US20120329892A1 - Foams based on thermoplastic polyurethanes - Google Patents
Foams based on thermoplastic polyurethanes Download PDFInfo
- Publication number
- US20120329892A1 US20120329892A1 US13/605,673 US201213605673A US2012329892A1 US 20120329892 A1 US20120329892 A1 US 20120329892A1 US 201213605673 A US201213605673 A US 201213605673A US 2012329892 A1 US2012329892 A1 US 2012329892A1
- Authority
- US
- United States
- Prior art keywords
- thermoplastic polyurethane
- blowing agent
- ranges
- weight
- pellets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 140
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims abstract description 128
- 239000004604 Blowing Agent Substances 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims description 65
- 239000006260 foam Substances 0.000 claims description 42
- 238000004519 manufacturing process Methods 0.000 claims description 30
- 239000008188 pellet Substances 0.000 claims description 30
- 239000000654 additive Substances 0.000 claims description 21
- 239000000155 melt Substances 0.000 claims description 20
- 239000000725 suspension Substances 0.000 claims description 20
- 238000005187 foaming Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000005453 pelletization Methods 0.000 claims description 14
- 229920005983 Infinergy® Polymers 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000011256 inorganic filler Substances 0.000 claims description 6
- 239000012766 organic filler Substances 0.000 claims description 6
- 239000007900 aqueous suspension Substances 0.000 claims description 5
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000909 polytetrahydrofuran Polymers 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims 4
- 239000011324 bead Substances 0.000 description 66
- 239000000203 mixture Substances 0.000 description 18
- -1 aromatic isocyanates Chemical class 0.000 description 12
- 238000001125 extrusion Methods 0.000 description 12
- 238000005470 impregnation Methods 0.000 description 12
- 239000012948 isocyanate Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 150000002513 isocyanates Chemical class 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000375 suspending agent Substances 0.000 description 6
- 239000004970 Chain extender Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000003018 phosphorus compounds Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000001464 adherent effect Effects 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 229940078499 tricalcium phosphate Drugs 0.000 description 4
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 4
- 235000019731 tricalcium phosphate Nutrition 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- AIBRSVLEQRWAEG-UHFFFAOYSA-N 3,9-bis(2,4-ditert-butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP1OCC2(COP(OC=3C(=CC(=CC=3)C(C)(C)C)C(C)(C)C)OC2)CO1 AIBRSVLEQRWAEG-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920006248 expandable polystyrene Polymers 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910001872 inorganic gas Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001012 protector Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- QVCUKHQDEZNNOC-UHFFFAOYSA-N 1,2-diazabicyclo[2.2.2]octane Chemical compound C1CC2CCN1NC2 QVCUKHQDEZNNOC-UHFFFAOYSA-N 0.000 description 1
- MTZUIIAIAKMWLI-UHFFFAOYSA-N 1,2-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC=C1N=C=O MTZUIIAIAKMWLI-UHFFFAOYSA-N 0.000 description 1
- XSCLFFBWRKTMTE-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCCC(CN=C=O)C1 XSCLFFBWRKTMTE-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- UTFSEWQOIIZLRH-UHFFFAOYSA-N 1,7-diisocyanatoheptane Chemical compound O=C=NCCCCCCCN=C=O UTFSEWQOIIZLRH-UHFFFAOYSA-N 0.000 description 1
- QUPKOUOXSNGVLB-UHFFFAOYSA-N 1,8-diisocyanatooctane Chemical compound O=C=NCCCCCCCCN=C=O QUPKOUOXSNGVLB-UHFFFAOYSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- YSAANLSYLSUVHB-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]ethanol Chemical compound CN(C)CCOCCO YSAANLSYLSUVHB-UHFFFAOYSA-N 0.000 description 1
- CDVAIHNNWWJFJW-UHFFFAOYSA-N 3,5-diethoxycarbonyl-1,4-dihydrocollidine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C CDVAIHNNWWJFJW-UHFFFAOYSA-N 0.000 description 1
- YLUZWKKWWSCRSR-UHFFFAOYSA-N 3,9-bis(8-methylnonoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound C1OP(OCCCCCCCC(C)C)OCC21COP(OCCCCCCCC(C)C)OC2 YLUZWKKWWSCRSR-UHFFFAOYSA-N 0.000 description 1
- PZRWFKGUFWPFID-UHFFFAOYSA-N 3,9-dioctadecoxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound C1OP(OCCCCCCCCCCCCCCCCCC)OCC21COP(OCCCCCCCCCCCCCCCCCC)OC2 PZRWFKGUFWPFID-UHFFFAOYSA-N 0.000 description 1
- ADRNSOYXKABLGT-UHFFFAOYSA-N 8-methylnonyl diphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OCCCCCCCC(C)C)OC1=CC=CC=C1 ADRNSOYXKABLGT-UHFFFAOYSA-N 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 240000008564 Boehmeria nivea Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- KMHZPJNVPCAUMN-UHFFFAOYSA-N Erbon Chemical compound CC(Cl)(Cl)C(=O)OCCOC1=CC(Cl)=C(Cl)C=C1Cl KMHZPJNVPCAUMN-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000308582 Gonostoma elongatum Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- KAEIHZNNPOMFSS-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1CCC1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1CCC1=CC=CC=C1 KAEIHZNNPOMFSS-UHFFFAOYSA-N 0.000 description 1
- BKAKFCXOCHNIIP-UHFFFAOYSA-N N=C=O.N=C=O.CC1=CC=CC(C=2C=C(C)C=CC=2)=C1 Chemical compound N=C=O.N=C=O.CC1=CC=CC(C=2C=C(C)C=CC=2)=C1 BKAKFCXOCHNIIP-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- QLJCFNUYUJEXET-UHFFFAOYSA-K aluminum;trinitrite Chemical compound [Al+3].[O-]N=O.[O-]N=O.[O-]N=O QLJCFNUYUJEXET-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- SXXILWLQSQDLDL-UHFFFAOYSA-N bis(8-methylnonyl) phenyl phosphite Chemical compound CC(C)CCCCCCCOP(OCCCCCCCC(C)C)OC1=CC=CC=C1 SXXILWLQSQDLDL-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- XXKOQQBKBHUATC-UHFFFAOYSA-N cyclohexylmethylcyclohexane Chemical compound C1CCCCC1CC1CCCCC1 XXKOQQBKBHUATC-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 125000005628 tolylene group Chemical group 0.000 description 1
- IVIIAEVMQHEPAY-UHFFFAOYSA-N tridodecyl phosphite Chemical compound CCCCCCCCCCCCOP(OCCCCCCCCCCCC)OCCCCCCCCCCCC IVIIAEVMQHEPAY-UHFFFAOYSA-N 0.000 description 1
- CNUJLMSKURPSHE-UHFFFAOYSA-N trioctadecyl phosphite Chemical compound CCCCCCCCCCCCCCCCCCOP(OCCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCCC CNUJLMSKURPSHE-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 1
- WGKLOLBTFWFKOD-UHFFFAOYSA-N tris(2-nonylphenyl) phosphite Chemical compound CCCCCCCCCC1=CC=CC=C1OP(OC=1C(=CC=CC=1)CCCCCCCCC)OC1=CC=CC=C1CCCCCCCCC WGKLOLBTFWFKOD-UHFFFAOYSA-N 0.000 description 1
- QEDNBHNWMHJNAB-UHFFFAOYSA-N tris(8-methylnonyl) phosphite Chemical compound CC(C)CCCCCCCOP(OCCCCCCCC(C)C)OCCCCCCCC(C)C QEDNBHNWMHJNAB-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/023—Soles with several layers of the same material
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/18—Resilient soles
- A43B13/187—Resiliency achieved by the features of the material, e.g. foam, non liquid materials
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B17/00—Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
- A43B17/14—Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined made of sponge, rubber, or plastic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
- B29B9/065—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6674—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/141—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2410/00—Soles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
- C08J2375/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
Definitions
- the invention relates to expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent, where the Shore hardness of the thermoplastic polyurethane is from A 44 to A 84, preferably from A 62 to A 82, particularly preferably from A 62 to A 80.
- the Shore hardness of the TPU here is measured on the compact, i.e. unexpanded, TPU.
- the invention moreover relates to processes for production of expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent.
- the invention also relates to processes for production of expanded thermoplastic polyurethane, and to processes for production of foam based on thermoplastic polyurethane, and to foams or expanded thermoplastic polyurethanes thus obtainable.
- DE 4015714 A1 mentions glass fiber-reinforced TPU foams which are produced in an injection-molding machine.
- the examples state densities of 800 g/L and greater. These are foamed TPU sheets, not moldable foams.
- thermoplastic polyurethane also termed TPU in this specification
- TPU thermoplastic polyurethane
- a disadvantage of the TPU foams described in WO 94/20568 is the high energy consumption during production and processing.
- a steam pressure of from 4.5 bar to 7 bar is used, i.e. a temperature of from 145° C. to 165° C.
- WO 94/20568 also describes expanded, i.e. foamed, TPU beads which can be processed to give moldings. These TPU foam beads are produced at temperatures of 150° C. and higher and in the examples have a bulk density of from 55 to 180 g/L, with resultant disadvantage in transport and storage of these beads due to the increased space required.
- the object of the present invention therefore consists in developing a moldable TPU foam which can be produced at low temperatures and simultaneously has good performance in relation to elasticity and to temperature variation.
- a further object was to develop expandable TPU beads and expanded TPU foam beads, and processes for their production, these being beads which can be produced and processed at low temperatures.
- thermoplastic polyurethane preferably in bead form, comprising blowing agent, where the Shore hardness of the thermoplastic polyurethane is from A 44 to A 84, preferably from A 62 to A 82, particularly preferably from A 62 to A 80.
- the Shore hardness of the TPU here is measured on the compact, i.e. unexpanded, TPU.
- the advantage of the present invention is that it uses TPU with lower hardness, lower melting point, and better flowability.
- the result is that temperatures and pressures can be kept lower during the production of the expanded TPU beads. Specifically when steam is used, it is advantageous to be able to operate at lower temperatures. Furthermore, the softness makes adhesive-bonding of the foam beads more effective.
- preferred TPUs are those in which the melting range measured by DSC with a heating rate of 20 K/min starts below 130° C., more preferably below 120° C., and the thermoplastic polyurethane has at most a melt flow rate (MFR) of 250 g/10 min, particularly preferably smaller than 200 g/10 min at 190° C. with an applied weight of 21.6 kg to DIN EN ISO 1133.
- MFR melt flow rate
- thermoplastic polyurethanes Another advantage of the inventive thermoplastic polyurethanes consists in their better feel.
- the inventive TPUs are preferably based on polyether alcohol, particularly preferably polyetherdiol.
- Polytetrahydrofuran can particularly preferably be used here. It is particularly preferable that the TPU is based on polytetrahydrofuran whose molar mass is from 600 g/mol to 2500 g/mol.
- the polyether alcohols can be used either individually or else in a mixture with one another.
- TPU based on polyester alcohol, preferably polyesterdiol, particularly preferably derived from adipic acid and 1,4-butanediol, with a molar mass of from 600 g/mol to 900 g/mol.
- TPUs can be produced via reaction of (a) isocyanates with (b) compounds reactive toward isocyanates and having a molar mass of from 500 to 10000 and, if appropriate, (c) chain extenders having a molar mass of from 50 to 499, if appropriate in the presence of (d) catalysts and/or of (e) conventional auxiliaries and/or conventional additives.
- the phosphorus compounds are particularly suitable when they are difficult to hydrolyze, since the hydrolysis of a phosphorus compound to give the corresponding acid can lead to degradation of the polyurethane, in particular of the polyester urethane. Accordingly, the phosphorus compounds particularly suitable for polyester urethanes are those which are particularly difficult to hydrolyze.
- Examples of these phosphorus compounds are dipolypropylene glycol phenyl phosphite, triisodecyl phosphite, triphenyl monodecyl phosphite, trisisononyl phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tetrakis(2,4-di-tert-butylphenyl)-4,4′-biphenylylene diphosphonite, and di(2,4-di-tert-butylphenyl)-pentaerythritol diphosphite, or a mixture thereof.
- Fillers that can be used are organic and inorganic powders or fibrous materials, or else a mixture thereof.
- organic fillers that can be used are wood flour, starch, flax fibers, hemp fibers, ramie fibers, jute fibers, sisal fibers, cotton fibers, cellulose fibers, or aramid fibers.
- inorganic fillers that can be used are silicates, barite, glass beads, zeolite, metals or metal oxides.
- pulverulent inorganic substances such as talc, chalk, kaolin, (Al 2 (Si 2 O 5 )(OH) 4 ), aluminum hydroxide, magnesium hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, calcium sulfate, silica, powdered quartz, Aerosil, alumina, mica, or wollastonite, or inorganic substances in the form of beads or fibers, e.g. iron powder, glass beads, glass fibers, or carbon fibers.
- the average particle diameters or, in the case of fillers in the form of fibers, the length should be in the region of the cell size or smaller.
- Preference is given to an average particle diameter in the range from 0.1 to 100 ⁇ m, preferably in the range from 1 to 50 ⁇ m.
- Preference is given to expandable, thermoplastic polyurethanes comprising blowing agent and comprising from 5 to 80% by weight of organic and/or inorganic fillers, based on the total weight of the thermoplastic polyurethane comprising blowing agent.
- Further preference is given to expanded thermoplastic polyurethanes which comprise from 5 to 80% by weight of organic and/or inorganic fillers, based on the total weight of the thermoplastic polyurethane.
- chain regulators usually with molar mass of from 31 to 499.
- These chain regulators are compounds which have only one functional group reactive toward isocyanates, examples being monohydric alcohols, monobasic amines, and/or monohydric polyols. These chain regulators can give precise control of flow behavior, in particular in the case of TPUs.
- the amount of chain regulators which may generally be used is from 0 to 5 parts by weight, preferably from 0.1 to 1 part by weight, based on 100 parts by weight of component b), and the chain regulators are defined as part of component (c).
- the molar ratios of the structural components (b) and (c) may be varied relatively widely.
- Successful molar ratios of component (b) to the entire amount of chain extenders (c) to be used are from 10:1 to 1:10, in particular from 1:1 to 1:4, and the hardness of the TPUs here rises as content of (c) increases.
- chain extenders (c) are also used for production of the TPUs.
- the reaction can take place at conventional indices, preferably with an index of from 60 to 120, particularly preferably at an index of from 80 to 110.
- the index is defined via the ratio of the total number of isocyanate groups used during the reaction in component (a) to the number of groups reactive toward isocyanates, i.e. to the active hydrogen atoms, in components (b) and (c). If the index is 100, there is one active hydrogen atom, i.e. one function reactive toward isocyanates, in components (b) and (c) for each isocyanate group in component (a). If indices are above 100, there are more isocyanate groups than OH groups present.
- the TPUs can be produced by the known processes continuously, for example using reactive extruders, or the belt process, by the one-shot method or the prepolymer method, or batchwise by the known prepolymer process.
- the components (a), (b) and, if appropriate, (c), (d), and/or (e) reacting in these processes can be mixed with one another in succession or simultaneously, whereupon the reaction immediately begins.
- structural components (a), (b), and, if appropriate, (c), (d), and/or (e) are introduced individually or in the form of a mixture into the extruder, e.g. at temperatures of from 100 to 280° C., preferably from 140 to 250° C., and reacted, and the resultant TPU is extruded, cooled, and pelletized. It can, if appropriate, be advisable to heat-condition the resultant TPU prior to further processing at from 80 to 120° C., preferably from 100 to 110° C., for a period of from 1 to 24 hours.
- the inventive TPUs described at the outset are used for production of the expandable thermoplastic polyurethanes, preferably in bead form, comprising blowing agent, for production of expanded thermoplastic polyurethane, and for production of foam based on thermoplastic polyurethane.
- the production of these materials from the inventive TPUs is described below.
- inventive expanded TPU beads can be produced via suspension or extrusion processes directly or indirectly by way of expandable TPU beads and foaming in a pressure prefoamer with steam or hot air.
- the TPU in the form of pellets is heated with water, with a suspending agent, and with the blowing agent in a closed reactor to above the softening point of the pellets.
- the polymer beads are thereby impregnated by the blowing agent. It is then possible either to cool the hot suspension, whereupon the particles solidify with inclusion of the blowing agent, and to depressurize the reactor.
- the (expandable) beads comprising blowing agent and obtained in this way are foamed via heating to give the expanded beads.
- the TPU is mixed, with melting, in an extruder with a blowing agent which is introduced into the extruder.
- a blowing agent which is introduced into the extruder.
- the mixture comprising blowing agent is extruded and pelletized under conditions of pressure and temperature such that the TPU pellets do not foam (expand), an example of a method being used for this purpose being underwater pelletization, which is operated with a water pressure of more than 2 bar.
- the mixture can also be extruded and pelletized at atmospheric pressure. In this process, the melt extrudate foams and the product obtained via pelletization is the expanded beads.
- the TPU can be used in the form of commercially available pellets, powder, granules, or in any other form. It is advantageous to use pellets.
- An example of a suitable form is what are known as minipellets whose preferred average diameter is from 0.2 to 10 mm, in particular from 0.5 to 5 mm. These mostly cylindrical or round minipellets are produced via extrusion of the TPU and, if appropriate, of other additives, discharged from the extruder, and if appropriate cooling, and pelletization.
- the length is preferably from 0.2 to 10 mm, in particular from 0.5 to 5 mm.
- the pellets can also have a lamellar shape.
- the average diameter of the thermoplastic polyurethane comprising blowing agent is preferably from 0.2 to 10 mm.
- the expandable TPU beads of the invention can be produced by the suspension process or by the extrusion process.
- the preferred blowing agents can vary if appropriate.
- the blowing agent used preferably comprises organic liquids or inorganic gases, or a mixture thereof.
- Liquids that can be used comprise halogenated hydrocarbons, but preference is given to saturated, aliphatic hydrocarbons, in particular those having from 3 to 8 carbon atoms.
- Suitable inorganic gases are nitrogen, air, ammonia, or carbon dioxide.
- the blowing agent used preferably comprises volatile organic compounds whose boiling point at atmospheric pressure of 1013 mbar is from ⁇ 25 to 150° C., in particular from ⁇ 10 to 125° C.
- Hydrocarbons preferably halogen-free
- have good suitability in particular C 4-10 -alkanes, for example the isomers of butane, of pentane, of hexane, of heptane, and of octane, particularly preferably sec-pentane.
- Other suitable blowing agents are bulkier compounds, examples being alcohols, ketones, esters, ethers, and organic carbonates.
- blowing agent is preferably halogen-free. Very small proportions of halogen-containing blowing agents in the blowing agent mixture are however not to be excluded. It is, of course, also possible to use mixtures of the blowing agents mentioned.
- the amount of blowing agent is preferably from 0.1 to 40 parts by weight, in particular from 0.5 to 35 parts by weight, and particularly preferably from 1 to 30 parts by weight, based on 100 parts by weight of TPU used.
- a suspension process operations are generally carried out batchwise in an impregnator, e.g. in a stirred-tank reactor.
- the TPU is fed, e.g. in the form of minipellets, into the reactor, as also is water or another suspension medium, and the blowing agent and, if appropriate, a suspending agent.
- Water-insoluble inorganic stabilizers are suitable as suspending agent, examples being tricalcium phosphate, magnesium pyrophosphate, and metal carbonates; and also polyvinyl alcohol and surfactants, such as sodium dodecylarylsulfonate. The amounts usually used of these are from 0.05 to 10% by weight, based on the TPU.
- the reactor is then sealed, and the reactor contents are heated to an impregnation temperature which is usually at least 100° C.
- the blowing agent here can be added prior to, during, or after heating of the reactor contents.
- the impregnation temperature should be in the vicinity of the softening point of the TPU. Impregnation temperatures of from 100 to 150° C., in particular from 110 to 145° C., are preferred.
- a pressure becomes established in the sealed reactor and is generally from 2 to 100 bar (absolute).
- the pressure can, if necessary, be regulated via a pressure-control valve or via introduction of further blowing agent under pressure.
- blowing agent diffuses into the polymer pellets.
- the impregnation time is generally from 0.5 to 10 hours.
- cooling of the heated suspension takes place after the impregnation process, the result being re-solidification of the TPU and inclusion of the blowing agent.
- the material is then depressurized.
- the product is expandable TPU beads which finally are conventionally isolated from the suspension.
- Adherent water is generally removed via drying, e.g. in a pneumatic dryer.
- adherent suspending agent can be removed by treating the beads with a suitable reagent.
- treatment with an acid such as nitric acid, hydrochloric acid, or sulfuric acid, can be used in order to remove acid-soluble suspending agents, e.g. metal carbonates or tricalcium phosphate.
- the TPU, the blowing agent and, if appropriate, additives are introduced together (in the form of a mixture) or separately from one another at one or various locations of the extruder.
- the possibility, but not a requirement, here is to prepare a mixture in advance from the solid components.
- a mixture of blowing agent and additives into the extruder, i.e. to premix the additives with the blowing agent.
- the starting materials mentioned are mixed, with melting of the TPU.
- Any of the conventional screw-based machines can be used as extruder, in particular single-screw and twin-screw extruders (e.g. Werner & Pfleiderer ZSK machines), co-kneaders, Kombiplast machines, MPC kneading mixers, FCM mixers, KEX kneading screw extruders, and shear-roll extruders, as described by way of example in Saechtling (ed.), Kunststoff-Taschenbuch [Plastics handbook], 27th edition, Hanser-Verlag Kunststoff 1998, chapter 3.2.1 and 3.2.4.
- the extruder is usually operated at a temperature at which the TPU is present in the form of a melt, for example at from 150 to 250° C., in particular from 180 to 210° C.
- the rotation, length, diameter, and design of the extruder screw(s), amounts introduced, and extruder throughput, are selected in a known manner in such a way as to give uniform distribution of the additives in the extruded TPU.
- expandable beads are produced.
- the melt extrudate is discharged from the extruder and pelletized under conditions of temperature and pressure such that practically no foaming (expansion) occurs.
- These conditions can vary as a function of the type and amount of the polymers, of the additives, and in particular of the blowing agent. The ideal conditions can easily be determined via preliminary experiments.
- One industrially advantageous method is underwater pelletization in a waterbath whose temperature is below 100° C. and which is subject to a pressure of at least 2 bar (absolute). Excessively low temperature has to be avoided, because otherwise the melt hardens on the die plate, and excessively high temperature has to be avoided since otherwise the melt expands. As the boiling point of the blowing agent increases and the amount of the blowing agent becomes smaller, the permissible water temperature becomes higher and the permissible water pressure becomes lower. In the case of the particularly preferred blowing agent sec-pentane, the ideal waterbath temperature is from 30 to 60° C. and the ideal water pressure is from 8 to 12 bar (absolute). It is also possible to use other suitable coolants instead of water. It is also possible to use water-cooled die-face pelletization. In this process, encapsulation of the cutting chamber is such as to permit operation of the pelletizing apparatus under pressure.
- the product is expandable TPU beads, which are then isolated from the water and, if appropriate, dried. They are then foamed as described at a later stage below, to give expanded TPU beads.
- a preferred process for production of expandable TPU beads comprising blowing agent comprises the following stages:
- the blowing agent becomes included within the polymer, and the product does not foam. If the tank is depressurized directly at high temperatures in step ii), the blowing agent escapes, and the polymer, which is soft at these temperatures, expands.
- Another preferred process for production of expandable TPU beads comprising blowing agent comprises the following stages:
- This process uses pelletization under water against superatmospheric pressure to avoid escape of the blowing agent and foaming of the polymer.
- the invention therefore also provides, and this is particularly preferred, a process for production of expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent, where a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from A 62 to A 80, is extruded, if appropriate together with additives, to give pellets whose average diameter is from 0.2 to 10 mm, the pellets are impregnated with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent in aqueous suspension under pressure, preferably at a pressure of from 5 to 100 bar, at temperatures in the range from 100 to 150° C., the suspension comprising the thermoplastic polyurethanes comprising blowing agent is cooled to from 20 to 95° C., and then the thermoplastic polyurethanes comprising blowing agent are depressurized.
- a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from
- the invention therefore also provides, and this is particularly preferred, a process for production of expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent, where a thermoplastic polyurethane whose Shore hardness is from A44 to A 84, preferably from A 62 to A 80, is melted together with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent and, if appropriate, with additives, in an extruder, and the melt is pelletized under water at pressures of from 2 bar to 20 bar and temperatures of from 5° C. to 95° C.
- expandable beads these can be foamed in a known manner, whereupon the inventive expanded TPU beads are produced.
- the foaming generally takes place via heating of the expandable beads in conventional foaming apparatuses, e.g. with hot air or superheated steam in what is known as a pressure prefoamer, for example of the type usually used for processing of expandable polystyrene (EPS). It is preferable to foam the beads at a temperature at which they soften (softening range), particularly preferably at temperatures of from 100 to 140° C.
- the present invention therefore also provides a process for production of foams based on thermoplastic polyurethane, where the inventive expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent is foamed at a temperature of from 100° C. to 140° C.
- the present invention also provides foams thus obtainable and based on thermoplastic polyurethane.
- the steam pressure is usually, as a function of the nature and amount of TPU and blowing agent, and of the desired density of the foam to be produced, from 1 to 4 bar (absolute), preferably from 1.5 to 3.5 bar (absolute). As the pressures increase here the densities of the foamed TPU product become smaller, i.e. steam pressure can be used to set the desired density.
- the foaming time is usually from 1 to 300 sec, preferably from 1 to 30 sec. Foaming is followed by depressurization and cooling. The expansion factor during foaming is preferably from 2 to 50.
- the heated suspension is not cooled, but depressurized suddenly while hot, without cooling.
- the blowing agent which has previously diffused into the TPU beads expands “explosively” and foams the softened beads. Expanded TPU beads are obtained.
- the suspension is usually depressurized via a die, a valve, or another suitable apparatus.
- the suspension can be directly depressurized to atmospheric pressure, such as 1013 mbar.
- atmospheric pressure such as 1013 mbar.
- a suitable method depressurizes to a pressure of, for example, from 0.5 to 5 bar (absolute), in particular from 1 to 3 bar (absolute).
- the impregnation pressure in the impregnation container can be kept constant, by introducing further blowing agent under pressure.
- the method generally used comprises cooling of the suspension after depressurization, isolation of the expanded TPU beads conventionally from the suspension, and, before that or after that, if appropriate, removal of adherent suspending agent, as described above, and finally washing and drying of the beads.
- the melt comprising blowing agent is discharged from the extruder and pelletized without underwater pelletization, water-cooled die-face pelletization or other precautions which inhibit foaming.
- extrusion can take place directly into the atmosphere.
- the melt extrudate discharged from the extruder foams during this process, and expanded TPU beads are obtained via pelletization of the foamed extrudate.
- a preferred process for production of expanded TPU beads comprises the following stages
- Another preferred process for expansion of expanded TPU beads comprises the following stages:
- the invention also provides, and this is particularly preferred, a process for production of expanded thermoplastic polyurethane, where a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from A 62 to A 80, is extruded, if appropriate together with additives, to give pellets whose average diameter is from 0.2 to 10 mm, the pellets are impregnated with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent, preferably in aqueous suspension under pressure, preferably at a pressure of from 5 to 100 bar, at temperatures in the range from 100 to 150° C., and then are depressurized.
- a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from A 62 to A 80, is extruded, if appropriate together with additives, to give pellets whose average diameter is from 0.2 to 10 mm, the pellets are impregnated with from 0.1 to 40% by weight,
- the invention also provides, and this is particularly preferred, a process for production of expanded thermoplastic polyurethane, where a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from A 62 to A 80, is melted together with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent, if appropriate with additives, in an extruder, and the melt is pelletized without apparatuses which inhibit foaming.
- the present invention also provides expanded thermoplastic polyurethanes obtainable via these process.
- the TPU beads can be provided, prior to and/or after the foaming process, with an antiblocking agent.
- suitable antiblocking agents are talc, metal compounds, such as tricalcium phosphate, calcium carbonate, silicas, in particular fumed silicas, such as Aerosil® from Degussa, salts of long-chain (e.g. C 10-22 ) carboxylic acids, for example stearic salts, such as calcium stearate, esters of long-chain carboxylic acids, e.g. glycerol esters, such as the glycerol stearates, and silicone oils.
- the antiblocking agent is generally applied to the beads via mixing, spray application, drum application, or other conventional processes. It is usually used in amounts of from 0.01 to 20 parts by weight, preferably from 0.1 to 10 parts by weight, particularly preferably from 0.5 to 6 parts by weight, based on 100 parts by weight of the TPU.
- the product is expanded TPU beads.
- Preferred densities are from 5 to 600 g/l, and particularly preferably from 10 to 300 g/l.
- the expanded beads are generally at least approximately spherical and their diameter is usually from 0.2 to 20 mm, preferably from 0.5 to 15 mm, and in particular from 1 to 12 mm. In the case of non-spherical, e.g. elongate or cylindrical, beads, diameter means the longest dimension.
- Foams can be produced from the inventive expanded TPU beads, for example by fusing them to one another in a closed mold with exposure to heat. For this, the beads are charged to the mold and, once the mold has been closed, steam or hot air is supplied, thus further expanding the beads and fusing them to one another to give foam, whose density is preferably in the range from 8 to 600 g/l.
- the foams can be semifinished products, for example sheets, profiles, or webs, or finished moldings with simple or complicated geometry.
- the expression TPU foam therefore includes semifinished foam products and includes foam moldings.
- the temperature during the fusion of the expanded TPU beads is preferably from 100° C. to 140° C.
- the present invention therefore also provides processes for production of foam based on thermoplastic polyurethane, where the inventive expanded thermoplastic polyurethane is fused by means of steam at a temperature of from 100° C. to 140° C., to give a molding.
- the invention also provides for the use of the expanded TPU beads for production of TPU foams, and provides TPU foams obtainable from the expanded TPU beads.
- the inventive foams can be recycled by a thermoplastic route without difficulty.
- the foamed TPUs are extruded, using a vented extruder, and there can be mechanical comminution prior to this extrusion process. They can then be processed again to give foams in the manner described above.
- the inventive foams are preferably used in energy-absorbing moldings and in moldings for automobile interiors.
- inventive foams helmet shells, knee protectors, elbow protectors, shoe soles, midsoles, insoles, and the following parts which comprise the inventive foams: steering wheel parts, door side parts, and foot well parts.
- the Shore hardness of the PU elastomers was determined to DIN 53 505.
- Example 1 The foam beads produced in Example 1 were charged into a preheated mold, with pressure and compaction.
- the mold was heated by steam at from 1.0 to 4.0 bar, i.e. at temperatures of from 100° C. to 140° C., on alternate sides.
- the mold was then depressurized and cooled with water and, respectively, air, and opened, and the mechanically stable molding was removed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Expandable thermoplastic polyurethane comprising blowing agent, wherein the Shore hardness of the thermoplastic polyurethane is from A 44 to A 84.
Description
- The invention relates to expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent, where the Shore hardness of the thermoplastic polyurethane is from A 44 to A 84, preferably from A 62 to A 82, particularly preferably from A 62 to A 80. The Shore hardness of the TPU here is measured on the compact, i.e. unexpanded, TPU. The invention moreover relates to processes for production of expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent. The invention also relates to processes for production of expanded thermoplastic polyurethane, and to processes for production of foam based on thermoplastic polyurethane, and to foams or expanded thermoplastic polyurethanes thus obtainable.
- Foams, and this particularly applies to moldable foams, have been known for a long time and are widely described in the literature, e.g. in Ullmann's “Encyklopädie der technischen Chemie” [Encyclopedia of Industrial Chemistry], 4th edition, Volume 20, pp. 416 et seq.
- DE 4015714 A1 mentions glass fiber-reinforced TPU foams which are produced in an injection-molding machine. The examples state densities of 800 g/L and greater. These are foamed TPU sheets, not moldable foams.
- Moldable foams based on thermoplastic polyurethane, also termed TPU in this specification, have been disclosed in WO 94/20568. A disadvantage of the TPU foams described in WO 94/20568 is the high energy consumption during production and processing. A steam pressure of from 4.5 bar to 7 bar is used, i.e. a temperature of from 145° C. to 165° C.
- WO 94/20568 also describes expanded, i.e. foamed, TPU beads which can be processed to give moldings. These TPU foam beads are produced at temperatures of 150° C. and higher and in the examples have a bulk density of from 55 to 180 g/L, with resultant disadvantage in transport and storage of these beads due to the increased space required.
- The object of the present invention therefore consists in developing a moldable TPU foam which can be produced at low temperatures and simultaneously has good performance in relation to elasticity and to temperature variation. A further object was to develop expandable TPU beads and expanded TPU foam beads, and processes for their production, these being beads which can be produced and processed at low temperatures.
- These objects have been achieved via expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent, where the Shore hardness of the thermoplastic polyurethane is from A 44 to A 84, preferably from A 62 to A 82, particularly preferably from A 62 to A 80. The Shore hardness of the TPU here is measured on the compact, i.e. unexpanded, TPU.
- The advantage of the present invention is that it uses TPU with lower hardness, lower melting point, and better flowability. The result is that temperatures and pressures can be kept lower during the production of the expanded TPU beads. Specifically when steam is used, it is advantageous to be able to operate at lower temperatures. Furthermore, the softness makes adhesive-bonding of the foam beads more effective.
- According to the invention, preferred TPUs are those in which the melting range measured by DSC with a heating rate of 20 K/min starts below 130° C., more preferably below 120° C., and the thermoplastic polyurethane has at most a melt flow rate (MFR) of 250 g/10 min, particularly preferably smaller than 200 g/10 min at 190° C. with an applied weight of 21.6 kg to DIN EN ISO 1133.
- Another advantage of the inventive thermoplastic polyurethanes consists in their better feel.
- The inventive TPUs are preferably based on polyether alcohol, particularly preferably polyetherdiol. Polytetrahydrofuran can particularly preferably be used here. It is particularly preferable that the TPU is based on polytetrahydrofuran whose molar mass is from 600 g/mol to 2500 g/mol. The polyether alcohols can be used either individually or else in a mixture with one another.
- As an alternative, good results were achieved with TPU based on polyester alcohol, preferably polyesterdiol, particularly preferably derived from adipic acid and 1,4-butanediol, with a molar mass of from 600 g/mol to 900 g/mol.
- Thermoplastic polyurethanes and processes for their production are well known. By way of example, TPUs can be produced via reaction of (a) isocyanates with (b) compounds reactive toward isocyanates and having a molar mass of from 500 to 10000 and, if appropriate, (c) chain extenders having a molar mass of from 50 to 499, if appropriate in the presence of (d) catalysts and/or of (e) conventional auxiliaries and/or conventional additives.
- The starting components and processes for production of the preferred polyurethanes will be described by way of example below. The components (a), (b), and also, if appropriate, (c), (d) and/or (e) usually used in production of the polyurethanes will be described by way of example below:
- a) Organic isocyanates (a) which may be used are well-known aliphatic, cycloaliphatic, araliphatic, and/or aromatic isocyanates, preferably diisocyanates, for example tri-, tetra-, penta-, hexa-, hepta- and/or octamethylene diisocyanate, 2-methylpentamethylene 1,5-diisocyanate, 2-ethylbutylene 1,4-diisocyanate, pentamethylene 1,5-diisocyanate, butylene 1,4-diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (isophorone diisocyanate, IPDI), 1,4- and/or 1,3-bis(isocyanatomethyl)cyclohexane (HXDI), cyclohexane 1,4-diisocyanate, 1-methylcyclohexane 2,4- and/or 2,6-diisocyanate, and/or dicyclohexylmethane 4,4′-, 2,4′- and 2,2′-diisocyanate, diphenylmethane 2,2′-, 2,4′- and/or 4,4′-diisocyanate (MDI), naphthylene 1,5-diisocyanate (NDI), tolylene 2,4- and/or 2,6-diisocyanate (TDI), diphenylmethane diisocyanate, 3,3′-dimethylbiphenyl diisocyanate, 1,2-diphenylethane diisocyanate, and/or phenylene diisocyanate.
- b) Compounds (b) which may be used and are reactive toward isocyanates are the well-known compounds reactive toward isocyanates, for example polyesterols, polyetherols, and/or polycarbonatediols, these usually also being combined under the term “polyols”, having molar masses of from 500 to 8000, preferably from 600 to 6000, in particular from 800 to 4000, and preferably having an average functionality of from 1.8 to 2.3, preferably from 1.9 to 2.2, in particular 2.
- c) Chain extenders (c) that may be used comprise well-known aliphatic, araliphatic, aromatic and/or cycloaliphatic compounds having a molar mass of from 50 to 499, preferably difunctional compounds, such as diamines and/or alkanediols having from 2 to 10 carbon atoms in the alkylene radical, in particular 1,4-butanediol, 1,6-hexanediol, and/or di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona- and/or decaalkylene glycols having from 3 to 8 carbon atoms, and preferably corresponding oligo- and/or polypropylene glycols, and use may also be made of a mixture of the chain extenders.
- d) Suitable catalysts which in particular accelerate the reaction between the NCO groups of the diisocyanates (a) and the hydroxy groups of the structural components (b) and (c) are the conventional tertiary amines known from the prior art, e.g. triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N,N′-dimethylpiperazine, 2-(dimethylaminoethoxy)ethanol, diazabicyclo-[2.2.2]octane and the like, and also in particular organometallic compounds, such as titanic esters, iron compounds, e.g. ferric acetylacetonate, tin compounds, e.g. stannous diacetate, stannous dioctoate, stannous dilaurate, or the dialkyltin salts of aliphatic carboxylic acids, e.g. dibutyltin diacetate, dibutyltin dilaurate, or the like. The amounts usually used of the catalysts are from 0.0001 to 0.1 part by weight per 100 parts by weight of polyhydroxy compound (b).
- e) Alongside catalysts (d), conventional auxiliaries and/or additives (e) may also be added to the structural components (a) to (c). By way of example, mention may be made of blowing agents, surface-active substances, fillers, flame retardants, nucleating agents, antioxidants, lubricants and mold-release agents, dyes and pigments, further stabilizers if appropriate in addition to the inventive stabilizer mixture, e.g. with respect to hydrolysis, light, heat or discoloration, inorganic and/or organic fillers, reinforcing agents, and plasticizers. In one preferred embodiment, component (e) also includes hydrolysis stabilizers, such as polymeric and low-molecular-weight carbodiimides. In another embodiment, the TPU can comprise a phosphorus compound. In one preferred embodiment, phosphorus compounds used are organophosphorus compounds of trivalent phosphorus, examples being phosphites and phosphonites. Examples of suitable phosphorus compounds are triphenyl phosphate, diphenyl alkyl phosphate, phenyl dialkyl phosphite, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, di(2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl) 4,4′-diphenylenediphosphonite, trisisodecyl phosphite, diisodecyl phenyl phosphite, and diphenyl isodecyl phosphite, or a mixture thereof.
- The phosphorus compounds are particularly suitable when they are difficult to hydrolyze, since the hydrolysis of a phosphorus compound to give the corresponding acid can lead to degradation of the polyurethane, in particular of the polyester urethane. Accordingly, the phosphorus compounds particularly suitable for polyester urethanes are those which are particularly difficult to hydrolyze. Examples of these phosphorus compounds are dipolypropylene glycol phenyl phosphite, triisodecyl phosphite, triphenyl monodecyl phosphite, trisisononyl phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tetrakis(2,4-di-tert-butylphenyl)-4,4′-biphenylylene diphosphonite, and di(2,4-di-tert-butylphenyl)-pentaerythritol diphosphite, or a mixture thereof.
- Fillers that can be used are organic and inorganic powders or fibrous materials, or else a mixture thereof. Examples of organic fillers that can be used are wood flour, starch, flax fibers, hemp fibers, ramie fibers, jute fibers, sisal fibers, cotton fibers, cellulose fibers, or aramid fibers. Examples of inorganic fillers that can be used are silicates, barite, glass beads, zeolite, metals or metal oxides. It is preferable to use pulverulent inorganic substances, such as talc, chalk, kaolin, (Al2(Si2O5)(OH)4), aluminum hydroxide, magnesium hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, calcium sulfate, silica, powdered quartz, Aerosil, alumina, mica, or wollastonite, or inorganic substances in the form of beads or fibers, e.g. iron powder, glass beads, glass fibers, or carbon fibers. The average particle diameters or, in the case of fillers in the form of fibers, the length should be in the region of the cell size or smaller. Preference is given to an average particle diameter in the range from 0.1 to 100 μm, preferably in the range from 1 to 50 μm. Preference is given to expandable, thermoplastic polyurethanes comprising blowing agent and comprising from 5 to 80% by weight of organic and/or inorganic fillers, based on the total weight of the thermoplastic polyurethane comprising blowing agent. Further preference is given to expanded thermoplastic polyurethanes which comprise from 5 to 80% by weight of organic and/or inorganic fillers, based on the total weight of the thermoplastic polyurethane.
- Besides the components a) and b) mentioned, and if appropriate, c), d) and e), it is also possible to use chain regulators, usually with molar mass of from 31 to 499. These chain regulators are compounds which have only one functional group reactive toward isocyanates, examples being monohydric alcohols, monobasic amines, and/or monohydric polyols. These chain regulators can give precise control of flow behavior, in particular in the case of TPUs. The amount of chain regulators which may generally be used is from 0 to 5 parts by weight, preferably from 0.1 to 1 part by weight, based on 100 parts by weight of component b), and the chain regulators are defined as part of component (c).
- All of the molar masses mentioned in this specification have the unit [g/mol].
- To adjust the hardness of the TPUs, the molar ratios of the structural components (b) and (c) may be varied relatively widely. Successful molar ratios of component (b) to the entire amount of chain extenders (c) to be used are from 10:1 to 1:10, in particular from 1:1 to 1:4, and the hardness of the TPUs here rises as content of (c) increases.
- It is preferable that chain extenders (c) are also used for production of the TPUs.
- The reaction can take place at conventional indices, preferably with an index of from 60 to 120, particularly preferably at an index of from 80 to 110. The index is defined via the ratio of the total number of isocyanate groups used during the reaction in component (a) to the number of groups reactive toward isocyanates, i.e. to the active hydrogen atoms, in components (b) and (c). If the index is 100, there is one active hydrogen atom, i.e. one function reactive toward isocyanates, in components (b) and (c) for each isocyanate group in component (a). If indices are above 100, there are more isocyanate groups than OH groups present.
- The TPUs can be produced by the known processes continuously, for example using reactive extruders, or the belt process, by the one-shot method or the prepolymer method, or batchwise by the known prepolymer process. The components (a), (b) and, if appropriate, (c), (d), and/or (e) reacting in these processes can be mixed with one another in succession or simultaneously, whereupon the reaction immediately begins.
- In the extruder process, structural components (a), (b), and, if appropriate, (c), (d), and/or (e) are introduced individually or in the form of a mixture into the extruder, e.g. at temperatures of from 100 to 280° C., preferably from 140 to 250° C., and reacted, and the resultant TPU is extruded, cooled, and pelletized. It can, if appropriate, be advisable to heat-condition the resultant TPU prior to further processing at from 80 to 120° C., preferably from 100 to 110° C., for a period of from 1 to 24 hours.
- According to the invention, the inventive TPUs described at the outset are used for production of the expandable thermoplastic polyurethanes, preferably in bead form, comprising blowing agent, for production of expanded thermoplastic polyurethane, and for production of foam based on thermoplastic polyurethane. The production of these materials from the inventive TPUs is described below.
- In principle; the inventive expanded TPU beads can be produced via suspension or extrusion processes directly or indirectly by way of expandable TPU beads and foaming in a pressure prefoamer with steam or hot air.
- In the suspension process, the TPU in the form of pellets is heated with water, with a suspending agent, and with the blowing agent in a closed reactor to above the softening point of the pellets. The polymer beads are thereby impregnated by the blowing agent. It is then possible either to cool the hot suspension, whereupon the particles solidify with inclusion of the blowing agent, and to depressurize the reactor. The (expandable) beads comprising blowing agent and obtained in this way are foamed via heating to give the expanded beads. As an alternative, it is possible to depressurize the hot suspension suddenly, without cooling (explosion-expansion process), whereupon the softened beads comprising blowing agent immediately foam to give the expanded beads, see, for example, WO 94/20568.
- In the extrusion process, the TPU is mixed, with melting, in an extruder with a blowing agent which is introduced into the extruder. Either the mixture comprising blowing agent is extruded and pelletized under conditions of pressure and temperature such that the TPU pellets do not foam (expand), an example of a method being used for this purpose being underwater pelletization, which is operated with a water pressure of more than 2 bar. This gives expandable beads comprising blowing agent, which are then foamed via subsequent heating to give the expanded beads. Or the mixture can also be extruded and pelletized at atmospheric pressure. In this process, the melt extrudate foams and the product obtained via pelletization is the expanded beads.
- The TPU can be used in the form of commercially available pellets, powder, granules, or in any other form. It is advantageous to use pellets. An example of a suitable form is what are known as minipellets whose preferred average diameter is from 0.2 to 10 mm, in particular from 0.5 to 5 mm. These mostly cylindrical or round minipellets are produced via extrusion of the TPU and, if appropriate, of other additives, discharged from the extruder, and if appropriate cooling, and pelletization. In the case of cylindrical minipellets, the length is preferably from 0.2 to 10 mm, in particular from 0.5 to 5 mm. The pellets can also have a lamellar shape. The average diameter of the thermoplastic polyurethane comprising blowing agent is preferably from 0.2 to 10 mm.
- The expandable TPU beads of the invention can be produced by the suspension process or by the extrusion process.
- As a function of the process used, the preferred blowing agents can vary if appropriate. In the case of the suspension process, the blowing agent used preferably comprises organic liquids or inorganic gases, or a mixture thereof. Liquids that can be used comprise halogenated hydrocarbons, but preference is given to saturated, aliphatic hydrocarbons, in particular those having from 3 to 8 carbon atoms. Suitable inorganic gases are nitrogen, air, ammonia, or carbon dioxide.
- In production via an extrusion process, the blowing agent used preferably comprises volatile organic compounds whose boiling point at atmospheric pressure of 1013 mbar is from −25 to 150° C., in particular from −10 to 125° C. Hydrocarbons (preferably halogen-free) have good suitability, in particular C4-10-alkanes, for example the isomers of butane, of pentane, of hexane, of heptane, and of octane, particularly preferably sec-pentane. Other suitable blowing agents are bulkier compounds, examples being alcohols, ketones, esters, ethers, and organic carbonates.
- It is also possible to use halogenated hydrocarbons, but the blowing agent is preferably halogen-free. Very small proportions of halogen-containing blowing agents in the blowing agent mixture are however not to be excluded. It is, of course, also possible to use mixtures of the blowing agents mentioned.
- The amount of blowing agent is preferably from 0.1 to 40 parts by weight, in particular from 0.5 to 35 parts by weight, and particularly preferably from 1 to 30 parts by weight, based on 100 parts by weight of TPU used.
- In the suspension process, operations are generally carried out batchwise in an impregnator, e.g. in a stirred-tank reactor. The TPU is fed, e.g. in the form of minipellets, into the reactor, as also is water or another suspension medium, and the blowing agent and, if appropriate, a suspending agent. Water-insoluble inorganic stabilizers are suitable as suspending agent, examples being tricalcium phosphate, magnesium pyrophosphate, and metal carbonates; and also polyvinyl alcohol and surfactants, such as sodium dodecylarylsulfonate. The amounts usually used of these are from 0.05 to 10% by weight, based on the TPU.
- The reactor is then sealed, and the reactor contents are heated to an impregnation temperature which is usually at least 100° C. The blowing agent here can be added prior to, during, or after heating of the reactor contents. The impregnation temperature should be in the vicinity of the softening point of the TPU. Impregnation temperatures of from 100 to 150° C., in particular from 110 to 145° C., are preferred.
- As a function of the amount and nature of the blowing agent, and also of the temperature, a pressure (impregnation pressure) becomes established in the sealed reactor and is generally from 2 to 100 bar (absolute). The pressure can, if necessary, be regulated via a pressure-control valve or via introduction of further blowing agent under pressure. At the elevated temperature and superatmospheric pressure provided by the impregnation conditions, blowing agent diffuses into the polymer pellets. The impregnation time is generally from 0.5 to 10 hours.
- In one embodiment of the suspension process, cooling of the heated suspension, usually to below 100° C., takes place after the impregnation process, the result being re-solidification of the TPU and inclusion of the blowing agent. The material is then depressurized. The product is expandable TPU beads which finally are conventionally isolated from the suspension. Adherent water is generally removed via drying, e.g. in a pneumatic dryer. Subsequently or previously, if necessary, adherent suspending agent can be removed by treating the beads with a suitable reagent. By way of example, treatment with an acid, such as nitric acid, hydrochloric acid, or sulfuric acid, can be used in order to remove acid-soluble suspending agents, e.g. metal carbonates or tricalcium phosphate.
- In the extrusion process, it is preferable that the TPU, the blowing agent and, if appropriate, additives are introduced together (in the form of a mixture) or separately from one another at one or various locations of the extruder. The possibility, but not a requirement, here is to prepare a mixture in advance from the solid components. By way of example, it is possible to begin by mixing TPU and, if appropriate, additives, and to introduce the mixture into the extruder, and then introduce the blowing agent into the extruder, so that the extruder mixes the blowing agent into to polymer melt. It is also possible to introduce a mixture of blowing agent and additives into the extruder, i.e. to premix the additives with the blowing agent.
- In the extruder, the starting materials mentioned are mixed, with melting of the TPU. Any of the conventional screw-based machines can be used as extruder, in particular single-screw and twin-screw extruders (e.g. Werner & Pfleiderer ZSK machines), co-kneaders, Kombiplast machines, MPC kneading mixers, FCM mixers, KEX kneading screw extruders, and shear-roll extruders, as described by way of example in Saechtling (ed.), Kunststoff-Taschenbuch [Plastics handbook], 27th edition, Hanser-Verlag Munich 1998, chapter 3.2.1 and 3.2.4. The extruder is usually operated at a temperature at which the TPU is present in the form of a melt, for example at from 150 to 250° C., in particular from 180 to 210° C.
- The rotation, length, diameter, and design of the extruder screw(s), amounts introduced, and extruder throughput, are selected in a known manner in such a way as to give uniform distribution of the additives in the extruded TPU.
- In one embodiment of the extrusion process, expandable beads are produced. To prevent premature foaming of the melt comprising blowing agent on discharge from the extruder, the melt extrudate is discharged from the extruder and pelletized under conditions of temperature and pressure such that practically no foaming (expansion) occurs. These conditions can vary as a function of the type and amount of the polymers, of the additives, and in particular of the blowing agent. The ideal conditions can easily be determined via preliminary experiments.
- One industrially advantageous method is underwater pelletization in a waterbath whose temperature is below 100° C. and which is subject to a pressure of at least 2 bar (absolute). Excessively low temperature has to be avoided, because otherwise the melt hardens on the die plate, and excessively high temperature has to be avoided since otherwise the melt expands. As the boiling point of the blowing agent increases and the amount of the blowing agent becomes smaller, the permissible water temperature becomes higher and the permissible water pressure becomes lower. In the case of the particularly preferred blowing agent sec-pentane, the ideal waterbath temperature is from 30 to 60° C. and the ideal water pressure is from 8 to 12 bar (absolute). It is also possible to use other suitable coolants instead of water. It is also possible to use water-cooled die-face pelletization. In this process, encapsulation of the cutting chamber is such as to permit operation of the pelletizing apparatus under pressure.
- The product is expandable TPU beads, which are then isolated from the water and, if appropriate, dried. They are then foamed as described at a later stage below, to give expanded TPU beads.
- A preferred process for production of expandable TPU beads comprising blowing agent comprises the following stages:
- i) melting of TPU, if appropriate with additives, and extrusion to give pellets whose average diameter is from 0.2 to 10 mm,
- ii) impregnation of the pellets with from 0.1 to 40% by weight, based on the total weight of the pellets, of a volatile blowing agent in aqueous suspension under pressure, preferably at a pressure of from 5 to 100 bar, at temperatures in the range from 100 to 150° C.,
- iii) cooling of the suspension to from 20 to 95° C.,
- iv) then depressurizing.
- Via cooling, the blowing agent becomes included within the polymer, and the product does not foam. If the tank is depressurized directly at high temperatures in step ii), the blowing agent escapes, and the polymer, which is soft at these temperatures, expands.
- Another preferred process for production of expandable TPU beads comprising blowing agent comprises the following stages:
- i) melting of TPU together with from 0.1 to 40% by weight, based on the total weight of the pellets, of a volatile blowing agent and, if appropriate, with additives, in an extruder,
- ii) discharge of the melt from the extruder and underwater pelletization of the melt extrudate at pressures of from 2 bar to 20 bar and temperatures of from 5° C. to 95° C.
- This process uses pelletization under water against superatmospheric pressure to avoid escape of the blowing agent and foaming of the polymer.
- The invention therefore also provides, and this is particularly preferred, a process for production of expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent, where a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from A 62 to A 80, is extruded, if appropriate together with additives, to give pellets whose average diameter is from 0.2 to 10 mm, the pellets are impregnated with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent in aqueous suspension under pressure, preferably at a pressure of from 5 to 100 bar, at temperatures in the range from 100 to 150° C., the suspension comprising the thermoplastic polyurethanes comprising blowing agent is cooled to from 20 to 95° C., and then the thermoplastic polyurethanes comprising blowing agent are depressurized.
- The invention therefore also provides, and this is particularly preferred, a process for production of expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent, where a thermoplastic polyurethane whose Shore hardness is from A44 to A 84, preferably from A 62 to A 80, is melted together with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent and, if appropriate, with additives, in an extruder, and the melt is pelletized under water at pressures of from 2 bar to 20 bar and temperatures of from 5° C. to 95° C.
- To the extent that expandable beads are obtained, these can be foamed in a known manner, whereupon the inventive expanded TPU beads are produced. The foaming generally takes place via heating of the expandable beads in conventional foaming apparatuses, e.g. with hot air or superheated steam in what is known as a pressure prefoamer, for example of the type usually used for processing of expandable polystyrene (EPS). It is preferable to foam the beads at a temperature at which they soften (softening range), particularly preferably at temperatures of from 100 to 140° C.
- The present invention therefore also provides a process for production of foams based on thermoplastic polyurethane, where the inventive expandable thermoplastic polyurethane, preferably in bead form, comprising blowing agent is foamed at a temperature of from 100° C. to 140° C. The present invention also provides foams thus obtainable and based on thermoplastic polyurethane.
- If steam is used for foaming, the steam pressure is usually, as a function of the nature and amount of TPU and blowing agent, and of the desired density of the foam to be produced, from 1 to 4 bar (absolute), preferably from 1.5 to 3.5 bar (absolute). As the pressures increase here the densities of the foamed TPU product become smaller, i.e. steam pressure can be used to set the desired density. The foaming time is usually from 1 to 300 sec, preferably from 1 to 30 sec. Foaming is followed by depressurization and cooling. The expansion factor during foaming is preferably from 2 to 50.
- In one embodiment of the suspension process for production of the expanded TPU beads, the heated suspension is not cooled, but depressurized suddenly while hot, without cooling. During depressurization, the blowing agent which has previously diffused into the TPU beads expands “explosively” and foams the softened beads. Expanded TPU beads are obtained.
- The suspension is usually depressurized via a die, a valve, or another suitable apparatus. The suspension can be directly depressurized to atmospheric pressure, such as 1013 mbar. However, it is preferable to depressurize in an intermediate container whose pressure is sufficient for foaming of the TPU beads but can be above atmospheric pressure. A suitable method depressurizes to a pressure of, for example, from 0.5 to 5 bar (absolute), in particular from 1 to 3 bar (absolute). During the depressurization process, the impregnation pressure in the impregnation container can be kept constant, by introducing further blowing agent under pressure. The method generally used comprises cooling of the suspension after depressurization, isolation of the expanded TPU beads conventionally from the suspension, and, before that or after that, if appropriate, removal of adherent suspending agent, as described above, and finally washing and drying of the beads.
- In one embodiment of the extrusion process for production of the expanded TPU beads, the melt comprising blowing agent is discharged from the extruder and pelletized without underwater pelletization, water-cooled die-face pelletization or other precautions which inhibit foaming. By way of example, extrusion can take place directly into the atmosphere. The melt extrudate discharged from the extruder foams during this process, and expanded TPU beads are obtained via pelletization of the foamed extrudate.
- A preferred process for production of expanded TPU beads comprises the following stages
- i) melting of TPU, if appropriate with additives, and extrusion to give minipellets whose average diameter is from 0.2 to 10 mm,
- ii) impregnation of the minipellets with from 0.1 to 40% by weight, based on the total weight of the pellets, of a volatile blowing agent in aqueous suspension under pressure, preferably at a pressure of from 5 to 100 bar, at temperatures in the range from 100 to 150° C., and
- iii) then depressurization.
- Another preferred process for expansion of expanded TPU beads comprises the following stages:
- i) melting of TPU together with from 0.1 to 40% by weight, based on the total weight of the pellets, of a volatile blowing agent and, if appropriate, with additives; in an extruder,
- ii) discharge of the melt from the extruder and pelletization of the melt extrudate without apparatuses which inhibit foaming.
- The invention also provides, and this is particularly preferred, a process for production of expanded thermoplastic polyurethane, where a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from A 62 to A 80, is extruded, if appropriate together with additives, to give pellets whose average diameter is from 0.2 to 10 mm, the pellets are impregnated with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent, preferably in aqueous suspension under pressure, preferably at a pressure of from 5 to 100 bar, at temperatures in the range from 100 to 150° C., and then are depressurized.
- The invention also provides, and this is particularly preferred, a process for production of expanded thermoplastic polyurethane, where a thermoplastic polyurethane whose Shore hardness is from A 44 to A 84, preferably from A 62 to A 80, is melted together with from 0.1 to 40% by weight, based on the total weight of the pellets, of a preferably volatile blowing agent, if appropriate with additives, in an extruder, and the melt is pelletized without apparatuses which inhibit foaming.
- The present invention also provides expanded thermoplastic polyurethanes obtainable via these process.
- The TPU beads can be provided, prior to and/or after the foaming process, with an antiblocking agent. Examples of suitable antiblocking agents are talc, metal compounds, such as tricalcium phosphate, calcium carbonate, silicas, in particular fumed silicas, such as Aerosil® from Degussa, salts of long-chain (e.g. C10-22) carboxylic acids, for example stearic salts, such as calcium stearate, esters of long-chain carboxylic acids, e.g. glycerol esters, such as the glycerol stearates, and silicone oils. The antiblocking agent is generally applied to the beads via mixing, spray application, drum application, or other conventional processes. It is usually used in amounts of from 0.01 to 20 parts by weight, preferably from 0.1 to 10 parts by weight, particularly preferably from 0.5 to 6 parts by weight, based on 100 parts by weight of the TPU.
- In all cases the product is expanded TPU beads. Preferred densities are from 5 to 600 g/l, and particularly preferably from 10 to 300 g/l.
- The expanded beads are generally at least approximately spherical and their diameter is usually from 0.2 to 20 mm, preferably from 0.5 to 15 mm, and in particular from 1 to 12 mm. In the case of non-spherical, e.g. elongate or cylindrical, beads, diameter means the longest dimension.
- Foams can be produced from the inventive expanded TPU beads, for example by fusing them to one another in a closed mold with exposure to heat. For this, the beads are charged to the mold and, once the mold has been closed, steam or hot air is supplied, thus further expanding the beads and fusing them to one another to give foam, whose density is preferably in the range from 8 to 600 g/l. The foams can be semifinished products, for example sheets, profiles, or webs, or finished moldings with simple or complicated geometry. The expression TPU foam therefore includes semifinished foam products and includes foam moldings.
- The temperature during the fusion of the expanded TPU beads is preferably from 100° C. to 140° C. The present invention therefore also provides processes for production of foam based on thermoplastic polyurethane, where the inventive expanded thermoplastic polyurethane is fused by means of steam at a temperature of from 100° C. to 140° C., to give a molding.
- The invention also provides for the use of the expanded TPU beads for production of TPU foams, and provides TPU foams obtainable from the expanded TPU beads.
- The inventive foams can be recycled by a thermoplastic route without difficulty. For this, the foamed TPUs are extruded, using a vented extruder, and there can be mechanical comminution prior to this extrusion process. They can then be processed again to give foams in the manner described above.
- The inventive foams are preferably used in energy-absorbing moldings and in moldings for automobile interiors.
- Particular preference is therefore also given to the following products comprising the inventive foams: helmet shells, knee protectors, elbow protectors, shoe soles, midsoles, insoles, and the following parts which comprise the inventive foams: steering wheel parts, door side parts, and foot well parts.
- The examples below are intended for further illustration of the invention:
-
TABLE 1 Soft phase Thermoplastic polyurethane Composition [mol] Molar Composition [mol] Adipic 1,4- Poly- mass Soft 1,4- Shore TPU acid Butanediol THF [g/mol] phase Butanediol 4,4′-MDI hardness A 1 1 — 800 1.00 0.44 1.44 A78 B — — 1 1333 1.00 0.97 1.97 A72 - The Shore hardness of the PU elastomers was determined to DIN 53 505.
- 100 parts of the TPUs stated in Table 1 in the form of pellets each weighing about 2 mg, 250 parts by weight of water, 6.7 parts of tricalcium phosphate, and 20 parts of n-butane were introduced, with stirring, into an autoclave and heated to the temperature stated in Table 2. The contents of the pressure vessel were then discharged through a basal valve and depressurized, while the pressure in the tank was kept constant by introducing, under pressure, nitrogen or the blowing agent used. The foam beads were freed from adherent residues of auxiliaries via washing with nitric acid and water and were air-dried at 50° C.
- The impregnation conditions and the resultant bulk densities of the expanded beads are found in Table 2.
-
TABLE 2 TPU of n-Butane [parts by Table 1 weight] Temperature [° C.] Bulk density [g/L] A 20 112 300 A 20 114 170 B 20 119 240 B 20 120 190 B 20 122 140 B 20 125 120 - The foam beads produced in Example 1 were charged into a preheated mold, with pressure and compaction. The mold was heated by steam at from 1.0 to 4.0 bar, i.e. at temperatures of from 100° C. to 140° C., on alternate sides.
- The mold was then depressurized and cooled with water and, respectively, air, and opened, and the mechanically stable molding was removed.
Claims (15)
1. (canceled)
2. The process for producing an expandable thermoplastic polyurethane according to claim 7 , wherein the thermoplastic polyurethane exhibits a melting range, measured by DSC using a heating rate of 20 K/min, that starts below 130° C., and the thermoplastic polyurethane has at most a melt flow rate of 250 g/10 min at 190° C. with an applied weight of 21.6 kg to DIN EN ISO 1133.
3. The process for producing an expandable thermoplastic polyurethane according to claim 7 , wherein the thermoplastic polyurethane is based on a polytetrahydrofuran of a molar mass that ranges from 600 g/mol to 2500 g/mol.
4. The process for producing an expandable thermoplastic polyurethane according to claim 7 , wherein the thermoplastic polyurethane is based on a polyester alcohol of a molar mass that ranges from 600 g/mol to 900 g/mol.
5. The process for producing an expandable thermoplastic polyurethane according to claim 7 , wherein of the thermoplastic polyurethane has an average diameter that ranges from 0.2 to 10 mm.
6. The process for producing an expandable thermoplastic polyurethane according to claim 7 , further comprising from 5 to 80% by weight of an organic filler, an inorganic filler, or a combination thereof, based on the total weight of the thermoplastic polyurethane.
7. A process for producing an expandable thermoplastic polyurethane comprising a blowing agent, which comprises:
(i) extruding a thermoplastic polyurethane exhibiting a Shore hardness that ranges from A 44 to A 84, if appropriate together with additives, to give pellets with an average diameter that ranges from 0.2 to 10 mm,
(ii) impregnating the pellets with from 0.1 to 40% by weight, based on the total weight of the pellets, of a blowing agent in aqueous suspension under pressure at temperatures in the range from 100 to 150° C.,
(iii) cooling the suspension comprising the thermoplastic polyurethanes to from 20 to 95° C., and
(iv) depressurizing the thermoplastic polyurethane.
8. A process for producing an expandable thermoplastic polyurethane comprising a blowing agent, which comprises:
(i) melting a thermoplastic polyurethane exhibiting a Shore hardness that ranges from A 44 to A 84 together with from 0.1 to 40% by weight, based on the total weight of pellets, of a blowing agent and, if appropriate with additives, in an extruder to form a melt, and
(ii) pelletizing the melt under water at a pressure that ranges from 2 bar to 20 bar and a temperature that ranges from 5° C. to 95° C.
9. A process for producing a foam based on a thermoplastic polyurethane, which comprises foaming an expandable thermoplastic polyurethane comprising blowing agent, wherein the thermoplastic polyurethane exhibits a Shore hardness that ranges from A 44 to A 84 at a temperature that ranges from 100° C. to 140° C.
10. A foam based on thermoplastic polyurethane obtained by the process according to claim 9 .
11. A process for producing an expanded thermoplastic polyurethane, which comprises:
(i) extruding a thermoplastic polyurethane exhibiting a Shore hardness that ranges from A 44 to A 84, if appropriate together with additives, to give pellets with an average diameter that ranges from 0.2 to 10 mm,
(ii) impregnating the pellets with from 0.1 to 40% by weight, based on the total weight of the pellets, of a blowing agent, under pressure at temperatures in the range from 100 to 150° C., and
(iii) depressurizing said expandable thermoplastic polyurethane.
12. A process for producing an expanded thermoplastic polyurethane, which comprises:
(i) melting a thermoplastic polyurethane exhibiting a Shore hardness that ranges from A 44 to A 84, together with from 0.1 to 40% by weight, based on the total weight of pellets, of a blowing agent, if appropriate with additives, in an extruder to form a melt, and
(ii) pelletizing the melt without devices which inhibit foaming.
13. An expanded thermoplastic polyurethane obtained by a process according to claim 11 .
14. The expanded thermoplastic polyurethane according to claim 13 , wherein the thermoplastic polyurethane comprises, based on the total weight of the thermoplastic polyurethane, from 5 to 80% by weight of an organic filler, an inorganic filler, or a combination thereof.
15. A process for production of foam based on thermoplastic polyurethane, which comprises using steam with a temperature of from 100° C. to 140° C. to fuse expanded thermoplastic polyurethane according to claim 13 to give a molding.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/605,673 US9884947B2 (en) | 2006-01-18 | 2012-09-06 | Foams based on thermoplastic polyurethanes |
US15/837,344 US11142621B2 (en) | 2006-01-18 | 2017-12-11 | Foams based on thermoplastic polyurethanes |
US17/031,216 US11365303B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,241 US11053368B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,164 US11124620B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,188 US11332594B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,225 US11292887B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,220 US11292886B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/472,582 US20210403668A1 (en) | 2006-01-18 | 2021-09-10 | Foams based on thermoplastic polyurethanes |
US17/472,563 US20220002512A1 (en) | 2006-01-18 | 2021-09-10 | Foams based on thermoplastic polyurethanes |
US17/472,632 US20210403669A1 (en) | 2006-01-18 | 2021-09-11 | Foams based on thermoplastic polyurethanes |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06100506 | 2006-01-18 | ||
EP06100506 | 2006-01-18 | ||
EP06100506.2 | 2006-01-18 | ||
PCT/EP2007/050274 WO2007082838A1 (en) | 2006-01-18 | 2007-01-12 | Foams based on thermoplastic polyurethanes |
US16135408A | 2008-07-18 | 2008-07-18 | |
US13/605,673 US9884947B2 (en) | 2006-01-18 | 2012-09-06 | Foams based on thermoplastic polyurethanes |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/050274 Division WO2007082838A1 (en) | 2006-01-18 | 2007-01-12 | Foams based on thermoplastic polyurethanes |
US12/161,354 Division US20100222442A1 (en) | 2006-01-18 | 2007-01-12 | Foams based on thermoplastic polyurethanes |
US16135408A Division | 2006-01-18 | 2008-07-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/837,344 Division US11142621B2 (en) | 2006-01-18 | 2017-12-11 | Foams based on thermoplastic polyurethanes |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120329892A1 true US20120329892A1 (en) | 2012-12-27 |
US9884947B2 US9884947B2 (en) | 2018-02-06 |
Family
ID=37944927
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/161,354 Abandoned US20100222442A1 (en) | 2006-01-18 | 2007-01-12 | Foams based on thermoplastic polyurethanes |
US13/605,673 Active US9884947B2 (en) | 2006-01-18 | 2012-09-06 | Foams based on thermoplastic polyurethanes |
US15/837,344 Active US11142621B2 (en) | 2006-01-18 | 2017-12-11 | Foams based on thermoplastic polyurethanes |
US17/031,216 Active US11365303B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,220 Active US11292886B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,188 Active US11332594B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,164 Active US11124620B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,225 Active US11292887B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,241 Active US11053368B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/472,582 Abandoned US20210403668A1 (en) | 2006-01-18 | 2021-09-10 | Foams based on thermoplastic polyurethanes |
US17/472,563 Abandoned US20220002512A1 (en) | 2006-01-18 | 2021-09-10 | Foams based on thermoplastic polyurethanes |
US17/472,632 Abandoned US20210403669A1 (en) | 2006-01-18 | 2021-09-11 | Foams based on thermoplastic polyurethanes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/161,354 Abandoned US20100222442A1 (en) | 2006-01-18 | 2007-01-12 | Foams based on thermoplastic polyurethanes |
Family Applications After (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/837,344 Active US11142621B2 (en) | 2006-01-18 | 2017-12-11 | Foams based on thermoplastic polyurethanes |
US17/031,216 Active US11365303B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,220 Active US11292886B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,188 Active US11332594B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,164 Active US11124620B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,225 Active US11292887B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/031,241 Active US11053368B2 (en) | 2006-01-18 | 2020-09-24 | Foams based on thermoplastic polyurethanes |
US17/472,582 Abandoned US20210403668A1 (en) | 2006-01-18 | 2021-09-10 | Foams based on thermoplastic polyurethanes |
US17/472,563 Abandoned US20220002512A1 (en) | 2006-01-18 | 2021-09-10 | Foams based on thermoplastic polyurethanes |
US17/472,632 Abandoned US20210403669A1 (en) | 2006-01-18 | 2021-09-11 | Foams based on thermoplastic polyurethanes |
Country Status (6)
Country | Link |
---|---|
US (12) | US20100222442A1 (en) |
EP (1) | EP1979401B1 (en) |
CN (3) | CN101370861B (en) |
AT (1) | ATE482991T1 (en) |
DE (1) | DE502007005193D1 (en) |
WO (1) | WO2007082838A1 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120065285A1 (en) * | 2009-05-26 | 2012-03-15 | Basf Se | Water as a propellant for thermoplastics |
WO2013138439A1 (en) | 2012-03-13 | 2013-09-19 | New Balance Athletic Shoe, Inc. | Foamed parts having a fabric component, and systems and methods for manufacturing same |
US20150174808A1 (en) * | 2012-04-13 | 2015-06-25 | Basf Se | Method for producing expanded granules |
WO2015097075A1 (en) * | 2013-12-23 | 2015-07-02 | Kurtz Gmbh | Device and method for producing a particle foam part |
US20150344661A1 (en) * | 2012-07-06 | 2015-12-03 | Basf Se | Polyurethane-based expandable polymer particles |
US9248350B2 (en) | 2013-12-10 | 2016-02-02 | Acushnet Company | Multi-layered golf balls having foam center with selective weight distribution |
US20160046751A1 (en) * | 2013-03-20 | 2016-02-18 | Basf Se | Polyurethane-based polymer composition |
US20160244587A1 (en) * | 2013-10-18 | 2016-08-25 | Basf Se | Process for production of expanded thermoplastic elastomer |
EP3172980A1 (en) * | 2015-11-30 | 2017-05-31 | Matthias Hartmann | Method for producing a sole for a shoe |
US9713356B2 (en) | 2013-10-28 | 2017-07-25 | Taylor Made Golf Company, Inc. | Golf shoe outsoles |
EP3055353B1 (en) | 2013-10-11 | 2017-08-02 | Basf Se | Method for producing expanded thermoplastic elastomer particles |
US20170252900A1 (en) * | 2014-09-09 | 2017-09-07 | Kolthoff Gabrovo Eood | Tool for Surface Finish Machining |
EP3109281A4 (en) * | 2014-02-18 | 2017-10-18 | Miracll Chemicals Co., Ltd. | Extruded foamed thermoplastic polyurethane elastomer particle and preparation method therefor |
KR20170117537A (en) * | 2015-02-17 | 2017-10-23 | 바스프 에스이 | Process for producing foam based on thermoplastic polyurethane |
WO2018003316A1 (en) | 2016-06-29 | 2018-01-04 | 株式会社ジェイエスピー | Thermoplastic polyurethane foam particle molded article and method for producing same, and thermoplastic polyurethane foam particles |
US9884947B2 (en) * | 2006-01-18 | 2018-02-06 | Basf Se | Foams based on thermoplastic polyurethanes |
WO2018074286A1 (en) | 2016-10-20 | 2018-04-26 | 株式会社ジェイエスピー | Method for manufacturing thermoplastic elastomer foaming particle molded body |
WO2018096997A1 (en) | 2016-11-28 | 2018-05-31 | 株式会社ジェイエスピー | Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article |
KR20190041018A (en) | 2016-11-17 | 2019-04-19 | 미쓰이 가가쿠 가부시키가이샤 | Thermoplastic polyurethane resin for foaming, method for producing the same, and molded article |
EP3438174A4 (en) * | 2016-03-31 | 2019-08-07 | JSP Corporation | PARTICLES OF THERMOPLASTIC POLYURETHANE FOAM |
US10519289B2 (en) | 2014-02-18 | 2019-12-31 | Miracll Chemicals Co., Ltd. | Expanded thermoplastic polyurethane beads and preparation method and application thereof |
US10597531B2 (en) | 2015-03-13 | 2020-03-24 | Basf Se | Electrically conductive particle foams based on thermoplastic elastomers |
EP3663359A4 (en) * | 2017-08-04 | 2020-08-26 | Nantong De New Material Co., Ltd. | PROCESS FOR MANUFACTURING A THERMOPLASTIC POLYURETHANE MICROAIRBAG ELASTOMER |
US10793694B2 (en) | 2015-06-01 | 2020-10-06 | Jsp Corporation | Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article |
EP3766369A1 (en) | 2019-07-18 | 2021-01-20 | Antonio Ramón Porta Cantó | Manufacturing procedure for a sole for footwear and product thus obtained |
US10899904B2 (en) | 2016-03-31 | 2021-01-26 | Jsp Corporation | Thermoplastic polyurethane foamed particles and method for manufacturing thermoplastic polyurethane foamed particle molded article |
US10927213B2 (en) | 2016-11-17 | 2021-02-23 | Mitsui Chemicals, Inc. | Producing method of polyurethane resin, polyurethane resin, and molded article |
US10941263B2 (en) | 2014-04-30 | 2021-03-09 | Basf Se | Polyurethane particle foam with polyurethane coating |
US20210246281A1 (en) * | 2020-02-07 | 2021-08-12 | Adidas Ag | Method for producing a foam component |
US11161956B2 (en) | 2015-03-13 | 2021-11-02 | Bafs Se | Method for producing particle foams based on thermoplastic elastomers, by thermal bonding using microwaves |
EP3186306B1 (en) | 2014-08-26 | 2022-08-24 | Adidas AG | Expanded polymer pellets |
US11780981B2 (en) | 2018-12-06 | 2023-10-10 | Exxonmobil Chemical Patents Inc. | Foam beads and method of making the same |
EP3708017B1 (en) * | 2013-04-19 | 2023-12-27 | adidas AG | Sports shoe |
LU505106B1 (en) | 2023-09-15 | 2025-03-17 | Luxembourg Institute Of Science And Tech List | Method for producing thermoplastic polyurethane (PU) foams |
Families Citing this family (213)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD855953S1 (en) | 2017-09-14 | 2019-08-13 | Puma SE | Shoe sole element |
USD911683S1 (en) | 2017-09-14 | 2021-03-02 | Puma SE | Shoe |
USD911682S1 (en) | 2017-09-14 | 2021-03-02 | Puma SE | Shoe |
USD953709S1 (en) | 1985-08-29 | 2022-06-07 | Puma SE | Shoe |
USD910290S1 (en) | 2017-09-14 | 2021-02-16 | Puma SE | Shoe |
SI2109637T1 (en) | 2007-01-16 | 2018-09-28 | Basf Se | Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes |
WO2010010010A1 (en) * | 2008-07-25 | 2010-01-28 | Basf Se | Thermoplastic polymer blends based on thermoplastic polyurethane and styrene polymer, foams produced therefrom and associated manufacturing methods |
US8609751B2 (en) * | 2008-11-25 | 2013-12-17 | Dow Global Technologies Llc | Polymer microfiller composites |
EP2412508A1 (en) | 2010-07-29 | 2012-02-01 | Innovent e.V. | Method for coating surfaces with a thermoplastic elastomer on a polyurethane basis and the manufactured article |
DE102010048703B4 (en) * | 2010-10-19 | 2015-11-05 | Döllken-Kunststoffverarbeitung Gmbh | Method for continuously producing an LED strip |
EP2640760B1 (en) | 2010-11-16 | 2015-07-08 | Basf Se | Novel damping element in shoe soles |
CA2778640A1 (en) * | 2011-06-10 | 2012-12-10 | Corporation Zedbed International Inc. | Composite memory foam and uses thereof |
DE102011108744B4 (en) * | 2011-07-28 | 2014-03-13 | Puma SE | Method for producing a sole or a sole part of a shoe |
DE102012206094B4 (en) | 2012-04-13 | 2019-12-05 | Adidas Ag | Soles for sports footwear, shoes and method of making a shoe sole |
WO2013153153A1 (en) | 2012-04-13 | 2013-10-17 | Basf Se | Thermoplastic molding mass |
AU2015215968B2 (en) * | 2012-07-10 | 2016-11-10 | Nike Innovate C.V. | Bead foam compression molding method for low density product |
US8961844B2 (en) * | 2012-07-10 | 2015-02-24 | Nike, Inc. | Bead foam compression molding method for low density product |
BR112015002711B1 (en) | 2012-08-09 | 2020-09-29 | Basf Se | COMBINATION FOAM, USE OF A COMBINATION FOAM AND PROCESS FOR THE PRODUCTION OF COMBINATION FOAMS |
EP2716153A1 (en) | 2012-10-02 | 2014-04-09 | Basf Se | Stall floor lining made from expanded thermoplastic polyurethane particle foam |
BR112015013532A2 (en) * | 2012-12-14 | 2017-07-11 | Dow Global Technologies Llc | method for forming a bonded mass of adhered solid portions |
BR112015013830B1 (en) | 2012-12-14 | 2021-08-17 | Dow Global Technologies Llc | METHOD FOR FORMING A CONNECTED MASS OF ADHERED SOLID PARTS |
US9144956B2 (en) | 2013-02-12 | 2015-09-29 | Nike, Inc. | Bead foam compression molding method with in situ steam generation for low density product |
DE102013002519B4 (en) | 2013-02-13 | 2016-08-18 | Adidas Ag | Production method for damping elements for sportswear |
DE102013202353B4 (en) * | 2013-02-13 | 2020-02-20 | Adidas Ag | Sole for a shoe |
US9930928B2 (en) | 2013-02-13 | 2018-04-03 | Adidas Ag | Sole for a shoe |
US9610746B2 (en) | 2013-02-13 | 2017-04-04 | Adidas Ag | Methods for manufacturing cushioning elements for sports apparel |
DE102013022415B4 (en) | 2013-02-13 | 2024-05-16 | Adidas Ag | Manufacturing process for cushioning elements for sportswear |
DE102013202291B4 (en) * | 2013-02-13 | 2020-06-18 | Adidas Ag | Damping element for sportswear and shoes with such a damping element |
DE102013202306B4 (en) | 2013-02-13 | 2014-12-18 | Adidas Ag | Sole for a shoe |
US9375866B2 (en) | 2013-03-15 | 2016-06-28 | Nike, Inc. | Process for foaming thermoplastic elastomers |
US9243104B2 (en) | 2013-03-15 | 2016-01-26 | Nike, Inc. | Article with controlled cushioning |
US20140259753A1 (en) | 2013-03-15 | 2014-09-18 | Nike, Inc. | Modified thermoplastic elastomers for increased compatibility with supercritical fluids |
US9498927B2 (en) | 2013-03-15 | 2016-11-22 | Nike, Inc. | Decorative foam and method |
USD740004S1 (en) | 2013-04-12 | 2015-10-06 | Adidas Ag | Shoe |
USD776410S1 (en) | 2013-04-12 | 2017-01-17 | Adidas Ag | Shoe |
PL3008122T3 (en) | 2013-06-13 | 2018-01-31 | Basf Se | Method for the production of expanded granules |
CN104227904B (en) * | 2013-06-21 | 2017-12-19 | 东莞塘厦怡丰发泡胶有限公司 | Polyurethane elastomer manufacturing process and the sports safety protective articles made of the method |
US9919458B2 (en) | 2013-08-02 | 2018-03-20 | Nike, Inc. | Method and thermoplastic foamed article |
CN103709726B (en) * | 2013-12-17 | 2016-04-20 | 美瑞新材料股份有限公司 | Extrusion foaming thermoplastic polyurethane elastomer bead and preparation method thereof |
CN103642200B (en) * | 2013-12-20 | 2016-01-06 | 山东美瑞新材料有限公司 | A kind of foamed thermoplastic polyurethane bead and preparation method thereof |
US20170174818A1 (en) * | 2014-03-26 | 2017-06-22 | Lubrizol Advanced Materials, Inc. | Polyurethane foams and method for producing same |
US9713357B2 (en) | 2014-07-15 | 2017-07-25 | Taylor Made Golf Company, Inc. | Asymmetric shoes |
CN104194030B (en) * | 2014-08-08 | 2015-05-27 | 汕头市新力新材料科技有限公司 | Thermoplastic polyurethane elastomer foam bead and preparation method thereof |
DE102014215897B4 (en) | 2014-08-11 | 2016-12-22 | Adidas Ag | adistar boost |
DE102014216115B4 (en) | 2014-08-13 | 2022-03-31 | Adidas Ag | 3D elements cast together |
EP4245802A3 (en) | 2014-08-26 | 2023-09-27 | adidas AG | Method for manufacturing molded components |
EP3221111A1 (en) | 2014-11-26 | 2017-09-27 | Lifoam Industries, LLC | Method of molding foam articles |
DE102015202013B4 (en) | 2015-02-05 | 2019-05-09 | Adidas Ag | Process for producing a plastic molding, plastic molding and shoe |
JP6679363B2 (en) | 2015-03-23 | 2020-04-15 | アディダス アーゲー | Soles and shoes |
EP3274387B1 (en) | 2015-03-27 | 2022-02-23 | Basf Se | Memory foam based on thermoplastic polyurethane |
CN104760675A (en) * | 2015-04-01 | 2015-07-08 | 大连华工创新科技股份有限公司 | E-TPU lifesaving clothing |
CN104757722A (en) * | 2015-04-01 | 2015-07-08 | 大连华工创新科技股份有限公司 | E-TPU foaming protecting clothing |
DE102015206486B4 (en) | 2015-04-10 | 2023-06-01 | Adidas Ag | Shoe, in particular sports shoe, and method for manufacturing the same |
DE102015206900B4 (en) | 2015-04-16 | 2023-07-27 | Adidas Ag | sports shoe |
BR112017023125A2 (en) * | 2015-05-19 | 2018-07-10 | Basf Se | article and method to form an article |
WO2016188655A1 (en) | 2015-05-22 | 2016-12-01 | Basf Coatings Gmbh | Aqueous base paint for producing a coating |
US10329450B2 (en) | 2015-05-22 | 2019-06-25 | Basf Coatings Gmbh | Method for producing a multicoat coating |
DE102015209795B4 (en) * | 2015-05-28 | 2024-03-21 | Adidas Ag | Ball and process for its production |
JP2016221232A (en) | 2015-06-03 | 2016-12-28 | テーラー メイド ゴルフ カンパニー インコーポレイテッド | Winding wire support for shoes |
US9743709B2 (en) | 2015-06-03 | 2017-08-29 | Taylor Made Golf Company, Inc. | Wrap-around wire support for shoe |
US9788599B2 (en) | 2015-06-03 | 2017-10-17 | Taylor Made Golf Company, Inc. | Torsion control bridge for shoe |
TW201736423A (en) * | 2015-09-11 | 2017-10-16 | 三晃股份有限公司 | Foamed thermoplastic polyurethane and microwave molded article thereof |
USD783264S1 (en) | 2015-09-15 | 2017-04-11 | Adidas Ag | Shoe |
JP6657388B2 (en) | 2015-09-24 | 2020-03-04 | ナイキ イノベイト シーブイ | Particulate foam in coated carrier |
CN105176058A (en) * | 2015-09-25 | 2015-12-23 | 苏州莱特复合材料有限公司 | Composite for manufacturing helmet and preparation method of composite |
DE102015118251A1 (en) * | 2015-10-26 | 2017-04-27 | Elten GmbH | Sole for a shoe, especially for a safety shoe, as well as shoe |
US9950486B2 (en) | 2015-11-30 | 2018-04-24 | Matthias Hartmann | Method for producing a sole for a shoe |
CN108779230B (en) | 2016-03-21 | 2021-10-01 | 巴斯夫欧洲公司 | Crosslinked polyurethanes |
CN105884998A (en) * | 2016-04-14 | 2016-08-24 | 美瑞新材料股份有限公司 | Foamed type TPU (thermoplastic polyurethane elastomer) material and preparation method thereof |
DE102016209046B4 (en) | 2016-05-24 | 2019-08-08 | Adidas Ag | METHOD FOR THE PRODUCTION OF A SHOE SOLE, SHOE SOLE, SHOE AND PREPARED TPU ITEMS |
DE102016209045B4 (en) | 2016-05-24 | 2022-05-25 | Adidas Ag | METHOD AND DEVICE FOR AUTOMATICALLY MANUFACTURING SHOE SOLES, SOLES AND SHOES |
DE102016209044B4 (en) | 2016-05-24 | 2019-08-29 | Adidas Ag | Sole form for making a sole and arranging a variety of sole forms |
CN109196029B (en) | 2016-05-25 | 2021-10-19 | 巴斯夫欧洲公司 | Hollow particles and porous molded bodies made of thermoplastic elastomers |
WO2017220671A1 (en) * | 2016-06-23 | 2017-12-28 | Basf Se | Method for producing foam particles made of thermoplastic elastomers with polyamide segments |
USD840137S1 (en) | 2016-08-03 | 2019-02-12 | Adidas Ag | Shoe midsole |
USD840136S1 (en) | 2016-08-03 | 2019-02-12 | Adidas Ag | Shoe midsole |
USD852475S1 (en) | 2016-08-17 | 2019-07-02 | Adidas Ag | Shoe |
RU2019108272A (en) | 2016-08-25 | 2020-09-25 | Басф Се | MICROWAVE FOAMING |
JP1582717S (en) | 2016-09-02 | 2017-07-31 | ||
US10669447B2 (en) | 2016-10-20 | 2020-06-02 | Basf Coatings Gmbh | Method for producing a coating |
EP3535316A1 (en) | 2016-11-04 | 2019-09-11 | Basf Se | Particle foams based on expanded thermoplastic elastomers |
JP6838940B2 (en) * | 2016-11-11 | 2021-03-03 | 株式会社ジェイエスピー | Foam particle molded body and sole member |
WO2018087362A1 (en) | 2016-11-14 | 2018-05-17 | Basf Se | Expanded thermoplastic polyurethane particles, process for producing same, and process for producing a moulding |
DE102016223980B4 (en) * | 2016-12-01 | 2022-09-22 | Adidas Ag | Process for the production of a plastic molding |
US10856606B2 (en) * | 2016-12-08 | 2020-12-08 | Puma SE | Method for producing a shoe sole |
USD850766S1 (en) | 2017-01-17 | 2019-06-11 | Puma SE | Shoe sole element |
CN110290719B (en) | 2017-01-31 | 2022-02-08 | 彪马欧洲公司 | Sports shoes |
US11306177B2 (en) | 2017-02-13 | 2022-04-19 | Basf Se | Thermoplastic polyurethane |
WO2018146335A1 (en) | 2017-02-13 | 2018-08-16 | Basf Se | Thermoplastic polyurethane |
JP6397949B2 (en) | 2017-03-06 | 2018-09-26 | 株式会社ジェイエスピー | Foamed particle molding |
DE102017205830B4 (en) | 2017-04-05 | 2020-09-24 | Adidas Ag | Process for the aftertreatment of a large number of individual expanded particles for the production of at least a part of a cast sports article, sports article and sports shoe |
AU2018265447A1 (en) | 2017-05-10 | 2019-11-28 | Basf Se | Floorings prepared from composites comprising expanded thermoplastic elastomer particles |
EP3612049B1 (en) | 2017-05-10 | 2020-07-15 | Nike Innovate C.V. | Foam ionomer compositions and uses thereof |
US10974447B2 (en) | 2017-06-01 | 2021-04-13 | Nike, Inc. | Methods of manufacturing articles utilizing foam particles |
CN107095369A (en) * | 2017-06-01 | 2017-08-29 | 宁波格林美孚新材料科技有限公司 | A kind of protective garment particles filled ETPU |
CN110809591B (en) | 2017-06-26 | 2022-05-03 | 巴斯夫欧洲公司 | Thermoplastic polyurethanes |
EP3424974A1 (en) | 2017-07-04 | 2019-01-09 | Covestro Deutschland AG | Article comprising expanded tpu and a water based coating |
EP3424973A1 (en) | 2017-07-04 | 2019-01-09 | Covestro Deutschland AG | Article comprising expanded tpu and a coating |
ES2953598T3 (en) | 2017-07-20 | 2023-11-14 | Basf Se | Thermoplastic polyurethane |
JP6912317B2 (en) | 2017-08-03 | 2021-08-04 | 株式会社ジェイエスピー | Urethane-based thermoplastic elastomer foamed particles |
CN107298848B (en) * | 2017-08-04 | 2019-01-18 | 南通德亿新材料有限公司 | A kind of micro- air bag polyurethane elastomer material of particle diameter thermoplasticity and preparation method thereof |
CN109354861B (en) * | 2017-08-04 | 2021-06-08 | 南通德亿新材料有限公司 | Thermoplastic micro-balloon polymer elastomer material and preparation method thereof |
US11291273B2 (en) | 2017-08-11 | 2022-04-05 | Puma SE | Method for producing a shoe |
USD975417S1 (en) | 2017-09-14 | 2023-01-17 | Puma SE | Shoe |
US11402544B2 (en) | 2017-09-29 | 2022-08-02 | Nike, Inc. | Structurally-colored articles and methods for making and using structurally-colored articles |
USD899061S1 (en) | 2017-10-05 | 2020-10-20 | Adidas Ag | Shoe |
CN109705564A (en) * | 2017-10-25 | 2019-05-03 | 江苏瑞凌新能源科技有限公司 | A kind of ultra-toughness automobile parts plastic formula |
TW201932520A (en) | 2017-10-26 | 2019-08-16 | 德商巴斯夫歐洲公司 | Process for coloring elastomer particle foams |
US20190126580A1 (en) | 2017-10-31 | 2019-05-02 | Saucony, Inc. | Method and apparatus for manufacturing footwear soles |
CA3078696A1 (en) | 2017-11-30 | 2019-06-06 | Basf Coatings Gmbh | Process for the pretreatment of plastics substrates |
EP3724250A1 (en) | 2017-12-14 | 2020-10-21 | Basf Se | Method for preparing a thermoplastic polyurethane having a low glass transition temperature |
US11945904B2 (en) | 2017-12-20 | 2024-04-02 | Basf Se | Flexible polyurethane foams |
ES2919140T3 (en) | 2018-03-06 | 2022-07-22 | Basf Se | A preparation comprising a thermoplastic polyisocyanate polyaddition product, a process for preparing the same, and use thereof |
CN112004870A (en) | 2018-04-20 | 2020-11-27 | 巴斯夫欧洲公司 | Foams based on thermoplastic elastomers |
JP2021522370A (en) | 2018-04-20 | 2021-08-30 | ビーエイエスエフ・ソシエタス・エウロパエアBasf Se | Foam based on thermoplastic elastomer |
CN111989360A (en) | 2018-04-20 | 2020-11-24 | 巴斯夫欧洲公司 | Foams based on thermoplastic elastomers |
EP3781614A1 (en) | 2018-04-20 | 2021-02-24 | Basf Se | Foams based on thermoplastic elastomers |
US20210179847A1 (en) | 2018-04-20 | 2021-06-17 | Basf Se | Foams based on thermoplastic elastomers |
US11832684B2 (en) | 2018-04-27 | 2023-12-05 | Puma SE | Shoe, in particular a sports shoe |
DK3790423T3 (en) | 2018-05-08 | 2021-11-15 | Puma SE | Sole for a shoe, especially a sports shoe |
EP3790732B1 (en) | 2018-05-08 | 2021-09-22 | Puma Se | Method for producing a sole of a shoe, in particular of a sports shoe |
US11406159B2 (en) | 2018-05-21 | 2022-08-09 | Saucony, Inc. | Method and apparatus for manufacturing footwear soles |
US11020922B2 (en) | 2018-07-27 | 2021-06-01 | Adidas Ag | Footwear with padding and midsole structures and the method of making the same |
WO2020048989A1 (en) | 2018-09-03 | 2020-03-12 | Dsm Ip Assets B.V. | A shoe comprising a sole of a thermoplastic material and a method for use in manufacturing such a shoe |
TWI829757B (en) | 2018-09-14 | 2024-01-21 | 德商巴斯夫歐洲公司 | Foams based on thermoplastic elastomers |
CN109384904A (en) * | 2018-11-26 | 2019-02-26 | 福建省晋江泉发骑士鞋业有限公司 | A kind of ETPU sole material and its preparation method and application |
US20200181351A1 (en) | 2018-12-06 | 2020-06-11 | Nike, Inc. | Methods of manufacturing articles utilizing foam particles |
US12042001B2 (en) | 2018-12-18 | 2024-07-23 | Puma SE | Shoe, in particular sports shoe, and method for producing same |
CN113260649B (en) | 2018-12-28 | 2023-06-23 | 巴斯夫欧洲公司 | Particle foams composed of aromatic polyester-polyurethane multi-block copolymers |
JP7594531B2 (en) | 2018-12-28 | 2024-12-04 | ビーエーエスエフ ソシエタス・ヨーロピア | High-strength eTPU |
US20220153948A1 (en) | 2019-02-28 | 2022-05-19 | Basf Se | Soft particle foam consisting of thermoplastic polyurethane |
FI3938435T3 (en) | 2019-03-14 | 2023-04-26 | Basf Se | A composition comprising a thermoplastic polyisocyanate polyaddition product and a flame retardant |
CN110183843B (en) * | 2019-05-16 | 2021-12-14 | 美瑞新材料股份有限公司 | Yellowing-resistant thermoplastic polyurethane foam material and preparation method thereof |
CN110204769B (en) * | 2019-05-16 | 2021-10-29 | 美瑞新材料股份有限公司 | Foaming thermoplastic polysiloxane-polyurethane segmented copolymer and preparation method and application thereof |
WO2020249727A1 (en) | 2019-06-14 | 2020-12-17 | Basf Se | Novel particle foams |
US11597996B2 (en) | 2019-06-26 | 2023-03-07 | Nike, Inc. | Structurally-colored articles and methods for making and using structurally-colored articles |
KR20220066418A (en) | 2019-07-25 | 2022-05-24 | 나이키 이노베이트 씨.브이. | Article of footwear |
CN114727682B (en) | 2019-07-25 | 2025-02-21 | 耐克创新有限合伙公司 | Cushioning member for articles of footwear |
EP4009827B1 (en) | 2019-07-25 | 2023-09-27 | NIKE Innovate C.V. | Article of footwear |
CN114206149A (en) | 2019-07-26 | 2022-03-18 | 耐克创新有限合伙公司 | Structurally colored articles and methods for making and using same |
US20220259382A1 (en) | 2019-07-31 | 2022-08-18 | Basf Se | New block copolymers |
WO2021032528A1 (en) | 2019-08-21 | 2021-02-25 | Basf Se | A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and the use thereof |
WO2021080913A1 (en) | 2019-10-21 | 2021-04-29 | Nike, Inc. | Structurally-colored articles |
US11559106B2 (en) | 2019-10-24 | 2023-01-24 | Nike, Inc. | Article of footwear and method of manufacturing an article of footwear |
ES2991469T3 (en) * | 2019-11-12 | 2024-12-03 | Huntsman Int Llc | On-site forming of flexible low-density thermoplastic polyurethane foams |
KR20220101144A (en) | 2019-11-13 | 2022-07-19 | 바스프 에스이 | Comfort eTPU |
EP4070939A1 (en) | 2019-11-19 | 2022-10-12 | NIKE Innovate C.V. | Methods of manufacturing articles having foam particles |
DE102019131513B4 (en) * | 2019-11-21 | 2022-02-24 | Ford Global Technologies, Llc | Production of a thermoplastic injection molding material granulate and an injection molded component |
CN112940488B (en) | 2019-11-26 | 2024-06-11 | 美瑞新材料股份有限公司 | High-flatness thermoplastic polyurethane foam product and preparation method and application thereof |
EP4076887A1 (en) | 2019-12-18 | 2022-10-26 | BASF Coatings GmbH | Process for producing a structured and optionally coated article and article obtained from said process |
DE102020200558A1 (en) * | 2020-01-17 | 2021-07-22 | Adidas Ag | Sole and shoe with haptic feedback |
KR20220147667A (en) | 2020-02-28 | 2022-11-03 | 바스프 에스이 | Non-primary hydroxyl group based foams |
BR112022017003A2 (en) | 2020-02-28 | 2022-10-11 | Basf Se | MOLDED ARTICLE, PROCESS FOR PRODUCING A MOLDED ARTICLE AND USE OF A MOLDED ARTICLE |
BR112022021519A2 (en) | 2020-04-23 | 2023-01-24 | Basf Se | ARTIFICIAL BRANCH AND ARTIFICIAL FIELD |
USD944504S1 (en) | 2020-04-27 | 2022-03-01 | Puma SE | Shoe |
EP4233610A3 (en) | 2020-05-29 | 2023-11-01 | Nike Innovate C.V. | Structurally-colored articles and methods for making and using structurally-colored articles |
EP4161768A1 (en) | 2020-06-09 | 2023-04-12 | Basf Se | Process for recycling of bonded articles |
CN115702183A (en) | 2020-06-15 | 2023-02-14 | 巴斯夫欧洲公司 | Thermoplastic polyurethane composition with high mechanical properties, good resistance to ultraviolet radiation and low fogging |
US11129444B1 (en) | 2020-08-07 | 2021-09-28 | Nike, Inc. | Footwear article having repurposed material with concealing layer |
US11889894B2 (en) | 2020-08-07 | 2024-02-06 | Nike, Inc. | Footwear article having concealing layer |
US11241062B1 (en) | 2020-08-07 | 2022-02-08 | Nike, Inc. | Footwear article having repurposed material with structural-color concealing layer |
WO2022043428A1 (en) | 2020-08-28 | 2022-03-03 | Basf Se | Foamed granules made of thermoplastic polyurethane |
TW202222939A (en) | 2020-09-14 | 2022-06-16 | 德商巴斯夫歐洲公司 | Optimum composition of tpu product for tires |
CN112405972A (en) * | 2020-09-27 | 2021-02-26 | 扬州盛强薄膜材料有限公司 | PETG kinking membrane preparation process |
CN116438232A (en) | 2020-10-01 | 2023-07-14 | 巴斯夫欧洲公司 | eTPE laser marking |
WO2022090222A1 (en) | 2020-10-28 | 2022-05-05 | Basf Se | Sports device for racket sports |
WO2022106319A1 (en) | 2020-11-17 | 2022-05-27 | Basf Se | Composite article comprising a structured porous body and a foam and a process the production of a structured porous body and a particle foam |
WO2022150810A1 (en) * | 2021-01-05 | 2022-07-14 | Nike Innovate C.V. | Foamed articles and methods of making the same |
WO2022162048A1 (en) | 2021-01-28 | 2022-08-04 | Basf Se | Particle foam made of tpe with a shore hardness between 20d and 90d |
US12128718B2 (en) | 2021-01-29 | 2024-10-29 | Basf Se | Construction of a molded body for non-pneumatic tires |
WO2022161995A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Process for the manufacturing of a composite material |
WO2022161994A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Preparation for a molded body |
WO2022161981A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Composite material for a molded body |
US12036706B2 (en) | 2021-02-24 | 2024-07-16 | Nike, Inc. | Foamed articles and methods of making the same |
EP4175807B1 (en) | 2021-02-24 | 2024-03-27 | Nike Innovate C.V. | Foamed articles and methods of making the same |
EP4214037B1 (en) | 2021-02-24 | 2024-05-01 | Nike Innovate C.V. | Foamed articles and methods of making the same |
EP4304409A1 (en) | 2021-03-12 | 2024-01-17 | Basf Se | Strobel for an article of footwear, an article of footwear and process for manufacturing the article of footwear |
WO2022194664A1 (en) | 2021-03-15 | 2022-09-22 | Basf Se | Foam particles made from an expanded thermoplastic elastomer and production method |
US20240182661A1 (en) | 2021-03-15 | 2024-06-06 | Basf Se | Method for producing foam particles from expanded thermoplastic elastomer |
CN117157349A (en) | 2021-04-22 | 2023-12-01 | 巴斯夫欧洲公司 | Method for producing a coated molded body and use of a coated molded body |
TW202306775A (en) | 2021-05-27 | 2023-02-16 | 德商巴斯夫歐洲公司 | Multilayered composite material comprising foamed granules |
WO2023025638A1 (en) | 2021-08-27 | 2023-03-02 | Basf Se | Antistatic masterbatch based on thermoplastic polyurethan with improved properties for the use in polymers |
EP4147847A1 (en) | 2021-09-08 | 2023-03-15 | Basf Se | Permeable molded body comprising polyurethane beads |
EP4200366A1 (en) | 2021-09-13 | 2023-06-28 | BASF Coatings GmbH | Coating composition comprising a sustainable pigment and method of coating a substrate using the same |
EP4401599A1 (en) * | 2021-09-14 | 2024-07-24 | Nike Innovate C.V. | Foamed articles and methods of making the same |
WO2023048754A1 (en) * | 2021-09-21 | 2023-03-30 | Nike Innovate C.V. | Foamed articles and methods of making the same |
CN116406406A (en) | 2021-09-28 | 2023-07-07 | 巴斯夫涂料有限公司 | Method for coating a substrate with a coating composition comprising natural pigments |
WO2023061781A1 (en) | 2021-10-11 | 2023-04-20 | Basf Coatings Gmbh | Method for producing coated non-crosslinking polymer materials |
CN118401582A (en) | 2021-12-15 | 2024-07-26 | 巴斯夫欧洲公司 | PDI-based bead foam |
US12109775B2 (en) | 2021-12-22 | 2024-10-08 | Puma SE | Method for producing a sole of a shoe |
EP4476038A1 (en) | 2022-02-11 | 2024-12-18 | Basf Se | Computer-implemented method for controlling and/or monitoring at least one particle foam molding process |
KR20240165458A (en) | 2022-03-29 | 2024-11-22 | 바스프 에스이 | Flame retardant thermoplastic polyurethane (TPU) based on polypropanediol |
WO2023198755A1 (en) | 2022-04-14 | 2023-10-19 | Basf Se | Wheel assembly for non-pneumatic wheels |
TW202346075A (en) | 2022-04-27 | 2023-12-01 | 德商巴斯夫歐洲公司 | Local compaction of e-tpu particle foam material |
EP4293059A1 (en) | 2022-06-17 | 2023-12-20 | Basf Se | Debondable compact pu materials |
KR20250029931A (en) | 2022-06-27 | 2025-03-05 | 바스프 에스이 | Thermoplastic polyurethane (TPU) compositions with improved properties |
EP4336292A1 (en) | 2022-09-07 | 2024-03-13 | Basf Se | Method for process automation of a production process |
WO2024083787A1 (en) | 2022-10-18 | 2024-04-25 | Basf Se | Storage-stable coated particles and their preparation |
WO2024089016A1 (en) | 2022-10-28 | 2024-05-02 | Basf Se | Particle foam molding with different layers |
WO2024089264A1 (en) | 2022-10-28 | 2024-05-02 | Basf Se | Expanded thermoplastic polyurethane for special molding process |
WO2024100018A1 (en) | 2022-11-08 | 2024-05-16 | Basf Se | Bonding of parts to an article and separating the article for recycling |
WO2024115593A1 (en) | 2022-11-30 | 2024-06-06 | Basf Se | Sound absorbing structure |
EP4393975A1 (en) | 2022-12-27 | 2024-07-03 | Basf Se | Use of infinergy foam particles for the improvement of the sound-deadening effect for flooring applications |
WO2024141480A1 (en) | 2022-12-27 | 2024-07-04 | Basf Se | Use of infinergy foam particles for the improvement of the sound-deadening effect for flooring applications |
EP4393974A1 (en) | 2022-12-27 | 2024-07-03 | Basf Se | Use of infinergy foam particles for the improvement of the sound-deadening effect for flooring applications |
WO2024141587A1 (en) | 2022-12-29 | 2024-07-04 | Basf Se | Encapsulation of tpu granules |
WO2024200661A1 (en) | 2023-03-31 | 2024-10-03 | Basf Se | Expanded thermoplastic polyurethane for special molding process |
WO2024200654A1 (en) | 2023-03-31 | 2024-10-03 | Basf Se | Expanded thermoplastic polyurethane for special molding process |
WO2024200432A1 (en) | 2023-03-31 | 2024-10-03 | Basf Se | Preparation of storage-stable particles of a moldable thermoplastic particle foam and shaped bodies and preparation products and uses thereof |
WO2024200488A1 (en) | 2023-03-31 | 2024-10-03 | Basf Se | Method for preparing foam molded parts with coated particles |
WO2024246322A1 (en) | 2023-06-01 | 2024-12-05 | Basf Se | Tpu with cyclic additives |
WO2025002949A1 (en) | 2023-06-28 | 2025-01-02 | Basf Se | Storage-stable coated particles and their preparation |
WO2025051729A1 (en) | 2023-09-04 | 2025-03-13 | Basf Se | Demolding aid for thermoplastic polyurethane (tpu) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4464484A (en) * | 1982-12-20 | 1984-08-07 | Japan Styrene Paper Corporation | Process for producing prefoamed polymer particles |
US4704239A (en) * | 1984-04-28 | 1987-11-03 | Japan Styrene Paper Corp. | Process for the production of expanded particles of a polymeric material |
US5026736A (en) * | 1987-02-24 | 1991-06-25 | Astro-Valcour, Inc. | Moldable shrunken thermoplastic polymer foam beads |
US5204040A (en) * | 1992-02-14 | 1993-04-20 | Chang Kun Huang | Method of making foam material |
US5707573A (en) * | 1995-11-09 | 1998-01-13 | Biesenberger; Joseph A. | Method of preparing thermoplastic foams using a gaseous blowing agent |
US6239185B1 (en) * | 1997-08-26 | 2001-05-29 | Basf Aktiengesellschaft | Method for producing expanded polyolefin particles |
US20020193459A1 (en) * | 2000-10-18 | 2002-12-19 | Ryuuji Haseyama | Foam of thermoplastic urethane elastomer composition and process for producing the foam |
US6723760B2 (en) * | 2000-04-07 | 2004-04-20 | Basf Aktiengesellschaft | Method for producing expanded or expandable polyolefin particles |
WO2004108811A1 (en) * | 2003-06-06 | 2004-12-16 | Basf Aktiengesellschaft | Method for the production of expanding thermoplastic elastomers |
US20050003032A1 (en) * | 2000-06-22 | 2005-01-06 | Mitsui Chemicals, Inc. | Molding machine for injection foaming |
US20050153134A1 (en) * | 2004-01-13 | 2005-07-14 | Hidehiro Sasaki | Thermoplastic resin pellet, process for preparing thermoplastic resin pellets and expanded thermoplastic resin bead |
US20060113694A1 (en) * | 2002-12-14 | 2006-06-01 | Thomas Freser-Wolzenburg | Method and device for producing expanded polyurethane moulded bodies |
US7166247B2 (en) * | 2002-06-24 | 2007-01-23 | Micron Technology, Inc. | Foamed mechanical planarization pads made with supercritical fluid |
US20090069526A1 (en) * | 2006-04-19 | 2009-03-12 | Basf Se | Thermoplastic polyurethanes |
US20100222442A1 (en) * | 2006-01-18 | 2010-09-02 | Basf Se | Foams based on thermoplastic polyurethanes |
US20120065285A1 (en) * | 2009-05-26 | 2012-03-15 | Basf Se | Water as a propellant for thermoplastics |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4015714A1 (en) | 1990-05-16 | 1991-11-21 | Bayer Ag | Glass fibre-reinforced thermoplastic polyurethane foam - by injection moulding mixt. of GFR thermoplastic polyurethane and a blowing agent |
US5202069A (en) * | 1991-04-23 | 1993-04-13 | Astro-Valcour, Inc. | Method for producing foamed, molded thermoplastic articles |
DE4117649C1 (en) * | 1991-05-29 | 1993-01-07 | Era Beschichtung Gmbh & Co. Kg, 3078 Stolzenau, De | |
DE4307648A1 (en) * | 1993-03-11 | 1994-09-15 | Basf Ag | Foams based on thermoplastic polyurethanes as well as expandable, particulate, thermoplastic polyurethanes, particularly suitable for the production of foam molded articles |
US5605937A (en) * | 1994-09-30 | 1997-02-25 | Knaus; Dennis A. | Moldable thermoplastic polymer foam beads |
JP3100844B2 (en) * | 1994-10-18 | 2000-10-23 | 積水化成品工業株式会社 | Thermoplastic polyurethane foam molded article and method for producing the same |
US5900439A (en) * | 1996-09-02 | 1999-05-04 | Basf Aktiengesellschaft | Stabilized polyurethanes |
DE19648192A1 (en) * | 1996-11-21 | 1998-06-04 | Basf Ag | Thermoplastic polyurethanes and processes for their production |
JPH10168215A (en) | 1996-12-06 | 1998-06-23 | Sekisui Plastics Co Ltd | Thermoplastic polyurethane foam sheet and method for producing the same |
CZ20012684A3 (en) * | 1999-01-26 | 2001-11-14 | Huntsman International Llc | Thermoplastic polyurethane foams and process for preparing thereof |
KR100763292B1 (en) * | 2000-05-19 | 2007-10-04 | 카오카부시키가이샤 | Polyurethane foam |
CN1105137C (en) * | 2000-06-12 | 2003-04-09 | 厚生股份有限公司 | Preparation method of continuous roll thermoplastic polyurethane foam under normal pressure |
EP1174458A1 (en) * | 2000-07-20 | 2002-01-23 | Huntsman International Llc | Foamed thermoplastic polyurethanes |
DE10162349A1 (en) * | 2001-12-18 | 2003-07-10 | Basf Ag | Thermoplastic polyurethanes based on aliphatic isocyanates |
US20040138318A1 (en) * | 2003-01-09 | 2004-07-15 | Mcclelland Alan Nigel Robert | Foamed thermoplastic polyurethanes |
DE10342857A1 (en) * | 2003-09-15 | 2005-04-21 | Basf Ag | Expandable thermoplastic polyurethane blends |
US20060248752A1 (en) * | 2005-05-05 | 2006-11-09 | Pony International,Llc | Pressure dissipating heel counter and method of making same |
DE102005028056A1 (en) * | 2005-06-16 | 2006-12-21 | Basf Ag | Thermoplastic polyurethane containing isocyanate |
US20080132591A1 (en) * | 2006-12-01 | 2008-06-05 | Lawrence Gary M | Method of producing a thermoplastic polyurethane compound |
-
2007
- 2007-01-12 DE DE502007005193T patent/DE502007005193D1/en active Active
- 2007-01-12 AT AT07703816T patent/ATE482991T1/en active
- 2007-01-12 CN CN200780002602.9A patent/CN101370861B/en active Active
- 2007-01-12 EP EP07703816A patent/EP1979401B1/en active Active
- 2007-01-12 WO PCT/EP2007/050274 patent/WO2007082838A1/en active Application Filing
- 2007-01-12 US US12/161,354 patent/US20100222442A1/en not_active Abandoned
- 2007-01-12 CN CN202210737134.6A patent/CN115197462A/en active Pending
- 2007-01-12 CN CN201610179759.XA patent/CN105601980A/en active Pending
-
2012
- 2012-09-06 US US13/605,673 patent/US9884947B2/en active Active
-
2017
- 2017-12-11 US US15/837,344 patent/US11142621B2/en active Active
-
2020
- 2020-09-24 US US17/031,216 patent/US11365303B2/en active Active
- 2020-09-24 US US17/031,220 patent/US11292886B2/en active Active
- 2020-09-24 US US17/031,188 patent/US11332594B2/en active Active
- 2020-09-24 US US17/031,164 patent/US11124620B2/en active Active
- 2020-09-24 US US17/031,225 patent/US11292887B2/en active Active
- 2020-09-24 US US17/031,241 patent/US11053368B2/en active Active
-
2021
- 2021-09-10 US US17/472,582 patent/US20210403668A1/en not_active Abandoned
- 2021-09-10 US US17/472,563 patent/US20220002512A1/en not_active Abandoned
- 2021-09-11 US US17/472,632 patent/US20210403669A1/en not_active Abandoned
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4464484A (en) * | 1982-12-20 | 1984-08-07 | Japan Styrene Paper Corporation | Process for producing prefoamed polymer particles |
US4704239A (en) * | 1984-04-28 | 1987-11-03 | Japan Styrene Paper Corp. | Process for the production of expanded particles of a polymeric material |
US5026736A (en) * | 1987-02-24 | 1991-06-25 | Astro-Valcour, Inc. | Moldable shrunken thermoplastic polymer foam beads |
US5204040A (en) * | 1992-02-14 | 1993-04-20 | Chang Kun Huang | Method of making foam material |
US5707573A (en) * | 1995-11-09 | 1998-01-13 | Biesenberger; Joseph A. | Method of preparing thermoplastic foams using a gaseous blowing agent |
US6239185B1 (en) * | 1997-08-26 | 2001-05-29 | Basf Aktiengesellschaft | Method for producing expanded polyolefin particles |
US6723760B2 (en) * | 2000-04-07 | 2004-04-20 | Basf Aktiengesellschaft | Method for producing expanded or expandable polyolefin particles |
US20050003032A1 (en) * | 2000-06-22 | 2005-01-06 | Mitsui Chemicals, Inc. | Molding machine for injection foaming |
US7150615B2 (en) * | 2000-06-22 | 2006-12-19 | Mitsui Chemicals, Inc. | Molding machine for injection foaming |
US20020193459A1 (en) * | 2000-10-18 | 2002-12-19 | Ryuuji Haseyama | Foam of thermoplastic urethane elastomer composition and process for producing the foam |
US20070108649A1 (en) * | 2002-06-24 | 2007-05-17 | Micron Technology, Inc. | Foamed mechanical planarization pads made with supercritical fluid |
US7166247B2 (en) * | 2002-06-24 | 2007-01-23 | Micron Technology, Inc. | Foamed mechanical planarization pads made with supercritical fluid |
US20060113694A1 (en) * | 2002-12-14 | 2006-06-01 | Thomas Freser-Wolzenburg | Method and device for producing expanded polyurethane moulded bodies |
WO2004108811A1 (en) * | 2003-06-06 | 2004-12-16 | Basf Aktiengesellschaft | Method for the production of expanding thermoplastic elastomers |
US20060235095A1 (en) * | 2003-06-06 | 2006-10-19 | Basf Aktiengesellschaft | Method for the production of expanding thermoplastic elastomers |
US20050153134A1 (en) * | 2004-01-13 | 2005-07-14 | Hidehiro Sasaki | Thermoplastic resin pellet, process for preparing thermoplastic resin pellets and expanded thermoplastic resin bead |
US20100222442A1 (en) * | 2006-01-18 | 2010-09-02 | Basf Se | Foams based on thermoplastic polyurethanes |
US20090069526A1 (en) * | 2006-04-19 | 2009-03-12 | Basf Se | Thermoplastic polyurethanes |
US20120065285A1 (en) * | 2009-05-26 | 2012-03-15 | Basf Se | Water as a propellant for thermoplastics |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9884947B2 (en) * | 2006-01-18 | 2018-02-06 | Basf Se | Foams based on thermoplastic polyurethanes |
US11142621B2 (en) | 2006-01-18 | 2021-10-12 | Basf Se | Foams based on thermoplastic polyurethanes |
US20120065285A1 (en) * | 2009-05-26 | 2012-03-15 | Basf Se | Water as a propellant for thermoplastics |
US10183426B2 (en) * | 2009-05-26 | 2019-01-22 | Basf Se | Water as a propellant for thermoplastics |
WO2013138439A1 (en) | 2012-03-13 | 2013-09-19 | New Balance Athletic Shoe, Inc. | Foamed parts having a fabric component, and systems and methods for manufacturing same |
US20150174808A1 (en) * | 2012-04-13 | 2015-06-25 | Basf Se | Method for producing expanded granules |
US10005218B2 (en) * | 2012-04-13 | 2018-06-26 | Basf Se | Method for producing expanded granules |
US9447249B2 (en) * | 2012-07-06 | 2016-09-20 | Basf Se | Polyurethane-based expandable polymer particles |
US20150344661A1 (en) * | 2012-07-06 | 2015-12-03 | Basf Se | Polyurethane-based expandable polymer particles |
US9499652B2 (en) * | 2013-03-20 | 2016-11-22 | Basf Se | Polyurethane-based polymer composition |
US20160046751A1 (en) * | 2013-03-20 | 2016-02-18 | Basf Se | Polyurethane-based polymer composition |
EP4344572A2 (en) | 2013-04-19 | 2024-04-03 | adidas AG | Shoe, in particular a sports shoe |
EP3708017B1 (en) * | 2013-04-19 | 2023-12-27 | adidas AG | Sports shoe |
US10392488B2 (en) * | 2013-10-11 | 2019-08-27 | Basf Se | Method for producing expanded thermoplastic elastomer particles |
EP3055353B1 (en) | 2013-10-11 | 2017-08-02 | Basf Se | Method for producing expanded thermoplastic elastomer particles |
EP3058018B1 (en) | 2013-10-18 | 2017-09-13 | Basf Se | Method for the production of expanded thermoplastic elastomers |
US11142625B2 (en) | 2013-10-18 | 2021-10-12 | Basf Se | Process for production of expanded thermoplastic elastomer |
US20160244587A1 (en) * | 2013-10-18 | 2016-08-25 | Basf Se | Process for production of expanded thermoplastic elastomer |
US9713356B2 (en) | 2013-10-28 | 2017-07-25 | Taylor Made Golf Company, Inc. | Golf shoe outsoles |
US9248350B2 (en) | 2013-12-10 | 2016-02-02 | Acushnet Company | Multi-layered golf balls having foam center with selective weight distribution |
CN105848847A (en) * | 2013-12-23 | 2016-08-10 | 库尔兹股份有限公司 | Device and method for producing particle foam part |
WO2015097075A1 (en) * | 2013-12-23 | 2015-07-02 | Kurtz Gmbh | Device and method for producing a particle foam part |
US10625442B2 (en) | 2013-12-23 | 2020-04-21 | Kurtz Gmbh | Apparatus and method for the production of a particle foam part |
US10137601B2 (en) | 2014-02-18 | 2018-11-27 | Miracll Chemicals Co., Ltd. | Extruded expanded thermoplastic polyurethane elastomer bead and preparation method therefor |
EP3109281A4 (en) * | 2014-02-18 | 2017-10-18 | Miracll Chemicals Co., Ltd. | Extruded foamed thermoplastic polyurethane elastomer particle and preparation method therefor |
US10519289B2 (en) | 2014-02-18 | 2019-12-31 | Miracll Chemicals Co., Ltd. | Expanded thermoplastic polyurethane beads and preparation method and application thereof |
US11920013B2 (en) | 2014-04-30 | 2024-03-05 | Basf Se | Polyurethane particle foam with polyurethane coating |
US10941263B2 (en) | 2014-04-30 | 2021-03-09 | Basf Se | Polyurethane particle foam with polyurethane coating |
EP3186306B1 (en) | 2014-08-26 | 2022-08-24 | Adidas AG | Expanded polymer pellets |
US20170252900A1 (en) * | 2014-09-09 | 2017-09-07 | Kolthoff Gabrovo Eood | Tool for Surface Finish Machining |
KR102447143B1 (en) | 2015-02-17 | 2022-09-23 | 바스프 에스이 | Method for producing foams based on thermoplastic polyurethane |
US20180066122A1 (en) * | 2015-02-17 | 2018-03-08 | Basf Se | Process for producing foams based on thermoplastic polyurethanes |
KR20170117537A (en) * | 2015-02-17 | 2017-10-23 | 바스프 에스이 | Process for producing foam based on thermoplastic polyurethane |
US11052570B2 (en) * | 2015-02-17 | 2021-07-06 | Basf Se | Process for producing foams based on thermoplastic polyurethanes |
US10597531B2 (en) | 2015-03-13 | 2020-03-24 | Basf Se | Electrically conductive particle foams based on thermoplastic elastomers |
US11161956B2 (en) | 2015-03-13 | 2021-11-02 | Bafs Se | Method for producing particle foams based on thermoplastic elastomers, by thermal bonding using microwaves |
US10793694B2 (en) | 2015-06-01 | 2020-10-06 | Jsp Corporation | Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article |
EP3172980A1 (en) * | 2015-11-30 | 2017-05-31 | Matthias Hartmann | Method for producing a sole for a shoe |
EP3438174A4 (en) * | 2016-03-31 | 2019-08-07 | JSP Corporation | PARTICLES OF THERMOPLASTIC POLYURETHANE FOAM |
US10899904B2 (en) | 2016-03-31 | 2021-01-26 | Jsp Corporation | Thermoplastic polyurethane foamed particles and method for manufacturing thermoplastic polyurethane foamed particle molded article |
EP3480243A4 (en) * | 2016-06-29 | 2020-01-08 | JSP Corporation | THERMOPLASTIC POLYURETHANE FOAM ARTICLES AND METHOD FOR THE PRODUCTION THEREOF AND THERMOPLASTIC POLYURETHANE FOAM PARTICLES |
WO2018003316A1 (en) | 2016-06-29 | 2018-01-04 | 株式会社ジェイエスピー | Thermoplastic polyurethane foam particle molded article and method for producing same, and thermoplastic polyurethane foam particles |
WO2018074286A1 (en) | 2016-10-20 | 2018-04-26 | 株式会社ジェイエスピー | Method for manufacturing thermoplastic elastomer foaming particle molded body |
TWI717560B (en) * | 2016-10-20 | 2021-02-01 | 日商Jsp股份有限公司 | Method of manufacturing thermoplastic elastomer foamed particle molded article |
US10633483B2 (en) | 2016-11-17 | 2020-04-28 | Mitsui Chemicals, Inc. | Foaming thermoplastic polyurethane resin, producing method thereof, and molded article |
KR20190041018A (en) | 2016-11-17 | 2019-04-19 | 미쓰이 가가쿠 가부시키가이샤 | Thermoplastic polyurethane resin for foaming, method for producing the same, and molded article |
US10927213B2 (en) | 2016-11-17 | 2021-02-23 | Mitsui Chemicals, Inc. | Producing method of polyurethane resin, polyurethane resin, and molded article |
US11208537B2 (en) | 2016-11-28 | 2021-12-28 | Jsp Corporation | Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article |
WO2018096997A1 (en) | 2016-11-28 | 2018-05-31 | 株式会社ジェイエスピー | Expanded thermoplastic polyurethane particles and expanded thermoplastic polyurethane particle molded article |
EP3663359A4 (en) * | 2017-08-04 | 2020-08-26 | Nantong De New Material Co., Ltd. | PROCESS FOR MANUFACTURING A THERMOPLASTIC POLYURETHANE MICROAIRBAG ELASTOMER |
US11780981B2 (en) | 2018-12-06 | 2023-10-10 | Exxonmobil Chemical Patents Inc. | Foam beads and method of making the same |
EP3766369A1 (en) | 2019-07-18 | 2021-01-20 | Antonio Ramón Porta Cantó | Manufacturing procedure for a sole for footwear and product thus obtained |
US20210246281A1 (en) * | 2020-02-07 | 2021-08-12 | Adidas Ag | Method for producing a foam component |
LU505106B1 (en) | 2023-09-15 | 2025-03-17 | Luxembourg Institute Of Science And Tech List | Method for producing thermoplastic polyurethane (PU) foams |
WO2025056800A1 (en) | 2023-09-15 | 2025-03-20 | Luxembourg Institute Of Science And Technology (List) | Method for producing thermoplastic polyurethane (pu) foams |
Also Published As
Publication number | Publication date |
---|---|
US20210002446A1 (en) | 2021-01-07 |
US20180100049A1 (en) | 2018-04-12 |
EP1979401B1 (en) | 2010-09-29 |
US11292886B2 (en) | 2022-04-05 |
US11365303B2 (en) | 2022-06-21 |
CN105601980A (en) | 2016-05-25 |
US9884947B2 (en) | 2018-02-06 |
EP1979401A1 (en) | 2008-10-15 |
US11332594B2 (en) | 2022-05-17 |
US20210403669A1 (en) | 2021-12-30 |
CN115197462A (en) | 2022-10-18 |
US20210002447A1 (en) | 2021-01-07 |
US20210002448A1 (en) | 2021-01-07 |
CN101370861A (en) | 2009-02-18 |
US20100222442A1 (en) | 2010-09-02 |
WO2007082838A1 (en) | 2007-07-26 |
US20210002445A1 (en) | 2021-01-07 |
US20210002449A1 (en) | 2021-01-07 |
US11053368B2 (en) | 2021-07-06 |
US20220002512A1 (en) | 2022-01-06 |
ATE482991T1 (en) | 2010-10-15 |
US11124620B2 (en) | 2021-09-21 |
US20210022436A1 (en) | 2021-01-28 |
US11292887B2 (en) | 2022-04-05 |
CN101370861B (en) | 2016-04-20 |
DE502007005193D1 (en) | 2010-11-11 |
US20210403668A1 (en) | 2021-12-30 |
US11142621B2 (en) | 2021-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11053368B2 (en) | Foams based on thermoplastic polyurethanes | |
US10183426B2 (en) | Water as a propellant for thermoplastics | |
US12128591B2 (en) | Foams based on thermoplastic elastomers | |
CN109196029B (en) | Hollow particles and porous molded bodies made of thermoplastic elastomers | |
US11773231B2 (en) | Foams based on thermoplastic elastomers | |
KR20210005658A (en) | Foam based on thermoplastic elastomer | |
US20210189087A1 (en) | Foams based on thermoplastic elastomers | |
WO2022161995A1 (en) | Process for the manufacturing of a composite material | |
US20240084085A1 (en) | Preparation for a molded body | |
JP2021522369A (en) | Effervescent foam based on thermoplastic elastomer | |
CN114131823A (en) | Expanded thermoplastic polyurethane molded article and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF SE, GERMANY Free format text: CHANGE IN LEGAL FORM;ASSIGNOR:BASF AKTIENGESELLSCHAFT;REEL/FRAME:044254/0809 Effective date: 20080313 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |