US20120080178A1 - Energy-efficient controlling of air conditioning system - Google Patents
Energy-efficient controlling of air conditioning system Download PDFInfo
- Publication number
- US20120080178A1 US20120080178A1 US13/252,741 US201113252741A US2012080178A1 US 20120080178 A1 US20120080178 A1 US 20120080178A1 US 201113252741 A US201113252741 A US 201113252741A US 2012080178 A1 US2012080178 A1 US 2012080178A1
- Authority
- US
- United States
- Prior art keywords
- air conditioning
- vehicle
- energy
- conditioning module
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00357—Air-conditioning arrangements specially adapted for particular vehicles
- B60H1/00385—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00357—Air-conditioning arrangements specially adapted for particular vehicles
- B60H1/00385—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
- B60H1/004—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00421—Driving arrangements for parts of a vehicle air-conditioning
- B60H1/00428—Driving arrangements for parts of a vehicle air-conditioning electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00735—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
- B60H1/00764—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00735—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
- B60H1/00764—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
- B60H1/00771—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed the input being a vehicle position or surrounding, e.g. GPS-based position or tunnel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
- B60R16/033—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3286—Constructional features
- B60H2001/3292—Compressor drive is electric only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/34—Cabin temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/62—Vehicle position
- B60L2240/622—Vehicle position by satellite navigation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/642—Slope of road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/645—Type of road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/56—Temperature prediction, e.g. for pre-cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the present application relates to an air conditioning system of an at least partly electrically driven vehicle and to a method for operating the air conditioning system.
- An air conditioning system of an electrically driven vehicle drains the battery regardless of whether it has to warm up or cool down the vehicle interior, especially if the same strategies are used as for vehicles with combustion engines.
- the operating range of the vehicle is an important factor, since the operating range of an at least partly electrically driven vehicle is normally much smaller than the operating range of a vehicle with a combustion engine.
- the power consumption of modules provided in the vehicle that are not needed to drive the vehicle has to be minimized.
- An air conditioning system is an element in the vehicle that has a fairly large power consumption compared to other modules provided in the vehicle.
- an air conditioning system of an at least partly electrically driven vehicle includes an air conditioning module controlling a temperature inside the vehicle.
- An air conditioning controller controls the air conditioning module.
- a detector is detects when a vehicle battery that is used for driving the vehicle is charged by supplied energy. When the detector detects that the vehicle battery is being charged, the air conditioning controller uses the supplied energy directly to drive the air conditioning module.
- the supplied energy is at least partly used to drive the air conditioning module.
- the energy that is needed to operate the air conditioning module may be deduced from the energy supplied to the vehicle battery instead of charging the battery. This part of the supplied energy is used to directly drive the air conditioning module.
- energy may be supplied to the battery in two different situations: the energy is either supplied by a charging station when the vehicle is at rest directly before the vehicle is used, or energy is supplied to the battery using the motor as a generator when the vehicle is driving and when a brake of the vehicle is activated.
- a database may be provided containing a timetable that includes information regarding when the vehicle will be used next. The detector may detect if the vehicle engine is running or not and when the detector detects that the vehicle engine is not running, the air conditioning controller uses the supplied energy to drive the air conditioning module in dependence on the information regarding when the vehicle will be used next.
- the vehicle interior can be preconditioned as long as it is in the charging mode.
- the energy that is needed to initially set the interior of the vehicle to a desired temperature does not unload the battery as it comes directly from the charging station.
- timetable for containing information on when the vehicle will be used next is not limited to a timetable physically stored in a database located within the vehicle.
- the timetable may be rather stored centralized on servers located remotely from the vehicle. Via a data connection, the vehicle may be in contact with such a server.
- the vehicle may access schedules or appointments of a user, for example in the form of an organizer, in order to analyze this data to predict when the user is likely to use the vehicle next. Therefore, the term “timetable” may refer to various forms of data stored in different locations within and without the vehicle. In particular, the term “timetable” is not limited to a database located within the vehicle.
- the air conditioning controller may use route information provided by a navigation module to determine when and how the air conditioning module will be operated.
- a navigation module usually contains map data that are used to calculate a route to a desired destination.
- the map data includes altitude information, speed limits and information about the curvature. As a consequence it can be predicted when the vehicle brake will be activated if the vehicle is driving along the calculated route. Based on the braking events the amount of energy supplied to the vehicle battery can be predicted. The amount of energy and the frequency at which energy is supplied to the battery can then be used to determine whether the air conditioning module can be operated by energy not provided by the battery, e.g., operated only by energy not provided by the battery.
- the electronic horizon contains information on speed limits, altitude information, and information about the curvature of the route ahead. Based on such information, it is not only possible to calculate the occurrence of braking events in the future. It is also possible to calculate situations where the driver is not actively braking, but is, at the same time, not requiring a drive force. This means, that the driver does not activate the gas pedal. Such a situation is referred to as free-wheeling. There is no need to accelerate the vehicle, rather, a slow deceleration is intended. In such a situation, it is possible to have the clutch engaged, and by the inertia of the moving vehicle drive the motor functioning as a generator via the turning of the wheels.
- the amount of supplied energy and the number of occurrences at which this energy is supplied can be used to determine whether the air conditioning module can be operated only by this kinetic energy, which is transferred into electrical energy.
- free-wheeling does not mean that no kinetic energy is transformed intentionally into electrical energy in order to operate electric consumers within the vehicle. Rather, it can be acceptable to convert a certain amount of kinetic energy per time into electrical energy and therefore reduce the velocity of the vehicle during free-wheeling by a certain amount per time. This means that, during free-wheeling, in addition to the standard decelerating forces such as friction and wind resistance, a further decelerating force may act that is due to the conversion of kinetic energy into electrical energy.
- the amount of kinetic energy provided by the turning of the wheels and the gears of the vehicle and converted into electrical energy via the generator per time unit depends on the amount of electrical loads connected to the generator. Therefore, if the air conditioning module is operated by energy directly from the generator (and not via the battery) and if the air conditioning is running at a level of high power consumption, more kinetic energy per time will be converted into electrical energy. This, at the same time, corresponds to a quicker deceleration of the vehicle.
- the air conditioning controller only operates the air conditioning module when the detector detects energy being supplied to the battery, this energy being partly used to directly drive the air conditioning module. When energy is not being supplied to the battery, the air conditioning module would not operate at all. In an alternative solution it is also possible to reduce the power of the air conditioning module when no energy is supplied to the battery so that the air conditioning module has to be operated using the energy stored in the battery.
- the air conditioning system may consider the present temperature inside the vehicle, the present temperature outside the vehicle, as well as a desired set temperature range.
- the set temperature range may be specified by a minimum and a maximum temperature.
- An air conditioning controller system may be configured to calculate the operating state of the air conditioning based on these three temperature parameters, as well as the electronic horizon. For example, the air conditioning controller can calculate the positions along the route where the air conditioning module is not operating at all, for example, because at these positions the temperature inside the car is within the set temperature range.
- Another possibility why the air conditioning module is not operating would be that there is no electrical energy provided from, e.g., braking or free-wheeling. It may be more energy-efficient to postpone the operating of the air conditioning module to a later moment in time, when energy is provided to the system from, e.g. braking or free-wheeling.
- the calculation of the operating strength of the air conditioning module may include calculation of the power consumption of the air conditioning module when operating. For example, by adjusting the temperature of the cooled air and adjusting the number of used outlets to adjust the volume of the cooled air per time, the power consumption can be either increased or decreased.
- the air conditioning controller is able to calculate an equivalent load of the air conditioning module. For example, if the cooled air has a very low temperature compared to the ambient temperature, this corresponds to a high load of the air conditioning module, which, in turn, results in a large power drain from the generator. In case of free-wheeling, this corresponds to a larger deceleration value of the vehicle, because the rate of conversion of kinetic energy into electrical energy is larger.
- the time period where energy is provided to the system from, e.g. free-wheeling is reduced. Therefore, once a strength of air conditioning operation has been calculated, this can be iteratively used to calculate the time spans during which energy is provided to the system, which can be used to directly drive the air conditioning module.
- the air conditioning module may be accompanied by calculating a temperature profile of the temperature inside the vehicle over the entire planned route. For every moment in time between the origin and the destination of the route, the system may calculate whether energy is supplied to the system via braking or free-wheeling, may calculate the operating state of the air conditioning module, and, based on this information, may calculate the inside temperature of the vehicle. Depending on the set temperature range, which can be selected, or example by a user, the system may operate the air conditioning module only during periods where energy is provided to the system or also operate the air conditioning module during times where no energy is supplied to the system, that is, operate the air conditioning module by energy provided from the battery.
- the operation state of the air conditioning module may be adapted such that the amount of energy withdrawn from the battery is reduced/minimized. From the calculated temperature profile, it can be estimated when the temperature rises above the maximum temperature specified for example by the user. To minimize the amount of energy withdrawn from the battery, the air conditioning should be operated at times where energy is provided to the system from (e.g., free-wheeling or braking, at a high level of operating strength). Then the temperature inside the car may drop towards the minimum temperature of the set temperature range and later on, during times when no energy is provided to the system from braking or free-wheeling, rise within the set temperature range. The system can calculate based on the calculated temperature profile when it becomes necessary to operate the air conditioning module by energy withdrawn from the battery. Based on this, points in time or time periods of operation of the air-conditioning module as well as the operation strength of the air conditioning module can be chosen such that the amount of energy withdrawn from the battery is reduced and even minimized.
- FIG. 1 is a block diagram illustration of an air conditioning system that may be operated with minimized energy provided by a vehicle battery;
- FIG. 2 shows a flow-chart illustration of steps carried out in operating the air conditioning system of FIG. 1 ;
- FIG. 3 shows a flow-chart illustration of the steps of an alternative way to operate the air conditioning system
- FIG. 4 is a block diagram illustration of an air conditioning system that may be operated with minimized energy provided from the vehicle battery.
- FIG. 1 is a block diagram illustration of an energy-efficient controlling of an air conditioning system.
- the system comprises an air conditioning module 10 that heats or cools a vehicle interior (not shown).
- the air conditioning module is controlled by an air conditioning controller 11 .
- a user of the air conditioning system shown in FIG. 1 can set a desired temperature using an input unit (not shown), and the air conditioning controller controls the air conditioning module in such a way that the temperature desired by the user inside the vehicle will be reached.
- the system also includes a vehicle battery 12 that is used to at least partly drive the vehicle.
- the vehicle may be a purely electrically driven vehicle or a hybrid vehicle that is driven by a combustion engine and at least partly by the battery 12 .
- the battery 12 is charged either by a charging station 16 when the vehicle is not moving using a wired connection between the charging station and the vehicle battery.
- the vehicle may also be charged during driving by a generator 17 provided in the vehicle that generates power when the vehicle is running, e.g., during braking or in other driving situations such as downhill driving.
- the supplied energy is symbolized by the arrow shown in FIG. 1 .
- the air conditioning system comprises a charging control unit/detector 13 that detects when energy is being supplied to the vehicle battery.
- the detector is provided as a separate unit.
- the detector 13 may also be provided in the air conditioning controller 11 and may be designed as a separate entity or may be part of another entity provided in the vehicle.
- the air conditioning controller is configured such as to use part of the supplied energy to directly operate the air conditioning module 10 instead of storing it in the battery first and then using the stored energy to operate the air conditioning module.
- the detector 13 may also detect whether the vehicle engine is running or not. When the vehicle is not running and energy is being supplied to the battery, the supplied energy is transmitted from a charging station.
- the system shown in FIG. 1 may comprise a database with a timetable 14 from which the operating times of the vehicle can be deduced.
- the timetable 14 can be part of a personal digital assistant (PDA), smartphone or tablet of the driver, or of a mobile phone of the driver from where it can be deduced when the vehicle will be probably be used next.
- PDA personal digital assistant
- the timetable may also include information about the usual driving behavior in the past. For example, the timetable can contain information that the vehicle is usually used in the morning to drive to work and in the afternoon to drive back.
- the air conditioning controller 11 can use the amount of supplied energy needed to operate the air conditioning module 10 directly from the charging station.
- the vehicle may also contain a navigation module 15 that calculates a route to a desired destination.
- the navigation module 15 uses map data to calculate the best route to a destination provided by the user. When a route has been calculated by the navigation module or when the driving direction is clear as there are no possibilities to branch away from the present route, the map data can be used to determine when energy will be supplied to the battery with a high likelihood.
- the map data can be used to predict braking situations, the braking allowing the generator of the at least partly electrically driven vehicle to generate energy supplied to the battery.
- the map data allows a consideration of altitude profiles and up-coming speed limits. By way of example when it can be deduced from the map data that an urban agglomeration will be reached at a certain part of the route where the vehicle velocity has to be drastically reduced, the braking induced energy can be used to drive the air conditioning module 10 .
- the air conditioning controller can operate the air conditioning module in different operating modes. In one operating mode the air conditioning module is only used when energy is being supplied to the battery. If the vehicle cabin should be kept at a predetermined temperature level, the air conditioning module need not be operated continuously. It might be sufficient to only temporarily operate the air conditioning module to obtain a certain temperature level. In another embodiment, if it is detected that the desired temperature will not be obtained when the air conditioning module is only used where energy is being supplied to the battery, another operating mode can be selected where a reduced energy consumption mode is used when energy is not being supplied to the battery, a higher energy consumption mode being used when energy is being supplied to the battery.
- FIG. 2 is a flow-chart illustration of a basic operating mode of the air conditioning system shown in FIG. 1 .
- the method starts in step 20 and in step 21 it is detected whether the battery 12 is being charged by supplied energy. If the supplied energy is detected in step 21 the air conditioning module can be operated using some of the supplied energy directly to drive the air conditioning module (step 22 ). If it is detected that energy is not being supplied to the battery the operating mode can be adapted accordingly in step 23 . This can mean that the air conditioning module is turned off when energy is not being supplied to the battery, or this can mean that energy supplied by the battery is used to drive the air conditioning module. The air conditioning module can then be operated using the same amount of energy as provided in the operating mode 22 , or another operating mode may be selected in which the air conditioning module works in an operating mode with reduced energy consumption. The method ends in step 24 .
- FIG. 3 shows in more detail what happens when it has been detected in step 21 of FIG. 2 that the battery is being charged by supplied energy.
- the air conditioning controller may ask in step 31 whether the vehicle is running or not. If the vehicle is not running, it can be concluded that the supplied energy is coming directly from a charging station and that the vehicle is presently not being used. In this situation the timetable 14 can be queried in step 32 and it can be asked in step 33 whether the vehicle will be used in the near future.
- the air conditioning module can be operated with the supplied energy in step 34 without storing the supplied energy that is used for the air conditioning module in the battery. If it is detected in step 33 that the vehicle will not be used, the air conditioning module will not be operated.
- step 35 If it is detected in step 31 that the vehicle is running, it can be asked in step 35 whether a route has been calculated in the navigation module 15 or whether the navigation module is able to predict the driving route. If a route has been calculated or the route can be predicted, optimized air conditioning operation can be calculated in step 36 .
- the optimized air conditioning operation can be that the air conditioning module is only used when energy is being supplied to the vehicle.
- the air conditioning module can then be operated using the supplied energy.
- the air conditioning module can also be operated only when energy is being supplied to the battery. In another embodiment it is also possible to operate the air conditioning module when energy is not being supplied to the vehicle battery. The method ends in step 38 .
- FIG. 4 is a block diagram illustration of a alternative embodiment air conditioning system.
- the operation mode of the air conditioning system is adapted during running of the vehicle according to an electronic horizon 45 .
- Information on the planned route comprising information on speed limits, altitude profiles, curvature of the road is obtained from a navigation system 45 .
- a target temperature range inside the vehicle 43 e.g., a set temperature range
- this information is used by the air conditioning controller 41 to calculate a planned operation timetable for the air conditioning module 40 .
- necessary operation mode may be estimated/selected for the air conditioning module 40 to cool down the vehicle to the target temperature range 43 .
- the air conditioning module 40 needs to be operated for a certain amount of time cooling down a certain volume of air to a certain temperature. Operating the air conditioning module in such a manner will result in a vehicle ambient temperature that lies within the target temperature range 43 . Based on such an operation schedule, it is possible to estimate the amount of electrical power needed to operate the air conditioning module 40 .
- the electronic horizon 45 it is possible to estimate the amount of power that is available directly from the charging control unit 46 .
- energy that is available directly from the charging control unit 46 does not need to be withdrawn from the battery 47 .
- a generator 48 inside the vehicle can provide this amount of energy directly via the charging control unit 46 to the air conditioning controller 41 . This amount of energy can be used to operate the air conditioning module 40 according to the calculated air conditioning schedule.
- the generator 48 can be the electric motor of the electrically driven vehicle.
- the electric motor of the electrically driven vehicle may be operated as generator 48 when no driving power is needed in order to accelerate or at least maintain the velocity of the vehicle. Situations when no driving power is needed are, for example, situations of braking 49 a or free-wheeling 49 b .
- the vehicle is decelerated. Kinetic energy needs to be removed from the system of the vehicle and transformed into other forms of energy.
- the electric motor of the vehicle may operate as a generator 48 and convert at least some of the kinetic energy into electrical energy.
- Another situation where the electrical motor of the vehicle may be operated as a generator 48 is free-wheeling 49 b .
- free-wheeling it is not desired that the vehicle accelerates. A slow deceleration of the vehicle may be acceptable.
- Another situation of free-wheeling may be downhill driving, where an additional downhill slope accelerates the vehicle. In such situations, it is acceptable that a certain amount of kinetic energy is transformed into electrical energy via the generator 48 .
- the amount of energy withdrawn from the generator 48 depends on the mode of operation of the air conditioning module 40 .
- the mode of operation of the air conditioning module 40 may be determined by the operation schedule provided within air conditioning controller 41 based on the information of the electronic horizon 45 .
- a large volume of air is cooled down to a low temperature per time, then a large amount of electrical energy is withdrawn from the generator 48 via the charging controller 46 .
- driving situations where this may be acceptable.
- Such a driving situation may be the approach of a speed limit. If the distance to the speed limit is such that the deceleration value based on the mode of operation of the air conditioning module 40 is suitable to reduce the speed accordingly, then such a mode of free-wheeling 49 b is acceptable.
- the properties of the entire route ahead are available as information to the air conditioning controller 41 , it is possible to calculate a temperature profile of the inside temperature of the vehicle along the entire route. This can be favorable, because for example during some parts of the route there may be an excess of kinetic energy, while, during other periods of the route, there may be no excess of kinetic energy. Then, during the periods of an excess of kinetic energy, it may be favorable to operate air conditioning module 40 at a high level of operation and cool down the inside temperature of the vehicle, for example to the minimum temperature of the target temperature range 43 . Then, during the periods when no excess of kinetic energy exists, the inside temperature of the vehicle can rise within the target temperature range. Because the temperature was cooled down sufficiently initially, it is then possible to refrain from using the air conditioning module 40 at all.
- the air conditioning module it is possible by calculating a temperature profile of the inside temperature along the entire route, to optimize the operation mode of the air conditioning module such that the amount of energy withdrawn from the battery in order to drive the air conditioning module is reduced and preferably minimized.
- the time periods at which the air conditioning module is operated as well as the strength of operation of the air conditioning module can be chosen such that the temperature remains within the target temperature range but at the same time the amount of energy withdrawn from the battery to operate the air conditioning module is reduced and preferably minimized.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Air-Conditioning For Vehicles (AREA)
- Navigation (AREA)
Abstract
An air conditioning system of an at least partly electrically driven vehicle comprises an air conditioning module that controls a temperature inside the vehicle, an air conditioning controller that controls the air conditioning module, and a detector to detect when a vehicle battery is used for driving the vehicle is charged by supplied energy. When the detector detects that the vehicle battery is being charged, the air conditioning controller uses the supplied energy directly to drive the air conditioning module.
Description
- This patent application claims priority from EP Application No. 10 186 408.0 filed Oct. 4, 2010, which is hereby incorporated by reference.
- The present application relates to an air conditioning system of an at least partly electrically driven vehicle and to a method for operating the air conditioning system.
- An air conditioning system of an electrically driven vehicle drains the battery regardless of whether it has to warm up or cool down the vehicle interior, especially if the same strategies are used as for vehicles with combustion engines. In the case of at least partly electrically driven vehicles, the operating range of the vehicle is an important factor, since the operating range of an at least partly electrically driven vehicle is normally much smaller than the operating range of a vehicle with a combustion engine. The power consumption of modules provided in the vehicle that are not needed to drive the vehicle has to be minimized. An air conditioning system is an element in the vehicle that has a fairly large power consumption compared to other modules provided in the vehicle.
- Therefore, there is a need to provide an air conditioning system with which the energy consumption provided by the vehicle battery is minimized.
- According to a first aspect, an air conditioning system of an at least partly electrically driven vehicle includes an air conditioning module controlling a temperature inside the vehicle. An air conditioning controller controls the air conditioning module. A detector is detects when a vehicle battery that is used for driving the vehicle is charged by supplied energy. When the detector detects that the vehicle battery is being charged, the air conditioning controller uses the supplied energy directly to drive the air conditioning module. Thus, when the vehicle battery is being charged, instead of charging the vehicle battery and then using the vehicle battery to operate the air conditioning system, the supplied energy is at least partly used to drive the air conditioning module. In this case, the energy that is needed to operate the air conditioning module may be deduced from the energy supplied to the vehicle battery instead of charging the battery. This part of the supplied energy is used to directly drive the air conditioning module. As buffering of the electrical energy into batteries or super caps results in a loss being imposed, it is more efficient to directly drive the air conditioning module with the supplied energy instead of storing it first in the battery and then using this stored energy in the battery to drive the air conditioning module.
- For at least partly electrically driven vehicles energy may be supplied to the battery in two different situations: the energy is either supplied by a charging station when the vehicle is at rest directly before the vehicle is used, or energy is supplied to the battery using the motor as a generator when the vehicle is driving and when a brake of the vehicle is activated. For determining whether energy supplied to a vehicle, when the vehicle is not running, is used to drive the air conditioning module a database may be provided containing a timetable that includes information regarding when the vehicle will be used next. The detector may detect if the vehicle engine is running or not and when the detector detects that the vehicle engine is not running, the air conditioning controller uses the supplied energy to drive the air conditioning module in dependence on the information regarding when the vehicle will be used next. When the vehicle is not running, supplied energy comes directly from a charging station. When it can be deduced from the timetable that the vehicle will be used in the near future, e.g. within a predetermined period of time, the vehicle interior can be preconditioned as long as it is in the charging mode. The energy that is needed to initially set the interior of the vehicle to a desired temperature does not unload the battery as it comes directly from the charging station.
- It should be understood that the timetable for containing information on when the vehicle will be used next is not limited to a timetable physically stored in a database located within the vehicle. The timetable may be rather stored centralized on servers located remotely from the vehicle. Via a data connection, the vehicle may be in contact with such a server. In another embodiment, the vehicle may access schedules or appointments of a user, for example in the form of an organizer, in order to analyze this data to predict when the user is likely to use the vehicle next. Therefore, the term “timetable” may refer to various forms of data stored in different locations within and without the vehicle. In particular, the term “timetable” is not limited to a database located within the vehicle.
- During driving the air conditioning controller may use route information provided by a navigation module to determine when and how the air conditioning module will be operated. A navigation module usually contains map data that are used to calculate a route to a desired destination. The map data includes altitude information, speed limits and information about the curvature. As a consequence it can be predicted when the vehicle brake will be activated if the vehicle is driving along the calculated route. Based on the braking events the amount of energy supplied to the vehicle battery can be predicted. The amount of energy and the frequency at which energy is supplied to the battery can then be used to determine whether the air conditioning module can be operated by energy not provided by the battery, e.g., operated only by energy not provided by the battery.
- Route information and associated details provided by the navigation module are commonly referred to as the electronic horizon. The electronic horizon contains information on speed limits, altitude information, and information about the curvature of the route ahead. Based on such information, it is not only possible to calculate the occurrence of braking events in the future. It is also possible to calculate situations where the driver is not actively braking, but is, at the same time, not requiring a drive force. This means, that the driver does not activate the gas pedal. Such a situation is referred to as free-wheeling. There is no need to accelerate the vehicle, rather, a slow deceleration is intended. In such a situation, it is possible to have the clutch engaged, and by the inertia of the moving vehicle drive the motor functioning as a generator via the turning of the wheels. By this, energy is supplied. The amount of supplied energy and the number of occurrences at which this energy is supplied can be used to determine whether the air conditioning module can be operated only by this kinetic energy, which is transferred into electrical energy. It should be understood that the term free-wheeling does not mean that no kinetic energy is transformed intentionally into electrical energy in order to operate electric consumers within the vehicle. Rather, it can be acceptable to convert a certain amount of kinetic energy per time into electrical energy and therefore reduce the velocity of the vehicle during free-wheeling by a certain amount per time. This means that, during free-wheeling, in addition to the standard decelerating forces such as friction and wind resistance, a further decelerating force may act that is due to the conversion of kinetic energy into electrical energy.
- The amount of kinetic energy provided by the turning of the wheels and the gears of the vehicle and converted into electrical energy via the generator per time unit depends on the amount of electrical loads connected to the generator. Therefore, if the air conditioning module is operated by energy directly from the generator (and not via the battery) and if the air conditioning is running at a level of high power consumption, more kinetic energy per time will be converted into electrical energy. This, at the same time, corresponds to a quicker deceleration of the vehicle.
- One possible solution to drive the air conditioning system would be that the air conditioning controller only operates the air conditioning module when the detector detects energy being supplied to the battery, this energy being partly used to directly drive the air conditioning module. When energy is not being supplied to the battery, the air conditioning module would not operate at all. In an alternative solution it is also possible to reduce the power of the air conditioning module when no energy is supplied to the battery so that the air conditioning module has to be operated using the energy stored in the battery.
- The air conditioning system may consider the present temperature inside the vehicle, the present temperature outside the vehicle, as well as a desired set temperature range. The set temperature range may be specified by a minimum and a maximum temperature. An air conditioning controller system may be configured to calculate the operating state of the air conditioning based on these three temperature parameters, as well as the electronic horizon. For example, the air conditioning controller can calculate the positions along the route where the air conditioning module is not operating at all, for example, because at these positions the temperature inside the car is within the set temperature range. Another possibility why the air conditioning module is not operating, would be that there is no electrical energy provided from, e.g., braking or free-wheeling. It may be more energy-efficient to postpone the operating of the air conditioning module to a later moment in time, when energy is provided to the system from, e.g. braking or free-wheeling.
- Moreover, the calculation of the operating strength of the air conditioning module may include calculation of the power consumption of the air conditioning module when operating. For example, by adjusting the temperature of the cooled air and adjusting the number of used outlets to adjust the volume of the cooled air per time, the power consumption can be either increased or decreased. By calculation of the power consumption, the air conditioning controller is able to calculate an equivalent load of the air conditioning module. For example, if the cooled air has a very low temperature compared to the ambient temperature, this corresponds to a high load of the air conditioning module, which, in turn, results in a large power drain from the generator. In case of free-wheeling, this corresponds to a larger deceleration value of the vehicle, because the rate of conversion of kinetic energy into electrical energy is larger. Therefore, for a fixed decrease in temperature, the time period where energy is provided to the system from, e.g. free-wheeling, is reduced. Therefore, once a strength of air conditioning operation has been calculated, this can be iteratively used to calculate the time spans during which energy is provided to the system, which can be used to directly drive the air conditioning module.
- Using such an approach to drive the air conditioning module may be accompanied by calculating a temperature profile of the temperature inside the vehicle over the entire planned route. For every moment in time between the origin and the destination of the route, the system may calculate whether energy is supplied to the system via braking or free-wheeling, may calculate the operating state of the air conditioning module, and, based on this information, may calculate the inside temperature of the vehicle. Depending on the set temperature range, which can be selected, or example by a user, the system may operate the air conditioning module only during periods where energy is provided to the system or also operate the air conditioning module during times where no energy is supplied to the system, that is, operate the air conditioning module by energy provided from the battery.
- The operation state of the air conditioning module may be adapted such that the amount of energy withdrawn from the battery is reduced/minimized. From the calculated temperature profile, it can be estimated when the temperature rises above the maximum temperature specified for example by the user. To minimize the amount of energy withdrawn from the battery, the air conditioning should be operated at times where energy is provided to the system from (e.g., free-wheeling or braking, at a high level of operating strength). Then the temperature inside the car may drop towards the minimum temperature of the set temperature range and later on, during times when no energy is provided to the system from braking or free-wheeling, rise within the set temperature range. The system can calculate based on the calculated temperature profile when it becomes necessary to operate the air conditioning module by energy withdrawn from the battery. Based on this, points in time or time periods of operation of the air-conditioning module as well as the operation strength of the air conditioning module can be chosen such that the amount of energy withdrawn from the battery is reduced and even minimized.
- These and other objects, features and advantages of the present invention will become apparent in light of the detailed description of the best mode embodiment thereof, as illustrated in the accompanying drawings. In the figures, like reference numerals designate corresponding parts.
- The invention will be described in further detail with reference to the accompanying drawings, in which
-
FIG. 1 is a block diagram illustration of an air conditioning system that may be operated with minimized energy provided by a vehicle battery; -
FIG. 2 shows a flow-chart illustration of steps carried out in operating the air conditioning system ofFIG. 1 ; and -
FIG. 3 shows a flow-chart illustration of the steps of an alternative way to operate the air conditioning system; -
FIG. 4 is a block diagram illustration of an air conditioning system that may be operated with minimized energy provided from the vehicle battery. -
FIG. 1 is a block diagram illustration of an energy-efficient controlling of an air conditioning system. The system comprises anair conditioning module 10 that heats or cools a vehicle interior (not shown). The air conditioning module is controlled by anair conditioning controller 11. A user of the air conditioning system shown inFIG. 1 can set a desired temperature using an input unit (not shown), and the air conditioning controller controls the air conditioning module in such a way that the temperature desired by the user inside the vehicle will be reached. - The system also includes a
vehicle battery 12 that is used to at least partly drive the vehicle. The vehicle may be a purely electrically driven vehicle or a hybrid vehicle that is driven by a combustion engine and at least partly by thebattery 12. Thebattery 12 is charged either by a chargingstation 16 when the vehicle is not moving using a wired connection between the charging station and the vehicle battery. The vehicle may also be charged during driving by agenerator 17 provided in the vehicle that generates power when the vehicle is running, e.g., during braking or in other driving situations such as downhill driving. The supplied energy is symbolized by the arrow shown inFIG. 1 . The air conditioning system comprises a charging control unit/detector 13 that detects when energy is being supplied to the vehicle battery. In the example shown the detector is provided as a separate unit. However, it should be understood that thedetector 13 may also be provided in theair conditioning controller 11 and may be designed as a separate entity or may be part of another entity provided in the vehicle. When the detector detects that energy is being supplied to the battery the air conditioning controller is configured such as to use part of the supplied energy to directly operate theair conditioning module 10 instead of storing it in the battery first and then using the stored energy to operate the air conditioning module. - The
detector 13 may also detect whether the vehicle engine is running or not. When the vehicle is not running and energy is being supplied to the battery, the supplied energy is transmitted from a charging station. The system shown inFIG. 1 may comprise a database with atimetable 14 from which the operating times of the vehicle can be deduced. Thetimetable 14 can be part of a personal digital assistant (PDA), smartphone or tablet of the driver, or of a mobile phone of the driver from where it can be deduced when the vehicle will be probably be used next. The timetable may also include information about the usual driving behavior in the past. For example, the timetable can contain information that the vehicle is usually used in the morning to drive to work and in the afternoon to drive back. - If it is possible to deduce from the timetable that the vehicle will be used in a predetermined period of time, e.g., within the next hour, the
air conditioning controller 11 can use the amount of supplied energy needed to operate theair conditioning module 10 directly from the charging station. The vehicle may also contain anavigation module 15 that calculates a route to a desired destination. Thenavigation module 15 uses map data to calculate the best route to a destination provided by the user. When a route has been calculated by the navigation module or when the driving direction is clear as there are no possibilities to branch away from the present route, the map data can be used to determine when energy will be supplied to the battery with a high likelihood. The map data can be used to predict braking situations, the braking allowing the generator of the at least partly electrically driven vehicle to generate energy supplied to the battery. The map data allows a consideration of altitude profiles and up-coming speed limits. By way of example when it can be deduced from the map data that an urban agglomeration will be reached at a certain part of the route where the vehicle velocity has to be drastically reduced, the braking induced energy can be used to drive theair conditioning module 10. - The air conditioning controller can operate the air conditioning module in different operating modes. In one operating mode the air conditioning module is only used when energy is being supplied to the battery. If the vehicle cabin should be kept at a predetermined temperature level, the air conditioning module need not be operated continuously. It might be sufficient to only temporarily operate the air conditioning module to obtain a certain temperature level. In another embodiment, if it is detected that the desired temperature will not be obtained when the air conditioning module is only used where energy is being supplied to the battery, another operating mode can be selected where a reduced energy consumption mode is used when energy is not being supplied to the battery, a higher energy consumption mode being used when energy is being supplied to the battery.
-
FIG. 2 is a flow-chart illustration of a basic operating mode of the air conditioning system shown inFIG. 1 . The method starts instep 20 and instep 21 it is detected whether thebattery 12 is being charged by supplied energy. If the supplied energy is detected instep 21 the air conditioning module can be operated using some of the supplied energy directly to drive the air conditioning module (step 22). If it is detected that energy is not being supplied to the battery the operating mode can be adapted accordingly instep 23. This can mean that the air conditioning module is turned off when energy is not being supplied to the battery, or this can mean that energy supplied by the battery is used to drive the air conditioning module. The air conditioning module can then be operated using the same amount of energy as provided in the operating mode 22, or another operating mode may be selected in which the air conditioning module works in an operating mode with reduced energy consumption. The method ends instep 24. - A more detailed view of operations of the air conditioning module is shown in
FIG. 3 .FIG. 3 shows in more detail what happens when it has been detected instep 21 ofFIG. 2 that the battery is being charged by supplied energy. Thus, when the supply of energy is confirmed instep 21 the air conditioning controller may ask instep 31 whether the vehicle is running or not. If the vehicle is not running, it can be concluded that the supplied energy is coming directly from a charging station and that the vehicle is presently not being used. In this situation thetimetable 14 can be queried instep 32 and it can be asked instep 33 whether the vehicle will be used in the near future. If it can deduce from the timetable that the vehicle will be used in the near future, the air conditioning module can be operated with the supplied energy instep 34 without storing the supplied energy that is used for the air conditioning module in the battery. If it is detected instep 33 that the vehicle will not be used, the air conditioning module will not be operated. - If it is detected in
step 31 that the vehicle is running, it can be asked instep 35 whether a route has been calculated in thenavigation module 15 or whether the navigation module is able to predict the driving route. If a route has been calculated or the route can be predicted, optimized air conditioning operation can be calculated instep 36. One example of the optimized air conditioning operation can be that the air conditioning module is only used when energy is being supplied to the vehicle. Instep 37 the air conditioning module can then be operated using the supplied energy. When no route has been determined instep 35 the air conditioning module can also be operated only when energy is being supplied to the battery. In another embodiment it is also possible to operate the air conditioning module when energy is not being supplied to the vehicle battery. The method ends instep 38. -
FIG. 4 is a block diagram illustration of a alternative embodiment air conditioning system. In this embodiment, the operation mode of the air conditioning system is adapted during running of the vehicle according to anelectronic horizon 45. Information on the planned route comprising information on speed limits, altitude profiles, curvature of the road is obtained from anavigation system 45. Together with information on the present temperature inside thevehicle 42, a target temperature range inside the vehicle 43 (e.g., a set temperature range) and a temperature outside thevehicle 44, this information is used by theair conditioning controller 41 to calculate a planned operation timetable for theair conditioning module 40. Based on the information on desiredtemperature 43 andcurrent temperatures air conditioning module 40 to cool down the vehicle to thetarget temperature range 43. For example, it can be estimated that theair conditioning module 40 needs to be operated for a certain amount of time cooling down a certain volume of air to a certain temperature. Operating the air conditioning module in such a manner will result in a vehicle ambient temperature that lies within thetarget temperature range 43. Based on such an operation schedule, it is possible to estimate the amount of electrical power needed to operate theair conditioning module 40. - On the other hand, based on the information referred to as the
electronic horizon 45, it is possible to estimate the amount of power that is available directly from the chargingcontrol unit 46. In particular, energy that is available directly from the chargingcontrol unit 46, does not need to be withdrawn from thebattery 47. Agenerator 48 inside the vehicle can provide this amount of energy directly via the chargingcontrol unit 46 to theair conditioning controller 41. This amount of energy can be used to operate theair conditioning module 40 according to the calculated air conditioning schedule. - In one embodiment, the
generator 48 can be the electric motor of the electrically driven vehicle. In one mode of operation, the electric motor of the electrically driven vehicle may be operated asgenerator 48 when no driving power is needed in order to accelerate or at least maintain the velocity of the vehicle. Situations when no driving power is needed are, for example, situations of braking 49 a or free-wheeling 49 b. During braking, the vehicle is decelerated. Kinetic energy needs to be removed from the system of the vehicle and transformed into other forms of energy. Instead of transforming the kinetic energy only into heat as in conventional brakes, the electric motor of the vehicle may operate as agenerator 48 and convert at least some of the kinetic energy into electrical energy. - Another situation where the electrical motor of the vehicle may be operated as a
generator 48 is free-wheeling 49 b. During free-wheeling, it is not desired that the vehicle accelerates. A slow deceleration of the vehicle may be acceptable. Another situation of free-wheeling may be downhill driving, where an additional downhill slope accelerates the vehicle. In such situations, it is acceptable that a certain amount of kinetic energy is transformed into electrical energy via thegenerator 48. The amount of energy withdrawn from thegenerator 48 depends on the mode of operation of theair conditioning module 40. The mode of operation of theair conditioning module 40 may be determined by the operation schedule provided withinair conditioning controller 41 based on the information of theelectronic horizon 45. For example, if theair conditioning module 40 is working heavily, a large volume of air is cooled down to a low temperature per time, then a large amount of electrical energy is withdrawn from thegenerator 48 via the chargingcontroller 46. This means that during free-wheeling 49 b the vehicle is decelerated comparably quickly. There are driving situations where this may be acceptable. Such a driving situation may be the approach of a speed limit. If the distance to the speed limit is such that the deceleration value based on the mode of operation of theair conditioning module 40 is suitable to reduce the speed accordingly, then such a mode of free-wheeling 49 b is acceptable. On the other hand, if, based on the information from theelectronic horizon 45, it is evident that the high level of operation of theair conditioning module 40 would decrease the velocity of the vehicle too quickly in the case of free-wheeling 49 b, it may be more favorable to lower the power consumption of theair conditioning module 40 by changing the mode of operation. - When, based on the planned route and the
electronic horizon 45, the properties of the entire route ahead are available as information to theair conditioning controller 41, it is possible to calculate a temperature profile of the inside temperature of the vehicle along the entire route. This can be favorable, because for example during some parts of the route there may be an excess of kinetic energy, while, during other periods of the route, there may be no excess of kinetic energy. Then, during the periods of an excess of kinetic energy, it may be favorable to operateair conditioning module 40 at a high level of operation and cool down the inside temperature of the vehicle, for example to the minimum temperature of thetarget temperature range 43. Then, during the periods when no excess of kinetic energy exists, the inside temperature of the vehicle can rise within the target temperature range. Because the temperature was cooled down sufficiently initially, it is then possible to refrain from using theair conditioning module 40 at all. - In particular, it is possible by calculating a temperature profile of the inside temperature along the entire route, to optimize the operation mode of the air conditioning module such that the amount of energy withdrawn from the battery in order to drive the air conditioning module is reduced and preferably minimized. By cooling down the inside temperature to a low/minimum possible temperature when an excess of kinetic energy to be transformed into electrical energy to drive the air conditioning module via a generator is available, it is possible to refrain from withdrawing energy from the battery as much as possible. The time periods at which the air conditioning module is operated as well as the strength of operation of the air conditioning module can be chosen such that the temperature remains within the target temperature range but at the same time the amount of energy withdrawn from the battery to operate the air conditioning module is reduced and preferably minimized.
- Although the present invention has been illustrated and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
Claims (23)
1. An air conditioning system of an at least partly electrically driven vehicle, the system comprising:
an air conditioning module that controls a temperature inside the vehicle;
an air conditioning controller controls the air conditioning module; and
a detector that detects when a vehicle battery that is used for driving the vehicle is being charged by supplied energy, wherein when the detector detects that the vehicle battery is being charged, the air conditioning controller uses the supplied energy directly to drive the air conditioning module.
2. The air conditioning system of claim 1 , further comprising a database comprising a timetable in which information is provided on when the vehicle will be used next, wherein the detector detects if a vehicle engine is running or not, wherein when the detector detects that the vehicle engine is not running, the air conditioning controller uses the supplied energy to drive the air conditioning module in dependence on the fact of when the vehicle will be used next.
3. The air conditioning system of claim 2 , wherein the air conditioning controller uses route information provided by a navigation module to determine when and how the air conditioning module will be operated during driving as an operation schedule.
4. The air conditioning system of claim 3 , wherein the air conditioning controller calculates a temperature profile along the route of a first temperature inside the vehicle based on the operation schedule.
5. The air conditioning system of claim 3 , wherein a motor of the vehicle is used as a generator to supply energy when no acceleration of the vehicle is required.
6. The air conditioning system of claim 5 , wherein the generator is configured to transform kinetic energy of the vehicle into supplied energy during braking or free-wheeling of the vehicle.
7. The air conditioning system of claim 4 , wherein the air conditioning controller determines the operation schedule such that the first temperature remains within a target temperature range.
8. The air conditioning system of claim 7 , wherein the air conditioning controller only drives the air conditioning module using energy withdrawn from the vehicle battery if the first temperature is not within the target temperature range.
9. The air conditioning system of claim 3 , wherein the air conditioning controller is configured to reduce the energy withdrawn from the battery to drive the air conditioning module.
10. The air conditioning system of claim 5 , wherein the air conditioning controller determines the operation schedule in such a way that it only uses the supplied energy from the generator to drive the air conditioning module.
11. The air conditioning system of claim 3 , wherein the operation schedule comprises information on a temperature of the air which is cooled by the air conditioning module and on the amount of air per time which is cooled by the air conditioning module.
12. The air conditioning system of claim 1 , wherein the air conditioning controller only operates the air conditioning module when the detector detects that energy is supplied to the battery.
13. A method for operating an air conditioning module provided in an at least partly electrically driven vehicle and used for controlling a temperature inside the vehicle, the method comprising:
detecting a charging of a vehicle battery by supplied energy, the battery being used to drive the vehicle, wherein when it is detected that the vehicle battery is being charged, the supplied energy is used directly to drive the air conditioning module.
14. The method of claim 13 , further comprising the step of detecting whether a vehicle engine is running or not, wherein when it is detected that the vehicle engine is not running, information is retrieved from a timetable allowing a determination of when the vehicle will be used next, wherein the supplied energy is used to drive the air conditioning module in dependence on the retrieved information.
15. The method of claim 14 , wherein when the retrieved information allows a determination that the vehicle will be started within a predetermined time period the air conditioning module will be started.
16. The method of claim 13 , further comprising the step of using route information provided by a navigation module in order to determine when and how the air conditioning module will be operated during driving in the form of an operation schedule.
17. The method of claim 16 , further comprising the step of calculating a temperature profile of a first temperature inside the vehicle based on the operation schedule.
18. The method of claim 17 , wherein energy is supplied to the battery during braking or free-wheeling of the vehicle.
19. The method of claim 18 , wherein the operation schedule is determined in such a way that it only uses the supplied energy during braking or free-wheeling of the vehicle to drive the air conditioning module.
20. The method of claim 17 , wherein the operation schedule is determined such that the first temperature remains within a target temperature range.
21. The method of claim 20 , wherein the air conditioning module is only driven using energy withdrawn from the vehicle battery if the first temperature is not within the target temperature range.
22. The method of claim 16 , wherein the operation schedule is determined such that the energy withdrawn from the battery to drive the air conditioning module is minimized.
23. The method of claim 13 , wherein the air conditioning module will only be operated when energy is supplied to the battery.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10186408.0A EP2439088B1 (en) | 2010-10-04 | 2010-10-04 | Energy-efficient controlling of air conditioning system |
EP10186408.0 | 2010-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120080178A1 true US20120080178A1 (en) | 2012-04-05 |
Family
ID=43618336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/252,741 Abandoned US20120080178A1 (en) | 2010-10-04 | 2011-10-04 | Energy-efficient controlling of air conditioning system |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120080178A1 (en) |
EP (1) | EP2439088B1 (en) |
JP (1) | JP2012076737A (en) |
KR (1) | KR20120035120A (en) |
CN (1) | CN102442262B (en) |
CA (1) | CA2750947C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104648400A (en) * | 2015-02-11 | 2015-05-27 | 谢树磊 | Vehicle power control and recovery system |
US20160368345A1 (en) * | 2015-06-18 | 2016-12-22 | Ford Global Technologies, Llc | Method of controlling climate in a parked vehicle |
CN111376751A (en) * | 2018-12-29 | 2020-07-07 | 长城汽车股份有限公司 | Vehicle charging management method and system |
DE102017220125B4 (en) * | 2017-11-13 | 2021-01-07 | Audi Ag | Method for controlling an indoor climate |
CN113942423A (en) * | 2020-07-15 | 2022-01-18 | 本田技研工业株式会社 | vehicle |
US11565572B2 (en) | 2018-03-19 | 2023-01-31 | Honda Motor Co., Ltd. | Device and method of controlling starting of vehicle devices |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101551028B1 (en) * | 2013-12-26 | 2015-09-07 | 현대자동차주식회사 | Control system for reducing enery consumption of air conditioner |
KR101673677B1 (en) | 2014-10-10 | 2016-11-07 | 현대자동차주식회사 | Apparatus and method for controlling active air flap |
CN107089114A (en) * | 2017-04-28 | 2017-08-25 | 北京新能源汽车股份有限公司 | Control method and device of air conditioner |
CN110077193B (en) * | 2018-01-25 | 2021-03-26 | 宝沃汽车(中国)有限公司 | Vehicle control method and system and vehicle |
ES2901777T3 (en) * | 2019-05-24 | 2022-03-23 | Thermo King Corp | Temperature-controlled freight vehicles |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5275012A (en) * | 1993-01-07 | 1994-01-04 | Ford Motor Company | Climate control system for electric vehicle |
US20080034767A1 (en) * | 2006-08-14 | 2008-02-14 | Gm Global Technology Operations, Inc. | Methods of Optimizing Vehicular Air Conditioning Control Systems |
US20080179040A1 (en) * | 2007-01-26 | 2008-07-31 | Rosenbaum Richard W | Method to heat or cool vehicle battery and passenger compartments |
US20090150024A1 (en) * | 2007-12-06 | 2009-06-11 | Denso Corporation | Location range setting apparatus, control method and controller for apparatus mounted in mobile object, and automotive air conditioner and control method for the same |
US20090254246A1 (en) * | 2008-04-02 | 2009-10-08 | International Truck Intellectual Property Company, Llc | Method and apparatus to optimize energy efficiency of air compressor in vehicle air brake application |
US20090301116A1 (en) * | 2008-06-09 | 2009-12-10 | Lear Corporation | Climate controlling system |
US20100010734A1 (en) * | 2008-03-05 | 2010-01-14 | Mitac International Corporation | Navigation device and method for calculating an estimated total time requirement of the navigation-planned route |
US20100012741A1 (en) * | 2008-07-18 | 2010-01-21 | Gm Global Technology Operations, Inc. | Coolant Systems For Electric And Hybrid-Electric Vehicles |
US20100089564A1 (en) * | 2008-10-15 | 2010-04-15 | Eiji Nomura | Air-conditioning system for electric car and method of controlling the air-conditioning system |
US20100132388A1 (en) * | 2007-06-18 | 2010-06-03 | Toyota Jidosha Kabushiki Kaisha | Air conditioning control device for vehicle |
US20100236770A1 (en) * | 2009-03-19 | 2010-09-23 | Ford Global Technologies, Llc | Method and system for controlling an automotive hvac system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07212902A (en) * | 1993-12-02 | 1995-08-11 | Nippondenso Co Ltd | Electric car air-conditioner control system |
JP3584571B2 (en) * | 1995-10-19 | 2004-11-04 | 日産自動車株式会社 | Advance air conditioning for electric vehicles |
JP2000078701A (en) * | 1998-08-27 | 2000-03-14 | Toyota Motor Corp | Electric vehicle air conditioner |
JP2007230270A (en) * | 2006-02-28 | 2007-09-13 | Calsonic Kansei Corp | Air conditioner for vehicle |
JP5044985B2 (en) * | 2006-05-16 | 2012-10-10 | トヨタ自動車株式会社 | Air conditioning control device for vehicles |
-
2010
- 2010-10-04 EP EP10186408.0A patent/EP2439088B1/en not_active Not-in-force
-
2011
- 2011-08-29 CA CA2750947A patent/CA2750947C/en not_active Expired - Fee Related
- 2011-09-12 JP JP2011198820A patent/JP2012076737A/en active Pending
- 2011-09-28 CN CN201110299682.7A patent/CN102442262B/en not_active Expired - Fee Related
- 2011-09-30 KR KR1020110099763A patent/KR20120035120A/en not_active Ceased
- 2011-10-04 US US13/252,741 patent/US20120080178A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5275012A (en) * | 1993-01-07 | 1994-01-04 | Ford Motor Company | Climate control system for electric vehicle |
US20080034767A1 (en) * | 2006-08-14 | 2008-02-14 | Gm Global Technology Operations, Inc. | Methods of Optimizing Vehicular Air Conditioning Control Systems |
US20080179040A1 (en) * | 2007-01-26 | 2008-07-31 | Rosenbaum Richard W | Method to heat or cool vehicle battery and passenger compartments |
US20100132388A1 (en) * | 2007-06-18 | 2010-06-03 | Toyota Jidosha Kabushiki Kaisha | Air conditioning control device for vehicle |
US20090150024A1 (en) * | 2007-12-06 | 2009-06-11 | Denso Corporation | Location range setting apparatus, control method and controller for apparatus mounted in mobile object, and automotive air conditioner and control method for the same |
US20100010734A1 (en) * | 2008-03-05 | 2010-01-14 | Mitac International Corporation | Navigation device and method for calculating an estimated total time requirement of the navigation-planned route |
US20090254246A1 (en) * | 2008-04-02 | 2009-10-08 | International Truck Intellectual Property Company, Llc | Method and apparatus to optimize energy efficiency of air compressor in vehicle air brake application |
US20090301116A1 (en) * | 2008-06-09 | 2009-12-10 | Lear Corporation | Climate controlling system |
US20100012741A1 (en) * | 2008-07-18 | 2010-01-21 | Gm Global Technology Operations, Inc. | Coolant Systems For Electric And Hybrid-Electric Vehicles |
US20100089564A1 (en) * | 2008-10-15 | 2010-04-15 | Eiji Nomura | Air-conditioning system for electric car and method of controlling the air-conditioning system |
US20100236770A1 (en) * | 2009-03-19 | 2010-09-23 | Ford Global Technologies, Llc | Method and system for controlling an automotive hvac system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104648400A (en) * | 2015-02-11 | 2015-05-27 | 谢树磊 | Vehicle power control and recovery system |
US20160368345A1 (en) * | 2015-06-18 | 2016-12-22 | Ford Global Technologies, Llc | Method of controlling climate in a parked vehicle |
US9975400B2 (en) * | 2015-06-18 | 2018-05-22 | Ford Global Technologies, Llc | Method of controlling climate in a parked vehicle |
DE102017220125B4 (en) * | 2017-11-13 | 2021-01-07 | Audi Ag | Method for controlling an indoor climate |
US11565572B2 (en) | 2018-03-19 | 2023-01-31 | Honda Motor Co., Ltd. | Device and method of controlling starting of vehicle devices |
CN111376751A (en) * | 2018-12-29 | 2020-07-07 | 长城汽车股份有限公司 | Vehicle charging management method and system |
CN113942423A (en) * | 2020-07-15 | 2022-01-18 | 本田技研工业株式会社 | vehicle |
US20220016958A1 (en) * | 2020-07-15 | 2022-01-20 | Honda Motor Co., Ltd. | Vehicle |
Also Published As
Publication number | Publication date |
---|---|
EP2439088A1 (en) | 2012-04-11 |
EP2439088B1 (en) | 2013-04-24 |
CN102442262A (en) | 2012-05-09 |
CA2750947A1 (en) | 2012-04-04 |
JP2012076737A (en) | 2012-04-19 |
CN102442262B (en) | 2016-05-04 |
KR20120035120A (en) | 2012-04-13 |
CA2750947C (en) | 2013-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2750947C (en) | Energy-efficient controlling of air conditioning system | |
US12024028B2 (en) | Priority based power management method for an electric motor vehicle | |
US8374740B2 (en) | Self-learning satellite navigation assisted hybrid vehicle controls system | |
EP2648953B1 (en) | Method for controlling a hybrid automotive vehicle and hybrid vehicle adapted to such a method | |
EP2177389B1 (en) | Vehicle equipped with power storage device and temperature control method of power storage device | |
US20040030471A1 (en) | Method and device for triggering a hybrid vehicle | |
CN106114497B (en) | Battery state of charge control using route preview data | |
US11104233B2 (en) | Method for determining predicted acceleration information in an electric vehicle and such an electric vehicle | |
JP4705299B2 (en) | Open loop / closed loop control method of heat flow in automobile | |
GB2528551A (en) | Cooling system for vehicle device | |
JP7540381B2 (en) | Travel control device, method, and program | |
JP2007154800A (en) | Power control device | |
US10160443B2 (en) | Control system for vehicle | |
US11760333B2 (en) | Method for controlling the longitudinal dynamics of a vehicle | |
US20240132046A1 (en) | Device and method for the model-based predicted control of a component of a vehicle | |
JP2005151721A (en) | Controller of vehicle | |
EP3257714B1 (en) | A vehicle energy management system and method for a vehicle | |
JP2016201250A (en) | In-vehicle secondary battery cooling system | |
JP2018114815A (en) | Vehicle control device | |
US20170297557A1 (en) | A method performed by a control unit for controlling energy flows of a vehicle | |
JP7647629B2 (en) | Vehicle driving control device, driving control method, and driving control program | |
US20220258714A1 (en) | Control system | |
US20240140392A1 (en) | System and method for managing energy in vehicles provided with a controlled-temperature environment | |
CN111491814B (en) | Method for estimating the energy of a thermal conditioning system of a motor vehicle | |
CN118342979A (en) | Vehicle charging management method, device, vehicle-mounted equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHOLL, KAY-ULRICH;REEL/FRAME:027116/0992 Effective date: 20100721 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |