US20120189672A1 - Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease - Google Patents
Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease Download PDFInfo
- Publication number
- US20120189672A1 US20120189672A1 US13/439,187 US201213439187A US2012189672A1 US 20120189672 A1 US20120189672 A1 US 20120189672A1 US 201213439187 A US201213439187 A US 201213439187A US 2012189672 A1 US2012189672 A1 US 2012189672A1
- Authority
- US
- United States
- Prior art keywords
- cyclosporine
- lung
- aerosolized
- dose
- rejection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 title claims abstract description 240
- 108010036949 Cyclosporine Proteins 0.000 title claims abstract description 240
- 229960001265 ciclosporin Drugs 0.000 title claims abstract description 240
- 229930182912 cyclosporin Natural products 0.000 title claims abstract description 240
- 208000019693 Lung disease Diseases 0.000 title claims abstract description 31
- 230000002265 prevention Effects 0.000 title claims abstract description 19
- 238000011282 treatment Methods 0.000 title abstract description 34
- 210000004072 lung Anatomy 0.000 claims abstract description 122
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 206010052779 Transplant rejections Diseases 0.000 claims abstract description 30
- 230000028993 immune response Effects 0.000 claims abstract description 15
- 206010035664 Pneumonia Diseases 0.000 claims abstract description 10
- 230000001404 mediated effect Effects 0.000 claims abstract description 10
- 208000006673 asthma Diseases 0.000 claims abstract description 7
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 7
- 206010006458 Bronchitis chronic Diseases 0.000 claims abstract description 5
- 201000003883 Cystic fibrosis Diseases 0.000 claims abstract description 5
- 206010006451 bronchitis Diseases 0.000 claims abstract description 5
- 208000007451 chronic bronchitis Diseases 0.000 claims abstract description 5
- 238000002054 transplantation Methods 0.000 claims description 34
- 230000008021 deposition Effects 0.000 claims description 33
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 27
- 239000002245 particle Substances 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 14
- 239000003018 immunosuppressive agent Substances 0.000 claims description 13
- 206010014561 Emphysema Diseases 0.000 claims description 9
- 238000011161 development Methods 0.000 claims description 8
- 229940125721 immunosuppressive agent Drugs 0.000 claims description 8
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 7
- 208000026278 immune system disease Diseases 0.000 claims description 5
- 208000005069 pulmonary fibrosis Diseases 0.000 claims description 3
- 201000000306 sarcoidosis Diseases 0.000 claims description 3
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- 230000000172 allergic effect Effects 0.000 claims 1
- 208000010668 atopic eczema Diseases 0.000 claims 1
- 230000001154 acute effect Effects 0.000 abstract description 20
- 230000002757 inflammatory effect Effects 0.000 abstract description 16
- 230000004054 inflammatory process Effects 0.000 abstract description 15
- 230000001684 chronic effect Effects 0.000 abstract description 11
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 abstract description 6
- 208000036971 interstitial lung disease 2 Diseases 0.000 abstract description 5
- 206010039085 Rhinitis allergic Diseases 0.000 abstract description 4
- 201000010105 allergic rhinitis Diseases 0.000 abstract description 4
- 231100001231 less toxic Toxicity 0.000 abstract description 2
- 238000007910 systemic administration Methods 0.000 abstract description 2
- 239000000443 aerosol Substances 0.000 description 36
- 239000006199 nebulizer Substances 0.000 description 20
- 230000001506 immunosuppresive effect Effects 0.000 description 19
- 102000004127 Cytokines Human genes 0.000 description 17
- 108090000695 Cytokines Proteins 0.000 description 17
- 208000024891 symptom Diseases 0.000 description 17
- 230000009885 systemic effect Effects 0.000 description 16
- 238000012384 transportation and delivery Methods 0.000 description 15
- 238000003556 assay Methods 0.000 description 14
- 206010061218 Inflammation Diseases 0.000 description 13
- 210000000056 organ Anatomy 0.000 description 13
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 12
- 229960001967 tacrolimus Drugs 0.000 description 12
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 12
- 231100000419 toxicity Toxicity 0.000 description 12
- 230000001988 toxicity Effects 0.000 description 12
- 206010062016 Immunosuppression Diseases 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 238000001574 biopsy Methods 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 238000009472 formulation Methods 0.000 description 9
- 210000002216 heart Anatomy 0.000 description 9
- 238000001990 intravenous administration Methods 0.000 description 9
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 9
- 229960004618 prednisone Drugs 0.000 description 9
- 206010029888 Obliterative bronchiolitis Diseases 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 201000003848 bronchiolitis obliterans Diseases 0.000 description 8
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 7
- 229960002170 azathioprine Drugs 0.000 description 7
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- 229940124589 immunosuppressive drug Drugs 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000029058 respiratory gaseous exchange Effects 0.000 description 6
- 238000013125 spirometry Methods 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 108020004635 Complementary DNA Proteins 0.000 description 5
- 208000000059 Dyspnea Diseases 0.000 description 5
- 206010013975 Dyspnoeas Diseases 0.000 description 5
- 238000010804 cDNA synthesis Methods 0.000 description 5
- 210000000038 chest Anatomy 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 229940109239 creatinine Drugs 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 102000019034 Chemokines Human genes 0.000 description 4
- 108010012236 Chemokines Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 108010047620 Phytohemagglutinins Proteins 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 230000036765 blood level Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 238000002663 nebulization Methods 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000001885 phytohemagglutinin Effects 0.000 description 4
- 239000003380 propellant Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- 206010051604 Lung transplant rejection Diseases 0.000 description 3
- 208000001388 Opportunistic Infections Diseases 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000002962 histologic effect Effects 0.000 description 3
- 230000003434 inspiratory effect Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000012385 systemic delivery Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 101710081722 Antitrypsin Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 2
- 108010068682 Cyclophilins Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 description 2
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 230000000961 alloantigen Effects 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000001475 anti-trypsic effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 238000013276 bronchoscopy Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 2
- 201000009580 eosinophilic pneumonia Diseases 0.000 description 2
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 244000053095 fungal pathogen Species 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 208000022098 hypersensitivity pneumonitis Diseases 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 201000006370 kidney failure Diseases 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 239000003226 mitogen Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 2
- 229960004866 mycophenolate mofetil Drugs 0.000 description 2
- 231100000417 nephrotoxicity Toxicity 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 201000009732 pulmonary eosinophilia Diseases 0.000 description 2
- 230000009325 pulmonary function Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000002753 trypsin inhibitor Substances 0.000 description 2
- 244000052613 viral pathogen Species 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102100023109 Bile acyl-CoA synthetase Human genes 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 208000027932 Collagen disease Diseases 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 102000001493 Cyclophilins Human genes 0.000 description 1
- 206010011831 Cytomegalovirus infection Diseases 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 208000009693 Gingival Hyperplasia Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 206010020112 Hirsutism Diseases 0.000 description 1
- 208000035150 Hypercholesterolemia Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 241000714177 Murine leukemia virus Species 0.000 description 1
- 208000021642 Muscular disease Diseases 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 201000009623 Myopathy Diseases 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000007027 Oral Candidiasis Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 206010048038 Wound infection Diseases 0.000 description 1
- FHNFHKCVQCLJFQ-NJFSPNSNSA-N Xenon-133 Chemical compound [133Xe] FHNFHKCVQCLJFQ-NJFSPNSNSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 208000037883 airway inflammation Diseases 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 229940125388 beta agonist Drugs 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 238000007469 bone scintigraphy Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 1
- 238000007813 chromatographic assay Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Substances 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 208000000718 duodenal ulcer Diseases 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- NSTORIOUDCABGP-UHFFFAOYSA-N ethanol;prop-1-ene Chemical group CCO.CC=C NSTORIOUDCABGP-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 201000005917 gastric ulcer Diseases 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012388 gravitational sedimentation Methods 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 208000027700 hepatic dysfunction Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000002650 immunosuppressive therapy Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010902 jet-milling Methods 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005399 mechanical ventilation Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 208000013465 muscle pain Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000007694 nephrotoxicity Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- XDRYMKDFEDOLFX-UHFFFAOYSA-N pentamidine Chemical compound C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 XDRYMKDFEDOLFX-UHFFFAOYSA-N 0.000 description 1
- 229960004448 pentamidine Drugs 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229940102535 prednisone 20 mg Drugs 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000009613 pulmonary function test Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 208000013223 septicemia Diseases 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 206010040872 skin infection Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000003519 ventilatory effect Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
- A61K38/13—Cyclosporins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/007—Pulmonary tract; Aromatherapy
- A61K9/0073—Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to methods and compositions for prevention of graft rejection in lung transplant recipients and for treatment of subjects with pulmonary disorders. Specifically, the methods and compositions of the invention provide a means for inhibiting immune response mediated inflammatory processes in the lungs.
- the method of the invention comprises the administration of aerosolized cyclosporine for prevention of acute and/or chronic refractory rejection in lung transplant patients.
- the invention is based on the observation that when aerosolized cyclosporine is administered shortly after lung transplantation, the preparation is well tolerated and the rate of acute rejection is substantially reduced, compared to controls that receive conventional oral or intravenous immunosuppression only.
- the invention further provides for the use of aerosolized cyclosporine to treat subjects having immunologically mediated inflammatory pulmonary disorders including, but not limited to, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic bronchitis and allergic rhinitis.
- the present invention by enabling a method for the use of aerosolized cyclosporine for inhibiting pulmonary inflammation leading to prevention of graft rejection and treatment of pulmonary disorders, provides a safer and less toxic treatment than those methods that utilize systemic administration of cyclosporine.
- Cyclosporine an 11-amino acid cyclic polypeptide antibiotic is frequently used to prevent rejection after solid organ transplantation (Kahan, B. D., 1989, N Engl Med., 321:1725-1738; Kumar, M. S. A., et al., Transplant Proc., 20:407-413; Keenan R. J., et al., Transplantation 53:20-25). Cyclosporine acts as an immunosuppressive agent by selectively inhibiting immune responses mediated by T lymphocytes (Iacono, A. T., et al., 1997, Transplantation 64:263-269; Keenan, R. J., 1995, Surgery 118:385-391).
- systemic cyclosporine has a narrow therapeutic index, e.g., ratio between toxic and therapeutic doses, and effective immunosuppressive doses often cannot be achieved due to the risk of toxicity to the liver and kidney.
- administration of systemic cyclosporine results in a high incidence of infections with viral, bacterial and fungal pathogens.
- Aerosolized pharmacologic agents have direct access to the lung, and there is extensive experience in the use of inhaled ⁇ -agonists and nebulized antibiotics.
- aerosolized cyclosporine has been demonstrated to be safe and more effective than systemic cyclosporine in preventing graft rejection (Dowling R. D.,1990, Surgery, 108:198; Zenati, M., 1991, Eur. J. Cardiothor. Surg., 5:266; Keenan, R. J.
- the present invention provides compositions and methods for using aerosolized cyclosporine for prevention of graft rejection in lung transplant recipients.
- the invention further provides for the use of aerosolized cyclosporine for amelioration of inflammatory pulmonary disorders including, by way of example and not limitation, asthma, sarcoidosis, emphysema, cystic fibrosis, idiopathic pulmonary fibrosis, chronic bronchitis, allergic rhinitis and allergic diseases of the lung such as hypersensitivity pneumonitis, eosinophilic pneumonia, bronchiolitis obliterans due to bone marrow transplantation or other causes, as well as pulmonary fibrosis resulting from collagen, vascular, and autoimmune diseases such as rheumatoid arthritis and lupus erythematosis.
- cyclosporine to the transplanted lung by aerosol inhalation achieves higher concentrations in the lung than delivery of the drug by systemic (oral or intravenous) administration, resulting in improved control of rejection, with reduced toxicity due to limited absorption from the lung into the bloodstream.
- the methods of the present invention comprise administering aerosolized cyclosporine to a subject having received a lung transplant.
- the cyclosporine is administered directly following the transplant procedure prior to the development of symptoms associated with organ rejection.
- the administration of aerosolized cyclosporine results in a substantially lower prevalence of acute rejection and development of obliterative bronchiolitis (OB).
- OB obliterative bronchiolitis
- cytokines, chemokines and effector molecules normally expressed within the allograft are suppressed, such that the recipient requires less systemic immuno-suppression.
- systemic immunocompetence is preserved by maintenance of T-helper cell memory, resulting in a lower incidence of opportunistic and bacterial infection.
- aerosolized cyclosporine is administered to a subject having an inflammatory pulmonary disorder.
- the method of the invention comprises administering aerosolized cyclosporine to inhibit inflammation in a subject having an inflammatory pulmonary disorder such that the expression of cytokines is modulated and the symptoms of inflammation are ameliorated.
- compositions comprising cyclosporine in a suitable carrier which can be administered to a subject, in aerosolized form, at an effective dose to prevent graft rejection or ameliorate the inflammatory symptoms associated with pulmonary disorders.
- the compositions used in the practice of the invention comprise an effective dose of cyclosporine that is generally lower than the doses reportedly used for treating refractory acute lung rejection or the doses described herein for prevention of lung rejection.
- the invention is based on the observation that administration of aerosolized cyclosporine given as a prophylaxis after lung transplantation can prevent acute rejection.
- the present invention by providing methods for prevention of graft rejection and amelioration of inflammatory pulmonary disorders using aerosolized cyclosporine, reduces the toxicity and susceptibility to life threatening opportunistic infections associated with systemic use of cyclosporine.
- FIG. 1A , 1 B AND 1 C Pharmacokinetics and bioavailability of aerosolized cyclosporine.
- FIG. 1A Five subjects studied on average post-operative day number 20.8 underwent blood measurements of cyclosporine after inhalation of a 300 mg dose.
- FIG. 1B Subsequently, a dose of intravenous cyclosporine (1 mg/kg over a 4 hour infusion) was administered and blood concentrations of cyclosporine were determined by monoclonal immunoaassay over 24 hours following infusion.
- FIG. 1C compares blood measurements of cyclosporine after inhalation versus intravenous administration.
- FIG. 2 Acute cellular rejection grade 2 or greater in the first six months post-transplantation.
- the number of biopsy-proven acute rejection events is decreased in subjects that received aerosolized cyclosporine versus controls that received only standard oral triple drug immunosuppression (2.278 episodes/rejection/subject ⁇ 0.113 versus 1.308 0.398, p value 0.0196 (Mann-Whitney U test).
- the present invention relates to methods for preventing graft rejection in lung transplant recipients wherein said methods comprise the administration of aerosolized cyclosporine directly following lung transplantation.
- the invention further relates to methods for ameliorating inflammation in subjects having inflammatory pulmonary disorders using aerosolized cyclosporine.
- Subjects treated with aerosolized cyclosporine have reduced pulmonary inflammation due to a cyclosporine mediated decrease in inflammatory cytokines in the lung.
- the methods of the invention provide a means for ameliorating pulmonary disorders through direct delivery of the immunosuppressive agent cyclosporine to the lung while avoiding the toxicity associated with systemic use of cyclosporine, or other systemic immunosuppressive drugs that frequently cause toxicity and infection.
- the present invention relates to a method for prevention of graft rejection in lung transplant recipients by administration of aerosolized cyclosporine.
- the present invention is used as a prophylactic means for inhibiting the onset of graft rejection in lung transplant recipients.
- the method comprises the administration of aerosolized cyclosporine to a transplant recipient directly following transplantation by aerosol inhalation.
- the initial maximum dose of aerosolized cyclosporine is usually administered to the transplant recipient within 10 days following transplantation or prior to the development of any of the symptoms generally associated with lung transplant rejection.
- the cyclosporine is delivered to the lung of the recipient by inhalation of cyclosporine in aerosol spray form using, for example, a pressurized delivery device or nebulizer.
- the cyclosporine may be administered in either dry powder or wet form.
- compositions suitable for use in the present invention include compositions comprising cyclosporine in an effective amount to achieve its intended purpose and one or more physiologically acceptable carriers. More specifically, an effective amount means an amount sufficient to prevent development of an immune response that would lead to graft rejection in a lung transplant recipient. An effective dose refers to that amount of cyclosporine sufficient to inhibit an immune response in the lung of the transplant recipient thereby preventing graft rejection. Determination of effective amounts is well within the capability of those skilled in the art.
- the effective dose may be determined using a variety of different assays.
- the progress of the transplant recipient can be determined using assays that include serial transbronchial biopsies to determine the presence and severity of rejection as measured by, for example, a reduction in mononuclear cell inflammatory infiltrate, characteristic of transplant rejection.
- the effective dose of aerosolized cyclosporine is that amount required to sustain a local immunosuppressive effect in the lungs, thereby preventing lung transplant rejection.
- assays may be utilized to quantitate the deposition of aerosolized cyclosporine in the lung of the recipient using radionucleotides.
- Spirometry can be performed following inhalation of aerosolized cyclosporine to assess how much air the lungs can hold as well as how much and how quickly air can be exhaled.
- a reduction in forced expiratory volume (FEV1) of greater than 15% in conjunction with clinical symptoms of breathlessness indicates the need for reducing the dose of aerosolized cyclosporine.
- symptoms of pharyngeal soreness, cough and breathlessness may also indicate the need for reducing the dose of aerosolized cyclosporine.
- Serial pulmonary function tests such as chest radiographs, complete blood counts, assays for electrolytes and creatine levels, and cytokine expression in bronchoalveolar lavage cells, as well as histolgic analysis of the lung by transbronchial lung biopsy can be performed to assess efficacy at 1-3 month intervals throughout the course of aerosolized cyclosporine administration.
- the amount of composition administered is also dependent on the subject to whom the aerosolized cyclosporine is administered and the judgement of the physician overseeing the subject. It should be noted that the attending physician would know how and when to terminate, interrupt or adjust the treatment to a lower dose due to toxicity. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response is not adequate. This can be determined by measurement of the cyclosporine in the lung using known radioisotopic techniques. In addition, adjustments of concomitant administration of additional drugs may be necessary.
- the total dose range of cyclosporine should be sufficient to achieve allograft deposition levels ranging between 15 mg and 30 mg in the lung.
- a dose of between 100-500 mgs of aerosolized cyclosporine may be inhaled, while most preferably the usual dose of aerosolized cyclosporine to achieve deposition in the lung between 15-30 mg is typically 300 mg.
- the present invention relates to methods for prevention of graft rejection in lung transplant recipients, therefore, the initial aerosol treatment is administered prior to the development of symptoms normally associated with transplant rejection.
- administration of aerosolized cyclosporine begins on Day 2-10 post-transplant, while most preferably the treatment begins on Day 5-7 post-transplant.
- the treatment continues on a daily basis for between 8-15 consecutive days, while most preferably the treatment continues for 10-12 consecutive days.
- This initial dosing is followed by administration of aerosolized cyclosporine three times weekly for the duration of the life of the transplanted lung.
- aerosolized cyclosporine is given as the sole immunosuppressive agent if it is found to adequately control rejection.
- aerosolized cyclosporine may be co-administered to a transplant recipient in combination with other immunosuppressive or anti-inflammatory reagents, including but not limited to, oral cyclosporine (2.5-5.0 mg/kg); tacrolimus 0.01-0.04 mg/kg; prednisone 20 mg/kg or 0.3 mg/day. Aerosolized cyclosporine may be give alone if the transplant recipient has a life threatening infection cause by profound inactivation of the immune system due to oral or intravenous immunosuppression, or experiences toxicity, especially to the kidney, due to co-administration of these drugs.
- aerosolized cyclosporine can be administered to organ transplant recipients other than lung transplant recipients using a delivery system that utilizes a optimal cyclosporine particle size for systemic delivery of cyclosporine via the lung.
- organ transplants include, but are not limited to, transplants of the liver, kidney, heart and bone marrow.
- aerosolized cyclosporine provides an effective system for maintaining a steady drug concentration in the bloodstream thereby increasing the efficacy of the cyclosporine and minimizing the toxic side effects associated with cyclosporine.
- the cyclosporine particle size is generally between 1 and 5 microns, a size that generally restricts absorption into the bloodstream.
- the cyclosporine particle size is reduced to an approximate size of between 0.1 and 2 microns.
- compositions suitable for use in treatment of organ transplant recipients include compositions comprising cyclosporine, in one or more physiologically acceptable carriers, in an effective amount to achieve its intended purpose. More specifically, an effective amount means an amount sufficient to prevent development of an immune response that would lead to graft rejection in a transplant recipient.
- An effective dose refers to that amount of cyclosporine sufficient to inhibit an immune response in the transplanted organ of the transplant recipient thereby preventing graft rejection.
- the total dose range of cyclosporine should be sufficient to achieve circulating cyclosporine concentrations of between 50-250 ng/ml, while most preferably the usual dose of cyclosporine is sufficient to achieve circulation levels of 200 ng/ml.
- the effective dose may be determined using a variety of different assays.
- the progress of the transplant recipient can be determined using assays that include biopsies to determine the presence and severity of rejection as measured by, for example, a reduction in mononuclear cell inflammatory infiltrate, characteristic of transplant rejection.
- the effective dose of aerosolized cyclosporine is that amount required to sustain a local immunosuppressive effect in the transplanted organ, thereby preventing organ transplant rejection.
- organ function may be monitored using a variety of different assays, the use of which, will depend on nature of the transplanted organ. For example, blood tests may be performed to assay for normal liver or kidney function. In instances where the transplant recipient has received a transplanted heart, an electrocardiogram can be performed to test for normal cardiac function.
- aerosolized cyclosporine for treatment of non-lung transplant recipients, such delivery systems may be used to treat subjects having T-cell mediated immune disorders such as type IV cell mediated (delayed-type) hypersensitivity, or autoimmune disorders.
- T-cell mediated immune disorders such as type IV cell mediated (delayed-type) hypersensitivity, or autoimmune disorders.
- Autoimmune disorders which may be treated using aerosolized cyclosporine include, for example, systemic lupus erythematosus, myasthenia gravis, Grave's disease, Hashimoto's thyroiditis, rheumatoid arthritis, scleroderma, and pernicious anemia.
- the dose of cyclosporine to be used in the method of the invention is an amount sufficient to achieve its intended purpose. More specifically, an effective amount means an amount sufficient to inhibit the immune response associated with the immune disorder.
- the effective dose may be determined using a variety of different assays including assays for detection of blood levels of cyclosporine cytokines, and/or the presence of autoreactive T-cells.
- the effective dose of aerosolized cyclosporine is that amount required to sustain an immunosuppressive effect, thereby preventing the symptoms associated with auto-immunity. Determination of effective amounts is well within the capability of those skilled in the art and may be readily ascertained.
- pulmonary diseases resulting from abnormal accumulations of inflammatory cells in lung tissue. Initially, the inflammatory cells and protein rich fluids accumulate in the lung causing inflammation. If left untreated, the inflammation commonly leads to replacement of normal lung tissue with scarred tissue, which severely limits the ability of the lung to function normally, leading to symptoms of progressive breathlessness, exercise intolerance and eventually a very poor quality of life. Some inflammatory lung diseases, asthma being a common one, cause inflammation and respiratory disability without causing lung scarring. Successful treatment of inflammatory pulmonary disorders can be brought about by techniques which serve to suppress the immune response.
- the present invention provides methods for promoting local immunosuppression in the lungs of subjects having pulmonary disorders through inhalation of an aerosol of cyclosporine.
- the method of the invention comprises the administration of aerosolized cyclosporine to a subject having an inflammatory associated lung disorder.
- the cyclosporine is delivered to the lung of the subject by inhalation of cyclosporine in the form of an aerosol spray using, for example, pressurized delivery devices or nebulizers.
- the cyclosporine may be formulated in either a dry powder or liquid form.
- pulmonary disorders whose symptoms can be ameliorated by the use of aerosolized cyclosporine are inflammatory pulmonary disorders wherein the symptoms of the disease result from a local immune reaction in the lungs.
- inflammatory pulmonary disorders wherein the symptoms of the disease result from a local immune reaction in the lungs.
- disorders include, but are not limited to, asthma, sarcoidosis, emphysema, cystic fibrosis, idiopathic pulmonary fibrosis, chronic bronchitis, allergic rhinitis and allergic diseases of the lung such as hypersensitivity pneumonitis and eosinophilic pneumonia.
- aerosolized cyclosporine in yet another embodiment of the invention, can be administered to patients receiving gene therapy wherein said therapy involves the inhalation of nucleic acids, or recombinantly engineered viruses, encoding a protein of interest.
- the administration of such nucleic acids or recombinantly engineered viruses can be associated with an inflammatory response in the lungs resulting from the host immune response against the nucleic acid or engineered virus.
- aerosolized cyclosporine can be co-administered with nucleic acids or recombinant viruses to reduce the inflammation associated with inhalation of such agents. By reducing the level of inflammation, the therapeutic benefit derived from the gene therapy may be prolonged.
- compositions suitable for use in the present invention include compositions containing cyclosporine and a physiologically acceptable carrier in an effective amount to achieve its intended purpose. More specifically an effective dose refers to that amount of cyclosporine sufficient to inhibit an immune response in the lung of a subject suffering from a pulmonary disorder thereby decreasing the inflammation associated with the disorder. Determination of effective amounts is well within the capability of those skilled in the art and may be readily ascertained.
- the effective dose may be determined using a variety of different assays.
- Transbronchial lung biopsies may be performed to examine whether the lung tissue shows histological evidence of inflammation; and/or assays can be performed to detect cyclosporine mediated reduction in cytokine and chemokine gene expression from bronchoalveolar lavage (BAL) cells and peripheral blood lymphocytes (PBL) of the treated subject.
- assays may be utilized to determine the deposition of aerosol cyclosporine in the lungs using, for example, radionucleotides.
- Serial spirometry can be used to determine lung volume and flow rate, before and during treatment.
- Subject questionnaires with symptom scores will be completed before and during treatment to assess a clinical response.
- a cadiopulmunary exercise test can be performed at baseline and during therapy to measure oxygen saturations and maximal oxygen consumption during exercise.
- the effective dose of aerosolized cyclosporine is that amount required to sustain a local immunosuppressive effect in the lungs thereby alleviating the symptoms associated with pulmonary inflammation while maintaining acceptable lung volumes and flow rates.
- the amount of composition administered is also dependent on the subject to whom the aerosolized cyclosporine is administered, the pulmonary disorder the subject has, the severity of the disorder's symptoms and the judgement of the overseeing physician. In some instances it may be necessary to terminate, interrupt or adjust the treatment to a lower dose due to toxicity as well as adjusting the treatment to higher levels a suitable beneficial response is not obtained.
- the total dose range of aerosolized cyclosporine should be sufficient to achieve concentration levels ranging between 5 mg and 30 mg in the lung, while most preferably a dose range sufficient to achieve concentration levels ranging between 5 mg and 15 mg in the lung is desirable.
- a dose of between 20 -400 mg of a aerosolized cyclosporine is administered, while most preferably a dose of aerosolized cyclosporine of between 50 - 300 mg is administered.
- doses of aerosolized cyclosporine may vary depending on the type and extent of lung disease, however it is believed that doses needed to achieve a beneficial response will be less then the doses of aerosolized cyclosporine required to ameliorate transplant related inflammation. It may be necessary to use dosages outside these ranges in some cases, as will be apparent to those of ordinary skill in the art.
- Aerosolized cyclosporine may be administered several times per day in small doses to ameliorate relatively mild airway inflammation associated with disorders such as, for example, asthma. Higher doses, given less frequently, may be required to ameliorate more serious inflammation associated with pulmonary disorders such as idiopathic pulmonary fibrosis.
- a subject exhibiting pulmonary disorder symptoms aerosolized cyclosporine in conjunction with an additional agent.
- agents include, for example, antibiotics, antivirals, immunosuppressives or anti-inflammatory agents.
- Anti-inflammatory drugs include, for example, inhaled steroids 4 ⁇ 220 mgs/puff/day, prednisone 20-60 mg day, methotrexate 5-15 mg/week, azathioprine 50-200mg/day. Determination of effective amounts of these additional compounds is well within the capability of those skilled in the art.
- compositions for use in accordance with the present invention may be formulated in a conventional manner using one or more physiologically acceptable carriers or recipients.
- Cyclosporine for use in the practice of the invention is commercially available and may be obtained from manufacturers, such as Novartis Pharmaceuticals (East Hanover, N.J.).
- the cyclosporine can be formulated in pharmaceutically acceptable compositions suitable for delivery to the lungs.
- Particular formulations include dry powders, liquid solutions or suspensions suitable for nebulization and propellant formulations suitable for use in metered dose inhalers.
- the preparation of such formulations is well know to those skilled in the art, and is described in U.S. Pat. Nos. 5,814,607 and 5,654,007 the disclosures of which are incorporated herein by reference.
- Dry powder formulations will comprise cyclosporine in a dry, lyophilized, form with a particle size within a preferred range for deposition within the lung.
- particle size for deposition in the lung will range between I and 5 microns.
- the cyclosporine particle size is generally between 0.1 and 2 microns in size.
- the preferred size range of particles can be produced using methods such as jet-milling, spray drying and solvent precipitation, for example.
- Dry powder devices typically require a powder mass in the range from about lmg to 10mg to produce an aerosolized dose.
- the cyclosporine will typically be combined with a pharmaceutically acceptable dry bulking powder.
- Preferred dry bulking powders include sucrose, lactose, trehalose, human serum albumin (HSA) and glycine. Dry powders can be administered to the subject in conventional dry powder inhalers.
- the cyclosporine can be dissolved in any recognized physiologically acceptable carrier for use in delivery of aerosolized formulations.
- suitable carriers include ethanol, propylene glycol and ethanol-propylene combinations.
- cyclosporine is relatively insoluble in water, it is soluble in lipids and organic solvents, having a solidity of about 80 mg/ml in alcohol at 25° C.
- the cyclosporine is dissolved in propylene glycol.
- the choice of propylene glycol is based on its reported use as a solvent to administer aerosolized formulations to individuals (Miller, W. C. et al., 1991, J. Aerosol, Medical. 4:293-297). Such preparations are stable at up to 60 days following preparation.
- compositions for use according to the present invention are conveniently delivered in the form of an aerosol spray administered via pressurized packs or a nebulizer, with the use of a propellant, e.g., dichlorordifluoromethane, dichloroterafluoroethane or other suitable gas.
- a propellant e.g., dichlorordifluoromethane, dichloroterafluoroethane or other suitable gas.
- the cyclosporine of the present invention will be processed into respirable particles as described above for the dry powder formulations. The particles are then suspended in the propellant, typically being coated with a surfactant to enhance their disbursement.
- the dosage unit may be determined by providing a valve to deliver a metered amount.
- jet nebulizers are available and may be used to deliver aerosolized cyclosporine to a subject.
- Such jet nebulizers include, but are not limited to, those supplied by AeroTech II (CIS-US, Bedford, Mass.).
- an oxygen source can be attached to the nebulizer providing a flow rate of, for example, 10 L/min.
- inhalation is performed over a 30-40 minute time interval through a mouthpiece during spontaneous respiration.
- compositions comprising a suitable carrier and aerosolized cyclosporine in doses sufficient to reduce or ameliorate pulmonary inflammation in subjects having pulmonary disorders. Such doses are lower than those generally used to ameliorate rejection in transplant recipients.
- the compositions of the invention should be sufficient to achieve concentration levels of between 5-30 mg, while most preferably achieving 545 mg in the lung.
- the following section describes experimental data relating to administration of aerosolized cyclosporine to a transplant recipient directly following lung transplantation.
- the rate of histological acute rejection for pilot subjects that received aerosolized cyclosporine early after lung transplantation (average day 10) was compared to controls that received conventional oral therapy (tacrolimus, oral cyclosporine, azathioprine and prednisone).
- conventional oral therapy tacrolimus, oral cyclosporine, azathioprine and prednisone
- the subject demographics appear in Table I below. A total of three subjects underwent double lung transplantation (DL), one subject underwent heart-lung transplantation (H-lung), and nine subjects received either a right (RSL) or left (LSL) single lung transplantation.
- DL double lung transplantation
- H-lung heart-lung transplantation
- LSL left
- the systemic immunosuppressive drug regimen consisted of oral tacrolimus (0.03 mg/kg/day), or cyclosporine (2.5-5.0 mg/kg/day) azathioprine (1-2 mg/kg/day), prednisone (0.3 mg/kg/day).
- the deposited dose of aerosolized cyclosporine was measured in subjects at approximately 60-90 days of administration.
- a solution of cyclosporine was mixed with 0.3 ml of saline containing a radioisotope tracer ( 99M Tc) and total cyclosporine deposition in the allograft was quantitated using a previously validated technique of O'Riordan, T. G. et al., (1992, J. Aerosol. Med. 5:171-177) and O'Riordan, T. G. et al., (1995, Am. I. Respir. Crit. Care Med. 151:516-521). All subjects deposited the aerosol cyclosporine in their transplanted lung.
- Histological diagnosis of lung transplant rejection was made according to Yousem, S. A. et al. (Working Formulation for the Standardization of Nomenclature in the Diagnosis of Lung Rejection, 1990, J. Heart Lung Transplant, 12:713-716). The rate of histological acute rejection events ( ⁇ grade II) was analyzed within six months after transplantation.
- creatinine levels were compared at initiation of aerosolized cyclosporine administration in transplant recipients and compared with a group of matched contemporary controls that received conventional oral immunosuppressive therapy.
- Bioavailability studies demonstrated limited systemic absorption from the lung as compared to the oral administration, and radioisotope studies showed deep lung deposition of the aerosol following inhalation.
- FIG. 1 Data regarding pharmacokinetics and bioavailability was obtained during the course of the study ( FIG. 1 ).
- pharmacokinetics and bioavailability of aerosolized cyclosporine, (300 mg dose) was measured ( FIG. 1A ).
- Five transplant recipients studied, on average, by post-operative day 21 underwent blood measurements of cyclosporine after inhalation of a 300 mg dose. All subjects also received oral tacrolimus.
- Cyclosporine powder for manufacturing the solution for nebulization used in this protocol is obtained from Novartis Pharmaceutical, East Hanover, N.J, (300 mg of cyclosporine powder, aerosolized in 4.8 ml propylene glycol).
- Propylene glycol is a recognized physiologically acceptable solvent which is used as a vehicle to deliver other aerosolized formulations such as inhaled pentamidine.
- New lots of cyclosporine require a purity and identity check using high performance liquid chromatography.
- Cyclosporine for aerosol delivery is prepared in a standard concentration of 62.5 mg/ml. The specific stability of cyclosporine in propylene glycol has been tested by high pressure liquid chromatographic assay of cyclosporine against methanolic standards.
- Reverse phase C18 chromatography was performed with a mobile phase of 67% acetonitrile at 1.0 ml/min, column heated at 70° C., with ultraviolet detection at 214 run. These tests have indicated that the preparation is 84% stable at up to 60 days following preparation. Lots of cyclosporine in propylene glycol which are >30 days past the date of preparation should be destroyed, and fresh lots are spot checked to be sure deterioration had not occurred by chance.
- the recipient subject should be on assist control mode and relaxed. Sedation can be used if necessary. Tidal volume and frequency can be consistent with conventional settings that were being used in the intensive care unit for ventilatory support.
- the nebulizer with cyclosporine solution is prepared in the usual manner and the nebulizer is triggered by the ventilator's nebulizer trigger system (Bennett 7200).
- the humidifier circuit should be bypassed during the nebulization, which will increase nebulizer efficiency by 50%. The nebulization is carried out to dryness.
- Aerosols containing cyclosporine are given using a commercially available jet nebulizer (AeroTech II, CIS-US, Bedford, Mass.). Inhalation is performed for 20-30 minutes through a mouthpiece during spontaneous respiration. A commercially available high efficiency particulate air filter is used to ensure absence of environmental contamination (AeroStar, BioSafety Systems, San Diego, Calif.).
- Aerosolized cyclosporine administration begins on post-transplant Day 6 and continues dosing daily, for 11 consecutive days. This initial daily dosing, followed by three times weekly has been successfully used, as described in Section 6, supra. Following the initial daily dosing, aerosols are administered on Mondays, Wednesdays, and Fridays for convenience. In spontaneously ventilated subjects, spirometry will be obtained prior to and immediately after treatment during the first 3 days with a Morgan spirometer interfaced with a Medical Graphics Model 1070 pulmonary function analyzer (350 Oak Grove Parkway, St. Paul, Minn.). Quantitation of deposition of aerosolized cyclosporine using radionucleotides is calculated on the seventh day of aerosol administration.
- Changes in the inhaled dose of aerosolized cyclosporine from a baseline of 300 mg is dependent on measured allograft deposition as follows: subjects that deposit between 10-15 mg, increase aerosolized cyclosporine to 400 mg; 5-10 mg, increase aerosolized cyclosporine to 500 mg. Further increments are based on subsequent deposition studies. Changes to doses are made if higher than expected allograft cyclosporine deposition is measured after a 300 mg dose as follows: 25-30 mg, decrease aerosolized cyclosporine to 200 mg; 30-35 mg, decrease aerosolized cyclosporine to 100 mg. In double lung recipients, deposition of inhaled cyclosporine can vary between the right and left allografts. In such bilateral transplant recipients, the lung that deposits the lower cyclosporine concentration is used to make the necessary dose adjustments.
- Spirometry is performed immediately alter inhalation of aerosolized cyclosporine during the initial 10 days of treatment, and a reduction in the Forced Expiratory Volume (FEVI) of greater than 15% on two separate occasions, associated with clinical symptoms of breathlessness is grounds for reducing the dose of aerosolized cyclosporine.
- the nebulizer charge is reduced by 100 mg per day and spirometry is repeated immediately after the dose.
- the minimum dose of aerosolized cyclosporine is 100 mg.
- Symptoms of pharyngeal soreness, cough and breathlessness may occur in transplant recipients during the course of aerosolized cyclosporine administration. If intolerable side effects occur, the dose of the aerosol preparation is reduced or discontinued; but, the attending physician is encouraged to reinstitute administration at a later time. Should the recipient's condition change, the physician can use any clinically indicated intervention that is appropriate for the given situation, including adjustments of concomitant treatment with other drugs.
- Spirometry (FVC, FEV 1 , FEF25-75) is performed at baseline and at 6 week intervals throughout treatment. By establishing baseline spirometric indices for each recipient prior to aerosolized cyclosporine administration, and comparing these with values measured during administration, individual regression lines of the FEV 1 can be calculated for each subject. Analysis of the rate of decline of the FEV 1 and histopathological assessment of the allograft allows diagnosis of chronic rejection.
- Cytokine and chemokine gene expression are measured from bronchoalveolar lavage cells (BAL) and peripheral blood lymphocytes (PBL) in treated subjects and the dose of aerosolized cyclosporine is adjusted accordingly.
- BAL cells and PBL are isolated immediately prior to aerosolized cyclosporine administration at approximately day 7 and at the time of bronchoscopy and cytokine mRNA expression is determined at baseline.
- the effects of local enhanced immunosuppression with aerosolized cyclosporine on the expression of IL-2, IL-6, IL-10, TGF- ⁇ , IFN- ⁇ , inducible nitric oxide synthase (iNOS), Granzyme and perforin are tested.
- Cellular gene expression of the various cytokines are measured at 8-week intervals, at the time BAL cells are isolated after each protocol bronchoscopy, and at various time intervals throughout the treatment period.
- An increase in expression of the cytokines serves as an indicator that an increase in the dose of cyclosporine is required.
- Unseparated BAL cells and Ficoll-Hypaque isolated PBMC are snap frozen before and after a short stimulation of one hour with phytohemagglutinin (PHA). Stimulation with PHA permits detection of the presence of IL-2 mRNA in unseparated BAL cells from rejecting allografts but does not stimulate up-regulation of IL-2 in BALs from transplant recipients during quiescence or in naive PBL cells.
- PHA phytohemagglutinin
- RNA concentration is determined by spectrophotometry.
- the complementary DNA was synthesized by transcription from RNA in the presence of human placental RNA-ase inhibitor, Inmol/L deoxynucleoside triphosphates, oligonucleotide deoxythymidine primer, murine leukemia virus reverse transcriptase and reverse transcriptase buffer, The RT PCR of the resulting cDNA is performed according to well established protocols known in the art. Aliquots of the cDNA are amplified using primers specific for cytokines measured.
- Amplification is carried out for 30 cycles on a Perkin-Elmer Cetus Model 480 thermal cycler (Norwalk, Conn.). As an internal control for quality and potential degradation of RNA, all RNA samples are assessed for the constitutive gene ⁇ -actin cyclophilin. For negative controls, PCR amplification is performed with sterile water substituted for cDNA. PCR products are analyzed by electrophoresis in 2% agarose gels and visualized by ethidiurn bromide staining. RT-PCR is carried out in the presence of ‘P-deoxycytidine triphosphate labeled primers. The product of the amplification is electrophoresed on an 8% polyacrylamide gel that is dried and submitted to autoradiography. The amounts of radioactivity incorporated in the PCR product are then counted with a ⁇ -scanner.
- the results are expressed as a ratio of cytokine to actin, and cytokine to cyclophilin, expression.
- the cytokine to actin ratio is determined at the time of initiation and during aerosolized cyclosporine administration. Changes in cytokine gene expression over time are correlated by linear regression with the dose of aerosolized cyclosporine deposited in the allograft and the grade of histologic inflammation associated with acute rejection.
- aerosolized cyclosporine is administered with other immunosuppressive drugs, such as prednisone, azathioprine, tacrolimus, as well as oral cyclosporine.
- immunosuppressive drugs such as prednisone, azathioprine, tacrolimus, as well as oral cyclosporine.
- Systemic (oral) immunosuppression is gradually reduced for subjects to whom aerosolized cyclosporine is administered that are free of histologic rejection. Should surveillance biopsies fail to show significant rejection ( ⁇ grade I acute rejection) on two consecutive occasions, prednisone doses are reduced from 0.3 mg/kg/day to 0.2 mg/kg/day until two additional biopsies are free of rejection, and then the dose drops to 0. 1 mg/kg/day.
- the prednisone dose remains at this level unless rejection occurs at which time it is increased to 0.3 mg/kg/day to begin the cycle again.
- tacrolimus blood levels are gradually reduced by approximately 5 ng/ml at 4-month intervals to maintain blood levels at a minimum of 7.5-10 ng/ml. Should two consecutive biopsies show significant rejection during tacrolimus taper (acute rejection ⁇ grade 2 or active obliterative bronchiolitis), tacrolimus blood levels are increased to the previous baseline (15- 20 ng/ml).
- infectious complications including pneumonia, emphyema, sinusitis, septicemia, abscesses, and urinary tract, viral, pulmonary and systemic fungal, and skin and wound infections that occur during the treatment are also monitored.
- Peripheral blood samples are collected pretransplant (baseline), 2 weeks posttransplant, every 2 months, and when recipients are evaluated for infection and rejection.
- the response to the following three different types of stimuli can be assayed: 1) stimulation by recall antigens (RA) (TT 4 CMV 1:200 dilution) to determine the function of CD4+ T cells responding to nominal antigen presented by autologous APCs; 2) stimulation by a pool of MHC disparate cells to assess the response of T-h cells (CD4- and CD8+) to direct presentation of alloantigen (ALLO), 3) and the polyclonal stimulation of T cells by mitogens PHA and conconavalin A mitogen (conA).
- RA recall antigens
- conA conconavalin A mitogen
- Total aerosol deposition in the subject is measured using a mass balance technique. Using this method, the amount of radioactivity inhaled by the subject and the amount exhaled are measured using filters. In the case of a small particle nebulizer such as the AeroTech II (Cis-Us, Bedford, Mass.) (used to deliver aerosolized cyclosporine), the dose deposited in the recipient subject is near equivalent to the total lung dose, because pharyngeal/laryngeal deposition is minimal. The difference between these two measurements is the amount deposited in the subject. The advantage of this approach is that it avoids the use of attenuation coefficients which may be difficult to interpret in the context of non-uniform aerosol deposition.
- the radioactive exposure is equivalent to typical x-rays of the ribs (100-200 mi llirads).
- a recipient subject wearing nose clips, inhales a nebulized radioactive solution from a typical nebulizer circuit.
- a low resistance absolute filter is attached to the expiratory part of the nebulizer. This filter is designated as the “exhalation filter.
- the exhalation filter In addition to capturing all the particles that are exhaled by the subject, it will also capture those particles that are produced by the nebulizer during the expiratory phase of respiration, i.e., particles that were never inhaled. These latter particles are referred to as “the leakage” of the nebulizer. In order to determine the amount inhaled and “the leakage”, a calibration run is necessary that necessitates duplicating the subject's breathing pattern.
- the output of the subject's nebulizer ( ⁇ Ci/min) is determined by interposing a filter between the nebulizer and the subject's mouth (“inspiratory filter”) and capturing the aerosol that would be inhaled. Aerosol produced by the nebulizer, but not inhaled into the inspiratory filter (i.e., during expiration) is captured on the “leakage filter.” The inspiratory filter captures all of the particles that would have been inhaled by the subject.
- VEmon represents an estimate of minute ventilation (VE) used to monitor breathing pattern during aerosol delivery.
- the mass balance technique measures the dose deposited in the subject. To determine the regional distribution of the dose (right vs. left lung or central airways versus lung periphery), gamma camera imaging of deposited radioactivity is needed. When particles are inhaled by a subject, they will either be exhaled or be retained (deposited). In healthy subjects, a uniform deposition pattern within the lungs indicates that most of the particles have deposited in small peripheral airways or alveoli by means of gravitational sedimentation. A common non-uniform pattern seen in healthy subjects due to inertial impaction, is the peri-hilar pattern in which particles have deposited predominantly in the typical uniform and non-uniform deposition patterns.
- the aerosol deposition patterns are superimposed on an outline of the whole lung, which was generated using a Xenon ( 133 Xe) equilibrium scan.
- 133 Xe is a gas with a long half-life (5.3 days) which, when breathed to equilibrium measures regional lung volume.
- regions of interest based on the 133 Xe image it is possible to facilitate comparison between serial studies in the same subject, or make intersubject comparisons of the distribution of deposited particles in the lung and airways (Iacono el al., Am. J. Respir. Crit. Care Med. 55:1690-1698).
- regions are drawn around each lung which is called the whole lung zone and another pair of regions are drawn which centered over the large central airways comprising 33% of the entire lung area, is called the central zone.
- the area remaining after the central zone is deducted from the whole lung zone and is designated the peripheral zone.
- the ratio between central (C) and peripheral (P) lung counts is calculated in a manner which normalized for differences in relative lung thickness by dividing the C/P 99m Tc counts by the C/P 133Xe counts.
- the ratio defined the specific C/P ratio (sC/P).
- sC/P specific C/P ratio
- a ratio of 1.0 indicates equal deposition in all lung regions. Because the central lung region outlines both central airways and the lung parenchyma surrounding them, an sC/P ratio of unity reflects predominantly alveolar deposition. Increasing deposition in the proximal airways results in increasing sC/P ratios greater than unity. Therefore, determination of the sC/P ratio allows quantification of initial deposition patterns and comparisons between subjects.
- Cyclosporine pharmacokinetic studies may be performed at, for example, Week 12 in recipient subjects. After obtaining a baseline 3.0 ml blood sample, the subject receives 1.0 mg/kg cyclosporine intravenously as a 4 hour infusion. Additional blood samples are drawn at 2.0, 4.0, 5.0, 6.0, 12.0, 18.0 and 24 hours after initiation of the infusion. On day number 2 of the study, after the final 24.0 hour sample is obtained, a 300 mg dose of aerosolized cyclosporine or placebo is given, with blood samples taken at 0.25, 0.5, 0.75, 1.0, 2.0, 4.0, 6.0, 8.0, 12.0, 18.0, and 24.0 hours after initiation of the aerosolized dose.
- Samples are analyzed for both cyclosporine and tacrolimus.
- the intravenous cyclosporine dosage allows the calculation of cyclosporine total body clearance, elimination half-life and volume of distribution. Having those results, one can accurately calculate the amount of cyclosporine that was absorbed from the aerosolized dose in those subjects on the active drug, as well as calculate the absorption rate constant for drug deposited in the lungs.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Otolaryngology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Transplantation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- The present invention relates to methods and compositions for prevention of graft rejection in lung transplant recipients and for treatment of subjects with pulmonary disorders. Specifically, the methods and compositions of the invention provide a means for inhibiting immune response mediated inflammatory processes in the lungs. The method of the invention comprises the administration of aerosolized cyclosporine for prevention of acute and/or chronic refractory rejection in lung transplant patients. The invention is based on the observation that when aerosolized cyclosporine is administered shortly after lung transplantation, the preparation is well tolerated and the rate of acute rejection is substantially reduced, compared to controls that receive conventional oral or intravenous immunosuppression only. The invention further provides for the use of aerosolized cyclosporine to treat subjects having immunologically mediated inflammatory pulmonary disorders including, but not limited to, asthma, cystic fibrosis, idiopathic pulmonary fibrosis, chronic bronchitis and allergic rhinitis. The present invention, by enabling a method for the use of aerosolized cyclosporine for inhibiting pulmonary inflammation leading to prevention of graft rejection and treatment of pulmonary disorders, provides a safer and less toxic treatment than those methods that utilize systemic administration of cyclosporine.
- The long-term success of lung transplantation is currently limited by the high incidence of transplant-related lung disease (Glanville, A. R., et al., 1987, Ann Intern Med 107:300-306; Trulock, E P., 1993, Chest 103:1566-1576; Kesten, S., 1995, 152: 1321-1324; Paradis, I. et al., 1993, 14:751-763). This complication is related to the transplant recipients' ongoing immune response against donor major histocompatability antigens. Such an immune response generally leads to persistent acute rejection of the lung allograft which is a predominant risk factor for the subsequent development of chronic rejection and permanent allograft dysfunction and failure resulting in excessive morbidity and mortality. This is a tragic consequence of lung transplantation and for this reason, is a leading area of research in this field. Although the rates of short-term survival after lung transplantation have improved compared to most other solid organ transplants, the therapeutic benefit of lung transplantation is still limited by poor longer-term outcomes principally due to chronic rejection of the transplanted lung.
- Patients, whose lung allografts are in acute and/or chronic rejection, are currently treated by a variety of potent immunosuppressive agents, such as azathioprine, tacrolimus, mycophenolate mofetil and cyclosporine, generally given by the intravenous or oral route, that profoundly inhibit the T cell response to donor antigen within the transplanted allograft . Unfortunately, these immunosuppressive agents diminish the patient's ability to mount an effective response to viral, fungal and bacterial pathogens thereby predisposing the patient to life threatening opportunistic infections and other toxic events such as kidney toxicity. Despite usage of conventional systemic (oral or intravenous) immunosuppressive drugs, about 50% of the treated patients develop refractory chronic rejection, characterized histologically by bronchiolitis obliterans, followed by a progressive decline in pulmonary function and eventually respiratory failure and death.
- Cyclosporine, an 11-amino acid cyclic polypeptide antibiotic is frequently used to prevent rejection after solid organ transplantation (Kahan, B. D., 1989, N Engl Med., 321:1725-1738; Kumar, M. S. A., et al., Transplant Proc., 20:407-413; Keenan R. J., et al., Transplantation 53:20-25). Cyclosporine acts as an immunosuppressive agent by selectively inhibiting immune responses mediated by T lymphocytes (Iacono, A. T., et al., 1997, Transplantation 64:263-269; Keenan, R. J., 1995, Surgery 118:385-391). Unfortunately, systemic cyclosporine has a narrow therapeutic index, e.g., ratio between toxic and therapeutic doses, and effective immunosuppressive doses often cannot be achieved due to the risk of toxicity to the liver and kidney. In addition, administration of systemic cyclosporine results in a high incidence of infections with viral, bacterial and fungal pathogens.
- To date, oral cyclosporine, when combined with azathioprine (AZA) and prednisone, has proven incapable of persistently suppressing the alloresponse to the lung to an extent necessary to provide an optimistic long-term outcome (Griffith, B. P., 1992, Ann Thorac Surg 54:846-51). Other therapies for prevention of transplant rejection include anti-CD3 antibody (OKT3), methotrexate, lymphoid irradiation and mycophenolate mofetil. Unfortunately, even with these treatments clinical efficacy has been disappointing and associated with toxicity (Cahill, B. C., 1996, J Heart Lung Transplant 15:1130-1137; Valentine, V. G., et al., 1996, 109:1184-1189; Copeland, K. R. and Yatscoff, R. W., 13:281-288) Thus, cyclosporine either alone or as part of a multi drug immunosuppressive regimen has been imperfect in preventing both acute and chronic rejection.
- Recent data has indicated that immunosuppression by local administration of cyclosporine may be beneficial . For example, using a collagen matrix impregnated with cyclosporine, it was demonstrated that controlled release of low dose cyclosporine, significantly prolonged non-heterologous heart allograft survival with negligible blood and kidney tissue cyclosporine concentrations (Bolling, et al., 1990, J Heart Transplant 9:74-78; Stepkowski, et al, 1989, Transplantation 47:17-23).
- While most solid organ transplants are inaccessible to such localized immunosuppress therapy, lung allografts are the exception. Aerosolized pharmacologic agents have direct access to the lung, and there is extensive experience in the use of inhaled β-agonists and nebulized antibiotics. In animal models, aerosolized cyclosporine has been demonstrated to be safe and more effective than systemic cyclosporine in preventing graft rejection (Dowling R. D.,1990, Surgery, 108:198; Zenati, M., 1991, Eur. J. Cardiothor. Surg., 5:266; Keenan, R. J. et al., 1992, Transplantation 53:20-25; Rabinowich H., 1988, Transplant Proc., 20:836). Local delivery of aerosolized cyclosporine has been effectively used to deliver cyclosporine to the lungs of patients with severe chronic graft rejection that was refractory to all previous attempts at control (Burckart, G. J., 1989, J Clin. Pharmaco. 29: 860; Iacono, A. T., et al., 1996, Am. J. Resp. Crit. Care Med., 153:1451-1455). In addition aerosolized cyclosporine was effective as therapy for refractory acute rejection in lung-transplant subjects unresponsive to conventional therapy (O'Riordan, T. G., et al., 1995, Am. J. Respir. Crit. Care Med. 151:516; Iacono, A. T., et al., 1997, Am. J. Resp. Crit. Care Med. 155:1690-1698; Keenen, R. J., et al., 1997, J. Thorac. Cardiovasc. Surg., 1134:335-341).
- The present invention provides compositions and methods for using aerosolized cyclosporine for prevention of graft rejection in lung transplant recipients. The invention further provides for the use of aerosolized cyclosporine for amelioration of inflammatory pulmonary disorders including, by way of example and not limitation, asthma, sarcoidosis, emphysema, cystic fibrosis, idiopathic pulmonary fibrosis, chronic bronchitis, allergic rhinitis and allergic diseases of the lung such as hypersensitivity pneumonitis, eosinophilic pneumonia, bronchiolitis obliterans due to bone marrow transplantation or other causes, as well as pulmonary fibrosis resulting from collagen, vascular, and autoimmune diseases such as rheumatoid arthritis and lupus erythematosis.
- Delivery of cyclosporine to the transplanted lung by aerosol inhalation achieves higher concentrations in the lung than delivery of the drug by systemic (oral or intravenous) administration, resulting in improved control of rejection, with reduced toxicity due to limited absorption from the lung into the bloodstream.
- Accordingly, the methods of the present invention comprise administering aerosolized cyclosporine to a subject having received a lung transplant. To prevent rejection of the lung transplant the cyclosporine is administered directly following the transplant procedure prior to the development of symptoms associated with organ rejection. The administration of aerosolized cyclosporine results in a substantially lower prevalence of acute rejection and development of obliterative bronchiolitis (OB). In addition, cytokines, chemokines and effector molecules normally expressed within the allograft are suppressed, such that the recipient requires less systemic immuno-suppression. Moreover, systemic immunocompetence is preserved by maintenance of T-helper cell memory, resulting in a lower incidence of opportunistic and bacterial infection.
- In yet another embodiment of the invention, aerosolized cyclosporine is administered to a subject having an inflammatory pulmonary disorder. The method of the invention comprises administering aerosolized cyclosporine to inhibit inflammation in a subject having an inflammatory pulmonary disorder such that the expression of cytokines is modulated and the symptoms of inflammation are ameliorated.
- The invention further provides for compositions comprising cyclosporine in a suitable carrier which can be administered to a subject, in aerosolized form, at an effective dose to prevent graft rejection or ameliorate the inflammatory symptoms associated with pulmonary disorders. For subjects with pulmonary disorders, the compositions used in the practice of the invention comprise an effective dose of cyclosporine that is generally lower than the doses reportedly used for treating refractory acute lung rejection or the doses described herein for prevention of lung rejection.
- The invention is based on the observation that administration of aerosolized cyclosporine given as a prophylaxis after lung transplantation can prevent acute rejection. The present invention, by providing methods for prevention of graft rejection and amelioration of inflammatory pulmonary disorders using aerosolized cyclosporine, reduces the toxicity and susceptibility to life threatening opportunistic infections associated with systemic use of cyclosporine.
-
FIG. 1A , 1B AND 1C. Pharmacokinetics and bioavailability of aerosolized cyclosporine.FIG. 1A . Five subjects studied on average post-operative day number 20.8 underwent blood measurements of cyclosporine after inhalation of a 300 mg dose.FIG. 1B . Subsequently, a dose of intravenous cyclosporine (1 mg/kg over a 4 hour infusion) was administered and blood concentrations of cyclosporine were determined by monoclonal immunoaassay over 24 hours following infusion.FIG. 1C compares blood measurements of cyclosporine after inhalation versus intravenous administration. -
FIG. 2 . Acutecellular rejection grade 2 or greater in the first six months post-transplantation. The number of biopsy-proven acute rejection events is decreased in subjects that received aerosolized cyclosporine versus controls that received only standard oral triple drug immunosuppression (2.278 episodes/rejection/subject ±0.113 versus 1.308 0.398, p value 0.0196 (Mann-Whitney U test). -
FIG. 3 . A Kaplan Mayer survival curve in treated subjects versus controls, demonstrating improvement in survival in those subjects that received aerosolized cyclosporine (p=0.014) versus controls receiving standard systemic immunosuppression. - The present invention relates to methods for preventing graft rejection in lung transplant recipients wherein said methods comprise the administration of aerosolized cyclosporine directly following lung transplantation. The invention further relates to methods for ameliorating inflammation in subjects having inflammatory pulmonary disorders using aerosolized cyclosporine. Subjects treated with aerosolized cyclosporine have reduced pulmonary inflammation due to a cyclosporine mediated decrease in inflammatory cytokines in the lung.
- The methods of the invention provide a means for ameliorating pulmonary disorders through direct delivery of the immunosuppressive agent cyclosporine to the lung while avoiding the toxicity associated with systemic use of cyclosporine, or other systemic immunosuppressive drugs that frequently cause toxicity and infection.
- The present invention relates to a method for prevention of graft rejection in lung transplant recipients by administration of aerosolized cyclosporine. The present invention is used as a prophylactic means for inhibiting the onset of graft rejection in lung transplant recipients. The method comprises the administration of aerosolized cyclosporine to a transplant recipient directly following transplantation by aerosol inhalation. In a preferred embodiment of the invention, the initial maximum dose of aerosolized cyclosporine is usually administered to the transplant recipient within 10 days following transplantation or prior to the development of any of the symptoms generally associated with lung transplant rejection. The cyclosporine is delivered to the lung of the recipient by inhalation of cyclosporine in aerosol spray form using, for example, a pressurized delivery device or nebulizer. The cyclosporine may be administered in either dry powder or wet form.
- Compositions suitable for use in the present invention include compositions comprising cyclosporine in an effective amount to achieve its intended purpose and one or more physiologically acceptable carriers. More specifically, an effective amount means an amount sufficient to prevent development of an immune response that would lead to graft rejection in a lung transplant recipient. An effective dose refers to that amount of cyclosporine sufficient to inhibit an immune response in the lung of the transplant recipient thereby preventing graft rejection. Determination of effective amounts is well within the capability of those skilled in the art.
- The effective dose may be determined using a variety of different assays. The progress of the transplant recipient can be determined using assays that include serial transbronchial biopsies to determine the presence and severity of rejection as measured by, for example, a reduction in mononuclear cell inflammatory infiltrate, characteristic of transplant rejection. In such instances, the effective dose of aerosolized cyclosporine is that amount required to sustain a local immunosuppressive effect in the lungs, thereby preventing lung transplant rejection. In addition, assays may be utilized to quantitate the deposition of aerosolized cyclosporine in the lung of the recipient using radionucleotides. Spirometry can be performed following inhalation of aerosolized cyclosporine to assess how much air the lungs can hold as well as how much and how quickly air can be exhaled. A reduction in forced expiratory volume (FEV1) of greater than 15% in conjunction with clinical symptoms of breathlessness indicates the need for reducing the dose of aerosolized cyclosporine. In addition, symptoms of pharyngeal soreness, cough and breathlessness may also indicate the need for reducing the dose of aerosolized cyclosporine.
- Serial pulmonary function tests, such as chest radiographs, complete blood counts, assays for electrolytes and creatine levels, and cytokine expression in bronchoalveolar lavage cells, as well as histolgic analysis of the lung by transbronchial lung biopsy can be performed to assess efficacy at 1-3 month intervals throughout the course of aerosolized cyclosporine administration.
- The amount of composition administered is also dependent on the subject to whom the aerosolized cyclosporine is administered and the judgement of the physician overseeing the subject. It should be noted that the attending physician would know how and when to terminate, interrupt or adjust the treatment to a lower dose due to toxicity. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response is not adequate. This can be determined by measurement of the cyclosporine in the lung using known radioisotopic techniques. In addition, adjustments of concomitant administration of additional drugs may be necessary.
- In general, the total dose range of cyclosporine should be sufficient to achieve allograft deposition levels ranging between 15 mg and 30 mg in the lung. For example, a dose of between 100-500 mgs of aerosolized cyclosporine may be inhaled, while most preferably the usual dose of aerosolized cyclosporine to achieve deposition in the lung between 15-30 mg is typically 300 mg.
- The present invention relates to methods for prevention of graft rejection in lung transplant recipients, therefore, the initial aerosol treatment is administered prior to the development of symptoms normally associated with transplant rejection. In general, administration of aerosolized cyclosporine begins on Day 2-10 post-transplant, while most preferably the treatment begins on Day 5-7 post-transplant. The treatment continues on a daily basis for between 8-15 consecutive days, while most preferably the treatment continues for 10-12 consecutive days. This initial dosing is followed by administration of aerosolized cyclosporine three times weekly for the duration of the life of the transplanted lung.
- It is further recommended that infants, children, and subjects with impaired immune systems initially receive lower doses, and they be titrated based on individual clinical response. It may be necessary to use dosages outside the ranges disclosed above in some cases as will be apparent to those of ordinary skill in the art.
- In general, the aerosolized cyclosporine is given as the sole immunosuppressive agent if it is found to adequately control rejection. However, aerosolized cyclosporine may be co-administered to a transplant recipient in combination with other immunosuppressive or anti-inflammatory reagents, including but not limited to, oral cyclosporine (2.5-5.0 mg/kg); tacrolimus 0.01-0.04 mg/kg;
prednisone 20 mg/kg or 0.3 mg/day. Aerosolized cyclosporine may be give alone if the transplant recipient has a life threatening infection cause by profound inactivation of the immune system due to oral or intravenous immunosuppression, or experiences toxicity, especially to the kidney, due to co-administration of these drugs. - In yet another embodiment of the invention, aerosolized cyclosporine can be administered to organ transplant recipients other than lung transplant recipients using a delivery system that utilizes a optimal cyclosporine particle size for systemic delivery of cyclosporine via the lung. Such organ transplants include, but are not limited to, transplants of the liver, kidney, heart and bone marrow. The use of aerosolized cyclosporine provides an effective system for maintaining a steady drug concentration in the bloodstream thereby increasing the efficacy of the cyclosporine and minimizing the toxic side effects associated with cyclosporine.
- For pulmonary deposition, the cyclosporine particle size is generally between 1 and 5 microns, a size that generally restricts absorption into the bloodstream. In contrast, where the desired goal is systemic delivery of the cyclosporine via absorption from the lung into the bloodstream, the cyclosporine particle size is reduced to an approximate size of between 0.1 and 2 microns. Methods for producing aerosolized cyclosporine particles of different sizes are routine and well known to those of skill in the art.
- Compositions suitable for use in treatment of organ transplant recipients include compositions comprising cyclosporine, in one or more physiologically acceptable carriers, in an effective amount to achieve its intended purpose. More specifically, an effective amount means an amount sufficient to prevent development of an immune response that would lead to graft rejection in a transplant recipient. An effective dose refers to that amount of cyclosporine sufficient to inhibit an immune response in the transplanted organ of the transplant recipient thereby preventing graft rejection. In general, the total dose range of cyclosporine should be sufficient to achieve circulating cyclosporine concentrations of between 50-250 ng/ml, while most preferably the usual dose of cyclosporine is sufficient to achieve circulation levels of 200 ng/ml.
- Determination of effective amounts is well within the capability of those skilled in the art. The effective dose may be determined using a variety of different assays. The progress of the transplant recipient can be determined using assays that include biopsies to determine the presence and severity of rejection as measured by, for example, a reduction in mononuclear cell inflammatory infiltrate, characteristic of transplant rejection. In such instances, the effective dose of aerosolized cyclosporine is that amount required to sustain a local immunosuppressive effect in the transplanted organ, thereby preventing organ transplant rejection. In addition, organ function may be monitored using a variety of different assays, the use of which, will depend on nature of the transplanted organ. For example, blood tests may be performed to assay for normal liver or kidney function. In instances where the transplant recipient has received a transplanted heart, an electrocardiogram can be performed to test for normal cardiac function.
- In addition to the use of small particle size aerosolized cyclosporine for treatment of non-lung transplant recipients, such delivery systems may be used to treat subjects having T-cell mediated immune disorders such as type IV cell mediated (delayed-type) hypersensitivity, or autoimmune disorders. Autoimmune disorders which may be treated using aerosolized cyclosporine include, for example, systemic lupus erythematosus, myasthenia gravis, Grave's disease, Hashimoto's thyroiditis, rheumatoid arthritis, scleroderma, and pernicious anemia.
- The dose of cyclosporine to be used in the method of the invention is an amount sufficient to achieve its intended purpose. More specifically, an effective amount means an amount sufficient to inhibit the immune response associated with the immune disorder.
- The effective dose may be determined using a variety of different assays including assays for detection of blood levels of cyclosporine cytokines, and/or the presence of autoreactive T-cells. In such instances, the effective dose of aerosolized cyclosporine is that amount required to sustain an immunosuppressive effect, thereby preventing the symptoms associated with auto-immunity. Determination of effective amounts is well within the capability of those skilled in the art and may be readily ascertained.
- There are a number of significant pulmonary diseases resulting from abnormal accumulations of inflammatory cells in lung tissue. Initially, the inflammatory cells and protein rich fluids accumulate in the lung causing inflammation. If left untreated, the inflammation commonly leads to replacement of normal lung tissue with scarred tissue, which severely limits the ability of the lung to function normally, leading to symptoms of progressive breathlessness, exercise intolerance and eventually a very poor quality of life. Some inflammatory lung diseases, asthma being a common one, cause inflammation and respiratory disability without causing lung scarring. Successful treatment of inflammatory pulmonary disorders can be brought about by techniques which serve to suppress the immune response.
- The present invention provides methods for promoting local immunosuppression in the lungs of subjects having pulmonary disorders through inhalation of an aerosol of cyclosporine. The method of the invention comprises the administration of aerosolized cyclosporine to a subject having an inflammatory associated lung disorder. The cyclosporine is delivered to the lung of the subject by inhalation of cyclosporine in the form of an aerosol spray using, for example, pressurized delivery devices or nebulizers. The cyclosporine may be formulated in either a dry powder or liquid form.
- Among the pulmonary disorders whose symptoms can be ameliorated by the use of aerosolized cyclosporine are inflammatory pulmonary disorders wherein the symptoms of the disease result from a local immune reaction in the lungs. Examples of such disorders include, but are not limited to, asthma, sarcoidosis, emphysema, cystic fibrosis, idiopathic pulmonary fibrosis, chronic bronchitis, allergic rhinitis and allergic diseases of the lung such as hypersensitivity pneumonitis and eosinophilic pneumonia. in yet another embodiment of the invention, aerosolized cyclosporine can be administered to patients receiving gene therapy wherein said therapy involves the inhalation of nucleic acids, or recombinantly engineered viruses, encoding a protein of interest. The administration of such nucleic acids or recombinantly engineered viruses can be associated with an inflammatory response in the lungs resulting from the host immune response against the nucleic acid or engineered virus. Thus, aerosolized cyclosporine can be co-administered with nucleic acids or recombinant viruses to reduce the inflammation associated with inhalation of such agents. By reducing the level of inflammation, the therapeutic benefit derived from the gene therapy may be prolonged.
- Compositions suitable for use in the present invention include compositions containing cyclosporine and a physiologically acceptable carrier in an effective amount to achieve its intended purpose. More specifically an effective dose refers to that amount of cyclosporine sufficient to inhibit an immune response in the lung of a subject suffering from a pulmonary disorder thereby decreasing the inflammation associated with the disorder. Determination of effective amounts is well within the capability of those skilled in the art and may be readily ascertained.
- The effective dose may be determined using a variety of different assays. Transbronchial lung biopsies may be performed to examine whether the lung tissue shows histological evidence of inflammation; and/or assays can be performed to detect cyclosporine mediated reduction in cytokine and chemokine gene expression from bronchoalveolar lavage (BAL) cells and peripheral blood lymphocytes (PBL) of the treated subject. Additionally, assays may be utilized to determine the deposition of aerosol cyclosporine in the lungs using, for example, radionucleotides. Serial spirometry can be used to determine lung volume and flow rate, before and during treatment.
- Subject questionnaires with symptom scores will be completed before and during treatment to assess a clinical response. A cadiopulmunary exercise test can be performed at baseline and during therapy to measure oxygen saturations and maximal oxygen consumption during exercise. In such instances, the effective dose of aerosolized cyclosporine is that amount required to sustain a local immunosuppressive effect in the lungs thereby alleviating the symptoms associated with pulmonary inflammation while maintaining acceptable lung volumes and flow rates.
- The amount of composition administered is also dependent on the subject to whom the aerosolized cyclosporine is administered, the pulmonary disorder the subject has, the severity of the disorder's symptoms and the judgement of the overseeing physician. In some instances it may be necessary to terminate, interrupt or adjust the treatment to a lower dose due to toxicity as well as adjusting the treatment to higher levels a suitable beneficial response is not obtained.
- In general, the total dose range of aerosolized cyclosporine should be sufficient to achieve concentration levels ranging between 5 mg and 30 mg in the lung, while most preferably a dose range sufficient to achieve concentration levels ranging between 5 mg and 15 mg in the lung is desirable. For example, a dose of between 20 -400 mg of a aerosolized cyclosporine is administered, while most preferably a dose of aerosolized cyclosporine of between 50 - 300 mg is administered. Overall, doses of aerosolized cyclosporine may vary depending on the type and extent of lung disease, however it is believed that doses needed to achieve a beneficial response will be less then the doses of aerosolized cyclosporine required to ameliorate transplant related inflammation. It may be necessary to use dosages outside these ranges in some cases, as will be apparent to those of ordinary skill in the art.
- Aerosolized cyclosporine may be administered several times per day in small doses to ameliorate relatively mild airway inflammation associated with disorders such as, for example, asthma. Higher doses, given less frequently, may be required to ameliorate more serious inflammation associated with pulmonary disorders such as idiopathic pulmonary fibrosis.
- In certain instances, it may be desirable to co-administer to a subject exhibiting pulmonary disorder symptoms, aerosolized cyclosporine in conjunction with an additional agent. Such agents include, for example, antibiotics, antivirals, immunosuppressives or anti-inflammatory agents. Anti-inflammatory drugs include, for example, inhaled steroids 4×220 mgs/puff/day, prednisone 20-60 mg day, methotrexate 5-15 mg/week, azathioprine 50-200mg/day. Determination of effective amounts of these additional compounds is well within the capability of those skilled in the art.
- The compositions for use in accordance with the present invention may be formulated in a conventional manner using one or more physiologically acceptable carriers or recipients. Cyclosporine for use in the practice of the invention is commercially available and may be obtained from manufacturers, such as Novartis Pharmaceuticals (East Hanover, N.J.).
- The cyclosporine can be formulated in pharmaceutically acceptable compositions suitable for delivery to the lungs. Particular formulations include dry powders, liquid solutions or suspensions suitable for nebulization and propellant formulations suitable for use in metered dose inhalers. The preparation of such formulations is well know to those skilled in the art, and is described in U.S. Pat. Nos. 5,814,607 and 5,654,007 the disclosures of which are incorporated herein by reference.
- Dry powder formulations will comprise cyclosporine in a dry, lyophilized, form with a particle size within a preferred range for deposition within the lung. Typically the particle size for deposition in the lung will range between I and 5 microns. When systemic delivery of the cyclosporine via absorption from the lung into the bloodstream is desired the cyclosporine particle size is generally between 0.1 and 2 microns in size. The preferred size range of particles can be produced using methods such as jet-milling, spray drying and solvent precipitation, for example.
- Dry powder devices typically require a powder mass in the range from about lmg to 10mg to produce an aerosolized dose. Thus, the cyclosporine will typically be combined with a pharmaceutically acceptable dry bulking powder. Preferred dry bulking powders include sucrose, lactose, trehalose, human serum albumin (HSA) and glycine. Dry powders can be administered to the subject in conventional dry powder inhalers.
- For liquid formulations the cyclosporine can be dissolved in any recognized physiologically acceptable carrier for use in delivery of aerosolized formulations. Such carriers include ethanol, propylene glycol and ethanol-propylene combinations. Although cyclosporine is relatively insoluble in water, it is soluble in lipids and organic solvents, having a solidity of about 80 mg/ml in alcohol at 25° C. In a preferred embodiment the cyclosporine is dissolved in propylene glycol. The choice of propylene glycol is based on its reported use as a solvent to administer aerosolized formulations to individuals (Miller, W. C. et al., 1991, J. Aerosol, Medical. 4:293-297). Such preparations are stable at up to 60 days following preparation.
- For administration by inhalation, the compositions for use according to the present invention are conveniently delivered in the form of an aerosol spray administered via pressurized packs or a nebulizer, with the use of a propellant, e.g., dichlorordifluoromethane, dichloroterafluoroethane or other suitable gas. Preferably, for incorporation into the aerosol propellant, the cyclosporine of the present invention will be processed into respirable particles as described above for the dry powder formulations. The particles are then suspended in the propellant, typically being coated with a surfactant to enhance their disbursement. In the use of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount.
- Commercially available jet nebulizers are available and may be used to deliver aerosolized cyclosporine to a subject. Such jet nebulizers include, but are not limited to, those supplied by AeroTech II (CIS-US, Bedford, Mass.). In addition, for delivery of aerosolized cyclosporine to the lungs of a subject an oxygen source can be attached to the nebulizer providing a flow rate of, for example, 10 L/min. In general, inhalation is performed over a 30-40 minute time interval through a mouthpiece during spontaneous respiration.
- The present invention provides for novel compositions comprising a suitable carrier and aerosolized cyclosporine in doses sufficient to reduce or ameliorate pulmonary inflammation in subjects having pulmonary disorders. Such doses are lower than those generally used to ameliorate rejection in transplant recipients. In general, the compositions of the invention should be sufficient to achieve concentration levels of between 5-30 mg, while most preferably achieving 545 mg in the lung.
- The following section describes experimental data relating to administration of aerosolized cyclosporine to a transplant recipient directly following lung transplantation. The rate of histological acute rejection for pilot subjects that received aerosolized cyclosporine early after lung transplantation (average day 10) was compared to controls that received conventional oral therapy (tacrolimus, oral cyclosporine, azathioprine and prednisone). As indicated by the data presented, the administration of aerosolized cyclosporine directly following transplantation is capable of preventing acute rejection in the transplant recipient.
- The subject demographics appear in Table I below. A total of three subjects underwent double lung transplantation (DL), one subject underwent heart-lung transplantation (H-lung), and nine subjects received either a right (RSL) or left (LSL) single lung transplantation.
-
TABLE I Initial Day of Days Recipient Donor aerosol of Transplant CMV CMV Baseline cyclosporine follow S Sex Diagnosis Age Type Status Status n administration up 1 M RE-transplant/ 50 DL positive negative Csa 31 422 OB 2 F CF 23 DL positive negative FK 11 200 3 F alpha 1 48 LSL positive negative FK 8 294 antitrypsin re-transplant 4 M emphysema 66 LSL negative positive FK 4 181 5 F RE-transplant/ 43 RSL positive negative FK 6 358 OB 6 M emphysema 67 RSL negative positive FK 4 245 7 F emphysema 58 LSL positive positive FK 9 240 8 M emphysema 57 LSL positive negative FK 7 249 9 M emphysema 66 LSL negative positive FK 3 210 10 M pulmonary htn 37 H-lung positive positive FK 9 265 11 M IPF 48 USL negative positive FK 11 199 12 M emphysema/ 57 LSL positive positive FK 18 71 re-transplant 13 M alpha 1 44 DL positive negative FK 16 310 antitrypsin CMV = cytomeglavirus n = baseline immunosupression s = subject - In the 13 subjects, administration of aerosolized cyclosporine occurred, on average, ten days following transplantation. Twelve of the thirteen subjects received tacrolimus based immunosuppression. The systemic immunosuppressive drug regimen consisted of oral tacrolimus (0.03 mg/kg/day), or cyclosporine (2.5-5.0 mg/kg/day) azathioprine (1-2 mg/kg/day), prednisone (0.3 mg/kg/day).
- All subjects tolerated the aerosolized cyclosporine therapy. A dose of 300 mg was administered for ten consecutive days followed by 300 mg three days per week on Mondays, Wednesday, and Fridays. Creatinine levels were measured at 30 day intervals during aerosol cyclosporine administration using routine techniques. There have been no subjects that have experienced renal insufficiency as a result of the addition of aerosolized cyclosporine to standard immunosuppressive drug therapies. The average duration of follow-up was 245 days. Rejection was monitored by serial transbronchial lung biopsies performed at 2-3 month intervals in all 13 subjects. Rejection was considered significant if histology showed greater than or equal to grade II acute cellular rejection or active bronchiolitis obliterans according to Yousem, S. A. (1990, J. Heart Lung Transplant. 12:713-716). The rate of rejection in the 13 treated subjects was compared to a group of controls at six months after lung transplantation. The rejection rate was substantially less during follow-up in those subjects treated with aerosolized cyclosporine (see
FIG. 2 ). In addition, treatment has been administered for up to five years thus far and none of the treated subjects, monitored at 2 month intervals since starting aerosolized cyclosporine administration have developed chronic rejection thus far. - Data regarding pharmacokinetics and bioavailability were obtained using the techniques described in “Pharmacokinetics and Bio-Availability of Aerosolized Cyclosporine in Lung Transplant Recipients” (Vega R. et al., 1998, Reap. and Crit. Care Med. 157:329). Blood concentrations of cyclosporine were determined using a cyclosporine monoclonal immunoassay (TDX; Abbott Laboratories), 24 hours following administration of the aerosolized cyclosporine.
- The deposited dose of aerosolized cyclosporine was measured in subjects at approximately 60-90 days of administration. A solution of cyclosporine was mixed with 0.3 ml of saline containing a radioisotope tracer (99MTc) and total cyclosporine deposition in the allograft was quantitated using a previously validated technique of O'Riordan, T. G. et al., (1992, J. Aerosol. Med. 5:171-177) and O'Riordan, T. G. et al., (1995, Am. I. Respir. Crit. Care Med. 151:516-521). All subjects deposited the aerosol cyclosporine in their transplanted lung.
- Histological diagnosis of lung transplant rejection was made according to Yousem, S. A. et al. (Working Formulation for the Standardization of Nomenclature in the Diagnosis of Lung Rejection, 1990, J. Heart Lung Transplant, 12:713-716). The rate of histological acute rejection events (≧grade II) was analyzed within six months after transplantation.
- None of the subjects to date have developed brochiolitis obliterans. Two of the subjects died from cytomegalovirus infection and multi-organ system failure.
- A Kaplan Mayer survival curve in the 13 treated subjects versus 13 contemporary controls that were matched by type of transplant and age is shown in
FIG. 3 . Improvement in survival was noted in those subjects that received aerosolized cyclosporine (p=0.014). - As a measure of toxicity due to systemic absorption of cyclosporine following aerosolized inhalation administration, creatinine levels were compared at initiation of aerosolized cyclosporine administration in transplant recipients and compared with a group of matched contemporary controls that received conventional oral immunosuppressive therapy. The creatinine level at baseline and after a mean of 190 days in transplant recipients and 181 days in control subjects did not differ when aerosolized cyclosporine was added to the immunosuppressive therapeutic regimen (treatment group and controls baseline 0.91 mg/dl±0.22 versus 1.26 mg/dl±0.71, p=0.532; 1.47±0.43 versus 1.58±0.95, p=0.93).
- To evaluate pharmacokinetics of cyclosporine when given by aerosol inhalation, bioavailability studies and radioisotope deposition studies were performed. Bioavailability studies demonstrated limited systemic absorption from the lung as compared to the oral administration, and radioisotope studies showed deep lung deposition of the aerosol following inhalation.
- Data regarding pharmacokinetics and bioavailability was obtained during the course of the study (
FIG. 1 ). In this study, pharmacokinetics and bioavailability of aerosolized cyclosporine, (300 mg dose) was measured (FIG. 1A ). Five transplant recipients studied, on average, by post-operative day 21 underwent blood measurements of cyclosporine after inhalation of a 300 mg dose. All subjects also received oral tacrolimus. - Two days later, a dose of intravenous cyclosporine (1 mg/kg over a 4 hour infusion) was administered and blood concentrations of cyclosporine were determined by monoclonal immunoassay over 24 hours following the infusion (
FIG. 1B ). Peak concentrations of cyclosporine occurred within the first two hours after inhalation and ranged from 140-280 ng/ml (mean 206.2±56.2). Trough concentrations after 24 hours ranged from 9-44 ng/ml (mean 24.4±14.6). Bioavailability of aerosolized cyclosporine was 9.1%. Absence of high peak levels following inhalation of aerosolized cyclospore (3-4 fold lower than conventional trough levels following an oral dose of cyclosporine) may account for reduced systemic toxicity when cyclosprine is delivered by aerosol inhalation - A study was conducted to measure regional deposition and absorption of aerosolized cyclosporine following inhalation of a 300 mg dose in subjects given aerosolized cyclosporine early after transplantation. Regional deposition after a 300 mg dose measured by radioisotope techniques is shown below in Table II.
-
TABLE II REGIONAL DEPOSITION % REGIONAL VOLUME % Left Left Right Right Stomach Left Left Right Right Subject Date Upper Lower Upper Lower on Lung Upper Lower Upper Lower 1 Aug. 29, 1997 18.5 43.7 26.7 11.1 NO 19.2 16.2 31.0 33.5 2 Aug. 29, 1997 13.1 9.6 28.1 49.2 YES 22.5 26.1 22.0 29.3 3 Aug. 28, 1997 10.5 34.4 17.4 37.8 YES 18.4 25.6 23.4 32.5 4 Aug. 26, 1997 13.0 20.1 7.5 59.6 NO 15.6 13.6 35.0 35.9 5 Aug. 26, 1997 14.3 26.2 24.4 35.1 NO 20.5 24.1 25.1 30.3 6 Aug. 26, 1998 7.5 12.5 27.7 52.2 YES 16.3 20.6 30.1 32.9 - Thus, the addition of an aerosolized cyclosporine regimen early after lung transplantation decreased the rate of acute rejection. In addition, thus far, no subject has developed chronic rejection, the most tragic complication following lung transplantation that is the principal cause of morbidity and mortality after transplantation. In addition, the drug was tolerated in all subjects and there has been no evidence of nephrotoxicity as creatinine levels did not differ from control subjects. No subject receiving aerosolized cyclosporine has developed renal failure.
- The following section provides an illustration of the methods and compositions of the invention. Specifically, a protocol for administration of aerosolized cyclosporine to a transplant recipient and methods that may be used for following the progress of the treated subject are provided.
- Cyclosporine powder for manufacturing the solution for nebulization used in this protocol is obtained from Novartis Pharmaceutical, East Hanover, N.J, (300 mg of cyclosporine powder, aerosolized in 4.8 ml propylene glycol). Propylene glycol is a recognized physiologically acceptable solvent which is used as a vehicle to deliver other aerosolized formulations such as inhaled pentamidine. New lots of cyclosporine require a purity and identity check using high performance liquid chromatography. Cyclosporine for aerosol delivery is prepared in a standard concentration of 62.5 mg/ml. The specific stability of cyclosporine in propylene glycol has been tested by high pressure liquid chromatographic assay of cyclosporine against methanolic standards. Reverse phase C18 chromatography was performed with a mobile phase of 67% acetonitrile at 1.0 ml/min, column heated at 70° C., with ultraviolet detection at 214 run. These tests have indicated that the preparation is 84% stable at up to 60 days following preparation. Lots of cyclosporine in propylene glycol which are >30 days past the date of preparation should be destroyed, and fresh lots are spot checked to be sure deterioration had not occurred by chance.
- The recipient subject should be on assist control mode and relaxed. Sedation can be used if necessary. Tidal volume and frequency can be consistent with conventional settings that were being used in the intensive care unit for ventilatory support. The nebulizer with cyclosporine solution is prepared in the usual manner and the nebulizer is triggered by the ventilator's nebulizer trigger system (Bennett 7200). The humidifier circuit should be bypassed during the nebulization, which will increase nebulizer efficiency by 50%. The nebulization is carried out to dryness.
- Recipient subjects are previously exposed to an aerosol of propylene glycol to assess their tolerance to the aerosol. A small number of subjects (2-7%) are expected to be intolerant, in which case a different solvent is employed. Aerosols containing cyclosporine are given using a commercially available jet nebulizer (AeroTech II, CIS-US, Bedford, Mass.). Inhalation is performed for 20-30 minutes through a mouthpiece during spontaneous respiration. A commercially available high efficiency particulate air filter is used to ensure absence of environmental contamination (AeroStar, BioSafety Systems, San Diego, Calif.).
- Aerosolized cyclosporine administration begins on
post-transplant Day 6 and continues dosing daily, for 11 consecutive days. This initial daily dosing, followed by three times weekly has been successfully used, as described inSection 6, supra. Following the initial daily dosing, aerosols are administered on Mondays, Wednesdays, and Fridays for convenience. In spontaneously ventilated subjects, spirometry will be obtained prior to and immediately after treatment during the first 3 days with a Morgan spirometer interfaced with a Medical Graphics Model 1070 pulmonary function analyzer (350 Oak Grove Parkway, St. Paul, Minn.). Quantitation of deposition of aerosolized cyclosporine using radionucleotides is calculated on the seventh day of aerosol administration. Changes in the inhaled dose of aerosolized cyclosporine from a baseline of 300 mg is dependent on measured allograft deposition as follows: subjects that deposit between 10-15 mg, increase aerosolized cyclosporine to 400 mg; 5-10 mg, increase aerosolized cyclosporine to 500 mg. Further increments are based on subsequent deposition studies. Changes to doses are made if higher than expected allograft cyclosporine deposition is measured after a 300 mg dose as follows: 25-30 mg, decrease aerosolized cyclosporine to 200 mg; 30-35 mg, decrease aerosolized cyclosporine to 100 mg. In double lung recipients, deposition of inhaled cyclosporine can vary between the right and left allografts. In such bilateral transplant recipients, the lung that deposits the lower cyclosporine concentration is used to make the necessary dose adjustments. - Spirometry is performed immediately alter inhalation of aerosolized cyclosporine during the initial 10 days of treatment, and a reduction in the Forced Expiratory Volume (FEVI) of greater than 15% on two separate occasions, associated with clinical symptoms of breathlessness is grounds for reducing the dose of aerosolized cyclosporine. The nebulizer charge is reduced by 100 mg per day and spirometry is repeated immediately after the dose. The minimum dose of aerosolized cyclosporine is 100 mg.
- Symptoms of pharyngeal soreness, cough and breathlessness may occur in transplant recipients during the course of aerosolized cyclosporine administration. If intolerable side effects occur, the dose of the aerosol preparation is reduced or discontinued; but, the attending physician is encouraged to reinstitute administration at a later time. Should the recipient's condition change, the physician can use any clinically indicated intervention that is appropriate for the given situation, including adjustments of concomitant treatment with other drugs.
- Blinded histopathologic interpretation of biopsy specimens is conducted using the accepted standard grading system of the International Society for Heart and Lung Transplantation. Successful prevention of rejection is defined as transbronchial biopsy with a histologic grade of acute rejection that is <grade I (Yousem, S. A. et al., 1990, J. Heart Lung Transplant 12:713-716).
- Spirometry (FVC, FEV1, FEF25-75) is performed at baseline and at 6 week intervals throughout treatment. By establishing baseline spirometric indices for each recipient prior to aerosolized cyclosporine administration, and comparing these with values measured during administration, individual regression lines of the FEV1 can be calculated for each subject. Analysis of the rate of decline of the FEV1 and histopathological assessment of the allograft allows diagnosis of chronic rejection.
- Cytokine and chemokine gene expression are measured from bronchoalveolar lavage cells (BAL) and peripheral blood lymphocytes (PBL) in treated subjects and the dose of aerosolized cyclosporine is adjusted accordingly. BAL cells and PBL are isolated immediately prior to aerosolized cyclosporine administration at approximately day 7 and at the time of bronchoscopy and cytokine mRNA expression is determined at baseline. The effects of local enhanced immunosuppression with aerosolized cyclosporine on the expression of IL-2, IL-6, IL-10, TGF-β, IFN-γ, inducible nitric oxide synthase (iNOS), Granzyme and perforin are tested. Cellular gene expression of the various cytokines are measured at 8-week intervals, at the time BAL cells are isolated after each protocol bronchoscopy, and at various time intervals throughout the treatment period. An increase in expression of the cytokines serves as an indicator that an increase in the dose of cyclosporine is required.
- Unseparated BAL cells and Ficoll-Hypaque isolated PBMC are snap frozen before and after a short stimulation of one hour with phytohemagglutinin (PHA). Stimulation with PHA permits detection of the presence of IL-2 mRNA in unseparated BAL cells from rejecting allografts but does not stimulate up-regulation of IL-2 in BALs from transplant recipients during quiescence or in naive PBL cells. A similar experience was reported by J. Andersson et al., (1994, Immunology 83:16-24) who found that preactivated T-cells, after a short course of stimulation (two hours, anti-CD3), exhibited intracellular cytokine production, while naive cells required 24-hour stimulation.
- Cytokine gene expression is qualitatively measured by application of RT-PCR. Total RNA is extracted from unstimulated BAL cells and peripheral blood lymphocytes using the RNAzoI B modified method (Chirgwin, J. M. et al., 1979, Biochemistry 18:5294) The RNA concentration is determined by spectrophotometry. The complementary DNA (cDNA) was synthesized by transcription from RNA in the presence of human placental RNA-ase inhibitor, Inmol/L deoxynucleoside triphosphates, oligonucleotide deoxythymidine primer, murine leukemia virus reverse transcriptase and reverse transcriptase buffer, The RT PCR of the resulting cDNA is performed according to well established protocols known in the art. Aliquots of the cDNA are amplified using primers specific for cytokines measured.
- Amplification is carried out for 30 cycles on a Perkin-Elmer Cetus Model 480 thermal cycler (Norwalk, Conn.). As an internal control for quality and potential degradation of RNA, all RNA samples are assessed for the constitutive gene β-actin cyclophilin. For negative controls, PCR amplification is performed with sterile water substituted for cDNA. PCR products are analyzed by electrophoresis in 2% agarose gels and visualized by ethidiurn bromide staining. RT-PCR is carried out in the presence of ‘P-deoxycytidine triphosphate labeled primers. The product of the amplification is electrophoresed on an 8% polyacrylamide gel that is dried and submitted to autoradiography. The amounts of radioactivity incorporated in the PCR product are then counted with a β-scanner.
- The results are expressed as a ratio of cytokine to actin, and cytokine to cyclophilin, expression. The cytokine to actin ratio is determined at the time of initiation and during aerosolized cyclosporine administration. Changes in cytokine gene expression over time are correlated by linear regression with the dose of aerosolized cyclosporine deposited in the allograft and the grade of histologic inflammation associated with acute rejection.
- In many instances, aerosolized cyclosporine is administered with other immunosuppressive drugs, such as prednisone, azathioprine, tacrolimus, as well as oral cyclosporine. Systemic (oral) immunosuppression is gradually reduced for subjects to whom aerosolized cyclosporine is administered that are free of histologic rejection. Should surveillance biopsies fail to show significant rejection (≦grade I acute rejection) on two consecutive occasions, prednisone doses are reduced from 0.3 mg/kg/day to 0.2 mg/kg/day until two additional biopsies are free of rejection, and then the dose drops to 0. 1 mg/kg/day. The prednisone dose remains at this level unless rejection occurs at which time it is increased to 0.3 mg/kg/day to begin the cycle again. After completion of the prednisone taper, tacrolimus blood levels are gradually reduced by approximately 5 ng/ml at 4-month intervals to maintain blood levels at a minimum of 7.5-10 ng/ml. Should two consecutive biopsies show significant rejection during tacrolimus taper (acute rejection ≧
grade 2 or active obliterative bronchiolitis), tacrolimus blood levels are increased to the previous baseline (15- 20 ng/ml). - Throughout the course of treatment recipient subjects are monitored monthly for evidence of toxicity due to immunosuppression. One or more of the following variables are monitored in each subject: 1) serum creatinine; 2) blood pressure; 3) tremor, headache, paresthesia, confusion and psychiatric disorders, such as depression and anxiety; 4) nausea, dysphagia, constipation, vomiting, gastritis, gastric and duodenal ulcer, oral moniliasis, diarrhea; 5) hirsutism and gingival hyperplasia; 6) hepatic dysfunction; 7) diabetes mellitus, gout, and hypercholesterolemia; 8) osteoporosis by quantitating bone mineral density by bone density scan, stress fractures by radioisotopic bone scan if clinically indicated, arthritis and arthralgias, muscle pain and myopathy, and 9) post-transplant lymphoproliferative disease and other neoplasms. Should the subject show evidence of toxicity, the dose of aerosolized cyclosporine will be adjusted accordingly.
- The number of infectious complications, including pneumonia, emphyema, sinusitis, septicemia, abscesses, and urinary tract, viral, pulmonary and systemic fungal, and skin and wound infections that occur during the treatment are also monitored.
- Peripheral blood samples are collected pretransplant (baseline), 2 weeks posttransplant, every 2 months, and when recipients are evaluated for infection and rejection. The response to the following three different types of stimuli can be assayed: 1) stimulation by recall antigens (RA) (TT 4 CMV 1:200 dilution) to determine the function of CD4+ T cells responding to nominal antigen presented by autologous APCs; 2) stimulation by a pool of MHC disparate cells to assess the response of T-h cells (CD4- and CD8+) to direct presentation of alloantigen (ALLO), 3) and the polyclonal stimulation of T cells by mitogens PHA and conconavalin A mitogen (conA).
- Total aerosol deposition in the subject is measured using a mass balance technique. Using this method, the amount of radioactivity inhaled by the subject and the amount exhaled are measured using filters. In the case of a small particle nebulizer such as the AeroTech II (Cis-Us, Bedford, Mass.) (used to deliver aerosolized cyclosporine), the dose deposited in the recipient subject is near equivalent to the total lung dose, because pharyngeal/laryngeal deposition is minimal. The difference between these two measurements is the amount deposited in the subject. The advantage of this approach is that it avoids the use of attenuation coefficients which may be difficult to interpret in the context of non-uniform aerosol deposition. The radioactive exposure is equivalent to typical x-rays of the ribs (100-200 mi llirads).
- A recipient subject, wearing nose clips, inhales a nebulized radioactive solution from a typical nebulizer circuit. A low resistance absolute filter is attached to the expiratory part of the nebulizer. This filter is designated as the “exhalation filter. However, in addition to capturing all the particles that are exhaled by the subject, it will also capture those particles that are produced by the nebulizer during the expiratory phase of respiration, i.e., particles that were never inhaled. These latter particles are referred to as “the leakage” of the nebulizer. In order to determine the amount inhaled and “the leakage”, a calibration run is necessary that necessitates duplicating the subject's breathing pattern. The output of the subject's nebulizer (μCi/min) is determined by interposing a filter between the nebulizer and the subject's mouth (“inspiratory filter”) and capturing the aerosol that would be inhaled. Aerosol produced by the nebulizer, but not inhaled into the inspiratory filter (i.e., during expiration) is captured on the “leakage filter.” The inspiratory filter captures all of the particles that would have been inhaled by the subject. During the calibration run, because there is no exhalation of particles from the subject, all the particles on the filter at the expiratory port are the equivalent of the amount that would have been “leaked.” The amount of radioactivity on the leakage filter is subtracted from the amount on the subject's exhalation filter (from the subject's original treatment run) to give the amount truly exhaled. After decay correction, the amount deposited is calculated as the difference between the amount of cyclosporine inhaled and the amount exhaled. The same nebulizer is used for the treatment and the calibration run since significant inter-nebulizer variability may occur. VEmon represents an estimate of minute ventilation (VE) used to monitor breathing pattern during aerosol delivery. It consists of minute ventilation plus the gas used to run the nebulizer during expiration, and serves as an indicator that the breathing pattern was controlled during both the calibration (left) and treatment runs (right) (Smaldone G C, Dickinson G, 1992, Chest 101: 82-87.)
- The mass balance technique measures the dose deposited in the subject. To determine the regional distribution of the dose (right vs. left lung or central airways versus lung periphery), gamma camera imaging of deposited radioactivity is needed. When particles are inhaled by a subject, they will either be exhaled or be retained (deposited). In healthy subjects, a uniform deposition pattern within the lungs indicates that most of the particles have deposited in small peripheral airways or alveoli by means of gravitational sedimentation. A common non-uniform pattern seen in healthy subjects due to inertial impaction, is the peri-hilar pattern in which particles have deposited predominantly in the typical uniform and non-uniform deposition patterns. The aerosol deposition patterns are superimposed on an outline of the whole lung, which was generated using a Xenon (133Xe) equilibrium scan. 133Xe is a gas with a long half-life (5.3 days) which, when breathed to equilibrium measures regional lung volume.
- Therefore, using regions of interest based on the 133Xe image, it is possible to facilitate comparison between serial studies in the same subject, or make intersubject comparisons of the distribution of deposited particles in the lung and airways (Iacono el al., Am. J. Respir. Crit. Care Med. 55:1690-1698). Following a 133Xe equilibrium scan, using a computer in series with a gamma camera, regions are drawn around each lung which is called the whole lung zone and another pair of regions are drawn which centered over the large central airways comprising 33% of the entire lung area, is called the central zone. The area remaining after the central zone is deducted from the whole lung zone and is designated the peripheral zone. To describe the regional pattern of deposition of an inhaled aerosol, labeled with 99mTc, and allow intersubject comparisons, the ratio between central (C) and peripheral (P) lung counts (C/P) is calculated in a manner which normalized for differences in relative lung thickness by dividing the C/P 99mTc counts by the C/P 133Xe counts. The ratio defined the specific C/P ratio (sC/P). Using the resulting sC/P values, a ratio of 1.0 indicates equal deposition in all lung regions. Because the central lung region outlines both central airways and the lung parenchyma surrounding them, an sC/P ratio of unity reflects predominantly alveolar deposition. Increasing deposition in the proximal airways results in increasing sC/P ratios greater than unity. Therefore, determination of the sC/P ratio allows quantification of initial deposition patterns and comparisons between subjects.
- Cyclosporine pharmacokinetic studies may be performed at, for example,
Week 12 in recipient subjects. After obtaining a baseline 3.0 ml blood sample, the subject receives 1.0 mg/kg cyclosporine intravenously as a 4 hour infusion. Additional blood samples are drawn at 2.0, 4.0, 5.0, 6.0, 12.0, 18.0 and 24 hours after initiation of the infusion. Onday number 2 of the study, after the final 24.0 hour sample is obtained, a 300 mg dose of aerosolized cyclosporine or placebo is given, with blood samples taken at 0.25, 0.5, 0.75, 1.0, 2.0, 4.0, 6.0, 8.0, 12.0, 18.0, and 24.0 hours after initiation of the aerosolized dose. Samples are analyzed for both cyclosporine and tacrolimus. The intravenous cyclosporine dosage allows the calculation of cyclosporine total body clearance, elimination half-life and volume of distribution. Having those results, one can accurately calculate the amount of cyclosporine that was absorbed from the aerosolized dose in those subjects on the active drug, as well as calculate the absorption rate constant for drug deposited in the lungs. - The present invention is not to be limited in scope by the specific embodiments described herein which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the claims. Various publications are cited herein, the contents of which are hereby incorporated, by reference, in their entireties.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/439,187 US20120189672A1 (en) | 1999-02-05 | 2012-04-04 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/244,792 US20020006901A1 (en) | 1999-02-05 | 1999-02-05 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
US12/433,231 US8158110B2 (en) | 1999-02-05 | 2009-04-30 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
US13/439,187 US20120189672A1 (en) | 1999-02-05 | 2012-04-04 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/433,231 Continuation US8158110B2 (en) | 1999-02-05 | 2009-04-30 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120189672A1 true US20120189672A1 (en) | 2012-07-26 |
Family
ID=22924129
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/244,792 Abandoned US20020006901A1 (en) | 1999-02-05 | 1999-02-05 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
US12/433,231 Expired - Fee Related US8158110B2 (en) | 1999-02-05 | 2009-04-30 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
US13/439,187 Abandoned US20120189672A1 (en) | 1999-02-05 | 2012-04-04 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/244,792 Abandoned US20020006901A1 (en) | 1999-02-05 | 1999-02-05 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
US12/433,231 Expired - Fee Related US8158110B2 (en) | 1999-02-05 | 2009-04-30 | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease |
Country Status (3)
Country | Link |
---|---|
US (3) | US20020006901A1 (en) |
AU (1) | AU3356500A (en) |
WO (1) | WO2000045834A2 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU1123001A (en) | 1999-10-27 | 2001-05-08 | Alexandra Lucas | Compositions and methods for preventing and treating transplant rejection |
ATE453402T1 (en) | 2000-09-29 | 2010-01-15 | Viron Therapeutics Inc | USE OF SERP-1 IN COMBINATION WITH AN IMMUNOSUPPRESSOR TO TREAT ARTHRITIS |
US20110068954A1 (en) * | 2006-06-20 | 2011-03-24 | Zonar Systems, Inc. | Method and apparatus to collect object identification data during operation of a vehicle and analysis of such data |
US20030087813A1 (en) | 2001-10-12 | 2003-05-08 | Or Yat Sun | Cyclosporin analogs for the treatment of lung diseases |
WO2003068936A2 (en) * | 2002-02-14 | 2003-08-21 | Research Development Foundation | Inhibition of lung metastases by aerosol delivery of p53 gene and anti-cancer compounds |
AU2003226603A1 (en) * | 2002-04-19 | 2003-11-03 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Beta-agonist compounds comprising nitric oxide donor groups and reactive oxygen species scavenger groups and their use in the treatment of respiratory disorders |
AU2003278565A1 (en) * | 2002-10-25 | 2004-05-13 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Steroid compounds comprising superoxide dismutase mimic groups and nitric oxide donor groups, and their use in the preparation of medicaments |
DK1682178T3 (en) | 2003-11-04 | 2010-10-04 | Novartis Vaccines & Diagnostic | Methods for therapy of cancers expressing the CD-40 antigen |
US7452524B2 (en) * | 2004-01-27 | 2008-11-18 | Gilead Sciences, Inc. | Method for improvement of tolerance for therapeutically effective agents delivered by inhalation |
US7285530B2 (en) | 2004-10-21 | 2007-10-23 | Viron Therapeutics, Inc. | Use of SERP-1 as an antiplatelet agent |
DE102006051512A1 (en) | 2005-12-06 | 2007-06-14 | Pari GmbH Spezialisten für effektive Inhalation | Pharmaceutical drug compositions with cyclosporin |
US20100163021A1 (en) * | 2006-02-22 | 2010-07-01 | Novartis Pharma Ag | System for delivering nebulized cyclosporine and methods of treatment |
EP1991532B1 (en) | 2006-02-24 | 2017-01-11 | Rigel Pharmaceuticals, Inc. | Compositions and methods for inhibition of the jak pathway |
US9382327B2 (en) | 2006-10-10 | 2016-07-05 | Vaccinex, Inc. | Anti-CD20 antibodies and methods of use |
EP2124898B1 (en) | 2007-01-10 | 2013-08-14 | Board of Regents, The University of Texas System | Enhanced delivery of immunosuppressive drug compositions for pulmonary delivery |
US20090131329A1 (en) * | 2007-09-14 | 2009-05-21 | Edmund John Miller | Treatment for allograft rejection |
BRPI0921999B8 (en) * | 2008-11-21 | 2021-05-25 | Anthrogenesis Corp | use of a therapeutically effective amount of placental stem cells |
DK2389372T3 (en) | 2009-01-23 | 2015-12-14 | Rigel Pharmaceuticals Inc | COMPOSITIONS AND METHODS FOR INHIBITION OF JAK pathway |
JP2013518097A (en) | 2010-01-26 | 2013-05-20 | イッサム リサーチ ディヴェロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ エルサレム エルティーディー | Compositions and methods for preventing and treating pulmonary hypertension |
AR083847A1 (en) | 2010-11-15 | 2013-03-27 | Novartis Ag | FC VARIANTS (CONSTANT FRAGMENT) SILENCERS OF ANTI-CD40 ANTIBODIES |
AU2013235729B2 (en) | 2012-03-23 | 2017-06-01 | Baylor University | Compositions and methods for inhibition of cathepsins |
US9480449B2 (en) | 2012-05-03 | 2016-11-01 | Fibrogen, Inc. | Methods for treating idiopathic pulmonary fibrosis |
EP3069711A1 (en) * | 2015-03-16 | 2016-09-21 | PARI Pharma GmbH | Cyclosporine formulations for use in the prevention or treatment of pulmonary chronic graft rejection |
RU2020102454A (en) | 2017-06-23 | 2021-07-23 | Аки Терапьютикс Апс | COMPOSITIONS FOR PREVENTION AND TREATMENT OF ACUTE KIDNEY DAMAGE |
SMT202400220T1 (en) | 2018-04-11 | 2024-07-09 | Breath Therapeutics Gmbh | Cyclosporine formulations for use in the treatment of bronchiolitis obliterans syndrome (bos) |
WO2020092845A1 (en) | 2018-11-01 | 2020-05-07 | Rigel Pharmaceuticals, Inc. | Method and composition embodiments for treating acute myeloid leukemia |
WO2020243612A1 (en) | 2019-05-29 | 2020-12-03 | Rigel Pharmaceuticals, Inc. | Method of preventing and treating thrombosis |
CN114698370A (en) | 2019-08-08 | 2022-07-01 | 里格尔药品股份有限公司 | Compounds and methods for treating cytokine release syndrome |
BR112022001896A2 (en) | 2019-08-14 | 2022-06-21 | Rigel Pharmaceuticals Inc | Method to block or attenuate cytokine release syndrome |
CN115427060A (en) * | 2020-02-19 | 2022-12-02 | 海必恩制药公司 | Use of cyclosporine analogues for the treatment of fibrosis |
IL315677A (en) | 2022-03-23 | 2024-11-01 | Rigel Pharmaceuticals Inc | Pyrimid-2-yl-pyrazole compounds as IRAK inhibitors |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321043A (en) * | 1992-01-27 | 1994-06-14 | The University Of Melbourne | Method of combatting transplant rejection |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049388A (en) * | 1986-11-06 | 1991-09-17 | Research Development Foundation | Small particle aerosol liposome and liposome-drug combinations for medical use |
US5342625A (en) * | 1988-09-16 | 1994-08-30 | Sandoz Ltd. | Pharmaceutical compositions comprising cyclosporins |
JPH03115228A (en) | 1988-12-09 | 1991-05-16 | G D Searle & Co | Immunosuppressive agent |
US4996193A (en) * | 1989-03-03 | 1991-02-26 | The Regents Of The University Of California | Combined topical and systemic method of administration of cyclosporine |
US5192773A (en) * | 1990-07-02 | 1993-03-09 | Vertex Pharmaceuticals, Inc. | Immunosuppressive compounds |
GB9105705D0 (en) * | 1991-03-18 | 1991-05-01 | Sandoz Ltd | Improvements in or relating to organic compounds |
KR100291620B1 (en) * | 1992-09-29 | 2001-10-24 | 추후제출 | Methods of delivery through the lungs of active fragments of parathyroid hormone |
US5624946A (en) * | 1994-07-05 | 1997-04-29 | Williams; James | Use of leflunomide to control and reverse chronic allograft rejection |
US5780014A (en) * | 1995-04-14 | 1998-07-14 | Inhale Therapeutic Systems | Method and apparatus for pulmonary administration of dry powder alpha 1-antitrypsin |
US5654007A (en) * | 1995-06-07 | 1997-08-05 | Inhale Therapeutic Systems | Methods and system for processing dispersible fine powders |
US5635161A (en) * | 1995-06-07 | 1997-06-03 | Abbott Laboratories | Aerosol drug formulations containing vegetable oils |
AU705320B2 (en) * | 1995-12-28 | 1999-05-20 | Welfide Corporation | 2-amino-2-(2-(4-octylphenyl)ethyl)propane-1,3-diol or a pharmaceutically acceptable acid addition salt thereof for use in the preparation of a non-oral medicament, and for treatment of diseases and disorders |
TW497974B (en) * | 1996-07-03 | 2002-08-11 | Res Dev Foundation | High dose liposomal aerosol formulations |
US5958378A (en) * | 1996-07-03 | 1999-09-28 | Research Development Foundation | High dose liposomal aerosol formulations containing cyclosporin A or budesonide |
JP2000514085A (en) * | 1996-07-08 | 2000-10-24 | ローヌ―プーラン・ロウラー・リミテッド | Pharmaceutical cyclosporin A aerosol solution formulation |
PT1208847E (en) * | 1996-07-30 | 2007-07-24 | Novartis Ag | Pharmaceutical compositions for the treatment of transplant rejection, as well as autoimmune or inflammatory conditions |
AU5719798A (en) * | 1996-12-31 | 1998-07-31 | Inhale Therapeutic Systems, Inc. | Processes for spray drying aqueous suspensions of hydrophobic drugs with hydrophilic excipients and compositions prepared by such processes |
TW581681B (en) * | 1998-02-20 | 2004-04-01 | Nektar Therapeutics | Liquid crystal forms of cyclosporin |
-
1999
- 1999-02-05 US US09/244,792 patent/US20020006901A1/en not_active Abandoned
-
2000
- 2000-02-04 AU AU33565/00A patent/AU3356500A/en not_active Abandoned
- 2000-02-04 WO PCT/US2000/002980 patent/WO2000045834A2/en active Application Filing
-
2009
- 2009-04-30 US US12/433,231 patent/US8158110B2/en not_active Expired - Fee Related
-
2012
- 2012-04-04 US US13/439,187 patent/US20120189672A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321043A (en) * | 1992-01-27 | 1994-06-14 | The University Of Melbourne | Method of combatting transplant rejection |
Non-Patent Citations (1)
Title |
---|
Best et al. "Blood Cyclosporin concentrations and the short term risk of lung rejection following heart-lung transplantation," br. J. Clin. Pharmac. 1992, Vol. 34, pp 513-520 * |
Also Published As
Publication number | Publication date |
---|---|
US20090263335A1 (en) | 2009-10-22 |
WO2000045834A2 (en) | 2000-08-10 |
US20020006901A1 (en) | 2002-01-17 |
WO2000045834A9 (en) | 2001-11-15 |
AU3356500A (en) | 2000-08-25 |
US8158110B2 (en) | 2012-04-17 |
WO2000045834A3 (en) | 2000-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8158110B2 (en) | Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease | |
Keenan et al. | Treatment of refractory acute allograft rejection with aerosolized cyclosporine in lung transplant recipients | |
US20090123422A1 (en) | Method of treating idiopathic pulmonary fibrosis with aerosolized IFN-y | |
AU643141B2 (en) | Pulmonary administration of granulocyte colony stimulating factor | |
US20110059044A1 (en) | Method of treating pulmonary disease with interferons | |
US6572858B1 (en) | Uses for anti-malarial therapeutic agents | |
RU2442616C2 (en) | Sprayed cyclosporine injection system and the methods of treatment | |
ES2887358T3 (en) | Alpha1-proteinase inhibitor to delay the onset or progression of pulmonary exacerbations | |
Kristjansson et al. | Eosinophil cationic protein, myeloperoxidase and tryptase in children with asthma and atopic dermatitis | |
Waldrep et al. | Cyclosporin A liposome aerosol: particle size and calculated respiratory deposition | |
Corcoran | Inhaled delivery of aerosolized cyclosporine | |
CN112105374A (en) | Cyclosporine formulations for the treatment of Bronchiolitis Obliterans Syndrome (BOS) | |
JP2007505893A (en) | Glatiramer acetate used as an immunomodulator | |
CA2928736A1 (en) | Inhaled aerosolized immuno-chemotherapy for the treatment of mdr tb | |
US20010038825A1 (en) | Method and compositions for enhancing pulmonary function and treating pulmonary disorders | |
US8486383B2 (en) | Method of treating pulmonary disease with interferons | |
JP5175198B2 (en) | Method for treating pulmonary disease using interferon | |
KR20220005495A (en) | Vasoactive intestinal peptide (VIP) for use in the treatment of drug-induced interstitial pneumonia | |
Toren et al. | Bronchiolitis obliterans presenting as subcutaneous emphysema and pneumomediastinum: a case report | |
EA047564B1 (en) | CYCLOSPORINE FORMULATIONS FOR USE IN THE TREATMENT OF BRONCHIOLITHIA OBLITERATING SYNDROME (BOS) | |
EP4326231A1 (en) | Compositions of interleukin-1 receptor antagonist | |
JP2012193207A (en) | Method for treating pulmonary disease with interferon | |
KR102449403B1 (en) | Pharmaceutical composition containing budesonide and formoterol | |
KR100497564B1 (en) | High Dose Liposome Aerosols | |
WO2021211006A1 (en) | Inhaled hexapeptide for treating interleukin-6 related respiratory diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION;REEL/FRAME:029414/0352 Effective date: 20121130 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF PITTSBURGH;REEL/FRAME:037557/0460 Effective date: 20160115 |