), and xanthin-guanine phosphoribosyltransferase (XGPRT). Such markers are useful for selecting stable transformants in culture.
- Any appropriate viral vectors can be used to introduce sternness-related factors such as Oct3/4, Klf4, Sox2 and c-Myc. Examples of viral vectors include, without limitation, vectors based on DNA or RNA viruses such as adenovirus, adeno-associated virus (AAV), retroviruses, lentiviruses, vaccinia virus, measles viruses, herpes viruses, baculoviruses, and papilloma virus vectors. See, Kay et al., Proc. Natl. Acad. Sci. USA, 94:12744-12746 (1997) for a review of viral and non-viral vectors. Viral vectors can be modified so the native tropism and pathogenicity of the virus has been altered or removed. The genome of a virus also can be modified to increase its infectivity and to accommodate packaging of the nucleic acid encoding the polypeptide of interest. In some cases, iPS cells can be obtained using viral vectors that do not integrate into the genome of the cells. Such viral vectors include, without limitation, adenoviral vectors, AAV vectors, baculovirus vectors, and herpesvirus vectors. For example, cells obtained from a human can be provided nucleic acid encoding human Oct3/4, Sox2, Klf4, and c-Myc polypeptides using viral vectors that do not integrate the exogenous nucleic acid into the cells. Once the polypeptides are expressed and iPS cells are obtained, the iPS cells can be maintained in culture such that the iPS cells are devoid of the exogenous nucleic acid.
- Any appropriate non-viral vectors can be used to introduce stemness-related factors such as Oct3/4, Klf4, Sox2, and c-Myc. Examples of non-viral vectors include, without limitation, vectors based on plasmid DNA or RNA, retroelement, transposon, and episomal vectors. Non-viral vectors can be delivered to cells via liposomes, which are artificial membrane vesicles. The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations. Transduction efficiency of liposomes can be increased by using dioleoylphosphatidylethanolamine during transduction. See, Felgner et al., J. Biol. Chem., 269:2550-2561 (1994). High efficiency liposomes are commercially available. See, for example, SuperFect® from Qiagen (Valencia, Calif.).
- In some cases, iPS cells can be obtained using culture conditions that do not involve the use of serum, feeder cells, or serum and feeder cells. For example, cells obtained from a human can be provided nucleic acid encoding human Oct3/4, Sox2, Klf4, and c-Myc polypeptides and cultured using media lacking serum (e.g., human or non-human serum) and lacking feeder cells (e.g., human or non-human feeder cells).
- Once obtained, iPS cells can be exposed to ILV and GLP-1. For example, human iPS cells can be cultured in the presence of retinoic acid (e.g., all-trans retinoic acid; RA), an FGF10 polypeptide, KAAD-cyclopamine (CYC), and ILV for a period of time (e.g., about 5 to 15 days, about 6 to 15 days, about 5 to 13 days, about 6 to 13 days, about 7 to 12 days, or about 8 to 11 days). After at least about 8 days, the resulting cells can be cultured in the presence of an hepatocyte growth factor (HGF) polypeptide, an insulin like growth factor (IGF) polypeptide, N—[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and GLP-1 for a period of time (e.g., about 10 to 30 days, about 12 to 30 days, about 14 to 30 days, about 10 to 25 days, about 14 to 25 days, or about 15 to 24 days) sufficient to result in a population of glucose-responsive, insulin-secreting cells. In some cases, iPS cells (e.g., human iPS cells) can be cultured in the presence of RA, FGF10, CYC, ILV, HGF, IGF, DAPT, and GLP-1 for a period of time (e.g., about 10 to 30 days, about 12 to 30 days, about 14 to 30 days, about 10 to 25 days, about 14 to 25 days, or about 15 to 24 days) sufficient to result in a population of glucose-responsive, insulin-secreting cells.
- An FGF10 polypeptide can have the amino acid sequence set forth in GenBank® GI No. 255090638. An HGF polypeptide can have the amino acid sequence set forth in GenBank® GI No. 188595715. A IGF polypeptide can have the amino acid sequence set forth in GenBank® GI No. 163659904. A GLP-1 polypeptide can have the amino acid sequence set forth in GenBank® Accession Numbers NM—002054.3 (e.g., GI No. 291190799).
- Any appropriate amount of these agents (or combination of agents) can be used to obtain glucose-responsive, insulin-secreting cells from iPS cells. For example, between about 1 μM and about 3 μM (e.g., about 2 μM) of RA, between about 25 ng/mL and about 75 ng/mL (e.g., about 50 ng/mL) of FGF10 polypeptide, between about 0.2 μM and about 0.3 μM (e.g., about 0.25 μM) of CYC, between about 200 nM and about 400 nM (e.g., about 300 nM) of ILV, between about 25 ng/mL and about 75 ng/mL (e.g., about 50 ng/mL) of HGF polypeptide, between about 25 ng/mL and about 75 ng/mL (e.g., about 50 ng/mL) of IGF polypeptide, between about 5 μM and about 15 μM (e.g., about 10 μM) of DAPT, between about 25 nM and about 75 nM (e.g., about 55 nM) of GLP-1 polypeptide can be used together or in various combinations with culture medium to obtain glucose-responsive, insulin-secreting cells from iPS cells.
- Any appropriate method can be used to determine whether or not cells formed from iPS cells are glucose-responsive, insulin-secreting cells. For example, a C-peptide release assay can be performed to confirm the formation of glucose-responsive, insulin-secreting cells.
- Once obtained, the glucose-responsive, insulin-secreting cells can be administered to a patient to treat, for example, diabetes (e.g.,
type 1 diabetes). For example, iPS-derived pancreatic endoderm cells or glucose-responsive islet-like cells can be transplanted into a human under a renal capsule, liver, fat pad, or subcutaneously. - The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
- Sternness factor-expressing lentiviral pSIN-CSGWdlNotI-derived transfer vectors were generated as described elsewhere (Nelson et al., Circulation, 120:408-416 (2009)). In brief, the packaging plasmid pEX-QV was engineered with H87Q mutation in the HIV-1 capsid region for increased transduction efficiency of purified infectious supernatants (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). HIV vectors were produced by transient transfection of 293T cells and titrated by immunostaining (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). Vectors expressed pluripotency factors from a spleen focus-forming virus (SFFV) promoter (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)).
- Human neonatal foreskin fibroblasts (BJ1) (ATCC#CRL-2522) and primary human cardiac fibroblasts (HCF) (ScienCell #6300) were seeded one day before infection in wells of 6 well plates with DMEM containing 10% FBS, Penicillin (100 U/mL) and Streptomycin (100 μg/mL) (Pen/Strep) (complete DMEM). Fibroblasts were infected with lentiviral vectors expressing OCT4, SOX2, KLF4, and c-MYC at a multiplicity of infection about 5 each. After 12 hours of viral infection, cells were fed with fresh complete DMEM. Vector-transduced cells were replated 4 days after infection at 5×104 cells per 100 mm dish on mitomycin-C treated SNL feeder cells in complete DMEM. Next day, the medium was replaced with the serum-free HEScGRO medium (Millipore #SCM020) supplemented with basic fibroblast growth factor (bFGF, 20 ng/mL; Peprotech). Cells were fed with fresh HEScGRO medium every two days. Putative iPS colonies, which began to appear 3-4 weeks after vector transduction, were picked based on size and human embryonic stem cell-like colony morphology, and expanded through dissociation with the cell dissociation buffer (Invitrogen #13151014). BJ1-derived iPS clones, BJ#SA and BJ#SD, were generated on SNL feeder cells. Established iPS clones were maintained in feeder-free condition.
- For feeder cell-free iPS generation and maintenance on Matrigel (BD Biosciences #354277)-coated plates, various commercially available stem cell media or their combinations were compared. Optimal results were obtained when iPS cells were maintained in a feeder cell-free medium, which contained HEScGRO with 25% of mTeSR1 medium (Stemcell Technologies #05850) and 20 ng/mL of bFGF (iPS medium). In order to generate feeder-cell free iPS clones from BJ and HCF fibroblasts, cells were transduced with pluripotency factor-expressing lentiviral vectors, 4 days after infection. The cells were re-plated at a density of 5×105 cells on a Matrigel-coated 100 mm dish. Medium was replaced with fresh iPS medium every two days. Putative iPS colonies were observed 1-2 weeks after vector transduction. iPS clones were picked based on morphology and size. iPS clones were expanded with cell dissociation buffer and passaged at a 1:2-1:8 split ratio every 3-7 days depending on cell density.
BJ# 1,HCF# 1, andHCF# 6 iPS clones were generated and maintained under feeder cell-free conditions. - RT-PCR analyses were performed using the primers indicated in Table 1.
-
TABLE 1 RT-PCR primer sequences for human genes analyzed for characterization of human iPS cells and differentiation into insulin-producing cells. SEQ SEQ ID ID Accession GI Gene Forward Sequence NO: Reverse Sequence NO: Number No.: OCT4 AGCGAACCAGTATCGAGAAC 1 TTACAGAACCACACTCGGAC 2 BC117435.1 109659099 SOX2 AGCTACAGCATGATGCAGGA 3 GGTCATGGAGTTGTACTGCA 4 BC013923.2 33869633 NANOG TGAACCTCAGCTACAAACAG 5 TGGTGGTAGGAAGAGTAAAG 6 AB093576.1 31338865 MYC ACTCTGAGGAGGAACAAGAA 7 TGGAGACGTGGCACCTCTT 8 BC000141 12652778 KLF4 TCTCAAGGCACACCTGCGAA 9 TAGTGCCTGGTCAGTTCATC 10 BC029923.1 20987475 hTERT TGTGCACCAACATCTACAAG 11 GCGTTCTTGGCTTTCAGGAT 12 AB085628.1 22759945 GDF3 AAATGTTTGTGTTGCGGTCA 13 TCTGGCACAGGTGTCTTCAG 14 AF263538.1 9652071 FOXA2 CTACGCCAACATGAACTCCA 15 AAGGGGAAGAGGTCCATGAT 16 AB028021.1 4958949 PDX1 CCCATGGATGAAGTCTACC 17 GTCCTCCTCCTTTTTCCAC 18 U30329.1 929922 NEUROG3 GTAGAAAGGATGACGCCTCAACC 19 TCAGTGCCAACTCGCTCTTAGG 20 BC069098.1 46575675 ISL-1 ATTTCCCTATGTGTTGGTTGCG 21 CGTTCTTGCTGAAGCCGATG 22 U07559.1 533418 NEUROD1 GAACGCAGAGGAGGACTCAC 23 GTGGAAGACATGGGAGCTGT 24 BT019731.1 54696327 NKX6.1 ACACGAGACCCACTTTTTCCG 25 TGCTGGACTTGTGCTTCTTCAAC 26 NM_006168.2 111120317 GLUT2 GCTACCGACAGCCTATTCTA 27 CAAGTCCCACTGACATGAAG 28 NM_000340.1 4557850 MaFA CTTCAGCAAGGAGGAGGTCATC 29 CTCGTATTTCTCCTTGTACAGGTCC 30 NM_201589.2 71274110 INS AGCCTTTGTGAACCAACACC 31 GCTGGTAGAGGGAGCAGATG 32 NM_000207.2 109148525 GCG AGGCAGACCCACTCAGTGA 33 AACAATGGCGACCTCTTCTG 34 BT006813.1 30582464 SST GTACTTCTTGGCAGAGCTGCTG 35 CAGAAGAAATTCTTGCAGCCAG 36 BC032625.1 21619155 GAPDH AGCCACATCGCTCAGACACC 37 GTACTCAGCGGCCAGCATCG 38 BT006893.1 30582624 - For immunostaining, iPS cells were fixed for 20 minutes at room temperature (RT) in 4% paraformaldehyde (PFA) in PBS, washed in PBS, and blocked for 30 minutes with 5% FBS in PBST (PBS with 0.1% Tween-20 (Sigma). Cells were stained with primary antibodies overnight at 4° C., rinsed by PBS, and incubated with
secondary antibodies 1 hour at RT (Martinez-Fernandez et al., Circ. Res., 105:648-656 (2009)). Cells at different stages of differentiation were fixed and stained with primary and secondary antibodies. Primary and secondary antibodies used for characterization of iPS and derived cells were: SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 (Millipore #SCR001), OCT4 (Cell Signaling Technology #2750), SOX2 (Cell Signaling Technology #2748), KLF4 (Abcam #ab26648), NANOG (Abcam #ab21624), mouse anti-SOX17 (R&D Systems #MAB1924), rabbit anti-HNF3 beta/FOXA2 (Millipore #07-633), rabbit anti-PDX1 (Santa Cruz Biotechnology #sc-25403), rabbit anti-NGN3 (Millipore #AB5684), rabbit anti-NEUROD1 (Abcam #16508), mouse anti-insulin (Sigma #12018), rabbit anti-C-peptide (Cell Signaling Technology #4593), rabbit anti-Insulin (Cell Signaling Technology #4590), mouse anti-proinsulin C-peptide (Millipore #CBL94), mouse anti-glucagon (Abcam #ab10988), MafA (Santa Cruz Biotechnology #sc-66958), and rabbit anti-somatostatin (Dako #A0566). Texas Red-conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-075-152), Texas Red conjugated donkey-anti-mouse IgG (Jackson Laboratories #715-075-151), FITC conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-095-152), and FITC conjugated donkey-anti-mouse IgG (Jackson Laboratories #715-095-151) were used as secondary antibodies. DAPI was used for counterstaining Stained cells were analyzed using confocal laser-scanning microscopy (Zeiss, LSM 510 confocal scanning laser system). Alkaline phosphatase staining was performed with an Alkaline Phosphatase Detection Kit (Millipore) as described elsewhere (Martinez-Fernandez et al., Circ. Res., 105:648-656 (2009)). - For spontaneous differentiation, iPS clones were dissociated using collagenase IV and plated on low adhesion plates in basal HEScGRO medium (SCM 021) without bFGF. Embryoid bodies (EBs) were cultured as suspension for 7-14 days and were adherent in knockout DMEM with 20% FBS for an additional 7-14 days. For immunofluorescence analysis, cells were fixed and stained (Martinez-Fernandez et al., Circ. Res., 105:648-656 (2009)). Primary antibodies were: FOXA2 for endoderm, beta III tubulin (Abcam #41489) for ectoderm and CD31 (Santa Cruz Biotechnology #SC1506) for mesoderm, while Texas Red-conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-075-152) and FITC-conjugated donkey-anti-chicken IgG (Jackson Laboratories #703-095-155) were used as secondary antibodies.
- A teratoma formation assay was performed using an approved protocol. iPS cells were injected subcutaneously into the flank skin of 2-3 months old athymic nude mice at 500,000 cells/50 μL medium. Tumor growth was observed 4-6 weeks after injection. Tumors were processed by rapid freezing, cut as cryosections, and stained with hematoxylin and eosin dyes (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)).
- At the first step of differentiation, human iPS clones were treated with 25 ng/mL Wnt3a (R&D systems) and 100 ng/mL activin A (Peprotech) in advanced RPMI (A-RPMI, Invitrogen) with Pen/Strep for 1 day, followed by treatment with 100 ng/mL activin A in A-RPMI supplemented with 0.2% FBS (Invitrogen) for two days. At step two, cells were cultured in A-RPMI medium containing 50 ng/mL FGF10 (R&D systems), 0.25 μM KAAD-cyclopamine (CYC), and 2% FBS for 2 days. Cells were then treated with 50 ng/mL FGF10, 0.25 μM CYC, and 2 μM all-trans Retinoic Acid (RA) (Sigma) in DMEM (Invitrogen) supplemented with Pen/Strep, 1×B27 supplement (Invitrogen) for 4 days at step three. Cells were then cultured in the presence of 50 ng/mL FGF10, 300 nM ILV (Axxora), and 55 nM GLP-1 (Sigma) in DMEM with 1×B27 for 4 days at step four. In step five, differentiation medium included 10 μM DAPT (Sigma) and 55 nM GLP-1 in DMEM with 1×B27 and culture lasted 6 days. Finally, in step six, cells were cultured in the presence of 50 ng/mL hepatocyte growth factor (HGF) (R&D systems), 50 ng/mL Insulin-like growth factor 1 (IGF-1) (R&D systems) and 55 nM GLP-1 in CMRL-1066 medium (Invitrogen) with 1×B27 for 6 days. All experiments were repeated more than three times.
- A C-peptide release assay was performed by incubating derived islet-like clusters in Krebs-Ringer solution with bicarbonate and HEPES (KRBH; 129 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 5 mM NaHCO3, 10 mM HEPES, and 0.1% (wt/vol) BSA). Initial incubation was performed in KRBH buffer containing 2.5 mM D-glucose for 1 hour at 37° C., followed by incubation in glucose stimulation conditions containing 10 mM D-glucose and 27.7 mM D-glucose for 1 hour at 37° C. C-peptide or proinsulin levels were determined using an ultrasensitive C-peptide/proinsulin ELISA kit (Alpco Diagnostics).
- Single-cell suspensions of differentiating human iPS cells were obtained by dissociating cells with TrypLE (Invitrogen #12605) at 37° C. Intracellular antibody staining was performed using BD Cytofix/Cytoperm and BD Perm/Wash buffer. The following antibodies were used: mouse-anti-SOX17 (R&D Systems #MAB1924), guinea pig-anti-insulin (Dako Cytomation #A0564), goat-anti-mouse Alexa Fluor 488 (Invitrogen #A11029), and donkey-anti-guinea pig-Cy5 (Jackson ImmunoResearch Laboratories #706-176-148). Flow cytometry data were acquired on a Becton Dickinson FACS Calibur and analyzed using Flowjo software.
- Reprogramming of Human Fibroblasts with Sternness Factors
- HCF and BJ fibroblasts were infected with lentiviral vectors encoding OCT4, SOX2, KLF4, and c-MYC, and transduced cells re-seeded on mitomycin C-inactivated SNL feeder cells or replated on matrigel-coated plates to ensure feeder cell-free culture. On SNL feeder cells, reprogrammed colonies, characterized by distinct morphology of sharp-edged, flat, tightly-packed structures were visible 2 weeks after viral vector transduction (
FIG. 1A ). Under feeder cell-free conditions, similar colonies were observed as early asday 6 after viral vector infection (FIG. 1B ) with clusters of 30-50 cells expressing alkaline phosphatase (FIG. 2 ). The number of expandable colonies formed on feeders or on non-feeders plates were 5 to 20 clones per 105 transduced cells. Identified colonies were picked at 3 to 6 weeks to allow sufficient growth after viral transduction. - Over 3-9 months or 30-90 passages, putative iPS clones cultured under feeder cell-free and serum-free conditions exhibited a distinctive morphology similar to that of human ES cells over long-term culture (
FIG. 1C ). Tested clones expressed high levels of alkaline phosphatase (FIG. 1D ). Immunocytochemistry revealed expression of SSEA-4, TRA-1-60, TRA-1-81, OCT4, SOX2, KLF4, and NANOG in multiple clones (FIGS. 3A and 3B ). These clones were negative for SSEA-1 expression. RT-PCR of total cellular RNA further demonstrated induction of endogenous pluripotency-associated genes, including OCT4, SOX2, GDF3, telomerase (TERT), KLF4, c-MYC, and NANOG (FIG. 3C ). No notable difference was observed between clones isolated from BJ and HCF fibroblasts, or with clones isolated with SNL feeder cells. Morphology and expression of stem cell genes indicated establishment of human iPS clones from fibroblasts, and maintenance in an undifferentiated state under feeder-free conditions. - Human iPS clones were assayed, through embryoid body (EB) formation, for the ability to spontaneously differentiate in vitro into cells of the three embryonic germ layers. All iPS clones assayed formed EBs (
FIG. 4A ). After variable times in suspension, EBs were transferred to adherent conditions and further cultured. Immunostaining for lineage-specific markers confirmed that human iPS cells differentiated into ectoderm (beta-III tubulin,FIG. 4A ), endoderm (FOXA2,FIG. 4A ) and mesoderm (CD31,FIG. 4A ) lineages. Moreover, in vivo human iPS cells formed teratomas after injection into nude mice. These subcutaneous tumors enlarged up to 1 cm in diameter within 3 months post-injection (FIG. 4B ). Histology revealed diverse cell types, including glandular epithelium (ectoderm,FIG. 4C ), adipose (endoderm,FIG. 4C ) and muscular (mesoderm,FIG. 4C ) tissues. Thus, human iPS cells generated from BJ and HCF fibroblasts exhibit hallmark properties of pluripotent stem cells. - Differentiation of Human iPS Cells into Pancreatic Endoderm
- Normal differentiation of a pluripotent precursor into lineage-specified pancreatic endodermal tissue encompasses multiple steps. Here, verified iPS cells were treated first with activin A and Wnt3a for generation of definitive endoderm cells, and then with FGF10 and CYC for derivation of gut tube endoderm (
FIG. 5A ). Derived cells were further treated with FGF10, RA, and CYC in the absence or presence of ILV for generation of pancreatic endoderm, followed by culture in HGF, IGF, and DAPT in the absence or presence of GLP-1 for generation of pancreatic hormone-expressing cells (FIG. 5A ). In this way, human iPS clones were induced to form definitive endoderm by treatment with activin A and Wnt3a initially for 1 day followed by culture in activin A and 2% FBS for 2 additional days. Immunostaining of treated cells revealed efficient SOX17 and FOXA2 induction, markers of definitive endoderm (FIG. 5B ). Similar results were observed with clones generated from human cardiac fibroblasts or foreskin (FIG. 6 ). Flow cytometry demonstrated that 92%, 72%, and 84% cells were positive for SOX17 in three distinct clones, respectively (FIGS. 5C and 6 ). Next, the efficiency of definitive endoderm transformation into pancreatic endoderm was evaluated. Initial attempts to generate pancreatic endoderm by stimulating definitive endoderm cells with FGF10 and CYC for two days, followed by FGF10, RA, and CYC stimulation resulted in cells with low levels of PDX1 expression (data not shown). ILV, which is described elsewhere (Chen et al., Nat. Chem. Biol., 5:258-265 (2009) and Borowiak et al., Cell Stem Cell, 4:348-358 (2009)), was included in the protocol. In the protocol, treatment of iPS-derived definitive endoderm cells with FGF10, RA, and CYC in the presence of ILV resulted in cells expressing PDX1, NEUROD1, and NGN3, markers of pancreatic endoderm (FIG. 5D ). Similar results were observed for iPS cells derived from human cardiac fibroblasts or foreskin (FIG. 7 ). These results demonstrate the successful induction of pancreatic endoderm from iPS-derived definitive endoderm. - To determine the expression of endocrine-specific transcription factors and pancreas-specific genes throughout differentiation, the gene expression pattern was analyzed at each stage of differentiation. RT-PCR detected high levels of FOXA2 expression after 3 days of differentiation, confirming induction of definitive endoderm cells (
FIG. 8A ). The expression of the endocrine progenitor-specific gene, NGN3, was observed from day 3 of differentiation, and the expression persisted throughout the differentiation process (FIG. 8A ). Expression of the islet specific gene, ISL-1, was also found from day 3, with expression levels increasing at later time points (FIG. 8A ). Moreover, PDX1 and NEUROD1 transcripts, which were found only after treatment with FGF10, RA, CYC, and ILV, further confirmed the generation of iPS-derived pancreatic endoderm cells upon differentiation (FIG. 8A ). To evaluate whether human iPS-derived pancreatic endoderm cells are capable of generating functional pancreatic islet-like cells, an additional step of differentiation was used. The iPS-derived pancreatic endoderm were initially treated with HGF, IGF, Exendin-4, and DAPT; however, resulting cells failed produce detectable C-peptide secretion (data not shown). GLP-1, which is described elsewhere (Buteau et al., Diabetes, 52:124-132 (2003)) was included. Following inclusion of GLP-1, RT-PCR revealed positive gene expression of pancreatic hormones, including insulin, glucagon (GCG), and somatostatin (SST), and islet cell-specific marker genes PDX1, NKX6.1, ISL1, and NEUROD1 and glucose transporter 2 (GLUT2) (FIG. 8A ). Conversely, to determine whether pluripotency genes were silenced during differentiation, RT-PCR analysis was performed for c-MYC, GDF3, hTERT, NANOG, SOX2, and KLF4. It was found that c-MYC, GDF3, hTERT, and NANOG gene expression levels gradually decreased during differentiation, while these gene transcripts were absent in the human pancreas (FIG. 8B ). SOX2 and KLF4 gene expression remained throughout iPS differentiation, in line with expression of these two genes in the human pancreas (FIG. 8B ). The targeted down-regulation of pluripotency genes along with sequential expression of pancreas-specific genes collectively indicated that human iPS cells are capable of undergoing guided differentiation in vitro into islet-like cells, with the observed combined expression of GLUT-2, NKX6.1, and NEUROD1 further suggesting derivation of tissue with properties of functional beta cells. - Differentiation of iPS Cells into Insulin-Secreting Islet-Like Progeny
- During treatment with RA, FGF10, CYC, and ILV, iPS-derived pancreatic endoderm cells started to form spheroid-like cell clusters, which reached maximum size and number following further maturation with HGF, IGF, DAPT, and GLP-1 (
FIG. 8C ). The three dimensional morphology resembled pancreatic islet-like clusters (Ramiya et al., Nat. Med., 6:278-282 (2000)), and selected clones yielded clusters (FIG. 8C ) strongly positive for C-peptide expression (FIG. 8D ). Importantly, even iPS-derived islet-like cells that did not organize into typical clusters also expressed insulin, C-peptide, and glucagon (FIG. 8E ). The presence of insulin/C-peptide co-expressing cells (FIG. 9A (i)) confirmed the potential for de novo insulin synthesis and excluded the possible artifact of insulin uptake from the media. Also, insulin-glucagon double positive cells were not observed, indicating that the expression pattern of iPS-derived hormone-expressing islet-like cells is consistent with normal pancreatic beta-cell development. Although few insulin and somatostatin double-positive cells were found (FIG. 9A(ii)), characteristic of immature islet cells, the results provided herein indicate successful differentiation of iPS cells into hormone-expressing islet-like cells. Indeed, similar to pancreatic beta cells, which co-express insulin and PDX1, the majority of the insulin-expressing cells exhibited nuclear-localized PDX1 signals (FIG. 9A (iii)). When the insulin-positive population was quantified by flow cytometry, 1.3%, 0.7%, and 0.8% of distinct clones-derived islet-like cells were insulin-positive (FIGS. 9B and 10 ). - Functional Response of iPS-Derived Islet-Like Clusters
- C-peptide secretion from iPS-derived islet-like clusters in response to glucose challenge, the critical physiological function of pancreatic beta cells, was analyzed. To determine whether islet-like cells are capable of C-peptide secretion in response to glucose induction, cells were exposed to increasing concentrations of glucose and secreted C-peptide was measured by ELISA. At extracellular glucose levels of 2.5 mM, that mimics a fasting condition, there was only marginal detection of the C-peptide signal (
FIG. 9C ). Raising glucose levels to 10 mM induced marked secretion of C-peptide by iPS-derived islet-like cells (FIG. 9C ). Further raising glucose levels to the supraphysiological 27.7 mM range, triggered an additional bolus of secreted C-peptide, reaching cumulatively the range of 72.0-236.1 pM (HCF# 1, three independent experiments,FIG. 9C ) or 12.1-50.9 pM (BJ#1). iPS-derived islet-like cells differentiated without ILV or GLP-1 failed to secrete C-peptide in response to glucose challenge (FIG. 9D ). Although clonal variation in responsiveness was observed, iPS-derived islet-like clusters were typically capable to secrete C-peptide in response to glucose stimulation. - Clinical grade peripheral blood hematopoietic progenitor cells (HPC) products from patients, who were deceased, were used. HPCs were harvested from patients following mobilization by injection with granulocyte-CSF for 5 days. Blood (10-20 L) was processed for HPC collection. PBMCs from healthy donors were obtained as described elsewhere (Noser et al., J. Virol., 80:7769-7774 (2006)).
- Pluripotency-associated factor-expressing lentiviral vectors, pSIN-OCT4, pSIN-SOX2, pSIN-KLF4, and pSIN-cMYC, were described elsewhere (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). These vectors were produced by transient transfection of 293T cells. Vector titers were determined by immunostaining (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)).
- iPSC Derivation
- HPCs and PBMCs were cultured overnight in StemSpan H3000 serum-free medium (StemCell Technologies), which contained only human-derived or recombinant human proteins, supplemented with StemSpan CC100 cytokine cocktail (StemCell Technologies). Cultures were then transduced with four sternness factor-expressing lentiviral vectors overnight. One third of the culture supernatants were carefully removed and replaced daily with H3000 growth medium supplemented with CC100 cytokine cocktail. At 3 days after vector infection, cells were transferred to Matrigel (BD Bioscience)-coated culture plates. Starting 5 days after vector infection, cells were maintained in HEScGRO medium (100 mL, Millipore) supplemented with mTeSR-1 maintenance media (25 mL, Stemcell Technologies) (Thatava et al., Gene Ther., 18:283-293 (2011)). Seven to ten days after vector infection, the reprogrammed cells began to form colonies with iPS morphology. At two to three weeks after vector infection, cultures were treated with Cell Dissociation Buffer (Invitrogen) for 5 to 10 minutes to help lift clones, and individual iPSC-like clones were carefully picked up by a P200 pipette and placed into Matrigel-coated wells in a 96-well plate. To prevent spontaneous differentiation, the iPSC culture medium was replaced daily, and differentiated cells in the cultures were manually removed with a pipette tip. As the clones grew, cultures were expanded into larger culture plates for further characterization. Clones were preserved using Xeno-FREEze™ Human Embryonic Stem Cell Freezing Medium (Millipore). A verified iPSC clone, HCF1, from primary human fibroblast (HCF) cells, was described elsewhere (Thatava et al., Gene Ther., 18:283-293 (2011)). Primary human keratinocytes and keratinocyte-derived iPSC clones were also used as controls.
- For immunostaining of iPSC, cells were fixed for 20 minutes at room temperature in 4% paraformaldehyde solution in PBS, washed several times in PBS, and blocked for 30 minutes in PBS with 5% fetal bovine serum. Cells were then stained with primary antibodies overnight at 4° C., rinsed by PBS, and incubated with secondary antibodies for 1 hour at room temperature. For immunostaining of differentiated cells, cells at different stages of differentiation were fixed and stained with primary and secondary antibodies. Primary antibodies used for characterization of iPSC and iPSC-derived cells were: SSEA-4 and TRA-1-60 (Millipore #SCR001), OCT4 (Cell Signaling Technology #2750), NANOG (Abcam #ab21624), mouse anti-SOX17 (R&D Systems #MAB1924), rabbit anti-HNF3 beta/FOXA2 (Millipore #07-633), rabbit anti-PDX1 (Santa Cruz Biotechnology#sc-25403), and mouse anti-insulin (Sigma #12018). Texas Red-conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-075-152), Texas Red-conjugated donkey-anti-mouse IgG (Jackson Laboratories #715-075-151), FITC-conjugated donkey-anti-rabbit IgG (Jackson Laboratories #711-095-152), and FITC-conjugated donkey-anti-mouse IgG (Jackson Laboratories #715-095-151) were used as secondary antibodies. DAPI was used for counter staining Stained cells were analyzed using confocal laser-scanning microscope (Zeiss, LSM 510 confocal scanning laser system).
- For spontaneous differentiation, iPSC clones were dissociated using collagenase IV for 30 minutes and plated on low adhesion plates in basal HEScGRO medium without bFGF. Embryoid bodies (EBs) were cultured as suspension for 7-10 days and adherent in DMEM with 20% FBS for additional 7-10 days. For immunofluorescence analysis, cells were fixed with 4% PFA for 20 minutes at room temperature. Immunostaining was performed as described above. Primary antibodies against FOXA2 for endoderm, beta-III tubulin (Abcam #41489) for ectoderm, and CD31 (Santa Cruz Biotechnology # SC1506) for mesoderm were used, while Texas Red-conjugated donkey anti-rabbit IgG (Jackson Laboratories #711-075-152), and FITC-conjugated donkey anti-chicken IgG (Jackson Laboratories #703-095-155) served as secondary antibodies.
- SCID-beige mice were anesthetized, and the kidney was externalized for iPS transplantation under the kidney capsule. A small incision was made in the kidney capsule, and a blunt needle was used to create a pocket under the kidney capsule. Following iPSC injection into the pocket, the kidney was placed back into the abdomen, and the incision closed with vicryl suture. Mice were maintained for 4 weeks and sacrificed for harvesting normal and iPS-transplanted kidneys. OTC-embedded frozen tissues were cryo-sectioned for H&E staining
- Differentiation of Derived iPS Cells into Insulin Producing Cells
- iPSC were differentiated into insulin-producing cells as reported elsewhere with several modifications (Thatava et al., Gene Ther., 18:283-293 (2011)). At the first step of differentiation, human iPSC clones were treated with 25 ng/mL Wnt3a (R&D systems) and 100 ng/mL activin A (Peprotech) in advanced RPMI (Invitrogen) with Pen/Strep for 1 day, followed by treatment with 100 ng/mL activin A in advanced RPMI supplemented with 0.2% fetal calf serum (FCS) (Invitrogen) for two days. At step two, cells were cultured in high glucose DMEM (Invitrogen), supplemented with 20% (v/v) advanced RPMI medium containing 50 ng/mL FGF10 (R&D systems), 0.25 μM KAAD-cyclopamine (CYC), and 2% FCS for 2 days. Cells were then treated with 50 ng/mL FGF10, 0.25 μM CYC, and 2 μM all-trans Retinoic Acid (RA) (Sigma) in high glucose DMEM (Invitrogen) supplemented with 20% advanced RPMI, Pen/Strep, 1×B27 supplement (Invitrogen) for 4 days at step three. Cells were then cultured in the presence of 50 ng/mL FGF10, 300 nM ILV (Axxora), and 55 nM GLP-1 (Sigma) in DMEM (high glucose) supplemented with 20% advanced RPMI and 1×B27 for 4 days at step four. In step five, differentiation medium included 10 μM DAPT (Sigma) and 55 nM GLP-1 in DMEM (high glucose) with 20% advanced RPMI and 1×B27 and culture lasted 6 days. Finally, in step six, cells were cultured in the presence of 50 ng/mL hepatocyte growth factor (HGF) (R&D systems), 50 ng/ml insulin-like growth factor 1 (IGF-1) (R&D systems), and 55 nM GLP-1 in CMRL-1066 medium (Invitrogen) with 1×B27 for 8 days. All differentiation experiments were performed in triplicate, and repeated at least two times.
- Total RNA was isolated using TRIzol (Invitrogen) and further purified using RNeasy Plus spin columns (QIAGEN). Turbo DNA-free DNase (Ambion, Austin, Tex.) was used to digest all genomic DNA that could lead to false positive gene expression results. The RNA quantity and purity was measured with a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, Del.), and the RNA integrity was determined using the Agilent 2100 Bioanalyzer (Santa Clara, Calif.). Microarray analysis was performed using the Affymetrix HG-U133 Plus2 GeneChip Array platform (Affymetrix, Santa Clara, Calif.). Data were preprocessed using standard in-house MicroArray Pre-Processing workflow, and hierarchical clustering was performed by Pearson Dissimilarity. To compare the transcriptome of blood-derived iPSCs, the data set of epidermal keratinocytes (HK, SW3, SW4 and SW8), two keratinocyte-derived iPSC clones (SW3 #b and SW4 #N1), and human fibroblast (FB)-derived iPSC clone HCF1 (Thatava et al., Gene Ther., 18:283-293 (2011)) were used. T-test was performed to analyze the significance of the changes (p<0.05) in the normalized gene expression levels between HK and iPSC clones, or between blood-derived iPSC clones and HK- and FB-derived iPSC clones. Heatmap Builder software (provided by Dr. Euan Ashley, Stanford School of Medicine) was used to generate a heatmap for the transcriptome data set. The registered GEO transcriptome database (GSM551202, human ES H9 cells; GSM452255, freshly isolated PBMC; GSM178554, mobilized HPCs) were used to analyze the similarities between blood-derived iPSC and human ES cells or non-reprogrammed PBMCs and HPCs.
- Cellular Reprogramming of HPCs and PBMCs into iPSCs
- HPCs and PBMCs were cultured overnight in a serum-free medium with CC100 cytokine cocktail (recombinant Flt-3, SCF, IL-3 and IL-6), and transduced with four stemness factor-expressing lentiviral vectors at an MOI of 5 each. When transduced cells were transferred to Matrigel-coated culture plates at day 3 post-infection, a subset of cells attached to the plate. At 1 to 2 weeks after vector transduction, small, reprogrammed colonies, characterized by the morphology of sharp-edged, flat and tightly-packed cells, were observed (
FIG. 11A ). No iPSC-like colony formation was observed in untransduced cells (FIG. 11A ). Individual iPSC-like colonies were picked based on their size and morphology at 2 to 3 weeks after viral transduction and expanded under feeder-free conditions. The number of iPS-like colonies, expanded without substantial spontaneous differentiation, was between 2 to 10 clones per 105 transduced cells (FIG. 11B ). HPC- and PBMC-derived iPS clones were capable of being cultured for 5 months after the initial vector infection (up to passage 50) without showing signs of replicative crisis. Immunocytochemistry revealed the expression of SSEA-4, TRA-1-60, OCT4, and NANOG in the blood-derived iPSC clones (FIG. 11B ). Long-term time-lapse imaging demonstrated efficient iPSC expansion under feeder-free and serum-free conditions, with a 23.7 hour average cell doubling time (FIG. 12A ). Frequent mitotic events were observed in derived iPSC colonies (FIG. 12B ), and the duration of mitotic events (from prophase to telophase) was approximately 60 minutes (FIGS. 12B and 12C ). - High-resolution electron microscope analysis was performed to determine the morphological differences between blood-derived iPSCs and verified fibroblast-derived iPSCs (HCF1) (Thatava et al., Gene Ther., 18:283-293 (2011)). Blood-derived iPSCs exhibited scant cytoplasm and globular-shaped immature mitochondria with unorganized cristae, which resembled those of fibroblast-derived iPS cells (
FIG. 13A ). In contrast, non-reprogrammed fibroblasts exhibited the cytoplasm densely packed with membrane-bound organelles (FIG. 13A , upper left panel) including mature mitochondria with well-developed cristae (FIG. 13A , upper right panel). In accordance with the cinemicrography analysis, frequent mitotic events were observed in blood-derived iPSCs cells (FIG. 13B ). One pair of centrioles—mother (arrowhead) and daughter (arrow) centrioles—were seen in a dividing cell at anaphase (FIG. 13B , lower right panel). - Using a microarray representing the genome-wide transcriptome, the global gene-expression patterns in HPC- and PBMC-derived iPSC clones were determined, which were then compared with those of fibroblast (FB)- and epidermal keratinocytes (HK)-derived iPSCs. Transcriptome data from non-reprogrammed HK cells were also used as somatic cell controls. The dendrogram of unsupervised one-way hierarchical clustering analysis demonstrated that blood-derived iPSCs clustered closely with other iPSCs from different cell sources and were distinct from non-reprogrammed HK cells (
FIG. 14A ). In accordance with this observation, the global gene-expression patterns of blood-derived iPSCs were more similar to those in human ES H9 cells and HK-derived iPSCs, rather than non-reprogrammed HSCs or PBMCs (FIG. 14B ). Similar to HK- and FB-derived iPSC clones, expression of pluripotency-associated genes, such as OCT4, SOX2, NANOG, LIN28, and TERT, were markedly up-regulated in HPC- and PBMC-derived iPSC clones (FIG. 14C ). When the top 100 differentially expressed genes between blood-derived iPSC clones and non-reprogrammed HK cells were analyzed and used to generate heatmaps including FB- and HK-derived iPS cells, the gene expression patterns of blood-derived iPSCs were nearly identical to those of iPSCs derived from FB and HK cells. Among the 200 differentially expressed genes (100 highest and 100 lowest), notable differences in gene expression profiles were only found in XIST (with three probes,FIG. 14D , upper panel), USP9Y, EIF1AY, DDX3Y, and RPS4Y1 (FIG. 14D , lower panel) in two HK-derived iPSC clones (SW3 #b and SW3 #NI). XIST is on the X chromosome and XIST RNA plays a major role in silencing one of the pair of X chromosomes in female cells (Nagano and Fraser, Cell, 145:178-181 (2011)), while USP9Y, EIF1AY, DDX3Y, and RPS4Y1 are Y-linked genes. Since HK and HK-derived iPSC clones were from female patients, while HCF1, HPC-A1, PBMC-S1 and PBMC-S2 were from male patients, the observed variations in X- and Y-linked genes between blood- and non-blood-derived iPSC clones were likely due to the difference in gender of these iPSC clones. - HPC- and PBMC-derived iPSC clones were assayed for the ability to spontaneously differentiate in vitro into cells of three embryonic germ layers through embryoid body (EB) formation. All the iPSC clones assayed formed EBs. After 7 to 10 days in suspension, EBs were transferred to a Matrigel-coated plate, and spontaneously differentiated cells were expanded under adherent conditions. Immunostaining for lineage-specific markers revealed that blood-derived iPSCs differentiated into cells of three germ layers including beta-III tubulin-positive ectoderm, FOXA2-positive endoderm, and CD31-positive mesoderm cells (
FIG. 15A ). - In Vivo Multilineage Differentiation of Blood-Derived iPSCs
- To assess the multilineage differentiation capacity of iPSCs in vivo, blood-derived iPSCs were transplanted under the kidney capsule of SCID-beige mice. Following transplantation of 1 million cells, iPSCs formed cystic tumors within 4 weeks (
FIG. 13B ). Upon gross inspection, iPSC-derived tumors demonstrated a complex cellular architecture with prominent vascularization and nonvascularized solid tissues. Histological analysis revealed iPSC differentiation into endoderm lineages composed of glandular-like tissue, mesoderm lineages indicated by muscle-like tissue and ectoderm lineages denoted by neural rosette-like structures (FIG. 15B ), which verified the multi-lineage differentiation capability of blood-derived iPSCs. - Generation of Insulin Producing Cells from iPSCs Through Guided Differentiation
- The pancreatic differentiation potentials of blood-derived iPSCs was examined. A guided iPSC differentiation protocol with indolactam V (ILV) and GLP-1 was used as set forth above. Blood-derived iPSC clones were first stimulated with actin A and Wnt3a to form definitive endoderm cells. Immunostaining revealed the efficient induction of definitive endoderm markers SOX17 and FOXA2 in iPSC-derived cells at
day 5 of differentiation (FIG. 13C ). Derived definitive endoderm cells were further differentiated in DMEM/advanced RPMI medium containing FGF10, CYC, and 2% FBS (v/v) for 2 days, and maintained in high glucose DMEM/advanced RPMI medium supplemented with FGF10, CYC, RA, and 1×B27 for an additional 4 days. Cells were then cultured in the presence of FGF10, ILV, GLP-1, and 1×B27 in DMEM/advanced RPMI medium for 4 days. After this step, derived cells expressed pancreatic endoderm markers, PDX1 and NKX6.1 (FIG. 15D ). Further differentiation of iPSC-derived pancreatic endoderm cells was performed in DMEM/advanced RPMI medium supplemented with DAPT, GLP-1, and 1×B27 for 6 days, followed by the final maturation step in the CMRL-1066 medium containing HGF, IGF-1, GLP-1, and 1×B27 for an additional 8 days. Insulin-positive iPSC progeny were sporadically detected (FIG. 15D ). High levels of intracellular C-peptide (230-320 pM), a byproduct of proinsulin processing during insulin secretion, were also detected in the final differentiation stage iPSC progeny by C-Peptide ELISA. These results demonstrate successful differentiation of blood-derived iPSCs into insulin-expressing cells in vitro. - The results provided herein demonstrate the feasibility of iPSC derivation from GMP-grade mobilized HPCs and unmobilized PBMCs. The use of HPCs and PBMCs enabled time-effective iPSC derivation, as the cells did not require long-term expansion before reprogramming. Moreover, apart from minor differences in global gene expression profiles (
FIG. 14 ), blood-derived iPSCs were basically indistinguishable from iPSCs from other cell sources. Considering that many institutes/hospitals already have FDA-approved GMP facility for autologous HPC processing, HPCs and PBMCs can be used as described herein as ideal somatic cell sources for clinical-grade iPSC derivation. - The results provided herein also demonstrate the feasibility of generating insulin-producing cells from blood-derived iPSCs. In contrast to skin biopsies, which involve an invasive procedure, the use of blood cells allows minimally invasive tissue procurement for iPSC derivation. Since diabetic patients often experience poor wound healing, the minimally invasive iPSC derivation from blood cell sources would be particularly advantageous for the generation of clinical-grade iPSCs from diabetic patients.
- Skin specimens from surgical pathology from nondiabetic and
type 2 diabetic (T2D) individuals were enzymatically processed. Using sterile techniques, skin samples were incubated overnight at 4° C. in dispase (25 U/mL) to cleave epidermis from dermis. The epidermal layer was then placed into a recombinant trypsin/EDTA solution (Invitrogen, Carlsbad, Calif.,) and incubated for 30 min at 37° C. Trypsin/EDTA was neutralized with a trypsin inhibitor (Invitrogen, Carlsbad, Calif.), and epidermal pieces were pipetted to release epidermal cells. The suspension was then passed through a 70 μm cell strainer and pelleted. Cell viability was determined by the trypan blue exclusion method. Cells were seeded in a plate coated with an animal component-free (ACF) coating matrix (Invitrogen). Selective trypsinization removed fibroblasts at about 6 minutes, while human keratinocytes (HK) were dissociated at about 20 minutes. HK cell populations were then grown in EpiLife Medium and S7 growth supplement (Invitrogen, Carlsbad, Calif.) in 5% CO2 and 95% air at 37° C. HK cells were maintained semi-confluent in low calcium media. - Lentiviral vectors, pSIN-OCT4, pSIN-SOX2, pSIN-KLF4, and pSIN-cMYC, were manufactured as described elsewhere to express pluripotency factors from an internal spleen focus-forming virus (SFFV) promoter (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). HIV vectors were produced by transient transfection of 293T cells. To minimize calcium-mediated differentiation of HK cells during vector infection, lentiviral vectors were concentrated by ultracentrifugation and re-suspended in PBS (Sakuma et al., Hum. Gene Ther., 21:1665-1673 (2010)). Lentiviral titers were determined by immunostaining (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). Human HK cells were grown in vitro in ACF EpiLife Medium in a matrix-coated plate. Cultures were transduced overnight with human OCT4, SOX2, KLF4, and cMYC expressing lentiviral vectors (Nelson et al., Clin. Transl. Sci., 2:118-126 (2009)). Culture supernatants were replaced daily with ACF media. At 4 days after vector infection, media was changed to HEScGRO medium (100 mL, Millipore, Billerica, Mass.) supplemented with mTeSR-1 maintenance media (25 mL, Stemcell Technologies, Vancouver, BC, Canada) (Thatava et al., Gene Ther., 18:283-293 (2011)). One to two weeks after vector infection, reprogrammed cells began to form colonies displaying stem cell morphology (Thatava et al., Gene Ther., 18:283-293 (2011)). At three to four weeks after vector infection, cultures were treated with Cell Dissociation Buffer (Invitrogen, Carlsbad, Calif.) for 5 to 10 minutes to help lift clones picked by a P200 pipette, and placed in BD Matrigel (BD Biosciences, San Jose, Calif.) coated 96-well plates. To prevent spontaneous differentiation, the iPS culture medium was replaced daily and differentiated cells in cultures manually removed. As clones grew, cultures were expanded into larger culture plates for further characterization. iPS clones were preserved using Xeno-FREEze™ Human Embryonic Stem Cell Freezing Medium (Millipore, Billerica, Mass.). For spontaneous differentiation, iPS clones were dissociated using collagenase IV (Stemcell Technologies) for 30 minutes and plated on low adhesion plates in basal HEScGRO medium without bFGF. Embryoid bodies (EBs) were cultured as suspensions for 7-14 days, and grown adherent in DMEM with 20% FBS for additional 7-14 days.
- Differentiation of iPS Cells into Insulin Producing Cells
- iPS clones were treated with 25 ng/mL Wnt3a (R&D systems) and 100 ng/mL activin A (Peprotech) in advanced RPMI (Invitrogen) with Pen/Strep for 1 day, followed by treatment with 100 ng/mL activin A in advanced RPMI supplemented with 0.2% fetal calf serum (FCS) (Invitrogen) for two days. Next, cells were cultured in high glucose DMEM (Invitrogen), supplemented with 20% (v/v) advanced RPMI medium containing 50 ng/mL FGF10 (R&D systems), 0.25 μM KAAD-cyclopamine (CYC), and 2% FCS for 2 days. Cells were then treated with 50 ng/mL FGF10, 0.25 μM CYC, and 2 μM all-trans Retinoic Acid (RA) (Sigma) in high glucose DMEM (Invitrogen) supplemented with 20% advanced RPMI, Pen/Strep, 1×B27 supplement (Invitrogen) for 4 days. Cells were then cultured in 50 ng/mL FGF10, 300 nM ILV (Axxora), and 55 nM GLP-1 (Sigma) in DMEM (high glucose) supplemented with 20% advanced RPMI and 1×B27 for 4 days. Differentiation medium including 10 μM DAPT (Sigma) and 55 nM GLP-1 in DMEM (high glucose) with 20% advanced-RPMI and 1×B27 was used to culture cells for the next 6 days. Finally, cells were cultured in 50 ng/mL hepatocyte growth factor (HGF) (R&D systems), 50 ng/mL insulin-like growth factor 1 (IGF-1) (R&D systems), and 55 nM GLP-1 in CMRL-1066 medium (Invitrogen) with 1×B27 for 8 days.
- For immunostaining, iPS cells were fixed for 20 minutes at room temperature in 4% paraformaldehyde (PFA), washed in PBS, and blocked for 30 minutes in PBST (PBS with 0.1% Tween-20 (Sigma) and 5% FBS). Cells were stained with primary antibodies overnight at 4° C., rinsed by PBS, and incubated with secondary antibodies for 1 hour at room temperature. Separately, cells at different stages of differentiation were fixed and stained with primary and secondary antibodies. Primary and secondary antibodies used for characterization were: SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 (Millipore #SCR001), OCT4 (Cell Signaling Technology #2750), SOX2 (Cell Signaling Technology #2748), KLF4 (Abcam #ab26648), NANOG (Abcam #ab21624), anti-SOX17 (R&D Systems #MAB1924), anti-HNF3 beta/FOXA2 (Millipore #07-633), anti-PDX1 (Santa Cruz Biotechnology#sc-25403), and anti-insulin (Sigma #12018). Texas Red-conjugated anti-rabbit IgG (Jackson Laboratories #711-075-152), Texas Red-conjugated anti-mouse IgG (Jackson Laboratories #715-075-151), FITC-conjugated anti-rabbit IgG (Jackson Laboratories #711-095-152), and FITC-conjugated anti-mouse IgG (Jackson Laboratories #715-095-151) were used as secondary antibodies. DAPI was used to counter-stain nuclei. Stained cells were analyzed using confocal laser-scanning microscopy (Zeiss, LSM 510 confocal scanning laser system). Alkaline phosphatase staining was performed with an Alkaline Phosphatase Detection Kit (Millipore). Antibodies FOXA2 for endoderm, beta III tubulin (Abcam #41489) for ectoderm and CD31 (Santa Cruz Biotechnology # SC1506) for mesoderm were used to immunostain embryoid body-derived cells.
- SCID-beige mice were anesthetized, and the kidney exposed for iPS transplantation under the kidney capsule. To this end, a small incision was made in the kidney capsule, and a blunt needle was used to create a pocket under the kidney capsule. Following iPS cell injection, the kidney was placed back into the abdomen, and the incision closed. Mice were maintained for 4 weeks and sacrificed for harvesting normal and iPS-transplanted kidneys. OTC-embedded frozen tissues were cryo-sectioned for H&E staining
- For amplification of mitochondrial DNA, mitochondria-specific primer pairs (CYTB, CCTAGCCATGCACTACTCACCAGACGCCT (SEQ ID NO:39), CTGTCTACTGAGTAGCCTCCTCAGATTC (SEQ ID NO:40); and NADH, TCACCAAAGAGCCCCTAAAACCCGCCACATCTA (SEQ ID NO:41), TAAGGGTGGAGAGGTTAAAGGAGC (SEQ ID NO:42)) were used. For RT-PCR analysis, total RNA was isolated using TRIzol (Invitrogen), and reverse transcription was performed with oligo (dT) primer using RNA to cDNA EcoDry (Clontech). Platinum Taq DNA polymerase (Invitrogen) and primer pairs for TERT (TGTGCACCAACATCTACAAG (SEQ ID NO:43), GCGTTCTTGGCTTTCAGGAT (SEQ ID NO:44)), INS (AGCCTTTGTGAACCAACACC (SEQ ID NO:45), GCTGGTAGAGGGAGCAGATG (SEQ ID NO:46)), SST (GTACTTCTTGGCAGAGCTGCTG (SEQ ID NO:47), CAGAAGAAATTCTTGCAGCCAG (SEQ ID NO:48)), GCG (AGGCAGACCCACTCAGTGA (SEQ ID NO:49), AACAATGGCGACCTCTTCTG (SEQ ID NO:50)), GLUT2 (GCTACCGACAGCCTATTCTA (SEQ ID NO:51), CAAGTCCCACTGACATGAAG (SEQ ID NO:52)), and α-tubulin (AAGAAGTCCAAGCTGGAGTTC (SEQ ID NO:53), GTTGGTCTGGAATTCTGTCAG (SEQ ID NO:54)) were used for the reaction. Separately, total RNA was isolated using TRIzol (Invitrogen) and further purified using RNeasy Plus spin columns (QIAGEN). Turbo DNA-free DNase (Ambion, Austin, Tex.) was used to digest all genomic DNA that could lead to false positive gene expression results. RNA quantity and purity were measured with a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, Del.), and RNA integrity was determined using the Agilent 2100 Bioanalyzer (Santa Clara, Calif.).
- Microarray analysis was performed using the Affymetrix HG-U133 Plus2 GeneChip Array platform (Affymetrix, Santa Clara, Calif.). Data were preprocessed using MicroArray Pre-Processing workflow, and hierarchical clustering was performed by Pearson Dissimilarity. For comparison of transcriptome data between pre- and post-reprogramming, the data set of parental HK cells from three patients (SW3, SW4 and SW8) were compared with those of three iPS clones from the same patients (SW3 #B, SW4 #N1, and SW8 #20I). Student's t-test was performed to assess significance (p<0.05) in normalized gene expression levels between HK and HK-derived iPS clones. The Heatmap Builder software (provided by Dr. Euan Ashley, Stanford University) was used to generate the heatmap for the transcriptome data set. Enrichment analysis was also performed to match gene IDs in functional ontologies. The registered GEO transcriptome information (GSM551202, human ES H9 cell transcriptome) was used as reference.
- Total genomic DNA was isolated from patient-derived HK and iPS cells using QIAGEN DNeasy Blood & Tissue Kit. Telomere length was determined using TeloTAGGG telomere length assay (Roche). Genomic DNA digestion, Southern blotting, and chemiluminescence detection was performed as per established protocols. Densitometric analysis was performed on Adobe Photoshop, and terminal restriction fragment lengths were determined by Σ(ODi)/Σ(ODi/L), where ODi and L were the optical density and length of fragment, respectively.
- Lentiviral vectors encoding human OCT4, SOX2, KLF4, and c-MYC, at an approximate multiplicity of infection of 5 each, transduced early passage human keratinocytes (HK cells) derived from 56 to 78 year-old individuals with or without T2D. Under serum-free and feeder-free conditions, within 1 to 2 weeks after viral vector infection, small reprogrammed colonies, characterized by a sharp-edged, flat, tightly-packed morphology, were apparent (
FIG. 16A ). Individual colonies were picked based on size and morphology at 3 to 5 weeks after viral transduction, and expanded. Structurally derived clones resembled human ES or fibroblast-derived iPS cells and expressed high levels of the stemness marker alkaline phosphatase (FIG. 16B ). Immunocytochemistry further validated robust expression of diverse pluripotency markers, including SSEA-4, TRA-1-60, TRA-1-81, OCT4, SOX2, KLF4, and NANOG in HK-derived iPS clones regardless of patient age and status of diabetes (FIG. 16C ). The obtained yield was 2 to 10 expandable clones per 105 transduced cells with maintained pluripotent markers and absence of replicative crisis even at 7 months post-initial vector infection (up to passage 60). - HK-derived iPS clones from diabetic and non-diabetic patients spontaneously differentiated in vitro into cells of all three germ layers within embryoid body (EB) formations (
FIG. 17 ). In line with acquired pluripotency, HK-derived iPS cells differentiated into ectoderm (beta-III tubulin), endoderm (FOXA2), and mesoderm (CD31) as detected by immunostaining for lineage-specific markers (FIG. 17A ). Clonal, rather than inter-patient, variations in differentiation propensities was observed within the tested cohort (FIG. 17A ). Moreover, in vivo HK-derived iPS cells transplanted under the kidney capsule of SCID-beige mice at a dose of 1 million cells gave rise to 1-2 cm outgrowth within 4 weeks (FIG. 17B ). Tissue histology revealed iPS differentiation into mesoderm lineages indicated by muscle and adipocytes (FIG. 17C ), ectoderm lineages denoted by neuroepithelium-like tissues (FIG. 17C ), and endoderm lineages composed of glandular tissue (FIG. 17C ). These data document multilineage propensity of HK-derived iPS cells from both diabetic and non-diabetic patients across tested age groups. - Unbiased scan of the genome-wide transcriptome revealed distinct global gene-expression patterns in parental HK versus HK-derived iPS clones (
FIG. 18 ). The dendrogram of unsupervised one-way hierarchical clustering analysis demonstrated that HK-derived iPS cells from different patients clustered together, and branched out from parental origin (FIG. 18A ). Consistent with acquisition of a pluripotent transcriptome, gene expression patterns of HK-derived iPS cells were overall similar to those of human ES H9 cells, and different from parental counterparts (FIG. 18B ). Induction of key pluripotency genes, such as OCT4, SOX2, NANOG, LIN28, telomerase (TERT), DPPA4, and PODXL, were also evident in iPS clones (FIG. 18C ). Further analysis revealed upon reprogramming significantly up-regulated proto-oncogenes (N-MYC and KIT), pluripotency-maintenance factor FGF-2, and the receptor for FGF-2 (FGFR1), whereas cytoskeletal and keratin-encoding genes were down-regulated across HK-derived iPS clones (FIG. 18D ). Similar to ES cells, which are known to express minimal levels of MHC class I genes, HK-derived iPS cells exhibited marked down-regulation of these genes (FIG. 18E ). Bioinformatic analysis of transcriptome data identified pathways involved in epithelial-to-mesenchymal transition and cytoskeletal remodeling as most significantly affected networks in response to reprogramming of HK cells, in line with genuine redirection of cell fate. No notable difference was observed in the transcriptome of iPS clones from non-diabetic and diabetic patients. - Electron microscopy demonstrated marked difference in the size of derived iPS compared to parental HK (
FIG. 19 ). Parental HK cells were 25 to 40 μm in diameter, while derived iPS cells were 10 to 15 μm, characterized by scant cytoplasm and regularly condensed chromatin (FIG. 19A ) with frequent mitotic events (FIG. 19B ). The cytosol of HK cells was densely packed with membrane-bound organelles (FIG. 19C , left panel) and keratin intermediate filaments. In sharp contrast, widely distributed, relatively poorly developed endoplasmic reticulum and Golgi stacks were found in iPS clones (FIG. 19C , right panel). In HK cells, mitochondria appeared mainly tubular-shaped and showed well-developed cristae. In contrast, mostly globular immature mitochondrial remnants, characterized by unorganized cristae, were found in HK-derived iPS cells (FIG. 19D ) as in verified fibroblast-derived iPS clones (FIG. 19A ). No notable difference was observed in morphologies of mitochondria between iPS clones from non-diabetic and diabetic patients. - The copy number of mitochondrial DNA before and after reprogramming revealed a 30 to 60% reduction in the abundance of mitochondrial DNA in iPS compared to HK cells (
FIG. 20A ). Immunostaining with mitochondrial probes detected mitochondria-specific signals in individual iPS cells (FIGS. 20B and 20C ) and no significant changes in expression of nuclear-encoded mitochondrial biogenesis factors (FIG. 20D ). Selected genes involved in the TCA cycle, such as ACO2, SDHA, and FH, were down-regulated by nuclear reprogramming (FIG. 20E ). Transcriptome analysis further revealed that genes encoding the mitochondrial/oxidative stress response pathway are highly expressed in HK cells from elderly patients, yet markedly down-regulated in derived iPS cells (FIG. 20F ). Reduced transcription following reprogramming was particularly evident in major antioxidant enzymes (Finkel et al., Nature, 408:239-247 (2000)), such as catalase CAT and GPX1 (FIG. 20F ), suggesting reversal of cellular markers of senescence. - RT-PCR verified increased levels of TERT-specific transcripts in HK-derived iPS cells (
FIG. 21A ). In fact, the telomere restriction fragment (TRF) assay further demonstrated that HK-derived iPS cell lines display longer telomeres than parental HK cells (FIG. 21B ), indicating reprogramming induced telomere elongation regardless of diabetes status. Comparison of the transcriptome between three parental HK cells (SW3-HK, SW4-HK, and SW8-HK) and derived iPS clones (SW3 #B, SW4 #N1, and SW8 #20I) revealed significant down regulation (p<0.05) of senescence/apoptosis-associated genes (FIG. 21C ), including p16INK4a and p15INK4b in the p16INK4a/RB pathway, and p21CIP1 in the p19ARF/p53 pathway, and proapoptotic genes, including FAS, CASP8, CASP7, BAD, and TP53AIP1 (FIG. 21D ). These results indicated that successful cellular reprogramming of somatic cells from elderly patients is associated with suppression of key senescence- and apoptosis-related pathways in diabetic and non-diabetic patients. - HK-derived iPS clones were initially induced to form definitive endoderm by treatment with activin A and Wnt3a for 1 day followed by culture in activin A and 2% FBS for 4 additional days. Immunostaining revealed efficient induction in iPS-derived cells of SOX17 and FOXA2, markers of definitive endoderm (
FIG. 22A ). Similar results were observed with iPS clones generated from diabetic or non-diabetic patients. Next, the efficiency of definitive endoderm transformation into pancreatic endoderm was evaluated. As shown inFIG. 22B , prominent nucleus-localized signals for pancreatic endoderm, namely PDX1 and NKX6.1, were found in iPS-derived cells atday 14 of differentiation. No notable difference was found among iPS clones from non-diabetic and diabetic patients. These results indicate successful induction of pancreatic endoderm from HK-iPS-derived definitive endoderm. In the presence of DAPT and GLP-1, iPS-derived pancreatic endoderm cells were further differentiated for 6 days, followed by maturation in HGF, IGF-1, and GLP-1 for additional 8 days. Byday 24, insulin-producing cells were sporadically detected in iPS-derived progeny (FIG. 22C ), while more prominent immunostaining for insulin was evident after final maturation at day 29 (FIGS. 22D and 22E ). Similar to pancreatic beta cells which co-express insulin and PDX1, the majority of iPS-derived insulin-expressing cells exhibited nuclear-localized PDX1 signals (FIGS. 22D and 22E ). High levels of intracellular C-peptide (250-290 pM), a byproduct of proinsulin protein processing, were detected in iPS progeny by ELISA, while RT-PCR revealed positive gene expression of key pancreatic factors, including insulin (INS), glucagon (GCG), and somatostatin (SST), and glucose transporter 2 (GLUT2) (FIG. 22F ). Thus, HK-derived iPS cells differentiated into hormone-producing pancreatic islet-like cells. - These results demonstrate the feasibility and reproducibility of iPS cell derivation from elderly patients with T2D. Reprogramming of HK cells was accompanied by morphological changes, induction of endogenous pluripotency genes, telomere elongation, and down-regulation of senescence- and apoptosis-related genes. Notably, stepwise differentiation with ILV and GLP-1 achieved successfully differentiation of T2D-specific iPS cells into insulin-producing islet-like cells. Thus, reprogramming of keratinocytes from elderly T2D patients yields proficient iPS cells through induction of a senescence privileged status. T2D-specific iPS cells can provide a versatile platform for disease modeling and regenerative applications.
- It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims (23)
1. A method for obtaining a population of glucose-responsive, insulin-secreting cells from a population of induced pluripotent stem cells, wherein said method comprises culturing said induced pluripotent stem cells with medium comprising indolactam V and glucagon like peptide-1 under conditions to obtain said population of glucose-responsive, insulin-secreting cells.
2. The method of claim 1 , wherein said medium lacks serum.
3. The method of claim 1 , wherein said medium lacks feeder cells.
4. The method of claim 1 , wherein said medium lacks non-human feeder cells.
5. The method of claim 1 , wherein said induced pluripotent stem cells were obtained using one or more polypeptides or nucleic acid encoding said one or more polypeptides selected from the group consisting of a Oct3/4 polypeptide, a Sox family polypeptide, a Klf family polypeptide, a Myc family polypeptide, a Nanog polypeptide, and a Lin28 polypeptide.
6. The method of claim 1 , wherein said induced pluripotent stem cells were induced from somatic cells.
7. The method of claim 6 , wherein said somatic cells are selected from the group consisting of skin, lung, heart, stomach, brain, liver, blood, kidney, and muscle cells.
8. The method of claim 1 , wherein said induced pluripotent stem cells comprise exogenous nucleic acid encoding a human Oct4 polypeptide, a human Sox2 polypeptide, a human Klf4 polypeptide, and a human c-Myc polypeptide.
9. The method of claim 1 , wherein said glucose-responsive, insulin-secreting cells secrete greater than 50 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
10. The method of claim 1 , wherein said glucose-responsive, insulin-secreting cells secrete greater than 200 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
11. The method of claim 1 , wherein said glucose-responsive, insulin-secreting cells secrete between about 50 and 250 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
12. The method of claim 1 , wherein said glucose-responsive, insulin-secreting cells are human cells.
13. The method of claim 1 , wherein said medium comprises greater than 300 nM of indolactam V.
14. The method of claim 1 , wherein said medium comprises greater than 55 nM of glucagon like peptide-1.
15. The method of claim 1 , wherein said culturing is performed for more than 25 days.
16. A population of glucose-responsive, insulin-secreting cells derived from induced pluripotent stem cells, wherein said glucose-responsive, insulin-secreting cells are produced by culturing said induced pluripotent stem cells with medium comprising indolactam V and glucagon like peptide-1 under conditions that result in the formation of said population of glucose-responsive, insulin-secreting cells.
17. The population of claim 15 , wherein said medium comprises greater than 300 nM of indolactam V.
18. The population of claim 15 , wherein said medium comprises greater than 55 nM of glucagon like peptide-1.
19. The population of claim 15 , wherein said culturing is performed for more than 25 days.
20. The population of claim 15 , wherein said population of glucose-responsive, insulin-secreting cells secretes greater than 50 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
21. The population of claim 15 , wherein said population of glucose-responsive, insulin-secreting cells secrete greater than 200 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
22. The population of claim 15 , wherein said population of glucose-responsive, insulin-secreting cells secrete between about 50 and 250 pM of C peptide per hour when in culture in the presence of about 10 mM of glucose.
23. The population of claim 15 , wherein said glucose-responsive, insulin-secreting cells are human cells.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/553,064 US20130029416A1 (en) | 2011-07-22 | 2012-07-19 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
US14/340,161 US9932561B2 (en) | 2011-07-22 | 2014-07-24 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
US15/902,805 US20180187161A1 (en) | 2011-07-22 | 2018-02-22 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161510818P | 2011-07-22 | 2011-07-22 | |
US13/553,064 US20130029416A1 (en) | 2011-07-22 | 2012-07-19 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/340,161 Continuation US9932561B2 (en) | 2011-07-22 | 2014-07-24 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130029416A1 true US20130029416A1 (en) | 2013-01-31 |
Family
ID=47597523
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/553,064 Abandoned US20130029416A1 (en) | 2011-07-22 | 2012-07-19 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
US14/340,161 Active US9932561B2 (en) | 2011-07-22 | 2014-07-24 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
US15/902,805 Abandoned US20180187161A1 (en) | 2011-07-22 | 2018-02-22 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/340,161 Active US9932561B2 (en) | 2011-07-22 | 2014-07-24 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
US15/902,805 Abandoned US20180187161A1 (en) | 2011-07-22 | 2018-02-22 | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
Country Status (1)
Country | Link |
---|---|
US (3) | US20130029416A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014170488A1 (en) * | 2013-04-19 | 2014-10-23 | Universita' Degli Studi Di Milano | Methods for the conversion of somatic cells into pancreatic-hormone secreting cells |
US9932561B2 (en) | 2011-07-22 | 2018-04-03 | Mayo Foundation For Medical Education And Research | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
WO2018064460A1 (en) | 2016-09-30 | 2018-04-05 | Mayo Foundation For Medical Education And Research | Viral vectors for nuclear reprogramming |
WO2018094114A3 (en) * | 2016-11-16 | 2018-07-26 | Allele Biotechnology & Pharmaceuticals, Inc. | Induction of pancreatic beta cells by stem cell differentiation with rna |
US10047346B2 (en) | 2008-08-08 | 2018-08-14 | Mayo Foundation For Medical Education And Research | Method of treating heart tissue using induced pluripotent stem cells |
US10767164B2 (en) | 2017-03-30 | 2020-09-08 | The Research Foundation For The State University Of New York | Microenvironments for self-assembly of islet organoids from stem cells differentiation |
CN111836885A (en) * | 2018-02-09 | 2020-10-27 | 塞拉克西斯股份有限公司 | Pancreatic cells for treating diabetes and methods of producing the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018026723A1 (en) | 2016-08-01 | 2018-02-08 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Human induced pluripotent stem cells for high efficiency genetic engineering |
US20200190468A1 (en) * | 2017-04-26 | 2020-06-18 | Mayo Foundation For Medical Education And Research | Generating human cells capable of producing insulin in response to glucose or glp-1 |
WO2023070016A1 (en) * | 2021-10-20 | 2023-04-27 | Exir Llc | Compositions and methods for using individualized genome assemblies and induced pluripotent stem cell lines of nonhuman primates for pre-clinical evaluation |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0113118D0 (en) | 2001-05-31 | 2001-07-18 | Intercytex Ltd | Stem Cells |
EP2269461B1 (en) | 2004-07-30 | 2017-03-22 | Mayo Foundation For Medical Education And Research | Treating cardiovascular tissue |
ES2383813T3 (en) | 2004-09-08 | 2012-06-26 | Wisconsin Alumni Research Foundation | Embryonic stem cell culture and culture method |
EP1957643A2 (en) | 2005-11-11 | 2008-08-20 | The University Court Of The University of Edinburgh | Reprogramming and genetic modification of cells |
US8129187B2 (en) | 2005-12-13 | 2012-03-06 | Kyoto University | Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2 |
EP2206724A1 (en) | 2005-12-13 | 2010-07-14 | Kyoto University | Nuclear reprogramming factor |
US8278104B2 (en) | 2005-12-13 | 2012-10-02 | Kyoto University | Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2 |
WO2008066630A2 (en) | 2006-10-27 | 2008-06-05 | Caritas St. Elizabeth Medical Center Of Boston, Inc. | Methods for reprogramming adult somatic cells and uses thereof |
US20100172883A1 (en) | 2007-01-19 | 2010-07-08 | Bruneau Benoit Gaetan | Methods of generating cardiomyocytes |
WO2010017562A2 (en) | 2008-08-08 | 2010-02-11 | Mayo Foundation For Medical Education And Research | Induced pluripotent stem cells |
JP5846558B2 (en) | 2009-07-09 | 2016-01-20 | 国立大学法人京都大学 | Method for inducing differentiation from pluripotent stem cells to skeletal muscle progenitor cells |
US9404087B2 (en) | 2010-12-15 | 2016-08-02 | Kadimastem Ltd. | Insulin producing cells derived from pluripotent stem cells |
US20130029416A1 (en) | 2011-07-22 | 2013-01-31 | Tayaramma Thatava | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
US20170009210A1 (en) | 2014-02-05 | 2017-01-12 | Mayo Foundation For Medical Education And Research | Guided differentiation of induced pluripotent stem cells |
-
2012
- 2012-07-19 US US13/553,064 patent/US20130029416A1/en not_active Abandoned
-
2014
- 2014-07-24 US US14/340,161 patent/US9932561B2/en active Active
-
2018
- 2018-02-22 US US15/902,805 patent/US20180187161A1/en not_active Abandoned
Non-Patent Citations (5)
Title |
---|
Chen, S. et al., A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Ntaure Chemical Biology. Vol. 5, No. 4 (Apr 2009) pages 258-265, with 20 pages Supplementary Material. * |
Maehr et al., Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, Vol 106 No. 37 (15 September 2009) pages 15768-15773. * |
Tateishi et al., Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journal of Biological Chemistry, Vol. 283 No. 4 (14 November 2008) pages 31600-31607. * |
Thatava et al., Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Therapy, Vol. 18 (online 4 November 2010) pages 283-293. * |
Zawalich and Zawalich, Effects of glucose, exogenous insulin, and carbachol on c-peptide and insulin secretion from isolated perifused rat islets. The Journal of Biological Chemistry. Vol. 277, No. 29 (19 July 2002) pages 26233-26237. * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10047346B2 (en) | 2008-08-08 | 2018-08-14 | Mayo Foundation For Medical Education And Research | Method of treating heart tissue using induced pluripotent stem cells |
US9932561B2 (en) | 2011-07-22 | 2018-04-03 | Mayo Foundation For Medical Education And Research | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny |
WO2014170488A1 (en) * | 2013-04-19 | 2014-10-23 | Universita' Degli Studi Di Milano | Methods for the conversion of somatic cells into pancreatic-hormone secreting cells |
WO2018064460A1 (en) | 2016-09-30 | 2018-04-05 | Mayo Foundation For Medical Education And Research | Viral vectors for nuclear reprogramming |
EP3518941A4 (en) * | 2016-09-30 | 2019-08-07 | Mayo Foundation for Medical Education and Research | VIRAL VECTORS FOR NUCLEAR REPROGRAMMING |
EP4056189A1 (en) * | 2016-09-30 | 2022-09-14 | Mayo Foundation for Medical Education and Research | Viral vectors for nuclear reprogramming |
WO2018094114A3 (en) * | 2016-11-16 | 2018-07-26 | Allele Biotechnology & Pharmaceuticals, Inc. | Induction of pancreatic beta cells by stem cell differentiation with rna |
US10767164B2 (en) | 2017-03-30 | 2020-09-08 | The Research Foundation For The State University Of New York | Microenvironments for self-assembly of islet organoids from stem cells differentiation |
US11987813B2 (en) | 2017-03-30 | 2024-05-21 | The Research Foundation for The Sate University of New York | Microenvironments for self-assembly of islet organoids from stem cells differentiation |
CN111836885A (en) * | 2018-02-09 | 2020-10-27 | 塞拉克西斯股份有限公司 | Pancreatic cells for treating diabetes and methods of producing the same |
Also Published As
Publication number | Publication date |
---|---|
US9932561B2 (en) | 2018-04-03 |
US20140356951A1 (en) | 2014-12-04 |
US20180187161A1 (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9932561B2 (en) | Differentiating induced pluripotent stem cells into glucose-responsive, insulin-secreting progeny | |
US20220162562A1 (en) | Sc-beta cells and compositions and methods for generating the same | |
US11136554B2 (en) | Methods of reprogramming cells | |
Sánchez-Danés et al. | Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells | |
Thatava et al. | Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny | |
Ohmine et al. | Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency | |
US8927280B2 (en) | Compositions and methods for promoting the generation of definitive endoderm | |
JP4666567B2 (en) | Islet cells derived from human embryonic stem cells | |
US11920160B2 (en) | Pancreatic insulin-producing beta-cell lines derived from human pluripotent stem cells | |
US9926532B2 (en) | Method of generating induced pluripotent stem cells and differentiated cells | |
US9394523B2 (en) | Induced pluripotent stem cells derived from human pancreatic beta cells | |
WO2010042800A1 (en) | Methods of reprogramming somatic cells and methods of use for such cells | |
Ohmine et al. | Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells | |
US20150342999A1 (en) | Methods and compositions for treating diabetes with ips derived pancreatic beta-like cells | |
US20230128770A1 (en) | Compositions and methods for enhancing differentiation of stem cell-derived beta cells | |
WO2020247954A1 (en) | Compositions and methods for maturing stem cell-derived beta cells | |
Sawangmake | Stem cell-based therapy for diabetes mellitus: establishment of genetic manipulating protocol for production of dental stem cells-derived insulin-producing cells (IPCs). | |
Ahfeldt | Switching Human Cell Fate | |
Palma | Lineage reprogramming of cord blood stem cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THATAVA, TAYARAMMA;TERZIC, ANDRE;KUDVA, YOGISH C.;AND OTHERS;SIGNING DATES FROM 20130514 TO 20130524;REEL/FRAME:030588/0040 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |