US20120073806A1 - Low cut water sampling device - Google Patents
Low cut water sampling device Download PDFInfo
- Publication number
- US20120073806A1 US20120073806A1 US13/238,726 US201113238726A US2012073806A1 US 20120073806 A1 US20120073806 A1 US 20120073806A1 US 201113238726 A US201113238726 A US 201113238726A US 2012073806 A1 US2012073806 A1 US 2012073806A1
- Authority
- US
- United States
- Prior art keywords
- fluids
- inner chamber
- conduit
- vessel
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/086—Withdrawing samples at the surface
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/10—Devices for withdrawing samples in the liquid or fluent state
- G01N1/20—Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
- G01N1/2035—Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4077—Concentrating samples by other techniques involving separation of suspended solids
- G01N2001/4083—Concentrating samples by other techniques involving separation of suspended solids sedimentation
Definitions
- This invention relates generally to the production of hydrocarbons from an earthen formation. More particularly, the invention relates to a method and system for sampling a low water-cut hydrocarbon stream.
- water may be produced along with the hydrocarbons.
- the water is typically intermixed with, or in suspension with crude oil, gas, or other hydrocarbon fluids, but does not form a solution with the hydrocarbon fluids.
- the percentage of water mixed with hydrocarbons produced from hydrocarbon producing wells, also referred to as the “water cut,” is greater than 10% (by volume).
- some wells produce a very low water cut stream of hydrocarbons. Separation of the water and hydrocarbons in such low cut production streams is typically more difficult as compared to high cut production streams.
- Sampling and analysis of the water produced from a well serves several purposes.
- the well may be treated with certain compounds to improve production or to prevent certain adverse conditions.
- Such treatments may include injection of water containing surfactants or polymers.
- these treatments may include anticorrosion treatments (corrosion inhibitor added), or treatments to prevent the formation of hydrates or deposition of paraffins or salts. These treatments facilitate transport of the fluid to the surface and/or prevent oil deposits.
- the relative volumes of the physical and/or chemical characteristics of these treatments in water or other fluids can vary considerably as a function of time.
- One way to monitor and adjust such treatments is to sample and analyze the produced water to determine the quantities and characteristics of the additives in the water.
- the water characteristics analyzed and evaluated typically include without limitation, resistivity, density, pH, conductivity, bicarbonate alkalinity, and quantitative elemental analysis. Water samples can also be used to analyze the source of the fluids produced for multi-zonal completion wells. This information may be used in reservoir development and depletion planning.
- One conventional method for sampling water from a produced hydrocarbon stream is to take an isolated direct sample from the pipeline at a single point in time, separate the water, and then analyze the separated water.
- continuous sampling and analysis of the produced water over time cannot be obtained without repeatedly taking discrete samples from the pipeline.
- the apparatus comprises a vessel having an inner chamber.
- the apparatus comprises a hydrocarbon fluids outlet conduit in fluid communication with the inner chamber.
- the apparatus comprises a well fluids inlet conduit coaxially disposed within the hydrocarbon fluids outlet conduit and in fluid communication with the inner chamber.
- the well fluids inlet conduit has a first portion extending from the vessel and a second portion extending into the inner chamber.
- the second portion of the well fluids inlet conduit includes a plurality of openings configured to direct the well production fluids radially outward from the well fluids inlet conduit.
- the apparatus comprises a sample fluids outlet in fluid communication with the inner chamber.
- the method comprises (a) continuously flowing produced well fluids to a sampling device.
- the sampling device comprises a vessel having an inner chamber, a hydrocarbon fluids outlet conduit in fluid communication with the inner chamber, and a well fluids inlet conduit coaxially disposed within the hydrocarbon fluids outlet conduit and in fluid communication with the inner chamber.
- the method comprises (b) flowing the produced well fluids through the well fluids inlet conduit into the inner chamber of the vessel.
- the method comprises (c) allowing a sample fluid in the produced well fluids to separate from one or more hydrocarbon fluids in the produced well fluids to a lower portion of the inner chamber under the force of gravity.
- the method comprises (d) withdrawing a sample of the sample fluid from the vessel through the sample fluids outlet.
- the apparatus comprises a vessel having an inner chamber.
- the apparatus comprises a hydrocarbon fluids outlet conduit coupled to the vessel.
- the apparatus comprises a well fluids inlet conduit extending coaxially through the hydrocarbon fluids outlet conduit into the inner chamber.
- the apparatus comprises a sample fluids outlet positioned at a lower end of the vessel and in fluid communication with the inner chamber.
- the apparatus comprises an annulus radially disposed between the hydrocarbon fluids outlet conduit and the well fluids inlet conduit. The annulus has an inlet end in fluid communication with the inner chamber.
- Embodiments described herein comprise a combination of features and advantages intended to address various shortcomings associated with certain prior devices, systems, and methods.
- the various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description, and by referring to the accompanying drawings.
- FIG. 1 is a schematic view of an offshore installation including an embodiment of a low cut water sampler in accordance with the principles described herein;
- FIG. 2 is a front view of the low cut water sampler of FIG. 1 ;
- FIG. 3 is a front view of the low cut water sampler of FIG. 1 being supplied produced well fluids and before outputting separated hydrocarbon fluids or water;
- FIG. 4 is an enlarged view of the lower end of the inlet conduit of the low cut water sampler of FIG. 1 being supplied produced well fluids and outputting separated hydrocarbon fluid and water.
- the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ”
- the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices, components, and connections.
- the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis.
- an axial distance refers to a distance measured along or parallel to the central axis
- a radial distance means a distance measured perpendicular to the central axis.
- the phrase “low cut” refers to produced well fluids with less than about 10% water composition (by volume)
- the phrase “high cut” refers to produced well fluids with greater than about 10% water composition (by volume).
- system 10 for producing a completed subterranean wellbore 11 is schematically shown.
- system 10 includes an offshore platform 20 at the sea surface 12 , a subsea production manifold 30 mounted to a wellhead 31 at the sea floor 13 , and a production riser 40 extending from manifold 30 to platform 20 .
- riser 40 is a large-diameter pipe that connects manifold 30 to the floating platform 20 .
- Casing 32 extends from wellhead 31 into subterranean wellbore 11 .
- System 10 also includes a water sampling device 100 for sampling low cut well fluids produced through riser 40 .
- device 100 receives samples of produced well fluids from riser 40 , separates the water from the produced well fluids, outputs the separated water for subsequent analysis, and outputs the balance of the produced well fluids (following separation of the water).
- the produced well fluids flowing through riser 40 typically comprise hydrocarbon fluids (e.g. liquid hydrocarbons such as crude oil and/or hydrocarbon gases such as natural gas) and water.
- hydrocarbon fluids e.g. liquid hydrocarbons such as crude oil and/or hydrocarbon gases such as natural gas
- the balance or remainder of the produced well fluids after separation of the water in device 100 is predominantly hydrocarbon fluids, it being understood that such fluids may include small quantities of water, solids (e.g., sand), or other fluids.
- a production sample conduit or flowline 50 supplies produced wellbore fluids from riser 40 to sampling device 100 .
- Samples of the water in the produced well fluids in riser 40 may be obtained continuously with device 100 via flowline 50 to determine the composition of the water therein.
- sampling device 100 is shown disposed on platform 20 , device 100 may be disposed at any suitable offshore or onshore location.
- sample flowline 50 may extend from platform 20 to a different offshore or onshore location for sampling with device 100 and subsequent analysis of the separated water.
- water sampling device 100 includes a produced well fluids inlet conduit 110 , a separator containment vessel 120 , a sample fluid outlet 130 , a separated hydrocarbon fluids outlet conduit 140 , and a hydrocarbon fluids outlet fitting or coupling 150 .
- Vessel 120 has an inner chamber 121 .
- sample fluid outlet 130 may also be referred to as a water outlet.
- Inlet conduit 110 , water outlet 130 , and hydrocarbon outlet conduit 140 are each in fluid communication with inner chamber 121 .
- produced well fluids designated with reference numeral 160
- separated water samples designated with reference numeral 161
- hydrocarbon fluids designated with reference numeral 162 and resulting from the separation of water 161 from well fluids 160 , exit chamber 121 via outlet conduit 140 and fitting 150 .
- Flowline 50 previously described is coupled to inlet conduit 110 , and thus, supplies produced well fluids to chamber 121 via inlet conduit 110 .
- separator vessel 120 may be any suitable vessel or container compatible with potentially corrosive well fluids and capable of withstanding relatively high pressures.
- vessel 120 is preferably a containment vessel or tank designed and configured to withstand pressures of at least about 285 psi, alternatively about 1,000 psi, alternatively about 5,000 psi, alternatively about 10,000 psi, and alternatively about 20,000 psi.
- vessel 120 is an elongate upright generally cylindrical tank having an upper end 120 a and a lower end 120 b opposite upper end 120 a .
- Upper end 120 a includes a port 122 and lower end 120 b includes a port 123 .
- Conduits 110 , 140 extend through port 122 into inner chamber 121 , and water outlet 130 is in fluid communication with port 123 .
- vessel 120 is a cylindrical upright vessel in this embodiment, in other embodiments the separator vessel (e.g., vessel 120 ) may have other suitable geometries such as rectangular, spherical, etc.
- vessel 120 and inner chamber 121 may have any suitable volume. However, for embodiments described herein, vessel 120 is preferably sized such that chamber 121 has a volume between 1 liter and 4 liters.
- outlet conduit 140 extends through port 122 and is secured to vessel 120 .
- conduit 140 may be positioned in port 122 and then welded to vessel 120 .
- outlet conduit 140 is a tubular having a central axis 145 , a first or upper end 140 a disposed outside and above vessel 120 , and a second or lower end 140 b disposed within chamber 121 .
- hydrocarbon fluids 162 flow from chamber 121 into end 140 b , through conduit 140 , and out end 140 a into fitting 150 .
- lower end 140 b may also be referred to as an inlet end
- upper end 140 a may also be referred to as an outlet end.
- Fitting 150 is coupled to upper end 140 a of conduit 140 .
- fitting 150 is a tubular manifold including a main bore or passage 151 , a first lateral bore or passage 152 extending from main bore 151 , and a second lateral bore or passage 153 extending from main bore 151 .
- Main bore 151 is coaxially aligned with outlet conduit 140 and has a first or upper end 151 a distal conduit 140 , and a second or lower end 151 b in fluid communication with conduit 140 .
- lower end 151 b receives hydrocarbon fluids 162 from chamber 121 via conduit 140 , and thus, may also be referred to as hydrocarbon fluids inlet end 151 b .
- Each lateral bore 152 , 153 has an inlet end 152 a , 153 a , respectively, in fluid communication with main bore 151 between ends 151 a, b , and an outlet end 152 b , 153 b , respectively.
- outlet end 152 b is in fluid communication with a sensor 154 .
- sensor 154 may comprise any suitable type of sensor or gauge for monitoring one or more parameters of the fluids in chamber 122 such as pressure, temperature, flow rate, etc.
- inlet conduit 110 extends through main bore 151 of fitting 150 and outlet conduit 140 into vessel 120 .
- inlet conduit 110 is a tubular having a central axis 115 , a first or inlet end 110 a extending from main bore 151 distal vessel 120 , and a second or closed end 110 b disposed in chamber 121 .
- Conduit 110 is coaxially aligned with main bore 151 of fitting 150 and outlet conduit 140 , and thus, central axes 115 , 145 are coincident.
- Conduit 110 is preferably positioned such that end 110 b is disposed in the upper half of separator chamber 121 .
- annulus 114 is radially positioned between inlet conduit 110 and fitting 150 , outlet conduit 140 .
- Annulus 114 extends from end 140 b of conduit 140 to upper end 151 a of main bore 151 .
- annulus 114 has a first or upper end 114 a coincident with upper end 151 a of main bore 151 and a second or lower end 114 b coincident with inlet end 140 b of conduit 140 .
- Annulus 114 is closed off and sealed at upper end 114 a with a cap 116 that extends radially across main bore 151 from inlet conduit 110 to fitting 150 .
- lower end 114 b of annulus 114 is open to chamber 120 .
- Lateral bores 152 , 153 are in fluid communication with annulus 114 .
- hydrocarbon fluids 162 flow from chamber 121 into end 114 b of annulus 114 , through annulus 114 , and out end 114 a of annulus 114 into lateral bores 152 , 153 .
- lower end 114 b may also be referred to as an inlet end.
- the portion of inlet conduit 110 extending into chamber 121 includes a plurality of through bores or openings 112 proximal closed end 110 b .
- Openings 112 extend radially through conduit 110 proximal end 110 b and allow produced well fluids 160 flowing through conduit 110 to exit inlet conduit 110 in a radial fashion to minimize agitation and mixing of fluids within chamber 121 . Accordingly, each opening 112 may be described as an outlet port.
- openings 112 are arranged in a plurality of axially spaced rows 112 a, b, c, d .
- Openings 112 within each row 112 a, b, c, d are circumferentially spaced about conduit 110 , and further, openings 112 in each row 112 a, b, c, d are circumferentially offset or staggered relative to the openings 112 in the adjacent row(s) 112 a, b, c, d .
- each row 112 a, b, c, d includes two openings 112 spaced 180° apart, with openings 112 in adjacent row s 112 a, b, c, d being circumferentially staggered 90° apart.
- each row may have more or less openings (e.g., openings 112 ) and/or the openings in each row may be circumferentially spaced by more or less than 180°.
- openings 112 are shown as circular holes in FIG. 4 , in general, openings 112 may have any suitable geometry (e.g., oval, rectangular, elliptical, etc.).
- water outlet 130 is coupled to vessel 120 and extends from port 123 .
- outlet 130 includes a valve 131 for selectively opening and closing outlet 130 . More specifically, valve 131 has a closed position restricting and/or preventing fluid flow through outlet 130 , and an open position allowing fluid flow through outlet 130 .
- produced well fluids 160 are supplied to inlet conduit 110 via production sample flowline 50 . Fluids 160 flow through conduit 110 and radially outward through openings 112 into chamber 121 . As previously described, the radial ejection of the produced well fluids 160 from conduit 110 offers the potential to reduce and/or prevent mixing and agitation of the separated water 161 and hydrocarbon fluids 162 within separator chamber 121 . As desired, produced well fluids 160 may be provided to vessel 120 continuously or on a periodic basis.
- any water 161 in the produced well fluids 160 begins to migrate or settle to the bottom of separator chamber 121 and the hydrocarbon fluids 162 move to the upper portion of chamber 121 .
- gravity naturally drives the separation of the heavier water 161 from the lighter hydrocarbon fluids 162 .
- Outlet 153 b may be connected to a flowline or conduit that may direct the separated hydrocarbon fluids to any desired location (e.g., back into the produced well fluids downstream of conduit 50 ).
- Cap 116 prevents hydrocarbon fluids 162 from exiting annulus 114 at upper end 114 a .
- Separated water 161 in the lower portion of chamber 121 may be drawn off through outlet 130 for testing by opening valve 131 . Initially, and between sampling of water 161 within chamber 121 , valve 131 is preferably closed.
- embodiments of sampling devices for sampling produced well fluids rely on gravity separation to cost efficiently separate water or other fluids from the produced hydrocarbon fluids for sampling purposes.
- embodiments of device 100 allow for continuous sampling of produced well fluids over a period of time.
- embodiments of the apparatus provide a very low cost solution to separating the small percentage of water in low cut produced fluids.
- embodiments of the apparatus are capable of withstanding extremely high pressures.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
- This application claims benefit of U.S. provisional patent application Ser. No. 61/384,806 filed Sep. 21, 2010, and entitled “Low Cut Water Sampler,” which is hereby incorporated herein by reference in its entirety.
- Not applicable.
- 1. Field of the Invention
- This invention relates generally to the production of hydrocarbons from an earthen formation. More particularly, the invention relates to a method and system for sampling a low water-cut hydrocarbon stream.
- 2. Background of the Technology
- In hydrocarbon production operations, water may be produced along with the hydrocarbons. The water is typically intermixed with, or in suspension with crude oil, gas, or other hydrocarbon fluids, but does not form a solution with the hydrocarbon fluids. In general, the percentage of water mixed with hydrocarbons produced from hydrocarbon producing wells, also referred to as the “water cut,” is greater than 10% (by volume). However, some wells produce a very low water cut stream of hydrocarbons. Separation of the water and hydrocarbons in such low cut production streams is typically more difficult as compared to high cut production streams.
- Sampling and analysis of the water produced from a well serves several purposes. For example, during production, the well may be treated with certain compounds to improve production or to prevent certain adverse conditions. Such treatments may include injection of water containing surfactants or polymers. In addition, these treatments may include anticorrosion treatments (corrosion inhibitor added), or treatments to prevent the formation of hydrates or deposition of paraffins or salts. These treatments facilitate transport of the fluid to the surface and/or prevent oil deposits. The relative volumes of the physical and/or chemical characteristics of these treatments in water or other fluids can vary considerably as a function of time. One way to monitor and adjust such treatments is to sample and analyze the produced water to determine the quantities and characteristics of the additives in the water. The water characteristics analyzed and evaluated typically include without limitation, resistivity, density, pH, conductivity, bicarbonate alkalinity, and quantitative elemental analysis. Water samples can also be used to analyze the source of the fluids produced for multi-zonal completion wells. This information may be used in reservoir development and depletion planning.
- One conventional method for sampling water from a produced hydrocarbon stream is to take an isolated direct sample from the pipeline at a single point in time, separate the water, and then analyze the separated water. Thus, with this approach, continuous sampling and analysis of the produced water over time cannot be obtained without repeatedly taking discrete samples from the pipeline. Furthermore, in produced well fluids with low water cut, it is difficult to separate the water and hydrocarbons.
- Accordingly, there remains a need in the art for improved systems and methods for sampling water from a produced hydrocarbon stream. Such systems and methods would be particularly well-received if they offered the potential for continuous sampling over time and could be employed with low water cut hydrocarbon streams.
- These and other needs in the art are addressed in one embodiment by an apparatus for sampling well production fluids. In an embodiment, the apparatus comprises a vessel having an inner chamber. In addition, the apparatus comprises a hydrocarbon fluids outlet conduit in fluid communication with the inner chamber. Further, the apparatus comprises a well fluids inlet conduit coaxially disposed within the hydrocarbon fluids outlet conduit and in fluid communication with the inner chamber. The well fluids inlet conduit has a first portion extending from the vessel and a second portion extending into the inner chamber. The second portion of the well fluids inlet conduit includes a plurality of openings configured to direct the well production fluids radially outward from the well fluids inlet conduit. Still further, the apparatus comprises a sample fluids outlet in fluid communication with the inner chamber.
- These and other needs in the art are addressed in another embodiment by a method of sampling produced well fluids. In an embodiment, the method comprises (a) continuously flowing produced well fluids to a sampling device. The sampling device comprises a vessel having an inner chamber, a hydrocarbon fluids outlet conduit in fluid communication with the inner chamber, and a well fluids inlet conduit coaxially disposed within the hydrocarbon fluids outlet conduit and in fluid communication with the inner chamber. In addition, the method comprises (b) flowing the produced well fluids through the well fluids inlet conduit into the inner chamber of the vessel. Further, the method comprises (c) allowing a sample fluid in the produced well fluids to separate from one or more hydrocarbon fluids in the produced well fluids to a lower portion of the inner chamber under the force of gravity. Still further, the method comprises (d) withdrawing a sample of the sample fluid from the vessel through the sample fluids outlet.
- These and other needs in the art are addressed in another embodiment by an apparatus for sampling well production fluids. In an embodiment, the apparatus comprises a vessel having an inner chamber. In addition, the apparatus comprises a hydrocarbon fluids outlet conduit coupled to the vessel. Further, the apparatus comprises a well fluids inlet conduit extending coaxially through the hydrocarbon fluids outlet conduit into the inner chamber. Still further, the apparatus comprises a sample fluids outlet positioned at a lower end of the vessel and in fluid communication with the inner chamber. Moreover, the apparatus comprises an annulus radially disposed between the hydrocarbon fluids outlet conduit and the well fluids inlet conduit. The annulus has an inlet end in fluid communication with the inner chamber.
- The foregoing has outlined rather broadly the features and technical advantages of the invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
- Embodiments described herein comprise a combination of features and advantages intended to address various shortcomings associated with certain prior devices, systems, and methods. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description, and by referring to the accompanying drawings.
- For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:
-
FIG. 1 is a schematic view of an offshore installation including an embodiment of a low cut water sampler in accordance with the principles described herein; -
FIG. 2 is a front view of the low cut water sampler ofFIG. 1 ; -
FIG. 3 is a front view of the low cut water sampler ofFIG. 1 being supplied produced well fluids and before outputting separated hydrocarbon fluids or water; and -
FIG. 4 is an enlarged view of the lower end of the inlet conduit of the low cut water sampler ofFIG. 1 being supplied produced well fluids and outputting separated hydrocarbon fluid and water. - The following discussion is directed to various exemplary embodiments. However, one skilled in the art will understand that the examples disclosed herein have broad application, and that the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to suggest that the scope of the disclosure, including the claims, is limited to that embodiment.
- Certain terms are used throughout the following description and claims to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.
- In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices, components, and connections. In addition, as used herein, the terms “axial” and “axially” generally mean along or parallel to a central axis (e.g., central axis of a body or a port), while the terms “radial” and “radially” generally mean perpendicular to the central axis. For instance, an axial distance refers to a distance measured along or parallel to the central axis, and a radial distance means a distance measured perpendicular to the central axis. As used herein, the phrase “low cut” refers to produced well fluids with less than about 10% water composition (by volume), and the phrase “high cut” refers to produced well fluids with greater than about 10% water composition (by volume).
- Referring now
FIG. 1 , anoffshore system 10 for producing a completedsubterranean wellbore 11 is schematically shown. In this embodiment,system 10 includes anoffshore platform 20 at thesea surface 12, asubsea production manifold 30 mounted to awellhead 31 at thesea floor 13, and aproduction riser 40 extending frommanifold 30 toplatform 20. In general,riser 40 is a large-diameter pipe that connects manifold 30 to the floatingplatform 20. During production operations, well fluids are produced throughriser 40 toplatform 20, where the produced fluids may be stored, processed, offloaded or combinations thereof.Casing 32 extends fromwellhead 31 intosubterranean wellbore 11. -
System 10 also includes awater sampling device 100 for sampling low cut well fluids produced throughriser 40. As will be describe in more detail below,device 100 receives samples of produced well fluids fromriser 40, separates the water from the produced well fluids, outputs the separated water for subsequent analysis, and outputs the balance of the produced well fluids (following separation of the water). The produced well fluids flowing throughriser 40 typically comprise hydrocarbon fluids (e.g. liquid hydrocarbons such as crude oil and/or hydrocarbon gases such as natural gas) and water. Thus, the balance or remainder of the produced well fluids after separation of the water indevice 100 is predominantly hydrocarbon fluids, it being understood that such fluids may include small quantities of water, solids (e.g., sand), or other fluids. In this embodiment, a production sample conduit orflowline 50 supplies produced wellbore fluids fromriser 40 tosampling device 100. Samples of the water in the produced well fluids inriser 40 may be obtained continuously withdevice 100 viaflowline 50 to determine the composition of the water therein. Although samplingdevice 100 is shown disposed onplatform 20,device 100 may be disposed at any suitable offshore or onshore location. For examples,sample flowline 50 may extend fromplatform 20 to a different offshore or onshore location for sampling withdevice 100 and subsequent analysis of the separated water. - Referring now to
FIG. 2 ,water sampling device 100 includes a produced wellfluids inlet conduit 110, aseparator containment vessel 120, asample fluid outlet 130, a separated hydrocarbonfluids outlet conduit 140, and a hydrocarbon fluids outlet fitting orcoupling 150.Vessel 120 has aninner chamber 121. In this embodiment, water is sampled and separated from the produced well fluids, and thus, samplefluid outlet 130 may also be referred to as a water outlet.Inlet conduit 110,water outlet 130, andhydrocarbon outlet conduit 140 are each in fluid communication withinner chamber 121. As will be described in more detail below, produced well fluids, designated withreference numeral 160, enterchamber 121 viainlet conduit 110; separated water samples, designated withreference numeral 161, may be taken fromchamber 121 viaoutlet 130; and hydrocarbon fluids, designated withreference numeral 162 and resulting from the separation ofwater 161 fromwell fluids 160,exit chamber 121 viaoutlet conduit 140 andfitting 150.Flowline 50 previously described is coupled toinlet conduit 110, and thus, supplies produced well fluids tochamber 121 viainlet conduit 110. - In general,
separator vessel 120 may be any suitable vessel or container compatible with potentially corrosive well fluids and capable of withstanding relatively high pressures. In particular,vessel 120 is preferably a containment vessel or tank designed and configured to withstand pressures of at least about 285 psi, alternatively about 1,000 psi, alternatively about 5,000 psi, alternatively about 10,000 psi, and alternatively about 20,000 psi. In this embodiment,vessel 120 is an elongate upright generally cylindrical tank having an upper end 120 a and a lower end 120 b opposite upper end 120 a. Upper end 120 a includes aport 122 and lower end 120 b includes aport 123.Conduits port 122 intoinner chamber 121, andwater outlet 130 is in fluid communication withport 123. Althoughvessel 120 is a cylindrical upright vessel in this embodiment, in other embodiments the separator vessel (e.g., vessel 120) may have other suitable geometries such as rectangular, spherical, etc. In general,vessel 120 andinner chamber 121 may have any suitable volume. However, for embodiments described herein,vessel 120 is preferably sized such thatchamber 121 has a volume between 1 liter and 4 liters. - Referring still to
FIG. 2 , as previously described,outlet conduit 140 extends throughport 122 and is secured tovessel 120. For instance,conduit 140 may be positioned inport 122 and then welded tovessel 120. In this embodiment,outlet conduit 140 is a tubular having a central axis 145, a first or upper end 140 a disposed outside and abovevessel 120, and a second or lower end 140 b disposed withinchamber 121. As will be described in more detail below,hydrocarbon fluids 162 flow fromchamber 121 into end 140 b, throughconduit 140, and out end 140 a intofitting 150. Thus, lower end 140 b may also be referred to as an inlet end, and upper end 140 a may also be referred to as an outlet end. - Fitting 150 is coupled to upper end 140 a of
conduit 140. In this embodiment, fitting 150 is a tubular manifold including a main bore orpassage 151, a first lateral bore orpassage 152 extending frommain bore 151, and a second lateral bore orpassage 153 extending frommain bore 151. Main bore 151 is coaxially aligned withoutlet conduit 140 and has a first or upper end 151 adistal conduit 140, and a second or lower end 151 b in fluid communication withconduit 140. As will be described in more detail below, lower end 151 b receiveshydrocarbon fluids 162 fromchamber 121 viaconduit 140, and thus, may also be referred to as hydrocarbon fluids inlet end 151 b. Each lateral bore 152, 153 has aninlet end 152 a, 153 a, respectively, in fluid communication withmain bore 151 between ends 151 a, b, and an outlet end 152 b, 153 b, respectively. In this embodiment, outlet end 152 b is in fluid communication with asensor 154. In general,sensor 154 may comprise any suitable type of sensor or gauge for monitoring one or more parameters of the fluids inchamber 122 such as pressure, temperature, flow rate, etc. - Referring still to
FIG. 2 , wellfluids inlet conduit 110 extends throughmain bore 151 of fitting 150 andoutlet conduit 140 intovessel 120. In this embodiment,inlet conduit 110 is a tubular having a central axis 115, a first or inlet end 110 a extending frommain bore 151distal vessel 120, and a second or closed end 110 b disposed inchamber 121.Conduit 110 is coaxially aligned withmain bore 151 of fitting 150 andoutlet conduit 140, and thus, central axes 115, 145 are coincident.Conduit 110 is preferably positioned such that end 110 b is disposed in the upper half ofseparator chamber 121. - The outer diameter of
inlet conduit 110 is less than the inner diameter ofmain bore 151 andoutlet conduit 140, and thus, anannulus 114 is radially positioned betweeninlet conduit 110 and fitting 150,outlet conduit 140.Annulus 114 extends from end 140 b ofconduit 140 to upper end 151 a ofmain bore 151. Thus,annulus 114 has a first or upper end 114 a coincident with upper end 151 a ofmain bore 151 and a second or lower end 114 b coincident with inlet end 140 b ofconduit 140.Annulus 114 is closed off and sealed at upper end 114 a with acap 116 that extends radially acrossmain bore 151 frominlet conduit 110 to fitting 150. However, lower end 114 b ofannulus 114 is open tochamber 120. Lateral bores 152, 153 are in fluid communication withannulus 114. As will be described in more detail below,hydrocarbon fluids 162 flow fromchamber 121 into end 114 b ofannulus 114, throughannulus 114, and out end 114 a ofannulus 114 into lateral bores 152, 153. Thus, lower end 114 b may also be referred to as an inlet end. - Referring now to
FIGS. 2 and 4 , the portion ofinlet conduit 110 extending intochamber 121 includes a plurality of through bores oropenings 112 proximal closed end 110 b.Openings 112 extend radially throughconduit 110 proximal end 110 b and allow produced wellfluids 160 flowing throughconduit 110 to exitinlet conduit 110 in a radial fashion to minimize agitation and mixing of fluids withinchamber 121. Accordingly, each opening 112 may be described as an outlet port. As best shown inFIG. 4 , in this embodiment,openings 112 are arranged in a plurality of axially spacedrows 112 a, b, c, d.Openings 112 within eachrow 112 a, b, c, d are circumferentially spaced aboutconduit 110, and further,openings 112 in eachrow 112 a, b, c, d are circumferentially offset or staggered relative to theopenings 112 in the adjacent row(s) 112 a, b, c, d. In this embodiment, eachrow 112 a, b, c, d includes twoopenings 112 spaced 180° apart, withopenings 112 in adjacent row s 112 a, b, c, d being circumferentially staggered 90° apart. However, in other embodiments, each row (e.g., eachrow 112 a, b, c, d) may have more or less openings (e.g., openings 112) and/or the openings in each row may be circumferentially spaced by more or less than 180°. Althoughopenings 112 are shown as circular holes inFIG. 4 , in general,openings 112 may have any suitable geometry (e.g., oval, rectangular, elliptical, etc.). - Referring again to
FIG. 2 ,water outlet 130 is coupled tovessel 120 and extends fromport 123. In this embodiment,outlet 130 includes avalve 131 for selectively opening andclosing outlet 130. More specifically,valve 131 has a closed position restricting and/or preventing fluid flow throughoutlet 130, and an open position allowing fluid flow throughoutlet 130. - Referring now to
FIGS. 1 and 2 , during production operations, produced wellfluids 160 are supplied toinlet conduit 110 viaproduction sample flowline 50.Fluids 160 flow throughconduit 110 and radially outward throughopenings 112 intochamber 121. As previously described, the radial ejection of the produced wellfluids 160 fromconduit 110 offers the potential to reduce and/or prevent mixing and agitation of the separatedwater 161 andhydrocarbon fluids 162 withinseparator chamber 121. As desired, produced wellfluids 160 may be provided tovessel 120 continuously or on a periodic basis. - As best shown in
FIG. 2 , without being limited by this or any particular theory, due to the difference in densities and the immiscibility betweenwater 161 andhydrocarbon fluids 162 in producedwell fluids 160, anywater 161 in the produced wellfluids 160 begins to migrate or settle to the bottom ofseparator chamber 121 and thehydrocarbon fluids 162 move to the upper portion ofchamber 121. In other words, gravity naturally drives the separation of theheavier water 161 from thelighter hydrocarbon fluids 162. - Moving now to
FIG. 3 , as produced wellfluids 160 are supplied tochamber 121 andwater 161 separates fromhydrocarbon fluids 162, the level ofhydrocarbon fluids 162 inchamber 121 begins to rise. When the level ofhydrocarbon fluids 162 inchamber 121 is sufficient, the hydrocarbon fluids in the upper portion ofchamber 121exit chamber 121 throughannulus 114. The pressure and/or flow of producedhydrocarbon fluids 160 inconduit 110 intochamber 121 preventshydrocarbon fluids 162 from backflowing intoconduit 110 viaopenings 112. However,hydrocarbon fluids 162 are free to flow through inlet end 114 b andannulus 114 to outlets 152 b, 153 b. Outlet 152 b supplieshydrocarbon fluids 162 tosensor 154. Outlet 153 b may be connected to a flowline or conduit that may direct the separated hydrocarbon fluids to any desired location (e.g., back into the produced well fluids downstream of conduit 50).Cap 116 preventshydrocarbon fluids 162 from exitingannulus 114 at upper end 114 a.Separated water 161 in the lower portion ofchamber 121 may be drawn off throughoutlet 130 for testing by openingvalve 131. Initially, and between sampling ofwater 161 withinchamber 121,valve 131 is preferably closed. - In the manner described, embodiments of sampling devices for sampling produced well fluids (e.g., device 100) rely on gravity separation to cost efficiently separate water or other fluids from the produced hydrocarbon fluids for sampling purposes. In contrast to conventional low cut water sampling devices limited to periodic water sampling, embodiments of
device 100 allow for continuous sampling of produced well fluids over a period of time. Furthermore, embodiments of the apparatus provide a very low cost solution to separating the small percentage of water in low cut produced fluids. In addition, embodiments of the apparatus are capable of withstanding extremely high pressures. Although embodiments disclosed herein (e.g., device 100) have been described with respect to separating and sampling water from a produced well fluids stream, it is contemplated that other fluids having a higher density than the produced hydrocarbons may also be separated. Further, although embodiments disclosed herein have been shown and described in conjunction with offshore hydrocarbon producing wells, they may also be used to separate and sample fluids from a produced well fluids in a pipeline, on land, etc. - While preferred embodiments have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teachings herein. The embodiments described herein are exemplary only and are not limiting. Many variations and modifications of the systems, apparatus, and processes described herein are possible and are within the scope of the invention. For example, the relative dimensions of various parts, the materials from which the various parts are made, and other parameters can be varied. Accordingly, the scope of protection is not limited to the embodiments described herein, but is only limited by the claims that follow, the scope of which shall include all equivalents of the subject matter of the claims. Unless expressly stated otherwise, the steps in a method claim may be performed in any order. The recitation of identifiers such as (a), (b), (c) or (1), (2), (3) before steps in a method claim are not intended to and do not specify a particular order to the steps, but rather are used to simply subsequent reference to such steps.
- The discussion of a reference is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated herein by reference in their entirety, to the extent that they provide exemplary, procedural, or other details supplementary to those set forth herein.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/238,726 US20120073806A1 (en) | 2010-09-21 | 2011-09-21 | Low cut water sampling device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38480610P | 2010-09-21 | 2010-09-21 | |
US13/238,726 US20120073806A1 (en) | 2010-09-21 | 2011-09-21 | Low cut water sampling device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120073806A1 true US20120073806A1 (en) | 2012-03-29 |
Family
ID=44786095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/238,726 Abandoned US20120073806A1 (en) | 2010-09-21 | 2011-09-21 | Low cut water sampling device |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120073806A1 (en) |
EP (1) | EP2618906A1 (en) |
AU (1) | AU2011305492A1 (en) |
BR (1) | BR112013005928A2 (en) |
CA (1) | CA2810771A1 (en) |
EA (1) | EA201370075A1 (en) |
WO (1) | WO2012040339A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016186511A1 (en) * | 2015-05-18 | 2016-11-24 | Typhonix As | Choke valve separator |
US10473561B2 (en) * | 2017-11-28 | 2019-11-12 | Air Liquide Canada, Inc. | Method of sampling a cryogenic liquid |
US10481049B2 (en) * | 2017-11-28 | 2019-11-19 | Air Liquide Canada, Inc. | Cryogenic liquid sampler |
CN113532928A (en) * | 2020-04-20 | 2021-10-22 | 中国石油天然气股份有限公司 | Wellhead sampling device and wellhead sampling system |
US20230168235A1 (en) * | 2021-11-19 | 2023-06-01 | United States Geological Survey | Particulate-based cumulative contaminant sampling device |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3499531A (en) * | 1969-06-25 | 1970-03-10 | Ind Service Co Inc | Cyclonic separation devices |
US4323122A (en) * | 1980-06-02 | 1982-04-06 | Knopik Dwayne L | Process for recovering organic liquids from underground areas |
US4428839A (en) * | 1979-08-09 | 1984-01-31 | The British Petroleum Company Limited | Separator for oil, gas and water |
US4476928A (en) * | 1982-07-23 | 1984-10-16 | Dimar Holding Corporation | Method and apparatus for solvent generation and recovery of hydrocarbons |
US5002657A (en) * | 1990-05-04 | 1991-03-26 | Botts John B | Separator for oil well production fluids |
US5232475A (en) * | 1992-08-24 | 1993-08-03 | Ohio University | Slug flow eliminator and separator |
US5254292A (en) * | 1989-02-02 | 1993-10-19 | Institut Francais Du Petrole | Device for regulating and reducing the fluctuations in a polyphasic flow, and its use |
US6444001B1 (en) * | 2000-03-14 | 2002-09-03 | Glenn E. Sheffield | Separator and separator system |
US20040020860A1 (en) * | 2002-08-02 | 2004-02-05 | Kevin Schmigel | Method and apparatus for separating and measuring solids from multi-phase well fluids |
US6730236B2 (en) * | 2001-11-08 | 2004-05-04 | Chevron U.S.A. Inc. | Method for separating liquids in a separation system having a flow coalescing apparatus and separation apparatus |
US20080251469A1 (en) * | 2004-03-19 | 2008-10-16 | Lih-Der Tee | Method and Separator For Cyclonic Separation of a Fluid Mixture |
US20080283294A1 (en) * | 2005-09-20 | 2008-11-20 | Ross Colquhoun | Apparatus and Method for Continuous Measurement of a Physical Property of a Drilling Fluid |
US20090173232A1 (en) * | 2005-10-28 | 2009-07-09 | Jorn Folkvang | Separator Tank for Separation of Fluid Comprising Water, Oil and Gas |
US7569097B2 (en) * | 2006-05-26 | 2009-08-04 | Curtiss-Wright Electro-Mechanical Corporation | Subsea multiphase pumping systems |
US20100006476A1 (en) * | 2005-03-11 | 2010-01-14 | Jorn Folkvang | Method of Separating a Mixture, and a Plant for Separating a Mixture Comprising Water, Oil and Gas |
US7654397B2 (en) * | 2004-05-06 | 2010-02-02 | Schlumberger Technology Corporation | Gravity separator for a multi-phase effluent |
US20110185795A1 (en) * | 2008-06-20 | 2011-08-04 | Ross Colquhoun | Test apparatus |
US8127867B1 (en) * | 2008-09-30 | 2012-03-06 | Bronco Oilfield Services, Inc. | Method and system for surface filtering of solids from return fluids in well operations |
US20120132079A1 (en) * | 2009-06-17 | 2012-05-31 | Jan Thore Naess | Separator tank for separating oil and gas from water |
US20120211436A1 (en) * | 2005-11-09 | 2012-08-23 | Suncor Energy Inc. | Process, apparatus and system for treating a hydrocarbon feedstock |
US20130126357A1 (en) * | 2010-08-05 | 2013-05-23 | Cameron Solutions Inc. | Petroleum desalting utilizing voltage modulation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20003291D0 (en) * | 2000-06-22 | 2000-06-22 | Norske Stats Oljeselskap | separator |
-
2011
- 2011-09-21 WO PCT/US2011/052572 patent/WO2012040339A1/en active Application Filing
- 2011-09-21 EA EA201370075A patent/EA201370075A1/en unknown
- 2011-09-21 EP EP11767855.7A patent/EP2618906A1/en not_active Withdrawn
- 2011-09-21 US US13/238,726 patent/US20120073806A1/en not_active Abandoned
- 2011-09-21 AU AU2011305492A patent/AU2011305492A1/en not_active Abandoned
- 2011-09-21 CA CA2810771A patent/CA2810771A1/en not_active Abandoned
- 2011-09-21 BR BR112013005928A patent/BR112013005928A2/en not_active Application Discontinuation
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3499531A (en) * | 1969-06-25 | 1970-03-10 | Ind Service Co Inc | Cyclonic separation devices |
US4428839A (en) * | 1979-08-09 | 1984-01-31 | The British Petroleum Company Limited | Separator for oil, gas and water |
US4323122A (en) * | 1980-06-02 | 1982-04-06 | Knopik Dwayne L | Process for recovering organic liquids from underground areas |
US4476928A (en) * | 1982-07-23 | 1984-10-16 | Dimar Holding Corporation | Method and apparatus for solvent generation and recovery of hydrocarbons |
US5254292A (en) * | 1989-02-02 | 1993-10-19 | Institut Francais Du Petrole | Device for regulating and reducing the fluctuations in a polyphasic flow, and its use |
US5002657A (en) * | 1990-05-04 | 1991-03-26 | Botts John B | Separator for oil well production fluids |
US5232475A (en) * | 1992-08-24 | 1993-08-03 | Ohio University | Slug flow eliminator and separator |
US6444001B1 (en) * | 2000-03-14 | 2002-09-03 | Glenn E. Sheffield | Separator and separator system |
US6730236B2 (en) * | 2001-11-08 | 2004-05-04 | Chevron U.S.A. Inc. | Method for separating liquids in a separation system having a flow coalescing apparatus and separation apparatus |
US20040020860A1 (en) * | 2002-08-02 | 2004-02-05 | Kevin Schmigel | Method and apparatus for separating and measuring solids from multi-phase well fluids |
US6790367B2 (en) * | 2002-08-02 | 2004-09-14 | Northland Energy Corporation | Method and apparatus for separating and measuring solids from multi-phase well fluids |
US20080251469A1 (en) * | 2004-03-19 | 2008-10-16 | Lih-Der Tee | Method and Separator For Cyclonic Separation of a Fluid Mixture |
US7510597B2 (en) * | 2004-03-19 | 2009-03-31 | Shell Oil Company | Method and separator for cyclonic separation of a fluid mixture |
US7654397B2 (en) * | 2004-05-06 | 2010-02-02 | Schlumberger Technology Corporation | Gravity separator for a multi-phase effluent |
US20100006476A1 (en) * | 2005-03-11 | 2010-01-14 | Jorn Folkvang | Method of Separating a Mixture, and a Plant for Separating a Mixture Comprising Water, Oil and Gas |
US8425777B2 (en) * | 2005-03-11 | 2013-04-23 | Schlumberger Norge As | Method of separating a mixture, and a plant for separating a mixture comprising water, oil and gas |
US20080283294A1 (en) * | 2005-09-20 | 2008-11-20 | Ross Colquhoun | Apparatus and Method for Continuous Measurement of a Physical Property of a Drilling Fluid |
US20090173232A1 (en) * | 2005-10-28 | 2009-07-09 | Jorn Folkvang | Separator Tank for Separation of Fluid Comprising Water, Oil and Gas |
US20100006488A1 (en) * | 2005-10-28 | 2010-01-14 | Jorn Folkvang | Well Fluid Separator Tank for Separation of Fluid Comprising Water, Oil and Gas, Use of Such a Tank, and a Method for Separating a Well Fluid Including Water, Oil, and Gas |
US8043419B2 (en) * | 2005-10-28 | 2011-10-25 | Schlumberger Norge As | Separator tank for separation of fluid comprising water, oil and gas |
US20120006201A1 (en) * | 2005-10-28 | 2012-01-12 | Jorn Folkvang | Separator tank for separation of fluid comprising water, oil and gas |
US8105421B2 (en) * | 2005-10-28 | 2012-01-31 | Schlumberger Norge As | Well fluid separator tank for separation of fluid comprising water, oil and gas, use of such a tank, and a method for separating a well fluid including water, oil, and gas |
US8277547B2 (en) * | 2005-10-28 | 2012-10-02 | Schlumberger Norge As | Separator tank for separation of fluid comprising water, oil and gas |
US20120211436A1 (en) * | 2005-11-09 | 2012-08-23 | Suncor Energy Inc. | Process, apparatus and system for treating a hydrocarbon feedstock |
US7569097B2 (en) * | 2006-05-26 | 2009-08-04 | Curtiss-Wright Electro-Mechanical Corporation | Subsea multiphase pumping systems |
US20110185795A1 (en) * | 2008-06-20 | 2011-08-04 | Ross Colquhoun | Test apparatus |
US8127867B1 (en) * | 2008-09-30 | 2012-03-06 | Bronco Oilfield Services, Inc. | Method and system for surface filtering of solids from return fluids in well operations |
US20120132079A1 (en) * | 2009-06-17 | 2012-05-31 | Jan Thore Naess | Separator tank for separating oil and gas from water |
US20130126357A1 (en) * | 2010-08-05 | 2013-05-23 | Cameron Solutions Inc. | Petroleum desalting utilizing voltage modulation |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016186511A1 (en) * | 2015-05-18 | 2016-11-24 | Typhonix As | Choke valve separator |
NO340557B1 (en) * | 2015-05-18 | 2017-05-15 | Typhonix As | Choke valve separator |
US10473561B2 (en) * | 2017-11-28 | 2019-11-12 | Air Liquide Canada, Inc. | Method of sampling a cryogenic liquid |
US10481049B2 (en) * | 2017-11-28 | 2019-11-19 | Air Liquide Canada, Inc. | Cryogenic liquid sampler |
CN113532928A (en) * | 2020-04-20 | 2021-10-22 | 中国石油天然气股份有限公司 | Wellhead sampling device and wellhead sampling system |
US20230168235A1 (en) * | 2021-11-19 | 2023-06-01 | United States Geological Survey | Particulate-based cumulative contaminant sampling device |
US12241881B2 (en) * | 2021-11-19 | 2025-03-04 | U.S. Geological Survey | Particulate-based cumulative contaminant sampling device |
Also Published As
Publication number | Publication date |
---|---|
CA2810771A1 (en) | 2012-03-29 |
BR112013005928A2 (en) | 2016-05-17 |
EP2618906A1 (en) | 2013-07-31 |
AU2011305492A1 (en) | 2013-03-28 |
EA201370075A1 (en) | 2013-09-30 |
WO2012040339A1 (en) | 2012-03-29 |
AU2011305492A8 (en) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1330849C (en) | Installation for the separation of fluids | |
AU2012210633B2 (en) | Apparatus for a fluid transport pipeline, related method and system | |
US20120267115A1 (en) | Subsea sampling system and method | |
EP2917471B1 (en) | Single-peice process module | |
EP2159369B1 (en) | Christmas tree with internally positioned flowmeter | |
US20120073806A1 (en) | Low cut water sampling device | |
EP2673466B1 (en) | Well testing and production apparatus and method | |
US10344549B2 (en) | Systems for removing blockages in subsea flowlines and equipment | |
NO321386B1 (en) | A method and apparatus for separating a fluid comprising several fluid components, preferably separating a source fluid in conjunction with a hydrocarbon / water production rudder | |
AU2012210633A1 (en) | Apparatus for a fluid transport pipeline, related method and system | |
CN101384372A (en) | online separator | |
MXPA05001695A (en) | A pipe separator for the separation of fluids, particularly oil, gas and water. | |
US8898018B2 (en) | Methods and systems for hydrocarbon production | |
BR102012028496A2 (en) | METHOD OF PRODUCTION OF SUBMARINE WELL FLUID AND SUBMARINE WELL HEAD ASSEMBLY | |
US10895151B2 (en) | Apparatus, systems and methods for oil and gas operations | |
CA3050867C (en) | Method and system for solid particle removal | |
RU2613646C1 (en) | Systems and methods for increasing liquid pressure of petroleum gas separator - liquid using one ore more pumps on sea bed | |
US8342040B2 (en) | Method and apparatus for obtaining fluid samples | |
Osfouri et al. | An overview of challenges and errors in sampling and recombination of gas condensate fluids | |
BR112018068651B1 (en) | METHOD FOR ARTIFICIAL LIFTING | |
EP3477042B1 (en) | Fluid properties measurement using choke valve system | |
US20230108767A1 (en) | Static chemical inhibitor system for off-plot piping immunity | |
CA3060023A1 (en) | Method and system for moving substances and preventing corrosion in a conduit | |
W Razak et al. | An investigation on factors influencing in-situ emulsion stability | |
Bybee | In-Line-Water-Separation Prototype Development and Testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BP EXPLORATION OPERATING COMPANY LIMITED, UNITED K Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARROWS, KIERAN E.;EDWARDS, MARK A.;HARVEY, MICHAEL P.;AND OTHERS;SIGNING DATES FROM 20111130 TO 20111206;REEL/FRAME:027412/0261 Owner name: BP CORPORATION NORTH AMERICA INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARROWS, KIERAN E.;EDWARDS, MARK A.;HARVEY, MICHAEL P.;AND OTHERS;SIGNING DATES FROM 20111130 TO 20111206;REEL/FRAME:027412/0261 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |