US20120092761A1 - Microscope system - Google Patents
Microscope system Download PDFInfo
- Publication number
- US20120092761A1 US20120092761A1 US13/334,256 US201113334256A US2012092761A1 US 20120092761 A1 US20120092761 A1 US 20120092761A1 US 201113334256 A US201113334256 A US 201113334256A US 2012092761 A1 US2012092761 A1 US 2012092761A1
- Authority
- US
- United States
- Prior art keywords
- objective
- magnification
- viewing
- viewing method
- microscope system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/20—Surgical microscopes characterised by non-optical aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/14—Condensers affording illumination for phase-contrast observation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/373—Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
Definitions
- the present invention relates to a microscope system for use with micro-insemination, the system being capable of viewing using a differential interference viewing method and a modulation contrast viewing method.
- ICSI intra-cytoplasmic sperm injection
- a sperm is selected using a modulation contrast viewing method (see Patent Document 1, for example), and a sperm having satisfactory motility and morphology is injected into an ovum.
- IVF in-vitro fertilization
- a microscope system has been proposed for enabling IMSI (intra-cytoplasmic morphologically selected sperm injection, which is a micro-insemination method in which a sperm is selected under high magnification), in which micro-insemination is performed after selection by detailed viewing of the inside of the sperm head, to be performed in addition to the conventional ICSI.
- IMSI intra-cytoplasmic morphologically selected sperm injection
- micro-insemination method in which a sperm is selected under high magnification
- micro-insemination is performed after selection by detailed viewing of the inside of the sperm head, to be performed in addition to the conventional ICSI.
- a configuration is adopted in which the modulation contrast viewing method used in ICSI is employed jointly with a differential interference viewing method (see Patent Documents 2 and 3, for example) through a high-magnification objective that is used in IMSI.
- Patent Document 1 Japanese Laid-open Patent Publication No. S51-128548
- Patent Document 2 Japanese Patent No. 3456252
- Patent Document 3 Japanese Patent No. 3415294
- an immersion objective having a high numerical aperture (NA) has generally been used as a high-magnification lens.
- NA numerical aperture
- an immersion-type lens is used as a high-magnification objective
- a dry-type lens is used as a medium-low-magnification objective, and during the switch to the dry-type medium-low-magnification objective for ICSI viewing after IMSI viewing through the immersion-type high-magnification objective, the immersion liquid significantly interferes with the workability of IVF.
- the present invention was developed in view of such problems, and an object of the present invention is to provide a microscope system suitable for IMSI/ICSI, whereby the sequence of operations for micro-insemination can be accurately and rapidly performed while maintaining resolving power, by viewing and selecting a sperm by a differential interference viewing method using a dry-type high-magnification objective, then injecting the selected sperm into an ovum by a differential interference viewing method or a modulation contrast viewing method using an exchanged low-magnification objective, which is also a dry-type objective.
- the present invention is a microscope system suitable for micro-insemination, and is characterized in comprising a transmission illumination optical system having a light source and a condenser lens; a first dry objective having a magnification of from 20 or higher to 40 or lower and capable of viewing by at least one of a differential interference viewing method and a modulation contrast viewing method; and a second dry objective having a magnification of from 60 or higher to 100 or lower and capable of viewing by a differential interference viewing method; the first objective and the second objective being exchangeable.
- a microscope system suitable for micro-insemination can be provided whereby the sequence of operations in micro-insemination can be rapidly and accurately performed with satisfactory workability while the appropriate resolving power is maintained.
- FIG. 1 is a schematic sectional view showing the microscope system utilizing a differential interference viewing method according to the present embodiment
- FIG. 2 is a view showing the underlying principle of the modulation contrast viewing method, which is another viewing method used in the microscope system of the present embodiment
- FIG. 3 is a view showing the positional relationship between the aperture image and the modulator in the modulation contrast viewing method according to the present embodiment, wherein FIG. 3A , FIG. 3B , and FIG. 3C correspond to FIG. 2A , FIG. 2B , and FIG. 2C ;
- FIG. 4A is a view showing an example of the shape of the sample
- FIG. 43 is a view showing the shading that appears corresponding to the sample in the modulation contrast viewing method according to the present embodiment
- FIG. 5 is a view showing the MTF curve of the incoherent optical system according to the present embodiment.
- FIG. 6 is a view showing the contrast MTF curves of phase samples in the differential interference viewing method according to the present embodiment
- FIG. 7 is a sectional view showing the structure of the second objective (dry-type high-magnification objective) according to a first example.
- FIG. 8 shows several aberration diagrams for the second objective according to the first example, wherein FIG. 8A is a spherical aberration diagram, FIG. 8B is an astigmatism diagram, and
- FIG. 8C is a distortion diagram.
- FIG. 1 is a schematic sectional view showing a microscope system suitable primarily for micro-insemination, according to the present embodiment.
- the microscope system according to the present embodiment is suitable for IMSI (intra-cytoplasmic morphologically selected sperm injection, which is a micro-insemination method in which a sperm is selected under high magnification) and ICSI (intra-cytoplasmic sperm injection), and as shown in FIG.
- IMSI intra-cytoplasmic morphologically selected sperm injection
- ICSI intra-cytoplasmic sperm injection
- the microscope system has a transmission illumination optical system composed of a light source 11 and a condenser lens 13 ; a collector lens 12 ; a sample 14 ; an objective 15 ; a turret 16 ; an illumination-side birefringent optical member BP 1 ; an imaging-side birefringent optical member BP 2 ; a polarizer P; and an analyzer A.
- the illuminating light from the light source 11 is incident on the polarizer P after being collected by the collector lens 12 , and is converted to linearly polarized light.
- the illumination-side birefringent optical member BP 1 and the condenser lens 13 for irradiating the illuminating light on the sample 14 are provided in order from the light source 11 side in the optical path between the polarizer P and the sample 14 .
- the linearly polarized light emitted from the polarizer P is incident on the illumination-side birefringent optical member BP 1 and split by birefringence into two linearly polarized light components having mutually orthogonal directions of vibration, and the linearly polarized light components are incident on the condenser lens 13 .
- the two rays split by the illumination-side birefringent optical member BP 1 travel at a small separation angle ⁇ , are converted to parallel rays separated from each other at a small shear distance S by the collecting effect of the condenser lens 13 , and illuminate the sample 14 .
- the two rays transmitted at slightly separated positions on the sample 14 are incident on the imaging-side birefringent optical member BP 2 via the objective 15 and combined by the birefringent effect of the imaging-side birefringent optical member BP 2 so as to travel on the same optical path.
- the combined rays are incident on the analyzer A, the analyzer A extracts only the components of the mutually orthogonal linearly polarized light that are vibrating in the same direction, and these components interfere.
- a magnified image (interference image 17 ) on the image plane is formed by an interference fringe that forms according to the phase difference imparted between the two light rays as the rays pass through the sample 14 in slightly different positions.
- An observer can view the magnified image 17 through an eyepiece optical system not shown in the drawing.
- the magnified image 17 is an image that has a uniform intensity distribution and is devoid of contrast.
- contrasts occur in the magnified image 17 in portions where the refractive index varies, or in portions that correspond to gradients and level differences. The refractive index variations or the gradients and level differences are thereby made visible, and the sample 14 can be viewed at magnification.
- the objective 15 is composed of a first objective 15 a having a magnification of from 20 or higher to 40 or lower (hereinafter referred to as a dry-type medium-magnification objective or a medium-magnification objective), and a second objective 15 b having a magnification of from 60 or higher to 100 or lower that is capable of contrast viewing by a differential interference viewing method (hereinafter referred to as a dry-type high-magnification objective or a high-magnification objective), and the medium-magnification objective 15 a and the high-magnification objective 15 b are configured so as to be exchangeable with the aid of a turret 16 or the like.
- a first objective 15 a having a magnification of from 20 or higher to 40 or lower hereinafter referred to as a dry-type medium-magnification objective or a medium-magnification objective
- a second objective 15 b having a magnification of from 60 or higher to 100 or lower that is capable of contrast viewing by a differential interference viewing
- the first objective 15 a is preferably capable of viewing by at least one of the abovementioned differential interference viewing method or modulation contrast viewing method.
- the underlying principles of the modulation contrast viewing method will be briefly described using FIGS. 2 through 4 .
- the reference numeral 21 refers to a condenser lens
- S refers to a sample
- 22 refers to an objective
- 23 refers to an aperture plate
- 24 refers to a disk-shaped modulator.
- the aperture plate 23 has a rectangular aperture 23 a positioned at a distance from the center, in the focal position on the light source side of the condenser lens 21 .
- the modulator 24 is provided in a position substantially conjugate to the aperture plate 23 , and a 100% transmittance region 24 a that may include the image of the aperture 23 a , a region 24 b of 15% transmittance, for example, and a 0% transmittance region 24 c are formed in the stated order adjacent to each other in the modulator 24 .
- the flux of light that passes through the sample S is refracted to the right and focused in the region 24 c of the modulator 24 , and the aperture image 23 a ′ is formed in the region 24 c , as shown in FIG. 3B .
- the surface of the sample S is inclined so as to rise to the left, as shown in FIG. 2C , the flux of light that passes through the sample S is refracted to the left and focused in the region 24 a of the modulator 24 , and the aperture image 23 a ′ is formed in the region 24 a , as shown in FIG. 3C .
- the viewed image is such that the flat portions appear gray and the inclined portions appear black or white such as shown in FIG. 4B .
- the modulation contrast viewing method thus enables even a colorless transparent sample to be viewed as a three-dimensional image with shading, through the effects of focal illumination and regions of the modulator 24 having different transmittances.
- Conditional Expression (3) is preferably satisfied, where S is the shear distance in the object plane, NA is the numerical aperture of the second objective, and ⁇ is the wavelength of the viewed light.
- Conditional Expression (1) for specifying the range of appropriate numerical apertures NA of the high-magnification objective will first be described.
- the head portion of a sperm an image of which is viewed in the present microscope system, is about 4 to 5 ⁇ m in size, and it has been confirmed that one to ten vacuoles of various sizes are scattered through the head portion in a single focal plane. Consequently, the ability to see and identify details about 0.4 to 0.5 ⁇ m in size with good contrast is understood to be adequate for IMSI applications.
- FIG. 5 shows the MTF curve (i.e., the relationship between contrast on the vertical axis and the resolving power of the optical system on the horizontal axis) of the incoherent optical system commonly used in a microscope optical system.
- the relationship to the horizontal resolving power RES corresponding to the spatial frequency f is indicated by Equation (4), where RES is the horizontal resolving power of the microscope optical system.
- Equation (6) since the spatial frequency f/f0 at which the contrast value is 0.1 is near 1.6, Equation (6) must be satisfied by substituting these values into Equation (4) in order for the horizontal resolving power RES to be 0.4 ⁇ m (the size of a vacuole in the sperm head as the viewed image).
- the central wavelength ⁇ during viewing is preferably in the vicinity of 500 nm to 550 nm when visibility to the eye is considered.
- 500 nm and 550 nm are visibility peaks for dark locations and bright locations, respectively.
- Equation (8) Since the spatial frequency f/f0 at which the contrast value is 0.2, which is considered to produce good visibility, is near 1.4 according to FIG. 5 , a more preferred lower limit for the numerical aperture NA is obtained from Equation (8) by substituting into Equation (6) in the manner described above.
- the range of the numerical aperture NA of the high-magnification objective preferred for enabling visual observation with good contrast is expressed by Conditional Expression (1), i.e., 0.78 ⁇ NA ⁇ 1.0.
- the range of the numerical aperture NA of the high-magnification objective is more preferably 0.89 ⁇ NA ⁇ 1.0, according to Conditional Expression (8).
- Conditional Expression (2) specifies the appropriate range of the working distance WD in the high-magnification objective.
- a large working distance is generally difficult to obtain with the high-numerical-aperture immersion objective used as the high-magnification objective. Therefore, when such an objective is used in ICSI viewing or IMSI viewing, which require that the sample be kept at 37° C. by an insulating device or the like during working, the insulation device and the distal end of the objective are prone to interfere during the switch from high magnification to the medium-magnification objective.
- magnification of the objective is determined by the ratio of the focal distances of the imaging lens and the objective (in a high-magnification objective having a magnification of from 60 or higher to 100 or lower such as in the present embodiment, when the focal distance of the imaging lens is 200 ⁇ m, for example, the focal distance of the objective is 2.00 to 3.33 m), and the focal distance shortens as the magnification increases.
- the working distance is proportional to the focal distance of the objective, the working distance decreases as the magnification of the objective increases.
- Another factor that determines the working distance is the numerical aperture. When the size of the numerical aperture is the same, a longer working distance corresponds to a greater height of the light rays at the first lens surface (surface of the lens on the object side) of the objective, and aberration becomes more difficult to correct.
- magnification 60/numerical aperture 0.7/working distance 2 mm are typical specifications for working-distance-oriented objectives; and magnification 100/numerical aperture 1.4/working distance 0.1 mm are typical specifications for magnification/numerical-aperture-oriented objectives.
- the numerical aperture NA does not necessarily exceed 1, as indicated by Conditional Expression (1), and increasing the working distance by a corresponding amount leads to enhanced working efficiency.
- Conditional Expression (2) i.e., f/3 ⁇ WD ⁇ 2f, is preferably satisfied in the present embodiment, where NA is the numerical aperture of the high-magnification objective (second objective), f is the focal distance, and WD is the working distance.
- NA the numerical aperture of the high-magnification objective (second objective)
- f the focal distance
- WD the working distance.
- Conditional Expression (2) is below the lower limit value, there is increased risk of such problems as interference between the distal end of the objective and the insulation device during exchanging of the objectives.
- Conditional Expression (2) exceeds the upper limit value, the light rays at the first lens surface of the objective are too high, and it is difficult to ensure the numerical aperture NA specified by Conditional Expression (1).
- Conditional Expression (3) specifies the optimum range of the shear distance S in the differential interference viewing method.
- FIG. 6 shows the phase contrast MTF curves as the shear distance S is varied from 1.5 ⁇ /NA to 0.15 ⁇ /NA (Patent Document 3 gives a detailed description of the method for computing the phase contrast MTF in the differential interference viewing method).
- the vertical axis indicates the contrast MTF for the phase object at each frequency.
- phase contrast MTF curves in the differential interference viewing method show larger contrast values than the incoherent MTF curve.
- phase contrast MTF has a negative value when the shear distance S is large (e.g., 1.5 ⁇ /NA), and this negative value indicates a state referred to as spurious resolution, in which black and white are inverted.
- spurious resolution indicates a state referred to as spurious resolution, in which black and white are inverted.
- a state in which spurious resolution does not occur i.e., a state in which the phase contrast MTF is not negative, is generally considered to be preferable in viewing by the differential interference viewing method.
- the limits of a low spatial frequency band region in which the value of the horizontal axis f/f0 is small
- the maximum shear distance S of the low spatial frequency band is approximately 0.61 ⁇ /NA to 0.5 ⁇ /NA, and these values correspond precisely with the point resolving power or line resolving power of the microscope optical system.
- the maximum value of the shear distance S of the objective in the present embodiment is thus 0.61 ⁇ /NA, at which the point resolving power can be maintained.
- a more preferred maximum value for the shear distance S is 0.5 ⁇ /NA, (which is closer to the incoherent MTF curve than the curve for 0.61 ⁇ /NA,) at which the line resolving power can be maintained.
- the limits of the high spatial frequency band region in which the value of the horizontal axis f/f0 is large
- the visibility in the high spatial frequency band can be kept at 0.1, which is substantially equal to the contrast value of the incoherent MTF.
- the minimum value of the shear distance S for the objective in the present embodiment is thus 0.32 ⁇ /NA.
- vacuoles in the sperm head can be visualized with high contrast and with almost no compromise to the resolving power of the objective in a differential interference viewing method.
- the second objective (high-magnification objective) preferably has a correction ring for correcting aberration fluctuation due to changes in temperature, cover glass thickness, and other factors. This is because the use of a correction ring makes it possible to eliminate aberration caused by temperature, error in the cover glass thickness, and other factors; and to make adjustments so that the resolution and contrast of the objective are both maximized.
- FIG. 7 is a sectional view showing the lens structure of the second objective (dry-type high-magnification lens) according to the present example.
- the microscope objective in the present example comprises, in order from the object, a positive meniscus lens L 1 having a concave surface facing the object; a positive meniscus lens L 2 having a concave surface facing the object; a cemented lens composed of a double-concave lens L 3 and a double-convex lens L 4 ; a cemented lens composed of a double-concave lens L 5 and a double-convex lens L 6 ; a cemented lens composed of a planoconcave lens L 7 and a double-convex lens L 8 ; a double-convex lens L 9 ; a cemented lens composed of a negative meniscus lens L 10 having a concave surface facing the object, a double-convex lens L 11 ,
- Table 1 shows the various values of the lenses that constitute the second objective of the present example.
- m represents the order of lens surfaces (hereinafter referred to as surface numbers) from the object along the direction of travel of a ray of light
- r represents the radius of curvature of each lens
- d represents the distance on the optical axis from each optical surface to the next optical surface (or image surface)
- nd represents the refractive index with respect to the d-line (wavelength: 587.6 nm)
- ⁇ d represents the Abbe number based on the d-line.
- Surface numbers 1 through 25 in Table 1 correspond to surfaces 1 through 25 shown in FIG. 7 .
- ⁇ represents the magnification
- WD represents the working distance
- NA represents the numerical aperture.
- the radius of curvature r, the distance d to the next lens surface, and other lengths are generally represented in millimeter units. However, since equivalent optical performance is obtained whether in proportional magnification or proportional reduction in the optical system, the units are not limited to millimeters; other appropriate units may be used.
- the value “ ⁇ ” for the radius of curvature in the table indicates a plane, and the refractive index of “1.00000” for air is not noted.
- FIG. 8 shows several aberration diagrams for the microscope objective according to the present example, wherein FIG. 8A is a spherical aberration diagram, FIG. 8B is an astigmatism diagram, and
- FIG. 8C is a distortion diagram.
- NA is the numerical aperture
- y is the image height (mm)
- the solid line is the d-line (wavelength: 587.6 nm)
- the dashed line is the C-line (wavelength: 656.3 nm)
- the single-dashed line is the F-line (wavelength: 486.1 nm)
- the double-dashed line is the g-line (wavelength 435.8 nm).
- the solid line represents the sagittal image surface
- the dashed line represents the meridional image surface.
- a microscope system suitable for IMSI/ICSI whereby it is possible to accurately and rapidly perform the sequence of operations in which the presence of vacuoles in a sperm head and other characteristics are viewed by a differential interference viewing method using a dry-type high-magnification (60 or higher and 100 or lower) objective to select a sperm, whereupon the objectives are exchanged through the use of the turret 16 or the like, and the selected sperm is injected into an ovum while viewed by a differential interference viewing method or modulation contrast viewing method using a medium-magnification (20 or higher and 40 or lower) objective, which is also a dry-type objective.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Microscoopes, Condenser (AREA)
- Lenses (AREA)
Abstract
A microscope system is characterized in comprising a transmission illumination optical system having a light source (11) and a condenser lens (13); a first dry objective (15 a) having a magnification of from 20 or higher to 40 or lower and capable of viewing by at least one of a differential interference viewing method and a modulation contrast viewing method; and a second dry objective (15 b) having a magnification of from 60 or higher to 100 or lower and capable of viewing by a differential interference viewing method; the first objective (15 a) and the second objective (15 b) being exchangeable.
Description
- This is a continuation of PCT International Application No. PCT/JP2009/050555, filed on Jan. 16, 2009, which is hereby incorporated by reference. This application also claims the benefit of Japanese Patent Application No. 2008-012823, filed in Japan on Jan. 23, 2008, which is hereby incorporated by reference.
- The present invention relates to a microscope system for use with micro-insemination, the system being capable of viewing using a differential interference viewing method and a modulation contrast viewing method.
- At present, ICSI (intra-cytoplasmic sperm injection) is widely used as a micro-insemination method. In micro-insemination, a sperm is selected using a modulation contrast viewing method (see
Patent Document 1, for example), and a sperm having satisfactory motility and morphology is injected into an ovum. However, recent advances in IVF (in-vitro fertilization) research have shown statistically that such factors as the presence, size, and number of vacuoles in the sperm head are significantly related to the IVF success rate, but vacuoles in the sperm head are difficult to view by the modulation contrast viewing method used for conventional ICSI. Therefore, a microscope system has been proposed for enabling IMSI (intra-cytoplasmic morphologically selected sperm injection, which is a micro-insemination method in which a sperm is selected under high magnification), in which micro-insemination is performed after selection by detailed viewing of the inside of the sperm head, to be performed in addition to the conventional ICSI. For example, a configuration is adopted in which the modulation contrast viewing method used in ICSI is employed jointly with a differential interference viewing method (seePatent Documents 2 and 3, for example) through a high-magnification objective that is used in IMSI. - Patent Document 1: Japanese Laid-open Patent Publication No. S51-128548
- Patent Document 2: Japanese Patent No. 3456252
- Patent Document 3: Japanese Patent No. 3415294
- In the differential interference viewing method used in the micro-insemination described above and well as in other fields of biological microscopy, structures must be observable in as much detail as possible, and an immersion objective having a high numerical aperture (NA) has generally been used as a high-magnification lens. As a result, in the conventional microscope system, an immersion-type lens is used as a high-magnification objective, and a dry-type lens is used as a medium-low-magnification objective, and during the switch to the dry-type medium-low-magnification objective for ICSI viewing after IMSI viewing through the immersion-type high-magnification objective, the immersion liquid significantly interferes with the workability of IVF. In order to overcome this problem, a system has been proposed in which an immersion objective is used as the medium-low-magnification objective for ICSI viewing, as with the high-magnification objective. In this system, however, the viscosity of the immersion liquid causes the sample (usually a dish) to move when immersion objectives are used exchangeably, the sperm selected using the high-magnification objective may move out of view, and bubbles and the like are prone to be introduced into the immersion liquid. These problems can make ICSI viewing extremely difficult after the objectives are exchanged.
- The present invention was developed in view of such problems, and an object of the present invention is to provide a microscope system suitable for IMSI/ICSI, whereby the sequence of operations for micro-insemination can be accurately and rapidly performed while maintaining resolving power, by viewing and selecting a sperm by a differential interference viewing method using a dry-type high-magnification objective, then injecting the selected sperm into an ovum by a differential interference viewing method or a modulation contrast viewing method using an exchanged low-magnification objective, which is also a dry-type objective.
- In order to achieve such objects as those described above, the present invention is a microscope system suitable for micro-insemination, and is characterized in comprising a transmission illumination optical system having a light source and a condenser lens; a first dry objective having a magnification of from 20 or higher to 40 or lower and capable of viewing by at least one of a differential interference viewing method and a modulation contrast viewing method; and a second dry objective having a magnification of from 60 or higher to 100 or lower and capable of viewing by a differential interference viewing method; the first objective and the second objective being exchangeable.
- As described above, according to the present invention, a microscope system suitable for micro-insemination can be provided whereby the sequence of operations in micro-insemination can be rapidly and accurately performed with satisfactory workability while the appropriate resolving power is maintained.
-
FIG. 1 is a schematic sectional view showing the microscope system utilizing a differential interference viewing method according to the present embodiment; -
FIG. 2 is a view showing the underlying principle of the modulation contrast viewing method, which is another viewing method used in the microscope system of the present embodiment; -
FIG. 3 is a view showing the positional relationship between the aperture image and the modulator in the modulation contrast viewing method according to the present embodiment, whereinFIG. 3A ,FIG. 3B , andFIG. 3C correspond toFIG. 2A ,FIG. 2B , andFIG. 2C ; -
FIG. 4A is a view showing an example of the shape of the sample, andFIG. 43 is a view showing the shading that appears corresponding to the sample in the modulation contrast viewing method according to the present embodiment; -
FIG. 5 is a view showing the MTF curve of the incoherent optical system according to the present embodiment; -
FIG. 6 is a view showing the contrast MTF curves of phase samples in the differential interference viewing method according to the present embodiment; -
FIG. 7 is a sectional view showing the structure of the second objective (dry-type high-magnification objective) according to a first example; and -
FIG. 8 shows several aberration diagrams for the second objective according to the first example, whereinFIG. 8A is a spherical aberration diagram,FIG. 8B is an astigmatism diagram, and -
FIG. 8C is a distortion diagram. -
-
- 11 light source (transmission illumination optical system)
- 12 collector lens
- 13 condenser lens (transmission illumination optical system)
- 14 sample
- 15 objective
- 15 a medium-magnification objective (first objective) (capable of viewing by a differential interference viewing method)
- 15 b high-magnification objective (second objective)
- 16 turret
- BP1 illumination-side birefringent optical member
- BP2 imaging-side birefringent optical member
- P polarizer
- A analyzer
- 22 medium-magnification objective (first objective) (capable of viewing by a modulation contrast viewing method)
- 23 aperture plate
- 23 a rectangular aperture
- 24 modulator
- Preferred embodiments will be described with reference to the drawings.
FIG. 1 is a schematic sectional view showing a microscope system suitable primarily for micro-insemination, according to the present embodiment. The microscope system according to the present embodiment is suitable for IMSI (intra-cytoplasmic morphologically selected sperm injection, which is a micro-insemination method in which a sperm is selected under high magnification) and ICSI (intra-cytoplasmic sperm injection), and as shown inFIG. 1 , the microscope system has a transmission illumination optical system composed of alight source 11 and acondenser lens 13; acollector lens 12; asample 14; an objective 15; aturret 16; an illumination-side birefringent optical member BP1; an imaging-side birefringent optical member BP2; a polarizer P; and an analyzer A. - In
FIG. 1 , the illuminating light from thelight source 11 is incident on the polarizer P after being collected by thecollector lens 12, and is converted to linearly polarized light. The illumination-side birefringent optical member BP1 and thecondenser lens 13 for irradiating the illuminating light on thesample 14 are provided in order from thelight source 11 side in the optical path between the polarizer P and thesample 14. The linearly polarized light emitted from the polarizer P is incident on the illumination-side birefringent optical member BP1 and split by birefringence into two linearly polarized light components having mutually orthogonal directions of vibration, and the linearly polarized light components are incident on thecondenser lens 13. The two rays split by the illumination-side birefringent optical member BP1 travel at a small separation angle α, are converted to parallel rays separated from each other at a small shear distance S by the collecting effect of thecondenser lens 13, and illuminate thesample 14. The two rays transmitted at slightly separated positions on thesample 14 are incident on the imaging-side birefringent optical member BP2 via the objective 15 and combined by the birefringent effect of the imaging-side birefringent optical member BP2 so as to travel on the same optical path. The combined rays are incident on the analyzer A, the analyzer A extracts only the components of the mutually orthogonal linearly polarized light that are vibrating in the same direction, and these components interfere. As a result, a magnified image (interference image 17) on the image plane is formed by an interference fringe that forms according to the phase difference imparted between the two light rays as the rays pass through thesample 14 in slightly different positions. An observer can view the magnifiedimage 17 through an eyepiece optical system not shown in the drawing. - When the
sample 14 is planar and homogeneous, (since there is no phase difference between the two split rays of light,) the magnifiedimage 17 is an image that has a uniform intensity distribution and is devoid of contrast. On the other hand, when thesample 14 is heterogeneous and has gradients and level differences, (since there is a phase difference between the two split rays of light,) contrasts occur in the magnifiedimage 17 in portions where the refractive index varies, or in portions that correspond to gradients and level differences. The refractive index variations or the gradients and level differences are thereby made visible, and thesample 14 can be viewed at magnification. - The objective 15 is composed of a first objective 15 a having a magnification of from 20 or higher to 40 or lower (hereinafter referred to as a dry-type medium-magnification objective or a medium-magnification objective), and a second objective 15 b having a magnification of from 60 or higher to 100 or lower that is capable of contrast viewing by a differential interference viewing method (hereinafter referred to as a dry-type high-magnification objective or a high-magnification objective), and the medium-magnification objective 15 a and the high-magnification objective 15 b are configured so as to be exchangeable with the aid of a
turret 16 or the like. - The first objective 15 a is preferably capable of viewing by at least one of the abovementioned differential interference viewing method or modulation contrast viewing method. The underlying principles of the modulation contrast viewing method will be briefly described using
FIGS. 2 through 4 . In the drawings, thereference numeral 21 refers to a condenser lens, S refers to a sample, 22 refers to an objective, 23 refers to an aperture plate, and 24 refers to a disk-shaped modulator. Theaperture plate 23 has a rectangular aperture 23 a positioned at a distance from the center, in the focal position on the light source side of thecondenser lens 21. Themodulator 24 is provided in a position substantially conjugate to theaperture plate 23, and a 100% transmittance region 24 a that may include the image of the aperture 23 a, a region 24 b of 15% transmittance, for example, and a 0% transmittance region 24 c are formed in the stated order adjacent to each other in themodulator 24. - In this optical system, since the rectangular aperture 23 a is disposed in an eccentric position with respect to the optical axis, light that is incident on the
condenser lens 21 is emitted so as to illuminate the sample S at an oblique angle. When the transparent sample S is planar as shown inFIG. 2A , the flux of light passing through the sample S is focused in the region 24 b of themodulator 24 by the objective 22, and an aperture image 23 a′ is formed in the region 24 b, as shown inFIG. 3A . When the surface of the sample S is inclined so as to rise to the right, as shown inFIG. 2B , the flux of light that passes through the sample S is refracted to the right and focused in the region 24 c of themodulator 24, and the aperture image 23 a′ is formed in the region 24 c, as shown inFIG. 3B . When the surface of the sample S is inclined so as to rise to the left, as shown inFIG. 2C , the flux of light that passes through the sample S is refracted to the left and focused in the region 24 a of themodulator 24, and the aperture image 23 a′ is formed in the region 24 a, as shown inFIG. 3C . - As is apparent from this description, when the sample S is a colorless transparent body having flat surfaces and inclined surfaces such as shown in
FIG. 4A , the viewed image is such that the flat portions appear gray and the inclined portions appear black or white such as shown inFIG. 4B . The modulation contrast viewing method thus enables even a colorless transparent sample to be viewed as a three-dimensional image with shading, through the effects of focal illumination and regions of themodulator 24 having different transmittances. - In this microscope system, when the medium-magnification objective 15 a that is capable of contrast viewing by a modulation contrast viewing method is used, a change is made to the illumination-side birefringent optical member BP1, imaging-side birefringent optical member BP2, polarizer P, and analyzer A, which are members used for viewing by the differential interference viewing method described above; and the
aperture plate 23 and themodulator 24 are placed between thelight source 11 and the condenser lens 13 (in the stated order from the light source 11). - In the microscope system according to the present embodiment, the following Conditional Expressions (1) and (2) are preferably satisfied, where NA is the numerical aperture of the dry-type second objective (high-magnification objective), f is the focal distance, and MD is the working distance.
-
0.78≦NA<1.0 (1) -
f/3≦WD<2f (2) - In viewing by the differential interference viewing method using the second objective, the following Conditional Expression (3) is preferably satisfied, where S is the shear distance in the object plane, NA is the numerical aperture of the second objective, and λ is the wavelength of the viewed light.
-
0.3≦S≦0.61λ/NA (3) - In the past, resolving ability was considered critical in viewing by the differential interference viewing method using a high-magnification (60 or higher and 100 or lower), high numerical aperture immersion objective in the field of biological microscopy, and intervention using video enhancement or other image processing was assumed. However, during IMSI or other micro-insemination, visual observation is consistently used in order to rapidly and accurately perform the sequence of operations whereby a more satisfactory sperm is selected from a wide range of (numerous) sperm under high magnification, and the selected sperm is then injected into an ovum under medium magnification. There is accordingly a need for visually adequate contrast, but optimum conditions have not yet been presented for an objective capable of viewing by a differential interference viewing method that would satisfy the need for adequate contrast. The optimum Conditional Expressions (1) through (3) have therefore been derived for the second objective (high-magnification objective) for enabling viewing by the differential interference viewing method in the present microscope system. There follows a description of Conditional Expressions (1) through (3) in the stated order.
- Conditional Expression (1) for specifying the range of appropriate numerical apertures NA of the high-magnification objective will first be described. In the present microscope system, the head portion of a sperm, an image of which is viewed in the present microscope system, is about 4 to 5 μm in size, and it has been confirmed that one to ten vacuoles of various sizes are scattered through the head portion in a single focal plane. Consequently, the ability to see and identify details about 0.4 to 0.5 μm in size with good contrast is understood to be adequate for IMSI applications.
-
FIG. 5 shows the MTF curve (i.e., the relationship between contrast on the vertical axis and the resolving power of the optical system on the horizontal axis) of the incoherent optical system commonly used in a microscope optical system. On the horizontal axis f/f0 ofFIG. 5 , the spatial frequency f is normalized so that f0=NA/λ, where f is the spatial frequency, NA is the numerical aperture of the objective, and λ is the wavelength of the viewed light. The relationship to the horizontal resolving power RES corresponding to the spatial frequency f is indicated by Equation (4), where RES is the horizontal resolving power of the microscope optical system. -
RES=1/f={1/(f/f0)}×{λ/NA} (4) - The maximum value of 2.0 for the horizontal axis f/f0 shown in
FIG. 5 corresponds to the maximum resolving power RES(max) of the microscope optical system. Therefore, by substituting f/f0=2.0 in Equation (4), Equation (5) is obtained, in which the maximum resolving power RES(max) of the microscope optical system is indicated. An image is difficult to see when there is no additional margin beyond the numerical aperture NA that corresponds to the maximum resolving power RES(max) specified by Conditional Expression (5). -
RES(max)={1/2.0}×{λ/NA}=0.5λ/NA (5) - It is known that the human eye generally has difficulty distinguishing contrast values of 0.1 or lower, and that visibility is satisfactory when the contrast value is 0.2 or higher. In
FIG. 5 , since the spatial frequency f/f0 at which the contrast value is 0.1 is near 1.6, Equation (6) must be satisfied by substituting these values into Equation (4) in order for the horizontal resolving power RES to be 0.4 μm (the size of a vacuole in the sperm head as the viewed image). -
RES={1/1.6}×{λ/NA}=0.4 (6) - Since visual observation is assumed in IMSI and ICSI, which are the applications for which the present microscope system is used, the central wavelength λ during viewing is preferably in the vicinity of 500 nm to 550 nm when visibility to the eye is considered. The reason for this is that 500 nm and 550 nm are visibility peaks for dark locations and bright locations, respectively. When the central wavelength λ of 500 nm=0.5 μm for viewing is substituted into Equation (6), Equation (7) below is obtained as the lower limit of the numerical aperture NA required for the high-magnification objective.
-
NA={1/1.6}×0.5 [μm]/0.4 [μm]=0.78 (7) - Since the spatial frequency f/f0 at which the contrast value is 0.2, which is considered to produce good visibility, is near 1.4 according to
FIG. 5 , a more preferred lower limit for the numerical aperture NA is obtained from Equation (8) by substituting into Equation (6) in the manner described above. -
NA={1/1.4}×0.5 [μm]/0.4 [μm]=0.89 (8) - The numerical aperture NA is indicated by NA=n·sin(φ/2), where n is the refractive index of the medium between the objective and the sample, and φ is the aperture angle, and the medium in the present embodiment is air (refractive index n=1). Therefore, the maximum numerical aperture NA is 1.
- In summary, in the microscope system of the present embodiment, the range of the numerical aperture NA of the high-magnification objective preferred for enabling visual observation with good contrast is expressed by Conditional Expression (1), i.e., 0.78≦NA<1.0. The range of the numerical aperture NA of the high-magnification objective is more preferably 0.89≦NA<1.0, according to Conditional Expression (8).
- Conditional Expression (2) will next be described, which specifies the appropriate range of the working distance WD in the high-magnification objective. In the conventional microscope system, a large working distance is generally difficult to obtain with the high-numerical-aperture immersion objective used as the high-magnification objective. Therefore, when such an objective is used in ICSI viewing or IMSI viewing, which require that the sample be kept at 37° C. by an insulating device or the like during working, the insulation device and the distal end of the objective are prone to interfere during the switch from high magnification to the medium-magnification objective. Since a large working distance cannot be obtained, only the area immediately below the cover glass can be viewed by the high-numerical-aperture immersion objective, and sperm that are positioned at a distance from the cover glass cannot be targeted for selection. Therefore, a dry-type lens is used as the high-magnification objective in the present microscope system, and the condition of having the large working distance WD indicated by Conditional Expression (2) is thereby provided in addition to the condition of the numerical aperture NA indicated by Conditional Expression (1).
- One factor that determines the working distance is the magnification of the objective. In an infinity-corrected optical system, the magnification of the objective is determined by the ratio of the focal distances of the imaging lens and the objective (in a high-magnification objective having a magnification of from 60 or higher to 100 or lower such as in the present embodiment, when the focal distance of the imaging lens is 200 μm, for example, the focal distance of the objective is 2.00 to 3.33 m), and the focal distance shortens as the magnification increases. In general, since the working distance is proportional to the focal distance of the objective, the working distance decreases as the magnification of the objective increases. Another factor that determines the working distance is the numerical aperture. When the size of the numerical aperture is the same, a longer working distance corresponds to a greater height of the light rays at the first lens surface (surface of the lens on the object side) of the objective, and aberration becomes more difficult to correct.
- In other words, since increasing the working distance of the objective is incompatible with increasing the magnification and numerical aperture thereof, high-magnification objectives used in conventional microscope systems are polarized between those with an emphasis on working distance and those with an emphasis on magnification and numerical aperture. Specifically, magnification 60/numerical aperture 0.7/
working distance 2 mm are typical specifications for working-distance-oriented objectives; and magnification 100/numerical aperture 1.4/working distance 0.1 mm are typical specifications for magnification/numerical-aperture-oriented objectives. However, when viewing IMSI is the intended application, the numerical aperture NA does not necessarily exceed 1, as indicated by Conditional Expression (1), and increasing the working distance by a corresponding amount leads to enhanced working efficiency. - Therefore, Conditional Expression (2), i.e., f/3≦WD<2f, is preferably satisfied in the present embodiment, where NA is the numerical aperture of the high-magnification objective (second objective), f is the focal distance, and WD is the working distance. When Conditional Expression (2) is below the lower limit value, there is increased risk of such problems as interference between the distal end of the objective and the insulation device during exchanging of the objectives. When Conditional Expression (2) exceeds the upper limit value, the light rays at the first lens surface of the objective are too high, and it is difficult to ensure the numerical aperture NA specified by Conditional Expression (1).
- Conditional Expression (3) will next be described. Conditional Expression (3) specifies the optimum range of the shear distance S in the differential interference viewing method.
FIG. 6 shows the phase contrast MTF curves as the shear distance S is varied from 1.5λ/NA to 0.15λ/NA (Patent Document 3 gives a detailed description of the method for computing the phase contrast MTF in the differential interference viewing method). InFIG. 6 , on the horizontal axis f/f0, the spatial frequency f is normalized by the reference frequency f0=NA/λ specified by the numerical aperture NA of the objective, and the vertical axis indicates the contrast MTF for the phase object at each frequency. - It is apparent from
FIG. 6 that the phase contrast MTF curves in the differential interference viewing method show larger contrast values than the incoherent MTF curve. It is also apparent fromFIG. 6 that the phase contrast MTF has a negative value when the shear distance S is large (e.g., 1.5λ/NA), and this negative value indicates a state referred to as spurious resolution, in which black and white are inverted. A state in which spurious resolution does not occur, i.e., a state in which the phase contrast MTF is not negative, is generally considered to be preferable in viewing by the differential interference viewing method. - Therefore, the limits of a low spatial frequency band (region in which the value of the horizontal axis f/f0 is small) that satisfies a condition whereby the phase contrast MTF value is not negative will first be described. It is apparent from
FIG. 6 that the maximum shear distance S of the low spatial frequency band is approximately 0.61λ/NA to 0.5λ/NA, and these values correspond precisely with the point resolving power or line resolving power of the microscope optical system. The curve for a shear distance S of 0.61λ/NA inFIG. 6 shows that the contrast values are high in the low spatial frequency band, but that the contrast value is about 0.1 in the vicinity of horizontal axis f/f0=1.4 in the high spatial frequency band, corresponding precisely with the limit of visibility. The maximum value of the shear distance S of the objective in the present embodiment is thus 0.61λ/NA, at which the point resolving power can be maintained. A more preferred maximum value for the shear distance S is 0.5λ/NA, (which is closer to the incoherent MTF curve than the curve for 0.61λ/NA,) at which the line resolving power can be maintained. - The limits of the high spatial frequency band (region in which the value of the horizontal axis f/f0 is large) that satisfies the condition whereby the phase contrast MTF is not negative will next be described. It is apparent from
FIG. 6 that the maximum shear distance S of the high spatial frequency band corresponds to the curve having the highest contrast in the vicinity of horizontal axis f/f0=1.6, i.e., the curve for 0.3λ/NA. In this instance, instead of sacrificing contrast in the low spatial frequency band to a certain degree, the visibility in the high spatial frequency band can be kept at 0.1, which is substantially equal to the contrast value of the incoherent MTF. When the shear distance S is further reduced, contrast decreases in the low spatial frequency band as well as in the high spatial frequency band, and is unsuitable for the purposes of the present embodiment. The minimum value of the shear distance S for the objective in the present embodiment is thus 0.32λ/NA. - In summary, by setting a shear distance S that satisfies Conditional Expression (3), i.e., 0.3λ/NA≦S≦0.61λ/NA, and more preferably 0.32λ/NA≦S≦0.5λ/NA, vacuoles in the sperm head can be visualized with high contrast and with almost no compromise to the resolving power of the objective in a differential interference viewing method.
- The second objective (high-magnification objective) according to the present embodiment preferably has a correction ring for correcting aberration fluctuation due to changes in temperature, cover glass thickness, and other factors. This is because the use of a correction ring makes it possible to eliminate aberration caused by temperature, error in the cover glass thickness, and other factors; and to make adjustments so that the resolution and contrast of the objective are both maximized.
- Examples of the second objective (dry-type high-magnification objective) according to the present embodiment will be described.
- A first example will be described using
FIG. 7 ,FIG. 8 , and Table 1.FIG. 7 is a sectional view showing the lens structure of the second objective (dry-type high-magnification lens) according to the present example. As shown inFIG. 7 , the microscope objective in the present example comprises, in order from the object, a positive meniscus lens L1 having a concave surface facing the object; a positive meniscus lens L2 having a concave surface facing the object; a cemented lens composed of a double-concave lens L3 and a double-convex lens L4; a cemented lens composed of a double-concave lens L5 and a double-convex lens L6; a cemented lens composed of a planoconcave lens L7 and a double-convex lens L8; a double-convex lens L9; a cemented lens composed of a negative meniscus lens L10 having a concave surface facing the object, a double-convex lens L11, and a negative meniscus lens L12 having a concave surface facing the object; a cemented lens composed of a double-convex lens L13 and a double-concave lens L14; and a cemented lens composed of a double-concave lens L15 and a double-convex lens L16. A cover glass C is provided on the object side of the positive meniscus lens L1. - Table 1 shows the various values of the lenses that constitute the second objective of the present example. In the various entries shown in Table l, m represents the order of lens surfaces (hereinafter referred to as surface numbers) from the object along the direction of travel of a ray of light, r represents the radius of curvature of each lens, d represents the distance on the optical axis from each optical surface to the next optical surface (or image surface), nd represents the refractive index with respect to the d-line (wavelength: 587.6 nm), and νd represents the Abbe number based on the d-line.
Surface numbers 1 through 25 in Table 1 correspond tosurfaces 1 through 25 shown inFIG. 7 . In the table, β represents the magnification, WD represents the working distance, and NA represents the numerical aperture. - In the table, the radius of curvature r, the distance d to the next lens surface, and other lengths are generally represented in millimeter units. However, since equivalent optical performance is obtained whether in proportional magnification or proportional reduction in the optical system, the units are not limited to millimeters; other appropriate units may be used. The value “∞” for the radius of curvature in the table indicates a plane, and the refractive index of “1.00000” for air is not noted.
-
TABLE 1 [Lens data] β = 100, WD = 1.4, NA = 0.85 m r d nd νd ∞ 0.17000 1.52216 58.80 (cover glass C) ∞ 2.50462 1 −6.47161 2.37000 1.81600 46.621 2 −4.72849 0.10000 3 −83.0402 2.83000 1.49782 82.557 4 −10.6607 0.15000 5 −46.5266 1.00000 1.61340 44.266 6 24.27074 4.95000 1.43385 95.247 7 −14.7782 0.20000 8 −174.834 1.00000 1.61340 44.266 9 24.11495 4.95000 1.43385 95.247 10 −14.5394 0.20000 11 ∞ 1.00000 1.61340 44.266 12 28.67355 4.20000 1.43385 95.247 13 −23.0153 0.20000 14 48.93548 3.00000 1.49782 82.557 15 −65.8669 1.52002 16 21.78198 1.00000 1.72916 54.660 17 11.99437 6.30000 1.49782 82.557 18 −12.5334 1.20000 1.75500 52.318 19 −59.9845 7.75003 20 27.89895 3.35000 1.59240 68.328 21 −7.03528 8.40000 1.65412 39.682 22 5.87805 1.40000 23 −4.44814 1.00000 1.80440 39.567 24 11.0118 1.90000 1.92286 18.896 25 −11.4804 -
FIG. 8 shows several aberration diagrams for the microscope objective according to the present example, whereinFIG. 8A is a spherical aberration diagram,FIG. 8B is an astigmatism diagram, and -
FIG. 8C is a distortion diagram. InFIG. 8 , NA is the numerical aperture, y is the image height (mm), the solid line is the d-line (wavelength: 587.6 nm), the dashed line is the C-line (wavelength: 656.3 nm), the single-dashed line is the F-line (wavelength: 486.1 nm), and the double-dashed line is the g-line (wavelength 435.8 nm). In the astigmatism diagram, the solid line represents the sagittal image surface, and the dashed line represents the meridional image surface. - As is apparent from the aberration diagrams shown in
FIG. 8 , aberrations are satisfactory corrected, and excellent imaging performance is maintained in the second objective (dry-type high-magnification objective) according to the present example. - As described above, according to the present invention, there is provided a microscope system suitable for IMSI/ICSI, whereby it is possible to accurately and rapidly perform the sequence of operations in which the presence of vacuoles in a sperm head and other characteristics are viewed by a differential interference viewing method using a dry-type high-magnification (60 or higher and 100 or lower) objective to select a sperm, whereupon the objectives are exchanged through the use of the
turret 16 or the like, and the selected sperm is injected into an ovum while viewed by a differential interference viewing method or modulation contrast viewing method using a medium-magnification (20 or higher and 40 or lower) objective, which is also a dry-type objective. - The essential characteristics of embodiments were described above to aid in understanding the present invention, but the present invention shall not be construed as being limited to the embodiments described above.
Claims (5)
1-8. (canceled)
9. A microscope system for micro-insemination, comprising:
a transmission illumination optical system having a light source and a condenser lens;
a first dry objective having a magnification of from 20 or higher to 40 or lower and capable of viewing by at least one of a differential interference viewing method and a modulation contrast viewing method; and
a second dry objective having a magnification of from 60 or higher to 100 or lower and capable of viewing by a differential interference viewing method;
the first objective and the second objective being exchangeable.
10. The microscope system for micro-insemination according to claim 9 , characterized in that the following conditional expressions are satisfied:
0.78≦NA<1.0
f/3≦WD<2f,
0.78≦NA<1.0
f/3≦WD<2f,
where NA is the numerical aperture of the second objective, f is focal length thereof, and WD is working distance thereof.
11. The microscope system for micro-insemination according to claim 9 , characterized in that the following conditional expression is satisfied when viewing by the differential interference viewing method using the second objective:
0.3λ/NA≦S≦0.61λ/NA,
0.3λ/NA≦S≦0.61λ/NA,
where S is the shear distance in the object plane, NA is the numerical aperture of the second objective, and λ is the wavelength of the viewed light.
12. The microscope system for micro-insemination according to claim 9 , characterized in that the second objective has a correction ring for correcting aberration fluctuation due to changes in factors including temperature and cover glass thickness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/334,256 US20120092761A1 (en) | 2008-01-23 | 2011-12-22 | Microscope system |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008012823 | 2008-01-23 | ||
JP2008-012823 | 2008-01-23 | ||
PCT/JP2009/050555 WO2009093530A1 (en) | 2008-01-23 | 2009-01-16 | Microscope system |
US12/840,248 US8098427B2 (en) | 2008-01-23 | 2010-07-20 | Microscopic insemination viewing method |
US13/334,256 US20120092761A1 (en) | 2008-01-23 | 2011-12-22 | Microscope system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/840,248 Division US8098427B2 (en) | 2008-01-23 | 2010-07-20 | Microscopic insemination viewing method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120092761A1 true US20120092761A1 (en) | 2012-04-19 |
Family
ID=40901038
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/840,248 Active US8098427B2 (en) | 2008-01-23 | 2010-07-20 | Microscopic insemination viewing method |
US13/334,256 Abandoned US20120092761A1 (en) | 2008-01-23 | 2011-12-22 | Microscope system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/840,248 Active US8098427B2 (en) | 2008-01-23 | 2010-07-20 | Microscopic insemination viewing method |
Country Status (4)
Country | Link |
---|---|
US (2) | US8098427B2 (en) |
EP (1) | EP2241920A4 (en) |
JP (1) | JPWO2009093530A1 (en) |
WO (1) | WO2009093530A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9395529B2 (en) | 2011-05-02 | 2016-07-19 | Olympus Corporation | Microinsemination method using microscope |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014026111A (en) * | 2012-07-26 | 2014-02-06 | Institute Of Microchemical Technology | Differential interference thermal lens microscope |
JP6076042B2 (en) * | 2012-11-01 | 2017-02-08 | オリンパス株式会社 | Microscope and control method |
JP2014209088A (en) * | 2013-03-27 | 2014-11-06 | オリンパス株式会社 | Radiation illuminance measuring device for microscope, and microscope provided with the same |
GB201808312D0 (en) * | 2018-05-21 | 2018-07-11 | Governing Council Of The Univ Of Toronto | A method for automated non-invasive measurement of sperm motility and morphology and automated selection of a sperm with high dna integrity |
US11009456B2 (en) * | 2018-09-04 | 2021-05-18 | Purdue Research Foundation | Method of phase contrasting |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4588264A (en) * | 1982-11-30 | 1986-05-13 | Nippon Kogaku K. K. | Microscope objective lens |
US5572359A (en) * | 1993-07-15 | 1996-11-05 | Nikon Corporation | Differential interference microscope apparatus and an observing method using the same apparatus |
US5731894A (en) * | 1995-12-19 | 1998-03-24 | Gross; Leo | Multi-purpose microscope objective |
US6025956A (en) * | 1995-12-26 | 2000-02-15 | Olympus Optical Co., Ltd. | Incident-light fluorescence microscope |
US20050179997A1 (en) * | 2003-12-24 | 2005-08-18 | Nikon Corporation | Microscope and immersion objective lens |
US7046451B2 (en) * | 2004-10-18 | 2006-05-16 | Nikon Corporation | Immersion microscope objective lens |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1509276A (en) | 1974-06-05 | 1978-05-04 | Hoffman R | Modulation contrast microscope |
US4200353A (en) * | 1974-06-05 | 1980-04-29 | Robert Hoffman | Modulation contrast microscope with three regions |
JPS60205411A (en) * | 1984-03-29 | 1985-10-17 | Olympus Optical Co Ltd | Inverted type microscope |
JP3456252B2 (en) | 1994-05-13 | 2003-10-14 | 日本板硝子株式会社 | Synthetic resin composition for injection molding or injection compression molding and method for producing resin molded article |
JP3415294B2 (en) | 1994-10-18 | 2003-06-09 | オリンパス光学工業株式会社 | Differential interference microscope |
JPH08136816A (en) * | 1994-11-07 | 1996-05-31 | Olympus Optical Co Ltd | Objective lens of microscope |
JP3943620B2 (en) * | 1995-04-24 | 2007-07-11 | オリンパス株式会社 | Differential interference microscope |
JPH09236753A (en) * | 1996-02-28 | 1997-09-09 | Nikon Corp | Microscope objective lens |
JP2000155266A (en) * | 1998-11-20 | 2000-06-06 | Olympus Optical Co Ltd | Microscope optical system |
JP2000241710A (en) * | 1999-02-24 | 2000-09-08 | Nikon Corp | Microscope objective lens |
JP2001356278A (en) * | 2000-06-13 | 2001-12-26 | Olympus Optical Co Ltd | Microscope system |
IL142533A0 (en) * | 2001-04-10 | 2002-03-10 | Bartoov Benjamin | Method for selecting spermatozoon |
JP4033651B2 (en) * | 2001-09-03 | 2008-01-16 | オリンパス株式会社 | Microscope objective lens |
JP3958554B2 (en) * | 2001-10-24 | 2007-08-15 | オリンパス株式会社 | Modulation contrast microscope |
JP2003156691A (en) * | 2001-11-21 | 2003-05-30 | Olympus Optical Co Ltd | Condenser lens for microscope |
JP4434612B2 (en) * | 2003-04-03 | 2010-03-17 | オリンパス株式会社 | Microscope and zoom objective |
JP2007178661A (en) * | 2005-12-27 | 2007-07-12 | Olympus Corp | Microscope apparatus |
JP2006184929A (en) * | 2006-03-27 | 2006-07-13 | Olympus Corp | Microscope objective lens |
-
2009
- 2009-01-16 JP JP2009550504A patent/JPWO2009093530A1/en active Pending
- 2009-01-16 WO PCT/JP2009/050555 patent/WO2009093530A1/en active Application Filing
- 2009-01-16 EP EP09703398.9A patent/EP2241920A4/en not_active Withdrawn
-
2010
- 2010-07-20 US US12/840,248 patent/US8098427B2/en active Active
-
2011
- 2011-12-22 US US13/334,256 patent/US20120092761A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4588264A (en) * | 1982-11-30 | 1986-05-13 | Nippon Kogaku K. K. | Microscope objective lens |
US5572359A (en) * | 1993-07-15 | 1996-11-05 | Nikon Corporation | Differential interference microscope apparatus and an observing method using the same apparatus |
US5731894A (en) * | 1995-12-19 | 1998-03-24 | Gross; Leo | Multi-purpose microscope objective |
US6025956A (en) * | 1995-12-26 | 2000-02-15 | Olympus Optical Co., Ltd. | Incident-light fluorescence microscope |
US20050179997A1 (en) * | 2003-12-24 | 2005-08-18 | Nikon Corporation | Microscope and immersion objective lens |
US7046451B2 (en) * | 2004-10-18 | 2006-05-16 | Nikon Corporation | Immersion microscope objective lens |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9395529B2 (en) | 2011-05-02 | 2016-07-19 | Olympus Corporation | Microinsemination method using microscope |
Also Published As
Publication number | Publication date |
---|---|
EP2241920A1 (en) | 2010-10-20 |
US8098427B2 (en) | 2012-01-17 |
US20100284065A1 (en) | 2010-11-11 |
WO2009093530A1 (en) | 2009-07-30 |
JPWO2009093530A1 (en) | 2011-05-26 |
EP2241920A4 (en) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8098427B2 (en) | Microscopic insemination viewing method | |
US7564619B2 (en) | Stereomicroscope | |
US10948704B2 (en) | Objective for a confocal microscope | |
JP3958554B2 (en) | Modulation contrast microscope | |
US6226119B1 (en) | High-magnification objective optical system for binocular stereomicroscopes | |
US11086116B2 (en) | Microscope objective | |
JP6644292B1 (en) | Imaging optical system | |
JP3938699B2 (en) | Objective lens and scanning microscope with objective lens | |
JP2001147378A (en) | Objective lens system for parallel system stereomicroscope | |
US10884229B2 (en) | Immersion microscope objective | |
US4316653A (en) | Condenser optical system for a microscope | |
CN208488595U (en) | A kind of zoom micro lens for high definition fluorescence microscopy scope | |
JP2004133341A (en) | Zoom objective lens | |
JP2001221955A (en) | Objective lens for parallel stereomicroscope | |
JP2876222B2 (en) | Imaging optical system | |
CN111123498A (en) | Collecting lens for living cell observation system | |
JP7616625B2 (en) | Immersion microscope objective lens, imaging lens and microscope device | |
JP2007011092A (en) | Objective lens | |
US11402619B2 (en) | Immersion microscope objective | |
RU2427864C1 (en) | Eyepiece with pinhole exit pupil | |
JPH09251133A (en) | Wide visual field eyepiece | |
SU1645925A1 (en) | Binocular instrument optical system | |
SU1658114A1 (en) | Planapochromatic objective lens of microscope | |
JP4434615B2 (en) | Condenser lenses used for immersion illumination devices for microscopes | |
JP4706249B2 (en) | Microscope condenser lenses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |