US20120075884A1 - Lighting device employing a light guide plate and a plurality of light emitting diodes - Google Patents
Lighting device employing a light guide plate and a plurality of light emitting diodes Download PDFInfo
- Publication number
- US20120075884A1 US20120075884A1 US13/312,101 US201113312101A US2012075884A1 US 20120075884 A1 US20120075884 A1 US 20120075884A1 US 201113312101 A US201113312101 A US 201113312101A US 2012075884 A1 US2012075884 A1 US 2012075884A1
- Authority
- US
- United States
- Prior art keywords
- array
- leds
- lens
- guide plate
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 230000003292 diminished effect Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/002—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
- G02B6/0021—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/002—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/0031—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/0068—Arrangements of plural sources, e.g. multi-colour light sources
Definitions
- the present invention relates to lighting device comprising a light guide plate and at least one array of light emitting diodes
- LEDs light emitting diodes
- LEDs offer several advantages over traditional light sources, such as long lifetime, low operating voltage, instant on, etc. For these and other reasons, LEDs are becoming more and more suited for making lamps for several applications such as color variable lamps, spotlights, LCD backlighting, architectural lighting, stage lighting, etc.
- FIGS. 1 a - 1 b A backlight based on side-emitting LEDs described in this document is schematically illustrated in FIGS. 1 a - 1 b .
- the backlight 100 comprises a light guide 102 provided with cylindrical through holes 104 which are arranged in a linear array along an edge 106 of the light guide.
- a side-emitting LED 108 In each through hole, there is provided a side-emitting LED 108 , whereby light from the LEDs is coupled into the light guide through the sidewall of the through holes, as illustrated by exemplary ray traces 110 .
- the edge 106 is preferably reflective, to avoid unintended out-coupling of light via the edge.
- a lighting device comprising a light guide plate and at least one array of light emitting diodes (LEDs), which LEDs are accommodated in holes arranged in the light guide plate, characterized by an array of lenses arranged such that light emitted by the LEDs passing the lens array is at least partly directed towards areas of the light guide plate free from holes.
- LEDs light emitting diodes
- the LEDs can be placed closer together and losses due to absorption or scattering at nearby LEDs in the lighting device are diminished. Overall, the luminous efficiency and power of the lighting device can be increased.
- the lens array comprises at least one row of positive lenses, to readily direct the light in the wanted directions.
- the lens pitch is about 1 ⁇ 2 of the LED pitch, which provides to a feasible design of the lighting device.
- the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflector is directed by the lens array to pass between the LEDs in the array.
- the LEDs are preferably aligned with every second junction between two adjacent lenses in the lens array.
- the lens array is placed between a first LED array and a second LED array such that light emitted by the LEDs in the first array and passing the lens array is directed by the lens array to pass between the LEDs in the second array.
- the distance between the first LED array and the lens array and the distance between the second LED array and the lens array are preferably equal.
- the LEDs of the first array may be aligned with the optical axes of every second lens in a row of the lens array while the LEDs of the second array may be aligned with the optical axes of every other second lens in the row of the lens array.
- the LEDs may be aligned with every second junction between two adjacent lenses in a row of the lens array.
- the holes are cylindrical holes, and the LEDs are preferably side emitting LEDs, for useful in-coupling of light into the light guide plate.
- FIG. 1 a is a top view of a backlight according to prior art.
- FIG. 1 b is a cross-sectional side view of the backlight of FIG. 1 a.
- FIG. 2 is a partial top view of a lighting device according to a first embodiment of the invention.
- FIG. 3 is a partial top view of a lighting device according to a first variant of a second embodiment of the invention.
- FIG. 4 is a partial top view of a lighting device according to a second variant of the second embodiment of the invention.
- a light emitting diode (LED) based lighting device according to a first embodiment of the present invention will now be described with reference to FIG. 2 .
- the lighting device denoted 10 comprises a light guide plate 12 .
- the light guide plate 12 is transparent and can be made of glass or plastics (such as PMMA or PC), for example.
- the lighting device 10 further comprises a linear array 14 of LEDs 16 arranged along a reflective edge 18 belonging to the light guide plate 12 .
- the reflective edge 18 serves to direct any incident light back into the light guide plate 12 , to avoid unintentional out-coupling of light from the light guide plate 12 via the edge.
- the LEDs 16 are preferably side-emitting omnidirectional LEDs.
- the LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in the light guide plate 12 . ‘Lateral’ is in relation to the plane of the light guide plate. Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodated LED 16 is to be laterally coupled into the light guide plate 12 .
- the holes 20 could be through holes or holes having an opening towards one side of the light guide plate 12 only.
- the lighting device 10 further comprises a lens array 24 .
- the lens array 24 is placed between the reflective edge 18 and the LED array 14 , and it comprises one linear row of positive lenses 26 .
- the lenses 26 may be formed separately or as integral parts of the light guide plate 12 . Any gap between the lenses 26 and the reflective edge 18 can be filled with air, for example.
- the lens array 24 serves to direct light emitted from the LEDs 16 and reflected off the edge 18 towards areas of the light guide plate 12 free from or with no holes 20 (or LEDs 16 , consequently). Namely, the light is directed to pass between the LEDs 16 .
- the LED pitch P 2 is the distance between the centers of two adjacent LEDs 16 , and “aligned with” means here that an imaginary line from the junction 30 , which line is perpendicular to the main linear direction of the lens array, runs through the center of a LED 16 .
- the refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56.
- lens radius R 1 is larger than 1 ⁇ 2 of the lens pitch P 1 (R 1 >1 ⁇ 2* P 1 ), otherwise the lens array 24 cannot be realized. Also, to avoid too curved lens surfaces, which can be difficult to make, the parameters should preferably be chosen such that R 1 >1 ⁇ 2* P 1 is by far not violated.
- the radius of the cylindrical holes 18 is 3 mm and the LED pitch P 2 is 9 mm.
- a light ray 32 emitted by the LED 16 a which light ray 32 otherwise would have been reflected off the edge 18 an into the adjacent hole 20 b (as in FIG. 1 a ), is focused by a corresponding lens 26 of the lens array 24 on its way towards the reflective edge 18 .
- the light ray 32 is again focused by the corresponding lens 26 towards the space 28 ′ between the holes 20 a and 20 b and thus misses hole 20 b .
- the direction of a light ray 34 emitted by the LED 16 a which light ray 34 otherwise would have been reflected off the edge 18 towards the space 28 ′′ between the holes 20 a and 20 c , is not altered significantly by the lens array 24 since the light ray 34 passes close to the optical axis of the lens 26 (whereas the light ray 32 passes the lens 26 off-axis and is refracted more strongly). Therefore, the light ray 34 is still directed towards the space 28 ′′ between the holes 20 a and 20 c and consequently misses the adjacent LEDs 16 .
- the lens array 24 serves to image reflections of the LEDs 16 at spaces 28 between the real LEDs 16 b , whereby losses due to absorption or scattering at adjacent LEDs are diminished, and the luminous efficiency of the lighting device 10 is increased.
- a lens array can also advantageously be used in a second embodiment, wherein two LED arrays are arranged parallel to each other, as illustrated in FIGS. 3-4 .
- the function of the lens array is here to avoid that light from one array is absorbed or scattered at LEDs in the other array.
- the lighting device denoted 10 comprises a light guide plate 12 .
- the light guide plate 12 should be transparent and can be made of glass or plastics (such as PMMA or PC), for example.
- the lighting device 10 further comprises two parallel linear arrays 14 of LEDs 16 .
- the LEDs 16 are preferably side-emitting omnidirectional LEDs.
- the LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in the light guide plate 12 .
- Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodated LED 16 is to be coupled into the light guide plate 12 .
- the holes 20 could be through holes or holes having an opening towards one side of the light guide plate 12 only.
- the lighting device 10 further comprises a lens array 24 arranged in the light guide plate 12 .
- the lens array 24 is placed between the two LED arrays 14 in an in-plane arrangement.
- the lens array 24 is formed by cutting or otherwise removing a portion 36 of the light guide plate 12 , which portion 36 has the form of a linear array of biconcave or double concave lenses.
- Left is a linear lens array 24 with two rows of opposing positive lenses 26 .
- the lens array 24 serves to direct light emitted from the LEDs 16 in one array and passing the lens array 24 towards areas of the light guide plate 12 free from or with no holes 20 (or LEDs 16 , consequently). Namely, the light is directed to pass between the LEDs 16 of the other array.
- the refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56.
- the various parameters mentioned above should be chosen such that lens radius R 1 is larger than 1 ⁇ 2 of the lens pitch P 1 (R 1 >1 ⁇ 2* P 1 ), otherwise the lens array 22 cannot be realized.
- the parameters should preferably be chosen such that R 1 >1 ⁇ 2* P 1 is by far not violated.
- the radius of the cylindrical holes 18 is 3 mm and the LED pitch P 2 is 9 mm.
- the lens radius R 1 becomes 5 mm, which is larger than half the lens pitch P 1 , whereby R 1 >1 ⁇ 2* P 1 is satisfied.
- a light beam 40 emitted by the LED 16 a ′ which light beam 40 otherwise at least partly would have struck at least one hole 20 b in the adjacent LED array 14 b , is focused by two opposing lenses 26 in the lens array 24 such that the LED 16 a ′ is imaged at space 28 b ′ between two holes 20 b in array 14 b . Consequently, the beam 40 misses the holes 20 b in the LED array 14 b .
- a light beam 42 is focused by lens array 24 imaging the LED 16 a ′ at space 28 b ′′, and so on.
- the lens array 24 serves to image the LEDs 16 a of one array 14 a at spaces 28 b between the LEDs 16 b of the other array 14 b , and vice versa, whereby losses due to absorption or scattering at LEDs in the nearby array are diminished, and the luminous efficiency of the lighting device 10 is increased.
- the LEDs 16 are aligned with every second junction 30 between two adjacent lenses 26 in a row of the lens array 22 .
- a light beam 44 emitted by the LED 16 a ′ is focused by two opposing lenses 26 in the lens array 24 such that the LED 16 a ′ is imaged at space 28 b ′ between two holes 20 b in array 14 b . Consequently, the beam 44 misses the holes 20 b in the LED array 14 b .
- a light beam 46 is focused by lens array 24 imaging the LED 16 a ′is at space 28 b ′′, and so on.
- the LEDs could be arranged in a curved array along a curved reflective edge, given that the radius of the curvature is considerably larger than the LED pitch.
- the lens array could comprise only one row of positive lenses. This requires that the lenses are more curved.
- the LED pitch-lens pitch ratio could be different, for example 1:1.
- the first and second embodiments could be combined in a single device comprising several parallel LED arrays, one of which is placed along a reflective edge of the light guide plate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Planar Illumination Modules (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Securing Globes, Refractors, Reflectors Or The Like (AREA)
Abstract
The present invention relates to a lighting device including a light guide plate, and at least one array of light emitting diodes (LEDs), which LEDs are accommodated in holes arranged in the light guide plate. In some embodiments, the device is characterized by an array of lenses arranged such that light emitted by the LEDs passing the lens array is at least partly directed towards areas of the light guide plate free from holes.
Description
- This application is a continuation under 35 U.S.C. §120 of U.S. patent application Ser. No. 12/445,328, which is a national stage application under 35 U.S.C. §371 of International Application No. PCT/IB2007/054166 filed on Oct. 12, 2007, which claims priority to European Application No. 06122321.0, filed on Oct. 16, 2006, and European Application No. 07100361.0 filed on Jan. 11, 2007, both incorporated herein by reference.
- The present invention relates to lighting device comprising a light guide plate and at least one array of light emitting diodes
- Progress in the brightness, lumen efficacy and affordability of solid state light sources such as light emitting diodes (LEDs) enables new lighting applications that are no longer restricted to niche markets. LEDs offer several advantages over traditional light sources, such as long lifetime, low operating voltage, instant on, etc. For these and other reasons, LEDs are becoming more and more suited for making lamps for several applications such as color variable lamps, spotlights, LCD backlighting, architectural lighting, stage lighting, etc.
- For many lighting applications, the light of a single LED is not sufficient, and light of multiple LEDs needs to be combined to form a light source. One solution is to mix light of multiple LEDs in a light guide, before the light leaves the lighting device. An example of such a solution is disclosed in the document “LED Backlight designs using Luxeon high flux light source solutions” by Lumileds, Seattle 2004, http://www.lumileds.com/pdfs/Luxeon_light_source_solutions.pdf, incorporated herein by reference. A backlight based on side-emitting LEDs described in this document is schematically illustrated in
FIGS. 1 a-1 b. With reference toFIGS. 1 a-1 b, thebacklight 100 comprises alight guide 102 provided with cylindrical throughholes 104 which are arranged in a linear array along anedge 106 of the light guide. In each through hole, there is provided a side-emittingLED 108, whereby light from the LEDs is coupled into the light guide through the sidewall of the through holes, as illustrated byexemplary ray traces 110. Theedge 106 is preferably reflective, to avoid unintended out-coupling of light via the edge. - However, in such a solution when a dense array of
LEDs 108 is placed close to theedge 106 it may occur that light from oneLED 108 a is directed via reflection off the edge 106 (exemplary ray trace 112) towards anothernearby hole 104 b and gets absorbed or scattered at theLED 108 b inside this hole. Thus, the lumen efficiency of such a lighting device is degraded. - It is an object of the present invention to overcome or at least alleviate this problem, and to provide a lighting device with improved lumen efficiency.
- This and other objects that will be apparent from the following description are achieved by means of a lighting device, according to the appended claim 1, comprising a light guide plate and at least one array of light emitting diodes (LEDs), which LEDs are accommodated in holes arranged in the light guide plate, characterized by an array of lenses arranged such that light emitted by the LEDs passing the lens array is at least partly directed towards areas of the light guide plate free from holes.
- Because of the lens array, no or little light strikes the nearby holes. Therefore, the LEDs can be placed closer together and losses due to absorption or scattering at nearby LEDs in the lighting device are diminished. Overall, the luminous efficiency and power of the lighting device can be increased.
- Preferably, the lens array comprises at least one row of positive lenses, to readily direct the light in the wanted directions. Also preferably, the lens pitch is about ½ of the LED pitch, which provides to a feasible design of the lighting device.
- In one embodiment, the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflector is directed by the lens array to pass between the LEDs in the array. Thereby, losses due to absorption or scattering at adjacent LEDs/holes in the array are diminished, and the luminous efficiency of the lighting device is increased. To further boost these effects, the LEDs are preferably aligned with every second junction between two adjacent lenses in the lens array.
- In another embodiment, the lens array is placed between a first LED array and a second LED array such that light emitted by the LEDs in the first array and passing the lens array is directed by the lens array to pass between the LEDs in the second array. Thereby, losses due to absorption or scattering at LEDs/holes in the nearby array are diminished, and the luminous efficiency of the lighting device is increased. To further boost these effects, the distance between the first LED array and the lens array and the distance between the second LED array and the lens array are preferably equal. Further, the LEDs of the first array may be aligned with the optical axes of every second lens in a row of the lens array while the LEDs of the second array may be aligned with the optical axes of every other second lens in the row of the lens array. Alternatively, the LEDs may be aligned with every second junction between two adjacent lenses in a row of the lens array.
- Preferably, the holes are cylindrical holes, and the LEDs are preferably side emitting LEDs, for useful in-coupling of light into the light guide plate.
- This and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing currently preferred embodiments of the invention.
-
FIG. 1 a is a top view of a backlight according to prior art. -
FIG. 1 b is a cross-sectional side view of the backlight ofFIG. 1 a. -
FIG. 2 is a partial top view of a lighting device according to a first embodiment of the invention. -
FIG. 3 is a partial top view of a lighting device according to a first variant of a second embodiment of the invention. -
FIG. 4 is a partial top view of a lighting device according to a second variant of the second embodiment of the invention. - A light emitting diode (LED) based lighting device according to a first embodiment of the present invention will now be described with reference to
FIG. 2 . - The lighting device denoted 10 comprises a
light guide plate 12. Thelight guide plate 12 is transparent and can be made of glass or plastics (such as PMMA or PC), for example. - The
lighting device 10 further comprises alinear array 14 ofLEDs 16 arranged along areflective edge 18 belonging to thelight guide plate 12. Thereflective edge 18 serves to direct any incident light back into thelight guide plate 12, to avoid unintentional out-coupling of light from thelight guide plate 12 via the edge. TheLEDs 16 are preferably side-emitting omnidirectional LEDs. - The
LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in thelight guide plate 12. ‘Lateral’ is in relation to the plane of the light guide plate. Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodatedLED 16 is to be laterally coupled into thelight guide plate 12. The holes 20 could be through holes or holes having an opening towards one side of thelight guide plate 12 only. - According to the invention, the
lighting device 10 further comprises alens array 24. Thelens array 24 is placed between thereflective edge 18 and theLED array 14, and it comprises one linear row ofpositive lenses 26. Thelenses 26 may be formed separately or as integral parts of thelight guide plate 12. Any gap between thelenses 26 and thereflective edge 18 can be filled with air, for example. Thelens array 24 serves to direct light emitted from theLEDs 16 and reflected off theedge 18 towards areas of thelight guide plate 12 free from or with no holes 20 (orLEDs 16, consequently). Namely, the light is directed to pass between theLEDs 16. To this end, in a preferred embodiment, the lens pitch P1 is ½ of the LED pitch P2 (P1=½* P2), and with everysecond junction 30 between twoadjacent lenses 26 in thelinear lens array 24 there is aligned anLED 16. The LED pitch P2 is the distance between the centers of twoadjacent LEDs 16, and “aligned with” means here that an imaginary line from thejunction 30, which line is perpendicular to the main linear direction of the lens array, runs through the center of aLED 16. Further, the focal strength of alens 26 should satisfy the following relation 1/f=1/D, where f is the focal length and D is the distance between theLED array 14 and the lens array 24 (the total lens strength ftot is formed by passing throughlens 26 twice; 1/ftot=1/f+1/f=2/f and 1/ftot=1/D+1/D=2/D; hence 1/f=1/D). The focal length f is given by f=(n/(n−1))R1, where n is the refractive index of the material of thelight guide plate 12 and R1 is the radius of eachlens 26. The refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56. The various parameters mentioned above should be chosen such that lens radius R1 is larger than ½ of the lens pitch P1 (R1>½* P1), otherwise thelens array 24 cannot be realized. Also, to avoid too curved lens surfaces, which can be difficult to make, the parameters should preferably be chosen such that R1>½* P1 is by far not violated. In a feasible design, the radius of thecylindrical holes 18 is 3 mm and the LED pitch P2 is 9 mm. The lens pitch P1 is half the LED pitch P2, that is P1=4.5 mm. For example, when D=15, the lens radius R1 becomes D*(n−1)/n=5 mm, which is larger than half the lens pitch P1, whereby R1>½* P1 is satisfied. - Upon operation of the
lighting device 10, alight ray 32 emitted by theLED 16 a, which lightray 32 otherwise would have been reflected off theedge 18 an into theadjacent hole 20 b (as inFIG. 1 a), is focused by a correspondinglens 26 of thelens array 24 on its way towards thereflective edge 18. After reflection off theedge 18, thelight ray 32 is again focused by the correspondinglens 26 towards thespace 28′ between theholes hole 20 b. On the other hand, the direction of alight ray 34 emitted by theLED 16 a, which lightray 34 otherwise would have been reflected off theedge 18 towards thespace 28″ between theholes lens array 24 since thelight ray 34 passes close to the optical axis of the lens 26 (whereas thelight ray 32 passes thelens 26 off-axis and is refracted more strongly). Therefore, thelight ray 34 is still directed towards thespace 28″ between theholes adjacent LEDs 16. Overall, thelens array 24 serves to image reflections of theLEDs 16 atspaces 28 between thereal LEDs 16 b, whereby losses due to absorption or scattering at adjacent LEDs are diminished, and the luminous efficiency of thelighting device 10 is increased. - A lens array can also advantageously be used in a second embodiment, wherein two LED arrays are arranged parallel to each other, as illustrated in
FIGS. 3-4 . The function of the lens array is here to avoid that light from one array is absorbed or scattered at LEDs in the other array. - In a first variant (
FIG. 3 ) of the second embodiment, the lighting device denoted 10 comprises alight guide plate 12. Thelight guide plate 12 should be transparent and can be made of glass or plastics (such as PMMA or PC), for example. - The
lighting device 10 further comprises two parallellinear arrays 14 ofLEDs 16. TheLEDs 16 are preferably side-emitting omnidirectional LEDs. - The
LEDs 16 are accommodated in cylindrical holes 20 having a circular lateral cross-section, which holes 20 are arranged in thelight guide plate 12. Each hole 20 has a circumferential side facet (cylinder wall) 22 through which light from the accommodatedLED 16 is to be coupled into thelight guide plate 12. The holes 20 could be through holes or holes having an opening towards one side of thelight guide plate 12 only. - According to the invention, the
lighting device 10 further comprises alens array 24 arranged in thelight guide plate 12. Thelens array 24 is placed between the twoLED arrays 14 in an in-plane arrangement. Thelens array 24 is formed by cutting or otherwise removing aportion 36 of thelight guide plate 12, whichportion 36 has the form of a linear array of biconcave or double concave lenses. Left is alinear lens array 24 with two rows of opposingpositive lenses 26. Thelens array 24 serves to direct light emitted from theLEDs 16 in one array and passing thelens array 24 towards areas of thelight guide plate 12 free from or with no holes 20 (orLEDs 16, consequently). Namely, the light is directed to pass between theLEDs 16 of the other array. To this end, in a preferred embodiment, the lens pitch P1 is ½ of the LED pitch P2 (P1=½* P2), the distance Da between theLED array 14 a and thelens array 24 and the distance Db between the LED array 14 b and thelens array 24 are equal (Da=Db), and theLEDs 16 a ofarray 14 a are aligned with theoptical axes 38 a of everysecond lenses 26 of a row while theLEDs 16 b of array 14 b are aligned with theoptical axes 38 b of every othersecond lenses 26 of the row (thus, the twoarrays 14 a and 14 b are displaced with half a LED pitch P2 in relation to each other). Further, the focal strength of two opposinglenses 26 should satisfy the following relation 1/f=1/Da+1/Db, where f is the focal length. The focal length f is given by f=(½)(n/(n−1))R1, where n is the refractive index of the material of thelight guide plate 12 and R1 is the radius of eachlens 26. The refractive index for PMMA is typically about 1.49 and the refractive index for PC is typically about 1.56. The various parameters mentioned above should be chosen such that lens radius R1 is larger than ½ of the lens pitch P1 (R1>½* P1), otherwise thelens array 22 cannot be realized. Also, to avoid too curved lens surfaces, which can be difficult to make, the parameters should preferably be chosen such that R1>½* P1 is by far not violated. In a feasible design, the radius of thecylindrical holes 18 is 3 mm and the LED pitch P2 is 9 mm. The lens pitch P1 is half the LED pitch P2, that is P1=4.5 mm. For a system with Da=Db=15, the lens radius R1 becomes 5 mm, which is larger than half the lens pitch P1, whereby R1 >½* P1 is satisfied. - Upon operation of the
lighting device 10, alight beam 40 emitted by theLED 16 a′, which lightbeam 40 otherwise at least partly would have struck at least onehole 20 b in the adjacent LED array 14 b, is focused by two opposinglenses 26 in thelens array 24 such that theLED 16 a′ is imaged atspace 28 b′ between twoholes 20 b in array 14 b. Consequently, thebeam 40 misses theholes 20 b in the LED array 14 b. Similarly, alight beam 42 is focused bylens array 24 imaging theLED 16 a′ atspace 28 b″, and so on. Overall, thelens array 24 serves to image theLEDs 16 a of onearray 14 a atspaces 28 b between theLEDs 16 b of the other array 14 b, and vice versa, whereby losses due to absorption or scattering at LEDs in the nearby array are diminished, and the luminous efficiency of thelighting device 10 is increased. - In a second variant (
FIG. 4 ) of the second embodiment, theLEDs 16 are aligned with everysecond junction 30 between twoadjacent lenses 26 in a row of thelens array 22. Here alight beam 44 emitted by theLED 16 a′ is focused by two opposinglenses 26 in thelens array 24 such that theLED 16 a′ is imaged atspace 28 b′ between twoholes 20 b in array 14 b. Consequently, thebeam 44 misses theholes 20 b in the LED array 14 b. Similarly, alight beam 46 is focused bylens array 24 imaging theLED 16 a′is atspace 28 b″, and so on. - The person skilled in the art realizes that the present invention by no means is limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims. For example, in the first embodiment, instead of a straight reflective edge and linear LED array, the LEDs could be arranged in a curved array along a curved reflective edge, given that the radius of the curvature is considerably larger than the LED pitch. In the second embodiment, the lens array could comprise only one row of positive lenses. This requires that the lenses are more curved. In both the first and second embodiments, the LED pitch-lens pitch ratio could be different, for example 1:1. Also, the first and second embodiments could be combined in a single device comprising several parallel LED arrays, one of which is placed along a reflective edge of the light guide plate.
Claims (10)
1. A lighting device, comprising:
a light guide plate defining a plurality of holes, at least one array of light emitting diodes (LEDs) at least partially disposed in the holes; and
an array of lenses arranged such that light emitted by the LEDs passing the lens array is directed to pass between the LEDs in the array of LEDs, wherein the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflective edge is directed by the lens array to pass between the LEDs in the array.
2. The device according to claim 1 , wherein the array of lenses comprises at least one row of positive lenses.
3. The device according to claim 1 , wherein, for at least one lens in the array of lens, the lens pitch is about ½ of the LED pitch and is smaller than about ½ of the lens radius.
4. The device according to claim 1 , wherein the LEDs are aligned with every second junction between two adjacent lenses in the lens array.
5. The device according to claim 1 , wherein the holes are substantially cylindrical, and the LEDs are side-emitting omnidirectional LEDs.
6. A lighting device, comprising:
a light guide plate defining a plurality of holes, at least one array of light emitting diodes (LEDs) at least partially disposed in the holes; and
an array of lenses arranged such that light emitted by the LEDs passing the lens array is directed to pass between the LEDs in the array of LEDs, wherein, for at least one lens in the array of lens, the lens pitch is about ½ of the LED pitch and is smaller than about ½ of the lens radius
7. The device according to claim 6 , wherein the lens array is placed between one LED array and a reflective edge of the light guide plate such that light emitted by the LEDs in the array and reflected by the reflective edge is directed by the lens array to pass between the LEDs in the array.
8. The device according to claim 7 , wherein the LEDs are aligned with every second junction between two adjacent lenses in the lens array.
9. The device according to claim 6 , wherein the holes are substantially cylindrical,
10. The device according to claim 6 , wherein the LEDs are side-emitting omnidirectional LEDs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/312,101 US20120075884A1 (en) | 2006-10-16 | 2011-12-06 | Lighting device employing a light guide plate and a plurality of light emitting diodes |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06122321 | 2006-10-16 | ||
EP06122321.0 | 2006-10-16 | ||
EP07100361.0 | 2007-01-11 | ||
EP07100361 | 2007-01-11 | ||
PCT/IB2007/054166 WO2008047285A1 (en) | 2006-10-16 | 2007-10-12 | Lighting device |
US44532809A | 2009-04-13 | 2009-04-13 | |
US13/312,101 US20120075884A1 (en) | 2006-10-16 | 2011-12-06 | Lighting device employing a light guide plate and a plurality of light emitting diodes |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2007/054166 Continuation WO2008047285A1 (en) | 2006-10-16 | 2007-10-12 | Lighting device |
US44532809A Continuation | 2006-10-16 | 2009-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120075884A1 true US20120075884A1 (en) | 2012-03-29 |
Family
ID=39125592
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/445,328 Expired - Fee Related US8083390B2 (en) | 2006-10-16 | 2007-10-12 | Lighting device employing a light guide plate and a plurality of light emitting diodes |
US13/312,101 Abandoned US20120075884A1 (en) | 2006-10-16 | 2011-12-06 | Lighting device employing a light guide plate and a plurality of light emitting diodes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/445,328 Expired - Fee Related US8083390B2 (en) | 2006-10-16 | 2007-10-12 | Lighting device employing a light guide plate and a plurality of light emitting diodes |
Country Status (5)
Country | Link |
---|---|
US (2) | US8083390B2 (en) |
EP (1) | EP2082166A1 (en) |
JP (1) | JP5215312B2 (en) |
TW (1) | TW200834011A (en) |
WO (1) | WO2008047285A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130163272A1 (en) * | 2011-12-23 | 2013-06-27 | Touchsensor Technologies, Llc | User interface lighting apparatus |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8545083B2 (en) * | 2009-12-22 | 2013-10-01 | Sumita Optical Glass, Inc. | Light-emitting device, light source and method of manufacturing the same |
JP2011238366A (en) | 2010-05-06 | 2011-11-24 | Funai Electric Co Ltd | Plane light-emitting device |
TWI476350B (en) | 2012-03-21 | 2015-03-11 | Young Lighting Technology Inc | Light source module |
US20140218968A1 (en) * | 2013-02-05 | 2014-08-07 | National Central University | Planar lighting device |
JP2016162714A (en) * | 2015-03-05 | 2016-09-05 | セイコーエプソン株式会社 | Luminaire, display device and portable electronic equipment |
JP7239042B2 (en) * | 2019-03-07 | 2023-03-14 | オムロン株式会社 | Light-emitting device and vehicle lamp |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004184685A (en) * | 2002-12-03 | 2004-07-02 | Matsushita Electric Ind Co Ltd | Display device |
US20060267037A1 (en) * | 2005-05-31 | 2006-11-30 | Samsung Electro-Mechanics Co., Ltd. | Light emitting diode package |
US7534013B1 (en) * | 2003-01-16 | 2009-05-19 | Simon Jerome H | Illuminating devices using small PT sources including LEDs |
US7708444B2 (en) * | 2004-02-05 | 2010-05-04 | Mitsubishi Denki Kabushiki Kaisha | Surface light source device |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6712481B2 (en) * | 1995-06-27 | 2004-03-30 | Solid State Opto Limited | Light emitting panel assemblies |
EP0835408B1 (en) * | 1995-06-29 | 2001-08-22 | Siemens Microelectronics, Inc. | Localized illumination using tir technology |
JP4159059B2 (en) * | 1998-06-05 | 2008-10-01 | シチズン電子株式会社 | Planar light source unit |
ATE353447T1 (en) * | 1999-12-28 | 2007-02-15 | Fujitsu Kasei Kk | LIGHTING APPARATUS FOR DISPLAY |
US6876408B2 (en) * | 2000-02-14 | 2005-04-05 | Fuji Photo Film Co., Ltd. | Collimating plate, lighting apparatus and liquid crystal display apparatus |
US7004610B2 (en) * | 2000-09-25 | 2006-02-28 | Mitsubishi Rayon Co., Ltd. | Light source device |
US6987613B2 (en) * | 2001-03-30 | 2006-01-17 | Lumileds Lighting U.S., Llc | Forming an optical element on the surface of a light emitting device for improved light extraction |
US7011420B2 (en) * | 2002-09-04 | 2006-03-14 | Eastman Kodak Company | Planar directed light source |
US7557781B2 (en) * | 2003-01-06 | 2009-07-07 | Tpo Displays Corp. | Planar display structure with LED light source |
JP2004355889A (en) * | 2003-05-28 | 2004-12-16 | Mitsubishi Electric Corp | Planar light source device and display device |
TW200522387A (en) * | 2003-12-26 | 2005-07-01 | Ind Tech Res Inst | High-power LED planarization encapsulation structure |
US7808706B2 (en) * | 2004-02-12 | 2010-10-05 | Tredegar Newco, Inc. | Light management films for displays |
US7463315B2 (en) * | 2004-03-11 | 2008-12-09 | Tpo Displays Corp. | Light coupling structure on light guide plate in a backlight module |
JP4413668B2 (en) * | 2004-03-23 | 2010-02-10 | 日本ライツ株式会社 | Light guide plate, light source device and flat light emitting device |
JP4290196B2 (en) * | 2004-07-06 | 2009-07-01 | 株式会社浅葱クリエイト | Planar light source and electric signboard |
EP1640756A1 (en) | 2004-09-27 | 2006-03-29 | Barco N.V. | Methods and systems for illuminating |
US7182499B2 (en) * | 2004-11-12 | 2007-02-27 | Radiant Opto-Electronics Corporation | Light-conductive board and a rear light module using the light-conductive board |
KR100668314B1 (en) * | 2004-11-22 | 2007-01-12 | 삼성전자주식회사 | Backlight unit |
JP2006302710A (en) * | 2005-04-21 | 2006-11-02 | Toshiba Matsushita Display Technology Co Ltd | Surface light source device |
TWM284913U (en) * | 2005-09-09 | 2006-01-01 | Innolux Display Corp | Light guide plate, backlight module and liquid crystal display device |
TW200730951A (en) * | 2006-02-10 | 2007-08-16 | Wintek Corp | Guide light module |
US20080007964A1 (en) * | 2006-07-05 | 2008-01-10 | Tai-Yen Lin | Light guiding structure |
KR100818278B1 (en) * | 2006-10-16 | 2008-04-01 | 삼성전자주식회사 | Lighting device for liquid crystal display |
TW201106057A (en) * | 2009-08-14 | 2011-02-16 | Coretronic Corp | Lighting condensing film, backlight module and liquid crystal display |
-
2007
- 2007-10-12 WO PCT/IB2007/054166 patent/WO2008047285A1/en active Application Filing
- 2007-10-12 TW TW096138323A patent/TW200834011A/en unknown
- 2007-10-12 EP EP07826729A patent/EP2082166A1/en not_active Withdrawn
- 2007-10-12 US US12/445,328 patent/US8083390B2/en not_active Expired - Fee Related
- 2007-10-12 JP JP2009531972A patent/JP5215312B2/en not_active Expired - Fee Related
-
2011
- 2011-12-06 US US13/312,101 patent/US20120075884A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004184685A (en) * | 2002-12-03 | 2004-07-02 | Matsushita Electric Ind Co Ltd | Display device |
US7534013B1 (en) * | 2003-01-16 | 2009-05-19 | Simon Jerome H | Illuminating devices using small PT sources including LEDs |
US7708444B2 (en) * | 2004-02-05 | 2010-05-04 | Mitsubishi Denki Kabushiki Kaisha | Surface light source device |
US20060267037A1 (en) * | 2005-05-31 | 2006-11-30 | Samsung Electro-Mechanics Co., Ltd. | Light emitting diode package |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130163272A1 (en) * | 2011-12-23 | 2013-06-27 | Touchsensor Technologies, Llc | User interface lighting apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW200834011A (en) | 2008-08-16 |
JP2010507191A (en) | 2010-03-04 |
WO2008047285A1 (en) | 2008-04-24 |
US20110051456A1 (en) | 2011-03-03 |
US8083390B2 (en) | 2011-12-27 |
EP2082166A1 (en) | 2009-07-29 |
JP5215312B2 (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101529158B (en) | Lighting device | |
KR100723857B1 (en) | Light guide plate, surface light source device, and display device | |
JP4087864B2 (en) | Flat light emitting device | |
RU2475672C2 (en) | Compact optical system and lenses for producing uniform collimated light | |
US20120075884A1 (en) | Lighting device employing a light guide plate and a plurality of light emitting diodes | |
US6561660B2 (en) | Light guiding device of a liquid crystal display | |
WO2013035788A1 (en) | Illumination device and illumination stand | |
US8118467B2 (en) | Light guide plate and edge-lighting type backlight module | |
CN101655213A (en) | Light-emitting diode light source module | |
US8465180B2 (en) | Optical element for asymmetric light distribution | |
US10173584B2 (en) | Vehicle lamp | |
JP4653326B2 (en) | Lighting equipment | |
US8066419B2 (en) | Lighting device employing a light guide plate and a plurality of light emitting diodes | |
TW201414957A (en) | Illumination device | |
JP4638815B2 (en) | Light guide plate having light lens array, light irradiation device, and liquid crystal display device | |
US20110110079A1 (en) | Light guide illumination device | |
TWI443382B (en) | Illumination device and lens thereof | |
JP5419852B2 (en) | Lighting device | |
KR20050029768A (en) | Surface light illumination apparatus | |
CN218938539U (en) | Optical lens and lighting lamp | |
West | Side-emitting high-power LEDs and their application in illumination | |
JP2004139901A (en) | Lighting device | |
TWI409411B (en) | Led light source module | |
JP2005005038A (en) | Lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |