US20120116033A1 - Catalyst Components, Process for Their Preparation and Their Use as Catalyst Components in Polymerization of Olefins - Google Patents
Catalyst Components, Process for Their Preparation and Their Use as Catalyst Components in Polymerization of Olefins Download PDFInfo
- Publication number
- US20120116033A1 US20120116033A1 US13/344,368 US201213344368A US2012116033A1 US 20120116033 A1 US20120116033 A1 US 20120116033A1 US 201213344368 A US201213344368 A US 201213344368A US 2012116033 A1 US2012116033 A1 US 2012116033A1
- Authority
- US
- United States
- Prior art keywords
- polymerization
- group
- catalyst component
- ethylene
- alkyl group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 67
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000008569 process Effects 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title abstract description 25
- 150000001336 alkenes Chemical class 0.000 title description 10
- 239000003426 co-catalyst Substances 0.000 claims abstract description 33
- 239000000178 monomer Substances 0.000 claims abstract description 25
- 229920000642 polymer Polymers 0.000 claims abstract description 24
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000005977 Ethylene Substances 0.000 claims abstract description 22
- 230000003213 activating effect Effects 0.000 claims abstract description 22
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 21
- 150000003624 transition metals Chemical class 0.000 claims abstract description 20
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 17
- 239000004711 α-olefin Substances 0.000 claims abstract description 13
- 229920001577 copolymer Polymers 0.000 claims abstract description 12
- 229920001519 homopolymer Polymers 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 6
- 125000005843 halogen group Chemical group 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 25
- 125000001424 substituent group Chemical group 0.000 claims description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 21
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 14
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 9
- 229910017052 cobalt Chemical group 0.000 claims description 7
- 239000010941 cobalt Chemical group 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 150000001993 dienes Chemical class 0.000 claims description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 3
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 3
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 3
- HANWWAAUFXCNBS-UHFFFAOYSA-N 2,6,6-tris(2-methylpropyl)oxaluminane Chemical compound CC(C)C[Al]1CCCC(CC(C)C)(CC(C)C)O1 HANWWAAUFXCNBS-UHFFFAOYSA-N 0.000 claims description 2
- 238000000071 blow moulding Methods 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000003446 ligand Substances 0.000 abstract description 27
- 125000003118 aryl group Chemical group 0.000 abstract description 17
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 abstract description 11
- 125000004076 pyridyl group Chemical group 0.000 abstract description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 abstract description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 abstract description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 abstract description 3
- 125000006659 (C1-C20) hydrocarbyl group Chemical group 0.000 abstract description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 27
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- -1 polyethylene Polymers 0.000 description 24
- 239000000047 product Substances 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 21
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 16
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- 0 [1*]C1=CC([2*])=C(/[N+]2=C(\C)C3=CC=CC4=[N+]3[Fe-3]2(C)[N+](C2=C(C3=C([3*])C=C([4*])C=C3[5*])C=CC=C2C2=C([3*])C=C([4*])C=C2[5*])=C4C)C([2*])=C1 Chemical compound [1*]C1=CC([2*])=C(/[N+]2=C(\C)C3=CC=CC4=[N+]3[Fe-3]2(C)[N+](C2=C(C3=C([3*])C=C([4*])C=C3[5*])C=CC=C2C2=C([3*])C=C([4*])C=C2[5*])=C4C)C([2*])=C1 0.000 description 14
- 150000004698 iron complex Chemical class 0.000 description 13
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 13
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 11
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 11
- BEZVGIHGZPLGBL-UHFFFAOYSA-N 2,6-diacetylpyridine Chemical compound CC(=O)C1=CC=CC(C(C)=O)=N1 BEZVGIHGZPLGBL-UHFFFAOYSA-N 0.000 description 10
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 10
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 229960002089 ferrous chloride Drugs 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 238000007334 copolymerization reaction Methods 0.000 description 7
- 150000002466 imines Chemical class 0.000 description 7
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 6
- 239000002685 polymerization catalyst Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 150000001450 anions Chemical class 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 5
- XIRRDAWDNHRRLB-UHFFFAOYSA-N 2,6-dibromoaniline Chemical compound NC1=C(Br)C=CC=C1Br XIRRDAWDNHRRLB-UHFFFAOYSA-N 0.000 description 4
- UFFBMTHBGFGIHF-UHFFFAOYSA-N 2,6-dimethylaniline Chemical compound CC1=CC=CC(C)=C1N UFFBMTHBGFGIHF-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000001841 imino group Chemical group [H]N=* 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- OLFPYUPGPBITMH-UHFFFAOYSA-N tritylium Chemical compound C1=CC=CC=C1[C+](C=1C=CC=CC=1)C1=CC=CC=C1 OLFPYUPGPBITMH-UHFFFAOYSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001543 aryl boronic acids Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 3
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- YAVCXSHORWKJQQ-UHFFFAOYSA-N 1-phenyl-2-(2-phenylphenyl)benzene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 YAVCXSHORWKJQQ-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- WBZVXZGPXBXMSC-UHFFFAOYSA-N 2,5,6,6-tetrakis(2-methylpropyl)oxaluminane Chemical compound CC(C)CC1CC[Al](CC(C)C)OC1(CC(C)C)CC(C)C WBZVXZGPXBXMSC-UHFFFAOYSA-N 0.000 description 2
- AJUHJMMNWVKCER-UHFFFAOYSA-N 2-(2-phenylphenyl)aniline Chemical compound NC1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 AJUHJMMNWVKCER-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- AUGFATHUABJNGZ-UHFFFAOYSA-N CC1=[N+](C)[C-]2[Y-]P1C(C)=[N+]2C Chemical compound CC1=[N+](C)[C-]2[Y-]P1C(C)=[N+]2C AUGFATHUABJNGZ-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000009566 Mao-to Substances 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001448 anilines Chemical class 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 125000005621 boronate group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- PGOQFBTTZHLHCW-UHFFFAOYSA-L dichloroiron;pyridine Chemical compound Cl[Fe]Cl.C1=CC=NC=C1 PGOQFBTTZHLHCW-UHFFFAOYSA-L 0.000 description 2
- 235000012438 extruded product Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- MNJYZNVROSZZQC-UHFFFAOYSA-N (4-tert-butylphenyl)boronic acid Chemical compound CC(C)(C)C1=CC=C(B(O)O)C=C1 MNJYZNVROSZZQC-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- 125000006657 (C1-C10) hydrocarbyl group Chemical group 0.000 description 1
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- 125000006736 (C6-C20) aryl group Chemical group 0.000 description 1
- INPXSRPCUDGREI-UHFFFAOYSA-N 1-[6-[n-(2,6-diphenylphenyl)-c-methylcarbonimidoyl]pyridin-2-yl]ethanone Chemical compound CC(=O)C1=CC=CC(C(C)=NC=2C(=CC=CC=2C=2C=CC=CC=2)C=2C=CC=CC=2)=N1 INPXSRPCUDGREI-UHFFFAOYSA-N 0.000 description 1
- UWIWCJWRPFENAR-UHFFFAOYSA-N 2,6-bis(2-tert-butylphenyl)aniline Chemical compound CC(C)(C)C1=CC=CC=C1C1=CC=CC(C=2C(=CC=CC=2)C(C)(C)C)=C1N UWIWCJWRPFENAR-UHFFFAOYSA-N 0.000 description 1
- MMFJPAITCADHGQ-UHFFFAOYSA-N 2,6-bis(4-tert-butylphenyl)aniline Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=CC=CC(C=2C=CC(=CC=2)C(C)(C)C)=C1N MMFJPAITCADHGQ-UHFFFAOYSA-N 0.000 description 1
- WKBALTUBRZPIPZ-UHFFFAOYSA-N 2,6-di(propan-2-yl)aniline Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N WKBALTUBRZPIPZ-UHFFFAOYSA-N 0.000 description 1
- SQWOXJKFEXUQEO-UHFFFAOYSA-N 2-methylpropylaluminum(2+);oxygen(2-) Chemical compound [O-2].CC(C)C[Al+2] SQWOXJKFEXUQEO-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- JKRKGHQZNIMSQZ-UHFFFAOYSA-N CC12=CC=C1(NCNC13=C(C4=CC=CC=C4)C=C1(C)C=C3C1=CC=CC=C1)C=C2 Chemical compound CC12=CC=C1(NCNC13=C(C4=CC=CC=C4)C=C1(C)C=C3C1=CC=CC=C1)C=C2 JKRKGHQZNIMSQZ-UHFFFAOYSA-N 0.000 description 1
- CWBISCZNWWBVKU-XHYVCTQASA-L CC1=CC(C)=C(/N2=C(\C)C3=CC=CC4=N3[Fe]2(Cl)(Cl)N(C2=C(C3=CC=CC=C3)C=CC=C2C2=CC=CC=C2)=C4C)C(C)=C1 Chemical compound CC1=CC(C)=C(/N2=C(\C)C3=CC=CC4=N3[Fe]2(Cl)(Cl)N(C2=C(C3=CC=CC=C3)C=CC=C2C2=CC=CC=C2)=C4C)C(C)=C1 CWBISCZNWWBVKU-XHYVCTQASA-L 0.000 description 1
- VFKPUFAPBSDTJT-UHFFFAOYSA-N CC1=CC=CC(C)=C1/N1=C(\C)C2=CC=CC3=N2C1N(C1=C(C2=CC=CC=C2)C=CC=C1C1=CC=CC=C1)=C3C Chemical compound CC1=CC=CC(C)=C1/N1=C(\C)C2=CC=CC3=N2C1N(C1=C(C2=CC=CC=C2)C=CC=C1C1=CC=CC=C1)=C3C VFKPUFAPBSDTJT-UHFFFAOYSA-N 0.000 description 1
- IEAIJRPIIUFYDA-MOPVBUNPSA-M CC1=CC=CC(C)=C1/N1=C(\C)C2=CC=CC3=N2[Fe](Cl)Cl1N(C1=C(C2=CC=C(C(C)(C)C)C=C2)C=CC=C1C1=CC=C(C(C)(C)C)C=C1)=C3C Chemical compound CC1=CC=CC(C)=C1/N1=C(\C)C2=CC=CC3=N2[Fe](Cl)Cl1N(C1=C(C2=CC=C(C(C)(C)C)C=C2)C=CC=C1C1=CC=C(C(C)(C)C)C=C1)=C3C IEAIJRPIIUFYDA-MOPVBUNPSA-M 0.000 description 1
- MSMMANQRBCWBSA-ZWORZTFJSA-J CC1=N(C2=C(C(C)C)C=CC=C2C(C)C)[Fe]2(Cl)(Cl)N3=C1C=CC=C3/C(C)=N\2C1=C(C(C)C)C=CC=C1C(C)C.CC1=N(C2=C(C3=CC=CC=C3)C=CC=C2C2=CC=CC=C2)[Fe]2(Cl)(Cl)N3=C1C=CC=C3/C(C)=N\2C1=C(C(C)C)C=CC=C1C(C)C.[CsH] Chemical compound CC1=N(C2=C(C(C)C)C=CC=C2C(C)C)[Fe]2(Cl)(Cl)N3=C1C=CC=C3/C(C)=N\2C1=C(C(C)C)C=CC=C1C(C)C.CC1=N(C2=C(C3=CC=CC=C3)C=CC=C2C2=CC=CC=C2)[Fe]2(Cl)(Cl)N3=C1C=CC=C3/C(C)=N\2C1=C(C(C)C)C=CC=C1C(C)C.[CsH] MSMMANQRBCWBSA-ZWORZTFJSA-J 0.000 description 1
- GCZJEUDGKNASTK-JWPBCUDPSA-L CC1=N(C2=C(C3=CC=CC=C3)C=CC=C2C2=CC=CC=C2)[Fe]2(Cl)(Cl)N3=C1C=CC=C3/C(C)=N\2C1=C(C(C)C)C=CC=C1C(C)C Chemical compound CC1=N(C2=C(C3=CC=CC=C3)C=CC=C2C2=CC=CC=C2)[Fe]2(Cl)(Cl)N3=C1C=CC=C3/C(C)=N\2C1=C(C(C)C)C=CC=C1C(C)C GCZJEUDGKNASTK-JWPBCUDPSA-L 0.000 description 1
- YPOVWTWGKFAHPU-UHFFFAOYSA-N CC1=[N+](C)[C-2]2(C)[Y-]P1C(C)=[NH+2]2C Chemical compound CC1=[N+](C)[C-2]2(C)[Y-]P1C(C)=[NH+2]2C YPOVWTWGKFAHPU-UHFFFAOYSA-N 0.000 description 1
- GNRDJYATJMQKEJ-UHFFFAOYSA-N CO[Al](C)C Chemical compound CO[Al](C)C GNRDJYATJMQKEJ-UHFFFAOYSA-N 0.000 description 1
- 101000878457 Macrocallista nimbosa FMRFamide Proteins 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000004703 alkoxides Chemical group 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- HJXBDPDUCXORKZ-UHFFFAOYSA-N diethylalumane Chemical compound CC[AlH]CC HJXBDPDUCXORKZ-UHFFFAOYSA-N 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UEEXYHHZSOEEDG-UHFFFAOYSA-N methylaluminum(2+);oxygen(2-) Chemical compound [O-2].[Al+2]C UEEXYHHZSOEEDG-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- ZDHOYZBANMCKGV-UHFFFAOYSA-N n,n-dibromoaniline Chemical compound BrN(Br)C1=CC=CC=C1 ZDHOYZBANMCKGV-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
- B01J31/181—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
- B01J31/1815—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/02—Iron compounds
- C07F15/025—Iron compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/72—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
- C08F4/80—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/10—Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
- B01J2231/12—Olefin polymerisation or copolymerisation
- B01J2231/122—Cationic (co)polymerisation, e.g. single-site or Ziegler-Natta type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/842—Iron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
Definitions
- This invention relates to olefin polymerization catalysts and their preparation and use in the polymerization of ethylenically unsaturated monomers.
- Olefin polymers such as polyethylene, polypropylene, which may be atactic or stereospecific, such as isotactic or syndiotactic, and ethylene-higher alpha olefin copolymers, such as ethylene-propylene copolymers can be produced under various polymerization conditions and employing various polymerization catalysts.
- Such polymerization catalysts include Ziegler-Natta catalysts and non-Ziegler-Natta catalysts, such as metallocenes and other transition metal catalysts which are typically employed in conjunction with one or more co-catalysts.
- the polymerization catalysts may be supported or unsupported.
- the alpha olefin homopolymers or copolymers may be produced under various conditions in polymerization reactors which may be batch type reactors or continuous reactors.
- Continuous polymerization reactors typically take the form of loop-type reactors in which the monomer stream is continuously introduced and a polymer product is continuously withdrawn.
- polymers such as polypropylene, polyethylene or ethylene-propylene copolymers involve the introduction of the monomer stream into the continuous loop-type reactor along with an appropriate catalyst system to produce the desired olefin homopolymer or copolymer.
- the resulting polymer is withdrawn from the loop-type reactor in the form of a “fluff” which is then processed to produce the polymer as a raw material in particulate form as pellets or granules.
- a “fluff” which is then processed to produce the polymer as a raw material in particulate form as pellets or granules.
- the resulting polymer product may be characterized in terms of stereoregularity, such as in the case of, for example, isotactic polypropylene or syndiotactic polypropylene.
- unsaturated hydrocarbons which can be polymerized or copolymerized with relatively short chain alphaolefins, such as ethylene and propylene include dienes, such as 1,3-butadiene or 1,4-hexadiene or acetylenically unsaturated compounds, such as methylacetylene.
- catalyst compositions and processes for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers include ethylene, C 3+ alphaolefins and substituted vinyl compounds, such as styrene and vinyl chloride.
- a further application of the present invention is in the polymerization of C 4+ conjugated dienes including specifically, butadiene.
- a particularly preferred application of the invention is in the polymerization of ethylene including the homopolymerization of ethylene to produce polyethylene, and the copolymerization of ethylene and a C 3+ alphaolefin to produce an ethylene alphaolefin copolymer, specifically an ethylene-propylene copolymer.
- an olefin polymerization catalyst composition comprising a Cs symmetric catalyst component characterized by the formula:
- M is a Group 4-11 transition metal
- n is an integer within the range of 1-3
- Q is a halogen or a C 1 -C 2 alkyl group
- PY is a pyridinyl group which is coordinated with M through the nitrogen atom of the pyridinyl group.
- R′ and R′′ are each independently a C 1 -C 20 hydrocarbyl group
- a 1 is a mononuclear aromatic group, which may be substituted or unsubstituted
- a 2 is a polynuclear aromatic group, which may be substituted or unsubstituted.
- R′ and R′′ are each independently a C 1 -C 4 alkyl group or a substituted or unsubstituted mononuclear aryl group.
- M is a transition metal selected from Groups 8-10 of the Periodic Table and more specifically, iron or cobalt, with n being 2.
- a 1 may take the form of an unsubstituted phenyl group or a substituted phenyl group which is mono-substituted, di-substituted or tri-substituted.
- a 1 is a phenyl group which is mono-substituted at the directly distal position with respect to the coordinating nitrogen atom.
- a 1 is a di-substituted phenyl group substituted at the proximal positions with a C 1 -C 4 alkyl group, each alkyl group being the same, or a tri-substituted phenyl group substituted with the same C 1 -C 4 alkyl groups at the proximal positions and substituted with a C 1 -C 4 alkyl group at the directly distal position, which may the same or different from the alkyl substituents at the proximal positions.
- the ligand component A 2 is a substituted or unsubstituted terphenyl group.
- the primary benzyl group of the terphenyl group is substituted with the substituent phenyl groups thereof at the proximal positions with respect to the coordinating nitrogen ion.
- both of the substituent phenyl groups of the terphenyl group are substituted at the para-positions with C 1 -C 4 alkyl groups.
- M is a transition metal selected from the group consisting of iron, cobalt, nickel and copper.
- M is iron or cobalt and more specifically, iron.
- the Cs symmetric catalyst component is characterized by the formula:
- M is iron, cobalt, nickel or copper and A 1 and A 2 are aromatic groups with A 1 being a substituted or unsubstituted aromatic group and A 2 being a substituted aromatic group which is sterically different from A 1 .
- PY is a pyridinyl group and Q is a halogen or a C 1 -C 2 alkyl group as described previously.
- a specific embodiment of the present invention in which the coordinating transition metal is iron, is a catalyst component having Cs symmetry, which is characterized by the following formula:
- Q is a hydrogen or a C 1 -C 2 alkyl group and the substituents R 1 and R 2 on the phenyl group are, respectively, hydrogen or a C 1 -C 4 alkyl group and a C 1 -C 4 alkyl group.
- R 3 is a hydrogen or a C 1 -C 4 alkyl group
- R 5 is hydrogen or a C 1 -C 4 alkyl group which can be the same as or different from R 3 .
- the distal constituents, R 4 are each hydrogen or a C 1 -C 4 alkyl group with R 4 and are the same substituents.
- Specific catalyst components are characterized by the catalyst component of formula (III) in which R 2 is an isopropylene group and each R 4 is hydrogen.
- the Cs symmetric catalyst component is characterized by the formula:
- Q is a halogen or a C 1 -C 2 alkyl group
- R 1 is a hydrogen or methyl group
- R 2 is a methyl or ethyl group.
- the distal substituents, R 4 on the terphenyl group are the same and are each a C 2 -C 4 alkyl group having a higher molecular weight than R 2 . More specifically, the substituents R 2 are each a methyl group and the substituents R 4 are each isopropyl or tertiary butyl groups. Preferably, the substituents R 4 are tertiary butyl groups, R 1 is a methyl group and Q is chlorine.
- M is a transition metal selected from Group 8-10 of the Periodic Table and Q, R 1 , R 2 , R 4 and R 5 are as described above with respect to formula (III).
- an activating co-catalyst component such as an alumoxane.
- the catalyst component and the co-catalyst component are contacted in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product which is then recovered from the reaction zone.
- the activating co-catalyst comprises methylalumoxane (MAO) or tri-isobutylalumoxane (MAO) or mixtures thereof.
- the activating co-catalyst can take the form of a noncoordinating anionic type, such as triphenylcarbenium tetrakis(pentafluorophenyl)aluminate or triphenylcarbenium tetrakis(pentafluorophenyl)boronate.
- a noncoordinating anionic type such as triphenylcarbenium tetrakis(pentafluorophenyl)aluminate or triphenylcarbenium tetrakis(pentafluorophenyl)boronate.
- a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component of the present invention in carrying out this aspect of the invention, 2,6-dibromophenyl amine is reacted with an arylboronic acid which is substituted or unsubstituted to produce a corresponding 2,6-diarylphenyl amine which is substituted or unsubstituted.
- the 2,6-diarylphenyl amine is reacted with dialkanoic pyridine characterized by the formula:
- R′ and R′′ are each independently a C 1 -C 20 alkyl group.
- TRP is a terphenyl group, which is substituted or unsubstituted.
- TRP is as described above and AR is a substituted or unsubstituted aryl group.
- the drawing is a perspective view of a Cs symmetric catalyst component produced in accordance with the present invention.
- the present invention involves pyridinyl-bridged transition metal catalysts having Cs symmetry and their preparation and use in the polymerization of olefins.
- Specific olefins which may be polymerized, either through homopolymerization or copolymerization include ethylene, propylene, butylene and conjugated dienes such as 1,3-butadiene, as well as monoaromatic or substituted vinyl compounds as described previously.
- the Cs symmetric catalyst components of the present invention incorporate transition metals from Groups 4-11 of the Periodic Table of Elements (new notation) and more particularly, transition metals from Groups 8-11 of the Periodic Table of Elements.
- Preferred transition metals for use in the catalyst components of the present invention are iron, cobalt, nickel and copper with iron and cobalt being particularly preferred.
- the catalyst components of the present invention incorporate pyridinyl-linked bis-amino ligand structures which are unbalanced and incorporate a mononuclear aromatic group linked to one nitrogen atom and a polynuclear aromatic group linked to the other nitrogen atom.
- the mononuclear and polynuclear aromatic groups may be substituted or unsubstituted, but if substituted, each aromatic group is symmetrical with respect to each group's respective coordinating nitrogen atom.
- the catalyst component incorporates a ligand structure having Cs symmetry. The plane of symmetry extends through the transition metal and to nitrogen atoms of the bis-amino ligand as shown by the following diagram of a bridged phenyl-terphenyl structure as indicated below:
- Cs symmetry is maintained if the terphenyl group is unsubstituted, di-substituted at the distal positions 4 and 4′ of the substituent phenyl groups, or substituted on the substituent phenyl groups at the 2 and 2′ positions with the same substituent groups, and at the 6 and 6′ positions with the same substituent groups, which may be the same or different than the substituents at the 2 and 2′ positions.
- Diagram (IX) which schematically shows a phenyl-terphenyl ligand structure in which the substituent phenyl groups are substituted on the primary benzyl group of the terphenyl group at the proximal positions with respect to the nitrogen linkage, is illustrative of embodiments of the invention such as shown by formulas (III), (IV) and (V) above.
- Suitable activating co-catalysts may take the form of co-catalysts such are commonly employed in metallocene-catalyzed polymerization reactions.
- the activating co-catalyst may take the form of an aluminum co-catalyst.
- Alumoxane co-catalysts are also referred to as aluminoxane or polyhydrocarbyl aluminum oxides.
- Such compounds include oligomeric or polymeric compounds having repeating units of the formula:
- R is an alkyl group generally having 1 to 5 carbon atoms.
- Alumoxanes are well known in the art and are generally prepared by reacting an organo-aluminum compound with water, although other synthetic routes are known to those skilled in the art. Alumoxanes may be either linear polymers or they may be cyclic, as disclosed for example in U.S. Pat. No. 4,404,344. Thus, alumoxane is an oligomeric or polymeric aluminum oxy compound containing chains of alternating aluminum and oxygen atoms whereby the aluminum carries a substituent, preferably an alkyl group.
- linear and cyclic alumoxanes is generally believed to be represented by the general formula —(Al(R)—O—)-m for a cyclic alumoxane, and R 2 Al—O—(Al(R)—O)m-AlR 2 for a linear compound wherein R independently each occurrence is a C 1 -C 10 hydrocarbyl, preferably alkyl or halide and m is an integer ranging from 1 to about 50, preferably at least about 4.
- Alumoxanes also exist in the configuration of cage or cluster compounds. Alumoxanes are typically the reaction products of water and an aluminum alkyl, which in addition to an alkyl group may contain halide or alkoxide groups.
- alumoxanes are methylalumoxane and methylalumoxane modified with minor amounts of other higher alkyl groups such as isobutyl.
- Alumoxanes generally contain minor to substantial amounts of the starting aluminum alkyl compounds.
- the preferred co-catalyst, prepared either from trimethylaluminum or tri-isobutylaluminum, is sometimes referred to as poly (methylaluminum oxide) and poly (isobutylaluminum oxide), respectively.
- the alkyl alumoxane co-catalyst and transition metal catalyst component are employed in any suitable amounts to provide an olefin polymerization catalyst.
- Suitable aluminum transition metal mole ratios are within the range of 10:1 to 20,000:1 and preferably within the range of 100:1 to 5,000:1.
- the transition metal catalyst component and the alumoxane, or other activating co-catalyst as described below are mixed prior to introduction in the polymerization reactor in a mode of operation such as described in U.S. Pat. No. 4,767,735 to Ewen et al.
- the polymerization process may be carried out in either a batch-type, continuous or semi-continuous procedure, but preferably polymerization of the olefin monomer (or monomers) will be carried out in a loop type reactor of the type disclosed in the aforementioned U.S. Pat. No. 4,767,735.
- Typical loop type reactors include single loop reactors or so-called double loop reactors in which the polymerization procedure is carried in two sequentially connected loop reactors. As described in the Ewen et al.
- the catalyst components when they are formulated together, they may be supplied to a linear tubular pre-polymerization reactor where they are contacted for a relatively short time with the pre-polymerization monomer (or monomers) prior to being introduced into the main loop type reactors. Suitable contact times for mixtures of the various catalyst components prior to introduction into the main reactor may be within the range of a few seconds to 2 days.
- suitable continuous polymerization processes which may be employed in carrying out the present invention, reference is made to the aforementioned U.S. Pat. No. 4,767,735, the entire disclosure of which is incorporated herein by reference.
- activating co-catalysts which can be used in carrying out the invention include those catalysts which function to form a catalyst cation with an anion comprising one or more boron atoms.
- the activating co-catalyst may take the form of triphenylcarbenium tetrakis(pentafluorophenyl) boronate as disclosed in U.S. Pat. No. 5,155,080 to Elder et al. As described there, the activating co-catalyst produces an anion which functions as a stabilizing anion in a transition metal catalyst system.
- Suitable noncoordinating anions include [W(PhF 5 )] ⁇ , [Mo(PhF 5 )] ⁇ (wherein PhF 5 is pentafluorophenyl), [ClO 4 ] ⁇ , [S 2 O 6 ] ⁇ , [PF 6 ] ⁇ , [SbR 6 ] ⁇ , [AlR] ⁇ (wherein each R is independently Cl, a C 1 -C 5 alkyl group preferably a methyl group, an aryl group, e.g. a phenyl or substituted phenyl group, or a fluorinated aryl group).
- triphenylcarbenium tetrakis(pentafluorophenyl)boronate may be reacted with pyridinyl-linked bis-amino ligand of the present invention in a solvent, such as toluene, to produce a coordinating cationic-anionic complex.
- a solvent such as toluene
- the polymerization reaction may be carried out in the presence of a scavenging agent or polymerization co-catalyst which is added to the polymerization reactor along with the catalyst component and activating co-catalyst.
- a scavenging agent or polymerization co-catalyst which is added to the polymerization reactor along with the catalyst component and activating co-catalyst.
- These scavengers can be generally characterized as organometallic compounds of metals of Groups IA, IIA, and IIIB of the Periodic Table of Elements.
- organoaluminum compounds are normally used as co-catalysts in polymerization reactions.
- Scavenging co-catalysts normally employed in the invention include methylalumoxane (MAO), triethylaluminum (TEAL) and tri-isobutylaluminum (TIBAL).
- MAO methylalumoxane
- TEAL triethylaluminum
- TIBAL tri-isobutylaluminum
- the procedure of preparing the above ligand comprises the following reactions:
- the ligands produced by reactions (XII-XIV), according to the present invention are prepared by means of a very simple and efficient process, which employs inexpensive starting materials and comprises single reaction steps having high yields. Furthermore, this process does not require laborious and time-consuming purification procedures, and thus is particularly suitable to large-scale production.
- the initial procedure (a) comprises reacting dibromoaniline with at least 2 equivalents and preferably 2-3 equivalents of the arylboronic acid. This reaction is carried out in the presence of a palladium catalyst, preferably Pd(PPh 3 ) 4 , and with at least 0.5 mol %, and preferably 0.5-5.0 mol % of palladium catalyst, and in the presence of at least 3 equivalents of Na 2 CO 3 or K 2 CO 3 , preferably 3-7 equivalents of Na 2 CO 3 or K 2 CO 3 .
- reaction (a) is carried out in the presence of toluene, alcohol and water, preferably in ratio 10:(1-2):(1-0.1).
- the initial reaction is preferably carried out at a temperature ranging from 20° to 150° C. for a time of 1-24 hours, and more preferably for 2-3 hours.
- the resulting amine product can be isolated by crystallization or by column chromatography.
- Reaction (b) comprises reacting 2,6-diacetylpyridine (4) with at least 1 equivalent and preferably 1.0-1.2 equivalents of the diarylaniline (3) product of reaction (b), to obtain the intermediate compound of formula (6).
- Reaction (b) is carried out in the presence of an acid as a catalyst, preferably p-toluenesulfonic acid, in an organic solvent such as alcohol, aliphatic or aromatic solvents, preferably in benzene or toluene.
- Reaction (b) is preferably carried out at a temperature ranging from 20° to 150° C., preferably 80° to 120° C. for a time of 1-72 hours, and more preferably for 5-12 hours.
- the obtained intermediate compound of formula (6) can be isolated by crystallization or used without isolation for reaction (c).
- Reaction (c) comprises reacting the intermediate compound of formula (6) with at least 1 equivalent and preferably 1.0-1.2 equivalents of the diarylaniline of formula (7) prepared in reaction (b) to obtain the intermediate compound of formula (8).
- This reaction is carried out in the presence of an acid as a catalyst, preferably p-toluenesulfonic acid, in an organic solvent such as alcohol, aliphatic or aromatic solvents, preferably in benzene or toluene.
- Reaction (c) is preferably carried out at a temperature ranging from 20° to 150° C., preferably 80° to 120° C. for a time of 1-72 hours, and more preferably for 5-12 hours.
- the resulting compound of formula (8) can be isolated by crystallization.
- reaction (a) comprises reacting 2,6-diacetylpyridine (4) with at least 1 equivalent and preferably 1.0-1.2 equivalents of diarylaniline (7) to obtain the intermediate compound of formula (9):
- Alternative reaction step (c′) comprises reacting the intermediate compound of formula (9) with at least 1 equivalent and preferably 1.0-1.2 equivalents of the diarylaniline of formula (3) prepared in reaction (a):
- the ligand of formula (8) according to the present invention can be readily transformed into corresponding catalyst component by reaction with MCl n , e.g. where M is Fe or Co and n is 2, by using standard procedures disclosed in U.S. Pat. No. 6,414,098 to Engchausen et al., the entire disclosure of which is incorporated herein by reference, and also in B.L. Small, Organometallics, vol. 22, p. 3178 (2003):
- the Cs symmetric compounds of the present invention can be used as catalytic components for the polymerization of olefins.
- the catalysts used for the polymerization of olefins include the product obtainable by contacting the follow components:
- activating co-catalysts suitable as component (2) in catalysts of the invention are linear, branched or cyclic alumoxane, containing at least one group of the type:
- substituents R a and R b are the same or different from each other and are C 1 -C 20 alkyl, C 5 -C 20 cycloalkyl, C 6 -C 20 aryl, or groups —O—Al(R).
- alumoxanes suitable as activating co-catalysts according to present invention are methylalumoxane (MAO), tetra-isobutylalumoxane (TIBAO) and mixtures of different alumoxanes (MMAO).
- Activating co-catalysts suitable for use in the invention can be produced from trialkylaluminum compounds by reaction with water as described above.
- Further activating co-catalysts suitable for use in the invention include compounds capable of forming an alkyl catalyst cation of formula X + Y ⁇ as disclosed above.
- the Y ⁇ anion preferably comprises one or more boron atoms. More preferably, the Y ⁇ anion is an anion of formula BAr ⁇ , where Ar substituents, which are the same or different, are aryl groups as phenyl or pentafluorophenyl.
- the polymerization process of the present invention involves the polymerization of one or more olefinic monomers in the presence of a catalyst as described above.
- olefinic monomers which may be used in the polymerization process are ethylene, ⁇ -olefins such as propylene and 1-butene, and conjugated di-olefins.
- the catalysts of the invention can be advantageously used in ethylene homopolymerization. Unexpectedly high yields at 80° C. are achieved of ethylene polymers having advantageous properties for different polymer applications, for example, for medium density films.
- the high stability of the catalysts under polymerization process at 80° C. and a high Mw of polyethylenes produced may be explained in terms of specific structural features of the catalysts of the invention.
- the structure of a Cs symmetric compound as determined by X-ray analysis of a single crystal is indicated by the perspective structural formula of FIG. 1 .
- Table 1 summarizes the data of the selected angles in degrees and bond lengths in Angstroms for this Cs symmetric catalyst component and for a corresponding C2v symmetric catalyst.
- the Cs symmetric catalyst component contains bulkier aromatic groups at the 2,6-position of phenyl rings of imino-group, which change the geometry of the catalysts component to give more stable catalytic species during the polymerization process, and therefore the catalyst system produces polyethylene polymers more efficiently at higher temperatures.
- the catalysts of the present invention can be advantageously used in copolymerization of ethylene with propylene or hexene-1. They show moderate activities in homopolymerization of propylene to yield polypropylene of moderate tacticity.
- Diacethylpyridine (1.10 g, 6.7 mmol), terphenylamine (1.60 g, 6.7 mmol) and a catalytic amount of p-toluenesulfonic acid monohydrate in benzene (50 ml) were heated under reflux for 3 hrs.
- the product was crystallized from solution and washed with pentane to provide a yield of 1.6 g.
- the solid contained 85% monoimine and 15% bis-imine. After double crystallization from CH 2 Cl 2 /pentane (1:3), monoimine and bis-imine were separated.
- Example 1(2) The same procedure as in Example 1(2) was used except that reaction was conducted by using diacethylpyridine (0.64 g, 3.93 mmol) and 2,6-di(t-butylphenyl)aniline (1.41 g, 3.95 mmol).
- Example 3(2) The same procedure as in Example 3(2) was used except that reaction was conducted by using monoimine (t-BuPh 2 ) (1.30 g), 2,6-dimethylaniline (1.40 g). The yield was 0.55 g.
- Example 1(4) The same procedure as in Example 1(4) was repeated except that reaction was conducted by using the bis-imine (Me 2 , t-BuPh 2 ) (0.45 g) and FeCl 2 (94.5 mg). The yield was 0.40 g.
- Table 2 sets forth the ethylene polymerization/copolymerization conditions and the yields and activities for the catalysts as indicated in the table.
- the bench reactor parameters for all tests were as follows: i-butane (1,200 g), 8% of ethylene, temperature 80° C., MAO to provide Fe/Al ratio of 1:1000.
- Table 3 sets forth properties of polymers produced in Examples 6-12.
- Table 4 sets forth ethylene polymerization/copolymerization conditions for the catalyst produced in Example 3.
- the bench reactor conditions were as follows: i-butane, 7% of ethylene, temperature 50° C., MAO to provide Fe/Al ratio of 1:1000.
- the polymerization of propylene was carried out with 3 mg of the Me 2 Ph 2 catalyst from Example 3, MAO (0.2 ml, 30% in toluene) in 50 ml of toluene at ⁇ 10° C. for 3 hours under 1 atm of propylene. 0.20 g of polypropylene was isolated.
- the polypropylene was moderately isotactic as indicated by the following pentad distribution from 13 C NMR analysis: (%) mmmm 55.3, mmmr 16.3, mmrr 4.9, xmrx 17.1, mrrm 1.5; % mesodiads 85.1, % racemic diads 14.9%.
- the polymer products produced by the polymerization of ethylenically unsaturated monomers in accordance with the present invention can be used to produce a wide variety of end use products.
- the polymer products may be employed to produce blow-molded products or injection-molded products, such as bottles for milk, food, and detergents and the like, housewares, such as toys and pails and various extruded products.
- extruded products include film products for producing grocery and merchandise bags, packaging for food products, sheets for truck bed liners and luggage, shipping containers and bulk storage tanks.
- blow molded parts which can be produced include articles such as shipping containers and bulk storage tanks, and pipes, including high pressure pipes for use in various industrial applications such as for sewer pipes and pipes for gas, oil, and water transport applications.
- the polyethylene products are characterized by a high electrical resistivity and thus may be used in insulating applications such as insulating coatings on electrical wiring products.
- Molded ethylene homopolymer or copolymer products produced in accordance with the present invention can also be used to provide various automotive components by injection moldings, including, without limitation, automobile or truck dashboards and interior trim moldings.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Catalyst compositions having Cs symmetry and processes utilizing Cs symmetric catalyst components for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Monomers, which are polymerized or copolymerized include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The catalyst component is characterized by the formula:
wherein M is a Group 4-11 transition metal, n is an integer of from 1-3, Q is halogen or a C1-C2 alkyl group, PY is a pyridinyl group, R′ and R″ are each C1-C20 hydrocarbyl group, A1 is a mononuclear aromatic group, and A2 is a polynuclear aromatic group, such as a terphenyl group. The catalyst component is used with an activating co-catalyst component such as an alumoxane. Also disclosed is a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component.
Description
- This invention relates to olefin polymerization catalysts and their preparation and use in the polymerization of ethylenically unsaturated monomers.
- Olefin polymers such as polyethylene, polypropylene, which may be atactic or stereospecific, such as isotactic or syndiotactic, and ethylene-higher alpha olefin copolymers, such as ethylene-propylene copolymers can be produced under various polymerization conditions and employing various polymerization catalysts. Such polymerization catalysts include Ziegler-Natta catalysts and non-Ziegler-Natta catalysts, such as metallocenes and other transition metal catalysts which are typically employed in conjunction with one or more co-catalysts. The polymerization catalysts may be supported or unsupported.
- The alpha olefin homopolymers or copolymers may be produced under various conditions in polymerization reactors which may be batch type reactors or continuous reactors. Continuous polymerization reactors typically take the form of loop-type reactors in which the monomer stream is continuously introduced and a polymer product is continuously withdrawn. For example, polymers such as polypropylene, polyethylene or ethylene-propylene copolymers involve the introduction of the monomer stream into the continuous loop-type reactor along with an appropriate catalyst system to produce the desired olefin homopolymer or copolymer. The resulting polymer is withdrawn from the loop-type reactor in the form of a “fluff” which is then processed to produce the polymer as a raw material in particulate form as pellets or granules. In the case of C3+ alpha olefins, such a propylene or substituted ethylenically unsaturated monomers such as styrene or vinyl chloride, the resulting polymer product may be characterized in terms of stereoregularity, such as in the case of, for example, isotactic polypropylene or syndiotactic polypropylene. Other unsaturated hydrocarbons which can be polymerized or copolymerized with relatively short chain alphaolefins, such as ethylene and propylene include dienes, such as 1,3-butadiene or 1,4-hexadiene or acetylenically unsaturated compounds, such as methylacetylene.
- In accordance with the present invention, there are provided catalyst compositions and processes for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Monomers, which are polymerized or copolymerized in accordance with the present invention, include ethylene, C3+ alphaolefins and substituted vinyl compounds, such as styrene and vinyl chloride. A further application of the present invention is in the polymerization of C4+ conjugated dienes including specifically, butadiene. A particularly preferred application of the invention is in the polymerization of ethylene including the homopolymerization of ethylene to produce polyethylene, and the copolymerization of ethylene and a C3+ alphaolefin to produce an ethylene alphaolefin copolymer, specifically an ethylene-propylene copolymer.
- In carrying out the present invention, there is provided an olefin polymerization catalyst composition comprising a Cs symmetric catalyst component characterized by the formula:
- In formula (I), M is a Group 4-11 transition metal, n is an integer within the range of 1-3, Q is a halogen or a C1-C2 alkyl group, and PY is a pyridinyl group which is coordinated with M through the nitrogen atom of the pyridinyl group. Further, with respect to formula (I), R′ and R″ are each independently a C1-C20 hydrocarbyl group, A1 is a mononuclear aromatic group, which may be substituted or unsubstituted, and A2 is a polynuclear aromatic group, which may be substituted or unsubstituted.
- In a preferred embodiment of the invention, R′ and R″ are each independently a C1-C4 alkyl group or a substituted or unsubstituted mononuclear aryl group. Preferably, M is a transition metal selected from Groups 8-10 of the Periodic Table and more specifically, iron or cobalt, with n being 2. A1 may take the form of an unsubstituted phenyl group or a substituted phenyl group which is mono-substituted, di-substituted or tri-substituted. In one embodiment of the invention, A1 is a phenyl group which is mono-substituted at the directly distal position with respect to the coordinating nitrogen atom. In a further application of the invention, A1 is a di-substituted phenyl group substituted at the proximal positions with a C1-C4 alkyl group, each alkyl group being the same, or a tri-substituted phenyl group substituted with the same C1-C4 alkyl groups at the proximal positions and substituted with a C1-C4 alkyl group at the directly distal position, which may the same or different from the alkyl substituents at the proximal positions. Preferably, the ligand component A2 is a substituted or unsubstituted terphenyl group. In one embodiment, the primary benzyl group of the terphenyl group is substituted with the substituent phenyl groups thereof at the proximal positions with respect to the coordinating nitrogen ion. In a further embodiment of the invention, both of the substituent phenyl groups of the terphenyl group are substituted at the para-positions with C1-C4 alkyl groups.
- In a preferred embodiment of the invention, M is a transition metal selected from the group consisting of iron, cobalt, nickel and copper. Preferably, M is iron or cobalt and more specifically, iron. In this case, the Cs symmetric catalyst component is characterized by the formula:
- In formula (II), M is iron, cobalt, nickel or copper and A1 and A2 are aromatic groups with A1 being a substituted or unsubstituted aromatic group and A2 being a substituted aromatic group which is sterically different from A1. PY is a pyridinyl group and Q is a halogen or a C1-C2 alkyl group as described previously.
- A specific embodiment of the present invention in which the coordinating transition metal is iron, is a catalyst component having Cs symmetry, which is characterized by the following formula:
- In formula (III), Q is a hydrogen or a C1-C2 alkyl group and the substituents R1 and R2 on the phenyl group are, respectively, hydrogen or a C1-C4 alkyl group and a C1-C4 alkyl group. With regard to the substituents on the terphenyl group of formula (III), R3 is a hydrogen or a C1-C4 alkyl group, and R5 is hydrogen or a C1-C4 alkyl group which can be the same as or different from R3. The distal constituents, R4, are each hydrogen or a C1-C4 alkyl group with R4 and are the same substituents. Specific catalyst components are characterized by the catalyst component of formula (III) in which R2 is an isopropylene group and each R4 is hydrogen.
- In yet a more specific embodiment of the invention, the Cs symmetric catalyst component is characterized by the formula:
- In formula (IV), Q is a halogen or a C1-C2 alkyl group, R1 is a hydrogen or methyl group, and R2 is a methyl or ethyl group. The distal substituents, R4 on the terphenyl group, are the same and are each a C2-C4 alkyl group having a higher molecular weight than R2. More specifically, the substituents R2 are each a methyl group and the substituents R4 are each isopropyl or tertiary butyl groups. Preferably, the substituents R4 are tertiary butyl groups, R1 is a methyl group and Q is chlorine.
- In a further embodiment of the present invention, there are provided processes for the polymerization of one or more ethylenically unsaturated monomers to produce a corresponding homopolymer or copolymer. In carrying out the polymerization process of the present invention, there is provided a transition metal catalyst component having Cs symmetry as characterized by formula (I) above and, more specifically, by the following structural formula:
- In formula (V), M is a transition metal selected from Group 8-10 of the Periodic Table and Q, R1, R2, R4 and R5 are as described above with respect to formula (III).
- In addition to the transition metal catalyst component, there is provided an activating co-catalyst component such as an alumoxane. The catalyst component and the co-catalyst component are contacted in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product which is then recovered from the reaction zone. Preferably, the activating co-catalyst comprises methylalumoxane (MAO) or tri-isobutylalumoxane (MAO) or mixtures thereof. Alternatively, the activating co-catalyst can take the form of a noncoordinating anionic type, such as triphenylcarbenium tetrakis(pentafluorophenyl)aluminate or triphenylcarbenium tetrakis(pentafluorophenyl)boronate.
- In yet a further aspect of the invention, there is provided a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component of the present invention. In carrying out this aspect of the invention, 2,6-dibromophenyl amine is reacted with an arylboronic acid which is substituted or unsubstituted to produce a corresponding 2,6-diarylphenyl amine which is substituted or unsubstituted. The 2,6-diarylphenyl amine is reacted with dialkanoic pyridine characterized by the formula:
- In formula (VI), R′ and R″ are each independently a C1-C20 alkyl group.
- The reaction product is a mono-imine ligand characterized by the formula:
- In formula (VII), TRP is a terphenyl group, which is substituted or unsubstituted.
- The mono-imine ligand is reacted with a substituted or unsubstituted aniline to produce a bis-imine ligand characterized by the formula:
- wherein TRP is as described above and AR is a substituted or unsubstituted aryl group.
- The drawing is a perspective view of a Cs symmetric catalyst component produced in accordance with the present invention.
- The present invention involves pyridinyl-bridged transition metal catalysts having Cs symmetry and their preparation and use in the polymerization of olefins. Specific olefins which may be polymerized, either through homopolymerization or copolymerization include ethylene, propylene, butylene and conjugated dienes such as 1,3-butadiene, as well as monoaromatic or substituted vinyl compounds as described previously. The Cs symmetric catalyst components of the present invention incorporate transition metals from Groups 4-11 of the Periodic Table of Elements (new notation) and more particularly, transition metals from Groups 8-11 of the Periodic Table of Elements. Preferred transition metals for use in the catalyst components of the present invention are iron, cobalt, nickel and copper with iron and cobalt being particularly preferred.
- The catalyst components of the present invention incorporate pyridinyl-linked bis-amino ligand structures which are unbalanced and incorporate a mononuclear aromatic group linked to one nitrogen atom and a polynuclear aromatic group linked to the other nitrogen atom. The mononuclear and polynuclear aromatic groups may be substituted or unsubstituted, but if substituted, each aromatic group is symmetrical with respect to each group's respective coordinating nitrogen atom. Thus, the catalyst component incorporates a ligand structure having Cs symmetry. The plane of symmetry extends through the transition metal and to nitrogen atoms of the bis-amino ligand as shown by the following diagram of a bridged phenyl-terphenyl structure as indicated below:
- In diagram (IX), the plane of symmetry is indicated by the broken line and is perpendicular to the plane of the paper in which the phenyl and terphenyl groups are schematically shown. With respect to the phenyl group, Cs symmetry is observed if the phenyl group is unsubstituted, mono-substituted at the 4 (directly distal position), di-substituted at the 2,6 positions with the same substituents, or at the 3,5 positions with the same substituents. With respect to the terphenyl group, Cs symmetry is maintained if the terphenyl group is unsubstituted, di-substituted at the distal positions 4 and 4′ of the substituent phenyl groups, or substituted on the substituent phenyl groups at the 2 and 2′ positions with the same substituent groups, and at the 6 and 6′ positions with the same substituent groups, which may be the same or different than the substituents at the 2 and 2′ positions. Diagram (IX), which schematically shows a phenyl-terphenyl ligand structure in which the substituent phenyl groups are substituted on the primary benzyl group of the terphenyl group at the proximal positions with respect to the nitrogen linkage, is illustrative of embodiments of the invention such as shown by formulas (III), (IV) and (V) above.
- In employing the catalyst components of the present invention in polymerization procedures, they are used in conjunction with an activating co-catalyst. Suitable activating co-catalysts may take the form of co-catalysts such are commonly employed in metallocene-catalyzed polymerization reactions. Thus, the activating co-catalyst may take the form of an aluminum co-catalyst. Alumoxane co-catalysts are also referred to as aluminoxane or polyhydrocarbyl aluminum oxides. Such compounds include oligomeric or polymeric compounds having repeating units of the formula:
- where R is an alkyl group generally having 1 to 5 carbon atoms. Alumoxanes are well known in the art and are generally prepared by reacting an organo-aluminum compound with water, although other synthetic routes are known to those skilled in the art. Alumoxanes may be either linear polymers or they may be cyclic, as disclosed for example in U.S. Pat. No. 4,404,344. Thus, alumoxane is an oligomeric or polymeric aluminum oxy compound containing chains of alternating aluminum and oxygen atoms whereby the aluminum carries a substituent, preferably an alkyl group. The structure of linear and cyclic alumoxanes is generally believed to be represented by the general formula —(Al(R)—O—)-m for a cyclic alumoxane, and R2Al—O—(Al(R)—O)m-AlR2 for a linear compound wherein R independently each occurrence is a C1-C10 hydrocarbyl, preferably alkyl or halide and m is an integer ranging from 1 to about 50, preferably at least about 4. Alumoxanes also exist in the configuration of cage or cluster compounds. Alumoxanes are typically the reaction products of water and an aluminum alkyl, which in addition to an alkyl group may contain halide or alkoxide groups. Reacting several different aluminum alkyl compounds, such as, for example, trimethylaluminum and tri-isobutylaluminum, with water yields so-called modified or mixed alumoxanes. Preferred alumoxanes are methylalumoxane and methylalumoxane modified with minor amounts of other higher alkyl groups such as isobutyl. Alumoxanes generally contain minor to substantial amounts of the starting aluminum alkyl compounds. The preferred co-catalyst, prepared either from trimethylaluminum or tri-isobutylaluminum, is sometimes referred to as poly (methylaluminum oxide) and poly (isobutylaluminum oxide), respectively.
- The alkyl alumoxane co-catalyst and transition metal catalyst component are employed in any suitable amounts to provide an olefin polymerization catalyst. Suitable aluminum transition metal mole ratios are within the range of 10:1 to 20,000:1 and preferably within the range of 100:1 to 5,000:1. Normally, the transition metal catalyst component and the alumoxane, or other activating co-catalyst as described below, are mixed prior to introduction in the polymerization reactor in a mode of operation such as described in U.S. Pat. No. 4,767,735 to Ewen et al. The polymerization process may be carried out in either a batch-type, continuous or semi-continuous procedure, but preferably polymerization of the olefin monomer (or monomers) will be carried out in a loop type reactor of the type disclosed in the aforementioned U.S. Pat. No. 4,767,735. Typical loop type reactors include single loop reactors or so-called double loop reactors in which the polymerization procedure is carried in two sequentially connected loop reactors. As described in the Ewen et al. patent, when the catalyst components are formulated together, they may be supplied to a linear tubular pre-polymerization reactor where they are contacted for a relatively short time with the pre-polymerization monomer (or monomers) prior to being introduced into the main loop type reactors. Suitable contact times for mixtures of the various catalyst components prior to introduction into the main reactor may be within the range of a few seconds to 2 days. For a further description of suitable continuous polymerization processes which may be employed in carrying out the present invention, reference is made to the aforementioned U.S. Pat. No. 4,767,735, the entire disclosure of which is incorporated herein by reference.
- Other suitable activating co-catalysts which can be used in carrying out the invention include those catalysts which function to form a catalyst cation with an anion comprising one or more boron atoms. By way of example, the activating co-catalyst may take the form of triphenylcarbenium tetrakis(pentafluorophenyl) boronate as disclosed in U.S. Pat. No. 5,155,080 to Elder et al. As described there, the activating co-catalyst produces an anion which functions as a stabilizing anion in a transition metal catalyst system. Suitable noncoordinating anions include [W(PhF5)]−, [Mo(PhF5)]− (wherein PhF5 is pentafluorophenyl), [ClO4]−, [S2O6]−, [PF6]−, [SbR6]−, [AlR]− (wherein each R is independently Cl, a C1-C5 alkyl group preferably a methyl group, an aryl group, e.g. a phenyl or substituted phenyl group, or a fluorinated aryl group). Following the procedure described in the Elder et al. patent, triphenylcarbenium tetrakis(pentafluorophenyl)boronate may be reacted with pyridinyl-linked bis-amino ligand of the present invention in a solvent, such as toluene, to produce a coordinating cationic-anionic complex. For a further description of such activating co-catalyst, reference is made to the aforementioned U.S. Pat. No. 5,155,080, the entire disclosure of which is incorporated herein by reference.
- In addition to the use of an activating co-catalyst, the polymerization reaction may be carried out in the presence of a scavenging agent or polymerization co-catalyst which is added to the polymerization reactor along with the catalyst component and activating co-catalyst. These scavengers can be generally characterized as organometallic compounds of metals of Groups IA, IIA, and IIIB of the Periodic Table of Elements. As a practical matter, organoaluminum compounds are normally used as co-catalysts in polymerization reactions. Specific examples include triethylaluminum, tri-isobutylaluminum, diethylaluminum chloride, diethylaluminum hydride and the like. Scavenging co-catalysts normally employed in the invention include methylalumoxane (MAO), triethylaluminum (TEAL) and tri-isobutylaluminum (TIBAL).
- The process for the preparation of the pyridinyl ligand can be exemplified by the preparation of the following ligand:
- The procedure of preparing the above ligand comprises the following reactions:
- (a) preparation of 2,6-diarylphenyl amine by the reaction of 2,6-dibromophenylamine and arylboronic acid as follows:
- (b) reacting the 2,6-diarylphenyl amine with 2,6-diacethyl pyridine with the presence of p-toluenesulfonic acid in toluene to form a mono-imine ligand as indicated below:
- (c) reacting the mono-imine ligand with an aniline or substituted aniline with the presence of p-toluenesulfonic acid in toluene to form an Cs-symmetric bis-imine ligand as follows:
- The ligands produced by reactions (XII-XIV), according to the present invention, are prepared by means of a very simple and efficient process, which employs inexpensive starting materials and comprises single reaction steps having high yields. Furthermore, this process does not require laborious and time-consuming purification procedures, and thus is particularly suitable to large-scale production.
- The initial procedure (a) comprises reacting dibromoaniline with at least 2 equivalents and preferably 2-3 equivalents of the arylboronic acid. This reaction is carried out in the presence of a palladium catalyst, preferably Pd(PPh3)4, and with at least 0.5 mol %, and preferably 0.5-5.0 mol % of palladium catalyst, and in the presence of at least 3 equivalents of Na2CO3 or K2CO3, preferably 3-7 equivalents of Na2CO3 or K2CO3. According to a preferred embodiment of the process of the invention, reaction (a) is carried out in the presence of toluene, alcohol and water, preferably in ratio 10:(1-2):(1-0.1). The initial reaction is preferably carried out at a temperature ranging from 20° to 150° C. for a time of 1-24 hours, and more preferably for 2-3 hours. The resulting amine product can be isolated by crystallization or by column chromatography.
- Reaction (b) comprises reacting 2,6-diacetylpyridine (4) with at least 1 equivalent and preferably 1.0-1.2 equivalents of the diarylaniline (3) product of reaction (b), to obtain the intermediate compound of formula (6). Reaction (b) is carried out in the presence of an acid as a catalyst, preferably p-toluenesulfonic acid, in an organic solvent such as alcohol, aliphatic or aromatic solvents, preferably in benzene or toluene. Reaction (b) is preferably carried out at a temperature ranging from 20° to 150° C., preferably 80° to 120° C. for a time of 1-72 hours, and more preferably for 5-12 hours. The obtained intermediate compound of formula (6) can be isolated by crystallization or used without isolation for reaction (c).
- Reaction (c) comprises reacting the intermediate compound of formula (6) with at least 1 equivalent and preferably 1.0-1.2 equivalents of the diarylaniline of formula (7) prepared in reaction (b) to obtain the intermediate compound of formula (8). This reaction is carried out in the presence of an acid as a catalyst, preferably p-toluenesulfonic acid, in an organic solvent such as alcohol, aliphatic or aromatic solvents, preferably in benzene or toluene. Reaction (c) is preferably carried out at a temperature ranging from 20° to 150° C., preferably 80° to 120° C. for a time of 1-72 hours, and more preferably for 5-12 hours. The resulting compound of formula (8) can be isolated by crystallization.
- Another synthesis sequence which can be used to make the desired ligand of formula (8) involves reaction (a) as described above and alternative reactions (b′) and (c′) as described below. Reaction (b′) comprises reacting 2,6-diacetylpyridine (4) with at least 1 equivalent and preferably 1.0-1.2 equivalents of diarylaniline (7) to obtain the intermediate compound of formula (9):
- Alternative reaction step (c′) comprises reacting the intermediate compound of formula (9) with at least 1 equivalent and preferably 1.0-1.2 equivalents of the diarylaniline of formula (3) prepared in reaction (a):
- While this alternative sequence is effective, the original sequence described above will usually be preferred. In this regard, the reaction of compound of formula (9) with compound of formula (3) resulted in the desired product (8) along with several side products due to a reversible condensation process of the imine formation. Therefore in sequences of the ligand synthesis the attachment of the bulkier aniline is preferably the first reaction.
- The ligand of formula (8) according to the present invention can be readily transformed into corresponding catalyst component by reaction with MCln, e.g. where M is Fe or Co and n is 2, by using standard procedures disclosed in U.S. Pat. No. 6,414,098 to Engchausen et al., the entire disclosure of which is incorporated herein by reference, and also in B.L. Small, Organometallics, vol. 22, p. 3178 (2003):
- As noted previously, the Cs symmetric compounds of the present invention can be used as catalytic components for the polymerization of olefins. The catalysts used for the polymerization of olefins include the product obtainable by contacting the follow components:
- (1) one or more Cs symmetric compounds as described above or mixture of such Cs symmetric compounds with a nonmetallocene or metallocene catalysts, and
- (2) a suitable activating cocatalyst.
- As noted previously, activating co-catalysts suitable as component (2) in catalysts of the invention are linear, branched or cyclic alumoxane, containing at least one group of the type:
- wherein the substituents Ra and Rb are the same or different from each other and are C1-C20 alkyl, C5-C20 cycloalkyl, C6-C20 aryl, or groups —O—Al(R). Examples of alumoxanes suitable as activating co-catalysts according to present invention are methylalumoxane (MAO), tetra-isobutylalumoxane (TIBAO) and mixtures of different alumoxanes (MMAO). Activating co-catalysts suitable for use in the invention can be produced from trialkylaluminum compounds by reaction with water as described above. Further activating co-catalysts suitable for use in the invention include compounds capable of forming an alkyl catalyst cation of formula X+Y− as disclosed above. The Y− anion preferably comprises one or more boron atoms. More preferably, the Y− anion is an anion of formula BAr−, where Ar substituents, which are the same or different, are aryl groups as phenyl or pentafluorophenyl.
- The polymerization process of the present invention involves the polymerization of one or more olefinic monomers in the presence of a catalyst as described above. Representative examples of olefinic monomers which may be used in the polymerization process are ethylene, α-olefins such as propylene and 1-butene, and conjugated di-olefins. The catalysts of the invention can be advantageously used in ethylene homopolymerization. Unexpectedly high yields at 80° C. are achieved of ethylene polymers having advantageous properties for different polymer applications, for example, for medium density films.
- The high stability of the catalysts under polymerization process at 80° C. and a high Mw of polyethylenes produced may be explained in terms of specific structural features of the catalysts of the invention. The structure of a Cs symmetric compound as determined by X-ray analysis of a single crystal is indicated by the perspective structural formula of
FIG. 1 . Table 1 summarizes the data of the selected angles in degrees and bond lengths in Angstroms for this Cs symmetric catalyst component and for a corresponding C2v symmetric catalyst. As indicated by the x-ray data, the Cs symmetric catalyst component contains bulkier aromatic groups at the 2,6-position of phenyl rings of imino-group, which change the geometry of the catalysts component to give more stable catalytic species during the polymerization process, and therefore the catalyst system produces polyethylene polymers more efficiently at higher temperatures. -
TABLE 1 Cs complex 2-[1-(2,6- C2v complex diisopropylphenylimino(ethyl]- bis-[(2,6- 6-[1-(2,6- diisopropylphenyliminoethyl] diphenyl phenylimino)ethyl] pyridine iron dichloride* pyridine iron dichloride Fe—N(imine) 2.222, 2.225 2.232; 2.287 Fe—N(pyridine) 2.091 2.074 N(imine)—C(L) 1.437; 1.461 1.449; 1.451 N═C 1.295; 1.301 1.288; 1.294 N(imine)—Fe—N(imine) 140.2 143.7 Fe—N(imine)—C(L) 125.6; 124.9 120.3; 126.4 C—N(imine)—C(L) 118.3; 119.3 120.3; 120.6 Cl—Fe—Cl 117.6 122.6 *B. L. Small and M. Brookhart J. Am. Chem Soc., v. 120 (1998) 4049. (Comparative) - The catalysts of the present invention can be advantageously used in copolymerization of ethylene with propylene or hexene-1. They show moderate activities in homopolymerization of propylene to yield polypropylene of moderate tacticity.
- In the following examples, all synthetic procedure of catalysts preparation were carried out under argon atmosphere. All operations with catalysts samples and aluminum alkyls were carried out in a glove box under nitrogen.
- 2,6-Dibromoaniline (6.02 g, 24 mmol) and Pd(PPh3)4 (3.88 g, 3.00 mmol) were dissolved in toluene (240 ml). Phenyl boronic acid (8.80 g, 72 mmol) in EtOH (50 ml) was added. Na2CO3 (13 g, 144 mmol) in H2O (70 ml) was added. The reaction mixture was reflux for 24 hrs. The organic layer was thin separated and the amine precipitated as hydrochloride salt by addition of 20 ml of HCl. The precipitate was isolated. The salt was suspended in ether, and 2 M Na2CO3 was added. The organic layer was dried over Na2SO4 and the solvent was evaporated. The yield was 90%. 1H NMR (CDCl3): δ 7.44 (t, 4H, Harom), 7.39 (t, 4H, Harom), 7.29 (d, 2H, Harom), 7.07 (d, 2H, Harom), 6.82 (t, 1H, Harom), 3.77 (s, 2H, NH2).
- Diacethylpyridine (1.10 g, 6.7 mmol), terphenylamine (1.60 g, 6.7 mmol) and a catalytic amount of p-toluenesulfonic acid monohydrate in benzene (50 ml) were heated under reflux for 3 hrs. The product was crystallized from solution and washed with pentane to provide a yield of 1.6 g. According to GC and NMR analysis, the solid contained 85% monoimine and 15% bis-imine. After double crystallization from CH2Cl2/pentane (1:3), monoimine and bis-imine were separated. Monoimine (Ph2): 1H NMR (CDCl3): δ 8.13 (d, 1H, Hpyr), 7.97 (d, 1H, Hpyr), 7.78 (t, 1H, Hpyr), 7.5-7.1 (m, 13H, Harom), 2.59 (s, 3H, CH3), 1.88 (s, 3H, CH3). 13C NMR (CDCl3): δ 166.2, 155.0, 152.1, 146.4, 140.1, 136.9, 131.8, 129.6, 129.2, 127.8, 126.6, 124.3, 124.2, 122.1, 25.2, 17.6.
- The monoimine (Ph2) (0.70 g, 1.79 mmol), 2,6-di-isopropylaniline (0.70 g) and a catalytic amount of p-toluenesulfonic acid monohydrate in benzene (30 ml) were heated under reflux for two days. The solvent was removed under the vacuum. Double crystallization CH2Cl2/pentane (1:3) gave bis-imine (i-Pr2, Ph2) (0.38 g). 1H NMR (CDCl3): δ 8.31 (d, 1H, Hpyr), 8.07 (d, 1H, Hpyr), 7.77 (t, 1H, Hpyr), 7.5-7.0 (16H, Harom), 2.70 (sept, 2H, CH(CH3)2), 2.07 (s, 3H, CH3—C═N), 1.89 (s, 3H, CH3—C═N), 1.13 (t, 12H, CH(CH3)2).
- The bis-imine (i-Pr2, Ph2) (0.38 g, 0.69 mmol) and iron dichloride (II) (90.0 mg) in THF (10 ml) were stirred for night at 30° C. The solvent was removed under the vacuum. The compound was crystallized from methylene chloride/pentane. Yield: 0.40 g.
- The same procedure as in Example 1(3) was repeated except that reaction was conducted by using the monoimine (Ph2) (1.39 g, 3.56 mmol) and 2,4,6-dimethylaniline (1.5 g, 11.1 mmol). NMR (CD2Cl2): δ 8.33 (d, 1H, Hpyr), 8.10 (d, 1H, Hpyr), 7.81 (t, 1H, Hpyr 7.6-6.9 (15H, Harom), 2.19 (s, 3H, CH3 from Ph), 2.14 (s, 6H, CH3 from Ph), 2.06 (s, 3H, CH3—C═N), 1.92 (s, 3H, CH3—C═N).
- The same procedure as in Example 1(4) was repeated except that reaction was conducted by using bis-imine (Me3, Ph2) instead of bis-imine (i-Pr2, Ph2). As a result, 0.39 grams of 2-[1-(2,4,6-trimethylphenylimino (ethyl]-6-[1-(2,6-diphenyl phenylimino)ethyl]pyridine iron dichloride were obtained.
- Monoimine (Ph2) (1.70 g, 4.36 mmol), 2,6-dimethylaniline (2.3 g) and a catalytic amount of p-toluenesulfonic acid monohydrate in benzene (30 ml) were heated under reflux overnight. The solvent was removed under the vacuum. Double crystallization CH2Cl2/pentane (1:3) gave bisimine (Me2, Ph2). (0.33 g). 1H NMR (CDCl3): δ 8.34 (d, 1H, Hpyr), 8.08 (d, 1H, Hpyr), 7.77 (t, 1H, Hpyr), 7.5-6.9 (16H, Harom), 2.06 (s, 3H, CH3—C═N), 2.00 (s, 6H, CH3), 1.89 (s, 3H, CH3—C═N).
- The same procedure as in Example 1(4) was repeated except that reaction was conducted by using the bis-imine (Me2, Ph2) (0.33 g) and FeCl2 (84.5 mg) instead of bis-imine (i-Pr2, Ph2). As a result, 0.35 grams of 2-[1-(2,6-dimethylphenylimino (ethyl]-6-[1-(2,6-diphenyl phenylimino)ethyl]pyridine iron dichloride were obtained.
- The same procedure as in Example 1(1) was used except that reaction was conducted by using 2,6-dibromoaniline (9.00 g, 35.6 mmol), Pd(PPh3)4 (5.0 g), and 4-t-butylphenyl boronic acid (19.0 g, 107 mmol). Yield 3.0 g. 1H NMR (CD2Cl2): δ 7.50 (d, 4H, Harom), 7.43 (d, 4H, Harom), 7.08 (d, 2H, Harom), 6.83 (t, 1H, Harom), 3.93 (s, 2H, NH2), 1.38 (s, 18H, t-Bu).
- The same procedure as in Example 1(2) was used except that reaction was conducted by using diacethylpyridine (0.64 g, 3.93 mmol) and 2,6-di(t-butylphenyl)aniline (1.41 g, 3.95 mmol). The yield was 0.95 g of the monoimine (t-BuPh2): 1H NMR (CD2Cl2): δ 8.20 (d, 1H, Hpyr), 8.00 (d, 1H, Hpyr), 7.85 (t, 1H, Hpyr), 7.5-7.2 (m, 11H, Harom), 2.61 (s, 3H, CH3), 1.94 (s, 3H, CH3), 1.30 (s, 18H, t-Bu).
- The same procedure as in Example 3(2) was used except that reaction was conducted by using monoimine (t-BuPh2) (1.30 g), 2,6-dimethylaniline (1.40 g). The yield was 0.55 g.
- The same procedure as in Example 1(4) was repeated except that reaction was conducted by using the bis-imine (Me2, t-BuPh2) (0.45 g) and FeCl2 (94.5 mg). The yield was 0.40 g.
- Table 2 sets forth the ethylene polymerization/copolymerization conditions and the yields and activities for the catalysts as indicated in the table. The bench reactor parameters for all tests were as follows: i-butane (1,200 g), 8% of ethylene, temperature 80° C., MAO to provide Fe/Al ratio of 1:1000.
-
TABLE 2 Activity, g Ex. Catalyst Amount, mg Time, min H2 Hexene-1 Yield, g PE/gCat/h 5 Me2, t-BuPh2 1.0 60 0 0 322 322,000 (from ex. 4) 6 Me2, t-BuPh2 0.5 26 0 0 259 1,195,385 (from ex. 4) 7 Me2, t-BuPh2 0.5 30 0.5 L 0 160 640,000 (from ex. 4) 8 Me2, t-BuPh2 0.5 30 0 40 ml 80 320,000 (from ex. 4) 9 (Me3)(Ph2) 0.5 30 0 0 39 156,000 (from ex. 2) 10 (Me3)(Ph2) 0.5 30 0.5 L 0 46 184,000 (from ex. 2) 11 (Me3)(Ph2) 0.5 30 0.5 L 40 ml 54 216,000 (from ex. 2) 12 (Me3)(Ph2) 0.5 30 0 40 ml 18 72,000 (from ex. 2) 13 (i-Pr2)(i-Pr2) 2.0 60 0 0 202 62,825 Comparative - Table 3 sets forth properties of polymers produced in Examples 6-12.
-
TABLE 3 Catalyst (Me2)(tBuPh), (Me2)(tBuPh), (Me3)(Ph2) (Me3)(Ph2) (Me3)(Ph2) (Me2)(tBuPh) H2 C6 (Me3)(Ph2) H2 C6 H2 + C6 Example 6 7 8 9 10 12 11 Density 0.9631 0.9626 0.9653 Second Melt 135.37 135.37 133.70 Peak C MI2 (g/10 MIN) 0.17 0.23 1.18 MI5 (g/10 MIN) 0.64 1.09 4.59 HLMI 11.4 28.4 83.9 (g/10 MIN) SR5 17.8 26.1 18.3 (HLMI/MI5) SR2 67.1 123.5 71.1 (HLMI/MI2) Flow Activation 27.8 31.0 29.7 Energy KJOLPERMOL Zero Shear 3.55E+05 4.49E+05 4.54E+04 Viscosity (PASCAL/SEC) Relaxation Time 0.235 0.428 0.027 (Sec) Breadth 0.203 0.187 0.194 Parameter % Wax 0.3 0.3 0.2 Mw 273,711 231,124 132,174 243,771 230,666 119,599 200,713 D 14.68 15.13 8.24 16.3 16.1 18.4 19.6 D′ 9.02 10.24 9.48 9.3 11.1 10.5 14.3 - Table 4 sets forth ethylene polymerization/copolymerization conditions for the catalyst produced in Example 3. The bench reactor conditions were as follows: i-butane, 7% of ethylene, temperature 50° C., MAO to provide Fe/Al ratio of 1:1000.
-
TABLE 4 Activity, g Ex. Catalyst Amount, mg Time, min H2//C2 Hexene-1, ml Yield, g PE/gCat/h 14 Me2, Ph2 2.0 60 0 0 29 8,900 (from ex. 3) 15 Me2, Ph2 2.0 60 0.006 0 35 10,850 (from ex. 3) 16 Me2, Ph2 2.0 60 0 30 14 4,340 (from ex. 3) - The polymerization of propylene was carried out with 3 mg of the Me2Ph2 catalyst from Example 3, MAO (0.2 ml, 30% in toluene) in 50 ml of toluene at −10° C. for 3 hours under 1 atm of propylene. 0.20 g of polypropylene was isolated. The polypropylene was moderately isotactic as indicated by the following pentad distribution from 13C NMR analysis: (%) mmmm 55.3, mmmr 16.3, mmrr 4.9, xmrx 17.1, mrrm 1.5; % mesodiads 85.1, % racemic diads 14.9%.
- The polymer products produced by the polymerization of ethylenically unsaturated monomers in accordance with the present invention, including ethylene homopolymers, C3+ alpha olefin homopolymers and ethylene-C3+ alpha olefin copolymers, such as ethylene propylene copolymers, can be used to produce a wide variety of end use products. Thus, the polymer products may be employed to produce blow-molded products or injection-molded products, such as bottles for milk, food, and detergents and the like, housewares, such as toys and pails and various extruded products. Such extruded products include film products for producing grocery and merchandise bags, packaging for food products, sheets for truck bed liners and luggage, shipping containers and bulk storage tanks. Large blow molded parts which can be produced include articles such as shipping containers and bulk storage tanks, and pipes, including high pressure pipes for use in various industrial applications such as for sewer pipes and pipes for gas, oil, and water transport applications. The polyethylene products are characterized by a high electrical resistivity and thus may be used in insulating applications such as insulating coatings on electrical wiring products. Molded ethylene homopolymer or copolymer products produced in accordance with the present invention can also be used to provide various automotive components by injection moldings, including, without limitation, automobile or truck dashboards and interior trim moldings. Where the polymer products produced in accordance with the present invention are used to make end use products by injection molding, various injection molded components may be made by injecting the polymer product into molds conforming to the shape of the article to be manufactured. As indicated, various articles may also be produced by blow molding to produce containers, bottles and the like, or by extrusion to form thin film products. In addition to films and the like, the ethylene homopolymer or copolymer product produced by the process of the present invention may be used to produce various fibers, meshes and textile materials as well as articles of apparel, such as gowns, masks, gloves and the like.
- Having described specific embodiments of the present invention, it will be understood that modifications thereof may be suggested to those skilled in the art, and it is intended to cover all such modifications as fall within the scope of the appended claims.
Claims (16)
1.-9. (canceled)
10. The process of claim 24 wherein said ethylenically unsaturated monomer is ethylene, a C3+ alpha olefin, or a C4+ conjugated diene.
11. The process of claim 24 wherein said ethylenically unsaturated monomer is ethylene.
12. The process of claim 11 wherein ethylene and a C3+ alpha olefin are supplied to said reaction zone to produce an ethylene alphaolefin copolymer.
13. The method of claim 12 wherein said C3+ alpha olefin is propylene to produce an ethylene-propylene copolymer.
14. A polymer product produced by the process of claim 24 .
15. The polymer product of claim 14 comprising an ethylene homopolymer or an ethylene alphaolefin copolymer.
16. An article of manufacture formed from the polymer product of claim 15 wherein said product is a product produced by injection molding, a product produced by blow molding, or a product produced by extrusion.
17. The article of claim 16 comprising a film produced by extrusion molding.
18. A process for the polymerization of an ethylenically unsaturated monomer comprising:
(a) providing a transition metal catalyst component having Cs symmetry characterized by the formula:
(a) Q is a halogen or a C1-C2 alkyl group;
(b) R1 is a H or C1-C4 alkyl group
(c) R2 is an isopropylene group;
(d) R3 is hydrogen or a C1-C4 alkyl group;
(e) R5 is hydrogen or a C1-C4 alkyl group which can be the same as or different from R3;
(f) R4 is hydrogen or a C1-C4 alkyl group; and
(g) wherein M is a transition metal selected from Groups 8-10 of the Periodic Table of Elements.
(b) providing an activating co-catalyst component;
(c) contacting said catalyst component and said co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product by polymerization of said monomer; and
(d) recovering said polymer product from said reaction zone.
19. The process of claim 18 wherein M is iron or cobalt.
20. The process of claim 18 wherein activating co-catalyst is an alkylalumoxane.
21. The process of claim 18 wherein said alkylalumoxane comprises methylalumoxane or tri-isobutylalumoxane or mixtures thereof.
22. A process for the polymerization of an ethylenically unsaturated monomer comprising:
(a) providing a transition metal catalyst component having Cs symmetry characterized by the formula:
(i) wherein Q is a halogen or a C1-C2 alkyl group;
(ii) R1 is a hydrogen or methyl group;
(iii) R2 is a methyl or ethyl group;
(iv) R4 are the same and are each a C2-C4 alkyl group having a higher molecular weight than R2;
(b) providing an activating co-catalyst component;
(c) contacting said catalyst component and said co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product by polymerization of said monomer; and
(d) recovering said polymer product from said reaction zone.
23. The process of claim 22 , wherein the substituents R2 are a methyl group and the substituents R4 are the same and are isopropyl or tertiary butyl groups.
24. The process of claim 24 , wherein R4 are tertiary butyl groups, R1 is a methyl group, and Q is chlorine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/344,368 US20120116033A1 (en) | 2003-10-23 | 2012-01-05 | Catalyst Components, Process for Their Preparation and Their Use as Catalyst Components in Polymerization of Olefins |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/691,810 US7034157B2 (en) | 2003-10-23 | 2003-10-23 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US11/299,564 US7176950B2 (en) | 2003-10-23 | 2005-12-12 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US11/638,169 US20070093623A1 (en) | 2003-10-23 | 2006-12-13 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US13/344,368 US20120116033A1 (en) | 2003-10-23 | 2012-01-05 | Catalyst Components, Process for Their Preparation and Their Use as Catalyst Components in Polymerization of Olefins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/638,169 Continuation US20070093623A1 (en) | 2003-10-23 | 2006-12-13 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120116033A1 true US20120116033A1 (en) | 2012-05-10 |
Family
ID=34521940
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/691,810 Expired - Fee Related US7034157B2 (en) | 2003-10-23 | 2003-10-23 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US11/299,564 Expired - Fee Related US7176950B2 (en) | 2003-10-23 | 2005-12-12 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US11/638,169 Abandoned US20070093623A1 (en) | 2003-10-23 | 2006-12-13 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US13/344,368 Abandoned US20120116033A1 (en) | 2003-10-23 | 2012-01-05 | Catalyst Components, Process for Their Preparation and Their Use as Catalyst Components in Polymerization of Olefins |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/691,810 Expired - Fee Related US7034157B2 (en) | 2003-10-23 | 2003-10-23 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US11/299,564 Expired - Fee Related US7176950B2 (en) | 2003-10-23 | 2005-12-12 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US11/638,169 Abandoned US20070093623A1 (en) | 2003-10-23 | 2006-12-13 | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
Country Status (7)
Country | Link |
---|---|
US (4) | US7034157B2 (en) |
EP (1) | EP1684901B1 (en) |
JP (1) | JP4808625B2 (en) |
KR (1) | KR101214992B1 (en) |
CN (1) | CN1984714B (en) |
CA (1) | CA2542539C (en) |
WO (1) | WO2005042150A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2739765C1 (en) * | 2020-07-13 | 2020-12-28 | Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН) | Catalyst component for polymerisation of ethylene into high-molecular weight high-linear polyethylene, a catalyst and a method for preparing it |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7081506B2 (en) * | 2003-10-23 | 2006-07-25 | Fina Technology, Inc. | Ethylene polymerization employing bis-imino pyridinyl transition metal catalyst components |
US7034157B2 (en) * | 2003-10-23 | 2006-04-25 | Fina Technology, Inc. | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
US20070117713A1 (en) * | 2005-11-21 | 2007-05-24 | Abbas Razavi | Tridentate metal catalyst for olefin polymerization |
US7514510B2 (en) * | 2006-07-25 | 2009-04-07 | Fina Technology, Inc. | Fluorenyl catalyst compositions and olefin polymerization process |
US7470759B2 (en) | 2006-07-31 | 2008-12-30 | Fina Technology, Inc. | Isotactic-atactic polypropylene and methods of making same |
US20080103886A1 (en) * | 2006-10-27 | 2008-05-01 | Microsoft Corporation | Determining relevance of a term to content using a combined model |
US20080287619A1 (en) * | 2007-05-18 | 2008-11-20 | William Gauthier | Supported metallocene catalysts |
CN101555317B (en) * | 2009-05-22 | 2011-05-11 | 中国科学院上海有机化学研究所 | Azotic lateral chain beta diimine ligand metallic catalyst and application thereof in polyester synthesis |
CN102464677B (en) * | 2010-11-17 | 2014-08-13 | 中国科学院化学研究所 | Asymmetric diimine pyridine iron or cobalt complex catalyst, and preparation method and application thereof |
US9139699B2 (en) | 2012-10-04 | 2015-09-22 | Dow Corning Corporation | Metal containing condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts |
CN106632764B (en) * | 2016-10-17 | 2018-10-26 | 曲阜师范大学 | A kind of Fe-series catalyst and preparation method thereof and the application in isoprene polymerization |
IT201600105530A1 (en) * | 2016-10-20 | 2018-04-20 | Versalis Spa | PROCEDURE FOR THE PREPARATION OF POLIBUTADIENE 1.2 SINDIOTATTICO IN THE PRESENCE OF A CATALYTIC SYSTEM INCLUDING A PYRIDYLUM IRON COMPLEX |
CN112745429B (en) * | 2019-10-31 | 2022-03-15 | 中国石油化工股份有限公司 | Process for preparing olefin-unsaturated carboxylic acid copolymers |
CN115785163A (en) * | 2021-09-09 | 2023-03-14 | 中国科学院化学研究所 | A class of late transition metal complexes and their preparation methods and applications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6451939B1 (en) * | 1997-09-05 | 2002-09-17 | Bp Chemicals Limited | Polymerization catalysts |
US7081506B2 (en) * | 2003-10-23 | 2006-07-25 | Fina Technology, Inc. | Ethylene polymerization employing bis-imino pyridinyl transition metal catalyst components |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2963486A (en) * | 1958-04-23 | 1960-12-06 | Ciba Pharmacentical Products I | Certain bis-(alkylaminomethyl)-pyridines |
DE3007725A1 (en) * | 1980-02-29 | 1981-09-17 | Hansjörg Prof. Dr. 2000 Hamburg Sinn | METHOD FOR PRODUCING POLYETHYLENE, POLYPROPYLENE AND COPOLYMERS |
US4767735A (en) * | 1987-02-02 | 1988-08-30 | Cosden Technology, Inc. | Catalyst pretreatment process |
US5155080A (en) * | 1988-07-15 | 1992-10-13 | Fina Technology, Inc. | Process and catalyst for producing syndiotactic polyolefins |
US5763549A (en) * | 1989-10-10 | 1998-06-09 | Fina Technology, Inc. | Cationic metallocene catalysts based on organoaluminum anions |
US5387568A (en) * | 1989-10-30 | 1995-02-07 | Fina Technology, Inc. | Preparation of metallocene catalysts for polymerization of olefins |
US5880241A (en) * | 1995-01-24 | 1999-03-09 | E. I. Du Pont De Nemours And Company | Olefin polymers |
US6313242B1 (en) * | 1996-05-20 | 2001-11-06 | Fina Technology, Inc. | Stereorigid bis-fluorenyl metallocenes |
US5945365A (en) * | 1996-05-20 | 1999-08-31 | Fina Technology, Inc. | Stereorigid bis-fluorenyl metallocenes |
EP0951489B1 (en) * | 1997-01-13 | 2004-10-06 | E.I. Du Pont De Nemours And Company | Polymerization of propylene |
JPH11293109A (en) * | 1997-11-20 | 1999-10-26 | Kureha Chem Ind Co Ltd | Thermoplastic resin composition |
JP2000143716A (en) * | 1998-11-13 | 2000-05-26 | Mitsui Chemicals Inc | Production of ethylene.alpha-olefin random copolymer |
TWI226337B (en) * | 1998-12-02 | 2005-01-11 | Idemitsu Petrochemical Co | Catalyst for alkene polymerization and the alkene polymerization method by using this catalyst |
DE19931873A1 (en) * | 1999-04-14 | 2000-10-19 | Bayer Ag | Catalyst system for olefin polymerization |
US6365690B1 (en) * | 1999-05-06 | 2002-04-02 | E. I. Du Pont De Nemours And Company | Polymerization of ethylene |
JP4674023B2 (en) | 1999-09-02 | 2011-04-20 | 出光興産株式会社 | Transition metal compound, catalyst for α-olefin production, and method for producing α-olefin |
US6710006B2 (en) * | 2000-02-09 | 2004-03-23 | Shell Oil Company | Non-symmetrical ligands and catalyst systems thereof for ethylene oligomerization to linear alpha olefins |
US6635767B2 (en) * | 2000-05-23 | 2003-10-21 | Boehringer Ingelheim Pharmaceuticals, Inc. | Synthesis of heteroarylamine intermediate compounds |
GC0000291A (en) * | 2000-06-30 | 2006-11-01 | Shell Int Research | Ligands and catalyst systems thereof for ethylene oligomerisation to linear alpha olefins |
CN1137908C (en) * | 2000-07-13 | 2004-02-11 | 中国科学院长春应用化学研究所 | Process for preparing 'after-cyclopentadiene' high-molecular catalyst for polymerization of olefine |
US7037988B2 (en) * | 2000-10-03 | 2006-05-02 | Shell Oil Company | Process for the co-oligomerisation of ethylene and alpha olefins |
CN1169843C (en) * | 2000-12-27 | 2004-10-06 | 中国科学院长春应用化学研究所 | Preparation method of macromolecularized asymmetric "McH" olefin polymerization catalyst |
US6862692B2 (en) * | 2001-01-29 | 2005-03-01 | Adaptec, Inc. | Dynamic redistribution of parity groups |
EP1427740B1 (en) * | 2001-08-01 | 2006-11-02 | Shell Internationale Researchmaatschappij B.V. | Ligands and catalyst systems thereof for ethylene oligomerisation to linear alpha olefins rung |
US6562973B1 (en) * | 2001-08-15 | 2003-05-13 | Equistar Chemicals, Lp | Method for making late transition metal catalysts for olefin polymerization |
CN1160384C (en) * | 2001-12-10 | 2004-08-04 | 中国科学院长春应用化学研究所 | Preparation method and application of polymerized double active center olefin polymerization catalyst |
DE60203253T2 (en) * | 2002-01-03 | 2006-01-26 | Repsol Quimica S.A. | Chromium catalysts active in olefin polymerization |
CN1371923A (en) * | 2002-03-04 | 2002-10-02 | 中国科学院长春应用化学研究所 | Process for preparing high molecular double-activity centre olefine polymerizing catalyst containing silicon bridged group metallocene |
ATE369374T1 (en) * | 2002-05-30 | 2007-08-15 | Exxonmobil Chem Patents Inc | SOLUBLE LATE TRANSITION METAL CATALYSTS FOR OLEFIN OLIGOMERIZATION III |
ATE327826T1 (en) * | 2002-09-25 | 2006-06-15 | Shell Int Research | CATALYST SYSTEMS FOR THE ETHYLENE OLIGOMERIZATION TO LINEAR ALPHA-OLEFINS |
US7319083B2 (en) * | 2002-10-25 | 2008-01-15 | Exxonmobil Chemical Patents Inc. | Polymerized catalyst composition |
CA2503986A1 (en) * | 2002-11-21 | 2004-06-10 | Fina Technology, Inc. | New catalyst structure for olefin polymerization |
US7034157B2 (en) * | 2003-10-23 | 2006-04-25 | Fina Technology, Inc. | Catalyst components, process for their preparation and their use as catalyst components in polymerization of olefins |
CN1934121A (en) * | 2004-03-24 | 2007-03-21 | 国际壳牌研究有限公司 | Transition metal complexes |
EP1773895B1 (en) * | 2004-07-09 | 2011-12-28 | E.I. Du Pont De Nemours And Company | Catalysts for olefin polymerization or oligomerization |
AR049714A1 (en) * | 2004-07-13 | 2006-08-30 | Shell Int Research | ALFA OLEFINAS LINEAR PREPARATION PROCESS |
-
2003
- 2003-10-23 US US10/691,810 patent/US7034157B2/en not_active Expired - Fee Related
-
2004
- 2004-09-17 EP EP04784548A patent/EP1684901B1/en not_active Expired - Lifetime
- 2004-09-17 CN CN2004800314323A patent/CN1984714B/en not_active Expired - Fee Related
- 2004-09-17 JP JP2006536631A patent/JP4808625B2/en not_active Expired - Fee Related
- 2004-09-17 CA CA2542539A patent/CA2542539C/en not_active Expired - Fee Related
- 2004-09-17 WO PCT/US2004/030705 patent/WO2005042150A1/en active Application Filing
-
2005
- 2005-12-12 US US11/299,564 patent/US7176950B2/en not_active Expired - Fee Related
-
2006
- 2006-04-21 KR KR1020067007775A patent/KR101214992B1/en not_active Expired - Fee Related
- 2006-12-13 US US11/638,169 patent/US20070093623A1/en not_active Abandoned
-
2012
- 2012-01-05 US US13/344,368 patent/US20120116033A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6451939B1 (en) * | 1997-09-05 | 2002-09-17 | Bp Chemicals Limited | Polymerization catalysts |
US7081506B2 (en) * | 2003-10-23 | 2006-07-25 | Fina Technology, Inc. | Ethylene polymerization employing bis-imino pyridinyl transition metal catalyst components |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2739765C1 (en) * | 2020-07-13 | 2020-12-28 | Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН) | Catalyst component for polymerisation of ethylene into high-molecular weight high-linear polyethylene, a catalyst and a method for preparing it |
Also Published As
Publication number | Publication date |
---|---|
US20060100093A1 (en) | 2006-05-11 |
EP1684901A4 (en) | 2008-09-03 |
EP1684901B1 (en) | 2012-06-27 |
US20050090385A1 (en) | 2005-04-28 |
KR101214992B1 (en) | 2012-12-24 |
EP1684901A1 (en) | 2006-08-02 |
KR20060107518A (en) | 2006-10-13 |
CN1984714B (en) | 2011-06-15 |
US20070093623A1 (en) | 2007-04-26 |
CN1984714A (en) | 2007-06-20 |
JP2007509221A (en) | 2007-04-12 |
CA2542539A1 (en) | 2005-05-12 |
US7034157B2 (en) | 2006-04-25 |
CA2542539C (en) | 2013-01-29 |
JP4808625B2 (en) | 2011-11-02 |
WO2005042150A1 (en) | 2005-05-12 |
US7176950B2 (en) | 2007-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120116033A1 (en) | Catalyst Components, Process for Their Preparation and Their Use as Catalyst Components in Polymerization of Olefins | |
US7514510B2 (en) | Fluorenyl catalyst compositions and olefin polymerization process | |
US6531424B2 (en) | Polymerization of olefins | |
PL198619B1 (en) | Polymerisation catalysts | |
KR20040104584A (en) | Polymerisation catalyst | |
US6747106B2 (en) | Polymerization of olefins | |
JP2011017014A (en) | Ethylene polymerization method employing bis-imino pyridinyl transition metal catalyst component | |
US6355746B1 (en) | Complexes of mid-transition metals and unsaturated nitrogenous ligands as single-site catalysts | |
WO2001072854A2 (en) | Polymerization of olefins | |
Rahman | Zwitterionic late transition metal alkene polymerisation catalysts containing aminofulvene-aldiminate (AFA) ligands |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |