US20120117859A1 - Ashless Controlled Release Gels for Fuels - Google Patents
Ashless Controlled Release Gels for Fuels Download PDFInfo
- Publication number
- US20120117859A1 US20120117859A1 US13/319,529 US201013319529A US2012117859A1 US 20120117859 A1 US20120117859 A1 US 20120117859A1 US 201013319529 A US201013319529 A US 201013319529A US 2012117859 A1 US2012117859 A1 US 2012117859A1
- Authority
- US
- United States
- Prior art keywords
- fuel
- gel
- acid
- composition
- gel composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 177
- 238000013270 controlled release Methods 0.000 title claims description 11
- 239000000499 gel Substances 0.000 title description 120
- 239000000203 mixture Substances 0.000 claims abstract description 155
- 239000000654 additive Substances 0.000 claims abstract description 39
- 238000002485 combustion reaction Methods 0.000 claims abstract description 16
- 239000002270 dispersing agent Substances 0.000 claims description 76
- 239000002816 fuel additive Substances 0.000 claims description 62
- 239000002253 acid Substances 0.000 claims description 43
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 26
- 229920000642 polymer Polymers 0.000 claims description 23
- 230000002378 acidificating effect Effects 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 229920002367 Polyisobutene Polymers 0.000 claims description 18
- 230000000996 additive effect Effects 0.000 claims description 13
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 13
- 229960002317 succinimide Drugs 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 11
- 239000004094 surface-active agent Substances 0.000 claims description 11
- 239000003599 detergent Substances 0.000 claims description 10
- 150000001298 alcohols Chemical class 0.000 claims description 9
- 230000003750 conditioning effect Effects 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 8
- 239000003995 emulsifying agent Substances 0.000 claims description 7
- 239000003607 modifier Substances 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 4
- 239000004711 α-olefin Substances 0.000 claims description 4
- 239000003963 antioxidant agent Substances 0.000 claims description 3
- 239000002216 antistatic agent Substances 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 229920002943 EPDM rubber Polymers 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 claims description 2
- 230000032050 esterification Effects 0.000 claims description 2
- 238000005886 esterification reaction Methods 0.000 claims description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 2
- 239000008264 cloud Substances 0.000 claims 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 claims 1
- -1 alkenyl succinimides Chemical class 0.000 description 17
- 229930195733 hydrocarbon Natural products 0.000 description 17
- 150000002430 hydrocarbons Chemical class 0.000 description 17
- 239000004215 Carbon black (E152) Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 239000002283 diesel fuel Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 125000001183 hydrocarbyl group Chemical group 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000003502 gasoline Substances 0.000 description 7
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229920000768 polyamine Polymers 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 231100000241 scar Toxicity 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 125000001302 tertiary amino group Chemical group 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000003225 biodiesel Substances 0.000 description 3
- 239000002551 biofuel Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000006078 metal deactivator Substances 0.000 description 3
- 150000004702 methyl esters Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- CZRCFAOMWRAFIC-UHFFFAOYSA-N 5-(tetradecyloxy)-2-furoic acid Chemical compound CCCCCCCCCCCCCCOC1=CC=C(C(O)=O)O1 CZRCFAOMWRAFIC-UHFFFAOYSA-N 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- 0 C.[1*]C1CC(=O)N(CCCN)C1=O.[1*]C1CC(=O)N(C[2*]2(N)C(=O)CC([1*])C2=O)C1=O Chemical compound C.[1*]C1CC(=O)N(CCCN)C1=O.[1*]C1CC(=O)N(C[2*]2(N)C(=O)CC([1*])C2=O)C1=O 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 238000006683 Mannich reaction Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol Substances OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- 150000000178 1,2,4-triazoles Chemical class 0.000 description 1
- NSOAQRMLVFRWIT-UHFFFAOYSA-N 1-ethenoxydecane Chemical compound CCCCCCCCCCOC=C NSOAQRMLVFRWIT-UHFFFAOYSA-N 0.000 description 1
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- LRYZVOQZDMSPCB-UHFFFAOYSA-N 2,5-bis(2,4,4-trimethylpentan-2-yldisulfanyl)-1,3,4-thiadiazole Chemical compound CC(C)(C)CC(C)(C)SSC1=NN=C(SSC(C)(C)CC(C)(C)C)S1 LRYZVOQZDMSPCB-UHFFFAOYSA-N 0.000 description 1
- BXRRILFCEKZKPU-UHFFFAOYSA-N 2,5-bis(2-methyloctan-2-yldisulfanyl)-1,3,4-thiadiazole Chemical compound CCCCCCC(C)(C)SSC1=NN=C(SSC(C)(C)CCCCCC)S1 BXRRILFCEKZKPU-UHFFFAOYSA-N 0.000 description 1
- XFAHFFMTBQKDHA-UHFFFAOYSA-N 2,5-bis(2-methylundecan-2-yldisulfanyl)-1,3,4-thiadiazole Chemical compound CCCCCCCCCC(C)(C)SSC1=NN=C(SSC(C)(C)CCCCCCCCC)S1 XFAHFFMTBQKDHA-UHFFFAOYSA-N 0.000 description 1
- DHTAIMJOUCYGOL-UHFFFAOYSA-N 2-ethyl-n-(2-ethylhexyl)-n-[(4-methylbenzotriazol-1-yl)methyl]hexan-1-amine Chemical compound C1=CC=C2N(CN(CC(CC)CCCC)CC(CC)CCCC)N=NC2=C1C DHTAIMJOUCYGOL-UHFFFAOYSA-N 0.000 description 1
- FKOZPUORKCHONH-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid Chemical compound CC(C)CS(O)(=O)=O FKOZPUORKCHONH-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- KWBXQDNGHQLAMB-UHFFFAOYSA-N 4-sulfanyl-3h-1,3-thiazole-2-thione Chemical class SC1=CSC(=S)N1 KWBXQDNGHQLAMB-UHFFFAOYSA-N 0.000 description 1
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 244000181980 Fraxinus excelsior Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical compound FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000008050 dialkyl sulfates Chemical group 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- XWRLQRLQUKZEEU-UHFFFAOYSA-N ethyl(hydroxy)silicon Chemical compound CC[Si]O XWRLQRLQUKZEEU-UHFFFAOYSA-N 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- GBHRVZIGDIUCJB-UHFFFAOYSA-N hydrogenphosphite Chemical class OP([O-])[O-] GBHRVZIGDIUCJB-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000000051 modifying effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-M oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC([O-])=O ZQPPMHVWECSIRJ-KTKRTIGZSA-M 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/146—Macromolecular compounds according to different macromolecular groups, mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/08—Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
- C10L1/1888—Carboxylic acids; metal salts thereof tall oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/19—Esters ester radical containing compounds; ester ethers; carbonic acid esters
- C10L1/191—Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/196—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/196—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
- C10L1/1963—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/196—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
- C10L1/1966—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
- C10L1/2225—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
Definitions
- the present invention relates to a fuel additive controlled release gel composition that release one or more fuel additives into a fuel composition, wherein the gel composition is substantially ash free to ash free, in that the gel composition and/or the components it delivers to the fuel do not result in any ash production during the operation of the engine that uses the fuel, that is, when the fuel is consumed. Furthermore, the present invention relates to gel compositions, methods of operating engines utilizing such gel compositions, and fuel conditioning devices utilizing such gel compositions, where the gel compositions release additives into a fuel without the addition of metal-containing (i.e. ash producing) components.
- metal-containing i.e. ash producing
- fuel additives It is desirable to keep fuel compositions as ashless as possible, that is free of components that contain materials, such as metals, which may result in the formation of sulfated ash. Because of this need, fuel additives must generally be low ash or ashless. Ashless fuel additives are advantageous because they protect after treatment devices and can also reduce deposit formation in internal combustion engines.
- Fuel additives can degrade over time and/or become less effective due to oxidation, temperature effects, the sometimes chemically harsh environment of the fuel system during the operation of an engine or similar piece of equipment, as well as many other causes.
- a fuel composition could benefit from the addition of a fuel additive during the operation of an engine, where it would be inconvenient and/or impractical and/or not feasible to add such additives to the fuel before it is supplied to the fuel system of an engine and/or before the operation of the engine begins.
- controlled release gel compositions are known as a means to supply additives to functional fluids such as engine oils.
- ashless controlled release gel compositions is known as a means to supply additives to functional fluids such as engine oils. See US Patent Application Publication 2008-0015126.
- the present invention provides for the controlled release of one or more ashless fuel additives from an ashless fuel additive gel composition to a fuel, allowing for the improved performance of the engine using said fuel, as well as the gel compositions used therein.
- the present invention provides a fuel additive gel composition
- a fuel additive gel composition comprising: a) a fuel soluble dispersant; b) a fuel soluble acid selected from the group consisting of an acid formed from a polymer containing acidic groups in the backbone, a polyacidic compound, surfactants with acidic groups in the backbone, emulsifiers with acidic groups in the backbone and mixtures thereof; and c) optionally at least one additional fuel additive; wherein the gel composition is substantially free of ash producing components, and wherein the gel composition will release over time one or more of its components into a fuel composition with which it comes into contact.
- the present invention further provides for fuel additive gel compositions wherein the fuel additive gel is at least 50% soluble in the fuel in which it is used, on a weight basis. In other words at least 50% of the gel itself is soluble in the fuel and less than 50% of the gel itself is insoluble in the fuel. Also includes are gel compositions which are substantially ashless and completely ashless, that is gel compositions containing only substantially ashless or ashless components and gel compositions containing only ashless components.
- the present invention further provides a process for operating an internal combustion engine comprising: 1) supplying one or more fuel additive gel compositions to the fuel system of the internal combustion engine, where the fuel additive gel composition may be any of the embodiments described herein; and 2) contacting the fuel and the fuel additive gel composition during the operation of the internal combustion engine which results in a controlled release of at least one of the additives in the fuel additive gel composition to a fuel; and 3) supplying said fuel to an engine during the engine's operation.
- the present invention also provides a fuel conditioning device comprising a fuel additive gel composition and a means for containing said gel composition; wherein the fuel additive gel composition may be any of the embodiments described herein; and wherein the fuel conditioning device may be placed inside and/or connected to the fuel system of an internal combustion engine.
- the fuel conditioning device allows for the contacting of the fuel in the fuel system with the fuel additive gel composition, during the operation of the engine as the fuel is supplied to the engine.
- the present invention provides a fuel additive gel composition that control releases one or more of its components into a fuel.
- the components of the gel composition are substantially ashless and/or ashless so that the gel compositions of the present invention do not supply and/or cause any ash formation in the engines that use the fuel compositions involved.
- the controlled release gel comprises: a) a fuel soluble dispersant; b) a fuel soluble acid selected from the group consisting of an acid formed from a polymer containing acidic groups in the backbone, a polyacidic compound, surfactants with acidic groups in the backbone, emulsifiers with acidic groups in the backbone and mixtures thereof; and c) optionally at least one additional fuel additive.
- the additive composition is in the form of a gel.
- the composition is a mixture of an ashless dispersant and an acid when combined form a gel.
- the controlled release gel is substantially free of ash producing components and in another embodiment has the absence of ash producing components.
- Gels are materials that comprise mixtures of two or more substances and which exist in a semi-solid state more like a solid than a liquid.
- a gel exists in a semi-solid state more like a solid than a liquid, see Parker, Dictionary of Scientific and Technical Terms, Fifth Edition, McGraw Hill, ⁇ 1994. See, also, Larson, “The Structure and rheology of Complex Fluids”, Chapter 5, Oxford University Press, New York, N.Y., ⁇ 1999, each which is incorporated herein by reference.
- the rheological properties of a gel can be measured by small amplitude oscillatory shear testing. This technique measures the structural character of the gel and produces a term called the storage modulus which represents storage of elastic energy and the loss modulus which represents the viscous dissipation of that energy.
- the ratio of the loss modulus/storage modulus which is called the loss tangent, or “tan delta”, is ⁇ 1 for materials that are liquid-like and >1 for materials that are solid-like.
- the additive gels have tan delta values in one embodiment of about ⁇ 1 or ⁇ 0.95, in another embodiment of about ⁇ 0.75 and in another embodiment of about ⁇ 0.5 or ⁇ 0.3.
- Gel compositions can also be evaluated by using a cone penetrometer, according to ASTM D 217.
- the cone penetrometer (cone pen) value obtained is one measurement of the stiffness and/or firmness of a gel.
- the fuel additive gel compositions of the present invention have a cone pen value of 300 or less, 200 or less, or from 30 to 200, or from 40 to 165.
- the fuel additive gel compositions of the present invention comprise at least two additives that when combined, form a gel.
- the fuel additive gel is formed by combining a substantially ashless dispersant and a substantially ashless acid to form a gel.
- the additive gel does not contain any ash containing detergents including, but not limited to, over based metal sulfonated detergents.
- the gel is formed by combining an acid and an ashless succinimide dispersant.
- the ratio of the ashless dispersant to the acid is from about 1:100 to about 100:1, in another embodiment from about 1:50 to about 50:1, or from 10:1 to about 1:10 or from 5:1 to about 1:5.
- Suitable fuel soluble dispersant includes additives that may generally be referred to as dispersants or detergents. Often dispersant additives are referred to as detergents when used in fuel applications.
- the fuel soluble dispersant includes both additives generally referred to a dispersants and well as fuel additives generally referred to as detergents.
- the dispersant component of the present invention may include Mannich dispersants, polymeric dispersants, carboxylic dispersants, amine dispersants, and combinations and mixtures thereof. Suitable dispersants are substantially ashless to completely ashless, where ashless refers to the lack of any ash producing components or groups.
- the dispersant is polyisobutylene succinimide dispersant.
- Suitable dispersants are also soluble in the fuel composition with which the gel composition is to be used.
- the dispersant is soluble in one or more of the fuels described herein.
- the dispersant is soluble in gasoline, diesel fuel, biofuels, or combinations thereof.
- fuel soluble as used herein, is described in more detail below.
- Ashless type dispersants are characterized by a polar group attached to a relatively high molecular weight hydrocarbon chain.
- Typical ashless dispersants include N-substituted long chain alkenyl succinimides, having a variety of chemical structures including typically:
- each R 1 is independently an alkyl group, frequently a polyisobutylene group, with a molecular weight of 500-5000, and R 2 are alkenylene groups, commonly ethylene (C 2 H 4 ) groups.
- Succinimide dispersants are more fully described in U.S. Pat. No. 4,234,435 which is incorporated herein by reference. The dispersants described in this patent are particularly effective for producing a gel in accordance with the present invention.
- the ashless dispersant component is an ashless dispersant such as a polyisobutylene succinimide and the like.
- Polyisobutylene succinimide ashless dispersants are commercially available products which are typically made by reacting together polyisobutylene having a number average molecular weight (“Mn”) of about 300 to 10,000 with maleic anhydride to form polyisobutylene succinic anhydride (“PIBSA”) and then reacting the product so obtained with a polyamine typically containing 1 to 10 ethylene amino groups per molecule.
- the dispersant so obtained is typically formed from a mixture of different compounds and can be characterized by a variety of different variables including the degree of its amine substitution (i.e., the ratio of the equivalents of amino groups to carboxylic groups, or the N:CO ratio), its maleic anhydride conversion level (i.e., its molar ratio of anhydride to PIB within the structure of the PIBSA, as defined in U.S. Pat. No. 4,234,435, incorporated herein by reference), the Mn of its PIB group, and its mode of preparation (thermal assisted succination vs. Cl 2 -assisted succination).
- Analogous compounds made with other polyamines e.g. polypropenyl
- Ashless dispersants of this type are described, for example, in U.S. Pat. No. 4,234,435, which is incorporated herein by reference.
- the N:CO ratio of these polyisobutylene succinimide ashless dispersants will be about 0.6 to 1.6 more typically about 0.7 to 1.4 or even 0.7 to 1.2.
- the maleic anhydride conversion level of these polyisobutylene succinimide ashless dispersants will normally be at least about 1.3, more typically at least 1.5 or even 1.6 or above.
- the Mn of the polyisobutylene segments of these polyisobutylene succinimide ashless dispersants are normally ⁇ about 350, more typically at least 1200, at least about 1500 or even 1800 or above.
- these polyisobutylene succinimide ashless dispersants are also made using Cl 2 -assisted succination rather than thermal assisted succination, since this produces PIBSAs of higher conversion than thermally produced PIBSAs (the latter known as DA or direct addition PIBSAs).
- the Mannich dispersant are the reaction products of alkyl phenols in which the alkyl group contains at least about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines). Mannich bases having the following general structures (including a variety of different isomers and the like) are especially interesting.
- Another class of ashless dispersants is nitrogen containing carboxylic dispersants. Examples of these “carboxylic dispersants” are described in U.S. Pat. No. 3,219,666.
- Amine dispersants are reaction products of relatively high molecular weight aliphatic halides and amines, preferably polyalkylene polyamines. Examples thereof are described, in U.S. Pat. No. 3,565,804.
- Polymeric dispersants are interpolymers of oil-solubilizing monomers such as decyl methacrylate, vinyl decyl ether and high molecular weight olefins with monomers containing polar substituents, e.g., amino alkyl acrylates or acrylamides and poly-(oxyethylene)-substituted acrylates. Examples of polymer dispersants thereof are disclosed in the following U.S. Pat. Nos. 3,329,658 and 3,702,300.
- Dispersants can also be post-treated by reaction with any of a variety of agents. Among these are urea, thiourea, dimercaptothiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, expoxides, boron compounds, and phosphorus compounds.
- agents include urea, thiourea, dimercaptothiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, expoxides, boron compounds, and phosphorus compounds.
- the ashless dispersants described herein may be used alone or in combination.
- the dispersant component may be present in a range from about 0.001 wt % to about 99.5 wt %, 0.01% to 50%, or 0.05% to 25%. In other embodiments the dispersant may be present in the range from about 1 wt % to about 70 wt % gel, or from about 5 wt % to about 50 wt % total weight of the gel.
- the Acid Component may include a polymer containing acidic groups in the backbone, for example, polymers derived from styrene and maleic anhydride, polymers derived from acrylates including acrylic acid, acrylic acid esters, methacrylic acid and its esters, polymers derived from high molecular weight (Cn wherein n ⁇ 12) esters and acids, polymers derived from esterified maleic anhydride styrene copolymers, polymers derived from maleic anhydride and alpha olefins which may also partially esterified, polymers derived from MAA-grafted esterified ethylene propylene diene monomer copolymer; surfactants with acidic groups in the backbone; emulsifiers with acidic groups in the backbone; polyacidic compounds, for example, polyacidic surfactants and/or polyacidic dispersants; functionalized derivatives of each component listed herein and mixtures thereof
- the acid is formed from the polymerization of styrene and maleic anhydride.
- the copolymer is partially esterified with one or more C 6 to C 32 alcohol or mixture of alcohols and in another embodiment C 8 to C 18 alcohols.
- the equivalent ratio of alcohol to acid groups is from about 0.1 wt % to about 0.99 wt % and in another embodiment about 0.45 wt % to about 0.95 wt %.
- the polyacidic surfactants include a maleinated OCP (olefin copolymer of ethylene and propylene).
- the acid is a maleinated copolymer of an alpha-olefin and/or a copolymer of a maleinated alpha olefin.
- the polyacidic surfactants include polyisobutylene disuccan, from the reaction of polyisobutylene and maleic anhydride.
- the polyacidic dispersants include a succinimide resulting from reaction of ⁇ 1 equivalent of an ethylene diamine polyamine with the maleinated OCP.
- the polyacidic dispersants include a succinimide resulting from reaction of ⁇ 1 equivalent of an ethylene diamine polyamine with polyisobutylene disuccan.
- the TAN is ⁇ 1, in another embodiment the TAN is ⁇ 3 (e.g. KOH/g and the oil blend viscosity at about 10% oil is 75 cSt at 100 C and in another embodiment 10 cSt at 100° C.
- the acid must have residual acid groups with a total acid number ⁇ 1 and in another embodiment ⁇ 3.
- Suitable acids are also soluble in the fuel composition with which the gel composition is to be used.
- the acid is soluble in one or more of the fuels described herein.
- the acid is soluble in gasoline, diesel fuel, biofuels, or combinations thereof.
- fuel soluble as used herein, is described in more detail below.
- the acids can be used alone or in combination.
- the acid component may be present in a range from about 0.01 wt % to about 99.5 wt %, 0.1% to 75%, or 1% to 50%. In other embodiments the acid component is present from about 0.1 wt % to about 90 wt %, or about 1 wt % to about 80 wt %.
- the fuel additive gel composition further contains at least one additional additive for controlled release into the fuel.
- additional additive may include viscosity modifiers, friction modifiers, ashless detergents, cloud point depressants, pour point depressants, demulsifiers, flow improvers, antistatic agents, ashless dispersants other than those described in component (a), ashless antioxidants, antifoams, corrosion/rust inhibitors, extreme pressure/antiwear agents, seal swell agents, lubricity aids, antimisting agents, and mixtures thereof; resulting in a controlled release gel that over time releases the optional additional additives into the fuel when the fuel additive gel composition is contacted with the fuel.
- the optional additional additive component may be present in a range from about 0 wt % to about 95 wt %, 30% to 95%, or 40% to 95% of the total weight of the gel.
- Additional performance additives can be added to a fuel composition, via the gel compositions of the present invention, and these additive my be selected depending on several factors, which include the type of internal combustion engine and the type of fuel being used in that engine, the quality of the fuel, and the service conditions under which the engine is being operated.
- the additional performance additives can include: an antioxidant such as a hindered phenol or derivative thereof and/or a diarylamine or derivative thereof; a corrosion inhibitor; and/or a detergent/dispersant additive, other than the fuel additive of the present invention, such as a polyetheramine or nitrogen containing detergent, including but not limited to PIB amine dispersants, quaternary salt dispersants, and succinimide dispersants.
- an antioxidant such as a hindered phenol or derivative thereof and/or a diarylamine or derivative thereof
- a corrosion inhibitor such as a corrosion inhibitor
- a detergent/dispersant additive other than the fuel additive of the present invention, such as a polyetheramine or nitrogen containing detergent, including but not limited to PIB amine dispersants, quaternary salt dispersants, and succinimide dispersants.
- the additional performance additives may also include: a cold flow improver such as an esterified copolymer of maleic anhydride and styrene and/or a copolymer of ethylene and vinyl acetate; a foam inhibitor and/or antifoam agent such as a silicone fluid; a demulsifier such as a polyalkoxylated alcohol; a lubricity agent such as a fatty carboxylic acid; a metal deactivator such as an aromatic triazole or derivative thereof, including but not limited to a benzotriazole; and/or a valve seat recession additive such as an alkali metal sulfosuccinate salt.
- a cold flow improver such as an esterified copolymer of maleic anhydride and styrene and/or a copolymer of ethylene and vinyl acetate
- a foam inhibitor and/or antifoam agent such as a silicone fluid
- a demulsifier such as a polyalkoxylated alcohol
- Suitable antifoams also include organic silicones such as polydimethyl siloxane, polyethylsiloxane, polydiethylsiloxane, polyacrylates and polymethacrylates, trimethyl-triflouro-propylmethyl siloxane and the like.
- the additional additives may also include a biocide; an antistatic agent, a deicer, a fluidizer such as a mineral oil and/or a poly(alpha-olefin) and/or a polyether, and a combustion improver such as an octane or cetane improver.
- the additional performance additives which may be present in the fuel additive compositions and fuel compositions of the present invention, also include di-ester, di-amide, ester-amide, and ester-imide friction modifiers prepared by reacting a dicarboxylic acid (such as tartaric acid) and/or a tricarboxylic acid (such as citric acid), with an amine and/or alcohol, optionally in the presence of a known esterification catalyst.
- These friction modifiers often derived from tartaric acid, citric acid, or derivatives thereof, may be derived from amines and/or alcohols that are branched so that the friction modifier itself has significant amounts of branched hydrocarbyl groups present within it structure. Examples of a suitable branched alcohols used to prepare these friction modifiers include 2-ethylhexanol, isotridecanol, Guerbet alcohols, or mixtures thereof.
- the additional performance additives may comprise one or more of the dispersants described above, with the understanding that such a dispersant, present as an additional fuel additive, would be different from the one or more dispersants that make up the component described above.
- the additional performance additives may comprise a quaternary salt comprising the reaction product of: (i) at least one compound selected from the group consisting of: (a) the condensation product of a hydrocarbyl-substituted acylating agent and a compound having an oxygen or nitrogen atom capable of condensing with said acylating agent and said condensation product further having a tertiary amino group; (b) a polyalkene-substituted amine having at least one tertiary amino group; and (c) a Mannich reaction product having a tertiary amino group, said Mannich reaction product being prepared from the reaction of a hydrocarbyl-substituted phenol, an aldehyde, and an amine; and (ii) a quaternizing agent suitable for converting the tertiary amino group of compound (i) to a quaternary nitrogen, wherein the quaternizing agent is an alkylphenol agent for example dialkyl sulfates, benz
- Suitable antifoams include organic silicones such as poly dimethyl siloxane, poly ethyl siloxane, polydiethyl siloxane, polyacrylates and polymethacrylates, trimethyl-triflouro-propylmethyl siloxane and the like.
- Suitable anti-misting agents include very high (>100,000 Mn) polyolefins such as 1.5 Mn polyisobutylene (for example the material of the trades name Vistanex®), or polymers containing 2-(N-acrylamido), 2-methyl propane sulfonic acid (also known as AMPS®), or derivatives thereof, and the like.
- very high (>100,000 Mn) polyolefins such as 1.5 Mn polyisobutylene (for example the material of the trades name Vistanex®), or polymers containing 2-(N-acrylamido), 2-methyl propane sulfonic acid (also known as AMPS®), or derivatives thereof, and the like.
- Suitable corrosion inhibitors include alkylated succinic acids and anhydrides derivatives thereof, organo phosphonates and the like.
- Ashless metal deactivators include derivatives of benzotriazoles such as tolyltriazole, N,N-bis(heptyl)-ar-methyl-1H-benzotriazole-1-methanamine, N,N-bis(nonyl)-ar-methyl-1H-Benzotriazole-1-methanamine, N,N-bis(decyl)ar-methyl-1H-Benzotriazole-1-methanamine, N,N-(undecyl)ar-methyl-1H-benzotriazole-1-methanamine, N,N-bis(dodecyl)ar-methyl-1H-Benzotriazole-1-methanamine N,N-bis(2-ethylhexyl)-ar-methyl-1H-Benzotriazole-1-methanamine and mixtures thereof.
- benzotriazoles such as tolyltriazole, N,N-bis(heptyl)-ar-methyl-1H-benzotriazole-1-methanamine, N,N-
- the metal deactivator is N,N-bis(1-ethylhexyl)ar-methyl-1H-benzotriazole-1-methanamine; 1,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles; 2-alkyldithiobenzothiazoles; 2-N,N-dialkyldithio-carbamoyl)benzothiazoles; 2,5-bis(alkyl-dithio)-1,3,4-thiadiazoles such as 2,5-bis(tert-octyldithio)-1,3,4-thiadiazole 2,5-bis(tert-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-decyldithio)-1,3 ,4-thiadiazole, 2,5-bis(tert-undecyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-
- Demulsifiers include polyethylene and polypropylene oxide copolymers and the like. The demulsifiers may be used alone or in combination.
- Lubricity aids include glycerol monooleate, sorbitan monooleate and the like. Lubricity additives also include additives with an acid functionality as well as the ester and amide derivatives thereof, where suitable agents often contain from 8 to 50 carbon atoms. The lubricity additives may be used alone or in combination. Flow improvers include ethylene vinyl acetate copolymers and the like.
- Cloud point depressants and pour point depressants include alkylphenols and derivatives thereof, ethylene vinyl acetate copolymers, fumarate vinyl acetate copolymers, and the like.
- Seal swell agents include organo sulfur compounds such as thiophene, 3-(decyloxy)tetrahydro-1,1-dioxide, phthalates and the like.
- fuel additive gel compositions including fuels, base stock oils, inert carriers, dyes, bacteriostatic agents, solid particulate additives, and the like so long as these components do not prevent gel formation and/or have an undesired effect on the gel.
- the fuels with which the fuel additive gel compositions of the present invention may be used are not overly limited, so long as the components of the gel composition are sufficiently fuel soluble. In some embodiments all components of the gel composition must be at least somewhat fuel soluble. In other embodiments all gel components must be substantially fuel soluble. In other embodiments, the gel composition itself must be at least somewhat, or substantially fuel soluble. In still other embodiments, both the components of and resulting gel composition must be at least somewhat, or substantially fuel soluble. In some embodiments the fuel additive gel of the present invention is at least 50% soluble in the fuel in which it is used, on a weight basis.
- fuel soluble does not necessarily mean that all the compositions and/or components in question are miscible or soluble in all proportions in all fuels. Rather, it is intended to mean that the composition is soluble in a fuel (hydrocarbon, non-hydrocarbon, mixtures, etc) in which it is intended to function to an extent which permits the solution to exhibit one or more of the desired properties. Similarly, it is not necessary that such “solutions” be true solutions in the strict physical or chemical sense. They may instead be micro-emulsions or colloidal dispersions which, for the purpose of this invention, exhibit properties sufficiently close to those of true solutions to be, for practical purposes, interchangeable with them within the context of this invention.
- Suitable fuels are those which are useful in fueling an internal combustion engine.
- the fuels suitable for use in the present invention include any commercially available fuels, and in some embodiments any commercially available diesel fuels and/or biofuels.
- Fuels suitable for use with the present invention are not overly limited. Generally, suitable fuels are normally liquid at ambient conditions e.g., room temperature (20 to 30° C.).
- the liquid fuel can be a hydrocarbon fuel, a non-hydrocarbon fuel (non-petroleum based fuel), or a mixture thereof.
- the hydrocarbon fuel can be a petroleum distillate, including a gasoline as defined by ASTM specification D4814, or a diesel fuel, as defined by ASTM specification D975.
- the liquid fuel is a gasoline, and in another embodiment the liquid fuel is a non-leaded gasoline.
- the liquid fuel is a diesel fuel.
- the hydrocarbon fuel can be a hydrocarbon prepared by a gas to liquid process to include for example hydrocarbons prepared by a process such as the Fischer-Tropsch process.
- the fuel used in the present invention is a diesel fuel, a biodiesel fuel, or combinations thereof.
- the non-hydrocarbon fuel can be an oxygen containing composition, often referred to as an oxygenate, which includes an alcohol, an ether, a ketone, an ester of a carboxylic acid, a nitroalkane, or a mixture thereof.
- the non-hydrocarbon fuel can include for example methanol, ethanol, methyl t-butyl ether, methyl ethyl ketone, transesterified and/or non-esterified oils and/or fats from plants and animals such as rapeseed methyl ester and soybean methyl ester and/or vegetable oil, and nitromethane.
- hydrocarbon and non-hydrocarbon fuels can include, for example, gasoline and methanol and/or ethanol, diesel fuel and ethanol, and diesel fuel and a transesterified plant oil such as rapeseed methyl ester and other bio-derived fuels.
- Biodiesel fuel may also be used, including the various blends of biodiesel, including but not limited blends ranging from B100 and B99.9, to B20 and B2.
- the liquid fuel is an emulsion of water in a hydrocarbon fuel, a non-hydrocarbon fuel, or a mixture thereof.
- the liquid fuel can have a sulphur content on a weight basis that is 5000 ppm or less, 1000 ppm or less, 300 ppm or less, 200 ppm or less, 30 ppm or less, or 10 ppm or less.
- the liquid fuel of the invention is present in a fuel composition in a major amount that is generally greater than 95% by weight, and in other embodiments is present at greater than 97% by weight, greater than 99.5% by weight, or greater than 99.9% by weight.
- the invention provides a method for operating an internal combustion engine.
- the fuel additive gel composition may be delivered to the fuel from within a fuel filter or a fuel line canister, or any other means by which the gel is brought into contact with the fuel, including embodiments where the fuel is contacted with the fuel additive gel in a storage tank and is then supplied to the fuel system of the internal combustion engine it will be fueling In other embodiments the fuel is contacted with the fuel additive gel within the fuel system of the internal combustion engine. Any container/delivery device within the fuel system may be used.
- the fuel additive gel composition may be positioned within the fuel system, anywhere the gel will be in contact with the fuel including, but not limited to, the fuel tank, the fuel filter, the fuel line, the tank cap, a fuel bypass loop, a canister and/or housing and/or pocket and/or packet that is placed inside the fuel system.
- the fuel additive gel composition may be contained within a fuel condition device that is placed inside and/or attached to the fuel system of the engine (such as a fuel filter that contains the gel composition and/or a fuel tank cap that contains some amount of fuel composition).
- the gel composition may be present in one or more locations in the fuel system and different formulations of the gel composition may be used at each location.
- the gel is positioned anywhere in a fuel filter.
- the filter is a desirable location to place the gel because the gel and/or spent gel can easily be removed, and then replaced with a new and/or recycled gel at the same time the fuel filter is replaced.
- the gel needs to be in contact with the fuel, in one embodiment the gel is in contact with the fuel in the range of about 100% to about 1%, about 75% to about 25%, of the fuel system, on a volume basis and/or a fuel flow rate basis. In another embodiment the gel is in contact with the fuel in the range of about 50% of the fuel system on a volume and/or fuel flow rate basis.
- the release rate of the fuel additive components from the gel to the fuel is determined primarily by the gel formulation.
- the release rate is also dependent on the form of the gel and/or the mode of addition.
- the gel may be positioned in a location desirable for the specified and desirable dissolution rate of the specified additives.
- the gel's formulation may be composed of one or more components that selectively dissolve completely into the fuel, or partially such that a portion of the components remains till the end of its service life, or combinations thereof
- the gel is added to the fuel system by any known method depending on the desired form of the gel, the desired speed of addition, the desired release rate, the desired mode of operation and/or any of the combinations of the above.
- the additive composition is a gel and is added to the fuel system by means of an injector pump, or a container in the fuel filter, or an in-line canister installed on the fuel line between the fuel tank and the engine.
- the gel is added to the fuel system by means of an addition device such as an auger system.
- the properties imparted by the fuel additives delivered to the fuel include dispersancy, antioxidance, corrosion inhibition, wear prevention, scuffing prevention, pitting prevention including micro and macro pitting, friction modifying properties including increased and/or decreased friction coefficients, detergency, pour point control using viscosity modifiers, foam control or mixtures thereof.
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
- hydrocarbyl groups include: hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring); substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention
- Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
- substituents as pyridyl, furyl, thienyl and imidazolyl.
- no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- ashless fuel additive gel compositions are prepared by mixing the components listed for each example in the table below, where the values in the table are PBW. Each mixture is held at 100 degrees C. for at least 1 hour, but no more than 8 hours, to allow the mixture to cure and form a gel.
- 2 TOFA is Tall Oil Fatty Acid.
- 3 Ethomeen T/12 is a commercially available surfactant available from Akzo Nobel.
- 4 MSC Copolymer is a maleic anhydride/styrene copolymer partially esterified with a mixture of C16-18 alcohols, containing 40% mineral oil.
- the Dispersant is an ashless dispersant made from 2000 number average molecular weight DA PIBSA and triethylene tetraamine.
- the percent actives is the percent by weight of the gel composition that is not part of the gel matrix, that is the percent of the additives present which do not interact to form a gel but rather are contained within the gel and are released to the fuel during use of the composition.
- 7 Cone penetrometer values are measured by ASTM D 217 using a 1 ⁇ 4 pen and reported in tenths of millimeters, unadjusted for scale. Cone penetrometer values cannot be obtained for liquids.
- compositions are viscous liquids.
- Examples 1 and 2 are tested to evaluate their overall solubility in fuel, by adding 1.3 grams of the gel composition to a 50 gram sample of a standard gasoline. The samples are held at 23 degrees C. and stirred overnight. After the test, the following results were observed: 72% of Example 1 had dissolved into the fuel (considering the formulation, this means all 25% of the actives had been delivered to the fuel as well as 63% of the gel matrix material); 62% of Example 2 had dissolved into the fuel (all 40% of the actives and 36% of the gel matrix material).
- Examples 2, 3, 4, 9, 10 and 11 are also tested to evaluate their solubility in fuel.
- a small amount of the gel composition of each of the listed Examples is added to a measured amount of standard diesel fuel, forming a fuel sample that has a 1% by weight gel treatment for Examples 2, 3 and 4; and a 0.33% by weight gel treatment for Examples 9, 10 and 11.
- Each sample is stirred and held at 23 degrees C. for 3 days. At the end of the test, all samples showed more than 50% of the gel sample had dissolved into the fuel composition and 100% of the gel had dissolves in the samples treated with Examples 4, 9 and 10.
- Examples 9, 10, 11 and 12 are tested to evaluate their impact on HFRR test results.
- the samples are evaluated in the HFRR test for diesel fuel, ASTM D6079. Startex Chemical Diesel Fuel A was used in all testing, including a baseline run.
- Each fuel sample for the testing is prepared by treating the diesel fuel with 0.3 percent the gel composition of the Example. All fuel samples were prepared by mixing the fuel and gel for 3 days at 23 degrees C. In the case of the fuel sample using Example 12, the fuel is mixed with the gel during a vehicle release test.
- the results of the HFRR testing are summarized in the table below:
- the results show that the gel compositions of the present invention, when added to fuel, increase the average film thickness, reduce the coefficient of friction and reduce the wear scar, as measured by HFRR testing.
- the gel compositions of the present invention provide this benefit by being fuel soluble and also without adding any ash producing materials to the fuel composition.
- each chemical component is presented exclusive of any solvent or diluent, which may be customarily present in the commercial material, unless otherwise indicated. It is to be understood that the upper and lower amount, range, and ratio limits set forth herein may be independently combined. Similarly, the ranges and amounts for each element of the invention can be used together with ranges or amounts for any of the other elements. As used herein, the expression “consisting essentially of” permits the inclusion of substances that do not materially affect the basic and novel characteristics of the composition under consideration.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
The present invention relates to a control release gel for delivery of additives to fuels where the gel compositions are free of ash producing components, or are substantially free of ash producing components, such that the gel compositions of the present invention do not supply any ash to the fuel compositions with which they are used. Further, the invention provides for the use of such compositions in the operation of an internal combustion engine.
Description
- The present invention relates to a fuel additive controlled release gel composition that release one or more fuel additives into a fuel composition, wherein the gel composition is substantially ash free to ash free, in that the gel composition and/or the components it delivers to the fuel do not result in any ash production during the operation of the engine that uses the fuel, that is, when the fuel is consumed. Furthermore, the present invention relates to gel compositions, methods of operating engines utilizing such gel compositions, and fuel conditioning devices utilizing such gel compositions, where the gel compositions release additives into a fuel without the addition of metal-containing (i.e. ash producing) components.
- It is desirable to keep fuel compositions as ashless as possible, that is free of components that contain materials, such as metals, which may result in the formation of sulfated ash. Because of this need, fuel additives must generally be low ash or ashless. Ashless fuel additives are advantageous because they protect after treatment devices and can also reduce deposit formation in internal combustion engines.
- Fuel additives can degrade over time and/or become less effective due to oxidation, temperature effects, the sometimes chemically harsh environment of the fuel system during the operation of an engine or similar piece of equipment, as well as many other causes. In other cases, a fuel composition could benefit from the addition of a fuel additive during the operation of an engine, where it would be inconvenient and/or impractical and/or not feasible to add such additives to the fuel before it is supplied to the fuel system of an engine and/or before the operation of the engine begins.
- The use of controlled release gel compositions is known as a means to supply additives to functional fluids such as engine oils. The use of ashless controlled release gel compositions is known as a means to supply additives to functional fluids such as engine oils. See US Patent Application Publication 2008-0015126.
- The present invention provides for the controlled release of one or more ashless fuel additives from an ashless fuel additive gel composition to a fuel, allowing for the improved performance of the engine using said fuel, as well as the gel compositions used therein.
- The present invention provides a fuel additive gel composition comprising: a) a fuel soluble dispersant; b) a fuel soluble acid selected from the group consisting of an acid formed from a polymer containing acidic groups in the backbone, a polyacidic compound, surfactants with acidic groups in the backbone, emulsifiers with acidic groups in the backbone and mixtures thereof; and c) optionally at least one additional fuel additive; wherein the gel composition is substantially free of ash producing components, and wherein the gel composition will release over time one or more of its components into a fuel composition with which it comes into contact.
- The present invention further provides for fuel additive gel compositions wherein the fuel additive gel is at least 50% soluble in the fuel in which it is used, on a weight basis. In other words at least 50% of the gel itself is soluble in the fuel and less than 50% of the gel itself is insoluble in the fuel. Also includes are gel compositions which are substantially ashless and completely ashless, that is gel compositions containing only substantially ashless or ashless components and gel compositions containing only ashless components.
- The present invention further provides a process for operating an internal combustion engine comprising: 1) supplying one or more fuel additive gel compositions to the fuel system of the internal combustion engine, where the fuel additive gel composition may be any of the embodiments described herein; and 2) contacting the fuel and the fuel additive gel composition during the operation of the internal combustion engine which results in a controlled release of at least one of the additives in the fuel additive gel composition to a fuel; and 3) supplying said fuel to an engine during the engine's operation.
- The present invention also provides a fuel conditioning device comprising a fuel additive gel composition and a means for containing said gel composition; wherein the fuel additive gel composition may be any of the embodiments described herein; and wherein the fuel conditioning device may be placed inside and/or connected to the fuel system of an internal combustion engine. The fuel conditioning device allows for the contacting of the fuel in the fuel system with the fuel additive gel composition, during the operation of the engine as the fuel is supplied to the engine.
- The present invention provides a fuel additive gel composition that control releases one or more of its components into a fuel. The components of the gel composition are substantially ashless and/or ashless so that the gel compositions of the present invention do not supply and/or cause any ash formation in the engines that use the fuel compositions involved.
- The controlled release gel comprises: a) a fuel soluble dispersant; b) a fuel soluble acid selected from the group consisting of an acid formed from a polymer containing acidic groups in the backbone, a polyacidic compound, surfactants with acidic groups in the backbone, emulsifiers with acidic groups in the backbone and mixtures thereof; and c) optionally at least one additional fuel additive.
- The additive composition is in the form of a gel. The composition is a mixture of an ashless dispersant and an acid when combined form a gel. The controlled release gel is substantially free of ash producing components and in another embodiment has the absence of ash producing components.
- Gels are materials that comprise mixtures of two or more substances and which exist in a semi-solid state more like a solid than a liquid. A gel exists in a semi-solid state more like a solid than a liquid, see Parker, Dictionary of Scientific and Technical Terms, Fifth Edition, McGraw Hill, © 1994. See, also, Larson, “The Structure and rheology of Complex Fluids”, Chapter 5, Oxford University Press, New York, N.Y., © 1999, each which is incorporated herein by reference. The rheological properties of a gel can be measured by small amplitude oscillatory shear testing. This technique measures the structural character of the gel and produces a term called the storage modulus which represents storage of elastic energy and the loss modulus which represents the viscous dissipation of that energy. The ratio of the loss modulus/storage modulus, which is called the loss tangent, or “tan delta”, is ≧1 for materials that are liquid-like and >1 for materials that are solid-like. The additive gels have tan delta values in one embodiment of about ≦1 or ≦0.95, in another embodiment of about ≦0.75 and in another embodiment of about ≦0.5 or ≦0.3.
- Gel compositions can also be evaluated by using a cone penetrometer, according to ASTM D 217. The cone penetrometer (cone pen) value obtained is one measurement of the stiffness and/or firmness of a gel. In one embodiment the fuel additive gel compositions of the present invention have a cone pen value of 300 or less, 200 or less, or from 30 to 200, or from 40 to 165.
- The fuel additive gel compositions of the present invention comprise at least two additives that when combined, form a gel. In some embodiments the fuel additive gel is formed by combining a substantially ashless dispersant and a substantially ashless acid to form a gel. In one embodiment, the additive gel does not contain any ash containing detergents including, but not limited to, over based metal sulfonated detergents. In one embodiment, the gel is formed by combining an acid and an ashless succinimide dispersant. In one embodiment, the ratio of the ashless dispersant to the acid is from about 1:100 to about 100:1, in another embodiment from about 1:50 to about 50:1, or from 10:1 to about 1:10 or from 5:1 to about 1:5.
- The Fuel Soluble Dispersant. Suitable fuel soluble dispersant includes additives that may generally be referred to as dispersants or detergents. Often dispersant additives are referred to as detergents when used in fuel applications. In the present invention, the fuel soluble dispersant includes both additives generally referred to a dispersants and well as fuel additives generally referred to as detergents. The dispersant component of the present invention may include Mannich dispersants, polymeric dispersants, carboxylic dispersants, amine dispersants, and combinations and mixtures thereof. Suitable dispersants are substantially ashless to completely ashless, where ashless refers to the lack of any ash producing components or groups. In one embodiment the dispersant is polyisobutylene succinimide dispersant.
- Suitable dispersants are also soluble in the fuel composition with which the gel composition is to be used. In some embodiments the dispersant is soluble in one or more of the fuels described herein. In some embodiments the dispersant is soluble in gasoline, diesel fuel, biofuels, or combinations thereof. The term “fuel soluble” as used herein, is described in more detail below.
- Ashless type dispersants are characterized by a polar group attached to a relatively high molecular weight hydrocarbon chain. Typical ashless dispersants include N-substituted long chain alkenyl succinimides, having a variety of chemical structures including typically:
- wherein each R1 is independently an alkyl group, frequently a polyisobutylene group, with a molecular weight of 500-5000, and R2 are alkenylene groups, commonly ethylene (C2H4) groups. Succinimide dispersants are more fully described in U.S. Pat. No. 4,234,435 which is incorporated herein by reference. The dispersants described in this patent are particularly effective for producing a gel in accordance with the present invention.
- In some embodiments the ashless dispersant component is an ashless dispersant such as a polyisobutylene succinimide and the like. Polyisobutylene succinimide ashless dispersants are commercially available products which are typically made by reacting together polyisobutylene having a number average molecular weight (“Mn”) of about 300 to 10,000 with maleic anhydride to form polyisobutylene succinic anhydride (“PIBSA”) and then reacting the product so obtained with a polyamine typically containing 1 to 10 ethylene amino groups per molecule. The dispersant so obtained is typically formed from a mixture of different compounds and can be characterized by a variety of different variables including the degree of its amine substitution (i.e., the ratio of the equivalents of amino groups to carboxylic groups, or the N:CO ratio), its maleic anhydride conversion level (i.e., its molar ratio of anhydride to PIB within the structure of the PIBSA, as defined in U.S. Pat. No. 4,234,435, incorporated herein by reference), the Mn of its PIB group, and its mode of preparation (thermal assisted succination vs. Cl2-assisted succination). Analogous compounds made with other polyamines (e.g. polypropenyl) can also be used. Ashless dispersants of this type are described, for example, in U.S. Pat. No. 4,234,435, which is incorporated herein by reference.
- Normally, the N:CO ratio of these polyisobutylene succinimide ashless dispersants will be about 0.6 to 1.6 more typically about 0.7 to 1.4 or even 0.7 to 1.2. In addition or alternatively, the maleic anhydride conversion level of these polyisobutylene succinimide ashless dispersants will normally be at least about 1.3, more typically at least 1.5 or even 1.6 or above. In addition or alternatively, the Mn of the polyisobutylene segments of these polyisobutylene succinimide ashless dispersants are normally ≧about 350, more typically at least 1200, at least about 1500 or even 1800 or above. In addition or alternatively, these polyisobutylene succinimide ashless dispersants are also made using Cl2-assisted succination rather than thermal assisted succination, since this produces PIBSAs of higher conversion than thermally produced PIBSAs (the latter known as DA or direct addition PIBSAs).
- The Mannich dispersant are the reaction products of alkyl phenols in which the alkyl group contains at least about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines). Mannich bases having the following general structures (including a variety of different isomers and the like) are especially interesting.
- Another class of ashless dispersants is nitrogen containing carboxylic dispersants. Examples of these “carboxylic dispersants” are described in U.S. Pat. No. 3,219,666.
- Amine dispersants are reaction products of relatively high molecular weight aliphatic halides and amines, preferably polyalkylene polyamines. Examples thereof are described, in U.S. Pat. No. 3,565,804.
- Polymeric dispersants are interpolymers of oil-solubilizing monomers such as decyl methacrylate, vinyl decyl ether and high molecular weight olefins with monomers containing polar substituents, e.g., amino alkyl acrylates or acrylamides and poly-(oxyethylene)-substituted acrylates. Examples of polymer dispersants thereof are disclosed in the following U.S. Pat. Nos. 3,329,658 and 3,702,300.
- Dispersants can also be post-treated by reaction with any of a variety of agents. Among these are urea, thiourea, dimercaptothiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, expoxides, boron compounds, and phosphorus compounds.
- The ashless dispersants described herein may be used alone or in combination. The dispersant component may be present in a range from about 0.001 wt % to about 99.5 wt %, 0.01% to 50%, or 0.05% to 25%. In other embodiments the dispersant may be present in the range from about 1 wt % to about 70 wt % gel, or from about 5 wt % to about 50 wt % total weight of the gel.
- The Acid Component. The acid component may include a polymer containing acidic groups in the backbone, for example, polymers derived from styrene and maleic anhydride, polymers derived from acrylates including acrylic acid, acrylic acid esters, methacrylic acid and its esters, polymers derived from high molecular weight (Cn wherein n≦12) esters and acids, polymers derived from esterified maleic anhydride styrene copolymers, polymers derived from maleic anhydride and alpha olefins which may also partially esterified, polymers derived from MAA-grafted esterified ethylene propylene diene monomer copolymer; surfactants with acidic groups in the backbone; emulsifiers with acidic groups in the backbone; polyacidic compounds, for example, polyacidic surfactants and/or polyacidic dispersants; functionalized derivatives of each component listed herein and mixtures thereof
- In one embodiment, the acid is formed from the polymerization of styrene and maleic anhydride. In one embodiment, the copolymer is partially esterified with one or more C6 to C32 alcohol or mixture of alcohols and in another embodiment C8 to C18 alcohols. The equivalent ratio of alcohol to acid groups is from about 0.1 wt % to about 0.99 wt % and in another embodiment about 0.45 wt % to about 0.95 wt %. In one embodiment, the polyacidic surfactants include a maleinated OCP (olefin copolymer of ethylene and propylene). In another embodiment the acid is a maleinated copolymer of an alpha-olefin and/or a copolymer of a maleinated alpha olefin. In another embodiment, the polyacidic surfactants include polyisobutylene disuccan, from the reaction of polyisobutylene and maleic anhydride. In one embodiment, the polyacidic dispersants include a succinimide resulting from reaction of <1 equivalent of an ethylene diamine polyamine with the maleinated OCP. In another embodiment, the polyacidic dispersants include a succinimide resulting from reaction of <1 equivalent of an ethylene diamine polyamine with polyisobutylene disuccan. The TAN is ≧1, in another embodiment the TAN is ≧3 (e.g. KOH/g and the oil blend viscosity at about 10% oil is 75 cSt at 100 C and in another embodiment 10 cSt at 100° C. In one embodiment, the acid must have residual acid groups with a total acid number ≧1 and in another embodiment ≧3.
- Suitable acids are also soluble in the fuel composition with which the gel composition is to be used. In some embodiments the acid is soluble in one or more of the fuels described herein. In some embodiments the acid is soluble in gasoline, diesel fuel, biofuels, or combinations thereof. The term “fuel soluble” as used herein, is described in more detail below.
- The acids can be used alone or in combination. The acid component may be present in a range from about 0.01 wt % to about 99.5 wt %, 0.1% to 75%, or 1% to 50%. In other embodiments the acid component is present from about 0.1 wt % to about 90 wt %, or about 1 wt % to about 80 wt %.
- Optional Additional Fuel Additives. Typically, the fuel additive gel composition further contains at least one additional additive for controlled release into the fuel. These additional additive may include viscosity modifiers, friction modifiers, ashless detergents, cloud point depressants, pour point depressants, demulsifiers, flow improvers, antistatic agents, ashless dispersants other than those described in component (a), ashless antioxidants, antifoams, corrosion/rust inhibitors, extreme pressure/antiwear agents, seal swell agents, lubricity aids, antimisting agents, and mixtures thereof; resulting in a controlled release gel that over time releases the optional additional additives into the fuel when the fuel additive gel composition is contacted with the fuel. The optional additional additive component may be present in a range from about 0 wt % to about 95 wt %, 30% to 95%, or 40% to 95% of the total weight of the gel.
- Additional performance additives can be added to a fuel composition, via the gel compositions of the present invention, and these additive my be selected depending on several factors, which include the type of internal combustion engine and the type of fuel being used in that engine, the quality of the fuel, and the service conditions under which the engine is being operated.
- The additional performance additives can include: an antioxidant such as a hindered phenol or derivative thereof and/or a diarylamine or derivative thereof; a corrosion inhibitor; and/or a detergent/dispersant additive, other than the fuel additive of the present invention, such as a polyetheramine or nitrogen containing detergent, including but not limited to PIB amine dispersants, quaternary salt dispersants, and succinimide dispersants.
- The additional performance additives may also include: a cold flow improver such as an esterified copolymer of maleic anhydride and styrene and/or a copolymer of ethylene and vinyl acetate; a foam inhibitor and/or antifoam agent such as a silicone fluid; a demulsifier such as a polyalkoxylated alcohol; a lubricity agent such as a fatty carboxylic acid; a metal deactivator such as an aromatic triazole or derivative thereof, including but not limited to a benzotriazole; and/or a valve seat recession additive such as an alkali metal sulfosuccinate salt.
- Suitable antifoams also include organic silicones such as polydimethyl siloxane, polyethylsiloxane, polydiethylsiloxane, polyacrylates and polymethacrylates, trimethyl-triflouro-propylmethyl siloxane and the like.
- The additional additives may also include a biocide; an antistatic agent, a deicer, a fluidizer such as a mineral oil and/or a poly(alpha-olefin) and/or a polyether, and a combustion improver such as an octane or cetane improver.
- The additional performance additives, which may be present in the fuel additive compositions and fuel compositions of the present invention, also include di-ester, di-amide, ester-amide, and ester-imide friction modifiers prepared by reacting a dicarboxylic acid (such as tartaric acid) and/or a tricarboxylic acid (such as citric acid), with an amine and/or alcohol, optionally in the presence of a known esterification catalyst. These friction modifiers, often derived from tartaric acid, citric acid, or derivatives thereof, may be derived from amines and/or alcohols that are branched so that the friction modifier itself has significant amounts of branched hydrocarbyl groups present within it structure. Examples of a suitable branched alcohols used to prepare these friction modifiers include 2-ethylhexanol, isotridecanol, Guerbet alcohols, or mixtures thereof.
- The additional performance additives may comprise one or more of the dispersants described above, with the understanding that such a dispersant, present as an additional fuel additive, would be different from the one or more dispersants that make up the component described above.
- The additional performance additives may comprise a quaternary salt comprising the reaction product of: (i) at least one compound selected from the group consisting of: (a) the condensation product of a hydrocarbyl-substituted acylating agent and a compound having an oxygen or nitrogen atom capable of condensing with said acylating agent and said condensation product further having a tertiary amino group; (b) a polyalkene-substituted amine having at least one tertiary amino group; and (c) a Mannich reaction product having a tertiary amino group, said Mannich reaction product being prepared from the reaction of a hydrocarbyl-substituted phenol, an aldehyde, and an amine; and (ii) a quaternizing agent suitable for converting the tertiary amino group of compound (i) to a quaternary nitrogen, wherein the quaternizing agent is an alkylphenol agent for example dialkyl sulfates, benzyl halides, hydrocarbyl substituted carbonates; hydrocarbyl epoxides in combination with an acid or mixtures thereof.
- Examples of quaternary ammonium salt and methods for preparing the same are described in the following patents, which are hereby incorporated by reference, U.S. Pat. No. 4,253,980, U.S. Pat. No. 3,778,371, U.S. Pat. No. 4,171,959, U.S. Pat. No. 4,326,973, U.S. Pat. No. 4,338,206, and U.S. Pat. No. 5,254,138.
- Suitable antifoams include organic silicones such as poly dimethyl siloxane, poly ethyl siloxane, polydiethyl siloxane, polyacrylates and polymethacrylates, trimethyl-triflouro-propylmethyl siloxane and the like.
- Suitable anti-misting agents include very high (>100,000 Mn) polyolefins such as 1.5 Mn polyisobutylene (for example the material of the trades name Vistanex®), or polymers containing 2-(N-acrylamido), 2-methyl propane sulfonic acid (also known as AMPS®), or derivatives thereof, and the like.
- Suitable corrosion inhibitors include alkylated succinic acids and anhydrides derivatives thereof, organo phosphonates and the like.
- Ashless metal deactivators include derivatives of benzotriazoles such as tolyltriazole, N,N-bis(heptyl)-ar-methyl-1H-benzotriazole-1-methanamine, N,N-bis(nonyl)-ar-methyl-1H-Benzotriazole-1-methanamine, N,N-bis(decyl)ar-methyl-1H-Benzotriazole-1-methanamine, N,N-(undecyl)ar-methyl-1H-benzotriazole-1-methanamine, N,N-bis(dodecyl)ar-methyl-1H-Benzotriazole-1-methanamine N,N-bis(2-ethylhexyl)-ar-methyl-1H-Benzotriazole-1-methanamine and mixtures thereof. In one embodiment the metal deactivator is N,N-bis(1-ethylhexyl)ar-methyl-1H-benzotriazole-1-methanamine; 1,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles; 2-alkyldithiobenzothiazoles; 2-N,N-dialkyldithio-carbamoyl)benzothiazoles; 2,5-bis(alkyl-dithio)-1,3,4-thiadiazoles such as 2,5-bis(tert-octyldithio)-1,3,4-thiadiazole 2,5-bis(tert-nonyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-decyldithio)-1,3 ,4-thiadiazole, 2,5-bis(tert-undecyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-dodecyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-tridecyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-tetradecyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-octadecyldithio)-1,3 ,4-thiadiazole, 2,5-bis(tert-nonadecyldithio)-1,3,4-thiadiazole, 2,5-bis(tert-eicosyldithio)-1,3,4-thiadiazole and mixtures thereof; 2,5-bis(N,N-dialkyldithiocarbamoyl)-1,3,4-thiadiazoles; 2-alkydithio-5-mercapto thiadiazoles; and the like.
- Demulsifiers include polyethylene and polypropylene oxide copolymers and the like. The demulsifiers may be used alone or in combination.
- Lubricity aids include glycerol monooleate, sorbitan monooleate and the like. Lubricity additives also include additives with an acid functionality as well as the ester and amide derivatives thereof, where suitable agents often contain from 8 to 50 carbon atoms. The lubricity additives may be used alone or in combination. Flow improvers include ethylene vinyl acetate copolymers and the like.
- Cloud point depressants and pour point depressants include alkylphenols and derivatives thereof, ethylene vinyl acetate copolymers, fumarate vinyl acetate copolymers, and the like.
- Seal swell agents include organo sulfur compounds such as thiophene, 3-(decyloxy)tetrahydro-1,1-dioxide, phthalates and the like.
- Optionally, other components can be added to the fuel additive gel compositions, including fuels, base stock oils, inert carriers, dyes, bacteriostatic agents, solid particulate additives, and the like so long as these components do not prevent gel formation and/or have an undesired effect on the gel.
- The Fuel. The fuels with which the fuel additive gel compositions of the present invention may be used are not overly limited, so long as the components of the gel composition are sufficiently fuel soluble. In some embodiments all components of the gel composition must be at least somewhat fuel soluble. In other embodiments all gel components must be substantially fuel soluble. In other embodiments, the gel composition itself must be at least somewhat, or substantially fuel soluble. In still other embodiments, both the components of and resulting gel composition must be at least somewhat, or substantially fuel soluble. In some embodiments the fuel additive gel of the present invention is at least 50% soluble in the fuel in which it is used, on a weight basis.
- The term “fuel soluble” as used herein and in the claims does not necessarily mean that all the compositions and/or components in question are miscible or soluble in all proportions in all fuels. Rather, it is intended to mean that the composition is soluble in a fuel (hydrocarbon, non-hydrocarbon, mixtures, etc) in which it is intended to function to an extent which permits the solution to exhibit one or more of the desired properties. Similarly, it is not necessary that such “solutions” be true solutions in the strict physical or chemical sense. They may instead be micro-emulsions or colloidal dispersions which, for the purpose of this invention, exhibit properties sufficiently close to those of true solutions to be, for practical purposes, interchangeable with them within the context of this invention.
- Suitable fuels are those which are useful in fueling an internal combustion engine. In some embodiments, the fuels suitable for use in the present invention include any commercially available fuels, and in some embodiments any commercially available diesel fuels and/or biofuels.
- Fuels suitable for use with the present invention are not overly limited. Generally, suitable fuels are normally liquid at ambient conditions e.g., room temperature (20 to 30° C.). The liquid fuel can be a hydrocarbon fuel, a non-hydrocarbon fuel (non-petroleum based fuel), or a mixture thereof.
- The hydrocarbon fuel can be a petroleum distillate, including a gasoline as defined by ASTM specification D4814, or a diesel fuel, as defined by ASTM specification D975. In one embodiment the liquid fuel is a gasoline, and in another embodiment the liquid fuel is a non-leaded gasoline. In another embodiment the liquid fuel is a diesel fuel. The hydrocarbon fuel can be a hydrocarbon prepared by a gas to liquid process to include for example hydrocarbons prepared by a process such as the Fischer-Tropsch process. In some embodiments, the fuel used in the present invention is a diesel fuel, a biodiesel fuel, or combinations thereof.
- The non-hydrocarbon fuel can be an oxygen containing composition, often referred to as an oxygenate, which includes an alcohol, an ether, a ketone, an ester of a carboxylic acid, a nitroalkane, or a mixture thereof. The non-hydrocarbon fuel can include for example methanol, ethanol, methyl t-butyl ether, methyl ethyl ketone, transesterified and/or non-esterified oils and/or fats from plants and animals such as rapeseed methyl ester and soybean methyl ester and/or vegetable oil, and nitromethane.
- Mixtures of hydrocarbon and non-hydrocarbon fuels can include, for example, gasoline and methanol and/or ethanol, diesel fuel and ethanol, and diesel fuel and a transesterified plant oil such as rapeseed methyl ester and other bio-derived fuels. Biodiesel fuel may also be used, including the various blends of biodiesel, including but not limited blends ranging from B100 and B99.9, to B20 and B2. In one embodiment the liquid fuel is an emulsion of water in a hydrocarbon fuel, a non-hydrocarbon fuel, or a mixture thereof. In several embodiments of this invention the liquid fuel can have a sulphur content on a weight basis that is 5000 ppm or less, 1000 ppm or less, 300 ppm or less, 200 ppm or less, 30 ppm or less, or 10 ppm or less.
- The liquid fuel of the invention is present in a fuel composition in a major amount that is generally greater than 95% by weight, and in other embodiments is present at greater than 97% by weight, greater than 99.5% by weight, or greater than 99.9% by weight.
- Industrial Application. In one embodiment the invention provides a method for operating an internal combustion engine. The fuel additive gel composition may be delivered to the fuel from within a fuel filter or a fuel line canister, or any other means by which the gel is brought into contact with the fuel, including embodiments where the fuel is contacted with the fuel additive gel in a storage tank and is then supplied to the fuel system of the internal combustion engine it will be fueling In other embodiments the fuel is contacted with the fuel additive gel within the fuel system of the internal combustion engine. Any container/delivery device within the fuel system may be used.
- The fuel additive gel composition may be positioned within the fuel system, anywhere the gel will be in contact with the fuel including, but not limited to, the fuel tank, the fuel filter, the fuel line, the tank cap, a fuel bypass loop, a canister and/or housing and/or pocket and/or packet that is placed inside the fuel system. The fuel additive gel composition may be contained within a fuel condition device that is placed inside and/or attached to the fuel system of the engine (such as a fuel filter that contains the gel composition and/or a fuel tank cap that contains some amount of fuel composition). The gel composition may be present in one or more locations in the fuel system and different formulations of the gel composition may be used at each location.
- In one embodiment, the gel is positioned anywhere in a fuel filter. The filter is a desirable location to place the gel because the gel and/or spent gel can easily be removed, and then replaced with a new and/or recycled gel at the same time the fuel filter is replaced.
- The gel needs to be in contact with the fuel, in one embodiment the gel is in contact with the fuel in the range of about 100% to about 1%, about 75% to about 25%, of the fuel system, on a volume basis and/or a fuel flow rate basis. In another embodiment the gel is in contact with the fuel in the range of about 50% of the fuel system on a volume and/or fuel flow rate basis.
- The release rate of the fuel additive components from the gel to the fuel is determined primarily by the gel formulation. The release rate is also dependent on the form of the gel and/or the mode of addition. The gel may be positioned in a location desirable for the specified and desirable dissolution rate of the specified additives. The gel's formulation may be composed of one or more components that selectively dissolve completely into the fuel, or partially such that a portion of the components remains till the end of its service life, or combinations thereof
- The gel is added to the fuel system by any known method depending on the desired form of the gel, the desired speed of addition, the desired release rate, the desired mode of operation and/or any of the combinations of the above. In one embodiment the additive composition is a gel and is added to the fuel system by means of an injector pump, or a container in the fuel filter, or an in-line canister installed on the fuel line between the fuel tank and the engine. In one embodiment the gel is added to the fuel system by means of an addition device such as an auger system.
- In one embodiment the properties imparted by the fuel additives delivered to the fuel include dispersancy, antioxidance, corrosion inhibition, wear prevention, scuffing prevention, pitting prevention including micro and macro pitting, friction modifying properties including increased and/or decreased friction coefficients, detergency, pour point control using viscosity modifiers, foam control or mixtures thereof.
- As used herein, the term “hydrocarbyl substituent” or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character. Examples of hydrocarbyl groups include: hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring); substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl. In general, no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- It is known that some of the materials described above may interact in the final formulation, so that the components of the final formulation may be different from those that are initially added. For instance, metal ions (of, e.g., a detergent) can migrate to other acidic or anionic sites of other molecules. The products formed thereby, including the products formed upon employing the composition of the present invention in its intended use, may not be susceptible of easy description. Nevertheless, all such modifications and reaction products are included within the scope of the present invention; the present invention encompasses the composition prepared by admixing the components described above.
- The invention will be further illustrated by the following examples, which sets forth particularly advantageous embodiments. While the examples are provided to illustrate the present invention, they are not intended to limit it.
- Various ashless fuel additive gel compositions are prepared by mixing the components listed for each example in the table below, where the values in the table are PBW. Each mixture is held at 100 degrees C. for at least 1 hour, but no more than 8 hours, to allow the mixture to cure and form a gel.
-
TABLE 1 Gel Composition Formulations of Examples in PBW. Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex Component 1 2 3 4 5 6 7 8 9 10 11 12 13 Glycerol Oleate1 12.5 20 25 30 TOFA2 52.5 55 57.5 60 65 70 62.5 50 40 Ethomeen T/123 12.5 20 25 30 MSC Copoly4 62.5 50 40 32 38 36 34 32 28 24 30 40 48 Dispersant5 12.5 10 10 8 9.5 9 8.5 8 7 6 7.5 10 12 % Actives6 25 40 50 60 52.5 55 57.5 60 65 70 62.5 50 40 Cone Pen7 42 50 65 85 71.5 79.5 61 75 120 165 105 65 40 1Glycerol Oleate is also known as Glycerol Monooleate. 2TOFA is Tall Oil Fatty Acid. 3Ethomeen T/12 is a commercially available surfactant available from Akzo Nobel. 4MSC Copolymer is a maleic anhydride/styrene copolymer partially esterified with a mixture of C16-18 alcohols, containing 40% mineral oil. 5The Dispersant is an ashless dispersant made from 2000 number average molecular weight DA PIBSA and triethylene tetraamine. 6The percent actives is the percent by weight of the gel composition that is not part of the gel matrix, that is the percent of the additives present which do not interact to form a gel but rather are contained within the gel and are released to the fuel during use of the composition. 7Cone penetrometer values are measured by ASTM D 217 using a ¼ pen and reported in tenths of millimeters, unadjusted for scale. Cone penetrometer values cannot be obtained for liquids. - Two comparative examples are prepared, using the same components as described above, but these examples do not form gel compositions, even after being cured for up to either hours at 100 degrees C. The compositions are viscous liquids.
-
TABLE 2 Gel Composition Formulations of Comparative Examples in PBW. Comp Comp Component Ex1 Ex 2 Glycerol Oleate1 TOFA2 80 90 Ethomeen T/123 MSC Copoly4 16 8 Dispersant5 4 2 % Actives6 80 90 Cone Pen7 LIQUID LIQUID See footnotes for Table 1. - Examples 1 and 2 are tested to evaluate their overall solubility in fuel, by adding 1.3 grams of the gel composition to a 50 gram sample of a standard gasoline. The samples are held at 23 degrees C. and stirred overnight. After the test, the following results were observed: 72% of Example 1 had dissolved into the fuel (considering the formulation, this means all 25% of the actives had been delivered to the fuel as well as 63% of the gel matrix material); 62% of Example 2 had dissolved into the fuel (all 40% of the actives and 36% of the gel matrix material).
- Examples 2, 3, 4, 9, 10 and 11 are also tested to evaluate their solubility in fuel. A small amount of the gel composition of each of the listed Examples is added to a measured amount of standard diesel fuel, forming a fuel sample that has a 1% by weight gel treatment for Examples 2, 3 and 4; and a 0.33% by weight gel treatment for Examples 9, 10 and 11. Each sample is stirred and held at 23 degrees C. for 3 days. At the end of the test, all samples showed more than 50% of the gel sample had dissolved into the fuel composition and 100% of the gel had dissolves in the samples treated with Examples 4, 9 and 10.
- Examples 9, 10, 11 and 12 are tested to evaluate their impact on HFRR test results. The samples are evaluated in the HFRR test for diesel fuel, ASTM D6079. Startex Chemical Diesel Fuel A was used in all testing, including a baseline run. Each fuel sample for the testing is prepared by treating the diesel fuel with 0.3 percent the gel composition of the Example. All fuel samples were prepared by mixing the fuel and gel for 3 days at 23 degrees C. In the case of the fuel sample using Example 12, the fuel is mixed with the gel during a vehicle release test. The results of the HFRR testing are summarized in the table below:
-
TABLE 3 HFRR Test Results Baseline Fuel treated Fuel treated Fuel treated Fuel treated Test Parameter Diesel Fuel w/Example 9 w/Example 10 w/Example 11 w/Example 12 Avg Film 33% 92% 89% 93% 92% Thickness1 COF2 0.322 0.123 0.132 0.144 0.193 Wear Scar3 543 315 327 258 334 1The average film thickness is a measure of the contact resistance between the ball and the disc, determined by the HFRR software. 2The COF is the coefficient of friction calculated as a function of friction force/applied load. 3The wear scar is the diameter of the wear scar found on the ball at the end of the test, reported in microns. - The results show that the gel compositions of the present invention, when added to fuel, increase the average film thickness, reduce the coefficient of friction and reduce the wear scar, as measured by HFRR testing. The gel compositions of the present invention provide this benefit by being fuel soluble and also without adding any ash producing materials to the fuel composition.
- Although only a few embodiments of the present invention have been described above, it should be appreciated that many modifications can be made without departing from the spirit and scope of the invention. All such modifications are intended to be included within the scope of the present invention, which is to be limited only by the following claims.
- Each of the documents referred to above is incorporated herein by reference. Except in the Examples, or where otherwise explicitly indicated, all numerical quantities in this description specifying amounts of materials, reaction conditions, molecular weights, number of carbon atoms, and the like, are to be understood as modified by the word “about.” Unless otherwise indicates all percent values and ppm values herein are weight percent values and/or calculated on a weight basis. Unless otherwise indicated, each chemical or composition referred to herein should be interpreted as being a commercial grade material which may contain the isomers, by-products, derivatives, and other such materials which are normally understood to be present in the commercial grade. However, the amount of each chemical component is presented exclusive of any solvent or diluent, which may be customarily present in the commercial material, unless otherwise indicated. It is to be understood that the upper and lower amount, range, and ratio limits set forth herein may be independently combined. Similarly, the ranges and amounts for each element of the invention can be used together with ranges or amounts for any of the other elements. As used herein, the expression “consisting essentially of” permits the inclusion of substances that do not materially affect the basic and novel characteristics of the composition under consideration.
- In addition, all the embodiments described above have been contemplated as to their use, both alone and in combination, with all of the other embodiments described above, and these combinations are considered to be part of the present invention. The specific embodiments of amines and alcohols described above have been contemplated in combination with the specific embodiments of the carboxylic acids useful in the present invention.
Claims (15)
1. A fuel additive gel composition comprising:
a) a fuel soluble dispersant;
b) a fuel soluble acid selected from the group consisting of an acid formed from a polymer containing acidic groups in the backbone, a polyacidic compound, surfactants with acidic groups in the backbone, emulsifiers with acidic groups in the backbone and mixtures thereof; and
c) optionally at least one additional fuel additive;
wherein the gel composition is substantially free of ash producing components, and wherein the gel composition will release over time one or more of its components into a fuel composition with which it comes into contact.
2. The fuel additive gel composition of claim 1 wherein the fuel additive gel is at least 50% soluble in the fuel in which it is used, on a weight basis.
3. The fuel additive gel compositions of claim 1 wherein the fuel additive gel composition contains completely ashless components and wherein the weight ratio of the dispersant to the acid is about 0.01:1 to about 100:1; and wherein the gel has a tan delta value of ≦1.
4. The composition of claim 1 wherein the dispersant is present in a range from about 0.001 wt % to about 99.5 wt %, preferably 0.01% to 50% and more preferably 0.05% to 25%; and wherein the acid is present in a range from about 0.01 wt % to about 99.5 wt %, preferably 0.1% to 75% and more preferably 1% to 50%; and wherein the optional additional additive is present in a range from about 0 wt % to about 95 wt %, preferably 30% to 95% and more preferably 40% to 95% of the total weight of the gel.
5. The composition of claim 1 wherein the dispersant component comprises one or more dispersants selected from the group consisting of Mannich dispersants, polymeric dispersants, carboxylic dispersants, amine dispersants, polyisobutylene succinimide dispersants and combinations thereof;
wherein the dispersant component is fuel soluble and is substantially free of ash forming components.
6. The composition of claim 1 wherein the acid component comprises an acid derived from a polymer selected from the group consisting of: polymers derived from the polymerization of styrene and maleic anhydride; polymers derived from acrylic acid; polymers derived from acrylic acid esters; polymers derived from methacrylic acid; polymers derived from methacrylic acid esters; polymers derived from high molecular weight esters and acids; partially esterified maleic anhydride styrene copolymers; polymers derived from maleic anhydride and alpha olefins and partially esterified versions thereof, polymers derived from esterified maleic anhydride grafted ethylene propylene diene monomer copolymers; a polyacidic compound; surfactants with acidic groups in the backbone; emulsifiers with acidic groups in the backbone; and combinations thereof.
7. The composition of claim 1 wherein the acid component comprises an acid selected from the group consisting of: an acid formed from the polymerization of styrene and maleic anhydride; an acid formed from the partial esterification of such a copolymer with one or more C6 to C32 alcohols or a mixture of such alcohols; and combinations thereof.
8. The composition of claim 1 wherein the acid has a residual acid group with a total acid number >1, preferably 2-100, more preferably 5-50
9. The composition of claim 1 further comprising one or more additional fuel additive selected from the group consisting of viscosity modifiers, friction modifiers, detergents, cloud point depressants, pour point depressants, demulsifiers, flow improvers, antistatic agents, other dispersants, antioxidants, antifoams, corrosion/rust inhibitors, extreme pressure/antiwear agents, seal swell agents, lubricity agent, antimisting agents, and mixtures thereof;
and wherein at least one fuel additive is controlled released over time into a fuel when the gel is in contact with the fuel.
10. The composition of claim 9 wherein the additional fuel additive is a friction modifier and/or a lubricity agent.
11. A process for operating an internal combustion engine comprising:
I. supplying one or more fuel additive gel compositions to the fuel system of the internal combustion engine, where the fuel additive gel composition comprises:
a) a fuel soluble dispersant;
b) a fuel soluble acid selected from the group consisting of an acid formed from a polymer containing acidic groups in the backbone, a polyacidic compound, surfactants with acidic groups in the backbone, emulsifiers with acidic groups in the backbone and mixtures thereof; and
c) optionally at least one additional fuel additive;
wherein the gel composition is substantially free of ash producing components;
II. contacting the fuel and the fuel additive gel composition during the operation of the internal combustion engine;
resulting in a controlled release of at least one of the additives in the fuel additive gel composition into a fuel, where the release is substantially free of the addition of ash into the fuel; and
III. supplying said fuel to an engine during the engine's operation.
12. The process of claim 11 wherein the fuel additive gel composition is at least 50% soluble in the fuel in which it is used, on a weight basis.
13. The process of claim 11 wherein the release rate of the additive components from the gel composition to the fuel is determined by the fuel; additive gel composition formulation; and wherein the gel formulation comprises one or more additives that only partially dissolve into the fuel over time.
14. A fuel conditioning device comprising a fuel additive gel composition and a means for containing said gel composition; wherein the fuel additive gel composition comprises:
a) a fuel soluble dispersant;
b) a fuel soluble acid selected from the group consisting of an acid formed from a polymer containing acidic groups in the backbone, a polyacidic compound, surfactants with acidic groups in the backbone, emulsifiers with acidic groups in the backbone and mixtures thereof; and
c) optionally at least one additional fuel additive;
wherein the gel composition is substantially free of ash producing components;
and wherein the fuel conditioning device may be placed inside and/or connected to the fuel system of an internal combustion engine; and wherein the fuel conditioning device allows for the contacting of the fuel in the fuel system with the fuel additive gel composition, during the operation of the engine as the fuel is supplied to the engine.
15. The fuel conditioning device of claim 14 wherein the fuel additive gel composition is at least 50% soluble in the fuel in which it is used, on a weight basis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/319,529 US20120117859A1 (en) | 2009-05-15 | 2010-04-29 | Ashless Controlled Release Gels for Fuels |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17851209P | 2009-05-15 | 2009-05-15 | |
PCT/US2010/032901 WO2010132209A1 (en) | 2009-05-15 | 2010-04-29 | Ashless controlled release gels for fuels |
US13/319,529 US20120117859A1 (en) | 2009-05-15 | 2010-04-29 | Ashless Controlled Release Gels for Fuels |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120117859A1 true US20120117859A1 (en) | 2012-05-17 |
Family
ID=42341577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/319,529 Abandoned US20120117859A1 (en) | 2009-05-15 | 2010-04-29 | Ashless Controlled Release Gels for Fuels |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120117859A1 (en) |
EP (1) | EP2430130A1 (en) |
CN (1) | CN102482601A (en) |
CA (1) | CA2762063A1 (en) |
WO (1) | WO2010132209A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10221267B2 (en) | 2016-12-13 | 2019-03-05 | Afton Chemical Corporation | Microstructure-controlled copolymers of ethylene and C3-C10 alpha-olefins |
CN110577828A (en) * | 2019-09-06 | 2019-12-17 | 西安长庆化工集团有限公司 | Nano-particle wax-proof pour point depressant for oil well as preparation method and application thereof |
US10584297B2 (en) | 2016-12-13 | 2020-03-10 | Afton Chemical Corporation | Polyolefin-derived dispersants |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102936521B (en) * | 2011-08-15 | 2015-03-18 | 中国石油化工股份有限公司 | Diesel oil composition and method for improving biodiesel oxidation stability |
US10273424B2 (en) | 2012-03-09 | 2019-04-30 | B.C.B. International Limited | Alcohol-containing compositions useful as solid fuels and processes for their manufacture |
JP6298076B2 (en) | 2012-12-27 | 2018-03-20 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap | Composition |
EP2938714A1 (en) | 2012-12-27 | 2015-11-04 | Shell Internationale Research Maatschappij B.V. | Compositions |
US11390821B2 (en) | 2019-01-31 | 2022-07-19 | Afton Chemical Corporation | Fuel additive mixture providing rapid injector clean-up in high pressure gasoline engines |
US12024686B2 (en) | 2022-09-30 | 2024-07-02 | Afton Chemical Corporation | Gasoline additive composition for improved engine performance |
US12043808B2 (en) | 2021-12-28 | 2024-07-23 | Afton Chemical Corporation | Quaternary ammonium salt combinations for injector cleanliness |
US11873461B1 (en) | 2022-09-22 | 2024-01-16 | Afton Chemical Corporation | Extreme pressure additives with improved copper corrosion |
US12134742B2 (en) | 2022-09-30 | 2024-11-05 | Afton Chemical Corporation | Fuel composition |
US11795412B1 (en) | 2023-03-03 | 2023-10-24 | Afton Chemical Corporation | Lubricating composition for industrial gear fluids |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3329658A (en) * | 1962-05-14 | 1967-07-04 | Monsanto Co | Dispersency oil additives |
US3702300A (en) * | 1968-12-20 | 1972-11-07 | Lubrizol Corp | Lubricant containing nitrogen-containing ester |
US20040261313A1 (en) * | 2003-06-25 | 2004-12-30 | The Lubrizol Corporation, A Corporation Of The State Of Ohio | Gel additives for fuel that reduce soot and/or emissions from engines |
US6860241B2 (en) * | 1999-06-16 | 2005-03-01 | Dober Chemical Corp. | Fuel filter including slow release additive |
WO2005103093A2 (en) * | 2004-04-19 | 2005-11-03 | The Lubrizol Corporation | Dispersant viscosity modifiers based on maleic anhydride-styrene copolymers |
WO2008008864A2 (en) * | 2006-07-12 | 2008-01-17 | The Lubrizol Corporation | Ashless controlled release gels |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6719814B1 (en) * | 1998-11-10 | 2004-04-13 | Infineum International Ltd | Lubricity additive, process for preparing lubricity additives, and middle distillate fuel compositions containing the same |
-
2010
- 2010-04-29 US US13/319,529 patent/US20120117859A1/en not_active Abandoned
- 2010-04-29 EP EP10717952A patent/EP2430130A1/en not_active Withdrawn
- 2010-04-29 CA CA2762063A patent/CA2762063A1/en not_active Abandoned
- 2010-04-29 CN CN2010800319303A patent/CN102482601A/en active Pending
- 2010-04-29 WO PCT/US2010/032901 patent/WO2010132209A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3329658A (en) * | 1962-05-14 | 1967-07-04 | Monsanto Co | Dispersency oil additives |
US3702300A (en) * | 1968-12-20 | 1972-11-07 | Lubrizol Corp | Lubricant containing nitrogen-containing ester |
US6860241B2 (en) * | 1999-06-16 | 2005-03-01 | Dober Chemical Corp. | Fuel filter including slow release additive |
US20040261313A1 (en) * | 2003-06-25 | 2004-12-30 | The Lubrizol Corporation, A Corporation Of The State Of Ohio | Gel additives for fuel that reduce soot and/or emissions from engines |
US20060272597A1 (en) * | 2003-06-25 | 2006-12-07 | Burrington James D | Gel additives for fuel that reduce soot and/or emissions from engines |
WO2005103093A2 (en) * | 2004-04-19 | 2005-11-03 | The Lubrizol Corporation | Dispersant viscosity modifiers based on maleic anhydride-styrene copolymers |
WO2008008864A2 (en) * | 2006-07-12 | 2008-01-17 | The Lubrizol Corporation | Ashless controlled release gels |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10221267B2 (en) | 2016-12-13 | 2019-03-05 | Afton Chemical Corporation | Microstructure-controlled copolymers of ethylene and C3-C10 alpha-olefins |
US10584297B2 (en) | 2016-12-13 | 2020-03-10 | Afton Chemical Corporation | Polyolefin-derived dispersants |
US11091613B2 (en) | 2016-12-13 | 2021-08-17 | Afton Chemical Corporation | Microstructure-controlled copolymers of ethylene and C3-C10 alpha-olefins |
CN110577828A (en) * | 2019-09-06 | 2019-12-17 | 西安长庆化工集团有限公司 | Nano-particle wax-proof pour point depressant for oil well as preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102482601A (en) | 2012-05-30 |
WO2010132209A1 (en) | 2010-11-18 |
EP2430130A1 (en) | 2012-03-21 |
CA2762063A1 (en) | 2010-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120117859A1 (en) | Ashless Controlled Release Gels for Fuels | |
DK3127992T3 (en) | ADDITIVES TO REDUCE METAL COLLECTION IN FUELS | |
KR20130121690A (en) | Methods and compositions that provide detergency | |
MX2012013164A (en) | Composition, method and use. | |
FR3017876A1 (en) | COMPOSITION OF ADDITIVES AND PERFORMANCE FUEL COMPRISING SUCH A COMPOSITION | |
PH12014501374B1 (en) | Additive compositions that improve the lacquering resistance of superior quality diesel or biodiesel fuels | |
US9587193B2 (en) | Additives for improving the resistance to wear and to lacquering of diesel or biodiesel fuels | |
KR102280420B1 (en) | Ion tolerant corrosion inhibitors and inhibitor combinations for fuels | |
FR3017875A1 (en) | COMPOSITION OF ADDITIVES AND PERFORMANCE FUEL COMPRISING SUCH A COMPOSITION | |
CA2756950A1 (en) | Fuel additives for enhanced lubricity and anti-corrosion properties of distillate fuels | |
TWI814720B (en) | Fuel additives and method of reducing wear in and/or increasing the fuel economy index of engines | |
US12129442B2 (en) | Polyacrylate antifoam components for use in fuels | |
US20240271053A1 (en) | Compositions, methods and uses | |
BR112020018896B1 (en) | POLYACRYLAMIDE ANTIFOAM COMPONENTS FOR USE IN DIESEL FUELS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE LUBRIZOL CORPORATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN LIER, FRANK M.;SKURSHA, DAVID B.;BURRINGTON, JAMES D.;AND OTHERS;SIGNING DATES FROM 20120119 TO 20120125;REEL/FRAME:027590/0813 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |