US20120082756A1 - Preparation of Dough or Baked Products - Google Patents
Preparation of Dough or Baked Products Download PDFInfo
- Publication number
- US20120082756A1 US20120082756A1 US13/310,011 US201113310011A US2012082756A1 US 20120082756 A1 US20120082756 A1 US 20120082756A1 US 201113310011 A US201113310011 A US 201113310011A US 2012082756 A1 US2012082756 A1 US 2012082756A1
- Authority
- US
- United States
- Prior art keywords
- dough
- enzyme
- variant
- phospholipase
- combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002360 preparation method Methods 0.000 title claims description 9
- 102000004190 Enzymes Human genes 0.000 claims abstract description 124
- 108090000790 Enzymes Proteins 0.000 claims abstract description 124
- 230000002366 lipolytic effect Effects 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 230000002195 synergetic effect Effects 0.000 claims abstract description 11
- 230000014759 maintenance of location Effects 0.000 claims abstract description 6
- 108090001060 Lipase Proteins 0.000 claims description 42
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 claims description 39
- 102000015439 Phospholipases Human genes 0.000 claims description 39
- 108010064785 Phospholipases Proteins 0.000 claims description 39
- 102100033357 Pancreatic lipase-related protein 2 Human genes 0.000 claims description 16
- 102000004882 Lipase Human genes 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims 1
- 229940088598 enzyme Drugs 0.000 description 113
- 230000000694 effects Effects 0.000 description 41
- 102100031415 Hepatic triacylglycerol lipase Human genes 0.000 description 20
- 235000013312 flour Nutrition 0.000 description 18
- 235000008429 bread Nutrition 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 238000003556 assay Methods 0.000 description 14
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- 240000006439 Aspergillus oryzae Species 0.000 description 12
- 239000004382 Amylase Substances 0.000 description 11
- 108010065511 Amylases Proteins 0.000 description 11
- 102000013142 Amylases Human genes 0.000 description 11
- 235000019418 amylase Nutrition 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- 239000004367 Lipase Substances 0.000 description 7
- 241000223258 Thermomyces lanuginosus Species 0.000 description 7
- 230000002538 fungal effect Effects 0.000 description 7
- 235000019421 lipase Nutrition 0.000 description 7
- 235000002639 sodium chloride Nutrition 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- FROLUYNBHPUZQU-IIZJPUEISA-N (2R,3R,4S,5R)-2-(hydroxymethyl)-6-[3-[3-[(3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropoxy]propoxy]oxane-3,4,5-triol Chemical compound OC[C@H]1OC(OCCCOCCCOC2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@@H](O)[C@H]1O FROLUYNBHPUZQU-IIZJPUEISA-N 0.000 description 6
- 235000010323 ascorbic acid Nutrition 0.000 description 6
- 239000011668 ascorbic acid Substances 0.000 description 6
- 229960005070 ascorbic acid Drugs 0.000 description 6
- 230000003301 hydrolyzing effect Effects 0.000 description 6
- 235000012054 meals Nutrition 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 150000003626 triacylglycerols Chemical class 0.000 description 6
- 241000228212 Aspergillus Species 0.000 description 5
- 241000228245 Aspergillus niger Species 0.000 description 5
- -1 F. oxysporum Chemical compound 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 235000019197 fats Nutrition 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 4
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 4
- 241000193830 Bacillus <bacterium> Species 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 241000243142 Porifera Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 239000000787 lecithin Substances 0.000 description 4
- 235000010445 lecithin Nutrition 0.000 description 4
- 229940067606 lecithin Drugs 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004006 olive oil Substances 0.000 description 4
- 235000008390 olive oil Nutrition 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- 241000228232 Aspergillus tubingensis Species 0.000 description 3
- 241000223221 Fusarium oxysporum Species 0.000 description 3
- 239000004366 Glucose oxidase Substances 0.000 description 3
- 108010015776 Glucose oxidase Proteins 0.000 description 3
- 108020002496 Lysophospholipase Proteins 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 240000005384 Rhizopus oryzae Species 0.000 description 3
- 101000984201 Thermomyces lanuginosus Lipase Proteins 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 235000021588 free fatty acids Nutrition 0.000 description 3
- 229940116332 glucose oxidase Drugs 0.000 description 3
- 235000019420 glucose oxidase Nutrition 0.000 description 3
- 235000019626 lipase activity Nutrition 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 102220271537 rs200383861 Human genes 0.000 description 3
- ODFAPIRLUPAQCQ-UHFFFAOYSA-M sodium stearoyl lactylate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC(=O)OC(C)C(=O)OC(C)C([O-])=O ODFAPIRLUPAQCQ-UHFFFAOYSA-M 0.000 description 3
- 239000003724 sodium stearoyl-2-lactylate Substances 0.000 description 3
- 235000010956 sodium stearoyl-2-lactylate Nutrition 0.000 description 3
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 3
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 description 2
- 102000003925 1,4-alpha-Glucan Branching Enzyme Human genes 0.000 description 2
- 239000004156 Azodicarbonamide Substances 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000427940 Fusarium solani Species 0.000 description 2
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 2
- 241000223198 Humicola Species 0.000 description 2
- 241001480714 Humicola insolens Species 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 101710117655 Maltogenic alpha-amylase Proteins 0.000 description 2
- 102100037883 Phospholipase B1, membrane-associated Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 241000235402 Rhizomucor Species 0.000 description 2
- 241000235527 Rhizopus Species 0.000 description 2
- 241000221696 Sclerotinia sclerotiorum Species 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 240000006394 Sorghum bicolor Species 0.000 description 2
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 102000004139 alpha-Amylases Human genes 0.000 description 2
- 229940024171 alpha-amylase Drugs 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 2
- 235000019399 azodicarbonamide Nutrition 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- YERABYSOHUZTPQ-UHFFFAOYSA-P endo-1,4-beta-Xylanase Chemical compound C=1C=CC=CC=1C[N+](CC)(CC)CCCNC(C(C=1)=O)=CC(=O)C=1NCCC[N+](CC)(CC)CC1=CC=CC=C1 YERABYSOHUZTPQ-UHFFFAOYSA-P 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 108020003519 protein disulfide isomerase Proteins 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 102220327423 rs148273392 Human genes 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- DNISEZBAYYIQFB-PHDIDXHHSA-N (2r,3r)-2,3-diacetyloxybutanedioic acid Chemical class CC(=O)O[C@@H](C(O)=O)[C@H](C(O)=O)OC(C)=O DNISEZBAYYIQFB-PHDIDXHHSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- DRCWOKJLSQUJPZ-DZGCQCFKSA-N (4ar,9as)-n-ethyl-1,4,9,9a-tetrahydrofluoren-4a-amine Chemical compound C1C2=CC=CC=C2[C@]2(NCC)[C@H]1CC=CC2 DRCWOKJLSQUJPZ-DZGCQCFKSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- VUDQSRFCCHQIIU-UHFFFAOYSA-N 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one Chemical compound CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- 108010043797 4-alpha-glucanotransferase Proteins 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000235389 Absidia Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000228215 Aspergillus aculeatus Species 0.000 description 1
- 241001513093 Aspergillus awamori Species 0.000 description 1
- 108090000145 Bacillolysin Proteins 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- BCZXFFBUYPCTSJ-UHFFFAOYSA-L Calcium propionate Chemical compound [Ca+2].CCC([O-])=O.CCC([O-])=O BCZXFFBUYPCTSJ-UHFFFAOYSA-L 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 101710128063 Carbohydrate oxidase Proteins 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 241000588919 Citrobacter freundii Species 0.000 description 1
- 241000242346 Constrictibacter antarcticus Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 1
- 240000008990 Cyperus javanicus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 241000224495 Dictyostelium Species 0.000 description 1
- 241000168726 Dictyostelium discoideum Species 0.000 description 1
- 241000607473 Edwardsiella <enterobacteria> Species 0.000 description 1
- 241000607471 Edwardsiella tarda Species 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000588697 Enterobacter cloacae Species 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 102000018389 Exopeptidases Human genes 0.000 description 1
- 108010091443 Exopeptidases Proteins 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000223194 Fusarium culmorum Species 0.000 description 1
- 241000146406 Fusarium heterosporum Species 0.000 description 1
- 241000567178 Fusarium venenatum Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 102000051366 Glycosyltransferases Human genes 0.000 description 1
- 101001008429 Homo sapiens Nucleobindin-2 Proteins 0.000 description 1
- 241000766694 Hyphozyma Species 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000588915 Klebsiella aerogenes Species 0.000 description 1
- 108010008292 L-Amino Acid Oxidase Proteins 0.000 description 1
- 102000007070 L-amino-acid oxidase Human genes 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 241001149951 Mucor mucedo Species 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 102000035092 Neutral proteases Human genes 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- 102100027441 Nucleobindin-2 Human genes 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 241000588912 Pantoea agglomerans Species 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 244000271379 Penicillium camembertii Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 102100035200 Phospholipase A and acyltransferase 4 Human genes 0.000 description 1
- 108010058864 Phospholipases A2 Proteins 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000588778 Providencia stuartii Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 1
- 241000872726 Rhizopus pusillus Species 0.000 description 1
- 241000235546 Rhizopus stolonifer Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000221662 Sclerotinia Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000607762 Shigella flexneri Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000223257 Thermomyces Species 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- 241000223238 Trichophyton Species 0.000 description 1
- 241000223229 Trichophyton rubrum Species 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- 241000607447 Yersinia enterocolitica Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000003659 bee venom Substances 0.000 description 1
- 108010019077 beta-Amylase Proteins 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 239000004330 calcium propionate Substances 0.000 description 1
- 235000010331 calcium propionate Nutrition 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 125000001924 fatty-acyl group Chemical group 0.000 description 1
- 235000010855 food raising agent Nutrition 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 235000019534 high fructose corn syrup Nutrition 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 229920000223 polyglycerol Chemical class 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 1
- 239000001230 potassium iodate Substances 0.000 description 1
- 235000006666 potassium iodate Nutrition 0.000 description 1
- 229940093930 potassium iodate Drugs 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 108010001816 pyranose oxidase Proteins 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000003998 snake venom Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT OF FLOUR OR DOUGH FOR BAKING, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS
- A21D8/00—Methods for preparing or baking dough
- A21D8/02—Methods for preparing dough; Treating dough prior to baking
- A21D8/04—Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
- A21D8/042—Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with enzymes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/003—Refining fats or fatty oils by enzymes or microorganisms, living or dead
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/01—Carboxylic ester hydrolases (3.1.1)
- C12Y301/01003—Triacylglycerol lipase (3.1.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/01—Carboxylic ester hydrolases (3.1.1)
- C12Y301/01004—Phospholipase A2 (3.1.1.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/01—Carboxylic ester hydrolases (3.1.1)
- C12Y301/01026—Galactolipase (3.1.1.26)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/01—Carboxylic ester hydrolases (3.1.1)
- C12Y301/01032—Phospholipase A1 (3.1.1.32)
Definitions
- the present invention relates to methods of preparing a dough or a baked product made from dough by use of lipolytic enzymes, and to compositions for use therein.
- WO 94/04035 EP 109244, EP 585988, WO 98/26057, WO 98/45453, WO 99/53769, WO 00/32758 and EP 575133 describe the addition of various lipolytic enzymes to dough in the preparation of bread, e.g. enzymes with activities such as triacylglycerol lipase, phospholipase and galactolipase.
- the inventors have found that the addition to dough of a combination of two lipolytic enzymes with different substrate specificities produces a synergistic effect on the dough or on a baked product made from the dough, particularly a larger loaf volume of the baked product and/or a better shape retention during baking.
- the invention provides a method of preparing a dough or a baked product made from dough, comprising adding a combination of two lipolytic enzymes to the dough.
- the invention also provides a composition comprising a combination of two lipolytic enzymes.
- the combination may comprise at least two lipolytic enzymes selected from the group consisting of galactolipase, phospholipase and triacylglycerol lipase.
- the combination may comprise a galactolipase+a phospholipase, a phospholipase+a triacylglycerol lipase or a triacylglycerol lipase+a galactolipase.
- the invention uses a combination of lipolytic enzymes, i.e. enzymes which are capable of hydrolyzing carboxylic ester bonds to release carboxylate (EC 3.1.1).
- the enzyme combination includes at least two of the following three: a galactolipase, a phospholipase and a triacylglycerol lipase, i.e. enzymes predominantly having activity for a galactolipids, a phospholipid, and a triglyceride, respectively.
- the activities may be determined by any suitable method, e.g. by assays known in the art or described later in this specification.
- Galactolipase activity (EC 3.1.1.26), i.e. hydrolytic activity on carboxylic ester bonds in galactolipids such as DGDG (digalactosyl diglyceride).
- the galactolipase activity may be determined, e.g., by the plate assay in this specification or by the monolayer assay 1 or 2 in WO 2000/32758.
- Phospholipase activity (A1 or A2, EC 3.1.1.32 or 3.1.1.4), i.e. hydrolytic activity towards one or both carboxylic ester bonds in phospholipids such as lecithin.
- the phospholipase activity may be determined by the plate assay in this specification or by an assay WO 2000/32758, e.g. the PHLU, LEU, monolayer or plate assay 1 or 2.
- Triacylglycerol lipase activity (EC 3.1.1.3), i.e. hydrolytic activity for carboxylic ester bonds in triglycerides, e.g. 1,3-specific activity, particularly on long-chain triglycerides such as olive oil.
- the activity on long-chain triglycerides (olive oil) and short-chain triglycerides (tributyrin) may be determined by the SLU and LU methods (described in WO 00/32758), respectively, or by the plate assay described in this specification.
- the enzyme may have a substrate specificity for hydrolyzing long-chain fatty acyl groups rather than short-chain groups, expressed e.g.
- this ratio may reduce the development of off-odor in dough containing milk lipids such as butter fat.
- this ratio may be above 3.
- Each lipolytic enzyme may have a narrow specificity with activity for one of the three substrates and little or no activity for the other two, or it may have a broader specificity with predominant activity for one substrate and less activity for the other two substrates.
- a lipolytic enzyme is considered to be a galactolipase if it has a higher activity on galactolipids than on phospholipids and triglycerides. Similarly, it is considered to be a phospholipase or a triacylglycerol lipase if it has a higher activity for that substrate than for the other two.
- the comparison may be done, e.g., by the plate assay in this specification using the three substrates; the largest clearing zone indicating the predominant activity.
- the enzyme combination may comprise three or more lipolytic enzymes, e.g. comprising a galactolipase, a phospholipase and a triacylglycerol lipase.
- the enzyme combination may have low activity on partially hydrolyzed lipids such as digalactosyl monoglyceride (DGMG), lysophospholipids (LPL) and mono- and diglycerides (MG, DG).
- DGMG digalactosyl monoglyceride
- LPL lysophospholipids
- MG, DG mono- and diglycerides
- this may lead to accumulation of such partially hydrolyzed lipids in the dough and may improve the properties of the dough and/or the baked product.
- the lipolytic enzymes may be prokaryotic, particularly bacterial, e.g. from Pseudomonas or Bacillus .
- the lipolytic enzymes may be eukaryotic, e.g. from fungal or animal sources.
- Fungal lipolytic enzymes may be derived, e.g. from the following genera or species: Thermomyces , particularly T. lanuginosus (also known as Humicola lanuginosa ); Humicola , particularly H. insolens; Fusarium , particularly F. oxysporum, F. solani , and F. heterosporum; Aspergillus , particularly A. tubigensis, A. niger , and A. oryzae; Rhizomucor; Candida , particularly C. antarctica; Penicillium , particularly P. camembertii; Rhizopus , particularly Rhizopus oryzae ; or Absidia.
- lipolytic enzymes Some particular examples of lipolytic enzymes follow:
- the lipolytic enzymes may have a temperature optimum in the range of 30-90° C., e.g. 30-70° C.
- the combination of the two lipolytic enzymes has a synergistic effect on dough made with the combination or on a baked product made from the dough, particularly improved dough stabilization, i.e. a larger loaf volume of the baked product and/or a better shape retention during baking, particularly in a stressed system, e.g. in the case of over-proofing or over-mixing.
- the synergistic effect on the baked product may include a lower initial firmness and/or a more uniform and fine crumb, improved crumb structure (finer crumb, thinner cell walls, more rounded cells), of the baked product, Additionally or alternatively, there may be a synergistic effect on dough properties, e.g. a less soft dough, higher elasticity, lower extensibility.
- Synergy may be determined by making doughs or baked products with addition of the first and the second lipolytic enzyme separately and in combination, and comparing the effects; synergy is indicated when the combination produces a better effect than each enzyme used separately.
- the comparison may be made between the combination and each enzyme alone at double dosage (on the basis of enzyme protein or enzyme activity).
- synergy may be said to occur if the effect of 0.5 mg of enzyme A+1.0 mg of enzyme B is greater than the effect with 1.0 mg of enzyme A and also greater than the effect with 2.0 mg of enzyme B.
- the comparison may be made with equal total enzyme dosages (as pure enzyme protein). If the effect with the combination is greater than with either enzyme alone, this may be taken as an indication of synergy. As an example, synergy may be said to occur if the effect of 0.5 mg of enzyme A+1.0 mg of enzyme B is greater than with 1.5 mg of enzyme A or B alone.
- Suitable dosages for the enzymes may typically be found in the range 0.01-10 mg of enzyme protein per kg of flour, particularly 0.1-5 mg/kg, e.g. 0.2-1 mg/kg.
- Suitable dosages for each of the two enzymes in the combination may be found by first determining a suitable dosage for each enzyme alone (e.g. the optimum dosage, i.e. the dosage producing the greatest effect) and using 30-67% (e.g. 33-50%, particularly 50%) of that dosage for each enzyme in the combination. Again, if the effect with the combination is greater than with either enzyme used separately, this is taken as an indication of synergy.
- a lipolytic enzyme with phospholipase activity may be used at a dosage of 200-5000 LEU/kg of flour, e.g. 500-2000 LEU/kg.
- the LEU activity unit is described in WO 99/53769.
- a lipolytic enzyme with triacylglycerol lipase activity may be used at a dosage of 20-1000 LU/kg of flour, particularly 50-500 LU/kg.
- the LU method is described in WO 2000/32758.
- an additional enzyme may be used together with the lipolytic enzymes.
- the additional enzyme may be an amylase, particularly an anti-staling amylase, an amyloglucosidase, a cyclodextrin glucanotransferase, or the additional enzyme may be a peptidase, in particular an exopeptidase, a transglutaminase, a cellulase, a hemicellulase, in particular a pentosanase such as xylanase, a protease, a protein disulfide isomerase, e.g., a protein disulfide isomerase as disclosed in WO 95/00636, a glycosyltransferase, a branching enzyme (1,4- ⁇ -glucan branching enzyme), a 4- ⁇ -glucanotransferase (dextrin glycosyltransferase) or an oxidoreductase,
- the additional enzyme may be of any origin, including mammalian and plant, and preferably of microbial (bacterial, yeast or fungal) origin and may be obtained by techniques conventionally used in the art.
- the amylase may be a fungal or bacterial alpha-amylase, e.g. from Bacillus , particularly B. licheniformis or B. amyloliquefaciens , or from Aspergillus , particularly A. oryzae , a beta-amylase, e.g. from plant (e.g. soy bean) or from microbial sources (e.g. Bacillus ).
- Bacillus particularly B. licheniformis or B. amyloliquefaciens
- Aspergillus particularly A. oryzae
- a beta-amylase e.g. from plant (e.g. soy bean) or from microbial sources (e.g. Bacillus ).
- the xylanase is preferably of microbial origin, e.g. derived from a bacterium or fungus, such as a strain of Aspergillus , in particular of A. aculeatus, A. niger (cf. WO 91/19782), A. awamori (WO 91/18977), or A. tubigensis (WO 92/01793), from a strain of Trichoderma , e.g. T. reesei , or from a strain of Humicola , e.g. H. insolens (WO 92/17573).
- a bacterium or fungus such as a strain of Aspergillus , in particular of A. aculeatus, A. niger (cf. WO 91/19782), A. awamori (WO 91/18977), or A. tubigensis (WO 92/01793), from a strain of Trichoderma , e.
- amyloglucosidase may be from Aspergillus , particularly A. oryzae.
- the glucose oxidase may be a fungal glucose oxidase, particularly from Aspergillus niger.
- the protease may be a neutral protease from Bacillus amyloliquefaciens.
- the method or the composition of the invention may include addition of an anti-staling amylase.
- a galactolipase and a phospholipase may be used together with an anti-staling amylase, as described in WO 99/53769.
- the anti-staling amylase is an amylase that is effective in retarding the staling (crumb firming) of baked products, particularly a maltogenic alpha-amylase, e.g. from Bacillus stearothermophilus strain NCIB 11837.
- the method or composition of the invention may be made without addition of an anti-staling amylase.
- a lipase and a phospholipase may be used without addition of an anti-staling amylase or without addition of a maltogenic alpha-amylase.
- composition comprising Lipolytic Enzymes
- the present invention provides a composition comprising a combination of two lipolytic enzymes as described above.
- the composition may be an enzyme preparation for use as a baking additive.
- the composition may also comprise flour and may be a dough or a premix.
- the composition may be an enzyme preparation comprising a combination of lipolytic enzymes, for use as a baking additive in the process of the invention.
- the enzyme preparation may particularly be in the form of a granulate or agglomerated powder, e.g. with a narrow particle size distribution with more than 95% (by weight) of the particles in the range from 25 to 500 ⁇ m.
- Granulates and agglomerated powders may be prepared by conventional methods, e.g. by spraying the enzymes onto a carrier in a fluid-bed granulator.
- the carrier may consist of particulate cores having a suitable particle size.
- the carrier may be soluble or insoluble, e.g. a salt (such as NaCl or sodium sulfate), a sugar (such as sucrose or lactose), a sugar alcohol (such as sorbitol), starch, rice, corn grits, or soy.
- the enzyme preparation may also be supplied as a liquid formulation, particularly a stabilized liquid.
- Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
- the dough of the invention generally comprises wheat meal or wheat flour and/or other types of meal, flour or starch such as corn flour, corn starch, rye meal, rye flour, oat flour, oat meal, soy flour, sorghum meal, sorghum flour, potato meal, potato flour or potato starch.
- flour or starch such as corn flour, corn starch, rye meal, rye flour, oat flour, oat meal, soy flour, sorghum meal, sorghum flour, potato meal, potato flour or potato starch.
- the dough of the invention may be fresh, frozen or par-baked.
- the dough of the invention is normally a leavened dough or a dough to be subjected to leavening.
- the dough may be leavened in various ways, such as by adding chemical leavening agents, e.g., sodium bicarbonate or by adding a leaven (fermenting dough), but it is preferred to leaven the dough by adding a suitable yeast culture, such as a culture of Saccharomyces cerevisiae (baker's yeast), e.g. a commercially available strain of S. cerevisiae.
- the dough may also comprise other conventional dough ingredients, e.g.: proteins, such as milk powder, gluten, and soy; eggs (either whole eggs, egg yolks or egg whites); an oxidant such as ascorbic acid, potassium bromate, potassium iodate, azodicarbonamide (ADA) or ammonium persulfate; an amino acid such as L-cysteine; a sugar; a salt such as sodium chloride, calcium acetate, sodium sulfate or calcium sulfate.
- proteins such as milk powder, gluten, and soy
- eggs either whole eggs, egg yolks or egg whites
- an oxidant such as ascorbic acid, potassium bromate, potassium iodate, azodicarbonamide (ADA) or ammonium persulfate
- an amino acid such as L-cysteine
- a sugar a salt such as sodium chloride, calcium acetate, sodium sulfate or calcium sulfate.
- the dough may comprise fat (triglyceride) such as granulated fat or shortening, but the invention is particularly applicable to a dough where less than 1% by weight of fat (triglyceride) is added, and particularly to a dough which is made without addition of fat.
- fat triglyceride
- the dough may further comprise an emulsifier such as mono- or diglycerides, diacetyl tartaric acid esters of mono- or diglycerides, sugar esters of fatty acids, polyglycerol esters of fatty acids, lactic acid esters of monoglycerides, acetic acid esters of monoglycerides, polyoxyethylene stearates, or lysolecithin.
- an emulsifier such as mono- or diglycerides, diacetyl tartaric acid esters of mono- or diglycerides, sugar esters of fatty acids, polyglycerol esters of fatty acids, lactic acid esters of monoglycerides, acetic acid esters of monoglycerides, polyoxyethylene stearates, or lysolecithin.
- the invention also provides a pre-mix comprising flour together with two lipolytic enzymes as described above.
- the pre-mix may contain other dough-improving and/or bread-improving additives, e.g. any of the additives, including enzymes, mentioned above.
- Phospholipase activity is measured as the release of free fatty acids from lecithin.
- 500 ⁇ l 4% L-alpha-phosphatidylcholine (plant lecithin from Avanti), 5 mM CaCl 2 in 50 mM NaOAc, pH 5 is added to 50 ⁇ l enzyme solution diluted to an appropriate concentration in water.
- the samples are incubated for 10 min at 30° C. and the reaction stopped at 95° C. for 5 min prior to centrifugation (5 min at 7000 rpm).
- Free fatty acids are determined using the NEFA C kit from Wako Chemicals GmbH; 25 ⁇ l reaction mixture is added 250 ⁇ l Reagent A and incubated 10 min at 37° C.
- Reagent B 500 ⁇ l Reagent B is added and the sample is incubated again, 10 min at 37° C. The absorption is measured at 550 nm. Substrate and enzyme blinds (preheated enzyme samples (10 min at 95° C.)+substrate) are included. Oleic acid is used as a fatty acid standard. 1 PHLU equals the amount of enzyme capable of releasing 1 ⁇ mol of free fatty acid/min at these conditions.
- Equal volumes of 2% agarose and 2% Lecithin (A and B) are mixed. 250 ⁇ l 4 mg/ml crystal violet in purified water is added as indicator. The mixture is poured into appropriate petri dishes (e.g. 30 ml in 14 cm ⁇ dish), and appropriate holes are made in the agar (3-5 mm) for application of enzyme solution.
- DGDG digalactosyl diglyceride
- olive oil is used instead of L-alpha-Phosphatidylcholine.
- a liquid sponge is prepared by mixing 34.8 parts of water, 60 parts of flour and 1.5 parts of instant yeast, and fermenting for 3 hours at 24° C.
- a dough is then prepared by mixing the liquid sponge with 22.93 parts of water, 40 parts of flour, 0.5 part of instant yeast, 11.26 parts of 42 high-fructose corn syrup, 0.25 part of calcium propionate, 2 parts of oil and 2 parts of salt, 50 ppm of ascorbic acid 50 parts of wheat flour, 0.5 part of SSL (sodium stearoyl-2-lactylate), 2 parts of salt, 6 parts of sugar and water and ascorbic acid as required.
- SSL sodium stearoyl-2-lactylate
- a dough is prepared by mixing 100 parts (by weight) of wheat flour, 4 parts of yeast, 1.5 parts of salt and 1.5 parts of sugar with water and ascorbic acid as required to reach a suitable dough consistency.
- Shape Factor (Shape Retention)
- the shape factor is taken as the ratio between the height and diameter of rolls after baking (average of 10 rolls). A higher value indicates a better shape retention.
- Softness is a measure of the degree to which, or ease with which, a dough will compress or resist compression. A sensory evaluation is done by a trained and skilled baker feeling and squeezing the dough. The results are expressed on a scale from 0 (little softness) to 10 (very soft) with the control (dough without enzyme addition) taken as 5.
- Extensibility is a measure of the degree by which a dough can be stretched without tearing.
- a sensory evaluation is done by a trained and skilled baker pulling a piece of kneaded dough (about 30 g) and judging the extensibility. The results are expressed on a scale from 0 (Short /low extensibility) to 10 (long/high extensibility) with the control (dough without enzyme addition) taken as 5.
- Elasticity is a measure of the degree to which a dough tends to recover its original shape after release from a deforming force. It is evaluated by rolling a piece of dough (about 30 g) to a size of about 10 cm, and having a trained and skilled baker carefully pulling at opposite ends to judge the resistance and elasticity. The results are expressed on a scale from 0 (low/weak elasticity/recovery) to 10 (high/strong elasticity/recovery) with the control (dough without enzyme addition) taken as 5.
- Lipolytic enzyme combinations were tested in a European Straight dough procedure as described above.
- Fungal alpha-amylase Fungamyl Super MA, 40 ppm
- an oxidation system ascorbic acid, 30 ppm
- Each dough was split into rolls and pan bread. Over-proofing (indicating a stressed system) was carried out for the rolls (70 min.) and the pan bread (80 min.).
- Variant 39 was tested in combination with variant 91 or with Aspergillus oryzae phospholipase.
- Variants 39 and 91 are variants of the Thermomyces lanuginosus lipase according to WO 2000/32758.
- variants 91 and 39 were selected because of the high phospholipase activity and the high galactolipase activity, respectively.
- the Aspergillus oryzae phospholipase and variant 39 combination were chosen due to the combination of a pure phospholipase and an enzyme with high DGDG activity.
- the plate assays described above showed that each enzyme wasx specific with little or no activity for the two other substrates.
- the lipolytic enzymes were added according to the table below. The tests with a single enzyme were conducted with a dosage found to be optimum for the enzyme in question, and combinations were tested as indicated, with each enzyme at 33, 50 or 67% of optimal dosage.
- A. oryzae Phospholipase and Variant 39 at 33% and 67%, respectively, of optimal dosage increases the specific volume considerably compared to each enzyme added separately at optimum dosage.
- the combination also has a positive contribution to the shape factor of the rolls.
- a phospholipase A2 from porcine pancreas was tested in combination with a 1,3-specific triacylglycerol lipase from Thermomyces lanuginosus in the European straight dough procedure as described above. The results were compared to each enzyme used alone in dosages considered to be optimal. The enzyme combination was made with 50% of optimal dosage of each of the enzymes.
- the two enzymes were found to be very specific, i.e. the triacylglycerol lipase has very little activity on phospholipid and galactolipids, and the phospholipase has very little activity on triglycerides and galactolipids.
- Variant 6 is a variant of the Thermomyces lanuginosus lipase with the following amino acid alterations (SPIRR indicates a peptide extension at the N-terminal, and 270AGGFS indicates a peptide extension at the C-terminal).
- Loaves were prepared according to the invention by adding Variant 6 (25 LU/kg flour) and FoL (500 LU/kg flour) to the dough. For comparison, loaves were baked without lipolytic enzymes, with FoL alone (1000 LU/kg) or Variant 6 alone (50 LU/kg) which were found to be the optimal dosages for the enzymes.
- the LU assay method is described in WO 2000/32758.
- the standard sponge dough WPB formula was used as described above, with the hydrated distilled MG and SSL eliminated to avoid masking effects on the enzyme.
- Loaves contained 2% soy oil as well as fungal amylase and pentosanase (Fungamyl Super MA, 50 ppm).
- the oxidation system was 50 ppm ascorbic acid.
- crumb softness and elasticity were measured 24 hours after baking. The trial was repeated once.
- Variant 32 was tested in combination with Variant 13 and Variant 60.
- the variants are variants of the Thermomyces lanuginosus lipase with the following amino acid alterations (where SPIRR indicates a peptide extension at the N-terminal, and 270AGGFS indicates a peptide extension at the C-terminal):
- Each dough was split into rolls and pan bread. The rolls were proofed for 70 minutes (over proofing), and the pan bread was proofed for 80 minutes (over proofing). The over proofing was carried out to stress the system, in order to test the lipolytic enzymes as stabilizers.
- Variant 32 and Variant 13 at 40% of optimum dosage provided a more uniform and fine crumb compared to each enzyme used alone.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The addition to dough of a combination of two lipolytic enzymes with different substrate specificities produces a synergistic effect on the dough or on a baked product made from the dough, particularly a larger loaf volume of the baked product and/or a better shape retention during baking.
Description
- This application is a continuation of U.S. application Ser. No. 12/882,626 filed on Sep. 15, 2010 (pending), which is a continuation of U.S. application Ser. No. 11/738,838 filed on Apr. 23, 2007 (now abandoned), which is a continuation of U.S. application Ser. No. 10/332,164 filed on 10 Jan. 3, 2003 (now abandoned), which claims priority of 35 U.S.C. 371 national application of PCT/DK01/00472 filed Jul. 6, 2001, which claims priority or the benefit under 35 U.S.C. 119 of Danish application no. PA 2000 01054 filed Jul. 6, 2000 and U.S. provisional application No. 60/217,051 filed Jul. 10, 2000, the contents of which are fully incorporated herein by reference.
- Applicants submit herewith a Sequence Listing in the form of a text file.
- The present invention relates to methods of preparing a dough or a baked product made from dough by use of lipolytic enzymes, and to compositions for use therein.
- WO 94/04035, EP 109244, EP 585988, WO 98/26057, WO 98/45453, WO 99/53769, WO 00/32758 and EP 575133 describe the addition of various lipolytic enzymes to dough in the preparation of bread, e.g. enzymes with activities such as triacylglycerol lipase, phospholipase and galactolipase.
- The inventors have found that the addition to dough of a combination of two lipolytic enzymes with different substrate specificities produces a synergistic effect on the dough or on a baked product made from the dough, particularly a larger loaf volume of the baked product and/or a better shape retention during baking.
- Accordingly, the invention provides a method of preparing a dough or a baked product made from dough, comprising adding a combination of two lipolytic enzymes to the dough. The invention also provides a composition comprising a combination of two lipolytic enzymes.
- The combination may comprise at least two lipolytic enzymes selected from the group consisting of galactolipase, phospholipase and triacylglycerol lipase. Thus, the combination may comprise a galactolipase+a phospholipase, a phospholipase+a triacylglycerol lipase or a triacylglycerol lipase+a galactolipase.
- The invention uses a combination of lipolytic enzymes, i.e. enzymes which are capable of hydrolyzing carboxylic ester bonds to release carboxylate (EC 3.1.1). The enzyme combination includes at least two of the following three: a galactolipase, a phospholipase and a triacylglycerol lipase, i.e. enzymes predominantly having activity for a galactolipids, a phospholipid, and a triglyceride, respectively. The activities may be determined by any suitable method, e.g. by assays known in the art or described later in this specification.
- Galactolipase activity (EC 3.1.1.26), i.e. hydrolytic activity on carboxylic ester bonds in galactolipids such as DGDG (digalactosyl diglyceride). The galactolipase activity (digalactosyl diglyceride hydrolyzing activity or DGDGase activity) may be determined, e.g., by the plate assay in this specification or by the monolayer assay 1 or 2 in WO 2000/32758.
- Phospholipase activity (A1 or A2, EC 3.1.1.32 or 3.1.1.4), i.e. hydrolytic activity towards one or both carboxylic ester bonds in phospholipids such as lecithin. The phospholipase activity may be determined by the plate assay in this specification or by an assay WO 2000/32758, e.g. the PHLU, LEU, monolayer or plate assay 1 or 2.
- Triacylglycerol lipase activity (EC 3.1.1.3), i.e. hydrolytic activity for carboxylic ester bonds in triglycerides, e.g. 1,3-specific activity, particularly on long-chain triglycerides such as olive oil. The activity on long-chain triglycerides (olive oil) and short-chain triglycerides (tributyrin) may be determined by the SLU and LU methods (described in WO 00/32758), respectively, or by the plate assay described in this specification. The enzyme may have a substrate specificity for hydrolyzing long-chain fatty acyl groups rather than short-chain groups, expressed e.g. as a high ratio of activities on olive oil and tributyrin, e.g. the ratio SLU/LU. Favorably, this may reduce the development of off-odor in dough containing milk lipids such as butter fat. Suitably, this ratio may be above 3.
- Each lipolytic enzyme may have a narrow specificity with activity for one of the three substrates and little or no activity for the other two, or it may have a broader specificity with predominant activity for one substrate and less activity for the other two substrates.
- A lipolytic enzyme is considered to be a galactolipase if it has a higher activity on galactolipids than on phospholipids and triglycerides. Similarly, it is considered to be a phospholipase or a triacylglycerol lipase if it has a higher activity for that substrate than for the other two. The comparison may be done, e.g., by the plate assay in this specification using the three substrates; the largest clearing zone indicating the predominant activity.
- The enzyme combination may comprise three or more lipolytic enzymes, e.g. comprising a galactolipase, a phospholipase and a triacylglycerol lipase.
- The enzyme combination may have low activity on partially hydrolyzed lipids such as digalactosyl monoglyceride (DGMG), lysophospholipids (LPL) and mono- and diglycerides (MG, DG). Favorably, this may lead to accumulation of such partially hydrolyzed lipids in the dough and may improve the properties of the dough and/or the baked product.
- The lipolytic enzymes may be prokaryotic, particularly bacterial, e.g. from Pseudomonas or Bacillus. Alternatively, the lipolytic enzymes may be eukaryotic, e.g. from fungal or animal sources. Fungal lipolytic enzymes may be derived, e.g. from the following genera or species: Thermomyces, particularly T. lanuginosus (also known as Humicola lanuginosa); Humicola, particularly H. insolens; Fusarium, particularly F. oxysporum, F. solani, and F. heterosporum; Aspergillus, particularly A. tubigensis, A. niger, and A. oryzae; Rhizomucor; Candida, particularly C. antarctica; Penicillium, particularly P. camembertii; Rhizopus, particularly Rhizopus oryzae; or Absidia.
- Some particular examples of lipolytic enzymes follow:
-
- Phospholipase from bee or snake venom or from mammal pancreas, e.g. porcine pancreas.
- Phospholipase of microbial origin, e.g. from filamentous fungi, yeast or bacteria, such as the genus or species Aspergillus, A. niger, Dictyostelium, D. discoideum, Mucor, M. javanicus, M. mucedo, M. subtilissimus, Neurospora, N. crassa, Rhizomucor, R. pusillus, Rhizopus, R. arrhizus, R. japonicus, R. stolonifer, Sclerotinia, S. libertiana, Trichophyton, T. rubrum, Whetzelinia, W. sclerotiorum, Bacillus, B. megaterium, B. subtilis, Citrobacter, C. freundii, Enterobacter, E. aerogenes, E. cloacae Edwardsiella, E. tarda, Erwinia, E. herbicola, Escherichia, E. coli, Klebsiella, K. pneumoniae, Proteus, P. vulgaris, Providencia, P. stuartii, Salmonella, S. typhimurium, Serratia, S. liquefasciens, S. marcescens, Shigella, S. flexneri, Streptomyces, S. violeceoruber, Yersinia, or Y. enterocolitica.
- Lipase from Thermomyces lanuginosus (Humicola lanuginosa) (EP 305216, U.S. Pat. No. 5,869,438).
- Lipase/phospholipase from Fusarium oxysporum (WO 98/26057).
- Lysophospholipases from Aspergillus niger and A. oryzae (WO 0127251).
- Phospholipase A1 from Aspergillus oryzae (EP 575133, JP-A 10-155493).
- Lysophospholipase from F. venenatum (WO 00/28044).
- Phospholipase B from A. oryzae (U.S. Pat. No. 6,146,869).
- Lipase from A. tubigensis (WO 9845453).
- Lipase from F. solani (U.S. Pat. No. 5,990,069).
- Lipolytic enzyme from F. culmorum (U.S. Pat. No. 5,830,736).
- Phospholipase from Hyphozyma (U.S. Pat. No. 6,127,137).
- Lipolytic enzymes described in PCT/DK 01/00448.
- Lipolytic enzymes described in DK PA 2001 00304.
- A variant obtained by altering the amino acid sequence a lipolytic enzyme, e.g. one of the above, e.g. as described in WO 2000/32758, particularly Examples 4, 5, 6 and 13, such as variants of lipase from Thermomyces lanuginosus (also called Humicola lanuginosa).
- The lipolytic enzymes may have a temperature optimum in the range of 30-90° C., e.g. 30-70° C.
- Synergistic effect
- The combination of the two lipolytic enzymes has a synergistic effect on dough made with the combination or on a baked product made from the dough, particularly improved dough stabilization, i.e. a larger loaf volume of the baked product and/or a better shape retention during baking, particularly in a stressed system, e.g. in the case of over-proofing or over-mixing.
- Additionally or alternatively, the synergistic effect on the baked product may include a lower initial firmness and/or a more uniform and fine crumb, improved crumb structure (finer crumb, thinner cell walls, more rounded cells), of the baked product, Additionally or alternatively, there may be a synergistic effect on dough properties, e.g. a less soft dough, higher elasticity, lower extensibility.
- Synergy may be determined by making doughs or baked products with addition of the first and the second lipolytic enzyme separately and in combination, and comparing the effects; synergy is indicated when the combination produces a better effect than each enzyme used separately.
- The comparison may be made between the combination and each enzyme alone at double dosage (on the basis of enzyme protein or enzyme activity). Thus, synergy may be said to occur if the effect of 0.5 mg of enzyme A+1.0 mg of enzyme B is greater than the effect with 1.0 mg of enzyme A and also greater than the effect with 2.0 mg of enzyme B.
- Alternatively, the comparison may be made with equal total enzyme dosages (as pure enzyme protein). If the effect with the combination is greater than with either enzyme alone, this may be taken as an indication of synergy. As an example, synergy may be said to occur if the effect of 0.5 mg of enzyme A+1.0 mg of enzyme B is greater than with 1.5 mg of enzyme A or B alone.
- Suitable dosages for the enzymes may typically be found in the range 0.01-10 mg of enzyme protein per kg of flour, particularly 0.1-5 mg/kg, e.g. 0.2-1 mg/kg. Suitable dosages for each of the two enzymes in the combination may be found by first determining a suitable dosage for each enzyme alone (e.g. the optimum dosage, i.e. the dosage producing the greatest effect) and using 30-67% (e.g. 33-50%, particularly 50%) of that dosage for each enzyme in the combination. Again, if the effect with the combination is greater than with either enzyme used separately, this is taken as an indication of synergy.
- A lipolytic enzyme with phospholipase activity may be used at a dosage of 200-5000 LEU/kg of flour, e.g. 500-2000 LEU/kg. The LEU activity unit is described in WO 99/53769.
- A lipolytic enzyme with triacylglycerol lipase activity may be used at a dosage of 20-1000 LU/kg of flour, particularly 50-500 LU/kg. The LU method is described in WO 2000/32758.
- Optionally, an additional enzyme may be used together with the lipolytic enzymes. The additional enzyme may be an amylase, particularly an anti-staling amylase, an amyloglucosidase, a cyclodextrin glucanotransferase, or the additional enzyme may be a peptidase, in particular an exopeptidase, a transglutaminase, a cellulase, a hemicellulase, in particular a pentosanase such as xylanase, a protease, a protein disulfide isomerase, e.g., a protein disulfide isomerase as disclosed in WO 95/00636, a glycosyltransferase, a branching enzyme (1,4-□-glucan branching enzyme), a 4-□-glucanotransferase (dextrin glycosyltransferase) or an oxidoreductase, e.g., a peroxidase, a laccase, a glucose oxidase, a pyranose oxidase, a lipoxygenase, an L-amino acid oxidase or a carbohydrate oxidase.
- The additional enzyme may be of any origin, including mammalian and plant, and preferably of microbial (bacterial, yeast or fungal) origin and may be obtained by techniques conventionally used in the art.
- The amylase may be a fungal or bacterial alpha-amylase, e.g. from Bacillus, particularly B. licheniformis or B. amyloliquefaciens, or from Aspergillus, particularly A. oryzae, a beta-amylase, e.g. from plant (e.g. soy bean) or from microbial sources (e.g. Bacillus).
- The xylanase is preferably of microbial origin, e.g. derived from a bacterium or fungus, such as a strain of Aspergillus, in particular of A. aculeatus, A. niger (cf. WO 91/19782), A. awamori (WO 91/18977), or A. tubigensis (WO 92/01793), from a strain of Trichoderma, e.g. T. reesei, or from a strain of Humicola, e.g. H. insolens (WO 92/17573).
- The amyloglucosidase may be from Aspergillus, particularly A. oryzae.
- The glucose oxidase may be a fungal glucose oxidase, particularly from Aspergillus niger.
- The protease may be a neutral protease from Bacillus amyloliquefaciens.
- The method or the composition of the invention may include addition of an anti-staling amylase. In particular, a galactolipase and a phospholipase may be used together with an anti-staling amylase, as described in WO 99/53769. The anti-staling amylase is an amylase that is effective in retarding the staling (crumb firming) of baked products, particularly a maltogenic alpha-amylase, e.g. from Bacillus stearothermophilus strain NCIB 11837.
- Alternatively, the method or composition of the invention may be made without addition of an anti-staling amylase. In particular, a lipase and a phospholipase may be used without addition of an anti-staling amylase or without addition of a maltogenic alpha-amylase.
- The present invention provides a composition comprising a combination of two lipolytic enzymes as described above. The composition may be an enzyme preparation for use as a baking additive. The composition may also comprise flour and may be a dough or a premix.
- The composition may be an enzyme preparation comprising a combination of lipolytic enzymes, for use as a baking additive in the process of the invention. The enzyme preparation may particularly be in the form of a granulate or agglomerated powder, e.g. with a narrow particle size distribution with more than 95% (by weight) of the particles in the range from 25 to 500 μm.
- Granulates and agglomerated powders may be prepared by conventional methods, e.g. by spraying the enzymes onto a carrier in a fluid-bed granulator. The carrier may consist of particulate cores having a suitable particle size. The carrier may be soluble or insoluble, e.g. a salt (such as NaCl or sodium sulfate), a sugar (such as sucrose or lactose), a sugar alcohol (such as sorbitol), starch, rice, corn grits, or soy.
- The enzyme preparation may also be supplied as a liquid formulation, particularly a stabilized liquid. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
- The dough of the invention generally comprises wheat meal or wheat flour and/or other types of meal, flour or starch such as corn flour, corn starch, rye meal, rye flour, oat flour, oat meal, soy flour, sorghum meal, sorghum flour, potato meal, potato flour or potato starch.
- The dough of the invention may be fresh, frozen or par-baked.
- The dough of the invention is normally a leavened dough or a dough to be subjected to leavening. The dough may be leavened in various ways, such as by adding chemical leavening agents, e.g., sodium bicarbonate or by adding a leaven (fermenting dough), but it is preferred to leaven the dough by adding a suitable yeast culture, such as a culture of Saccharomyces cerevisiae (baker's yeast), e.g. a commercially available strain of S. cerevisiae.
- The dough may also comprise other conventional dough ingredients, e.g.: proteins, such as milk powder, gluten, and soy; eggs (either whole eggs, egg yolks or egg whites); an oxidant such as ascorbic acid, potassium bromate, potassium iodate, azodicarbonamide (ADA) or ammonium persulfate; an amino acid such as L-cysteine; a sugar; a salt such as sodium chloride, calcium acetate, sodium sulfate or calcium sulfate.
- The dough may comprise fat (triglyceride) such as granulated fat or shortening, but the invention is particularly applicable to a dough where less than 1% by weight of fat (triglyceride) is added, and particularly to a dough which is made without addition of fat.
- The dough may further comprise an emulsifier such as mono- or diglycerides, diacetyl tartaric acid esters of mono- or diglycerides, sugar esters of fatty acids, polyglycerol esters of fatty acids, lactic acid esters of monoglycerides, acetic acid esters of monoglycerides, polyoxyethylene stearates, or lysolecithin.
- The invention also provides a pre-mix comprising flour together with two lipolytic enzymes as described above. The pre-mix may contain other dough-improving and/or bread-improving additives, e.g. any of the additives, including enzymes, mentioned above.
- Phospholipase activity is measured as the release of free fatty acids from lecithin. 500 μl 4% L-alpha-phosphatidylcholine (plant lecithin from Avanti), 5 mM CaCl2 in 50 mM NaOAc, pH 5 is added to 50 μl enzyme solution diluted to an appropriate concentration in water. The samples are incubated for 10 min at 30° C. and the reaction stopped at 95° C. for 5 min prior to centrifugation (5 min at 7000 rpm). Free fatty acids are determined using the NEFA C kit from Wako Chemicals GmbH; 25 μl reaction mixture is added 250 μl Reagent A and incubated 10 min at 37° C. Then 500 μl Reagent B is added and the sample is incubated again, 10 min at 37° C. The absorption is measured at 550 nm. Substrate and enzyme blinds (preheated enzyme samples (10 min at 95° C.)+substrate) are included. Oleic acid is used as a fatty acid standard. 1 PHLU equals the amount of enzyme capable of releasing 1 μmol of free fatty acid/min at these conditions.
- A) 50 ml 2% agarose in purified water is melted/stirred for 5 minutes and cooled to 60-63° C.
- B) 50 ml 2% plant L-alpha-Phosphatidylcholine 95% in 0.2 M NaOAc, 10 mM CaCl2, pH 5.5 at 60° C. in 30 min. is blended in 15 sec. with ultrathorax.
- Equal volumes of 2% agarose and 2% Lecithin (A and B) are mixed. 250 μl 4 mg/ml crystal violet in purified water is added as indicator. The mixture is poured into appropriate petri dishes (e.g. 30 ml in 14 cm Ø dish), and appropriate holes are made in the agar (3-5 mm) for application of enzyme solution.
- The enzyme sample is diluted to a concentration corresponding to OD280=0.5 and 10 microliter is applied into holes in the agarose/lecithin-matrix. Plates are incubated at 30° C. and reaction zones in the plates are identified after 20-24 hours incubation, and the size of the clearing zone indicates the phospholipase activity.
- Plate assays are carried out as for the phospholipase assay, except that digalactosyl diglyceride (DGDG) or olive oil is used instead of L-alpha-Phosphatidylcholine.
- A liquid sponge is prepared by mixing 34.8 parts of water, 60 parts of flour and 1.5 parts of instant yeast, and fermenting for 3 hours at 24° C. A dough is then prepared by mixing the liquid sponge with 22.93 parts of water, 40 parts of flour, 0.5 part of instant yeast, 11.26 parts of 42 high-fructose corn syrup, 0.25 part of calcium propionate, 2 parts of oil and 2 parts of salt, 50 ppm of ascorbic acid 50 parts of wheat flour, 0.5 part of SSL (sodium stearoyl-2-lactylate), 2 parts of salt, 6 parts of sugar and water and ascorbic acid as required.
- A dough is prepared by mixing 100 parts (by weight) of wheat flour, 4 parts of yeast, 1.5 parts of salt and 1.5 parts of sugar with water and ascorbic acid as required to reach a suitable dough consistency.
- The shape factor is taken as the ratio between the height and diameter of rolls after baking (average of 10 rolls). A higher value indicates a better shape retention.
- Softness is a measure of the degree to which, or ease with which, a dough will compress or resist compression. A sensory evaluation is done by a trained and skilled baker feeling and squeezing the dough. The results are expressed on a scale from 0 (little softness) to 10 (very soft) with the control (dough without enzyme addition) taken as 5.
- Extensibility is a measure of the degree by which a dough can be stretched without tearing. A sensory evaluation is done by a trained and skilled baker pulling a piece of kneaded dough (about 30 g) and judging the extensibility. The results are expressed on a scale from 0 (Short /low extensibility) to 10 (long/high extensibility) with the control (dough without enzyme addition) taken as 5.
- Elasticity is a measure of the degree to which a dough tends to recover its original shape after release from a deforming force. It is evaluated by rolling a piece of dough (about 30 g) to a size of about 10 cm, and having a trained and skilled baker carefully pulling at opposite ends to judge the resistance and elasticity. The results are expressed on a scale from 0 (low/weak elasticity/recovery) to 10 (high/strong elasticity/recovery) with the control (dough without enzyme addition) taken as 5.
- Lipolytic enzyme combinations were tested in a European Straight dough procedure as described above. Fungal alpha-amylase (Fungamyl Super MA, 40 ppm) and an oxidation system (ascorbic acid, 30 ppm) were added to the dough system. Each dough was split into rolls and pan bread. Over-proofing (indicating a stressed system) was carried out for the rolls (70 min.) and the pan bread (80 min.).
- Combinations with the following lipolytic enzymes were tested: Variant 39 was tested in combination with variant 91 or with Aspergillus oryzae phospholipase. Variants 39 and 91 are variants of the Thermomyces lanuginosus lipase according to WO 2000/32758.
- The combination of variants 91 and 39 was selected because of the high phospholipase activity and the high galactolipase activity, respectively. The Aspergillus oryzae phospholipase and variant 39 combination were chosen due to the combination of a pure phospholipase and an enzyme with high DGDG activity. The plate assays described above showed that each enzyme wasx specific with little or no activity for the two other substrates.
- The lipolytic enzymes were added according to the table below. The tests with a single enzyme were conducted with a dosage found to be optimum for the enzyme in question, and combinations were tested as indicated, with each enzyme at 33, 50 or 67% of optimal dosage.
-
Rolls Pan bread Specific Specific volume Shape volume Lipolytic enzyme (ml/g) factor (ml/g) Variant 91 7.52 0.66 5.75 (20 LU/kg) Variant 39 7.42 0.65 5.77 (250 LU/kg) Variant 91 (50%) + 7.57 0.66 5.94 variant 39 (33%) - The results demonstrate that the combination of Variant 91 with Variant 39, added at 50% and 33% respectively of optimal dosage, improves the specific volume for both the rolls and the pan bread compared to the each enzyme added separately at optimum dosage.
- The results regarding volume and stability improvement from the combination of Aspergillus oryzae phospholipase with Variant 39 are listed in the table below.
-
Rolls Pan bread Specific Specific volume Shape volume Lipolytic enzyme (ml/g) factor (ml/g) A. oryzae 6.27 0.57 4.96 Phospholipase 0.1 mg/kg Variant 39 (250 LU/kg) 6.40 0.60 5.18 A. oryzae 7.31 0.68 5.80 Phospholipase (33%) + variant 39 (67%) - The combination of A. oryzae Phospholipase and Variant 39 at 33% and 67%, respectively, of optimal dosage increases the specific volume considerably compared to each enzyme added separately at optimum dosage. The combination also has a positive contribution to the shape factor of the rolls.
- Both the results described above show that the combination of a phospholipase and a galactolipase improves the volume and stability (shape factor) of the rolls and bread, compared to the rolls and bread containing up to thrice the dosages of the enzymes added separately.
- A phospholipase A2 from porcine pancreas was tested in combination with a 1,3-specific triacylglycerol lipase from Thermomyces lanuginosus in the European straight dough procedure as described above. The results were compared to each enzyme used alone in dosages considered to be optimal. The enzyme combination was made with 50% of optimal dosage of each of the enzymes.
- Each dough was split into rolls and pan bread. The rolls were proofed for 70 minutes (over proofing), and the pan bread was proofed for 80 minutes (over proofing). The over proofing was carried out to stress the system in order to test the stabilizing effect of the enzymes.
-
Rolls Pan bread Sp. Vol Shape Sp. Vol (ml/g) factor (ml/g) Phospholipase (3 mg) 6.24 0.56 5.60 Triacylglycerol lipase (1000 LU) 6.43 0.58 5.43 Phospholipase + triacylglycerol lipase 6.88 0.60 5.93 (50%/50%) - The two enzymes were found to be very specific, i.e. the triacylglycerol lipase has very little activity on phospholipid and galactolipids, and the phospholipase has very little activity on triglycerides and galactolipids.
- The results show that when the phospholipase and the triacylglycerol lipase are combined they give a better volume and shape factor than each of the enzyme separately in a stressed system.
- The combination of Lipase/phospholipase from Fusarium oxysporum (FoL) and Variant 6 on dough and bread was evaluated. Variant 6 is a variant of the Thermomyces lanuginosus lipase with the following amino acid alterations (SPIRR indicates a peptide extension at the N-terminal, and 270AGGFS indicates a peptide extension at the C-terminal).
-
- Variant 6: SPIRR +G91A +D96W +E99K +G263Q +L264A +I265T +G266D +T267A +L269N +270AGGFS
- Loaves were prepared according to the invention by adding Variant 6 (25 LU/kg flour) and FoL (500 LU/kg flour) to the dough. For comparison, loaves were baked without lipolytic enzymes, with FoL alone (1000 LU/kg) or Variant 6 alone (50 LU/kg) which were found to be the optimal dosages for the enzymes. The LU assay method is described in WO 2000/32758.
- The standard sponge dough WPB formula was used as described above, with the hydrated distilled MG and SSL eliminated to avoid masking effects on the enzyme. Loaves contained 2% soy oil as well as fungal amylase and pentosanase (Fungamyl Super MA, 50 ppm). The oxidation system was 50 ppm ascorbic acid. In addition to subjective evaluations, crumb softness and elasticity were measured 24 hours after baking. The trial was repeated once.
- Dough evaluations. Evaluations of the dough at the sheeter are shown below. The dough scores for the two trials were identical.
-
Lipolytic FoL + enzyme None FoL Variant 6 Variant 6 Softness 5.5 4.5 4.5 4.0 Extensibility 5.0 4.5 4.5 4.0 Elasticity 5.0 5.5 5.5 6.0 - The results show that the combination of FoL and Variant 6 yielded dough that was less soft, less extensible and more elastic than either enzyme alone at double dosage.
- The specific volume data from the tested loaves are shown below. Reproducibility between the 2 days was high.
-
FoL + Lipolytic enzyme None FoL Variant 6 Variant 6 Specific Volume, 6.0 6.15 6.15 6.3 cc/gram - The results demonstrate that the combination of two lipolytic enzymes gives a larger loaf volume than either enzyme alone at double dosage.
- Variant 32 was tested in combination with Variant 13 and Variant 60. The variants are variants of the Thermomyces lanuginosus lipase with the following amino acid alterations (where SPIRR indicates a peptide extension at the N-terminal, and 270AGGFS indicates a peptide extension at the C-terminal):
-
- Variant 32: 91A +D96W +E99K +G263Q +L264A +1265T +G266D +T267A +L269N +270AGGFS
- Variant 60: G91A +D96W +E99K +G263Q +L264A +1265T +G266S +T267A +L269N +270AGGFS
- Variant 13: D96F +G266S
- Each combination was tested in a European straight dough procedure, as described above. The results were compared to each enzyme used alone. Lipolytic enzymes were added as shown in the table below. The tests with a single enzyme were conducted with a dosage considered optimum for that enzyme, and the enzyme combinations were tested with each enzyme at 50% of the optimum dosage. The combination of Variant 32 and Variant 13 was also tested with each enzyme at 40% of the optimum dosage, i.e. 20% lower dosage.
- Each dough was split into rolls and pan bread. The rolls were proofed for 70 minutes (over proofing), and the pan bread was proofed for 80 minutes (over proofing). The over proofing was carried out to stress the system, in order to test the lipolytic enzymes as stabilizers.
- The results from over-proofing are shown below:
-
Rolls Pan bread Sp. Vol. Shape Sp. Vol. Lipolytic enzyme (ml/g) factor (ml/g) added 70 min 70 min 80 min Variant 32 (200 LU) 7.78 0.67 6.16 Variant 13 (500 LU) 7.24 0.66 5.69 Variant 60 (100 LU) 7.02 0.67 5.69 Variant 32 + Variant 13, 8.26 0.71 6.24 50% Variant 32 + Variant 13, 8.03 0.69 6.30 40% Variant 32 + Variant 60, 7.87 0.69 6.39 50% - The results show that when the bread is stressed (over-proofed), the combinations of Variant 32 with Variant 13 or Variant 60 clearly give an improved volume and shape compared to each enzyme used alone, particularly Variant 32+Variant 13, even at reduced dosage. The results reveal that when bread is stressed (over proofed), the combinations show a significantly improved effect on volume and shape factor.
- Furthermore, it was observed that the combination of Variant 32 and Variant 13 at 40% of optimum dosage provided a more uniform and fine crumb compared to each enzyme used alone.
Claims (3)
1-11. (canceled)
12. A method for producing a lipolytic enzyme preparation, comprising:
a) determining the substrate specificities of at least two lipolytic enzymes,
b) selecting two lipolytic enzymes which are:
i) a phospholipase and a galactolipase, or
ii) a phospholipase and a triacylglycerol lipase, or
iii) a galactolipase and a triacylglycerol lipase.
c) making baked products from doughs with addition of the two lipolytic enzymes separately and in combination,
d) determining the loaf volumes or the shape retention of the baked products,
e) selecting two lipolytic enzymes having a synergistic effect, and
f) producing the enzyme preparation comprising a combination of the two lipolytic enzymes.
13-14. (canceled)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/310,011 US20120082756A1 (en) | 2000-07-06 | 2011-12-02 | Preparation of Dough or Baked Products |
US13/964,164 US9247753B2 (en) | 2000-07-06 | 2013-08-12 | Preparation of dough or baked products |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200001054 | 2000-07-06 | ||
DKPA200001054 | 2000-07-06 | ||
US21705100P | 2000-07-10 | 2000-07-10 | |
US10/332,164 US20050118697A1 (en) | 2000-07-06 | 2001-07-06 | Method of preparing a dough or baked product made from a dough, with addition of lipolytic enzymes |
PCT/DK2001/000472 WO2002003805A1 (en) | 2000-07-06 | 2001-07-06 | Method of preparing a dough or a baked product made from a dough, with addition of lipolytic enzymes |
US11/738,838 US20070207247A1 (en) | 2000-07-06 | 2007-04-23 | Preparation of dough or baked products |
US12/882,626 US20110003031A1 (en) | 2000-07-06 | 2010-09-15 | Preparation of dough or baked product |
US13/310,011 US20120082756A1 (en) | 2000-07-06 | 2011-12-02 | Preparation of Dough or Baked Products |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/882,626 Continuation US20110003031A1 (en) | 2000-07-06 | 2010-09-15 | Preparation of dough or baked product |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/964,164 Continuation US9247753B2 (en) | 2000-07-06 | 2013-08-12 | Preparation of dough or baked products |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120082756A1 true US20120082756A1 (en) | 2012-04-05 |
Family
ID=26068851
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/332,164 Abandoned US20050118697A1 (en) | 2000-07-06 | 2001-07-06 | Method of preparing a dough or baked product made from a dough, with addition of lipolytic enzymes |
US11/738,838 Abandoned US20070207247A1 (en) | 2000-07-06 | 2007-04-23 | Preparation of dough or baked products |
US12/882,626 Abandoned US20110003031A1 (en) | 2000-07-06 | 2010-09-15 | Preparation of dough or baked product |
US13/310,011 Abandoned US20120082756A1 (en) | 2000-07-06 | 2011-12-02 | Preparation of Dough or Baked Products |
US13/964,164 Expired - Fee Related US9247753B2 (en) | 2000-07-06 | 2013-08-12 | Preparation of dough or baked products |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/332,164 Abandoned US20050118697A1 (en) | 2000-07-06 | 2001-07-06 | Method of preparing a dough or baked product made from a dough, with addition of lipolytic enzymes |
US11/738,838 Abandoned US20070207247A1 (en) | 2000-07-06 | 2007-04-23 | Preparation of dough or baked products |
US12/882,626 Abandoned US20110003031A1 (en) | 2000-07-06 | 2010-09-15 | Preparation of dough or baked product |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/964,164 Expired - Fee Related US9247753B2 (en) | 2000-07-06 | 2013-08-12 | Preparation of dough or baked products |
Country Status (4)
Country | Link |
---|---|
US (5) | US20050118697A1 (en) |
EP (1) | EP1301080B1 (en) |
AU (1) | AU7235901A (en) |
WO (1) | WO2002003805A1 (en) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU699331C (en) | 1995-06-07 | 2005-08-25 | Dupont Nutrition Biosciences Aps | A method of improving the properties of a flour dough, a flour dough improving composition and improved food products |
US8178090B2 (en) | 1995-06-07 | 2012-05-15 | Danisco A/S | Recombinant hexose oxidase |
US6936289B2 (en) | 1995-06-07 | 2005-08-30 | Danisco A/S | Method of improving the properties of a flour dough, a flour dough improving composition and improved food products |
GB0112226D0 (en) | 2001-05-18 | 2001-07-11 | Danisco | Method of improving dough and bread quality |
ATE223489T1 (en) | 1995-06-07 | 2002-09-15 | Danisco | RECOMBINANT HEXOSE OXIDASE, METHOD FOR THE PRODUCTION AND USE THEREOF |
US7745599B1 (en) | 1995-06-07 | 2010-06-29 | Danisco A/S | Hexose oxidase-encoding DNAs and methods of use thereof |
ATE272107T1 (en) * | 1997-04-09 | 2004-08-15 | Danisco | LIPASE AND USE THEREOF FOR IMPROVEMENT OF DOUGH AND BAKED PRODUCTS |
EP1098988B9 (en) | 1998-07-21 | 2007-10-24 | Danisco A/S | Foodstuff |
JP2004522435A (en) | 2001-01-10 | 2004-07-29 | ノボザイムス アクティーゼルスカブ | Lipolytic enzyme mutant |
DK1363506T3 (en) * | 2001-02-21 | 2006-03-20 | Novozymes As | Manufacture of starchy foods |
EP1803353A3 (en) * | 2001-05-18 | 2007-07-18 | Danisco A/S | Method of preparing a dough with an enzyme |
DK1387616T3 (en) * | 2001-05-18 | 2007-09-24 | Danisco | Process for preparing a dough with an enzyme |
EP1519653A1 (en) * | 2002-07-03 | 2005-04-06 | Novozymes A/S | Treatment of dough with a lipoxygenase and a lipolytic enzyme |
DE60319872T2 (en) * | 2002-12-12 | 2009-03-05 | Novozymes A/S | METHOD FOR SELECTION OF A LIPOLYTIC ENZYME |
US20050196766A1 (en) * | 2003-12-24 | 2005-09-08 | Soe Jorn B. | Proteins |
MXPA05007653A (en) * | 2003-01-17 | 2005-09-30 | Danisco | Method. |
US7955814B2 (en) * | 2003-01-17 | 2011-06-07 | Danisco A/S | Method |
PL1654355T3 (en) | 2003-06-13 | 2010-09-30 | Dupont Nutrition Biosci Aps | Variant pseudomonas polypeptides having a non-maltogenic exoamylase activity and their use in preparing food products |
US6884443B2 (en) * | 2003-08-07 | 2005-04-26 | General Mills, Inc. | Compositions and methods relating to freezer-to-oven doughs |
US9311540B2 (en) | 2003-12-12 | 2016-04-12 | Careview Communications, Inc. | System and method for predicting patient falls |
US7906307B2 (en) | 2003-12-24 | 2011-03-15 | Danisco A/S | Variant lipid acyltransferases and methods of making |
GB0716126D0 (en) | 2007-08-17 | 2007-09-26 | Danisco | Process |
US7718408B2 (en) | 2003-12-24 | 2010-05-18 | Danisco A/S | Method |
GB0405637D0 (en) | 2004-03-12 | 2004-04-21 | Danisco | Protein |
CN101052702B (en) | 2004-07-16 | 2013-01-09 | 杜邦营养生物科学有限公司 | Lipolytic enzyme and application thereof in food industry |
CA2673954C (en) * | 2007-01-25 | 2015-09-15 | Danisco A/S | Production of a lipid acyltransferase from transformed bacillus licheniformis cells |
US8460905B2 (en) * | 2007-09-11 | 2013-06-11 | Bunge Oils, Inc. | Enzymatic degumming utilizing a mixture of PLA and PLC phospholipases with reduced reaction time |
US8956853B2 (en) * | 2007-01-30 | 2015-02-17 | Bunge Oils, Inc. | Enzymatic degumming utilizing a mixture of PLA and PLC phospholipases |
US8241876B2 (en) | 2008-01-07 | 2012-08-14 | Bunge Oils, Inc. | Generation of triacylglycerols from gums |
WO2011026877A1 (en) | 2009-09-03 | 2011-03-10 | Dsm Ip Assets B.V. | Baking enzyme composition as ssl replacer |
WO2013052956A2 (en) | 2011-10-07 | 2013-04-11 | E. I. Du Pont De Nemours And Company | Liquid compositions used as insulating and heat transfer means, electrical devices containing said compositions and preparation methods for such compositions |
US20150140168A1 (en) * | 2012-04-25 | 2015-05-21 | Novozymes A/S | Method of Baking |
DK2981170T3 (en) | 2013-04-05 | 2020-02-17 | Novozymes As | PROCEDURE FOR PREPARING A BAKED PRODUCT WITH ALFA AMYLASE, LIPASE AND PHOSPHOLIPASE |
CN104095193A (en) * | 2013-04-08 | 2014-10-15 | 深圳市绿微康生物工程有限公司 | Method for improving destroyed structure of steamed bread by brightening lipase |
US20170188593A1 (en) | 2014-07-08 | 2017-07-06 | Caravan Ingredients Inc. | Sugar-producing and texture-improving bakery methods and products formed therefrom |
GB201522681D0 (en) | 2015-12-22 | 2016-02-03 | Dupont Nutrition Biosci Aps | Composition |
ES2913437T3 (en) | 2016-02-19 | 2022-06-02 | Basf Se | lipases for baking |
BE1023622B1 (en) * | 2016-04-29 | 2017-05-18 | Puratos Naamloze Vennootschap | Compositions for baked products containing lipolytic enzymes and their use |
JP2019514385A (en) * | 2016-04-29 | 2019-06-06 | ピュラトス・エヌブイPuratos Nv | Composition for a baking product containing a lipolytic enzyme and its use |
BE1024105B1 (en) * | 2016-07-11 | 2017-11-16 | Puratos Nv | Improved composition for bakery products |
CN109963469A (en) * | 2016-11-30 | 2019-07-02 | 诺维信公司 | method of baking |
WO2021119213A1 (en) * | 2019-12-09 | 2021-06-17 | Kemin Industries, Inc. | Compositions of hydrolyzed lecithin and lecithin for tortillas and related methods |
WO2023092018A1 (en) * | 2021-11-17 | 2023-05-25 | Dupont Nutrition Biosciences Aps | Improved enzymatic modification of galactolipids in food |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1900959A1 (en) * | 1969-01-09 | 1970-08-27 | Unilever Nv | Process for the production of plant phosphatides with universal emulsifying power |
JPS6030488B2 (en) | 1982-11-10 | 1985-07-17 | 協和醗酵工業株式会社 | Fabric improvers and fabrics containing them |
CA1262654A (en) | 1984-08-10 | 1989-11-07 | Takaoki Torigoe | Food quality improving agent |
DE4017150A1 (en) | 1990-05-28 | 1991-12-05 | Henkel Kgaa | PROCESS FOR PREPARING A BACKACTIVE PENTOSANASE PREPARATION |
NL9001388A (en) | 1990-06-19 | 1992-01-16 | Unilever Nv | RECOMBINANT DNA, CELL CONTAINING DERIVED DNA, ENZYME FOR WHICH THE RECOMBINANT CODES DNA AND USES THEREOF. |
IE20040144A1 (en) | 1990-07-24 | 2004-05-19 | Dsm Nv | Cloning and expression of xylanase genes from fungal origin |
US5869438A (en) | 1990-09-13 | 1999-02-09 | Novo Nordisk A/S | Lipase variants |
CA2106484A1 (en) | 1991-04-02 | 1992-10-03 | Martin Schulein | Xylanase, corresponding recombinant dna sequence, xylanase containing agent, and use of the agent |
ES2180541T5 (en) | 1992-06-16 | 2008-12-01 | Sankyo Lifetech Company Limited | NEW PHOSPHOLIPASE A1, PROCEDURE FOR THE PREPARATION AND USE OF THE SAME. |
DK0585988T3 (en) | 1992-07-27 | 1996-06-24 | Gist Brocades Nv | Enzyme product and method for improving bread quality |
DK104592D0 (en) | 1992-08-21 | 1992-08-21 | Novo Nordisk As | COURSE OF ACTION |
DK76893D0 (en) | 1993-06-28 | 1993-06-28 | Novo Nordisk As | |
NL9301325A (en) | 1993-07-29 | 1995-02-16 | Ecopro Bv | Absorption mat for body fluid that absorbs both odor and moisture, and its use in particular in coffins, and a method for preparing such an absorption mat. |
ES2181792T3 (en) | 1994-10-26 | 2003-03-01 | Novozymes As | NEW LIPOLYTIC ENZYME. |
GB2296011B (en) | 1994-12-13 | 1999-06-16 | Solvay | Novel fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom |
US5989599A (en) * | 1995-04-24 | 1999-11-23 | Nestec S.A. | Process for the interesterification of phospholipids |
JPH10155493A (en) | 1996-10-04 | 1998-06-16 | Sankyo Co Ltd | Gene coding for phospholipase a1 derived from aspergillus |
US6127137A (en) | 1996-10-31 | 2000-10-03 | Novo Nordisk A/S | Acidic phospholipase, production and methods using thereof |
EP0869167B2 (en) * | 1996-12-09 | 2009-10-21 | Novozymes A/S | Reduction of phosphorus containing components in edible oils comprising a high amount of non-hydratable phosphorus by use of a phospholipase, a phospholipase from a filamentous fungus having phospholipase A and/or B activity |
ATE272107T1 (en) | 1997-04-09 | 2004-08-15 | Danisco | LIPASE AND USE THEREOF FOR IMPROVEMENT OF DOUGH AND BAKED PRODUCTS |
DK1073339T4 (en) | 1998-04-20 | 2008-08-18 | Novozymes As | Manufacture of dough and baked products |
AU768657B2 (en) | 1998-11-10 | 2003-12-18 | Novozymes Japan, Ltd. | Polypeptides having lysophospholipase activity and nucleic acids encoding same |
DK1131416T3 (en) | 1998-11-27 | 2009-10-26 | Novozymes As | Lipolytic Enzyme Variants |
US6178802B1 (en) | 1999-04-13 | 2001-01-30 | The Gates Corporation | Slotted crimping die for use in a crimping machine |
AU4720999A (en) | 1999-06-29 | 2001-01-31 | Archer-Daniels-Midland Company | Regulation of carbon assimilation |
ATE494366T1 (en) | 1999-10-14 | 2011-01-15 | Novozymes As | LYSOPHOSHOLIPASE FROM ASPERGILLUS |
US6146869A (en) | 1999-10-21 | 2000-11-14 | Novo Nordisk Biotech, Inc. | Polypeptides having phospholipase B activity and nucleic acids encoding same |
EP1108360A1 (en) | 1999-12-03 | 2001-06-20 | Danisco A/S | Method of improving dough and bread quality |
EP1280919A2 (en) | 2000-04-28 | 2003-02-05 | Novozymes A/S | Lipolytic enzyme variants |
WO2002000852A2 (en) | 2000-06-26 | 2002-01-03 | Novozymes A/S | Lipolytic enzyme |
-
2001
- 2001-07-06 AU AU7235901A patent/AU7235901A/en active Pending
- 2001-07-06 EP EP01951440A patent/EP1301080B1/en not_active Expired - Lifetime
- 2001-07-06 US US10/332,164 patent/US20050118697A1/en not_active Abandoned
- 2001-07-06 WO PCT/DK2001/000472 patent/WO2002003805A1/en active Application Filing
-
2007
- 2007-04-23 US US11/738,838 patent/US20070207247A1/en not_active Abandoned
-
2010
- 2010-09-15 US US12/882,626 patent/US20110003031A1/en not_active Abandoned
-
2011
- 2011-12-02 US US13/310,011 patent/US20120082756A1/en not_active Abandoned
-
2013
- 2013-08-12 US US13/964,164 patent/US9247753B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Carriere et al. Structural basis for the substrate selectivity of pancreatic lipases and some related proteins, Biochimica et Biophysica Acta (1998), 1376: 417-432. * |
Also Published As
Publication number | Publication date |
---|---|
AU7235901A (en) | 2002-01-21 |
WO2002003805A1 (en) | 2002-01-17 |
US20130323359A1 (en) | 2013-12-05 |
US20110003031A1 (en) | 2011-01-06 |
EP1301080A1 (en) | 2003-04-16 |
US20070207247A1 (en) | 2007-09-06 |
US9247753B2 (en) | 2016-02-02 |
US20050118697A1 (en) | 2005-06-02 |
EP1301080B1 (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9247753B2 (en) | Preparation of dough or baked products | |
EP1073339B1 (en) | Preparation of dough and baked products | |
US9115346B2 (en) | Lipolytic enzymes | |
US8298800B2 (en) | Lipolytic enzyme variants | |
US6365204B1 (en) | Preparation of dough and baked products | |
US20110091601A1 (en) | Preparation of An Edible Product From Dough | |
WO1994004035A1 (en) | Use of lipase in baking | |
US20010055635A1 (en) | Preparation of dough and baked products | |
AU2001272359B2 (en) | Method of preparing a dough or a baked product made from a dough, with addition of lipolytic enzymes | |
AU2001272359A1 (en) | Method of preparing a dough or a baked product made from a dough, with addition of lipolytic enzymes | |
AU2008200576A1 (en) | Lipolytic enzyme variants and method for their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |