US20120069438A1 - Methods of fabricating display panel and flexible color filter thereof - Google Patents
Methods of fabricating display panel and flexible color filter thereof Download PDFInfo
- Publication number
- US20120069438A1 US20120069438A1 US13/304,692 US201113304692A US2012069438A1 US 20120069438 A1 US20120069438 A1 US 20120069438A1 US 201113304692 A US201113304692 A US 201113304692A US 2012069438 A1 US2012069438 A1 US 2012069438A1
- Authority
- US
- United States
- Prior art keywords
- color filter
- filter patterns
- flexible
- substrate
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/20—Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
- H01J9/205—Applying optical coatings or shielding coatings to the vessel of flat panel displays, e.g. applying filter layers, electromagnetic interference shielding layers, anti-reflection coatings or anti-glare coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2229/00—Details of cathode ray tubes or electron beam tubes
- H01J2229/89—Optical components associated with the vessel
- H01J2229/8913—Anti-reflection, anti-glare, viewing angle and contrast improving treatments or devices
Definitions
- the invention relates to a method of fabricating display panel, and more particularly, to a method of fabricating display panel with flexible color filter.
- the flexible panel display not only has features of light weight and thin thickness, but also has features of flexibility and is not easy to be broken. Therefore, the development of the flexible panel display has become increasingly important.
- a controlling elements array and a color filter film are printed on plastic substrates respectively by roll-to-roll printing process first. Then, the substrates are assembled to each other.
- the yield and the capacity of the roll-to-roll printing process are limited since the steadiness thereof is not good enough.
- the resolution of the controlling elements or the color filter film formed by the roll-to-roll printing process only achieve to about 30 micrometer. It is not corresponding to the tendency toward request the resolution of the nowadays display panel to 1 micrometer.
- controlling elements array or the color filter film are printed on the plastic substrates by ink jet printing during the conventional roll-to-roll printing process, the accuracy of process is more difficult to control than the accuracy of the lithographic and etching process. Moreover, the controlling elements array or the color filter film may be not even because the quantity of ink jetted by the clogged jet head is not uniform.
- the invention is directed to a method of fabricating flexible color filter for increasing the process yield thereof.
- the invention is further directed to a method of fabricating of display panel for increasing the accuracy of aligning the flexible color filter and the controlling elements array substrate. Accordingly, the process yield of the display panel may be improved.
- the invention provides a method of fabricating a flexible color filter. First, a rigid substrate is provided and a flexible substrate is formed on the rigid substrate. Next, a color filter film is formed on the flexible substrate. Then, the flexible substrate is separated from the rigid substrate.
- the invention also provides a method of fabricating a display panel.
- a flexible color filter is formed by the aforementioned steps and a controlling elements array substrate with a display region and a peripheral circuit region is formed and a display medium is disposed within the display region.
- the flexible color filter is assembled to above the controlling elements array substrate and on the display medium layer.
- a driving circuit is disposed on the controlling elements array substrate and located in the peripheral circuit region.
- the step of separating the flexible substrate from the rigid substrate comprises a laser releasing process.
- a light-shielding layer with a plurality of openings is formed before forming the color filter film on the flexible substrate, wherein the color filter patterns are formed in the openings.
- a second rigid substrate is provided before forming the controlling elements array substrate, and then the controlling elements array substrate is formed on the rigid substrate.
- the controlling elements array substrate is separated from the second rigid substrate by, for example, a laser releasing process after disposing the driving circuit thereon.
- the color filter film may comprise red, green and blue color filter patterns. Moreover, according to another embodiment, the color filter film further comprises white color filter patterns.
- the material of the flexible substrate may be polyimide, polyethylene terephathalate, polyether ether ketone, or polyethylene naphthalene, PMMA, PS, PAR, PC, TAC, ARTON.
- the display medium layer may be an electro-phoretic layer, an electro-wetting layer or a cholesteric liquid crystal layer.
- the process yield and the capacity of the flexible color filter and the display panel with the same may be improved.
- FIG. 1A to FIG. 1C are schematic cross-section views illustrating the flexible color filter during the fabricating process thereof according to an embodiment of the invention.
- FIG. 2 is a schematic cross-section view illustrating the color filter film formed on the flexible substrate according to another embodiment of the invention.
- FIG. 3 is a schematic cross-section view illustrating the light-shielding layer and the color filter film formed on the flexible substrate according to another embodiment of the invention.
- FIG. 4A to FIG. 4E are schematic cross-section views illustrating a display panel during the fabricating process thereof according to an embodiment of the invention.
- FIG. 5 is a schematic view illustrating a controlling elements array substrate according to an embodiment of the invention.
- FIG. 1A to FIG. 1C are schematic cross-section views illustrating the flexible color filter during the fabricating process thereof according to an embodiment of the invention.
- a flexible substrate 120 is formed on a rigid substrate 110 .
- the material of the rigid substrate 110 is, for example, glass or stainless steel and the material of the flexible substrate 120 may be polyimide, polyethylene terephathalate, polyether ether ketone, polyethylene naphthalene, polymethyl methacrylate, polystyrene, polyarylate, polycarbonate, TAC or ARTON.
- a color filter film 130 is formed on the flexible substrate 120 .
- the color filter film 130 comprises a plurality of color filter patterns such as red color filter patterns R, green color filter patterns G and blue color filter patterns B.
- the color filter film 130 may also comprise white color filter patterns W for increasing the display brightness, as shown in FIG. 2 .
- the color filter film 130 may be formed by lithographic and etching process.
- the color filter patterns may not only comprise cyan color filter patterns, yellow color filter patterns and magenta color filter patterns, also black color filter patterns. The colors of the color filter patterns of the invention are not limited hereto.
- a light-shielding layer 140 with a plurality of openings 142 may be formed on the flexible substrate 120 for improving the contrast of the display images and preventing the light from mixing before forming the color filter film 130 in another embodiment, as shown in FIG. 3 . Then, the color filter patterns are formed in the openings 142 and the material of the light-shielding layer 140 is, for example, resin or the other opaque materials.
- the flexible substrate 120 is separated from the rigid substrate 110 to form a flexible color filter 100 .
- the flexible substrate 120 is separated from the rigid substrate 110 by the laser releasing process.
- the yield and capacity of the flexible color display medium module 100 may be improved substantially.
- the application of the flexible color filter 100 would be described in the follow-up paragraphs, but the invention is not limited hereto.
- FIG. 4A to FIG. 4E are schematic cross-section views illustrating a display panel during the fabricating process thereof according to an embodiment of the invention.
- a controlling elements array substrate 210 with a display region 210 a and a peripheral circuit region 210 b is formed first.
- the controlling elements array substrate 210 comprises a substrate 212 and a plurality of pixel units 214 formed thereon. The places where the pixel units 214 disposed is determined as the display region 210 a of the controlling elements array substrate 210 .
- the controlling elements array substrate 210 of this embodiment may be flexible.
- the substrate 212 with flexibility is formed on a rigid substrate 201 first.
- the material of the substrate 212 is similar to or the same with the material of the aforementioned flexible substrate 120 , it is unnecessary to say herein.
- the pixel units 214 are formed on the substrate 212 . That is, the controlling elements array substrate 210 is formed on the rigid substrate 201 first in the invention.
- FIG. 5 is a schematic view illustrating a controlling elements array substrate according to an embodiment of the invention.
- each pixel unit 214 comprises a scan line 215 , a data line 216 , a thin film transistor 217 and a pixel electrode 218 .
- the thin film transistor 217 is electrically connected to the corresponding scan line 215 and the corresponding data line 216
- each pixel electrode 218 is electrically connected to the data line 216 through the thin film transistor 217 . That is, a thin film transistor array is used as controlling elements in this embodiment.
- the active controlling elements are used in this embodiment, the invention is not limited hereto. Those skilled in the art should know that the display panel of the invention also can be controlled by passive controlling elements array.
- a display medium layer 220 is formed on the controlling elements array.
- the display medium layer 220 is disposed on the pixel units 214 located in the display region 210 a of the controlling elements array substrate 210 .
- the display medium layer 220 is, for example, an electro-phoretic layer, an electro-wetting layer or a cholesteric liquid crystal layer.
- the flexible color filter 100 may be formed by the aforementioned steps. Then, the flexible color filter 100 and the controlling elements array substrate 210 are assembled to each other for locating the flexible color filter 100 on the display medium layer 220 .
- a driving circuit 230 is disposed in the peripheral circuit region 210 b of the controlling elements array substrate 210 .
- the driving circuit 230 comprises an IC circuit 232 and a flexible printed circuit 234 .
- the IC circuit 232 is used for driving the pixel units 214 disposed in the peripheral circuit region 210 b and the flexible printed circuit 234 is used for electrically connecting the IC circuit 232 to the external circuit (not shown in FIG. 4C ).
- the IC circuit 232 may disposed on the controlling elements array substrate 210 by chip on class process, chip on film process or tape automatic bonding process and electrically connected to the pixel units 214 disposed in the display region 210 a.
- controlling elements array substrate 210 is separated from the rigid substrate 201 after disposing the driving circuit 230 thereon to form the display panel 200 shown in FIG. 4E .
- the substrate 212 may also separated from the rigid substrate 201 by a laser releasing process.
- the flexible color filter of the invention comparing to the conventional color filter fabricated by roll-to-roll process has improved elements resolution, process yield and capacity.
- the display panel of the invention may comprise the aforementioned flexible color display medium module and a flexible controlling elements array substrate.
- the controlling elements array substrate is formed on a rigid substrate first and separated therefrom after disposing the driving circuit on the flexible controlling elements array substrate.
- the pixel units of the invention may be formed by the multi-mask process to achieve the best resolution of 1 micrometer, and the flexible substrate may be prevented from deforming as disposing the driving circuit thereon. Therefore, the yield of the driving circuit may avoid decreasing.
- the flexible color filter may be produced in mass production scale by the fabricating process of the invention. Moreover, the yield of the flexible color filter and the display panel with the same may be increased and the resolutions of the flexible color filter and the display panel may be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Optical Filters (AREA)
Abstract
A method of fabricating a display panel comprises the steps of: forming a controlling elements array substrate and a flexible color filter, respectively; forming a displaying medium on the controlling elements array substrate; and assembling the flexible color filter to the controlling elements array substrate for disposing it on the displaying medium layer. A method of fabricating a flexible color filter comprises the steps of: forming a flexible substrate on a rigidly substrate; forming a color filter film comprising a plurality of color filter patterns; and separating the flexible substrate from the rigidly substrate. Since the color filter film is formed before separating the flexible substrate from the rigid substrate, the flexible color filter may have good resolution and process yield.
Description
- This application is a continuation application of an application Ser. No. 12/402,432, filed on Mar. 11, 2009, and the entire contents of which are incorporated herein by reference.
- 1. Field of the Invention
- The invention relates to a method of fabricating display panel, and more particularly, to a method of fabricating display panel with flexible color filter.
- 2. Description of the Related Art
- With progress of the flat display technique, more and more electrical products, especially portable electrical products such as mobile phones, e-books, digital cameras and personal digital assistants etc., are equipped with flat display apparatuses. The development trend of the portable electrical product is to achieve light weight and thin thickness, so the flat display apparatus for the portable electrical product should have these features.
- It is well known that the flexible panel display not only has features of light weight and thin thickness, but also has features of flexibility and is not easy to be broken. Therefore, the development of the flexible panel display has become increasingly important. During the fabricating process of conventional flexible panel display, a controlling elements array and a color filter film are printed on plastic substrates respectively by roll-to-roll printing process first. Then, the substrates are assembled to each other.
- However, the yield and the capacity of the roll-to-roll printing process are limited since the steadiness thereof is not good enough. Furthermore, the resolution of the controlling elements or the color filter film formed by the roll-to-roll printing process only achieve to about 30 micrometer. It is not corresponding to the tendency toward request the resolution of the nowadays display panel to 1 micrometer.
- Besides, since the controlling elements array or the color filter film are printed on the plastic substrates by ink jet printing during the conventional roll-to-roll printing process, the accuracy of process is more difficult to control than the accuracy of the lithographic and etching process. Moreover, the controlling elements array or the color filter film may be not even because the quantity of ink jetted by the clogged jet head is not uniform.
- Therefore, the invention is directed to a method of fabricating flexible color filter for increasing the process yield thereof.
- The invention is further directed to a method of fabricating of display panel for increasing the accuracy of aligning the flexible color filter and the controlling elements array substrate. Accordingly, the process yield of the display panel may be improved.
- The invention provides a method of fabricating a flexible color filter. First, a rigid substrate is provided and a flexible substrate is formed on the rigid substrate. Next, a color filter film is formed on the flexible substrate. Then, the flexible substrate is separated from the rigid substrate.
- The invention also provides a method of fabricating a display panel. First, a flexible color filter is formed by the aforementioned steps and a controlling elements array substrate with a display region and a peripheral circuit region is formed and a display medium is disposed within the display region. Next, the flexible color filter is assembled to above the controlling elements array substrate and on the display medium layer. Then, a driving circuit is disposed on the controlling elements array substrate and located in the peripheral circuit region.
- According an embodiment of the invention, the step of separating the flexible substrate from the rigid substrate comprises a laser releasing process.
- According an embodiment of the invention, a light-shielding layer with a plurality of openings is formed before forming the color filter film on the flexible substrate, wherein the color filter patterns are formed in the openings.
- According an embodiment of the invention, a second rigid substrate is provided before forming the controlling elements array substrate, and then the controlling elements array substrate is formed on the rigid substrate. The controlling elements array substrate is separated from the second rigid substrate by, for example, a laser releasing process after disposing the driving circuit thereon.
- According an embodiment of the invention, the color filter film may comprise red, green and blue color filter patterns. Moreover, according to another embodiment, the color filter film further comprises white color filter patterns.
- According an embodiment of the invention, the material of the flexible substrate may be polyimide, polyethylene terephathalate, polyether ether ketone, or polyethylene naphthalene, PMMA, PS, PAR, PC, TAC, ARTON.
- According an embodiment of the invention, the display medium layer may be an electro-phoretic layer, an electro-wetting layer or a cholesteric liquid crystal layer.
- In the invention, since the color filter film are formed on the flexible substrate formed on the rigid substrate before separating the flexible substrate from the rigid substrate, the process yield and the capacity of the flexible color filter and the display panel with the same may be improved.
- In order to make the aforementioned and other objects, features and advantages of the invention comprehensible, preferred embodiments accompanied with figures are described in detail below. It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of this invention as claimed.
- These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
-
FIG. 1A toFIG. 1C are schematic cross-section views illustrating the flexible color filter during the fabricating process thereof according to an embodiment of the invention. -
FIG. 2 is a schematic cross-section view illustrating the color filter film formed on the flexible substrate according to another embodiment of the invention. -
FIG. 3 is a schematic cross-section view illustrating the light-shielding layer and the color filter film formed on the flexible substrate according to another embodiment of the invention. -
FIG. 4A toFIG. 4E are schematic cross-section views illustrating a display panel during the fabricating process thereof according to an embodiment of the invention. -
FIG. 5 is a schematic view illustrating a controlling elements array substrate according to an embodiment of the invention. -
FIG. 1A toFIG. 1C are schematic cross-section views illustrating the flexible color filter during the fabricating process thereof according to an embodiment of the invention. Referring toFIG. 1A , aflexible substrate 120 is formed on arigid substrate 110. The material of therigid substrate 110 is, for example, glass or stainless steel and the material of theflexible substrate 120 may be polyimide, polyethylene terephathalate, polyether ether ketone, polyethylene naphthalene, polymethyl methacrylate, polystyrene, polyarylate, polycarbonate, TAC or ARTON. - Referring to
FIG. 1B , acolor filter film 130 is formed on theflexible substrate 120. In this embodiment, thecolor filter film 130 comprises a plurality of color filter patterns such as red color filter patterns R, green color filter patterns G and blue color filter patterns B. In the other embodiment, thecolor filter film 130 may also comprise white color filter patterns W for increasing the display brightness, as shown inFIG. 2 . It should be noted that thecolor filter film 130 may be formed by lithographic and etching process. Furthermore, the color filter patterns may not only comprise cyan color filter patterns, yellow color filter patterns and magenta color filter patterns, also black color filter patterns. The colors of the color filter patterns of the invention are not limited hereto. - Moreover, a light-
shielding layer 140 with a plurality ofopenings 142 may be formed on theflexible substrate 120 for improving the contrast of the display images and preventing the light from mixing before forming thecolor filter film 130 in another embodiment, as shown inFIG. 3 . Then, the color filter patterns are formed in theopenings 142 and the material of the light-shielding layer 140 is, for example, resin or the other opaque materials. - Referring to
FIG. 1C , theflexible substrate 120 is separated from therigid substrate 110 to form aflexible color filter 100. For example, theflexible substrate 120 is separated from therigid substrate 110 by the laser releasing process. - Since the
flexible substrate 120 is separated from therigid substrate 110 after forming thecolor filter film 130 on theflexible substrate 120 by lithographic and etching process, the yield and capacity of the flexible colordisplay medium module 100 may be improved substantially. The application of theflexible color filter 100 would be described in the follow-up paragraphs, but the invention is not limited hereto. -
FIG. 4A toFIG. 4E are schematic cross-section views illustrating a display panel during the fabricating process thereof according to an embodiment of the invention. Referring toFIG. 4A , a controllingelements array substrate 210 with adisplay region 210 a and aperipheral circuit region 210 b is formed first. In detail, the controllingelements array substrate 210 comprises asubstrate 212 and a plurality ofpixel units 214 formed thereon. The places where thepixel units 214 disposed is determined as thedisplay region 210 a of the controllingelements array substrate 210. - It is worth to say that the controlling
elements array substrate 210 of this embodiment may be flexible. During the process of fabricating the flexible controllingelements array substrate 210, thesubstrate 212 with flexibility is formed on arigid substrate 201 first. The material of thesubstrate 212 is similar to or the same with the material of the aforementionedflexible substrate 120, it is unnecessary to say herein. Then, thepixel units 214 are formed on thesubstrate 212. That is, the controllingelements array substrate 210 is formed on therigid substrate 201 first in the invention. -
FIG. 5 is a schematic view illustrating a controlling elements array substrate according to an embodiment of the invention. Referring toFIG. 5 , eachpixel unit 214 comprises ascan line 215, adata line 216, athin film transistor 217 and apixel electrode 218. Thethin film transistor 217 is electrically connected to thecorresponding scan line 215 and the correspondingdata line 216, eachpixel electrode 218 is electrically connected to thedata line 216 through thethin film transistor 217. That is, a thin film transistor array is used as controlling elements in this embodiment. - It should be noted that although the active controlling elements are used in this embodiment, the invention is not limited hereto. Those skilled in the art should know that the display panel of the invention also can be controlled by passive controlling elements array.
- Referring to
FIG. 4B , adisplay medium layer 220 is formed on the controlling elements array. In detail, thedisplay medium layer 220 is disposed on thepixel units 214 located in thedisplay region 210 a of the controllingelements array substrate 210. In this embodiment, thedisplay medium layer 220 is, for example, an electro-phoretic layer, an electro-wetting layer or a cholesteric liquid crystal layer. - Referring to
FIG. 4C , theflexible color filter 100 may be formed by the aforementioned steps. Then, theflexible color filter 100 and the controllingelements array substrate 210 are assembled to each other for locating theflexible color filter 100 on thedisplay medium layer 220. - Referring to
FIG. 4D , after assembling the flexible colordisplay medium module 100 on the controllingelements array substrate 210, a drivingcircuit 230 is disposed in theperipheral circuit region 210 b of the controllingelements array substrate 210. In detail, the drivingcircuit 230 comprises anIC circuit 232 and a flexible printedcircuit 234. TheIC circuit 232 is used for driving thepixel units 214 disposed in theperipheral circuit region 210 b and the flexible printedcircuit 234 is used for electrically connecting theIC circuit 232 to the external circuit (not shown inFIG. 4C ). In this embodiment, theIC circuit 232 may disposed on the controllingelements array substrate 210 by chip on class process, chip on film process or tape automatic bonding process and electrically connected to thepixel units 214 disposed in thedisplay region 210 a. - Specially, the controlling
elements array substrate 210 is separated from therigid substrate 201 after disposing the drivingcircuit 230 thereon to form thedisplay panel 200 shown inFIG. 4E . In this embodiment, thesubstrate 212 may also separated from therigid substrate 201 by a laser releasing process. - Since the flexible substrate is formed on the rigid substrate first, and then the color filter film are formed on the flexible substrate before separating the flexible substrate from the rigid substrate during the fabricating process of the flexible color filter of the invention, the flexible color filter of the invention comparing to the conventional color filter fabricated by roll-to-roll process has improved elements resolution, process yield and capacity.
- Besides, the display panel of the invention may comprise the aforementioned flexible color display medium module and a flexible controlling elements array substrate. The controlling elements array substrate is formed on a rigid substrate first and separated therefrom after disposing the driving circuit on the flexible controlling elements array substrate. Accordingly, the pixel units of the invention may be formed by the multi-mask process to achieve the best resolution of 1 micrometer, and the flexible substrate may be prevented from deforming as disposing the driving circuit thereon. Therefore, the yield of the driving circuit may avoid decreasing.
- In summary, the flexible color filter may be produced in mass production scale by the fabricating process of the invention. Moreover, the yield of the flexible color filter and the display panel with the same may be increased and the resolutions of the flexible color filter and the display panel may be improved.
- The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including configurations ways of the recessed portions and materials and/or designs of the attaching structures. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
Claims (20)
1. A method of fabricating a display panel, comprising the steps of:
forming a flexible color filter, comprising the steps of:
forming a flexible substrate; and
forming a color filter film comprising a plurality of color filter patterns on the flexible substrate;
forming an array substrate having a display region and a peripheral circuit region;
forming a display medium layer within the display region of the array substrate; and
assembling the flexible color filter to above the array substrate, so as to make the color filter film directly in contact with the display medium layer.
2. The method according to claim 1 , further comprising the step of forming a light-shielding layer with a plurality of openings on the flexible substrate before forming the color filter film on the flexible substrate, and then the color filter patterns being formed in the openings.
3. The method according to claim 1 , wherein the color filter patterns comprise red color filter patterns, green color filter patterns and blue color filter patterns.
4. The method according to claim 3 , wherein the color filter patterns further comprise white color filter patterns.
5. The method according to claim 1 , wherein the color filter patterns comprise cyan color filter patterns, yellow color filter patterns and magenta color filter patterns.
6. The method according to claim 5 , wherein the color filter patterns further comprise black color filter patterns.
7. The method according to claim 1 , further comprising the step of:
disposing a driving circuit on the array substrate and within the peripheral circuit region of the array substrate.
8. A method of fabricating a display panel, comprising the steps of:
forming a flexible color filter, comprising the steps of:
forming a flexible substrate; and
forming a color filter film comprising a plurality of color filter patterns on the flexible substrate;
forming an array substrate having a display region and a peripheral circuit region;
forming an electro-phoretic layer within the display region of the array substrate; and
assembling the flexible color filter to above the array substrate and in contact with the electro-phoretic layer.
9. The method according to claim 8 , further comprising the step of forming a light-shielding layer with a plurality of openings on the flexible substrate before forming the color filter film on the flexible substrate, and then the color filter patterns being formed in the openings.
10. The method according to claim 8 , wherein the color filter patterns comprise red color filter patterns, green color filter patterns and blue color filter patterns.
11. The method according to claim 10 , wherein the color filter patterns further comprise white color filter patterns.
12. The method according to claim 8 , wherein the color filter patterns comprise cyan color filter patterns, yellow color filter patterns and magenta color filter patterns.
13. The method according to claim 12 , wherein the color filter patterns further comprise black color filter patterns.
14. The method according to claim 8 , further comprising the step of:
disposing a driving circuit on the array substrate and within the peripheral circuit region of the array substrate.
15. A display panel, comprising:
a flexible color filter comprising a flexible substrate and a color filter film, the color filter film comprising a plurality of color filter patterns disposed on the flexible substrate;
an array substrate; and
a display medium layer disposed between the flexible color filter and the array substrate, wherein the color filter film directly contacts the display medium layer.
16. The display panel according to claim 15 , wherein the flexible color filter further comprises a light-shielding layer disposed on the flexible substrate, the light-shielding layer has a plurality of openings, and the color filter patterns are disposed in the openings.
17. The display panel according to claim 15 , wherein the color filter patterns comprise red color filter patterns, green color filter patterns and blue color filter patterns.
18. The display panel according to claim 17 , wherein the color filter patterns further comprise white color filter patterns.
19. The display panel according to claim 15 , wherein the color filter patterns comprise cyan color filter patterns, yellow color filter patterns and magenta color filter patterns.
20. The display panel according to claim 19 , wherein the color filter patterns further comprise black color filter patterns.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/304,692 US20120069438A1 (en) | 2009-01-09 | 2011-11-28 | Methods of fabricating display panel and flexible color filter thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098100781A TWI387785B (en) | 2009-01-09 | 2009-01-09 | Method for manufacturing display panel and method for manufacturing the same |
TW098100781 | 2009-01-09 | ||
US12/402,432 US8083563B2 (en) | 2009-01-09 | 2009-03-11 | Methods of fabricating display panel and flexible color filter thereof |
US13/304,692 US20120069438A1 (en) | 2009-01-09 | 2011-11-28 | Methods of fabricating display panel and flexible color filter thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/402,432 Continuation US8083563B2 (en) | 2009-01-09 | 2009-03-11 | Methods of fabricating display panel and flexible color filter thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120069438A1 true US20120069438A1 (en) | 2012-03-22 |
Family
ID=42319397
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/402,432 Expired - Fee Related US8083563B2 (en) | 2009-01-09 | 2009-03-11 | Methods of fabricating display panel and flexible color filter thereof |
US13/304,692 Abandoned US20120069438A1 (en) | 2009-01-09 | 2011-11-28 | Methods of fabricating display panel and flexible color filter thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/402,432 Expired - Fee Related US8083563B2 (en) | 2009-01-09 | 2009-03-11 | Methods of fabricating display panel and flexible color filter thereof |
Country Status (2)
Country | Link |
---|---|
US (2) | US8083563B2 (en) |
TW (1) | TWI387785B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017131391A1 (en) * | 2016-01-25 | 2017-08-03 | 삼성전자주식회사 | Display device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI406207B (en) * | 2009-11-05 | 2013-08-21 | Prime View Int Co Ltd | Manufacturing method for felxible display apparatus |
TWI407230B (en) * | 2010-07-29 | 2013-09-01 | Au Optronics Corp | Electrophoretic display panel and fabricating method of the same |
TWI457614B (en) * | 2010-10-05 | 2014-10-21 | E Ink Holdings Inc | Method for manufacturing flexible color filter substrate |
US9535315B2 (en) | 2011-10-31 | 2017-01-03 | Applied Materials, Inc. | Method of fabricating a color filter array using a multilevel structure |
JP6561399B2 (en) * | 2013-11-20 | 2019-08-21 | 株式会社Joled | Display device and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777782A (en) * | 1996-12-24 | 1998-07-07 | Xerox Corporation | Auxiliary optics for a twisting ball display |
US20030025985A1 (en) * | 2001-07-25 | 2003-02-06 | Seiko Epson Corporation | Electro-optical device, electronic apparatus, method for forming a colored layer, and method for manufacturing the electro-optical device |
US20070223079A1 (en) * | 2006-03-22 | 2007-09-27 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US20080117496A1 (en) * | 2006-11-20 | 2008-05-22 | Samsung Electronics Co., Ltd. | Color filter substrate, electrophoretic display device having the same, and method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100679521B1 (en) * | 2000-02-18 | 2007-02-07 | 엘지.필립스 엘시디 주식회사 | Liquid Crystal Display Manufacturing Method |
JP2002072905A (en) * | 2000-09-05 | 2002-03-12 | Sharp Corp | Producing method of thin film laminated device and producing method of liquid crystal display element |
US6934001B2 (en) * | 2001-08-13 | 2005-08-23 | Sharp Laboratories Of America, Inc. | Structure and method for supporting a flexible substrate |
US8048251B2 (en) | 2003-10-28 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing optical film |
GB0327093D0 (en) * | 2003-11-21 | 2003-12-24 | Koninkl Philips Electronics Nv | Active matrix displays and other electronic devices having plastic substrates |
TWI468472B (en) * | 2006-01-13 | 2015-01-11 | Toyo Ink Mfg Co | Color filters are used for coloring compositions, color filters and liquid crystal display devices |
US8697503B2 (en) * | 2006-08-10 | 2014-04-15 | Koninklijke Philips N.V. | Active matrix displays and other electronic devices having plastic substrates |
CN101290364B (en) | 2008-05-30 | 2012-05-09 | 苏州苏大维格光电科技股份有限公司 | Colorful filter manufacture method and device |
-
2009
- 2009-01-09 TW TW098100781A patent/TWI387785B/en not_active IP Right Cessation
- 2009-03-11 US US12/402,432 patent/US8083563B2/en not_active Expired - Fee Related
-
2011
- 2011-11-28 US US13/304,692 patent/US20120069438A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5777782A (en) * | 1996-12-24 | 1998-07-07 | Xerox Corporation | Auxiliary optics for a twisting ball display |
US20030025985A1 (en) * | 2001-07-25 | 2003-02-06 | Seiko Epson Corporation | Electro-optical device, electronic apparatus, method for forming a colored layer, and method for manufacturing the electro-optical device |
US20070223079A1 (en) * | 2006-03-22 | 2007-09-27 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US20080117496A1 (en) * | 2006-11-20 | 2008-05-22 | Samsung Electronics Co., Ltd. | Color filter substrate, electrophoretic display device having the same, and method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017131391A1 (en) * | 2016-01-25 | 2017-08-03 | 삼성전자주식회사 | Display device |
US10802342B2 (en) | 2016-01-25 | 2020-10-13 | Samsung Electronics Co., Ltd. | Display device |
Also Published As
Publication number | Publication date |
---|---|
US20100178832A1 (en) | 2010-07-15 |
TW201027142A (en) | 2010-07-16 |
TWI387785B (en) | 2013-03-01 |
US8083563B2 (en) | 2011-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7952678B2 (en) | Liquid crystal panel having protrusions embedded in sealant and method for manufacturing same | |
EP3244385B1 (en) | Display substrate, display panel, and display device | |
US8665513B2 (en) | Electro-phoretic display device and fabricating method thereof | |
US7729040B2 (en) | Electrophoretic display device and electronic apparatus | |
US20120069438A1 (en) | Methods of fabricating display panel and flexible color filter thereof | |
US7202508B2 (en) | Electro-optical device and electronic apparatus device | |
US8730445B2 (en) | Liquid crystal display device with first and second substrates sealed by sealing material with an end of protective material on second substrate being disposed between inner and outer wall surfaces of the sealing material | |
KR100425052B1 (en) | Electro-optical device and electronic equipment | |
US8027079B2 (en) | Methods of fabricating display device and felxible color display medium module thereof | |
US7554643B2 (en) | Electro-optical device, electronic apparatus, and interface board | |
JP2007034266A (en) | Electro-optical device, manufacturing method thereof, and electronic equipment | |
US20120154344A1 (en) | Electric paper display apparatus | |
CN101806983B (en) | Manufacturing method of flexible color display medium module | |
US20060119768A1 (en) | Color filter substrate, method for manufacturing color filter substrate, color liquid crystal display device, and method for manufacturing color liquid crystal display device | |
KR20120100475A (en) | Liquid crystal display | |
CN112213893A (en) | Display device | |
CN107924091B (en) | Display panel and method for manufacturing display panel | |
JP5098213B2 (en) | Color filter manufacturing method, color display manufacturing method, color display manufacturing apparatus, and electronic apparatus | |
JP5565068B2 (en) | Electrophoretic display device and electronic apparatus | |
TWI400672B (en) | Methods of fabricating display device and flexible color display medium module thereof | |
CN101782665B (en) | Method for manufacturing display panel | |
JP2007047346A (en) | Manufacturing method for electro-optical device, electrooptical device, and electronic equipment | |
JP2007219300A (en) | Display apparatus | |
JP2007121688A (en) | Method for manufacturing liquid crystal display device | |
JP5549523B2 (en) | Electrophoretic display device manufacturing method, electrophoretic display device, and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |