US20120187098A1 - Energy efficient, laser-based method and system for processing target material - Google Patents
Energy efficient, laser-based method and system for processing target material Download PDFInfo
- Publication number
- US20120187098A1 US20120187098A1 US13/417,613 US201213417613A US2012187098A1 US 20120187098 A1 US20120187098 A1 US 20120187098A1 US 201213417613 A US201213417613 A US 201213417613A US 2012187098 A1 US2012187098 A1 US 2012187098A1
- Authority
- US
- United States
- Prior art keywords
- laser
- target links
- pulse
- selected target
- laser pulses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 238000012545 processing Methods 0.000 title abstract description 71
- 239000013077 target material Substances 0.000 title abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 80
- 238000002161 passivation Methods 0.000 claims description 20
- 230000002123 temporal effect Effects 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 6
- 238000013519 translation Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 26
- 229910052751 metal Inorganic materials 0.000 description 53
- 239000002184 metal Substances 0.000 description 53
- 239000000835 fiber Substances 0.000 description 38
- 239000000758 substrate Substances 0.000 description 31
- 239000010410 layer Substances 0.000 description 26
- 230000003287 optical effect Effects 0.000 description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 20
- 238000010521 absorption reaction Methods 0.000 description 20
- 229910052710 silicon Inorganic materials 0.000 description 20
- 239000010703 silicon Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000007664 blowing Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 238000009826 distribution Methods 0.000 description 13
- 230000015654 memory Effects 0.000 description 13
- 238000005459 micromachining Methods 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- 238000002679 ablation Methods 0.000 description 9
- 230000000630 rising effect Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 230000008439 repair process Effects 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- 102100023774 Cold-inducible RNA-binding protein Human genes 0.000 description 1
- 101000906744 Homo sapiens Cold-inducible RNA-binding protein Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- OWZREIFADZCYQD-NSHGMRRFSA-N deltamethrin Chemical compound CC1(C)[C@@H](C=C(Br)Br)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 OWZREIFADZCYQD-NSHGMRRFSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
- B23K26/0736—Shaping the laser spot into an oval shape, e.g. elliptic shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/361—Removing material for deburring or mechanical trimming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76886—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
- H01L21/76892—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
- H01L21/76894—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern using a laser, e.g. laser cutting, laser direct writing, laser repair
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
- H01L23/5256—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
- H01L23/5258—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/94—Laser ablative material removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49156—Manufacturing circuit on or in base with selective destruction of conductive paths
Definitions
- This invention relates to energy-efficient, laser-based methods and systems for processing target material.
- this invention relates to the use of a pulsed laser beam to ablate or otherwise alter a portion of a circuit element on a semiconductor substrate, and is particularly applicable to vaporizing metal, polysilicide and polysilicon links for memory repair.
- Further application can be found in laser-based micromachining and other repair operations, particularly when it is desired to ablate or modify a microscopic structure without damaging surrounding areas and structures, which often have non-homogeneous optical and thermal properties.
- the material processing operations can be applied to other microscopic semiconductor devices, for instance microelectromechanical machines. Medical applications may also exist, such as microscopic tissue or cell ablation with miniature fiber optic probes.
- Semiconductor devices such as memories typically have conductive links adhered to a transparent insulator layer such as silicon oxide, which is supported by the main silicon substrate.
- a transparent insulator layer such as silicon oxide
- some of the energy also reaches the substrate and other structures.
- the silicon substrate and/or adjacent can be overheated and damaged.
- the disclosure of the above-noted '759 patent further elaborates on the wavelength characteristics of silicon.
- the absorption in silicon rapidly drops off after about one micron with an absorption edge of about 1.12 microns at room temperature.
- the silicon starts to transmit more and more easily and, thus, it is possible to obtain better part yields upon removing material from the silicon.
- the absorption coefficient decrease by a factor of four orders of magnitude going from 0.9 microns to 1.2 microns.
- the curve shows a drop of two orders of magnitude. This shows a drastic change in absorption for a very slight change in wavelength.
- the '759 patent teaches the tradeoffs that exist with selection of the longer wavelengths—specifically compromises with respect to spot size, depth of focus, and pulse width, available from Nd:YAG lasers. These parameters are of critical importance for laser processing at increasingly fine dimensions, and where the chances of collateral damage to surrounding structures exist.
- any improvement which widens the processing window is advantageous as the industry continues to push toward higher density microstructures and the associated geometries which are a fraction of one micron in depth or lateral dimension.
- the tolerances of energy control and target absorption become large compared to the energy required to process the microstructure at this scale.
- laser processing parameters are not necessarily independent in micromachining applications where a small laser spot, about 1 ⁇ m, is required. For instance, the spot size and pulse width are generally minimized with short wavelengths, say less than 1.2 ⁇ m, but the absorption contrast is not maximized. Makers of semiconductor devices typically continue production of earlier developed products while developing and entering production of more advanced versions that typically employ different structures and processes.
- pulse width should be limited to avoid damage in micromachining applications.
- U.S. Pat. No. 5,059,764 a laser processing workstation is disclosed wherein a q-switched laser system is utilized to produce, among other things, relatively short pulses on the order of 10-50 ns. It was disclosed that for material processing applications (like semiconductor memory repair via link blowing and precision engraving), the output pulse width should be relatively short—and that a pulse width less than 50 ns is required in many applications, for example 30 ns. The proper choice of pulse width allows for ablation (evaporation without melting).
- High speed pulsed laser designs may utilize Q-switched, gain switched, or mode-locked operation.
- the pulse duration and shape of standard Q-switched and other pulsed lasers can he approximated at a fundamental level by integrating the coupled rate equations describing the population inversion and the photon number density relative to the lasing threshold at the start of the pulse.
- the Q-switched case on a normalized scale, a higher number of atoms in the inverted population relative to the threshold the faster the pulse rise time, the narrower the width, and the higher the peak energy. As the ratio decreases the pulse shape becomes broader with lower energy concentration.
- Q-switched laser pulses resemble a Gaussian temporal distribution, or a mixture of a Gaussian with an exponential decaying tail.
- the shorter wavelength diode pumped systems are capable of producing relatively short pulses, about 10 ns, when measured at the half power points (i.e., standard definition of pulse duration) and are operated in a favorable wavelength region.
- applicant has found several limitations associated with the temporal pulse shape characteristic of standard diode pumped Q-switch laser systems, including the practical rise time limitations, the power distribution between the half maximum points, and the pulse decay characteristic which, when improved using the method and system of the present invention, provided noticeably better results in a metal link blowing application.
- pulse shaping refers to the generation of a laser pulse which is to be detected with a detector of electromagnetic radiation where “shape” refers to the power on the detector as a function of time.
- pulse width or “pulse duration” refers to the full width at half maximum (FWHM) unless otherwise stated.
- Q-switched pulses collectively refers to temporal distribution of pulses obtained, for example, in standard Q-switched systems which may resemble a mixture of a substantially Gaussian central lobe with a relatively slow decaying exponential tail.
- FIG. 1 c shows such pulses.
- the ultrafast pulses have durations on the order of fs (10-15 sec) to ps (10-12) and, at the decreased scale, exploit material properties at the atomic and molecular which are fundamentally different than found in the range of several hundred ps to ns.
- Laser systems for ultrafast pulse generation vary in complexity and are exemplary embodiments are described in U.S. Pat. Nos. 5,920,668 and 5,400,350, and in Ultrafast Lasers Escape The Lab”, PHOTONICS SPECTRA, July 1998, pp. 157-161.
- the embodiments generally include methods for pulse stretching of mode locked ultrafast pulses prior to amplification to avoid amplifier saturation followed by compression to extremely narrow widths.
- This technology holds promise for certain class of micromachining and possibly finer scale “nanomachining” operations, the latter benefit afforded by machining below diffraction limit.
- Applicant has discovered practical limitations at the present time with the available power in each pulse for applications like metal link blowing and similar micromachining applications leading to the unacceptable requirement for multiple pulses.
- Metal reflectivity decreases with increased power density of a laser pulse (ref. 1).
- the reflectivity of a metal is directly proportional to the free electron conductivity in a material.
- the collision time between electrons and the lattice is reduced. This shortening of the collision time reduces the conductivity and hence the reflectivity.
- the reflectivity of aluminum decreases from 92% to less than 25% as the laser power densities increases to the range of 10 9 watts/cm 2 .
- the distance D that heat travels during a laser pulse is proportional to the laser pulse width as follows:
- K is the thermal diffusivity of the material
- t is the length of the laser pulse
- a short laser pulse prevents heat dissipating to the substrate below the melting link and also heat conducting laterally to the material contiguous to the link.
- the pulse must be long enough to heat the link material all the way through.
- the target metal link heats up and tries to expand.
- the oxide surrounding the link contains the expanding material.
- stress is built up within the oxide.
- the pressure of the expanding metal exceeds the yield point of the oxide and the oxide cracks and the metal link explodes into a fine particle vapor.
- the principal crack points of metal link occurs at the maximum stress points, which are at the edges of the link both top and bottom as shown in FIG. 1 b.
- Q-switched laser systems can be modified to provide short pulses of various shapes.
- Typical prior art lasers that produce high peak power, short pulse lasers are standard Q-switched lasers. These lasers produce a temporal pulse having a moderate pulse rise time. It is possible to change this temporal shape by using a Pockels Cell pulse slicer that switch out sections of the laser beam.
- U.S. Pat. No. 4,483,005 i.e., the '005 patent
- various methods for affecting (i.e., reducing) laser beam pulse width are disclosed.
- the laser pulse can be shaped somewhat to produce a “non-Gaussian” shaped beam by truncating energy outside the central lobe. It should be noted that if a relatively broad Q-switched waveform is to be transformed to a narrow, uniform shape, only a small fraction of the pulse energy will be used. For example, truncation of a Gaussian pulse to provide a sharp rise time and a narrow pulse with flatness to within 10% reduces the pulse energy by about 65% .
- FIG. 7 shows the time interval for relatively flat laser power output.
- a desirable improvement over the prior art would provide an efficient method for generating short pulses with high energy enclosure within the pulse duration with rapidly decaying tails.
- laser technology which produces pulse shapes different than those of the Q-switched pulse envelope is preferred.
- Such pulses have fast rise time, uniform energy in the central lobe, and fast decay.
- the fast rise-time, high power density pulse as produced by a laser other than a standard Q-switched Nd:YAG will best accomplish this task.
- a non-Gaussian, substantially rectangular pulse shape is particularly advantageous for metal link processing where an overlying insulator exists.
- Applicants results show that the fast rise time on the order of 1 ns, and preferably about 0.5 ns, provides a thermal shock to the overlying layer of oxide which facilitates the link blowing process.
- the reflectivity is reduced with the fast rising short pulse.
- a pulse duration of about 5 ns with a substantially uniform pulse shape allows more energy to be coupled to the link leading to a reduced energy requirement for link removal. Rapid fall time of about 2 ns is important to eliminate the possibility of substrate damage.
- an advantage of a nearly square power density pulse in time is that the power density is the highest when it is needed and the pulse is off when it is not.
- a short fast rising pulse will allow the top of the link to melt and expand first before the heat can diffuse down to the lower portion of the link. Hence, stress is built up in the top of the link and promotes cracking of the top layer without generating a crack down to the substrate.
- State of the art fast pulse systems incorporate gain switched technology, in which a low power semiconductor seed laser is rapidly and directly modulated to produce a controlled pulse shape which is subsequently amplified with a laser amplifier, such as a cladding pumped fiber optic system with a high power laser diode or diode array used as the pump laser.
- a laser amplifier such as a cladding pumped fiber optic system with a high power laser diode or diode array used as the pump laser.
- Such laser systems are described in U.S. Pat. No. 5,694,408 and PCT Application No. PCT/US98/42050, and are “building blocks” of certain ultrafast chirped pulse amplifier systems, for instance the system described in U.S. Pat. No. 5,400,350.
- a predetermined waveform shape is generated from a gain-switched laser which is different than that of the standard Q-switched systems.
- the fast rising laser pulse is of sufficient pulse duration to efficiently heat and vaporize the material of each metallic target structure with relatively uniform power density during the ablation period, yet a rapid pulse fall time after the target material is vaporized avoids damage to surrounding and underlying structures.
- a laser pulse is generated to provide a substantially square pulse shape with pulse duration in the range of about 2-10 nanoseconds and a rise time of about 1 ns and preferably about 0.4 ns. Additionally, the pulse decay is to be rapid when switched off thereby allowing only a very small fraction of pulse energy to remain after the predetermined pulse duration, the pulse “tails” rapidly decaying to a sufficiently low level so as to avoid the possibility of damaging the underlying substrate or other non-target materials. A comparison of these pulses is illustrated in FIG. 2 .
- Such structures are typically arranged in a manner where the width and spacing between the structures is about 1 micron or smaller and stacked in depth.
- the application of a short laser pulse cleanly ablates the target material, yet damage to surrounding materials caused by heat dissipation in either the lateral direction or damage to the underlying substrate below the target material is prevented.
- an energy-efficient, laser-based method for processing target material having a specified dimension in a microscopic region without causing undesirable changes in electrical or physical characteristics of material surrounding the target material includes generating a laser pulse train utilizing a laser having a wavelength at a repetition rate wherein each of the pulses of the pulse train has a predetermined shape.
- the method then includes optically amplifying the pulse train without significantly changing the predetermined shape of the pulses to obtain an amplified pulse train.
- Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time.
- the method also includes delivering and focusing at least a portion of the amplified pulse train into a spot on the target material wherein the rise time is fast enough to efficiently couple laser energy to the target material, the pulse duration is sufficient to process the target material and the fall time is rapid enough to prevent the undesirable changes to the material surrounding the target material.
- the target material may include microstructures such as conductive lines or links, the latter being common circuit elements of redundant semiconductor memories.
- the conductive lines may be metal lines and wherein the pulse duration is sufficient to effectively heat and vaporize the metal lines, or a specified portion thereof.
- the target material may be a part of a semiconductor device such as a semiconductor memory having 16-256 megabits.
- At least a portion of the material surrounding the target material may be a substrate such as a semiconductor substrate.
- the target material may be part of a microelectronic device.
- the substantially square temporal power density distribution is sufficient to substantially completely ablate the target material.
- the rise time is less than 1 nanosecond and, even more preferably, is less than 0.5 nanoseconds.
- the pulse duration is less than 10 nanoseconds and, even more preferably, is less than 5 nanoseconds.
- the fall time is less than 2 nanoseconds.
- a single amplified pulse is typically sufficient to process the target material.
- the target material may have a reflectivity to the amplified pulses and wherein the power density of the amplified pulses is sufficiently high to reduce the reflectivity of the target material to the amplified pulses and to provide efficient coupling of the laser energy to the target material.
- each amplified pulse has a relatively uniform power density distribution throughout the pulse duration.
- each pulse has a temporal power density distribution uniform to within ten percent during the pulse duration.
- the material surrounding the target material may have optical properties, including absorption and polarization sensitivity, and thermal diffusivity properties different from the corresponding properties of the target material.
- the repetition rate is at least 1000 pulses/second and each of the amplified pulses has at least 0.1 and up to 3 microjoules of energy.
- the step of optically amplifying provides a gain of at least 20 DB.
- both the rise time and the fall time are less than one-half of the pulse duration and wherein peak power of each amplified pulse is substantially constant between the rise and fall times.
- each of the amplified pulses has a tail and the method also includes attenuating laser energy in the tails of the amplified pulses to reduce fall time of the amplified pulses while substantially maintaining the amount of power of the pulses.
- an energy-efficient system for processing target material having a specified dimension in a microscopic region without causing undesirable changes in electrical or physical characteristics of material surrounding the target material includes a controller for generating a processing control signal and a signal generator for generating a modulated drive waveform based on the processing control signal.
- the waveform has a sub-nanosecond rise time.
- the system also includes a gain-switched, pulsed seed laser having a wavelength for generating a laser pulse train at a repetition rate.
- the drive waveform pumps the laser so that each pulse of the pulse train has a predetermined shape.
- the system includes a laser amplifier for optically amplifying the pulse train to obtain an amplified pulse train without significantly changing the predetermined shape of the pulses.
- Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time.
- the system further includes a beam delivery and focusing subsystem for delivering and focusing at least a portion of the amplified pulse train onto the target material. The rise time is fast enough to efficiently couple laser energy to the target material, the pulse duration is sufficient to process the target material, and the fall time is rapid enough to prevent the undesirable changes to the material surrounding the target material.
- the laser amplifier preferably includes an optical fiber and a pump such as a laser diode to pump the optical fiber wherein the pump is distinct from the seed laser.
- the laser diode pump source may also be gain switched (pulsed and directly modulated) to increase diode lifetime by switching to the “off” state during extended periods where laser processing is not occurring.
- the seed laser includes a laser diode.
- the system may include an attenuator for attenuating laser energy in the tails of the amplified pulses to reduce fall time of the amplified pulses while substantially maintaining the amount of energy of the pulses.
- the pulse duration may be chosen as a function of a specified target material dimension.
- the specified material dimension may be less than the laser wavelength.
- the preferred laser is a high speed, semiconductor laser having a wavelength less than about 2 ⁇ m. Future material advances in semiconductor laser diode technology and fiber materials may provide for operation in the visible region as well as at longer infrared wavelengths.
- the seed laser diode may be a multimode diode laser or a single frequency (single mode) laser utilizing a distributed Bragg reflector (DBR), distributed feedback (DFB), or an external cavity design.
- DBR distributed Bragg reflector
- DFB distributed feedback
- the spot size typically has a dimension in the range of about 1- 4 ⁇ m.
- the density of the memory may be at least 16-256 megabits.
- the semiconductor device may be a microelectromechanical device.
- the attenuated laser energy in the pulse tail is attenuated by at least 10 dB within 1.5 times the pulse duration.
- an energy-efficient, laser-based method for ablating a metal link having a specified dimension embedded in at least one passivation layer without causing undesirable changes in electrical or physical characteristics of the at least one passivation layer surrounding the metal link includes generating a laser pulse train utilizing a laser having a wavelength at a repetition rate. Each of the pulses of the pulse train has a predetermined shape. The method also includes optically amplifying the pulse train without significantly changing the predetermined shape of the pulses. to obtain an amplified pulse train. Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time.
- the method further includes delivering and focusing at least a portion of the amplified pulse train into a spot on the metal link.
- the rise time is fast enough to efficiently couple laser energy to the metal link.
- the pulse duration is sufficient to ablate the metal link and the fall time is rapid enough to prevent the undesirable changes to the at least one passivation layer surrounding the metal link.
- an energy-efficient system for ablating a metal link having a specified dimension embedded in at least one passivation layer without causing undesirable changes in electrical or physical characteristics of the at least one passivation layer surrounding the metal link includes a controller for generating a processing control signal and a signal generator for generating a modulated drive waveform based on the processing control signal.
- the waveform has a sub-nanosecond rise time.
- the system also includes a gain-switched, pulsed seed laser having a wavelength for generating a laser pulse train at a repetition rate.
- the drive waveform pumps the laser so that each pulse of the pulse train has a predetermined shape.
- the system includes a laser amplifier for optically amplifying the pulse train without significantly changing the predetermined shape of the pulses to obtain an amplified pulse train.
- Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time.
- the system further includes a beam delivery and focusing subsystem for delivering and focusing at least a portion of the amplified pulse train into a spot on the metal link.
- the rise time is fast enough to efficiently couple laser energy to the metal link.
- the pulse duration is sufficient to ablate the metal link, and the fall time is rapid enough to prevent the undesirable changes to the at least one passivation layer surrounding the metal link.
- the metal link may be embedded in a top passivation layer thereover and a bottom passivation layer thereunder.
- the pulse duration is sufficient to crack the top passivation layer but not the bottom passivation layer.
- a method is provided to ablate target material using a laser having a wavelength suitable for laser material processing while avoiding damage to surrounding materials.
- the method includes the steps of modulating a laser beam to produce a predetermined gain-switched pulse and focusing the laser beam onto the target region.
- the predetermined gain-switched pulse shape includes a rise time of the laser pulse fast enough to efficiently couple laser energy to a target structure, with a pulse duration of sufficient length to efficiently heat and vaporize the target material, and a pulse decay time which is rapid enough to avoid damage of structures surrounding the target material.
- a system for is provided to ablate material using a laser having a wavelength suitable for laser processing while avoiding damage to surrounding materials.
- the system includes a laser source, components to modulate the laser source to generate a laser pulse having a predetermined gain-switched pulse shape, and optical components for focusing the laser beam onto the target region.
- the predetermined pulse shape includes an optical rise time of the laser pulse fast enough to efficiently couple laser energy to a target structure, with a pulse duration of sufficient length to efficiently heat and vaporize the target material, and a pulse decay time which is rapid enough to avoid damage of structures surrounding the target material.
- the gain-switched pulse shape includes a fast rise time pulse, substantially flat at the top, with a fast pulse fall time.
- a “seed” laser diode is directly modulated to generate a predetermined pulse shape.
- the optical power is increased through amplification with a fiber laser amplifier to output power levels sufficient for laser processing.
- the resulting gain-switched pulse at the fiber laser amplifier output is focused onto the target region.
- the pulse temporal power distribution of the directly modulated seed diode is modified to compensate for distortion or non-uniformity of the fiber amplifier or other components, for instance the “smooth” rise of an output modulator.
- the resulting laser processing pulse which is focused into the target region will have a desired shape: fast rise time, relatively flat during the pulse duration, with rapid decay.
- a “pulse slicing” module which is used to attenuate laser energy remaining at the output of the laser processing system when the “seed” laser pulse is terminated, thereby preventing heating of sensitive structures not designated as target material after processing is complete.
- the “pulse slicing” technique is useful to attenuate the tail of either a modified pulse or a standard Q-switched pulse. This is illustrated in FIGS. 4 a and 4 b , wherein a log scale is provided in the vertical axis of FIG. 4 b .
- a laser pulse is shaped having a rise and fall time shorter than about one-half of the pulse duration and where the peak power is approximately constant between the rise and fall time.
- FIG. 1 a shows schematically stress cracks in a top surface layer only of a semiconductor caused by expanding vaporized metal
- FIG. 1 b shows schematically stress cracks in top and bottom layers of a semiconductor caused by expanding vaporized metal
- FIG. 1 c shows typical prior art laser pulses resembling a Gaussian shape, or a mixture of a Gaussian with an exponential tail, referred to as a “Q-switched pulse envelope”;
- FIG. 2 shows the preferred pulse shape of the present invention for processing metal links when compared to a Q-switched of the same total energy
- FIGS. 3 a and 3 b show a method of combining two short pulses closely spaced in time to create a modified pulse
- FIGS. 4 a and 4 b show the result of “pulse slicing” for improving the pulse energy enclosure of a general pulse shape
- FIG. 5 is a general block diagram of a preferred laser system for laser material processing
- FIG. 6 a is a schematic diagram of one type of a MOPA laser system with a distributed Bragg laser as the semiconductor seed laser; this is a single mode laser and a fiber optic amplifier producing the preferred pulse shape;
- FIG. 6 b is a schematic diagram of a single frequency laser with external cavity tuning and a fiber optic amplifier
- FIG. 7 is a block diagram schematic of another laser system of the present invention including a preferred attenuator and an optional shifter;
- FIG. 8 is a graph of temperature at the interface between the silicon dioxide layer and the silicon substrate in FIG. 9 , as a function of the thickness of the silicon dioxide layer;
- FIG. 9 shows a perspective diagrammatic view of a link of a memory on its substrate
- FIG. 10 is a drawing of a Gaussian laser beam focused onto a small spot on a focal plane containing a metal link emphasizing the microscopic size of the link compared to the diffraction-limited beam waist;
- FIGS. 11 a and 11 b are graphs which show the results of a computer finite element analysis simulation where the time history of stress and temperature is plotted in the graphs for Q-switched pulse and square pulse used for metal link processing.
- a seed laser 10 and a fiber amplifier are mounted on a stable platform attached to the motion system 20 and the workpiece. It is very important in removing links that the beam be positioned with accuracy of less than 3/10 of a micron.
- the timing of the laser pulse to correlate with the relative positions of the target and optical system is important because of the continuous motion required in order to obtain high processing speeds.
- the laser 10 is externally controlled by the computer 33 and a signal generator 11 and transmits its modulated beam to a focusing subsystem 12 comprising high numerical aperture optics and which may further comprise a beam deflector, for instance a galvonometer mirror controlled by a scanner control via the computer 33 .
- the system control computer 33 is also operatively connected to a positioning mechanism or motion system 20 for the system and the signal generator 11 to properly time the pulse generation.
- the laser beam must be precisely controlled so as to produce a sharply focused beam, with a spot size in the range of about 1.5-4 microns, at the correct location in X, Y and Z.
- a step and repeat table 34 can also be used to move a wafer 22 into position to treat each memory die 24 thereof.
- the substrate positioning mechanism 34 may comprise very precise (well below 1 micron) X, Y, Z positioning mechanisms operating over a limited range of travel.
- the positioning mechanism 20 may be used to translate the laser processing optical system components, including the laser, fiber amplifier, and focusing subsystem in a coarser fashion. Further details on a preferred positioning system are disclosed in the above-noted pending U.S. patent application entitled “High Speed Precision Positioning Apparatus”, Ser. No. 09/156,895, filed Sep. 18, 1998.
- a system optical switch 13 in the form of a further acousto-optic attenuator or pockels cell is positioned beyond the laser cavity, in the laser output beam. Under control of the computer 33 , it serves both to prevent the beam from reaching the focusing system except when desired, and, when the processing beam is required, to controllably reduce the power of the laser beam to the desired power level. During vaporization procedures this power level may be as little as 10 percent of the gross laser output, depending upon operating parameters of the system and process. The power level may be about 0.1 percent of the gross laser output during alignment procedures in which the laser output beam is aligned with the target structure prior to a vaporization procedure.
- the acousto-optic device is generally preferred because of the case of use, although the delay of the pockels cell is considerably less.
- the positions of the wafer 22 are controlled by the computer 33 .
- the relative movement is at substantially constant speed over the memory device 24 on the silicon wafer 22 , but step and repeat motion of the wafer is possible.
- the laser 10 is controlled by timing signals based on the timing signals that control the motion system.
- the laser 10 typically operates at a constant repetition rate and is synchronized to the positioning system by the system optical switch 13 .
- the laser beam is shown focused upon the wafer 22 .
- the laser beam is seen being focused on a link element 25 of a memory circuit or device 24 .
- spot size requirements are becoming increasingly demanding.
- the spot size requirement is typically 1.5-4 microns in diameter, with peak power occurring in the center of the spot with good conformance to a Gaussian distribution, and with lower power occurring at the edges.
- Excellent beam quality is needed, approaching diffraction limit, with a beam quality or “m-squared factor” of about 1.1 times or better typical.
- This “times diffraction limit” quality standard is well known to those skilled in the art of laser beam analysis.
- Low sidelobes are also preferred to avoid optical crosstalk and the undesirable illumination of features outside the target region.
- the link 25 is somewhat smaller than the spot size, thereby mandating precision positioning and good spot quality.
- a link may be, for instance, 1 micron wide and about 1 ⁇ 3 micron thick.
- the link is made of metal, and a lateral dimension (width) and thickness are smaller than the laser wavelength.
- a laser subsystem of FIG. 5 utilizes a master oscillator, power amplifier (MOPA) configuration.
- MOPA master oscillator, power amplifier
- This system produces a laser pulse that seeds an amplifier to produce a high power short rise time pulse.
- a seed laser is the key to producing the fast rise time, short pulse but at very low energy levels.
- the system requires a laser amplifier to produce enough energy to do material processing.
- a fiber laser amplifier and a high-speed infrared laser diode having an output wavelength suitable for a laser processing application is preferred.
- a laser can be devised that produces a laser pulse of the preferred shape and speed as shown in the lower part of FIG. 5 . That is, a fast rise time pulse, square at the top and a fast fall time.
- This pulse shape provides the desired laser-material interaction results of reduction in metal reflectivity, low diffusion of the energy into the device and cracking of the top oxide without damage to the lower oxide.
- the MOPA configuration is relatively new and pulsed versions are regarded as state of the art.
- the laser diode which has sub-nanosecond rise time in response to a modulating drive waveform is a starting point in the fiber laser MOPA configuration, with the laser diode as a gain element.
- the laser diode generally has multiple longitudinal modes and the sub-system can be configured for single mode operation or otherwise tuned with bulk components at the output or, alternatively, with integrated fiber gratings in the system.
- FIG. 6 b shows a schematic of a single frequency laser with external cavity tuning and also includes an optical fiber pumped at its cladding by diode laser pump.
- diode laser alternatives include distributed feedback lasers (DFB) and distributed Bragg lasers (DBL) which have integrated gratings and waveguide structures, some cases with external controls allowing the user to independently control the gain, phase, and grating filter.
- DBL distributed feedback lasers
- DBL distributed Bragg lasers
- FIG. 6 a for a DBL configuration including a coupler 50 .
- the laser frequencies can be dynamically selected with a number of the configurations by adjustments of the bulk components, such as the grating and/or mirrors of the external cavity, or, alternatively, a fixed wavelength or mode chosen.
- the range over which the diode central wavelength can be selected is impressive overall, from less than 1 ⁇ m to about 1.3-1.5 ⁇ m or longer, the latter wavelengths corresponding to those used for fiber optic communication.
- a key element for the purpose of this invention is the rise time of the “seed” laser diode and the pulse shape.
- the seed laser wavelength be matched to the spectral band over which the fiber optic amplifier has high gain with little sensitivity to small wavelength changes—i-e., in the amplifier “flat” response region for maintaining excellent pulse-to-pulse power output with sufficient power.
- the gain is high in about a reasonably broad wavelength band near the 1.1 ⁇ m absorption edge of silicon.
- Further development in materials or integrated fiber components may extend the useful wavelength regions providing more flexibility in matching the fiber emission spectrum, the seed laser wavelength and target material properties. For example, in Photonics Spectra, August 1997, p. 92, the results are reported for a state-of-the-art fiber laser development over a wavelength range of 1.1 ⁇ m to 1.7 ⁇ m.
- Raman shifter was described in the above-noted '759 patent with the specific use with a short pulse Q-switched system. If desired this device could also be placed at the output of the fiber system to shift the output wavelength to a desirable region to improve absorption contrast, for example. Recognizing the importance of pulse width and small spot size requirements for processing, as taught in the above-noted '759 patent, typical operation of the preferred system for metal link processing will be in the range of about 1.06 pm or beyond, with a 1.08 ⁇ m wavelength, for example.
- the output of the seed laser is to be amplified for laser material processing.
- the preferred fiber optic laser amplifier will provide gain of about 30 db.
- the seed laser output is coupled to the core of the fiber laser either directly or with bulk optics which splits the beam for fiber delivery. Both techniques are routinely practiced by those skilled in the art of ultrafast lasers using chirped pulse amplification, but the system of the preferred embodiment is overall much less complex than such ultrafast systems.
- the seed pulse is amplified and no optics for pulse stretching and compression are required.
- the fiber used in the amplifier system is cladding pumped with a diode laser having a substantially different wavelength than the seed laser, for example 980 nm, which allows for optical isolation of the seed and pumping beams with a dichroic mirror in the bulk optical system arrangement.
- the preferred arrangement utilizes a coupling arrangement where the seed laser is directly coupled to the fiber amplifier.
- the pump laser injects the high power diode energy, say at 980 nm wavelength, into the cladding structure of a rare earth Ytterbium (Yb)-doped fiber using coupling techniques familiar to those skilled in the art of fiber laser system design.
- Low distortion is an important characteristic of the fiber amplifier. Low distortion allows the output pulse shape to substantially match the seed laser pulse shape or possibly further enhance the pulse edges or uniform power shape.
- the fiber optic gain medium produces the amplifier pulse of FIG. 5 which is delivered to the optical system and focused onto the object.
- Multiple fiber amplifiers can be cascaded for further gain if desired, provided the distortion is low. It could be advantageous to provide active optical switches or passive optical isolators at the output of intermediate stages to suppress spontaneous emission. These techniques are known by those skilled in the art and are disclosed in U.S. Pat. No. 5,400,350 and WO 98/92050, for example.
- a pulse slicer added to the laser sub-system.
- This may be in the form of an electro optic device such as a pockels cell or preferably a low delay acousto-optic modulator.
- This technique can suppress energy in the pulse tails to negligible levels whenever the risk of damage occurs at a small multiple of the “pulse duration” of the processing pulse. For example, if the energy is reduced by 20 dB (100:1) within 1.5 times the predetermined pulse duration, there will be for all practical purposes no risk of substrate damage in metal link blowing applications.
- the low delay, high bandwidth pulse slicer will be activated near the end of the amplifier pulse duration and will have a multiplicative effect on the pulse tail, with minimal distortion of the central lobe. Any effects of the amplifier distortion and the “turn on delay” of the modulator can be compensated to some degree by changing the shape of the seed diode laser waveform during the pulse duration. The resulting temporal pulse shape in the focused beam is compensated and is of the desired square shape.
- Modern techniques for effecting pulse width include the use of modified output couplers, for instance, replacing conventional glass in Nd: YAG Q-switched lasers with GaAs, in either bulk or crystal form.
- Q-switched pulse of duration from several picoseconds to a few nanoseconds have been reported in passive Q-switching of an Nd: YAG laser with a GaAs output coupler, OPTICAL ENGINEERING, 38(1 1), 1785-88, November 1999.
- the metal link 25 is supported on the silicon substrate 30 by silicon dioxide insulator layer 32 , which may be, e.g., 0.3-0.5 microns thick.
- the silicon dioxide extends over the link, and often an additional insulating layer of silicon nitride is present over the SiO, layer.
- the laser beam impinges on each link and heats it to the melting point. During the heating, the metal is prevented from vaporizing by the confining effect of the overlying passivation layers.
- the laser beam progressively heats the metal, until the metal so expands that the insulator material ruptures. At this point, the molten material is under such high pressure that it instantly vaporizes and blows cleanly out through the rupture hole.
- the heat may be considered to spread in essentially an exponential gradient by conduction from the portion of the beam striking the target.
- a peak beam power so high that sufficient energy for evaporation of the link is delivered in a pulse of 8 nanoseconds, and preferably substantially less
- the conductive component of heat transfer can be substantially confined to a metal link and the underlying oxide layer, despite its being very thin, such that the temperature rise in the silicon attributable to conduction and the temperature rise attributable to absorption of the beam in silicon, can cumulatively be kept below the temperature threshold at which unacceptable silicon damage occurs.
- the above-noted '759 patent teaches several important aspects related to the thermal transfer characteristics of the link and adjacent structures.
- a thermal model predicts that narrow pulse widths, 3-10 ns, for example, which in turn are dependent upon the thickness of the target materials, are preferred to avoid heat conduction and subsequent damage to the Si substrate for representative dimensions.
- it is critically important to realize that other structures adjoining the link can also affect the quality of laser processing results, as the following experimental results indicate.
- the laser of choice was a Ytterbium, cladding pumped fiber laser, in the MOPA configuration using a 980 nm pump diode and a 7 micron diameter single mode fiber.
- the stress and temperature history indicate with certainty the importance of the fast rising pulse, with sub-nanosecond rise time. It is also known that if significant pulse energy is present, several nanoseconds after the ablation is completed, say at 15 ns, the Si can be damaged. A fast fall time, with a high extinction, is also important.
- the silicon substrate is also kept relatively cool both by appropriate selection of wavelength and by limiting the pulse duration, with a correspondingly square pulse with fast decay.
- the laser wavelength in this example is slightly less than the room temperature absorption edge of silicon (about 1.1 ⁇ m).
- the Raman shifter could be utilized to shift the output wavelength beyond the absorption edge.
- another diode laser wavelength could potentially become commercially available for a MOPA configuration.
- Such wavelength selection and shifting techniques may advantageously be utilized in other laser processing and micromachining applications. In any case, by thus limiting the heating, it is possible to ensure that the silicon does not shift its absorption edge into the infrared and enter a thermal runaway condition in which silicon damage can occur.
- the specific embodiment of the MOPA configuration for fast pulse generation for cleanly blowing metal links is taken as an example of pulse shaping and is provided to be illustrative rather than restrictive.
- excellent sub-nanosecond control over the pulse shape was maintained, and found to be advantageous, including the possibility of fast compensation to correct the output pulse shape.
- Other applications in micromachining, marking, scribing, etc. could also benefit from precise, fast pulse control.
- the seed diode could as easily be modulated with a “sawtooth” waveform or other non Q-switched waveshape for the purpose of creating or removing a specific feature on or within a surface.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Lasers (AREA)
- Laser Beam Processing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
- This application is a continuation of U.S. Ser. No. 10/818,920 (i.e., the '920 application), filed Apr. 6, 2004, which is continuation of Ser. No. 09/941,389 (i.e., the '389 application), filed Aug. 28, 2001, which is a continuation of U.S. Ser. No. 09/473,926 (i.e., the '926 application) filed Dec. 28, 1999, now U.S. Pat. No. 6,281,471. The entire contents of the application '920, application '389, and application '926 application are incorporated herein by reference. This application is related to U.S. Ser. No. 09/156,895, filed Sep. 18, 1998, now U.S. Pat. No. 6,144,118, entitled “High Speed Precision Positioning Apparatus”. This application is also related to U. S. Pat. No. 5,998,759 (i. e, the '759 patent) entitled “Laser Processing”, having the same assignee as the present invention. The entire disclosure of the '759 patent is incorporated herein by reference. This application is also related to U.S. Ser. No. 11/305,129 filed Dec. 19, 2005.
- This invention relates to energy-efficient, laser-based methods and systems for processing target material. In particular, this invention relates to the use of a pulsed laser beam to ablate or otherwise alter a portion of a circuit element on a semiconductor substrate, and is particularly applicable to vaporizing metal, polysilicide and polysilicon links for memory repair. Further application can be found in laser-based micromachining and other repair operations, particularly when it is desired to ablate or modify a microscopic structure without damaging surrounding areas and structures, which often have non-homogeneous optical and thermal properties. Similarly, the material processing operations can be applied to other microscopic semiconductor devices, for instance microelectromechanical machines. Medical applications may also exist, such as microscopic tissue or cell ablation with miniature fiber optic probes.
- Semiconductor devices such as memories typically have conductive links adhered to a transparent insulator layer such as silicon oxide, which is supported by the main silicon substrate. During laser processing of such semiconductor devices, while the beam is incident on the link or circuit element, some of the energy also reaches the substrate and other structures. Depending upon the power of the beam, length of time of application of the beam, and other operating parameters, the silicon substrate and/or adjacent can be overheated and damaged.
- Several prior art references teach the importance of wavelength selection as a critical parameter for substrate damage control. U.S. Pat. Nos. 4,399,345, 5,265,114, 5,473,624, 5,569,398 disclose the benefits of wavelength selection in the range beyond 1.2 μm to avoid damaging silicon substrates.
- The disclosure of the above-noted '759 patent further elaborates on the wavelength characteristics of silicon. The absorption in silicon rapidly drops off after about one micron with an absorption edge of about 1.12 microns at room temperature. At wavelengths greater than 1.12 microns, the silicon starts to transmit more and more easily and, thus, it is possible to obtain better part yields upon removing material from the silicon. In the range around 1 micron the absorption coefficient decrease by a factor of four orders of magnitude going from 0.9 microns to 1.2 microns. In going from the standard laser wavelength of 1.047 microns to 1.2 microns the curve shows a drop of two orders of magnitude. This shows a drastic change in absorption for a very slight change in wavelength. Thus, operating the laser at a wavelength beyond the absorption edge of the substrate circumvents damage to the substrate, which is especially important if there is a slight misalignment of the laser beam with respect to the link or where the focused spot extends beyond the link structure. Furthermore, if the substrate temperature rises during processing the absorption curve shifts will shift further into the infrared which can lead to thermal runaway conditions and catastrophic damage.
- The problem of liquid crystal repair is similar to the problem of metal link ablation. The wavelength selection principle for maximizing absorption contrast was advantageously applied in the green wavelength region in a manner analogous to the above disclosures for the same purpose—namely removal of metal without substrate damage. The system manufactured by Florod is described in the publication “Xenon Laser Repairs Liquid Crystal Displays”, LASERS AND OPTRONICS, pages 39-41, April 1988.
- Just as wavelength selection has proven to be advantageous, it has been recognized that other parameters can be adjusted to improve the laser processing window. For example, it was noted in “Computer Simulation of Target Link Explosion in Laser Programmable Redundancy for Silicon Memory” by L. M. Scarfone and J. D. Chlipala, 1986, p. 371, “It is desirable that laser wavelengths and various material thicknesses be selected to enhance the absorption for the link removal process and reduce it elsewhere to prevent damage to the remainder of the structure.” The usefulness, in general, of thicker insulative layers underneath links or circuit elements and the usefulness of limiting the duration of heating pulses has also been recognized, as in the paper co-authored by the applicant, “Laser Adjustment of Linear Monolithic Circuits”, Litwin and Smart, 100/L.I.A., Vol. 38, ICAELO (1983).
- The '759 patent teaches the tradeoffs that exist with selection of the longer wavelengths—specifically compromises with respect to spot size, depth of focus, and pulse width, available from Nd:YAG lasers. These parameters are of critical importance for laser processing at increasingly fine dimensions, and where the chances of collateral damage to surrounding structures exist.
- In fact, any improvement which widens the processing window is advantageous as the industry continues to push toward higher density microstructures and the associated geometries which are a fraction of one micron in depth or lateral dimension. The tolerances of energy control and target absorption become large compared to the energy required to process the microstructure at this scale. It should be noted from the above discussion that laser processing parameters are not necessarily independent in micromachining applications where a small laser spot, about 1 μm, is required. For instance, the spot size and pulse width are generally minimized with short wavelengths, say less than 1.2 μm, but the absorption contrast is not maximized. Makers of semiconductor devices typically continue production of earlier developed products while developing and entering production of more advanced versions that typically employ different structures and processes. Many current memory products employ polysilicide or polysilicon links while smaller link structures of metal are used for more advanced products such as the 256-megabit memories. Links of 1 micron width, and ⅓ micron depth, lying upon a thin silicon oxide layer of 0.3 to 0.5 microns are being used in such large memories. Production facilities traditionally have utilized Q-switched diode pumped YAG lasers at and related equipment capable of operating at the conventional wavelengths of 1.047 μm-1.32 μm and related equipment capable of operating in the wavelength region recognized for its lower absorption by silicon. However, these users also recognize the benefits of equipment improvements which results in clean severing of link structures without the risk of later chip failures due to conductive residue or contamination near the ablation site.
- Other degrees of freedom include laser pulse energy density (delivered to the target) and pulse duration. It has been taught in the prior art that pulse width should be limited to avoid damage in micromachining applications. For example, in U.S. Pat. No. 5,059,764 a laser processing workstation is disclosed wherein a q-switched laser system is utilized to produce, among other things, relatively short pulses on the order of 10-50 ns. It was disclosed that for material processing applications (like semiconductor memory repair via link blowing and precision engraving), the output pulse width should be relatively short—and that a pulse width less than 50 ns is required in many applications, for example 30 ns. The proper choice of pulse width allows for ablation (evaporation without melting).
- High speed pulsed laser designs may utilize Q-switched, gain switched, or mode-locked operation. The pulse duration and shape of standard Q-switched and other pulsed lasers can he approximated at a fundamental level by integrating the coupled rate equations describing the population inversion and the photon number density relative to the lasing threshold at the start of the pulse. For the Q-switched case, on a normalized scale, a higher number of atoms in the inverted population relative to the threshold the faster the pulse rise time, the narrower the width, and the higher the peak energy. As the ratio decreases the pulse shape becomes broader with lower energy concentration.
- Often Q-switched laser pulses resemble a Gaussian temporal distribution, or a mixture of a Gaussian with an exponential decaying tail. As disclosed in the '759 patent, the shorter wavelength diode pumped systems are capable of producing relatively short pulses, about 10 ns, when measured at the half power points (i.e., standard definition of pulse duration) and are operated in a favorable wavelength region. Despite successful operation, applicant has found several limitations associated with the temporal pulse shape characteristic of standard diode pumped Q-switch laser systems, including the practical rise time limitations, the power distribution between the half maximum points, and the pulse decay characteristic which, when improved using the method and system of the present invention, provided noticeably better results in a metal link blowing application.
- Throughout the remainder of this specification, “pulse shaping” refers to the generation of a laser pulse which is to be detected with a detector of electromagnetic radiation where “shape” refers to the power on the detector as a function of time. Furthermore, “pulse width” or “pulse duration” refers to the full width at half maximum (FWHM) unless otherwise stated. Also, Q-switched pulses collectively refers to temporal distribution of pulses obtained, for example, in standard Q-switched systems which may resemble a mixture of a substantially Gaussian central lobe with a relatively slow decaying exponential tail.
- These wave shapes are formally referred to as a “Q-switched pulse envelope” in laser literature.
FIG. 1 c shows such pulses. - In U.S. Pat. No. 5,208,437 (i.e., the '437 patent), a pulse width specification of less than 1 ns was specified for a memory repair application. Earlier work by the co-inventors of the '437 patent disclosed in “Laser Cutting of Aluminum Thin Film With No Damage to Under Layers”, ANNALS OF THE CIRP, Vol 28/1, 1979, included experimental results with relatively short laser pulses having a “Gaussian” shape as defined above. The results indicated a “desired portion of the interconnection pattern,” which is made of aluminum or the like, “can be cut without the layer disposed below the interconnection pattern being damaged”. Specifications for the pulse width of substantially 1 ns or less with energy density of substantially 106 W/cm2 were disclosed for the apparatus. However, there was no disclosure regarding a method of temporal pulse shaping, although spatially the beam was shaped to correspond to the interconnection pattern. Furthermore, applicant's analysis on high density memory devices having multiple layers with specified pulsewidths in the ultrafast range, which is approached with the 100-300 ps used in the '437 patent, have not been satisfactory. Overcoming this limitation would presently require the ultrafast laser system to produce multiple pulses for processing each target site which would slow the laser processing rate to an unacceptable level.
- Continuing to the ultrafast scale, experimental results have been disclosed for micromachining operations. The ultrafast pulses have durations on the order of fs (10-15 sec) to ps (10-12) and, at the decreased scale, exploit material properties at the atomic and molecular which are fundamentally different than found in the range of several hundred ps to ns.
- In U.S. Pat. No. 5,656,186 and the publication “Ultrashort Laser Pulses tackle precision Machining”, LASER FOCUS WORLD, August 1997, pages 101-118, machining operations at several wavelengths were analyzed, and machined feature sizes significantly smaller than the diffraction limited spot size of the focused beam were demonstrated.
- Laser systems for ultrafast pulse generation vary in complexity and are exemplary embodiments are described in U.S. Pat. Nos. 5,920,668 and 5,400,350, and in Ultrafast Lasers Escape The Lab”, PHOTONICS SPECTRA, July 1998, pp. 157-161. The embodiments generally include methods for pulse stretching of mode locked ultrafast pulses prior to amplification to avoid amplifier saturation followed by compression to extremely narrow widths. This technology holds promise for certain class of micromachining and possibly finer scale “nanomachining” operations, the latter benefit afforded by machining below diffraction limit. However, Applicant has discovered practical limitations at the present time with the available power in each pulse for applications like metal link blowing and similar micromachining applications leading to the unacceptable requirement for multiple pulses.
- Applicant wishes to elaborate on the rationale for the use of a short pulse, fast rise time pulse is indicated in the following paragraphs as the reasons are manifold and a number of theoretical and empirical papers and books have been written on the subject. Ablation of metal links is taken as an example, although the principles extend to many laser processing applications where a target material is surrounded by material having substantially different optical and thermal properties. The following references 1-3 are examples:
- 1. John F. Ready, Effects of High Power Laser Radiation, ACADEMIC PRESS, New York 1971, pages 115-116.
- 2. Sidney S. Charschan, Guide for Material Processing By Lasers, Laser Institute of America, The Paul M. Harrod Company, Baltimore Md., 1977, pages 5-13.
- 3. Joseph Bernstein, J. H. Lee, Gang Yang, Tariq A. Dahrnas, Analysis of Laser Metal-Cut Energy Process Window (to be published).
- Metal reflectivity decreases with increased power density of a laser pulse (ref. 1). The reflectivity of a metal is directly proportional to the free electron conductivity in a material. At high electric field densities as delivered by a high intensity laser, the collision time between electrons and the lattice is reduced. This shortening of the collision time reduces the conductivity and hence the reflectivity. For example, the reflectivity of aluminum decreases from 92% to less than 25% as the laser power densities increases to the range of 109 watts/cm2. Hence, to circumvent the loss of laser energy to reflection it is advantageous to achieve high power density at the work piece in as short a time as possible.
- The distance D that heat travels during a laser pulse is proportional to the laser pulse width as follows:
-
D={square root over (kt)} - where:
K is the thermal diffusivity of the material; and
t is the length of the laser pulse. - Hence, it can be seen that a short laser pulse prevents heat dissipating to the substrate below the melting link and also heat conducting laterally to the material contiguous to the link. However the pulse must be long enough to heat the link material all the way through.
- Through the absorption of the laser energy the target metal link heats up and tries to expand. However, the oxide surrounding the link contains the expanding material. Hence, stress is built up within the oxide. At some point the pressure of the expanding metal exceeds the yield point of the oxide and the oxide cracks and the metal link explodes into a fine particle vapor. The principal crack points of metal link occurs at the maximum stress points, which are at the edges of the link both top and bottom as shown in
FIG. 1 b. - If the oxide over the link is somewhat thin then the cracking of the oxide will occur at the top of the link only and the oxide and link will be removed cleanly as shown in
FIG. 1 a. However, if the oxide is somewhat thick, cracking can occur at the bottom of the link as well as the top and the crack will propagate down to the substrate as shown inFIG. 1 b. This is a highly undesirable circumstance. - Q-switched laser systems can be modified to provide short pulses of various shapes. Typical prior art lasers that produce high peak power, short pulse lasers are standard Q-switched lasers. These lasers produce a temporal pulse having a moderate pulse rise time. It is possible to change this temporal shape by using a Pockels Cell pulse slicer that switch out sections of the laser beam. In U.S. Pat. No. 4,483,005 (i.e., the '005 patent), invented by the Applicant of the present invention and having the same assignee, various methods for affecting (i.e., reducing) laser beam pulse width are disclosed. As taught in the '005 patent, which is hereby incorporated by reference, the laser pulse can be shaped somewhat to produce a “non-Gaussian” shaped beam by truncating energy outside the central lobe. It should be noted that if a relatively broad Q-switched waveform is to be transformed to a narrow, uniform shape, only a small fraction of the pulse energy will be used. For example, truncation of a Gaussian pulse to provide a sharp rise time and a narrow pulse with flatness to within 10% reduces the pulse energy by about 65% .
- Similarly, in U.S. Pat. No. 4,114,018 (the '018 patent), temporal pulse shaping to produce square pulses is disclosed.
FIG. 7 shows the time interval for relatively flat laser power output. In the '018 patented method, it is necessary to remove a temporal segment of the beam intensity in order to generate the desired pulses. - A desirable improvement over the prior art would provide an efficient method for generating short pulses with high energy enclosure within the pulse duration with rapidly decaying tails. In order to accomplish this, laser technology which produces pulse shapes different than those of the Q-switched pulse envelope is preferred. Such pulses have fast rise time, uniform energy in the central lobe, and fast decay.
- The fast rise-time, high power density pulse as produced by a laser other than a standard Q-switched Nd:YAG will best accomplish this task.
- These benefits are implemented in a preferred manner in a system which uses laser technology departing significantly from the traditional Q-switched, solid state diode or lamp pumped, YAG technology.
- Improvements over the prior art are desired with a method and system for generating pulses having a shape which is different than standard Q-switched pulses—pulses having faster rise time, relatively uniform and higher energy concentration in the central lobe, and fast fall time.
- Applicant has determined that improved results can be obtained in applications of metal link blowing. For instance, a non-Gaussian, substantially rectangular pulse shape is particularly advantageous for metal link processing where an overlying insulator exists. Applicants results show that the fast rise time on the order of 1 ns, and preferably about 0.5 ns, provides a thermal shock to the overlying layer of oxide which facilitates the link blowing process. In addition, at the higher power density the reflectivity is reduced with the fast rising short pulse. A pulse duration of about 5 ns with a substantially uniform pulse shape allows more energy to be coupled to the link leading to a reduced energy requirement for link removal. Rapid fall time of about 2 ns is important to eliminate the possibility of substrate damage. Furthermore, an advantage of a nearly square power density pulse in time is that the power density is the highest when it is needed and the pulse is off when it is not.
- A short fast rising pulse will allow the top of the link to melt and expand first before the heat can diffuse down to the lower portion of the link. Hence, stress is built up in the top of the link and promotes cracking of the top layer without generating a crack down to the substrate.
- It is an object of this invention to provide a compact, gain switched laser system which has the capability for generating sub-nanosecond rise time pulses having short duration of a few nanoseconds and rapid fall time. State of the art fast pulse systems incorporate gain switched technology, in which a low power semiconductor seed laser is rapidly and directly modulated to produce a controlled pulse shape which is subsequently amplified with a laser amplifier, such as a cladding pumped fiber optic system with a high power laser diode or diode array used as the pump laser. Such laser systems are described in U.S. Pat. No. 5,694,408 and PCT Application No. PCT/US98/42050, and are “building blocks” of certain ultrafast chirped pulse amplifier systems, for instance the system described in U.S. Pat. No. 5,400,350.
- It is a general object of the invention to improve upon prior art laser processing methods and systems, particularly those where the optical and/or thermal properties of a region near the target material differ substantially.
- It is a general object of the invention to provide laser pulse shaping capability for micromachining and laser material processing applications, for instance laser ablation of links or other interconnects on semiconductor memories, trimming, drilling, marking, and micromachining. A predetermined waveform shape is generated from a gain-switched laser which is different than that of the standard Q-switched systems.
- It is an object of the invention to provide improvements and margin for semiconductor processing, for example, 16-256 megabit semiconductor repair, which results in clean processing of microstructures without the risk of later device failure due to conductive residue or contamination near the ablation site.
- It is an object of the invention to provide a pulse waveform rise time in as short as a few hundred picoseconds, the pulse duration typically less than about 10 nanoseconds with rapid pulse decay, thereby providing laser processing of a target structure at high power density, whereby damage arising from thermal shock and diffusion in the surrounding regions is minimized.
- It is an object of the invention to prevent damage to the structures surrounding and beneath the target material in semiconductor laser processing applications by achieving high power density at the workpiece in a very short time with a high power, fast rise time pulse at any wavelength suitable for the laser ablation process thereby improving the process window in a semiconductor material processing application. It is an object of the invention to process a target site with a single laser processing pulse with rise time fast enough and with sufficient power density so as to provide a reduction in the reflectivity of a metal target structure, such a single metal link on a semiconductor memory, and hence provide more efficient coupling of the laser energy. The fast rising laser pulse is of sufficient pulse duration to efficiently heat and vaporize the material of each metallic target structure with relatively uniform power density during the ablation period, yet a rapid pulse fall time after the target material is vaporized avoids damage to surrounding and underlying structures.
- It is an object of the invention to provide superior performance in semiconductor metal link blowing applications when compared to systems utilizing standard Q-switched lasers, such lasers having typical pulse rise times of several nanoseconds and represented by a Q-switched pulse envelope. A laser pulse is generated to provide a substantially square pulse shape with pulse duration in the range of about 2-10 nanoseconds and a rise time of about 1 ns and preferably about 0.4 ns. Additionally, the pulse decay is to be rapid when switched off thereby allowing only a very small fraction of pulse energy to remain after the predetermined pulse duration, the pulse “tails” rapidly decaying to a sufficiently low level so as to avoid the possibility of damaging the underlying substrate or other non-target materials. A comparison of these pulses is illustrated in
FIG. 2 . - It is an object of the invention to expand the processing window of a semiconductor laser ablation process to provide rapid and efficient ablation of microscopic structures surrounded by materials having different optical and thermal properties. Such structures are typically arranged in a manner where the width and spacing between the structures is about 1 micron or smaller and stacked in depth. The application of a short laser pulse cleanly ablates the target material, yet damage to surrounding materials caused by heat dissipation in either the lateral direction or damage to the underlying substrate below the target material is prevented.
- It is an object the invention to controllably machine a material having substantially homogeneous optical and thermal properties with the application of a short pulse having high energy density, the pulse duration being a few nanoseconds in the material processing range where a fluence threshold is approximately proportional to the square root of laser pulse width.
- In carrying out the above objects and other objects of the present invention, an energy-efficient, laser-based method for processing target material having a specified dimension in a microscopic region without causing undesirable changes in electrical or physical characteristics of material surrounding the target material is provided. The method includes generating a laser pulse train utilizing a laser having a wavelength at a repetition rate wherein each of the pulses of the pulse train has a predetermined shape. The method then includes optically amplifying the pulse train without significantly changing the predetermined shape of the pulses to obtain an amplified pulse train. Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time. The method also includes delivering and focusing at least a portion of the amplified pulse train into a spot on the target material wherein the rise time is fast enough to efficiently couple laser energy to the target material, the pulse duration is sufficient to process the target material and the fall time is rapid enough to prevent the undesirable changes to the material surrounding the target material.
- The target material may include microstructures such as conductive lines or links, the latter being common circuit elements of redundant semiconductor memories. The conductive lines may be metal lines and wherein the pulse duration is sufficient to effectively heat and vaporize the metal lines, or a specified portion thereof.
- The target material may be a part of a semiconductor device such as a semiconductor memory having 16-256 megabits.
- At least a portion of the material surrounding the target material may be a substrate such as a semiconductor substrate.
- The target material may be part of a microelectronic device.
- The substantially square temporal power density distribution is sufficient to substantially completely ablate the target material.
- Preferably, the rise time is less than 1 nanosecond and, even more preferably, is less than 0.5 nanoseconds.
- Preferably, the pulse duration is less than 10 nanoseconds and, even more preferably, is less than 5 nanoseconds.
- Also, preferably, the fall time is less than 2 nanoseconds.
- A single amplified pulse is typically sufficient to process the target material.
- The target material may have a reflectivity to the amplified pulses and wherein the power density of the amplified pulses is sufficiently high to reduce the reflectivity of the target material to the amplified pulses and to provide efficient coupling of the laser energy to the target material.
- Preferably, each amplified pulse has a relatively uniform power density distribution throughout the pulse duration.
- Preferably, each pulse has a temporal power density distribution uniform to within ten percent during the pulse duration.
- The material surrounding the target material may have optical properties, including absorption and polarization sensitivity, and thermal diffusivity properties different from the corresponding properties of the target material.
- Preferably, the repetition rate is at least 1000 pulses/second and each of the amplified pulses has at least 0.1 and up to 3 microjoules of energy.
- Preferably, the step of optically amplifying provides a gain of at least 20 DB.
- Also, preferably, both the rise time and the fall time are less than one-half of the pulse duration and wherein peak power of each amplified pulse is substantially constant between the rise and fall times.
- Preferably, each of the amplified pulses has a tail and the method also includes attenuating laser energy in the tails of the amplified pulses to reduce fall time of the amplified pulses while substantially maintaining the amount of power of the pulses.
- Still further in carrying out the above objects and other objects of the present invention, an energy-efficient system for processing target material having a specified dimension in a microscopic region without causing undesirable changes in electrical or physical characteristics of material surrounding the target material is provided. The system includes a controller for generating a processing control signal and a signal generator for generating a modulated drive waveform based on the processing control signal. The waveform has a sub-nanosecond rise time. The system also includes a gain-switched, pulsed seed laser having a wavelength for generating a laser pulse train at a repetition rate. The drive waveform pumps the laser so that each pulse of the pulse train has a predetermined shape. Further, the system includes a laser amplifier for optically amplifying the pulse train to obtain an amplified pulse train without significantly changing the predetermined shape of the pulses. Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time. The system further includes a beam delivery and focusing subsystem for delivering and focusing at least a portion of the amplified pulse train onto the target material. The rise time is fast enough to efficiently couple laser energy to the target material, the pulse duration is sufficient to process the target material, and the fall time is rapid enough to prevent the undesirable changes to the material surrounding the target material.
- The laser amplifier preferably includes an optical fiber and a pump such as a laser diode to pump the optical fiber wherein the pump is distinct from the seed laser.
- The laser diode pump source may also be gain switched (pulsed and directly modulated) to increase diode lifetime by switching to the “off” state during extended periods where laser processing is not occurring.
- Preferably, the seed laser includes a laser diode.
- The system may include an attenuator for attenuating laser energy in the tails of the amplified pulses to reduce fall time of the amplified pulses while substantially maintaining the amount of energy of the pulses.
- The pulse duration may be chosen as a function of a specified target material dimension. The specified material dimension may be less than the laser wavelength. The preferred laser is a high speed, semiconductor laser having a wavelength less than about 2 μm. Future material advances in semiconductor laser diode technology and fiber materials may provide for operation in the visible region as well as at longer infrared wavelengths.
- The seed laser diode may be a multimode diode laser or a single frequency (single mode) laser utilizing a distributed Bragg reflector (DBR), distributed feedback (DFB), or an external cavity design.
- The spot size typically has a dimension in the range of about 1-4 μm.
- The density of the memory may be at least 16-256 megabits.
- The semiconductor device may be a microelectromechanical device.
- Preferably, the attenuated laser energy in the pulse tail is attenuated by at least 10 dB within 1.5 times the pulse duration.
- Yet still further in carrying out the above objects and other objects of the present invention, an energy-efficient, laser-based method for ablating a metal link having a specified dimension embedded in at least one passivation layer without causing undesirable changes in electrical or physical characteristics of the at least one passivation layer surrounding the metal link is provided. The method includes generating a laser pulse train utilizing a laser having a wavelength at a repetition rate. Each of the pulses of the pulse train has a predetermined shape. The method also includes optically amplifying the pulse train without significantly changing the predetermined shape of the pulses. to obtain an amplified pulse train. Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time. The method further includes delivering and focusing at least a portion of the amplified pulse train into a spot on the metal link. The rise time is fast enough to efficiently couple laser energy to the metal link. The pulse duration is sufficient to ablate the metal link and the fall time is rapid enough to prevent the undesirable changes to the at least one passivation layer surrounding the metal link.
- Still further in carrying out the above objects and other objects of the present invention, an energy-efficient system for ablating a metal link having a specified dimension embedded in at least one passivation layer without causing undesirable changes in electrical or physical characteristics of the at least one passivation layer surrounding the metal link is provided. The system includes a controller for generating a processing control signal and a signal generator for generating a modulated drive waveform based on the processing control signal. The waveform has a sub-nanosecond rise time. The system also includes a gain-switched, pulsed seed laser having a wavelength for generating a laser pulse train at a repetition rate. The drive waveform pumps the laser so that each pulse of the pulse train has a predetermined shape. Further, the system includes a laser amplifier for optically amplifying the pulse train without significantly changing the predetermined shape of the pulses to obtain an amplified pulse train. Each of the amplified pulses has a substantially square temporal power density distribution, a sharp rise time, a pulse duration and a fall time. The system further includes a beam delivery and focusing subsystem for delivering and focusing at least a portion of the amplified pulse train into a spot on the metal link. The rise time is fast enough to efficiently couple laser energy to the metal link. The pulse duration is sufficient to ablate the metal link, and the fall time is rapid enough to prevent the undesirable changes to the at least one passivation layer surrounding the metal link.
- The metal link may be embedded in a top passivation layer thereover and a bottom passivation layer thereunder. The pulse duration is sufficient to crack the top passivation layer but not the bottom passivation layer.
- In carrying out the above objects and other objects of the invention a method is provided to ablate target material using a laser having a wavelength suitable for laser material processing while avoiding damage to surrounding materials. The method includes the steps of modulating a laser beam to produce a predetermined gain-switched pulse and focusing the laser beam onto the target region. The predetermined gain-switched pulse shape includes a rise time of the laser pulse fast enough to efficiently couple laser energy to a target structure, with a pulse duration of sufficient length to efficiently heat and vaporize the target material, and a pulse decay time which is rapid enough to avoid damage of structures surrounding the target material.
- Further in carrying out the above objects and other objects of the invention a system for is provided to ablate material using a laser having a wavelength suitable for laser processing while avoiding damage to surrounding materials. The system includes a laser source, components to modulate the laser source to generate a laser pulse having a predetermined gain-switched pulse shape, and optical components for focusing the laser beam onto the target region. The predetermined pulse shape includes an optical rise time of the laser pulse fast enough to efficiently couple laser energy to a target structure, with a pulse duration of sufficient length to efficiently heat and vaporize the target material, and a pulse decay time which is rapid enough to avoid damage of structures surrounding the target material.
- In a preferred construction of the invention, the gain-switched pulse shape includes a fast rise time pulse, substantially flat at the top, with a fast pulse fall time. A “seed” laser diode is directly modulated to generate a predetermined pulse shape. The optical power is increased through amplification with a fiber laser amplifier to output power levels sufficient for laser processing. The resulting gain-switched pulse at the fiber laser amplifier output is focused onto the target region.
- In a construction of the invention, it can be advantageous to directly modulate the “seed” diode to produce a predetermined gain-switched square pulse and provide low distortion amplification using a fiber laser amplifier to provide output pulse levels sufficient for material processing.
- In an alternative construction, the pulse temporal power distribution of the directly modulated seed diode is modified to compensate for distortion or non-uniformity of the fiber amplifier or other components, for instance the “smooth” rise of an output modulator. The resulting laser processing pulse which is focused into the target region will have a desired shape: fast rise time, relatively flat during the pulse duration, with rapid decay.
- In a construction of the invention it can be advantageous to enhance the performance of the laser processing system by providing a “pulse slicing” module which is used to attenuate laser energy remaining at the output of the laser processing system when the “seed” laser pulse is terminated, thereby preventing heating of sensitive structures not designated as target material after processing is complete. The “pulse slicing” technique is useful to attenuate the tail of either a modified pulse or a standard Q-switched pulse. This is illustrated in
FIGS. 4 a and 4 b, wherein a log scale is provided in the vertical axis ofFIG. 4 b. - It is preferred to perform laser processing operations, particularly metal link blowing, at pulse rates of at least 1 KHz (1000 pulses/second) with laser pulse energy of at least 0.1 microjoules in a pulse, the 0.1 microjoules being emitted at the output of the fiber amplifier, where the fiber optic amplifier gain is at least 20 DB (1000:1).
- In a construction of the invention, a laser pulse is shaped having a rise and fall time shorter than about one-half of the pulse duration and where the peak power is approximately constant between the rise and fall time.
- In a construction of the invention, it is possible to generate a series of closely-spaced, short pulses which, when combined, produce a desired pulse shape as illustrated in
FIGS. 3 a and 3 b. - In a construction of a system using the invention it can also be advantageous to operate the laser at pulse repetition rates exceeding the material processing rate and utilize a computer controlled optical switch to select processing pulses, the computer being operatively connected to a beam positioning system used to position a focused laser beam for material processing.
- The above objects and other objects, features, and advantages of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.
-
FIG. 1 a shows schematically stress cracks in a top surface layer only of a semiconductor caused by expanding vaporized metal; -
FIG. 1 b shows schematically stress cracks in top and bottom layers of a semiconductor caused by expanding vaporized metal; -
FIG. 1 c shows typical prior art laser pulses resembling a Gaussian shape, or a mixture of a Gaussian with an exponential tail, referred to as a “Q-switched pulse envelope”; -
FIG. 2 shows the preferred pulse shape of the present invention for processing metal links when compared to a Q-switched of the same total energy; -
FIGS. 3 a and 3 b show a method of combining two short pulses closely spaced in time to create a modified pulse; -
FIGS. 4 a and 4 b show the result of “pulse slicing” for improving the pulse energy enclosure of a general pulse shape; -
FIG. 5 is a general block diagram of a preferred laser system for laser material processing; -
FIG. 6 a is a schematic diagram of one type of a MOPA laser system with a distributed Bragg laser as the semiconductor seed laser; this is a single mode laser and a fiber optic amplifier producing the preferred pulse shape; -
FIG. 6 b is a schematic diagram of a single frequency laser with external cavity tuning and a fiber optic amplifier; -
FIG. 7 is a block diagram schematic of another laser system of the present invention including a preferred attenuator and an optional shifter; -
FIG. 8 is a graph of temperature at the interface between the silicon dioxide layer and the silicon substrate inFIG. 9 , as a function of the thickness of the silicon dioxide layer; -
FIG. 9 shows a perspective diagrammatic view of a link of a memory on its substrate; -
FIG. 10 is a drawing of a Gaussian laser beam focused onto a small spot on a focal plane containing a metal link emphasizing the microscopic size of the link compared to the diffraction-limited beam waist; and -
FIGS. 11 a and 11 b are graphs which show the results of a computer finite element analysis simulation where the time history of stress and temperature is plotted in the graphs for Q-switched pulse and square pulse used for metal link processing. - Those skilled in the art can appreciate that the following embodiment can be applied to several applications in micromachining and laser processing with appropriate adjustments to parameters like laser power, energy density, spot size, wavelength, pulse width, polarization and repetition rate. The specific application to metal link blowing is described for illustrative purposes.
- In a preferred embodiment of
FIG. 7 , aseed laser 10 and a fiber amplifier are mounted on a stable platform attached to themotion system 20 and the workpiece. It is very important in removing links that the beam be positioned with accuracy of less than 3/10 of a micron. The timing of the laser pulse to correlate with the relative positions of the target and optical system is important because of the continuous motion required in order to obtain high processing speeds. - The
laser 10 is externally controlled by thecomputer 33 and asignal generator 11 and transmits its modulated beam to a focusingsubsystem 12 comprising high numerical aperture optics and which may further comprise a beam deflector, for instance a galvonometer mirror controlled by a scanner control via thecomputer 33. Thesystem control computer 33 is also operatively connected to a positioning mechanism ormotion system 20 for the system and thesignal generator 11 to properly time the pulse generation. The laser beam must be precisely controlled so as to produce a sharply focused beam, with a spot size in the range of about 1.5-4 microns, at the correct location in X, Y and Z. As such, those skilled in the art of beam positioning and focusing will recognize the importance of optics corrected to provide near diffraction and limited performance and precision motion control of the laser head or target substrate. Depending upon the specific laser processing application requirements, it may be advantageous to provide an optical system with a relatively narrow field of view to provide diffraction limited focusing and precision X,Y motion stages for beam positioning. Furthermore, various combinations of mirror motion for rapid deflection in combination with translation stages arc viable. - A step and repeat table 34 can also be used to move a
wafer 22 into position to treat each memory die 24 thereof. Those skilled in the art of beam scanning will appreciate the advantages of a mirror-based, beam deflection system, but, as noted above, substitution of other position mechanisms such as X, Y translation stages for movement of the substrate and/or laser head are viable alternatives for practicing the invention. For example, thesubstrate positioning mechanism 34 may comprise very precise (well below 1 micron) X, Y, Z positioning mechanisms operating over a limited range of travel. Thepositioning mechanism 20 may be used to translate the laser processing optical system components, including the laser, fiber amplifier, and focusing subsystem in a coarser fashion. Further details on a preferred positioning system are disclosed in the above-noted pending U.S. patent application entitled “High Speed Precision Positioning Apparatus”, Ser. No. 09/156,895, filed Sep. 18, 1998. - A system
optical switch 13 in the form of a further acousto-optic attenuator or pockels cell is positioned beyond the laser cavity, in the laser output beam. Under control of thecomputer 33, it serves both to prevent the beam from reaching the focusing system except when desired, and, when the processing beam is required, to controllably reduce the power of the laser beam to the desired power level. During vaporization procedures this power level may be as little as 10 percent of the gross laser output, depending upon operating parameters of the system and process. The power level may be about 0.1 percent of the gross laser output during alignment procedures in which the laser output beam is aligned with the target structure prior to a vaporization procedure. The acousto-optic device is generally preferred because of the case of use, although the delay of the pockels cell is considerably less. - In operation, the positions of the wafer 22 (or target or substrate) are controlled by the
computer 33. Typically, the relative movement is at substantially constant speed over thememory device 24 on thesilicon wafer 22, but step and repeat motion of the wafer is possible. Thelaser 10 is controlled by timing signals based on the timing signals that control the motion system. Thelaser 10 typically operates at a constant repetition rate and is synchronized to the positioning system by the systemoptical switch 13. - In the system block diagram of
FIG. 7 , the laser beam is shown focused upon thewafer 22. In the magnified view ofFIG. 9 , the laser beam is seen being focused on alink element 25 of a memory circuit ordevice 24. - For processing fine link structures, spot size requirements are becoming increasingly demanding. The spot size requirement is typically 1.5-4 microns in diameter, with peak power occurring in the center of the spot with good conformance to a Gaussian distribution, and with lower power occurring at the edges. Excellent beam quality is needed, approaching diffraction limit, with a beam quality or “m-squared factor” of about 1.1 times or better typical. This “times diffraction limit” quality standard is well known to those skilled in the art of laser beam analysis. Low sidelobes are also preferred to avoid optical crosstalk and the undesirable illumination of features outside the target region.
- The
link 25 is somewhat smaller than the spot size, thereby mandating precision positioning and good spot quality. A link may be, for instance, 1 micron wide and about ⅓ micron thick. In the case demonstrated here, the link is made of metal, and a lateral dimension (width) and thickness are smaller than the laser wavelength. - In a preferred embodiment a laser subsystem of
FIG. 5 utilizes a master oscillator, power amplifier (MOPA) configuration. This system produces a laser pulse that seeds an amplifier to produce a high power short rise time pulse. A seed laser is the key to producing the fast rise time, short pulse but at very low energy levels. The system requires a laser amplifier to produce enough energy to do material processing. A fiber laser amplifier and a high-speed infrared laser diode having an output wavelength suitable for a laser processing application is preferred. With such a system a laser can be devised that produces a laser pulse of the preferred shape and speed as shown in the lower part ofFIG. 5 . That is, a fast rise time pulse, square at the top and a fast fall time. This pulse shape, in turn, provides the desired laser-material interaction results of reduction in metal reflectivity, low diffusion of the energy into the device and cracking of the top oxide without damage to the lower oxide. - The MOPA configuration is relatively new and pulsed versions are regarded as state of the art. The laser diode which has sub-nanosecond rise time in response to a modulating drive waveform is a starting point in the fiber laser MOPA configuration, with the laser diode as a gain element. The laser diode generally has multiple longitudinal modes and the sub-system can be configured for single mode operation or otherwise tuned with bulk components at the output or, alternatively, with integrated fiber gratings in the system.
- For instance, the Littman-Metcalf grating configuration described in product literature by New Focus Inc., in the external cavity configuration, is a viable configuration.
FIG. 6 b shows a schematic of a single frequency laser with external cavity tuning and also includes an optical fiber pumped at its cladding by diode laser pump. - Other diode laser alternatives include distributed feedback lasers (DFB) and distributed Bragg lasers (DBL) which have integrated gratings and waveguide structures, some cases with external controls allowing the user to independently control the gain, phase, and grating filter. Sec
FIG. 6 a for a DBL configuration including acoupler 50. This provides flexible mode selection and tuning capability. The laser frequencies can be dynamically selected with a number of the configurations by adjustments of the bulk components, such as the grating and/or mirrors of the external cavity, or, alternatively, a fixed wavelength or mode chosen. The range over which the diode central wavelength can be selected is impressive overall, from less than 1 μm to about 1.3-1.5 μm or longer, the latter wavelengths corresponding to those used for fiber optic communication. - In any case, a key element for the purpose of this invention, at a laser wavelength selected for material processing, is the rise time of the “seed” laser diode and the pulse shape. Also, a consideration for this invention is that the seed laser wavelength be matched to the spectral band over which the fiber optic amplifier has high gain with little sensitivity to small wavelength changes—i-e., in the amplifier “flat” response region for maintaining excellent pulse-to-pulse power output with sufficient power. For Ytterbium-doped fibers, the gain is high in about a reasonably broad wavelength band near the 1.1 μm absorption edge of silicon. Further development in materials or integrated fiber components may extend the useful wavelength regions providing more flexibility in matching the fiber emission spectrum, the seed laser wavelength and target material properties. For example, in Photonics Spectra, August 1997, p. 92, the results are reported for a state-of-the-art fiber laser development over a wavelength range of 1.1 μm to 1.7 μm.
- The operation of a Raman shifter was described in the above-noted '759 patent with the specific use with a short pulse Q-switched system. If desired this device could also be placed at the output of the fiber system to shift the output wavelength to a desirable region to improve absorption contrast, for example. Recognizing the importance of pulse width and small spot size requirements for processing, as taught in the above-noted '759 patent, typical operation of the preferred system for metal link processing will be in the range of about 1.06 pm or beyond, with a 1.08 μm wavelength, for example.
- The output of the seed laser is to be amplified for laser material processing. The preferred fiber optic laser amplifier will provide gain of about 30 db. The seed laser output is coupled to the core of the fiber laser either directly or with bulk optics which splits the beam for fiber delivery. Both techniques are routinely practiced by those skilled in the art of ultrafast lasers using chirped pulse amplification, but the system of the preferred embodiment is overall much less complex than such ultrafast systems. In the system of the present invention, the seed pulse is amplified and no optics for pulse stretching and compression are required. The fiber used in the amplifier system is cladding pumped with a diode laser having a substantially different wavelength than the seed laser, for example 980 nm, which allows for optical isolation of the seed and pumping beams with a dichroic mirror in the bulk optical system arrangement. From the standpoint of cost, size, and ease of alignment, the preferred arrangement utilizes a coupling arrangement where the seed laser is directly coupled to the fiber amplifier. The pump laser injects the high power diode energy, say at 980 nm wavelength, into the cladding structure of a rare earth Ytterbium (Yb)-doped fiber using coupling techniques familiar to those skilled in the art of fiber laser system design.
- Low distortion is an important characteristic of the fiber amplifier. Low distortion allows the output pulse shape to substantially match the seed laser pulse shape or possibly further enhance the pulse edges or uniform power shape. The fiber optic gain medium produces the amplifier pulse of
FIG. 5 which is delivered to the optical system and focused onto the object. - Multiple fiber amplifiers can be cascaded for further gain if desired, provided the distortion is low. It could be advantageous to provide active optical switches or passive optical isolators at the output of intermediate stages to suppress spontaneous emission. These techniques are known by those skilled in the art and are disclosed in U.S. Pat. No. 5,400,350 and WO 98/92050, for example.
- In some cases it may be desirable to further improve the pulse shape by reducing the “tails” with a pulse slicer added to the laser sub-system. This may be in the form of an electro optic device such as a pockels cell or preferably a low delay acousto-optic modulator. This technique can suppress energy in the pulse tails to negligible levels whenever the risk of damage occurs at a small multiple of the “pulse duration” of the processing pulse. For example, if the energy is reduced by 20 dB (100:1) within 1.5 times the predetermined pulse duration, there will be for all practical purposes no risk of substrate damage in metal link blowing applications. To be more specific, if a pulse duration of 8 ns is chosen for a square pulse shape in a metal link blowing application and the energy is 20 dB down at 12 ns, the remaining energy is far below that which would cause damage to the Si substrate, this damage being substantial at about 18 ns or more after application of the laser pulse. In a preferred mode of operation, the low delay, high bandwidth pulse slicer will be activated near the end of the amplifier pulse duration and will have a multiplicative effect on the pulse tail, with minimal distortion of the central lobe. Any effects of the amplifier distortion and the “turn on delay” of the modulator can be compensated to some degree by changing the shape of the seed diode laser waveform during the pulse duration. The resulting temporal pulse shape in the focused beam is compensated and is of the desired square shape.
- Also, presently fiber systems operate optimally at pulse repetition rates of about 20 KHz which is somewhat faster than the processing rate. An output optical switch, for example a low delay acousto-optic modulator, with its driver operatively connected to a computer, select pulses for processing. In this way the reliability of the fiber amplifier and hence the processing system is high. Those skilled in the art will recognize that it would be advantageous from an economical standpoint to combine the pulse slicer and output optical switch into a single module.
- There are numerous advantages cited above of the preferred system of the seed laser and fiber amplifier. Current modulation of the laser diode with an appropriate driver can directly produce a desired gain-switched pulse shape which is amplified by the fiber laser amplifier with low distortion. The method is contemplated as the best and most efficient approach to practicing the present invention. However, those skilled in the art of laser pulse generation and shaping will recognize that other less efficient approaches can be used. For example, modifications of Q-switched systems extending beyond the teachings of U.S. Pat. No. 4,483,005 are possible to obtain relatively flat pulses by using various control functions to drive a pockels cell or optical switches provided that the modulator response time is fast enough. Modern techniques for effecting pulse width include the use of modified output couplers, for instance, replacing conventional glass in Nd: YAG Q-switched lasers with GaAs, in either bulk or crystal form. Q-switched pulse of duration from several picoseconds to a few nanoseconds have been reported in passive Q-switching of an Nd: YAG laser with a GaAs output coupler, OPTICAL ENGINEERING, 38(1 1), 1785-88, November 1999.
- The
metal link 25 is supported on thesilicon substrate 30 by silicondioxide insulator layer 32, which may be, e.g., 0.3-0.5 microns thick. The silicon dioxide extends over the link, and often an additional insulating layer of silicon nitride is present over the SiO, layer. In the link blowing technique, the laser beam impinges on each link and heats it to the melting point. During the heating, the metal is prevented from vaporizing by the confining effect of the overlying passivation layers. During the duration of the short pulse, the laser beam progressively heats the metal, until the metal so expands that the insulator material ruptures. At this point, the molten material is under such high pressure that it instantly vaporizes and blows cleanly out through the rupture hole. - As disclosed in the above-noted '759 patent, with the very small spot size used with small metal links, the heat may be considered to spread in essentially an exponential gradient by conduction from the portion of the beam striking the target. By employing a peak beam power so high that sufficient energy for evaporation of the link is delivered in a pulse of 8 nanoseconds, and preferably substantially less, the conductive component of heat transfer can be substantially confined to a metal link and the underlying oxide layer, despite its being very thin, such that the temperature rise in the silicon attributable to conduction and the temperature rise attributable to absorption of the beam in silicon, can cumulatively be kept below the temperature threshold at which unacceptable silicon damage occurs.
- Furthermore, the above-noted '759 patent teaches several important aspects related to the thermal transfer characteristics of the link and adjacent structures. A thermal model predicts that narrow pulse widths, 3-10 ns, for example, which in turn are dependent upon the thickness of the target materials, are preferred to avoid heat conduction and subsequent damage to the Si substrate for representative dimensions. However, it is critically important to realize that other structures adjoining the link can also affect the quality of laser processing results, as the following experimental results indicate.
- The benefits of the gain-switched, square pulse shape were verified with both experimental results on and through computer simulation (finite element analysis). Specifications for the laser used for link blowing were:
-
Laser wavelength 1.083 microns Maximum Laser energy 10 microjoules Pulse width 7 ns (FWHM, square pulse) Repetition rate 10 KHz (70 KHz laser rate) Spatial profile Gaussian, TEM-00, M2 = 1.02 (times diffraction limit) Polarization Unpolarized Pulse Rise Time ~.5 ns - The laser of choice was a Ytterbium, cladding pumped fiber laser, in the MOPA configuration using a 980 nm pump diode and a 7 micron diameter single mode fiber.
- Experimental results with the laser specified above on recent generation memory devices demonstrated superior performance when compared to the standard Q-switched laser systems. The results led to a conclusion that the short, fast rising pulse of the MOPA laser accounted for the superior performance. As disclosed earlier, the reasons are threefold:
-
- 1. The 1.083 wavelength is long enough to avoid substrate damage—about 10 times less absorption occurs at 1.083 μm compared to the 1.047 μm wavelength.
- 2. The fast rising pulse provides a thermal shock to the overlying layer of oxide which facilitates link removal.
- 3. The high power density of the fast rising pulse reduces the link reflectivity which allows for efficient energy coupling.
- These characteristics provide a significant departure from the interaction observed with Q-switched systems. Furthermore, a computer finite element model was used to simulate the effects of the fast rising pulse for various material thickness and link sizes. The results independently confirmed the improved link blowing results with the use of a sharp rise time pulse with an approximate square distribution. The results of the computer model generated by Bernstein, author of
reference number 3, are shown inFIGS. 11 a and 11 b. The following Tables A and B are associated with the graphs ofFIGS. 11 a and 11 b, respectively: -
TABLE A Model 1 @ 0.7 uJ Square Pulse Slow Rise Pulse 1st Crack 929K @ 1.88 ns 978K @ 2.40 ns 2nd Crack 1180K @ 2.93 ns 1380K @ 3.45 ns 3rd Crack 1400K @ 2.05 ns No 4th Crack 1520K @4.73 ns No Al thickness: 0.8 μm SiO2: 0.1 μm Laser energy: 0.7 uJ Al width: 0.8 μn Si,3N4: 0.4 μm -
TABLE B Model 2 @ 0.7 uJ Square Pulse Slow Rise Pulse 1st Crack 974K @ 2.03 ns 1050K @ 2.55 ns 2nd Crack No No 3rd Crack No No 4th Crack No No Al thickness: 0.8 μm SiO2: 0.6 μm Laser energy: 0.7 uJ Al width: 0.8 μm Si,3N4: 0.6 μm - The stress and temperature history indicate with certainty the importance of the fast rising pulse, with sub-nanosecond rise time. It is also known that if significant pulse energy is present, several nanoseconds after the ablation is completed, say at 15 ns, the Si can be damaged. A fast fall time, with a high extinction, is also important.
- According to the invention, the silicon substrate is also kept relatively cool both by appropriate selection of wavelength and by limiting the pulse duration, with a correspondingly square pulse with fast decay. The laser wavelength in this example is slightly less than the room temperature absorption edge of silicon (about 1.1 μm). Although the results reported here did not indicate substrate damage, it should be noted that improved margins are available if desired. For example, the Raman shifter could be utilized to shift the output wavelength beyond the absorption edge. Alternatively, another diode laser wavelength could potentially become commercially available for a MOPA configuration. Such wavelength selection and shifting techniques may advantageously be utilized in other laser processing and micromachining applications. In any case, by thus limiting the heating, it is possible to ensure that the silicon does not shift its absorption edge into the infrared and enter a thermal runaway condition in which silicon damage can occur.
- The specific embodiment of the MOPA configuration for fast pulse generation for cleanly blowing metal links is taken as an example of pulse shaping and is provided to be illustrative rather than restrictive. Through direction modulation of the seed laser, excellent sub-nanosecond control over the pulse shape was maintained, and found to be advantageous, including the possibility of fast compensation to correct the output pulse shape. Other applications in micromachining, marking, scribing, etc. could also benefit from precise, fast pulse control. For example, the seed diode could as easily be modulated with a “sawtooth” waveform or other non Q-switched waveshape for the purpose of creating or removing a specific feature on or within a surface. Likewise, because of the fast response of the laser diode, it is possible to generate a sequence of variable width, short pulses in rapid succession. Those skilled in the art of laser processing will recognize the broad application of the laser system herein. The scope of the invention is indicated by the following claims and is not to be otherwise restricted.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/417,613 US20120187098A1 (en) | 1999-12-28 | 2012-03-12 | Energy efficient, laser-based method and system for processing target material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/473,926 US6281471B1 (en) | 1999-12-28 | 1999-12-28 | Energy-efficient, laser-based method and system for processing target material |
US09/941,389 US6727458B2 (en) | 1999-12-28 | 2001-08-28 | Energy-efficient, laser-based method and system for processing target material |
US10/818,920 US20040188399A1 (en) | 1999-12-28 | 2004-04-06 | Energy-efficient, laser-based method and system for processing target material |
US13/417,613 US20120187098A1 (en) | 1999-12-28 | 2012-03-12 | Energy efficient, laser-based method and system for processing target material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/818,920 Continuation US20040188399A1 (en) | 1999-12-28 | 2004-04-06 | Energy-efficient, laser-based method and system for processing target material |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120187098A1 true US20120187098A1 (en) | 2012-07-26 |
Family
ID=23881570
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/473,926 Expired - Lifetime US6281471B1 (en) | 1999-12-28 | 1999-12-28 | Energy-efficient, laser-based method and system for processing target material |
US09/941,389 Expired - Lifetime US6727458B2 (en) | 1999-12-28 | 2001-08-28 | Energy-efficient, laser-based method and system for processing target material |
US10/818,920 Abandoned US20040188399A1 (en) | 1999-12-28 | 2004-04-06 | Energy-efficient, laser-based method and system for processing target material |
US11/305,129 Expired - Fee Related US7582848B2 (en) | 1999-12-28 | 2005-12-19 | Energy-efficient, laser-based method and system for processing target material |
US11/843,229 Expired - Fee Related US7750268B2 (en) | 1999-12-28 | 2007-08-22 | Energy efficient, laser-based method and system for processing target material |
US11/969,275 Expired - Fee Related US7679030B2 (en) | 1999-12-28 | 2008-01-04 | Energy-efficient, laser-based method and system for processing target material |
US11/969,264 Abandoned US20080105664A1 (en) | 1999-12-28 | 2008-01-04 | Energy-efficient, laser-based method and system for processing target material |
US13/417,613 Abandoned US20120187098A1 (en) | 1999-12-28 | 2012-03-12 | Energy efficient, laser-based method and system for processing target material |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/473,926 Expired - Lifetime US6281471B1 (en) | 1999-12-28 | 1999-12-28 | Energy-efficient, laser-based method and system for processing target material |
US09/941,389 Expired - Lifetime US6727458B2 (en) | 1999-12-28 | 2001-08-28 | Energy-efficient, laser-based method and system for processing target material |
US10/818,920 Abandoned US20040188399A1 (en) | 1999-12-28 | 2004-04-06 | Energy-efficient, laser-based method and system for processing target material |
US11/305,129 Expired - Fee Related US7582848B2 (en) | 1999-12-28 | 2005-12-19 | Energy-efficient, laser-based method and system for processing target material |
US11/843,229 Expired - Fee Related US7750268B2 (en) | 1999-12-28 | 2007-08-22 | Energy efficient, laser-based method and system for processing target material |
US11/969,275 Expired - Fee Related US7679030B2 (en) | 1999-12-28 | 2008-01-04 | Energy-efficient, laser-based method and system for processing target material |
US11/969,264 Abandoned US20080105664A1 (en) | 1999-12-28 | 2008-01-04 | Energy-efficient, laser-based method and system for processing target material |
Country Status (7)
Country | Link |
---|---|
US (8) | US6281471B1 (en) |
EP (1) | EP1244534B1 (en) |
JP (1) | JP5175416B2 (en) |
KR (1) | KR100829008B1 (en) |
DE (1) | DE60009348T2 (en) |
TW (1) | TW478025B (en) |
WO (1) | WO2001047659A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9054494B2 (en) | 2011-07-11 | 2015-06-09 | V Technology Co., Ltd. | Pulsed laser oscillator and method for controlling pulsed laser oscillation |
WO2016201278A1 (en) * | 2015-06-10 | 2016-12-15 | Ipg Photonics Corporation | Laser beam energy modification to reduce back-wall strikes during laser drilling |
Families Citing this family (252)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6987786B2 (en) | 1998-07-02 | 2006-01-17 | Gsi Group Corporation | Controlling laser polarization |
US6865210B2 (en) * | 2001-05-03 | 2005-03-08 | Cymer, Inc. | Timing control for two-chamber gas discharge laser system |
US7838794B2 (en) | 1999-12-28 | 2010-11-23 | Gsi Group Corporation | Laser-based method and system for removing one or more target link structures |
US7723642B2 (en) * | 1999-12-28 | 2010-05-25 | Gsi Group Corporation | Laser-based system for memory link processing with picosecond lasers |
US20040134894A1 (en) * | 1999-12-28 | 2004-07-15 | Bo Gu | Laser-based system for memory link processing with picosecond lasers |
US6340806B1 (en) | 1999-12-28 | 2002-01-22 | General Scanning Inc. | Energy-efficient method and system for processing target material using an amplified, wavelength-shifted pulse train |
US6281471B1 (en) | 1999-12-28 | 2001-08-28 | Gsi Lumonics, Inc. | Energy-efficient, laser-based method and system for processing target material |
US6887804B2 (en) | 2000-01-10 | 2005-05-03 | Electro Scientific Industries, Inc. | Passivation processing over a memory link |
US20030222324A1 (en) * | 2000-01-10 | 2003-12-04 | Yunlong Sun | Laser systems for passivation or link processing with a set of laser pulses |
US7671295B2 (en) * | 2000-01-10 | 2010-03-02 | Electro Scientific Industries, Inc. | Processing a memory link with a set of at least two laser pulses |
CN1276495C (en) | 2000-01-10 | 2006-09-20 | 电子科学工业公司 | Laser system and method for processing memory link with burst of laser pulses having ultrashort pulsewidths |
US20060141681A1 (en) * | 2000-01-10 | 2006-06-29 | Yunlong Sun | Processing a memory link with a set of at least two laser pulses |
US6555783B2 (en) * | 2000-02-03 | 2003-04-29 | Canon Kabushiki Kaisha | Laser processing method and laser processing apparatus |
US6483071B1 (en) * | 2000-05-16 | 2002-11-19 | General Scanning Inc. | Method and system for precisely positioning a waist of a material-processing laser beam to process microstructures within a laser-processing site |
US6885683B1 (en) * | 2000-05-23 | 2005-04-26 | Imra America, Inc. | Modular, high energy, widely-tunable ultrafast fiber source |
JP4320926B2 (en) * | 2000-06-16 | 2009-08-26 | パナソニック株式会社 | Laser drilling method and apparatus |
DE10196418B4 (en) | 2000-07-12 | 2010-07-22 | Electro Scientific Industries, Inc., Portland | A laser system for processing connections of an integrated circuit device, method for processing connections of an integrated circuit device, and method for aligning a laser processing beam to a connection of an integrated circuit device |
JP2002040627A (en) * | 2000-07-24 | 2002-02-06 | Nec Corp | Method for correcting laser pattern and apparatus for correcting the same |
KR100343812B1 (en) * | 2000-09-21 | 2002-07-20 | 광주과학기술원 | Measurement system and the method for chromatic dispersion in optical fibers |
US6664500B2 (en) * | 2000-12-16 | 2003-12-16 | Anadigics, Inc. | Laser-trimmable digital resistor |
US6806440B2 (en) | 2001-03-12 | 2004-10-19 | Electro Scientific Industries, Inc. | Quasi-CW diode pumped, solid-state UV laser system and method employing same |
US6781090B2 (en) * | 2001-03-12 | 2004-08-24 | Electro Scientific Industries, Inc. | Quasi-CW diode-pumped, solid-state harmonic laser system and method employing same |
US6570704B2 (en) * | 2001-03-14 | 2003-05-27 | Northrop Grumman Corporation | High average power chirped pulse fiber amplifier array |
US6777645B2 (en) * | 2001-03-29 | 2004-08-17 | Gsi Lumonics Corporation | High-speed, precision, laser-based method and system for processing material of one or more targets within a field |
US20070173075A1 (en) * | 2001-03-29 | 2007-07-26 | Joohan Lee | Laser-based method and system for processing a multi-material device having conductive link structures |
US20050259709A1 (en) | 2002-05-07 | 2005-11-24 | Cymer, Inc. | Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate |
US6927359B2 (en) * | 2001-06-14 | 2005-08-09 | Advanced Cardiovascular Systems, Inc. | Pulsed fiber laser cutting system for medical implants |
US7065121B2 (en) * | 2001-07-24 | 2006-06-20 | Gsi Group Ltd. | Waveguide architecture, waveguide devices for laser processing and beam control, and laser processing applications |
US10285694B2 (en) | 2001-10-20 | 2019-05-14 | Covidien Lp | Surgical stapler with timer and feedback display |
US7464847B2 (en) | 2005-06-03 | 2008-12-16 | Tyco Healthcare Group Lp | Surgical stapler with timer and feedback display |
KR20040073958A (en) * | 2001-12-17 | 2004-08-21 | 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 | Processing a memory link with a set of at least two laser pulses |
DE10203198B4 (en) * | 2002-01-21 | 2009-06-10 | Carl Zeiss Meditec Ag | Method for material processing with laser pulses of large spectral bandwidth and apparatus for carrying out the method |
US7358157B2 (en) * | 2002-03-27 | 2008-04-15 | Gsi Group Corporation | Method and system for high-speed precise laser trimming, scan lens system for use therein and electrical device produced thereby |
US6951995B2 (en) | 2002-03-27 | 2005-10-04 | Gsi Lumonics Corp. | Method and system for high-speed, precise micromachining an array of devices |
US20060199354A1 (en) * | 2002-03-27 | 2006-09-07 | Bo Gu | Method and system for high-speed precise laser trimming and electrical device produced thereby |
US7563695B2 (en) * | 2002-03-27 | 2009-07-21 | Gsi Group Corporation | Method and system for high-speed precise laser trimming and scan lens for use therein |
US7015418B2 (en) * | 2002-05-17 | 2006-03-21 | Gsi Group Corporation | Method and system for calibrating a laser processing system and laser marking system utilizing same |
US20040017431A1 (en) * | 2002-07-23 | 2004-01-29 | Yosuke Mizuyama | Laser processing method and laser processing apparatus using ultra-short pulse laser |
US7259906B1 (en) | 2002-09-03 | 2007-08-21 | Cheetah Omni, Llc | System and method for voice control of medical devices |
JP4244611B2 (en) * | 2002-10-22 | 2009-03-25 | パナソニック株式会社 | Drilling method of ceramic green sheet |
US7150811B2 (en) | 2002-11-26 | 2006-12-19 | Pei Company | Ion beam for target recovery |
JP2004200221A (en) * | 2002-12-16 | 2004-07-15 | Toray Eng Co Ltd | Laser marking method and device thereof |
US6979798B2 (en) * | 2003-03-07 | 2005-12-27 | Gsi Lumonics Corporation | Laser system and method for material processing with ultra fast lasers |
US7217941B2 (en) | 2003-04-08 | 2007-05-15 | Cymer, Inc. | Systems and methods for deflecting plasma-generated ions to prevent the ions from reaching an internal component of an EUV light source |
EP1618635B1 (en) * | 2003-04-29 | 2007-10-03 | SPI Lasers UK Limited | Laser apparatus for material processing |
US7277188B2 (en) | 2003-04-29 | 2007-10-02 | Cymer, Inc. | Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate |
US7180918B2 (en) * | 2003-05-16 | 2007-02-20 | Metal Improvement Company, Llc | Self-seeded single-frequency solid-state ring laser and system using same |
US7361171B2 (en) | 2003-05-20 | 2008-04-22 | Raydiance, Inc. | Man-portable optical ablation system |
US20040231481A1 (en) | 2003-05-23 | 2004-11-25 | Floding Daniel Leonard | Apparatus for perforating or slitting heat shrink film |
WO2005000714A1 (en) * | 2003-06-23 | 2005-01-06 | Bridgestone/Firestone North American Tire, Llc | Method and system for marking tires |
US7113327B2 (en) * | 2003-06-27 | 2006-09-26 | Imra America, Inc. | High power fiber chirped pulse amplification system utilizing telecom-type components |
US6947454B2 (en) * | 2003-06-30 | 2005-09-20 | Electro Scientific Industries, Inc. | Laser pulse picking employing controlled AOM loading |
DE10333770A1 (en) | 2003-07-22 | 2005-02-17 | Carl Zeiss Meditec Ag | Method for material processing with laser pulses of large spectral bandwidth and apparatus for carrying out the method |
US7367969B2 (en) * | 2003-08-11 | 2008-05-06 | Raydiance, Inc. | Ablative material removal with a preset removal rate or volume or depth |
US8921733B2 (en) | 2003-08-11 | 2014-12-30 | Raydiance, Inc. | Methods and systems for trimming circuits |
US8173929B1 (en) | 2003-08-11 | 2012-05-08 | Raydiance, Inc. | Methods and systems for trimming circuits |
US9022037B2 (en) | 2003-08-11 | 2015-05-05 | Raydiance, Inc. | Laser ablation method and apparatus having a feedback loop and control unit |
DE112004001540T5 (en) * | 2003-08-19 | 2006-11-23 | Electro Scientific Industries, Inc., Portland | Generation of sets of customized laser pulses |
US7364952B2 (en) * | 2003-09-16 | 2008-04-29 | The Trustees Of Columbia University In The City Of New York | Systems and methods for processing thin films |
US7823366B2 (en) * | 2003-10-07 | 2010-11-02 | Douglas Machine, Inc. | Apparatus and method for selective processing of materials with radiant energy |
JP2005217209A (en) * | 2004-01-30 | 2005-08-11 | Hitachi Ltd | Laser annealing method and laser annealing apparatus |
US8040929B2 (en) | 2004-03-25 | 2011-10-18 | Imra America, Inc. | Optical parametric amplification, optical parametric generation, and optical pumping in optical fibers systems |
US7491909B2 (en) * | 2004-03-31 | 2009-02-17 | Imra America, Inc. | Pulsed laser processing with controlled thermal and physical alterations |
US7486705B2 (en) | 2004-03-31 | 2009-02-03 | Imra America, Inc. | Femtosecond laser processing system with process parameters, controls and feedback |
US7505196B2 (en) * | 2004-03-31 | 2009-03-17 | Imra America, Inc. | Method and apparatus for controlling and protecting pulsed high power fiber amplifier systems |
US7282666B2 (en) * | 2004-05-07 | 2007-10-16 | Micron Technology, Inc. | Method and apparatus to increase throughput of processing using pulsed radiation sources |
DE102004024475A1 (en) * | 2004-05-14 | 2005-12-01 | Lzh Laserzentrum Hannover E.V. | Method and device for separating semiconductor materials |
US7139294B2 (en) * | 2004-05-14 | 2006-11-21 | Electro Scientific Industries, Inc. | Multi-output harmonic laser and methods employing same |
US7885311B2 (en) * | 2007-03-27 | 2011-02-08 | Imra America, Inc. | Beam stabilized fiber laser |
US7804043B2 (en) * | 2004-06-15 | 2010-09-28 | Laserfacturing Inc. | Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser |
US20060000814A1 (en) * | 2004-06-30 | 2006-01-05 | Bo Gu | Laser-based method and system for processing targeted surface material and article produced thereby |
US7352784B2 (en) * | 2004-07-20 | 2008-04-01 | Jds Uniphase Corporation | Laser burst boosting method and apparatus |
US20060039419A1 (en) * | 2004-08-16 | 2006-02-23 | Tan Deshi | Method and apparatus for laser trimming of resistors using ultrafast laser pulse from ultrafast laser oscillator operating in picosecond and femtosecond pulse widths |
JP2006128157A (en) * | 2004-10-26 | 2006-05-18 | Komatsu Ltd | Driver laser system for extreme ultraviolet light source |
US7705268B2 (en) * | 2004-11-11 | 2010-04-27 | Gsi Group Corporation | Method and system for laser soft marking |
US20060189091A1 (en) * | 2004-11-11 | 2006-08-24 | Bo Gu | Method and system for laser hard marking |
US7129440B2 (en) * | 2004-11-12 | 2006-10-31 | Applied Materials, Inc. | Single axis light pipe for homogenizing slow axis of illumination systems based on laser diodes |
US7910499B2 (en) * | 2004-11-12 | 2011-03-22 | Applied Materials, Inc. | Autofocus for high power laser diode based annealing system |
US7422988B2 (en) | 2004-11-12 | 2008-09-09 | Applied Materials, Inc. | Rapid detection of imminent failure in laser thermal processing of a substrate |
US7438468B2 (en) * | 2004-11-12 | 2008-10-21 | Applied Materials, Inc. | Multiple band pass filtering for pyrometry in laser based annealing systems |
US20060114948A1 (en) * | 2004-11-29 | 2006-06-01 | Lo Ho W | Workpiece processing system using a common imaged optical assembly to shape the spatial distributions of light energy of multiple laser beams |
US7301981B2 (en) | 2004-12-09 | 2007-11-27 | Electro Scientific Industries, Inc. | Methods for synchronized pulse shape tailoring |
US20060128073A1 (en) * | 2004-12-09 | 2006-06-15 | Yunlong Sun | Multiple-wavelength laser micromachining of semiconductor devices |
US20060159138A1 (en) * | 2004-12-21 | 2006-07-20 | Institut National D'optique | Pulsed laser light source |
US20060151704A1 (en) * | 2004-12-30 | 2006-07-13 | Cordingley James J | Laser-based material processing methods, system and subsystem for use therein for precision energy control |
US20060191884A1 (en) * | 2005-01-21 | 2006-08-31 | Johnson Shepard D | High-speed, precise, laser-based material processing method and system |
US7528342B2 (en) * | 2005-02-03 | 2009-05-05 | Laserfacturing, Inc. | Method and apparatus for via drilling and selective material removal using an ultrafast pulse laser |
KR100672830B1 (en) * | 2005-03-21 | 2007-01-22 | 삼성전자주식회사 | Label marking method and label marking device using the same |
US20060235564A1 (en) * | 2005-04-18 | 2006-10-19 | Igor Troitski | Method and multifunctional system for producing laser-induced images on the surfaces of various materials and inside transparent materials |
US7466466B2 (en) * | 2005-05-11 | 2008-12-16 | Gsi Group Corporation | Optical scanning method and system and method for correcting optical aberrations introduced into the system by a beam deflector |
EP1893101A4 (en) | 2005-06-03 | 2017-01-04 | Covidien LP | Battery powered surgical instrument |
US11291443B2 (en) | 2005-06-03 | 2022-04-05 | Covidien Lp | Surgical stapler with timer and feedback display |
US7141806B1 (en) | 2005-06-27 | 2006-11-28 | Cymer, Inc. | EUV light source collector erosion mitigation |
US7365349B2 (en) | 2005-06-27 | 2008-04-29 | Cymer, Inc. | EUV light source collector lifetime improvements |
US7180083B2 (en) | 2005-06-27 | 2007-02-20 | Cymer, Inc. | EUV light source collector erosion mitigation |
US7539231B1 (en) | 2005-07-15 | 2009-05-26 | Lockheed Martin Corporation | Apparatus and method for generating controlled-linewidth laser-seed-signals for high-powered fiber-laser amplifier systems |
US8135050B1 (en) | 2005-07-19 | 2012-03-13 | Raydiance, Inc. | Automated polarization correction |
US7135392B1 (en) | 2005-07-20 | 2006-11-14 | Applied Materials, Inc. | Thermal flux laser annealing for ion implantation of semiconductor P-N junctions |
US7245419B2 (en) * | 2005-09-22 | 2007-07-17 | Raydiance, Inc. | Wavelength-stabilized pump diodes for pumping gain media in an ultrashort pulsed laser system |
US7679029B2 (en) | 2005-10-28 | 2010-03-16 | Cymer, Inc. | Systems and methods to shape laser light as a line beam for interaction with a substrate having surface variations |
US7317179B2 (en) | 2005-10-28 | 2008-01-08 | Cymer, Inc. | Systems and methods to shape laser light as a homogeneous line beam for interaction with a film deposited on a substrate |
US7453077B2 (en) | 2005-11-05 | 2008-11-18 | Cymer, Inc. | EUV light source |
US20070117227A1 (en) * | 2005-11-23 | 2007-05-24 | Gsi Group Corporation | Method And System for Iteratively, Selectively Tuning A Parameter Of A Doped Workpiece Using A Pulsed Laser |
EP1806203A1 (en) * | 2006-01-10 | 2007-07-11 | Siemens Aktiengesellschaft | Method of producing a hole |
US8232687B2 (en) | 2006-04-26 | 2012-07-31 | Raydiance, Inc. | Intelligent laser interlock system |
US9130344B2 (en) | 2006-01-23 | 2015-09-08 | Raydiance, Inc. | Automated laser tuning |
US7444049B1 (en) | 2006-01-23 | 2008-10-28 | Raydiance, Inc. | Pulse stretcher and compressor including a multi-pass Bragg grating |
US8189971B1 (en) | 2006-01-23 | 2012-05-29 | Raydiance, Inc. | Dispersion compensation in a chirped pulse amplification system |
EP1994194A1 (en) * | 2006-02-23 | 2008-11-26 | Picodeon Ltd OY | Coating on a fiber substrate and a coated fiber product |
US20070215575A1 (en) * | 2006-03-15 | 2007-09-20 | Bo Gu | Method and system for high-speed, precise, laser-based modification of one or more electrical elements |
US7822347B1 (en) | 2006-03-28 | 2010-10-26 | Raydiance, Inc. | Active tuning of temporal dispersion in an ultrashort pulse laser system |
US7602853B2 (en) * | 2006-04-17 | 2009-10-13 | Mediatek Inc. | Method and apparatus for channel estimation |
US7443903B2 (en) * | 2006-04-19 | 2008-10-28 | Mobius Photonics, Inc. | Laser apparatus having multiple synchronous amplifiers tied to one master oscillator |
US7605343B2 (en) * | 2006-05-24 | 2009-10-20 | Electro Scientific Industries, Inc. | Micromachining with short-pulsed, solid-state UV laser |
US20070272666A1 (en) * | 2006-05-25 | 2007-11-29 | O'brien James N | Infrared laser wafer scribing using short pulses |
US8497449B1 (en) | 2006-05-26 | 2013-07-30 | Synchron Laser Service Inc. | Micro-machining of ceramics using an ytterbium fiber-laser |
US20070106416A1 (en) | 2006-06-05 | 2007-05-10 | Griffiths Joseph J | Method and system for adaptively controlling a laser-based material processing process and method and system for qualifying same |
US7529281B2 (en) * | 2006-07-11 | 2009-05-05 | Mobius Photonics, Inc. | Light source with precisely controlled wavelength-converted average power |
US8084706B2 (en) * | 2006-07-20 | 2011-12-27 | Gsi Group Corporation | System and method for laser processing at non-constant velocities |
CN101496320B (en) * | 2006-07-27 | 2012-07-18 | 伊雷克托科学工业股份有限公司 | Tandem photonic amplifier |
US7674999B2 (en) | 2006-08-23 | 2010-03-09 | Applied Materials, Inc. | Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system |
US7469081B2 (en) * | 2006-09-01 | 2008-12-23 | Mobius Photonics, Inc. | Reducing thermal load on optical head |
US7732731B2 (en) * | 2006-09-15 | 2010-06-08 | Gsi Group Corporation | Method and system for laser processing targets of different types on a workpiece |
US7659187B2 (en) * | 2006-11-03 | 2010-02-09 | Applied Materials, Inc. | Method of forming PN junctions including a post-ion implant dynamic surface anneal process with minimum interface trap density at the gate insulator-silicon interface |
US8367968B2 (en) * | 2007-01-05 | 2013-02-05 | Gsi Group Corporation | System and method for multi-pulse laser processing |
US7431188B1 (en) | 2007-03-15 | 2008-10-07 | Tyco Healthcare Group Lp | Surgical stapling apparatus with powered articulation |
US20080255413A1 (en) | 2007-04-13 | 2008-10-16 | Michael Zemlok | Powered surgical instrument |
US7950560B2 (en) | 2007-04-13 | 2011-05-31 | Tyco Healthcare Group Lp | Powered surgical instrument |
US8800837B2 (en) | 2007-04-13 | 2014-08-12 | Covidien Lp | Powered surgical instrument |
US11259801B2 (en) | 2007-04-13 | 2022-03-01 | Covidien Lp | Powered surgical instrument |
DE102007018402A1 (en) * | 2007-04-17 | 2008-10-23 | Panasonic Electric Works Europe Ag | Method for introducing a structure into a surface of a transparent workpiece |
US7823760B2 (en) | 2007-05-01 | 2010-11-02 | Tyco Healthcare Group Lp | Powered surgical stapling device platform |
US7931660B2 (en) | 2007-05-10 | 2011-04-26 | Tyco Healthcare Group Lp | Powered tacker instrument |
WO2008144443A1 (en) | 2007-05-18 | 2008-11-27 | Gsi Group Corporation | Laser processing of conductive links |
US8026158B2 (en) * | 2007-06-01 | 2011-09-27 | Electro Scientific Industries, Inc. | Systems and methods for processing semiconductor structures using laser pulses laterally distributed in a scanning window |
US8076605B2 (en) * | 2007-06-25 | 2011-12-13 | Electro Scientific Industries, Inc. | Systems and methods for adapting parameters to increase throughput during laser-based wafer processing |
US8009705B2 (en) * | 2007-07-05 | 2011-08-30 | Mobius Photonics, Inc. | Fiber MOPA system without stimulated brillouin scattering |
WO2009039184A2 (en) * | 2007-09-19 | 2009-03-26 | Gsi Group Corporation | Link processing with high speed beam deflection |
US7922063B2 (en) | 2007-10-31 | 2011-04-12 | Tyco Healthcare Group, Lp | Powered surgical instrument |
US9498845B2 (en) | 2007-11-08 | 2016-11-22 | Applied Materials, Inc. | Pulse train annealing method and apparatus |
US7903326B2 (en) | 2007-11-30 | 2011-03-08 | Radiance, Inc. | Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system |
US7947599B2 (en) * | 2008-01-23 | 2011-05-24 | International Business Machines Corporation | Laser annealing for 3-D chip integration |
JP5826027B2 (en) | 2008-03-21 | 2015-12-02 | イムラ アメリカ インコーポレイテッド | Laser-based material processing method and system |
US20090246530A1 (en) * | 2008-03-27 | 2009-10-01 | Imra America, Inc. | Method For Fabricating Thin Films |
US20090246413A1 (en) * | 2008-03-27 | 2009-10-01 | Imra America, Inc. | Method for fabricating thin films |
US8526473B2 (en) * | 2008-03-31 | 2013-09-03 | Electro Scientific Industries | Methods and systems for dynamically generating tailored laser pulses |
EP2260551A4 (en) | 2008-03-31 | 2013-03-27 | Electro Scient Ind Inc | Combining multiple laser beams to form high repetition rate, high average power polarized laser beam |
US8476552B2 (en) * | 2008-03-31 | 2013-07-02 | Electro Scientific Industries, Inc. | Laser systems and methods using triangular-shaped tailored laser pulses for selected target classes |
US8598490B2 (en) | 2008-03-31 | 2013-12-03 | Electro Scientific Industries, Inc. | Methods and systems for laser processing a workpiece using a plurality of tailored laser pulse shapes |
GB2459669A (en) * | 2008-04-30 | 2009-11-04 | Xsil Technology Ltd | Dielectric layer pulsed laser scribing and metal layer and semiconductor wafer dicing |
DE102008028037A1 (en) * | 2008-06-12 | 2009-12-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for generating pulsed laser radiation with a fiber laser |
US8238390B2 (en) * | 2008-06-27 | 2012-08-07 | Institut National D'optique | Methods for stabilizing the output of a pulsed laser system having pulse shaping capabilities |
CA2727985C (en) * | 2008-06-27 | 2015-02-10 | Institut National D'optique | Digital laser pulse shaping module and system |
US10493559B2 (en) | 2008-07-09 | 2019-12-03 | Fei Company | Method and apparatus for laser machining |
JP5589318B2 (en) * | 2008-08-11 | 2014-09-17 | 住友電気工業株式会社 | Laser marking method |
US8125704B2 (en) | 2008-08-18 | 2012-02-28 | Raydiance, Inc. | Systems and methods for controlling a pulsed laser by combining laser signals |
US9001172B2 (en) * | 2008-09-04 | 2015-04-07 | Vardex Laser Solutions, Inc. | System for laser-based digital marking of objects with images or digital image projection with the laser beam shaped and amplified to have uniform irradiance distribution over the beam cross-section |
US7813389B2 (en) * | 2008-11-10 | 2010-10-12 | Electro Scientific Industries, Inc. | Generating laser pulses of prescribed pulse shapes programmed through combination of separate electrical and optical modulators |
US20100140238A1 (en) * | 2008-12-10 | 2010-06-10 | Continental Disc Corporation | Machining score lines in a rupture disc using laser machining |
US8309885B2 (en) * | 2009-01-15 | 2012-11-13 | Electro Scientific Industries, Inc. | Pulse temporal programmable ultrafast burst mode laser for micromachining |
US8246714B2 (en) * | 2009-01-30 | 2012-08-21 | Imra America, Inc. | Production of metal and metal-alloy nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids |
US10307862B2 (en) * | 2009-03-27 | 2019-06-04 | Electro Scientific Industries, Inc | Laser micromachining with tailored bursts of short laser pulses |
US8821514B2 (en) | 2009-06-08 | 2014-09-02 | Covidien Lp | Powered tack applier |
JP5473414B2 (en) * | 2009-06-10 | 2014-04-16 | 株式会社ディスコ | Laser processing equipment |
KR20120098623A (en) * | 2009-09-24 | 2012-09-05 | 이에스아이-파이로포토닉스 레이저스, 인코포레이티드 | Method and apparatus to scribe a line in a thin film material using a burst of laser pulses with beneficial pulse shape |
US8890025B2 (en) | 2009-09-24 | 2014-11-18 | Esi-Pyrophotonics Lasers Inc. | Method and apparatus to scribe thin film layers of cadmium telluride solar cells |
EP2507007A4 (en) * | 2009-11-30 | 2013-08-14 | Esi Pyrophotonics Lasers Inc | Method and apparatus for scribing a line in a thin film using a series of laser pulses |
KR20120113245A (en) * | 2009-12-30 | 2012-10-12 | 지에스아이 그룹 코포레이션 | Link processing with high speed beam deflection |
US8540173B2 (en) * | 2010-02-10 | 2013-09-24 | Imra America, Inc. | Production of fine particles of functional ceramic by using pulsed laser |
US8858676B2 (en) * | 2010-02-10 | 2014-10-14 | Imra America, Inc. | Nanoparticle production in liquid with multiple-pulse ultrafast laser ablation |
US20110192450A1 (en) * | 2010-02-10 | 2011-08-11 | Bing Liu | Method for producing nanoparticle solutions based on pulsed laser ablation for fabrication of thin film solar cells |
JP5693705B2 (en) | 2010-03-30 | 2015-04-01 | イムラ アメリカ インコーポレイテッド | Laser-based material processing apparatus and method |
US8263903B2 (en) | 2010-05-18 | 2012-09-11 | Institut National D'optique | Method for stablizing an output of a pulsed laser system using pulse shaping |
US20120033212A1 (en) * | 2010-07-09 | 2012-02-09 | Los Alamos National Security, Llc | Laser induced breakdown spectroscopy instrumentation for real-time elemental analysis |
JP5075951B2 (en) * | 2010-07-16 | 2012-11-21 | ギガフォトン株式会社 | Extreme ultraviolet light source device and driver laser system |
TWI393602B (en) * | 2010-08-04 | 2013-04-21 | Hortek Crystal Co Ltd | Laser process manufacturer |
US9570874B1 (en) | 2010-08-10 | 2017-02-14 | Vardex Laser Solutions, Llc | System for laser-based digital marking of objects with images or digital image projection with the laser beam shaped and amplified to have uniform irradiance distribution over the beam cross-section |
WO2012021748A1 (en) | 2010-08-12 | 2012-02-16 | Raydiance, Inc. | Polymer tubing laser micromachining |
WO2012030700A1 (en) | 2010-08-31 | 2012-03-08 | First Solar, Inc | System and method for laser modulation |
GB201014778D0 (en) | 2010-09-06 | 2010-10-20 | Baird Brian W | Picosecond laser beam shaping assembly and a method of shaping a picosecond laser beam |
US8556511B2 (en) | 2010-09-08 | 2013-10-15 | Abbott Cardiovascular Systems, Inc. | Fluid bearing to support stent tubing during laser cutting |
WO2012037468A1 (en) | 2010-09-16 | 2012-03-22 | Raydiance, Inc. | Singulation of layered materials using selectively variable laser output |
US20120160814A1 (en) * | 2010-12-28 | 2012-06-28 | Electro Scientific Industries, Inc. | Methods and systems for link processing using laser pulses with optimized temporal power profiles and polarizations |
DE102011014162B4 (en) | 2011-03-16 | 2019-12-05 | Berliner Glas Kgaa Herbert Kubatz Gmbh & Co | Method for producing a carrier of an electrostatic clamp |
US20120250707A1 (en) * | 2011-03-31 | 2012-10-04 | Electro Scientific Industries, Inc. | Stabilization of pulsed mode seed lasers |
JP2012213802A (en) * | 2011-04-01 | 2012-11-08 | Esi-Pyrophotonics Lasers Inc | Method and apparatus for scribing thin film layer of cadmium telluride solar cell |
DE112012002844T5 (en) | 2011-07-05 | 2014-04-24 | Electronic Scientific Industries, Inc. | Method for laser processing with a thermally stabilized acousto-optical beam deflector and thermally stabilized high-speed laser processing system |
JP5923884B2 (en) * | 2011-07-14 | 2016-05-25 | 株式会社ブイ・テクノロジー | Pulse laser oscillator |
JP5923885B2 (en) * | 2011-07-14 | 2016-05-25 | 株式会社ブイ・テクノロジー | Pulse laser oscillator and pulse laser oscillation control method |
CN102299201A (en) * | 2011-08-25 | 2011-12-28 | 上海市激光技术研究所 | Laser processing method for front electrode of solar cell and device |
US9333900B2 (en) | 2011-10-12 | 2016-05-10 | Imra America, Inc. | Apparatus for generating high contrast optical signals, and exemplary applications |
JP5910075B2 (en) * | 2011-12-27 | 2016-04-27 | 三星ダイヤモンド工業株式会社 | Workpiece processing method |
CN103212784A (en) * | 2012-01-19 | 2013-07-24 | 昆山思拓机器有限公司 | Rapid processing method for laser Punch |
US9155140B2 (en) | 2012-06-07 | 2015-10-06 | Gabriel Yavor | Optical waveform generator |
US9205610B1 (en) * | 2012-09-17 | 2015-12-08 | Corning Cable Systems Llc | Head-on laser shaping of optical surfaces of optical fibers, and related assemblies and methods |
CA2895969A1 (en) | 2012-12-31 | 2014-07-03 | Omni Medsci, Inc. | Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents |
US9993159B2 (en) | 2012-12-31 | 2018-06-12 | Omni Medsci, Inc. | Near-infrared super-continuum lasers for early detection of breast and other cancers |
US9500635B2 (en) | 2012-12-31 | 2016-11-22 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers for early detection of dental caries |
EP3184038B1 (en) | 2012-12-31 | 2019-02-20 | Omni MedSci, Inc. | Mouth guard with short-wave infrared super-continuum lasers for early detection of dental caries |
WO2014143276A2 (en) | 2012-12-31 | 2014-09-18 | Omni Medsci, Inc. | Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications |
US10660526B2 (en) | 2012-12-31 | 2020-05-26 | Omni Medsci, Inc. | Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors |
US9478931B2 (en) | 2013-02-04 | 2016-10-25 | Nlight Photonics Corporation | Method for actively controlling the optical output of a seed laser |
US9263855B2 (en) * | 2013-03-15 | 2016-02-16 | Nlight Photonics Corporation | Injection locking of gain switched diodes for spectral narrowing and jitter stabilization |
CN112928591B (en) * | 2013-03-15 | 2024-07-02 | 伊雷克托科学工业股份有限公司 | Phased array steering for laser beam positioning systems |
US9506869B2 (en) | 2013-10-16 | 2016-11-29 | Tsi, Incorporated | Handheld laser induced breakdown spectroscopy device |
US9343307B2 (en) | 2013-12-24 | 2016-05-17 | Ultratech, Inc. | Laser spike annealing using fiber lasers |
US10096965B2 (en) | 2014-03-13 | 2018-10-09 | Nlight, Inc. | Algorithms for rapid gating of seed suspendable pulsed fiber laser amplifiers |
US9806488B2 (en) | 2015-06-30 | 2017-10-31 | Nlight, Inc. | Adaptive boost control for gating picosecond pulsed fiber lasers |
TWI607814B (en) * | 2015-10-28 | 2017-12-11 | 新代科技股份有限公司 | Flying Laser Marking System with Real-time 3D Modeling and Method Thereof |
CN106670653A (en) * | 2015-11-11 | 2017-05-17 | 恩耐公司 | Rust free stainless steel engraving |
JP6666173B2 (en) * | 2016-03-09 | 2020-03-13 | 株式会社ディスコ | Laser processing equipment |
US11025031B2 (en) | 2016-11-29 | 2021-06-01 | Leonardo Electronics Us Inc. | Dual junction fiber-coupled laser diode and related methods |
WO2018105733A1 (en) * | 2016-12-09 | 2018-06-14 | 古河電気工業株式会社 | Pulsed laser device, processing device, and pulsed laser device control method |
US10193299B2 (en) | 2017-03-30 | 2019-01-29 | Datalogic Ip Tech S.R.L. | Modulation suppression in fiber lasers and associated devices |
US11311295B2 (en) | 2017-05-15 | 2022-04-26 | Covidien Lp | Adaptive powered stapling algorithm with calibration factor |
KR102612426B1 (en) * | 2017-07-12 | 2023-12-12 | 코히어 테크놀로지스, 아이엔씨. | Data modulation technique based on ZAK transformation |
JP7039922B2 (en) * | 2017-10-16 | 2022-03-23 | 株式会社島津製作所 | Laser processing equipment |
US11207066B2 (en) | 2017-10-30 | 2021-12-28 | Covidien Lp | Apparatus for endoscopic procedures |
US12185949B2 (en) | 2017-10-30 | 2025-01-07 | Covidien Lp | Apparatus for endoscopic procedures |
US10987104B2 (en) | 2017-10-30 | 2021-04-27 | Covidien Lp | Apparatus for endoscopic procedures |
EP3697564B1 (en) * | 2017-11-20 | 2023-10-18 | IPG Photonics Corporation | System and method laser for processing of materials |
US11712750B2 (en) | 2018-03-23 | 2023-08-01 | Lawrence Livermore National Security, Llc | Laser drilling and machining enhancement using gated CW and short pulsed lasers |
CN108393589A (en) * | 2018-04-25 | 2018-08-14 | 上海西邦电气有限公司 | A kind of sighting device and application method of laser obstacle eliminating system |
AU2019203404B2 (en) | 2018-05-15 | 2024-11-07 | Howmedica Osteonics Corp. | Fabrication of components using shaped energy beam profiles |
US11497490B2 (en) | 2018-07-09 | 2022-11-15 | Covidien Lp | Powered surgical devices including predictive motor control |
US12137902B2 (en) | 2018-07-25 | 2024-11-12 | Covidien Lp | Adaptive anti-twitch algorithm for powered surgical devices |
EP3837743A4 (en) | 2018-08-13 | 2022-05-18 | Leonardo Electronics US Inc. | USING A METAL-CORE Printed Circuit Board (PCB) TO CREATE AN ULTRA-THIN, HIGH-CURRENT PULSE DRIVER |
US11056854B2 (en) | 2018-08-14 | 2021-07-06 | Leonardo Electronics Us Inc. | Laser assembly and related methods |
US11197734B2 (en) | 2018-10-30 | 2021-12-14 | Covidien Lp | Load sensing devices for use in surgical instruments |
US11369372B2 (en) | 2018-11-28 | 2022-06-28 | Covidien Lp | Surgical stapler adapter with flexible cable assembly, flexible fingers, and contact clips |
US11296481B2 (en) | 2019-01-09 | 2022-04-05 | Leonardo Electronics Us Inc. | Divergence reshaping array |
US11202635B2 (en) | 2019-02-04 | 2021-12-21 | Covidien Lp | Programmable distal tilt position of end effector for powered surgical devices |
US11376006B2 (en) | 2019-02-06 | 2022-07-05 | Covidien Lp | End effector force measurement with digital drive circuit |
US11219461B2 (en) | 2019-03-08 | 2022-01-11 | Covidien Lp | Strain gauge stabilization in a surgical device |
US11752571B1 (en) | 2019-06-07 | 2023-09-12 | Leonardo Electronics Us Inc. | Coherent beam coupler |
EP3792683A1 (en) | 2019-09-16 | 2021-03-17 | Leonardo Electronics US Inc. | Asymmetric input intensity hexagonal homogenizer |
US20220376454A1 (en) | 2019-09-19 | 2022-11-24 | Inter-University Research Institute Corporation National Institutes Of Natural Sciences | Laser device and pulse width-changing method |
US11458244B2 (en) | 2020-02-07 | 2022-10-04 | Covidien Lp | Irrigating surgical apparatus with positive pressure fluid |
US11553913B2 (en) | 2020-02-11 | 2023-01-17 | Covidien Lp | Electrically-determining tissue cut with surgical stapling apparatus |
DE102020104907A1 (en) * | 2020-02-25 | 2021-08-26 | Berliner Glas GmbH | Process for the production of a component by atomic diffusion bonding |
US12029470B2 (en) | 2020-05-21 | 2024-07-09 | Covidien Lp | Simultaneous RF monopolar calibration using a shared return electrode |
US11622768B2 (en) | 2020-07-13 | 2023-04-11 | Covidien Lp | Methods and structure for confirming proper assembly of powered surgical stapling systems |
US12193884B2 (en) | 2020-11-17 | 2025-01-14 | Covidien Lp | Contactless force measurement of motor torque in powered surgical device |
US11744580B2 (en) | 2020-11-24 | 2023-09-05 | Covidien Lp | Long stapler reloads with continuous cartridge |
US11653919B2 (en) | 2020-11-24 | 2023-05-23 | Covidien Lp | Stapler line reinforcement continuity |
US12016556B2 (en) | 2021-05-03 | 2024-06-25 | Covidien Lp | Handheld electromechanical surgical system |
US11684362B2 (en) | 2021-06-07 | 2023-06-27 | Covidien Lp | Handheld electromechanical surgical system |
US11771432B2 (en) | 2021-06-29 | 2023-10-03 | Covidien Lp | Stapling and cutting to default values in the event of strain gauge data integrity loss |
US12161341B2 (en) | 2021-09-07 | 2024-12-10 | Covidien Lp | Slow speed staple and staple relaxation for stapling optimization |
CN113927158B (en) * | 2021-10-25 | 2023-11-17 | 佛山科学技术学院 | A laser welding process method based on power waveform modulation |
US11832823B2 (en) | 2022-02-08 | 2023-12-05 | Covidien Lp | Determination of anvil release during anastomosis |
CN116799110B (en) * | 2022-03-01 | 2024-04-26 | 珠海东辉半导体装备有限公司 | Method for removing and repairing Mini LED chip |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8338746B2 (en) * | 2000-01-10 | 2012-12-25 | Electro Scientific Industries, Inc. | Method for processing a memory link with a set of at least two laser pulses |
Family Cites Families (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3806829A (en) * | 1971-04-13 | 1974-04-23 | Sys Inc | Pulsed laser system having improved energy control with improved power supply laser emission energy sensor and adjustable repetition rate control features |
US3740523A (en) * | 1971-12-30 | 1973-06-19 | Bell Telephone Labor Inc | Encoding of read only memory by laser vaporization |
DE2241850C3 (en) * | 1972-08-25 | 1978-06-29 | European Rotogravure Association, 8000 Muenchen | Process for the production of printing forms by means of an energy beam |
US3869210A (en) * | 1973-11-02 | 1975-03-04 | Nasa | Laser system with an antiresonant optical ring |
US3995231A (en) | 1974-01-30 | 1976-11-30 | Harris-Intertype Corporation | Mode-locked cavity-dumped laser |
US4044222A (en) | 1976-01-16 | 1977-08-23 | Western Electric Company, Inc. | Method of forming tapered apertures in thin films with an energy beam |
US4114018A (en) | 1976-09-30 | 1978-09-12 | Lasag Ag | Method for ablating metal workpieces with laser radiation |
JPS56126912A (en) | 1980-03-12 | 1981-10-05 | Mitsubishi Petrochemical Co | Method of producing high polymer electret element |
JPS56143434A (en) | 1980-04-10 | 1981-11-09 | Dainippon Screen Mfg Co Ltd | Control method of light beam for recording in image scanning recorder |
FR2500149B1 (en) | 1981-02-17 | 1985-12-06 | Poudres & Explosifs Ste Nale | PROPULSIVE LOADING BIREGIME WITH TRUMPET HAVING A STAR SECTION |
US4399345A (en) | 1981-06-09 | 1983-08-16 | Analog Devices, Inc. | Laser trimming of circuit elements on semiconductive substrates |
US4483005A (en) | 1981-09-24 | 1984-11-13 | Teradyne, Inc. | Affecting laser beam pulse width |
US4535219A (en) * | 1982-10-12 | 1985-08-13 | Xerox Corporation | Interfacial blister bonding for microinterconnections |
US4414059A (en) | 1982-12-09 | 1983-11-08 | International Business Machines Corporation | Far UV patterning of resist materials |
US4467172A (en) * | 1983-01-03 | 1984-08-21 | Jerry Ehrenwald | Method and apparatus for laser engraving diamonds with permanent identification markings |
GB2138584B (en) * | 1983-04-23 | 1986-09-17 | Standard Telephones Cables Ltd | Acousto-optic deflector systems |
US4532402A (en) * | 1983-09-02 | 1985-07-30 | Xrl, Inc. | Method and apparatus for positioning a focused beam on an integrated circuit |
US4645308A (en) * | 1984-12-21 | 1987-02-24 | The United States Of America As Represented By The Department Of Energy | Low voltage solid-state lateral coloration electrochromic device |
US4646308A (en) * | 1985-09-30 | 1987-02-24 | Spectra-Physics, Inc. | Synchronously pumped dye laser using ultrashort pump pulses |
JPH0356184Y2 (en) | 1985-11-19 | 1991-12-17 | ||
US5329152A (en) * | 1986-11-26 | 1994-07-12 | Quick Technologies Ltd. | Ablative etch resistant coating for laser personalization of integrated circuits |
JPS63136545U (en) | 1987-03-02 | 1988-09-08 | ||
JPS63264286A (en) | 1987-04-20 | 1988-11-01 | Nec Corp | Laser beam trimming device |
US4872140A (en) | 1987-05-19 | 1989-10-03 | Gazelle Microcircuits, Inc. | Laser programmable memory array |
JPH0760256B2 (en) | 1987-05-22 | 1995-06-28 | 富士写真フイルム株式会社 | Packaging material for photographic materials |
JPH0693402B2 (en) | 1987-06-03 | 1994-11-16 | 株式会社日立製作所 | Laser trimming method and trimming apparatus |
US4794615A (en) | 1987-06-12 | 1988-12-27 | Spectra Diode Laboratories, Inc. | End and side pumped laser |
US4742522A (en) * | 1987-06-18 | 1988-05-03 | Trw Inc. | Free-electron laser system with raman amplifier outcoupling |
JPS6444295U (en) | 1987-09-14 | 1989-03-16 | ||
US4932031A (en) * | 1987-12-04 | 1990-06-05 | Alfano Robert R | Chromium-doped foresterite laser system |
US4780177A (en) | 1988-02-05 | 1988-10-25 | General Electric Company | Excimer laser patterning of a novel resist |
US4914663A (en) * | 1988-04-22 | 1990-04-03 | The Board Of Trustees Of Leland Stanford, Jr. University | Generation of short high peak power pulses from an injection mode-locked Q-switched laser oscillator |
JPH01289586A (en) | 1988-05-13 | 1989-11-21 | Nec Corp | Laser trimming device |
US4878222A (en) | 1988-08-05 | 1989-10-31 | Eastman Kodak Company | Diode laser with improved means for electrically modulating the emitted light beam intensity including turn-on and turn-off and electrically controlling the position of the emitted laser beam spot |
JPH0289586A (en) | 1988-09-27 | 1990-03-29 | Nec Corp | Laser trimming device |
US5059764A (en) | 1988-10-31 | 1991-10-22 | Spectra-Physics, Inc. | Diode-pumped, solid state laser-based workstation for precision materials processing and machining |
US4930901A (en) * | 1988-12-23 | 1990-06-05 | Electro Scientific Industries, Inc. | Method of and apparatus for modulating a laser beam |
US5005946A (en) | 1989-04-06 | 1991-04-09 | Grumman Aerospace Corporation | Multi-channel filter system |
US5034951A (en) * | 1989-06-26 | 1991-07-23 | Cornell Research Foundation, Inc. | Femtosecond ultraviolet laser using ultra-thin beta barium borate |
FR2650731B1 (en) | 1989-08-09 | 1991-10-04 | Inst Fs Rech Expl Mer | HYDRODYNAMIC TRAILER OPENING DEVICE |
US5139606A (en) * | 1989-12-05 | 1992-08-18 | Massachusetts Institute Of Technology | Laser bilayer etching of GaAs surfaces |
US5021362A (en) * | 1989-12-29 | 1991-06-04 | At&T Bell Laboratories | Laser link blowing in integrateed circuit fabrication |
US5042040A (en) * | 1990-03-30 | 1991-08-20 | At&T Bell Laboratories | Amplitude noise reduction for optically pumped modelocked lasers |
US5310989A (en) * | 1990-04-10 | 1994-05-10 | The United States Of America As Represented By The Secretary Of The Navy | Method for laser-assisted etching of III-V and II-VI semiconductor compounds using chlorofluorocarbon ambients |
JPH03297588A (en) | 1990-04-17 | 1991-12-27 | Nec Corp | Laser trimming device |
US5236551A (en) * | 1990-05-10 | 1993-08-17 | Microelectronics And Computer Technology Corporation | Rework of polymeric dielectric electrical interconnect by laser photoablation |
JP3150322B2 (en) | 1990-05-18 | 2001-03-26 | 株式会社日立製作所 | Wiring cutting method by laser and laser processing device |
US5201437A (en) | 1990-08-09 | 1993-04-13 | Mauser-Werke Gmbh | Widemouth steel drum of conical shape |
JPH0498801A (en) | 1990-08-16 | 1992-03-31 | Matsushita Electric Ind Co Ltd | Laser trimming device |
US5242858A (en) * | 1990-09-07 | 1993-09-07 | Canon Kabushiki Kaisha | Process for preparing semiconductor device by use of a flattening agent and diffusion |
AU659131B2 (en) | 1991-01-17 | 1995-05-11 | United Distillers Plc | Dynamic laser marking |
US5268911A (en) | 1991-07-10 | 1993-12-07 | Young Eddie H | X-cut crystal quartz acousto-optic modulator |
US5293025A (en) * | 1991-08-01 | 1994-03-08 | E. I. Du Pont De Nemours And Company | Method for forming vias in multilayer circuits |
US5280491A (en) * | 1991-08-02 | 1994-01-18 | Lai Shui T | Two dimensional scan amplifier laser |
US5300756A (en) * | 1991-10-22 | 1994-04-05 | General Scanning, Inc. | Method for severing integrated-circuit connection paths by a phase-plate-adjusted laser beam |
DE69232640T2 (en) * | 1991-11-06 | 2003-02-06 | Shui T Lai | DEVICE FOR CORNEAL SURGERY |
US5175664A (en) | 1991-12-05 | 1992-12-29 | Diels Jean Claude | Discharge of lightning with ultrashort laser pulses |
US5197074A (en) * | 1991-12-26 | 1993-03-23 | Electro Scientific Industries, Inc. | Multi-function intra-resonator loss modulator and method of operating same |
DE4229399C2 (en) * | 1992-09-03 | 1999-05-27 | Deutsch Zentr Luft & Raumfahrt | Method and device for producing a functional structure of a semiconductor component |
DE4229397C2 (en) | 1992-09-03 | 1996-11-21 | Deutsche Forsch Luft Raumfahrt | Device for removing material from a target |
US5265114C1 (en) | 1992-09-10 | 2001-08-21 | Electro Scient Ind Inc | System and method for selectively laser processing a target structure of one or more materials of a multimaterial multilayer device |
JPH06114582A (en) * | 1992-10-06 | 1994-04-26 | Mitsui Petrochem Ind Ltd | Pulsed laser irradiation method for plated steel sheet |
JP2963588B2 (en) * | 1992-10-30 | 1999-10-18 | 日立建機株式会社 | Pulse laser processing machine and pulse laser processing method |
US5520679A (en) | 1992-12-03 | 1996-05-28 | Lasersight, Inc. | Ophthalmic surgery method using non-contact scanning laser |
US5374590A (en) | 1993-04-28 | 1994-12-20 | International Business Machines Corporation | Fabrication and laser deletion of microfuses |
GB9308981D0 (en) * | 1993-04-30 | 1993-06-16 | Science And Engineering Resear | Laser-excited x-ray source |
WO1995007152A1 (en) * | 1993-09-08 | 1995-03-16 | Uvtech Systems, Inc. | Surface processing |
US5633900A (en) * | 1993-10-04 | 1997-05-27 | Hassal; Scott B. | Method and apparatus for production of radioactive iodine |
JP2531453B2 (en) | 1993-10-28 | 1996-09-04 | 日本電気株式会社 | Laser processing equipment |
US5689519A (en) | 1993-12-20 | 1997-11-18 | Imra America, Inc. | Environmentally stable passively modelocked fiber laser pulse source |
JPH07183606A (en) * | 1993-12-21 | 1995-07-21 | Sony Corp | Laser beam generator |
DE4404141A1 (en) * | 1994-02-09 | 1995-08-10 | Fraunhofer Ges Forschung | Device and method for laser beam shaping, especially in laser beam surface processing |
US5611946A (en) * | 1994-02-18 | 1997-03-18 | New Wave Research | Multi-wavelength laser system, probe station and laser cutter system using the same |
US5558789A (en) | 1994-03-02 | 1996-09-24 | University Of Florida | Method of applying a laser beam creating micro-scale surface structures prior to deposition of film for increased adhesion |
US5451785A (en) * | 1994-03-18 | 1995-09-19 | Sri International | Upconverting and time-gated two-dimensional infrared transillumination imaging |
US5400350A (en) | 1994-03-31 | 1995-03-21 | Imra America, Inc. | Method and apparatus for generating high energy ultrashort pulses |
US5656186A (en) | 1994-04-08 | 1997-08-12 | The Regents Of The University Of Michigan | Method for controlling configuration of laser induced breakdown and ablation |
JPH07288353A (en) * | 1994-04-18 | 1995-10-31 | Sony Corp | Exciting method for solid-state laser |
JP2526806B2 (en) | 1994-04-26 | 1996-08-21 | 日本電気株式会社 | Semiconductor laser and its operating method |
US5513194A (en) * | 1994-06-30 | 1996-04-30 | Massachusetts Institute Of Technology | Stretched-pulse fiber laser |
US5593606A (en) * | 1994-07-18 | 1997-01-14 | Electro Scientific Industries, Inc. | Ultraviolet laser system and method for forming vias in multi-layered targets |
US5841099A (en) * | 1994-07-18 | 1998-11-24 | Electro Scientific Industries, Inc. | Method employing UV laser pulses of varied energy density to form depthwise self-limiting blind vias in multilayered targets |
JPH0857678A (en) * | 1994-08-23 | 1996-03-05 | Seiko Epson Corp | Laser processing equipment |
US5790574A (en) * | 1994-08-24 | 1998-08-04 | Imar Technology Company | Low cost, high average power, high brightness solid state laser |
US5539764A (en) | 1994-08-24 | 1996-07-23 | Jamar Technologies Co. | Laser generated X-ray source |
US5742634A (en) | 1994-08-24 | 1998-04-21 | Imar Technology Co. | Picosecond laser |
US5475527A (en) * | 1994-09-26 | 1995-12-12 | The Regents Of The University Of California | Fourier plane image amplifier |
US5662822A (en) * | 1994-10-13 | 1997-09-02 | Hitachi Construction Machinery Co., Ltd. | Dam bar cutting apparatus and dam bar cutting method |
DE69532479T2 (en) * | 1994-11-15 | 2004-11-04 | Jmar Technology Co., San Diego | INEXPENSIVE SOLID LASER WITH HIGH MEDIUM PERFORMANCE AND HIGH BRIGHTNESS |
US5685995A (en) * | 1994-11-22 | 1997-11-11 | Electro Scientific Industries, Inc. | Method for laser functional trimming of films and devices |
JP3027695B2 (en) * | 1994-12-02 | 2000-04-04 | 新日本製鐵株式会社 | Dull processing method for cold rolled roll surface |
US5592327A (en) | 1994-12-16 | 1997-01-07 | Clark-Mxr, Inc. | Regenerative amplifier incorporating a spectral filter within the resonant cavity |
US5847960A (en) | 1995-03-20 | 1998-12-08 | Electro Scientific Industries, Inc. | Multi-tool positioning system |
US5751585A (en) | 1995-03-20 | 1998-05-12 | Electro Scientific Industries, Inc. | High speed, high accuracy multi-stage tool positioning system |
US5786560A (en) * | 1995-03-31 | 1998-07-28 | Panasonic Technologies, Inc. | 3-dimensional micromachining with femtosecond laser pulses |
US5694408A (en) | 1995-06-07 | 1997-12-02 | Mcdonnell Douglas Corporation | Fiber optic laser system and associated lasing method |
JPH09107168A (en) * | 1995-08-07 | 1997-04-22 | Mitsubishi Electric Corp | Laser processing method of wiring board, laser processing device of wiring board and carbon dioxide gas laser oscillator for wiring board processing |
US6373026B1 (en) * | 1996-07-31 | 2002-04-16 | Mitsubishi Denki Kabushiki Kaisha | Laser beam machining method for wiring board, laser beam machining apparatus for wiring board, and carbonic acid gas laser oscillator for machining wiring board |
US5627848A (en) | 1995-09-05 | 1997-05-06 | Imra America, Inc. | Apparatus for producing femtosecond and picosecond pulses from modelocked fiber lasers cladding pumped with broad area diode laser arrays |
US5756924A (en) | 1995-09-28 | 1998-05-26 | The Regents Of The University Of California | Multiple laser pulse ignition method and apparatus |
US5730811A (en) * | 1995-12-21 | 1998-03-24 | General Electric Company | Cavity dumped laser shock peening process |
JPH09183128A (en) * | 1995-12-28 | 1997-07-15 | Canon Inc | Manufacture of resin parts and manufacture of liquid jet recording head |
US5720894A (en) | 1996-01-11 | 1998-02-24 | The Regents Of The University Of California | Ultrashort pulse high repetition rate laser system for biological tissue processing |
US6150630A (en) | 1996-01-11 | 2000-11-21 | The Regents Of The University Of California | Laser machining of explosives |
US5867305A (en) * | 1996-01-19 | 1999-02-02 | Sdl, Inc. | Optical amplifier with high energy levels systems providing high peak powers |
US5745284A (en) * | 1996-02-23 | 1998-04-28 | President And Fellows Of Harvard College | Solid-state laser source of tunable narrow-bandwidth ultraviolet radiation |
US5759428A (en) * | 1996-03-15 | 1998-06-02 | International Business Machines Corporation | Method of laser cutting a metal line on an MR head |
WO1997046349A1 (en) * | 1996-06-05 | 1997-12-11 | Burgess Larry W | Blind via laser drilling system |
US5956354A (en) * | 1996-06-06 | 1999-09-21 | The University Of Maryland Baltimore County | Dual media laser with mode locking |
US5940418A (en) * | 1996-06-13 | 1999-08-17 | Jmar Technology Co. | Solid-state laser system for ultra-violet micro-lithography |
US5822345A (en) * | 1996-07-08 | 1998-10-13 | Presstek, Inc. | Diode-pumped laser system and method |
US5864430A (en) * | 1996-09-10 | 1999-01-26 | Sandia Corporation | Gaussian beam profile shaping apparatus, method therefor and evaluation thereof |
US5880877A (en) | 1997-01-28 | 1999-03-09 | Imra America, Inc. | Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier |
US5998759A (en) * | 1996-12-24 | 1999-12-07 | General Scanning, Inc. | Laser processing |
US6025256A (en) * | 1997-01-06 | 2000-02-15 | Electro Scientific Industries, Inc. | Laser based method and system for integrated circuit repair or reconfiguration |
US6151338A (en) | 1997-02-19 | 2000-11-21 | Sdl, Inc. | High power laser optical amplifier system |
US5854805A (en) | 1997-03-21 | 1998-12-29 | Lumonics Inc. | Laser machining of a workpiece |
EP2648039A3 (en) | 1997-03-21 | 2014-07-09 | Imra America, Inc. | High energy optical fiber amplifier for picosecond-nanosecond pulses for advanced material processing applications |
US6208458B1 (en) * | 1997-03-21 | 2001-03-27 | Imra America, Inc. | Quasi-phase-matched parametric chirped pulse amplification systems |
US5848080A (en) | 1997-05-12 | 1998-12-08 | Dahm; Jonathan S. | Short pulsewidth high pulse repetition frequency laser |
US6160568A (en) | 1997-05-27 | 2000-12-12 | Sdl, Inc. | Laser marking system and method of energy control |
US6156030A (en) | 1997-06-04 | 2000-12-05 | Y-Beam Technologies, Inc. | Method and apparatus for high precision variable rate material removal and modification |
US5818630A (en) | 1997-06-25 | 1998-10-06 | Imra America, Inc. | Single-mode amplifiers and compressors based on multi-mode fibers |
US6097741A (en) * | 1998-02-17 | 2000-08-01 | Calmar Optcom, Inc. | Passively mode-locked fiber lasers |
WO1999007439A1 (en) * | 1997-08-07 | 1999-02-18 | Pharos Optics, Inc. | Dental laser and method of using same |
CN1214549A (en) * | 1997-09-12 | 1999-04-21 | 西门子公司 | Improved laser fuse links and methods therefor |
US5907570A (en) * | 1997-10-22 | 1999-05-25 | Spectra-Physics, Inc. | Diode pumped laser using gain mediums with strong thermal focussing |
US5920668A (en) | 1997-10-24 | 1999-07-06 | Imra America, Inc. | Compact fiber laser unit |
GB2331038A (en) | 1997-11-06 | 1999-05-12 | Westwind Air Bearings Ltd | Apparatus for forming holes in sheet material |
KR100369688B1 (en) * | 1997-12-12 | 2003-01-30 | 마쯔시다덴기산교 가부시키가이샤 | Laser machining method, laser machining device and control method of laser machining |
JPH11197863A (en) * | 1998-01-09 | 1999-07-27 | Nikon Corp | Laser beam machining device |
JP3352934B2 (en) * | 1998-01-21 | 2002-12-03 | 理化学研究所 | High intensity ultrashort pulse laser processing method and apparatus |
US5953354A (en) * | 1998-02-03 | 1999-09-14 | General Electric Co. | Laser resonator optical alignment |
TW395123B (en) * | 1998-02-06 | 2000-06-21 | Winbond Electronics Corp | Linear filter and the method thereof |
US6072811A (en) | 1998-02-11 | 2000-06-06 | Imra America | Integrated passively modelocked fiber lasers and method for constructing the same |
US6034975A (en) | 1998-03-09 | 2000-03-07 | Imra America, Inc. | High power, passively modelocked fiber laser, and method of construction |
JP3512624B2 (en) * | 1998-03-13 | 2004-03-31 | 三菱電機株式会社 | Laser processing apparatus and method for wiring board processing |
US5987049A (en) | 1998-04-24 | 1999-11-16 | Time-Bandwidth Products Ag | Mode locked solid-state laser pumped by a non-diffraction-limited pumping source and method for generating pulsed laser radiation by pumping with a non-diffraction-limited pumping beam |
US6268586B1 (en) * | 1998-04-30 | 2001-07-31 | The Regents Of The University Of California | Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining |
JPH11345880A (en) | 1998-06-01 | 1999-12-14 | Fujitsu Ltd | Semiconductor device and manufacturing method thereof |
US5966339A (en) * | 1998-06-02 | 1999-10-12 | International Business Machines Corporation | Programmable/reprogrammable fuse |
US6057180A (en) * | 1998-06-05 | 2000-05-02 | Electro Scientific Industries, Inc. | Method of severing electrically conductive links with ultraviolet laser output |
US6181728B1 (en) * | 1998-07-02 | 2001-01-30 | General Scanning, Inc. | Controlling laser polarization |
GB9819338D0 (en) * | 1998-09-04 | 1998-10-28 | Philips Electronics Nv | Laser crystallisation of thin films |
US6996052B1 (en) * | 1998-09-09 | 2006-02-07 | Mitsubishi Chemical Corporation | Optical information recording medium and optical recording method |
US6300590B1 (en) | 1998-12-16 | 2001-10-09 | General Scanning, Inc. | Laser processing |
US5974060A (en) * | 1999-01-05 | 1999-10-26 | Raytheon Company | Multi-mode laser oscillator with large intermode spacing |
US6324195B1 (en) | 1999-01-13 | 2001-11-27 | Kaneka Corporation | Laser processing of a thin film |
US6381391B1 (en) | 1999-02-19 | 2002-04-30 | The Regents Of The University Of Michigan | Method and system for generating a broadband spectral continuum and continuous wave-generating system utilizing same |
US6346686B1 (en) * | 1999-04-14 | 2002-02-12 | Hughes Electronics Corporation | Apparatus and method for enhanced laser machining by optimization of pulse duration and spacing |
US6252195B1 (en) * | 1999-04-26 | 2001-06-26 | Ethicon, Inc. | Method of forming blind holes in surgical needles using a diode pumped Nd-YAG laser |
US6341029B1 (en) * | 1999-04-27 | 2002-01-22 | Gsi Lumonics, Inc. | Method and apparatus for shaping a laser-beam intensity profile by dithering |
EP1173303A1 (en) | 1999-04-27 | 2002-01-23 | GSI Lumonics Inc. | A system and method for material processing using multiple laser beams |
US6285002B1 (en) | 1999-05-10 | 2001-09-04 | Bryan Kok Ann Ngoi | Three dimensional micro machining with a modulated ultra-short laser pulse |
TW482705B (en) | 1999-05-28 | 2002-04-11 | Electro Scient Ind Inc | Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias |
US6449294B1 (en) * | 1999-07-26 | 2002-09-10 | Pls Liquidating Llc | Single dominant spike output erbium laser |
US6472295B1 (en) | 1999-08-27 | 2002-10-29 | Jmar Research, Inc. | Method and apparatus for laser ablation of a target material |
AU6875000A (en) | 1999-09-10 | 2001-04-17 | Nikon Corporation | Exposure device with laser device |
JP4517271B2 (en) * | 1999-09-10 | 2010-08-04 | 株式会社ニコン | Exposure apparatus equipped with a laser device |
JP2001170788A (en) | 1999-12-10 | 2001-06-26 | Canon Inc | Method of laser machining and device therfor |
US20040134894A1 (en) * | 1999-12-28 | 2004-07-15 | Bo Gu | Laser-based system for memory link processing with picosecond lasers |
US6281471B1 (en) | 1999-12-28 | 2001-08-28 | Gsi Lumonics, Inc. | Energy-efficient, laser-based method and system for processing target material |
US6340806B1 (en) * | 1999-12-28 | 2002-01-22 | General Scanning Inc. | Energy-efficient method and system for processing target material using an amplified, wavelength-shifted pulse train |
US7838794B2 (en) | 1999-12-28 | 2010-11-23 | Gsi Group Corporation | Laser-based method and system for removing one or more target link structures |
US7723642B2 (en) * | 1999-12-28 | 2010-05-25 | Gsi Group Corporation | Laser-based system for memory link processing with picosecond lasers |
CN1276495C (en) | 2000-01-10 | 2006-09-20 | 电子科学工业公司 | Laser system and method for processing memory link with burst of laser pulses having ultrashort pulsewidths |
US6887804B2 (en) * | 2000-01-10 | 2005-05-03 | Electro Scientific Industries, Inc. | Passivation processing over a memory link |
JP4474000B2 (en) * | 2000-01-20 | 2010-06-02 | キヤノン株式会社 | Projection device |
US6541731B2 (en) * | 2000-01-25 | 2003-04-01 | Aculight Corporation | Use of multiple laser sources for rapid, flexible machining and production of vias in multi-layered substrates |
US6552301B2 (en) | 2000-01-25 | 2003-04-22 | Peter R. Herman | Burst-ultrafast laser machining method |
DE10006516C2 (en) * | 2000-02-15 | 2002-01-10 | Datacard Corp | Process for processing workpieces using multiple laser beams |
JP3479878B2 (en) | 2000-03-27 | 2003-12-15 | 住友重機械工業株式会社 | Laser processing method and processing apparatus |
US6421166B1 (en) * | 2000-05-09 | 2002-07-16 | The Regents Of The University Of California | Compact, flexible, frequency agile parametric wavelength converter |
JP3522654B2 (en) | 2000-06-09 | 2004-04-26 | 住友重機械工業株式会社 | Laser processing apparatus and processing method |
CN1159129C (en) * | 2000-08-29 | 2004-07-28 | 三菱电机株式会社 | Laser processing device |
WO2002024395A1 (en) * | 2000-09-20 | 2002-03-28 | Electro Scientific Industries, Inc. | Laser processing of alumina or metals on or embedded therein |
US6777645B2 (en) | 2001-03-29 | 2004-08-17 | Gsi Lumonics Corporation | High-speed, precision, laser-based method and system for processing material of one or more targets within a field |
WO2002090037A1 (en) * | 2001-05-09 | 2002-11-14 | Electro Scientific Industries, Inc. | Micromachining with high-energy, intra-cavity q-switched co2 laser pulses |
JP2003053576A (en) | 2001-08-16 | 2003-02-26 | Sumitomo Heavy Ind Ltd | Method and device for laser beam machining |
JP3490414B2 (en) | 2001-08-16 | 2004-01-26 | 住友重機械工業株式会社 | Laser processing method and apparatus |
US6995841B2 (en) | 2001-08-28 | 2006-02-07 | Rice University | Pulsed-multiline excitation for color-blind fluorescence detection |
JP4035981B2 (en) | 2001-10-26 | 2008-01-23 | 松下電工株式会社 | Circuit formation method using ultrashort pulse laser |
US6664498B2 (en) | 2001-12-04 | 2003-12-16 | General Atomics | Method and apparatus for increasing the material removal rate in laser machining |
US20040057475A1 (en) | 2002-09-24 | 2004-03-25 | Robert Frankel | High-power pulsed laser device |
JP3822188B2 (en) * | 2002-12-26 | 2006-09-13 | 日立ビアメカニクス株式会社 | Multi-beam laser drilling machine |
TWI248244B (en) | 2003-02-19 | 2006-01-21 | J P Sercel Associates Inc | System and method for cutting using a variable astigmatic focal beam spot |
DE112004001540T5 (en) * | 2003-08-19 | 2006-11-23 | Electro Scientific Industries, Inc., Portland | Generation of sets of customized laser pulses |
US7923306B2 (en) | 2004-06-18 | 2011-04-12 | Electro Scientific Industries, Inc. | Semiconductor structure processing using multiple laser beam spots |
-
1999
- 1999-12-28 US US09/473,926 patent/US6281471B1/en not_active Expired - Lifetime
-
2000
- 2000-12-19 WO PCT/US2000/034470 patent/WO2001047659A1/en active IP Right Grant
- 2000-12-19 JP JP2001548238A patent/JP5175416B2/en not_active Expired - Fee Related
- 2000-12-19 KR KR1020027008479A patent/KR100829008B1/en active IP Right Grant
- 2000-12-19 DE DE60009348T patent/DE60009348T2/en not_active Expired - Fee Related
- 2000-12-19 EP EP00991416A patent/EP1244534B1/en not_active Expired - Lifetime
-
2001
- 2001-02-07 TW TW089128014A patent/TW478025B/en not_active IP Right Cessation
- 2001-08-28 US US09/941,389 patent/US6727458B2/en not_active Expired - Lifetime
-
2004
- 2004-04-06 US US10/818,920 patent/US20040188399A1/en not_active Abandoned
-
2005
- 2005-12-19 US US11/305,129 patent/US7582848B2/en not_active Expired - Fee Related
-
2007
- 2007-08-22 US US11/843,229 patent/US7750268B2/en not_active Expired - Fee Related
-
2008
- 2008-01-04 US US11/969,275 patent/US7679030B2/en not_active Expired - Fee Related
- 2008-01-04 US US11/969,264 patent/US20080105664A1/en not_active Abandoned
-
2012
- 2012-03-12 US US13/417,613 patent/US20120187098A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8338746B2 (en) * | 2000-01-10 | 2012-12-25 | Electro Scientific Industries, Inc. | Method for processing a memory link with a set of at least two laser pulses |
Non-Patent Citations (1)
Title |
---|
Decision by Patent Trial and Appeal Board, Patent Interference Numbers 105,846 and 105,861, November 2012, 3 pages. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9054494B2 (en) | 2011-07-11 | 2015-06-09 | V Technology Co., Ltd. | Pulsed laser oscillator and method for controlling pulsed laser oscillation |
WO2016201278A1 (en) * | 2015-06-10 | 2016-12-15 | Ipg Photonics Corporation | Laser beam energy modification to reduce back-wall strikes during laser drilling |
Also Published As
Publication number | Publication date |
---|---|
JP5175416B2 (en) | 2013-04-03 |
EP1244534A1 (en) | 2002-10-02 |
US6281471B1 (en) | 2001-08-28 |
US7750268B2 (en) | 2010-07-06 |
US20020023901A1 (en) | 2002-02-28 |
KR100829008B1 (en) | 2008-05-14 |
US7679030B2 (en) | 2010-03-16 |
KR20020080355A (en) | 2002-10-23 |
US7582848B2 (en) | 2009-09-01 |
US6727458B2 (en) | 2004-04-27 |
US20080035614A1 (en) | 2008-02-14 |
WO2001047659A8 (en) | 2001-08-09 |
US20060086702A1 (en) | 2006-04-27 |
JP2003518440A (en) | 2003-06-10 |
EP1244534B1 (en) | 2004-03-24 |
US20080105664A1 (en) | 2008-05-08 |
WO2001047659A1 (en) | 2001-07-05 |
TW478025B (en) | 2002-03-01 |
US20080099453A1 (en) | 2008-05-01 |
DE60009348D1 (en) | 2004-04-29 |
DE60009348T2 (en) | 2004-08-19 |
US20040188399A1 (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7679030B2 (en) | Energy-efficient, laser-based method and system for processing target material | |
US6703582B2 (en) | Energy-efficient method and system for processing target material using an amplified, wavelength-shifted pulse train | |
US7723642B2 (en) | Laser-based system for memory link processing with picosecond lasers | |
US7838794B2 (en) | Laser-based method and system for removing one or more target link structures | |
KR100952530B1 (en) | Laser based system for memory link processing using picosecond laser | |
KR101370156B1 (en) | Laser-based method and system for removing one or more target link structures | |
JP2003518440A5 (en) | ||
KR100829009B1 (en) | Energy-efficient laser-based method and system for target material processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:GSI GROUP CORPORATION;REEL/FRAME:029566/0221 Effective date: 20121227 |
|
AS | Assignment |
Owner name: GSI GROUP CORPORATION, MASSACHUSETTS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT R/F 029566/0221;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:030343/0275 Effective date: 20130503 |
|
AS | Assignment |
Owner name: ELECTRO SCIENTIFIC INDUSTRIES, INC., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GSI GROUP CORPORATION;GSI GROUP INC;REEL/FRAME:030582/0160 Effective date: 20130503 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ELECTRO SCIENTIFIC INDUSTRIES, INC., OREGON Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION SERIAL NUMBER 11776904 PREVIOUSLY RECORDED ON REEL 030582 FRAME 0160. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:GSI GROUP CORPORATION;GSI GROUP INC.;REEL/FRAME:056424/0287 Effective date: 20130503 |