US20120040200A1 - Recording sheet with improved image waterfastness, surface strength, and runnability - Google Patents
Recording sheet with improved image waterfastness, surface strength, and runnability Download PDFInfo
- Publication number
- US20120040200A1 US20120040200A1 US13/282,838 US201113282838A US2012040200A1 US 20120040200 A1 US20120040200 A1 US 20120040200A1 US 201113282838 A US201113282838 A US 201113282838A US 2012040200 A1 US2012040200 A1 US 2012040200A1
- Authority
- US
- United States
- Prior art keywords
- composition
- substrate
- starch
- paper
- paper substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 claims abstract description 78
- 239000000758 substrate Substances 0.000 claims abstract description 71
- 238000005299 abrasion Methods 0.000 claims abstract description 12
- 239000008199 coating composition Substances 0.000 claims abstract description 9
- 238000004513 sizing Methods 0.000 claims abstract description 7
- 239000000123 paper Substances 0.000 claims description 56
- 229920002472 Starch Polymers 0.000 claims description 36
- 235000019698 starch Nutrition 0.000 claims description 36
- 239000008107 starch Substances 0.000 claims description 27
- 230000003287 optical effect Effects 0.000 claims description 23
- 239000000834 fixative Substances 0.000 claims description 22
- 239000000835 fiber Substances 0.000 claims description 20
- -1 nitrogen-containing compound Chemical class 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 13
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000003431 cross linking reagent Substances 0.000 claims description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 238000005282 brightening Methods 0.000 claims description 7
- 239000000049 pigment Substances 0.000 claims description 7
- 229940015043 glyoxal Drugs 0.000 claims description 6
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 5
- 229920000768 polyamine Polymers 0.000 claims description 4
- 229920000881 Modified starch Polymers 0.000 claims 1
- 239000004368 Modified starch Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 235000019426 modified starch Nutrition 0.000 claims 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 25
- 239000000975 dye Substances 0.000 description 23
- 239000000976 ink Substances 0.000 description 15
- 229920003043 Cellulose fiber Polymers 0.000 description 11
- 125000002091 cationic group Chemical group 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000007639 printing Methods 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 238000007641 inkjet printing Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 5
- 239000004971 Cross linker Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 235000021286 stilbenes Nutrition 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 3
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007645 offset printing Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Chemical class 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000011122 softwood Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- IJAAWBHHXIWAHM-UHFFFAOYSA-N 1,4-bis(2-phenylethenyl)benzene Chemical class C=1C=CC=CC=1C=CC(C=C1)=CC=C1C=CC1=CC=CC=C1 IJAAWBHHXIWAHM-UHFFFAOYSA-N 0.000 description 1
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- NJXKLEIKNDPXAE-UHFFFAOYSA-N 1h-benzimidazole;1-benzofuran Chemical class C1=CC=C2OC=CC2=C1.C1=CC=C2NC=NC2=C1 NJXKLEIKNDPXAE-UHFFFAOYSA-N 0.000 description 1
- GJFNNZBYCMUAHY-ZHACJKMWSA-N 2-[(e)-2-phenylethenyl]-1,3-benzoxazole Chemical compound N=1C2=CC=CC=C2OC=1/C=C/C1=CC=CC=C1 GJFNNZBYCMUAHY-ZHACJKMWSA-N 0.000 description 1
- UQZLXZWXCZGLSW-UHFFFAOYSA-N 2-[2-[2-sulfo-4-(triazin-4-ylamino)phenyl]ethenyl]-5-(triazin-4-ylamino)benzenesulfonic acid Chemical class C=1C=C(C=CC=2C(=CC(NC=3N=NN=CC=3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC1=CC=NN=N1 UQZLXZWXCZGLSW-UHFFFAOYSA-N 0.000 description 1
- IOIVJDCXFSKYKU-UHFFFAOYSA-N 2-[2-[2-sulfo-4-(triazol-2-yl)phenyl]ethenyl]-5-(triazol-2-yl)benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC(N2N=CC=N2)=CC=C1C=CC(C(=C1)S(O)(=O)=O)=CC=C1N1N=CC=N1 IOIVJDCXFSKYKU-UHFFFAOYSA-N 0.000 description 1
- WTYIOUUBRHRFOP-UHFFFAOYSA-N 2-[4-[2-(4-phenylphenyl)ethenyl]phenyl]-1,3-benzoxazole Chemical class C=1C=C(C=2OC3=CC=CC=C3N=2)C=CC=1C=CC(C=C1)=CC=C1C1=CC=CC=C1 WTYIOUUBRHRFOP-UHFFFAOYSA-N 0.000 description 1
- MPIFMUARWKUNQZ-UHFFFAOYSA-N 4-[2-(2-phenylethenyl)phenyl]-2h-benzo[e]benzotriazole Chemical class C=1C=CC=C(C=2C=3N=NNC=3C3=CC=CC=C3C=2)C=1C=CC1=CC=CC=C1 MPIFMUARWKUNQZ-UHFFFAOYSA-N 0.000 description 1
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- REJHVSOVQBJEBF-UHFFFAOYSA-N DSD-acid Natural products OS(=O)(=O)C1=CC(N)=CC=C1C=CC1=CC=C(N)C=C1S(O)(=O)=O REJHVSOVQBJEBF-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 241001043922 Pensacola Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229920006320 anionic starch Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical class C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D103/00—Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
- C09D103/02—Starch; Degradation products thereof, e.g. dextrin
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/20—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/44—Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
- D21H19/54—Starch
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/44—Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
- D21H19/56—Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H19/60—Polyalkenylalcohols; Polyalkenylethers; Polyalkenylesters
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/16—Sizing or water-repelling agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5236—Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5245—Macromolecular coatings characterised by the use of polymers containing cationic or anionic groups, e.g. mordants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/02—Polyamines
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/44—Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/02—Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
- D21H23/22—Addition to the formed paper
- D21H23/52—Addition to the formed paper by contacting paper with a device carrying the material
- D21H23/56—Rolls
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
- Y10T428/31993—Of paper
Definitions
- the present invention relates to a sizing or coating composition that, when applied to paper substrate, creates a substrate having improved waterfastness, surface strength, and surface strength as measured by resistance to abrasion.
- the present invention relates to paper substrates containing the composition, as well as methods of using and making the paper substrate and composition.
- the substrate may be printed via inkjet printing methodologies (including dye and pigment inks) and/or may be printed via inkjet and offset printing methodologies (e.g. a dual use paper is possible in some instances).
- FIG. 1 A first schematic cross section of just one exemplified embodiment of the paper substrate that is included in the paper substrate of the present invention.
- FIG. 2 A second schematic cross section of just one exemplified embodiment of the paper substrate that is included in the paper substrate of the present invention.
- FIG. 3 A third schematic cross section of just one exemplified embodiment of the paper substrate that is included in the paper substrate of the present invention.
- FIG. 4 A bar graph demonstrating that the present invention has improved waterfastness.
- FIG. 5 A bar graph demonstrating that the present invention has improved surface strength as measured by abrasion resistance.
- the present inventors have discovered a composition that, when applied to a web of cellulosic fibers, creates a paper substrate having improved waterfastness, surface strength and runnability.
- This substrate may be used with inkjet printing (dye or ink-based) alone, or may be used as a dual purpose sheet for both offset and inkjet (dye and/or pigment-based) recording.
- the substrate of the present invention may be used as a recording sheet for inket printing alone or for dual purpose offset/inkjet printing.
- the composition may contain a solvent such as water and at least one binder.
- binders include, but are not limited to starch, polyvinyl alcohol, polyvinylamine, alginate, carboxymethyl cellulose.
- starches include, for example, oxidized, cationic, ethylated, hydroethoxylated, etc.
- the starch may be of any type, including but not limited to oxidized, ethylated, cationic and pearl, and is preferably used in aqueous solution.
- useful starches for the practice of this preferred embodiment of the invention are naturally occurring carbohydrates synthesized in corn, tapioca, potato and other plants by polymerization of dextrose units.
- starches and modified forms thereof such as starch acetates, starch esters, starch ethers, starch phosphates, starch xanthates, anionic starches, cationic starches and the like which can be derived by reacting the starch with a suitable chemical or enzymatic reagent can be used in the practice of this invention.
- Useful starches may be prepared by known techniques or obtained from commercial sources.
- the suitable starches include PG-280 from Penford Products, SLS-280 from St. Lawrence Starch, the cationic starch CatoSize 270 from National Starch and the hydroxypropyl No. 02382 from Poly Sciences, Inc.: CatoSize 270 and KoFilm 280 (all from National Starch) and PG-280 ethylated starches and AP Pearl starches.
- polyvinyl alcohol may be produced by hydrolyzing polyvinyl acetate (PVA).
- PVA polyvinyl acetate
- the acetate groups are replaced with alcohol groups and the higher the hydrolysis indicates that more acetate groups have been replaced.
- Lower hydrolysis/molecular weight PVOH are less viscous and more water soluble. While the PVOH may have any % hydrolysis, the PVOH may have, for example, a % hydrolysis ranging from 100% to 75%.
- the composition may contain any amount of binder, including from 70 wt % to 99 wt %, from 80 wt % to 98 wt %, and from 85 wt % to 96 wt %, based upon the total weight of the solids in the composition.
- the composition may contain 70, 75, 78, 80, 82, 84, 85, 86, 88, 90, 92, 94, 95, 96, 97, 98 and 99 wt % of the binder based upon the total weight of the solids in the composition, including any and all ranges and subrange therein.
- the composition may also contain at least one dye fixative.
- dye fixatives include nitrogen containing compounds.
- the nitrogen containing compound may be inorganic or organic, preferably organic.
- Suitable nitrogen containing compounds, oligomers and polymers are those containing one or more quaternary ammonium functional groups. Such functional groups may vary widely and include substituted and unsubstituted amines, imines, amides, urethanes, quaternary ammonium groups, dicyandiamides and the like.
- polyamines polyethyleneimines, copolymers of diallyldimethyl ammonium chloride (DADMAC), copolymers of vinyl pyrrolidone (VP) with quaternized diethylaminoethylmethacrylate (DEAMEMA), polyamides, cationic polyurethane latex, cationic polyvinyl alcohol, polyalkylamines dicyandiamid copolymers, amine glycigyl addition polymers, polyoxyethylene (dimethyliminio) ethylene (dimethyliminio) ethylene] dichlorides, and polyguanides such as poly(hexamethylene biguanide).
- DMDMAC diallyldimethyl ammonium chloride
- VP vinyl pyrrolidone
- DEAMEMA quaternized diethylaminoethylmethacrylate
- polyamides cationic polyurethane latex
- cationic polyvinyl alcohol polyalkylamines dicyandi
- the nitrogen containing compound may have any molecular weight
- the molecular weight may be equal to or less than 100,000 daltons, preferably equal to or less than about 50,000 and more preferably less than about 10,000.
- the molecular weight may be 100, 200, 500, 1000, 2000, 3000, 5000, 10000, 250000, 50000, and 100000, including any and all ranges and subranges therein.
- Illustrative of such materials are polyalkylamine dicyandiamide copolymers, poly [oxyethylene(dimethyliminio ethylene(dimethyliminioethylend dichlorides and polyamines.
- cationic latex polymers that are included as nitrogen containing species are those found in US published patent application US2005/0020729, which is hereby incorporated in its entirety by reference.
- dye fixatives are those found in U.S. Pat. No. 6,764,726, which is hereby incorporated in its entirety by reference, as well as those commercially available as Bubond 60 from Buckman that has a molecular weight of 2,000 Daltons.
- Optical brighteners used in the present invention may vary widely and any suitable optical brightener may be used. An overview of such brighteners is to be found, for example, in Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 2000 Electronic Release, OPTICAL BRIGHTENERS—Chemistry of Technical Products which is hereby incorporated, in its entirety, herein by reference. Other optical brighteners are described in U.S. Pat. Nos.
- Stilbene derivatives as for example those commercially available from Ciba Geigy under the tradename “Tinopal”, from Clariant under the tradename “Leucophor”, from Lanxess under the tradename “Blankophor” , and from 3V under the tradename “Optiblanc” such as disulfonate, tetrasulfonate and hexasulfonate stilbene based optical brightening agents.
- the dye fixative is covalently attached to OBAs having similar chemistries as those mentioned above, the OBA chemistry may change from anionic to cationic in nature, such as a cationic stilbene-based OBA.
- dye fixative that is in the form of a complex with an OBA or that may also act as an OBA is that which is commercially available from Clariant as Leucophor FTS.
- Further examples of such dye fixative/OBA dual function compounds and/or formulations include those when the OBA is cationic rather than anionic. Still further, examples can be found in U.S. Pat. Nos. 7,060,201 and 6,890,454, which is hereby incorporated, in its entirety, herein by reference.
- the composition may contain any amount of the nitrogen containing compound, including from 0.01 to 10 wt %, from 0.1 to 7 wt %, from 0.5 to 6 wt %, and from 1 wt % to 6 wt %, based upon the total dry weight of the starch in the composition.
- the composition may contain 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 wt % of the binder based upon the total dry weight of the starch in the composition, including any and all ranges and subrange therein.
- the composition may also contain a crosslinking agent.
- the crosslinking agent may be any chemical that is capable of crosslinking the hydroxyl groups of starch and/or the functional groups of the dye fixative.
- the crosslinking agent may be formaldehyde, urea, formaldehyde/urea resins, melamine, formaldehyde/melamine resins, acid anhydrides, maleic anhydride, anhydrides, metal salts, boron-containing compounds, boron containing salts, metal containing boron compounds, borates, sodium borate, ammonium salts, zirconium salts, AZT, glyoxal, blocked glyoxal such as those commercially available from Clariant (known as Cartbond TSI).
- blocked glyoxals are those that have the reactive groups either sterically or chemically blocked so that such groups may not react until a temperature of the compound is reached. While this temperature could be any temperature, in some circumstances the temperature could be greater than 150° Farenheit or even at least 160° Farenheit.
- the composition may contain any amount of the nitrogen containing compound, including from 0.01 to 7 wt %, from 0.1 to 5 wt %, from greater than 0.5 to 4 wt %, and from 1 wt % to 3 wt %, based upon the total dry weight of the starch in the composition.
- the composition may contain 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5.4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 wt % of the binder based upon the total dry weight of the starch in the composition, including any and all ranges and subrange therein.
- the composition may optionally contain at least one inorganic salt.
- Suitable inorganic salts may be monovalent and/or divalent and/or trivalent and may contain any level of hydration complexes thereof. Exemplified inorganic salts are those from Groups 1, 2 and 13 from the Periodic Table of Elements and hydrated complexes thereof, including monohydrates, dihydrates, trihydrates, tetrahydrates, etc.
- the cation of the salt may be sodium, calcium, magnesium, and aluminum preferably.
- the anionic counterion to the cation of the inorganic salt may be any counterion.
- Means for electrical modification include, but are not limited to, means involving contacting the fibers with an electromagnetic energy source such as light and/or electrical current.
- Means for mechanical modification include, but are not limited to, means involving contacting an inanimate object with the fibers. Examples of such inanimate objects include those with sharp and/or dull edges. Such means also involve, for example, cutting, kneading, pounding, impaling, etc means.
- Examples of chemical means include, but is not limited to, conventional chemical fiber modification means. Examples of such modification of fibers may be, but is not limited to, those found in the following U.S. Pat. Nos.
- the amount of crosslinker may be 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 4.0, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 lbs/ton of web, including any and all ranges and subranges therein.
- the substrate may have one or more improved properties that enhance the image waterfastness of recording sheets formed from the substrate.
- waterfastness test we describe the waterfastness test referred to within this document hereinbelow. It should be noted that the test described below is very similar to ASTM test F2292-03, which is hereby incorporated in its entirety by reference. Of course, any differences will be noted.
- a solid color is printed on a sheet or paper and the printed section is immersed into water, some ink will dissolve into the water leaving the remaining image faded or less dark.
- the density (darkness) of the printed solid can be measured with an optical densitomer both before and after immersion into water. The difference between the density readings can be expressed as the density loss (“DL %”).
- the method involves printing solid colored stripes on paper, immersing one-half of the stripe into deionized water at 23° C. for 60 seconds, and then air drying the paper. The optical density is read on the immersed (OD W ) and non-immersed (OD O ) portions of the stripe by a reflectance densitometer (X-Rite, Macbeth. Etc.).
- a positive DL % indicates a density increase after water immersion. While we do not wish to be bound by any theory, it is believed that this density increase is done to ink dye redistribution which provides for a more uniform ink coverage.
- a negative DL % is believed to indicate that the ink dye is washed out after the sample is subjected to water immersion and is undesirable.
- the DL % is from about ⁇ 10% to about 15%. More preferably, the DL % is from about ⁇ 5% to about 15%. Most preferably, the DL % is from about 0% to about 15%.
- the DL % may be ⁇ 10, ⁇ 7, ⁇ 5, ⁇ 3, 0, 3, 5, 7, 10, 12, and 15%, including any and all ranges and subranges therein.
- the substrate may have enhanced the surface strength.
- An example of enhanced surface strength is enhanced resistance to abrasion as measured by Taber Abrasion according to standard Tappi Test T 476 om-06, which is hereby incorporated in its entirety by reference.
- the Taber Abrasion may be any amount, including less than about 75, less than about 60, less than 50, and less than 40 mg/1000 revolutions.
- the Taber Abrasion may be less than about 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20 15, 10, and 5 mg/1000 revolutions, including any and all ranges and subranges therein.
- the substrate may have enhanced runnability.
- An example of enhanced runnability is exemplified by testing to see how many standard rolls of substrate (standard rolls are 36 inches wide, 50 inches in diameter, and having a 3 inch core) may be printed with the offset press mentioned below using the chemicals and conditions mentioned below:
- the substrate of the present invention when placed in standard rolls, may run for greater than half of a standard roll, preferably greater than one standard roll, more preferably at least two standard rolls, and most preferably at least three standard rolls before offset printer plates must be replaced or cleaned due to contamination thereof arid/or deposits from substrate attached thereto the plates.
- Conventional substrates when tested according to the above, are not capable of running for greater than a half of a standard roll, and usually greater than 1 roll before offset printer plates must be replaced or cleaned due to contamination thereof and/or deposits from substrate attached thereto the plates.
- the paper substrate of the present invention may have any black optical print density as measured by TAPPI METHOD T 1213 sp-03.
- the black optical density may be from 0.8 to 2.0, more preferably from 1.9 to 1.5.
- the black optical density may be 0.8, 0.9, 1.0, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2, 1.3, 1.4, and 1.5, including any and all ranges and subranges therein.
- the Hercules Sizing Test Value (“HST”) of the substrate may be any HST.
- the HST is measured using the procedure of TAPPI 530 pm-89.
- the HST is preferably from about 1 second to about 400 seconds, including from 1 to 200 seconds, less than 100 seconds, less than 50 seconds, and less than 10 seconds.
- the HST may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, and 400 seconds, including any and all ranges and subranges therein.
- the substrate can be of any basis weight, including from 10 to 40 lbs/1300 ft 2 , 15 to 30 lbs/1300 ft 2 , 18-28 lbs/1300 ft 2 , and about 20 and 24 lbs/1300 ft 2 .
- the basis weight may be 10, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30. 35, and 40 lbs/1300 ft 2 , including any and all ranges and subranges therein.
- the substrate can be of any density, including from 0.5 to 1.0, from 0.6 to 0.9, from 0.65 to 0.85, and from 0.7 to 0.8 g/cm 3 .
- the densisty may be 0.5, 0.55, 0.6, 0.65, 0.7, 0.72, 0.74, 0.75, 0.76, 0.78, 0.8, 0.85, 0,9, 0.95 and 1.0 g/cm 3 , including any and all ranges and subranges therein.
- This composition of the present invention may be added internally or to a surface of the web of cellulosic fibers to make the substrate of the present invention.
- Surface application is preferable. Examples of surface applications a size press and/or coater.
- the size press may be any size press commonly known in the art.
- the size press may be a puddle mode size press (e.g. inclined, vertical, horizontal) or metered size press (e.g. blade metered, rod metered), etc.
- the coater may be any coater commonly known in the art.
- the coater may be a blade coater or air knife coater, a bar coater, Meyer rod coater, reverse roll coater, extrusion coater, a gravure or reverse-gravure coater, a curtain coater, a dip coater, and a spray coater, etc.
- FIGS. 1-3 demonstrate different embodiments of the paper substrate 1 in the paper substrate of the present invention.
- FIG. 1 demonstrates a paper substrate 1 that has a web of cellulose fibers 3 and a composition 2 where the composition 2 has minimal interpenetration of the web of cellulose fibers 3 .
- Such an embodiment may be made, for example, when a composition is coated onto a web of cellulose fibers.
- FIG. 2 demonstrates a paper substrate 1 that has a web of cellulose fibers 3 and a composition 2 where the composition 2 interpenetrates the web of cellulose fibers 3 .
- the interpenetration layer 4 of the paper substrate 1 defines a region in which at least the composition penetrates into and is among the cellulose fibers.
- the interpenetration layer may be from 1 to 99% of the entire cross section of at least a portion of the paper substrate, including 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 99% of the paper substrate, including any and all ranges and subranges therein.
- Such an embodiment may be made, for example, when a composition is added to the cellulose fibers prior to a coating method and may be combined with a subsequent coating method if required. Addition points may be at the size press, for example.
- the paper substrate may be made by contacting any component of the composition with the cellulose fibers consecutively and/or simultaneously. Still further, the contacting may occur at acceptable concentration levels that provide the paper substrate of the present invention to contain any of the above-mentioned amounts of cellulose and components of the sizing solution. The contacting may occur anytime in the papermaking process including, but not limited to the thick stock, thin stock, head box, size press and coater. Further addition points include machine chest, stuff box, and suction of the fan pump.
- the components of the composition are preformulated either together and/or in combination within a single and/or separate coating layer(s) and coated onto the fibrous web via a size press and/or coater.
- the amount of composition applied thereto may be from 1 to 300 dry lbs/ton of web, including from 50 to 150, from 75 to 125, and from 80 to 100 dry lbs/ton of web.
- the amount of composition that is applied to the web may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 , 95, 100, 110, 120, 125, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, and 300 dry lbs/ton of web, including any and all ranges and subranges therein.
- the binder may be applied via a size press at typical sizing amounts to create a sized web.
- a coater may apply a composition containing the dye fixative and/or the crosslinking agent at the same time or sequentially.
- the coater may place any amount of dye fixative and/or crosslinking agent to the sized web, including from 0.25 to 25, 0.5 to 10, and 1.5 to 5 dry lbs/ton of web.
- the amount of dye fixative and/or crosslinking agent applied to the web may be 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5, 6, 7, 8, 9, 10, 12, 15, 20 and 25 dry lbs/ton of web, including any and all ranges and subranges therein.
- the paper or paperboard of this invention can be prepared using known conventional techniques. Methods and apparatuses for forming and making and applying a coating formulation to a paper substrate are well known in the paper and paperboard art. See for example, G. A. Smook referenced above and references cited therein all of which is hereby incorporated by reference. All such known methods can be used in the practice of this invention and will not be described in detail.
- the essential one or more nitrogen containing organic species and one or more starches and optional components can be dissolved or dispersed in an appropriate liquid medium, preferably water, and can be applied to the substrate by any suitable technique.
- Paper substrates of the present invention can be employed in ink jet printing processes.
- One embodiment of the present invention is directed to a process which comprises applying an aqueous recording liquid to a recording sheet of the present invention in an image wise pattern.
- Another embodiment of the present invention is directed to a printing process which comprises (1) incorporating into an ink jet printing apparatus containing an aqueous ink a recording sheet of the present invention, and (2) causing droplets of the ink (dye and/or pigment-based) to be ejected in an image wise pattern onto the recording sheet, thereby generating images on the recording sheet.
- Ink jet printing processes are well known, and are described in, for example, U.S. Pat. No. 4,601,777, U.S. Pat. No. 4,251,824, U.S.
- the printing apparatus employs a thermal ink jet process wherein the ink in the nozzles is selectively heated in an imagewise pattern, thereby causing droplets of the ink to be ejected in imagewise pattern.
- the recording sheets of the present invention can also be used in any other printing or imaging process, such as printing with pen plotters, imaging with color laser printers or copiers, handwriting with ink pens, offset printing processes, or the like, provided that the toner or ink employed to form the image is compatible with the ink receiving layer of the recording sheet.
- a series of size press compositions were prepared using the following procedure.
- the composition is prepared in the lab using a low shear mixer.
- a certain amount of pre-cooked starch is added to the mixing container, then the Bubond 60 or the Leucophor FTS dye fixatives, then the crosslinker which is diluted in the remaining water.under proper shear actions.
- the desired solids for this application is in a range of 14 to 16% depending on the tolerance of the system to size press treatment viscosity, and the desired pickup.
- the compositions and specifications are set for the in the following Table 1.
- a base paper that was manufactured at Pensacola mill, paper machine P5, which did not have any size press application and a basis weight of about 75 g/m 2 was used in this study.
- the HST values was about 1 second
- the base paper was coated with the coating compositions of Table 1 using a lab scale puddle size press.
- To apply the coating formulation a 12′′ wide roll of paper substrate is continuously fed between two rollers, and the coating formulation is pumped into the nip reservoir, the paper being fed through the nip reservoir at a prefixed speed.
- the formulation solids, nip pressure, and size press running speed the desired pickup weights mentioned in Table 1 were achieved.
- the amounts are provided in units of ?
- Print density is measured using a reflectance densitometer (X-Rite, Macbeth. Etc.) in units of optical density (“OD”).
- X-Rite reflectance densitometer
- OD optical density
- the printer used in this patent is a Scitex 4.5′′ wide printhead, which is connected to a microcomputer to determine the print pattern to print.
- the paper is attached to a drum which can spin at various speeds to simulate a printing press operating at different paper web speeds.
- the samples in this patent were printed at an equivalent web speed of 500 ft/min, using #1040 Scitex ink.
- the densitometer used was an X-Rite model 528 spectrodensitometer with a 6 mm aperature.
- the density measurement settings were Visual color, status T, and absolute density mode.
- the waterfastness testing was performed by dipping the printed sample in room temperature water for one minute, and then removing the sample and allowing the sample to air dry. The print density was measured before and after dipping, and the % change in print density calculated.
- the Taber Wet Abrasion test was performed using the method described in Tappi standard T476.
- ranges are used as a short hand for describing each and every value that is within the range, including all subranges therein.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paper (AREA)
- Ink Jet (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Paints Or Removers (AREA)
Abstract
The present invention relates to a sizing or coating composition that, when applied to paper substrate, creates a substrate having improved waterfastness, surface strength, and surface strength as measured by resistance to abrasion. In addition, the present invention relates to paper substrates containing the composition, as well as methods of using and making the paper substrate and composition.
Description
- The present application claims the benefit of priority under 35 USC §119(e) to U.S. Provisional Patent Application 60/931,163, filed May 21, 2007, which is hereby incorporated, in its entirety, herein by reference.
- 1. Field of the Invention
- The present invention relates to a sizing or coating composition that, when applied to paper substrate, creates a substrate having improved waterfastness, surface strength, and surface strength as measured by resistance to abrasion. In addition, the present invention relates to paper substrates containing the composition, as well as methods of using and making the paper substrate and composition. In particular, the substrate may be printed via inkjet printing methodologies (including dye and pigment inks) and/or may be printed via inkjet and offset printing methodologies (e.g. a dual use paper is possible in some instances).
- 2. Prior Art
- Recording sheets are known. See for example U.S. Pat. Nos. 6,764,726; 5,270,103; 5,657,064; 5,760,809; 5,729,266; 4,792,487; 5,405,678; 4,636,409; 4,481,244; 4,496,629; 4,517,244; 5,190,805; 5,320,902; 4,425,405; 4,503,118; 5,163,973; 4,425,405; 5,013,603; 5,397,619: 4,478,910; 5,429,860; 5,457,486; 5,537,137; 5,314,747; 5,474,843; 4,908,240; 5,320,902; 4,740,420; 4,576,867; 4,446,174; 4,830,911; 4,554,181; and 4,877,680, all of which are hereby incorporated in their entirety by reference.
- However, conventional paper substrates such as those above remain poor in balancing waterfastness, surface strength and runnability, especially if used as a dual purpose sheet for both offset and inkjet (dye and/or pigment-based) recording. Accordingly, there is a need to provide such high-performance and functionality to paper substrates.
-
FIG. 1 : A first schematic cross section of just one exemplified embodiment of the paper substrate that is included in the paper substrate of the present invention. -
FIG. 2 : A second schematic cross section of just one exemplified embodiment of the paper substrate that is included in the paper substrate of the present invention. -
FIG. 3 : A third schematic cross section of just one exemplified embodiment of the paper substrate that is included in the paper substrate of the present invention. -
FIG. 4 : A bar graph demonstrating that the present invention has improved waterfastness. -
FIG. 5 : A bar graph demonstrating that the present invention has improved surface strength as measured by abrasion resistance. - The present inventors have discovered a composition that, when applied to a web of cellulosic fibers, creates a paper substrate having improved waterfastness, surface strength and runnability. This substrate may be used with inkjet printing (dye or ink-based) alone, or may be used as a dual purpose sheet for both offset and inkjet (dye and/or pigment-based) recording. Thus the substrate of the present invention may be used as a recording sheet for inket printing alone or for dual purpose offset/inkjet printing.
- The composition may contain a solvent such as water and at least one binder. Examples of binders include, but are not limited to starch, polyvinyl alcohol, polyvinylamine, alginate, carboxymethyl cellulose. Examples of starches include, for example, oxidized, cationic, ethylated, hydroethoxylated, etc. Further, the starch may be of any type, including but not limited to oxidized, ethylated, cationic and pearl, and is preferably used in aqueous solution. illustrative of useful starches for the practice of this preferred embodiment of the invention are naturally occurring carbohydrates synthesized in corn, tapioca, potato and other plants by polymerization of dextrose units. All such starches and modified forms thereof such as starch acetates, starch esters, starch ethers, starch phosphates, starch xanthates, anionic starches, cationic starches and the like which can be derived by reacting the starch with a suitable chemical or enzymatic reagent can be used in the practice of this invention.
- Useful starches may be prepared by known techniques or obtained from commercial sources. For example, the suitable starches include PG-280 from Penford Products, SLS-280 from St. Lawrence Starch, the cationic starch CatoSize 270 from National Starch and the hydroxypropyl No. 02382 from Poly Sciences, Inc.: CatoSize 270 and KoFilm 280 (all from National Starch) and PG-280 ethylated starches and AP Pearl starches.
- When polyvinyl alcohol is utilized, polyvinyl alcohol (PVOH) may be produced by hydrolyzing polyvinyl acetate (PVA). The acetate groups are replaced with alcohol groups and the higher the hydrolysis indicates that more acetate groups have been replaced. Lower hydrolysis/molecular weight PVOH are less viscous and more water soluble. While the PVOH may have any % hydrolysis, the PVOH may have, for example, a % hydrolysis ranging from 100% to 75%.
- The composition may contain any amount of binder, including from 70 wt % to 99 wt %, from 80 wt % to 98 wt %, and from 85 wt % to 96 wt %, based upon the total weight of the solids in the composition. The composition may contain 70, 75, 78, 80, 82, 84, 85, 86, 88, 90, 92, 94, 95, 96, 97, 98 and 99 wt % of the binder based upon the total weight of the solids in the composition, including any and all ranges and subrange therein.
- The composition may also contain at least one dye fixative. Examples of dye fixatives include nitrogen containing compounds. The nitrogen containing compound may be inorganic or organic, preferably organic. Suitable nitrogen containing compounds, oligomers and polymers are those containing one or more quaternary ammonium functional groups. Such functional groups may vary widely and include substituted and unsubstituted amines, imines, amides, urethanes, quaternary ammonium groups, dicyandiamides and the like. Illustrative of such materials are polyamines, polyethyleneimines, copolymers of diallyldimethyl ammonium chloride (DADMAC), copolymers of vinyl pyrrolidone (VP) with quaternized diethylaminoethylmethacrylate (DEAMEMA), polyamides, cationic polyurethane latex, cationic polyvinyl alcohol, polyalkylamines dicyandiamid copolymers, amine glycigyl addition polymers, polyoxyethylene (dimethyliminio) ethylene (dimethyliminio) ethylene] dichlorides, and polyguanides such as poly(hexamethylene biguanide). While the nitrogen containing compound may have any molecular weight, the molecular weight may be equal to or less than 100,000 daltons, preferably equal to or less than about 50,000 and more preferably less than about 10,000. The molecular weight may be 100, 200, 500, 1000, 2000, 3000, 5000, 10000, 250000, 50000, and 100000, including any and all ranges and subranges therein. Illustrative of such materials are polyalkylamine dicyandiamide copolymers, poly [oxyethylene(dimethyliminio ethylene(dimethyliminioethylend dichlorides and polyamines. Other examples include low molecular weight cationic polymers such as polyalkylamine dicyandiamid copolymer, poly[oxyethylene (dimethyliminio)ethylene(dimethyliminio)ethy lend] dichloride. Still further, the nitrogen containing compounds include low molecular weight polyalkylamine dicyandiamid copolymers. Examples of modified poly(vinyl alcohol)-co-poly(vinyl amine) polymers with cationic functional groups attached thereto are also useful nitrogen containing species, such as those found in US published patent application US2005/0020729 and PCT application WO2003054030, which are both hereby incorporated in their entirety by reference. Examples of cationic latex polymers that are included as nitrogen containing species are those found in US published patent application US2005/0020729, which is hereby incorporated in its entirety by reference. Further examples of dye fixatives are those found in U.S. Pat. No. 6,764,726, which is hereby incorporated in its entirety by reference, as well as those commercially available as Bubond 60 from Buckman that has a molecular weight of 2,000 Daltons.
- In one embodiment, the dye fixative may be used in combination with an optical brightening agents, such as for example in a complex. Such complexes may, for example, be formed via covalently bonding the dye fixative to the optical brightening agent. Optical brightening agents (“OBAs”) used in the practice of the process of this invention may vary widely and any conventional OBA used or which can be used to brighten mechanical or Kraft pulp can be used in the combination with the dye fixative. Optical brighteners are dye-like fluorescent compounds which absorb the short-wave ultraviolet light not visible to the human eye and emit it as longer-wave blue light, with the result that the human eye perceives a higher degree of whiteness and the degree of whiteness is thus increased. This provides added brightness and can offset the natural yellow cast of a substrate such as paper. Optical brighteners used in the present invention may vary widely and any suitable optical brightener may be used. An overview of such brighteners is to be found, for example, in Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 2000 Electronic Release, OPTICAL BRIGHTENERS—Chemistry of Technical Products which is hereby incorporated, in its entirety, herein by reference. Other optical brighteners are described in U.S. Pat. Nos. 5,902,454; 6,723,846; 6,890,454; 5,482,514; 6,893,473; 6,723,846; 6,890,454; 6,426,382; 4.169,810; and 5,902,454 and references cited therein which are all incorporated by reference. Still other optical brighteners are described in U.S. Pat. Application Publication Nos. US 2007/0193707; US 2004/014910 and US 2003/0013628; and WO 96/00221 and of which are hereby incorporated, in their entirety, herein by reference. Illustrative of useful optical brighteners are 4,4′-bis-(triazinylamino)-stilbene-2,2′-disulfonic acids, 4,4′-bis-(triazol-2-yl)stilbene-2,2′-disulfonic acids, 4,4′-dibenzofuranyl-biphenyls, 4,4′-(diphenyl)-stilbenes, 4,4′-distyryl-biphenyls, 4-phenyl-4′-benzoxazolyl-stilbenes, stilbenyl-naphthotriazoles, 4-styryl-stilbenes, bis-(benzoxazol-2-yl) derivatives, bis-(benzimidazol-2-yl) derivatives, coumarins, pyrazolines, naphthalimides, triazinyl-pyrenes, 2-styryl-benzoxazole or -naphthoxazoles, benzimidazole-benzofurans or oxanilides.
- Most commercially available optical brightening agents are based on stilbene, coumarin and pyrazoline chemistries and these are preferred for use in the practice of this invention. More preferred optical brighteners for use in the practice of this invention are optical brighteners typically used in the paper industry based on stilbene chemistry such as 1,3,5-triazinyl derivatives of 4,4′-diaminostilbene-2,2′-disulfonic acid and salts thereof, which may carry additional sulfo groups, as for example at the 2, 4 and/or 6 positions. Stilbene derivatives as for example those commercially available from Ciba Geigy under the tradename “Tinopal”, from Clariant under the tradename “Leucophor”, from Lanxess under the tradename “Blankophor” , and from 3V under the tradename “Optiblanc” such as disulfonate, tetrasulfonate and hexasulfonate stilbene based optical brightening agents. Of course, if the dye fixative is covalently attached to OBAs having similar chemistries as those mentioned above, the OBA chemistry may change from anionic to cationic in nature, such as a cationic stilbene-based OBA. An example of a dye fixative that is in the form of a complex with an OBA or that may also act as an OBA is that which is commercially available from Clariant as Leucophor FTS. Further examples of such dye fixative/OBA dual function compounds and/or formulations include those when the OBA is cationic rather than anionic. Still further, examples can be found in U.S. Pat. Nos. 7,060,201 and 6,890,454, which is hereby incorporated, in its entirety, herein by reference.
- The composition may contain any amount of the nitrogen containing compound, including from 0.01 to 10 wt %, from 0.1 to 7 wt %, from 0.5 to 6 wt %, and from 1 wt % to 6 wt %, based upon the total dry weight of the starch in the composition. The composition may contain 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 wt % of the binder based upon the total dry weight of the starch in the composition, including any and all ranges and subrange therein.
- The composition may also contain a crosslinking agent. The crosslinking agent may be any chemical that is capable of crosslinking the hydroxyl groups of starch and/or the functional groups of the dye fixative. The crosslinking agent may be formaldehyde, urea, formaldehyde/urea resins, melamine, formaldehyde/melamine resins, acid anhydrides, maleic anhydride, anhydrides, metal salts, boron-containing compounds, boron containing salts, metal containing boron compounds, borates, sodium borate, ammonium salts, zirconium salts, AZT, glyoxal, blocked glyoxal such as those commercially available from Clariant (known as Cartbond TSI). Examples of blocked glyoxals are those that have the reactive groups either sterically or chemically blocked so that such groups may not react until a temperature of the compound is reached. While this temperature could be any temperature, in some circumstances the temperature could be greater than 150° Farenheit or even at least 160° Farenheit.
- The composition may contain any amount of the nitrogen containing compound, including from 0.01 to 7 wt %, from 0.1 to 5 wt %, from greater than 0.5 to 4 wt %, and from 1 wt % to 3 wt %, based upon the total dry weight of the starch in the composition. The composition may contain 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5.4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 wt % of the binder based upon the total dry weight of the starch in the composition, including any and all ranges and subrange therein.
- The composition may optionally contain at least one inorganic salt. Suitable inorganic salts may be monovalent and/or divalent and/or trivalent and may contain any level of hydration complexes thereof. Exemplified inorganic salts are those from
Groups - Further optional components that may be present in the composition include pigment, dispersants, fluorescent dyes, surfactants, defaming agents, preservatives, pigments, binders, pH control agents, coating releasing agents, and the like.
- The composition may be contacted with a web of cellulosic fibers to make a paper substrate of the present invention. The fibers may be synthetic. Examples of synthetic fibers may be those made from polyolefin fibers. Such synthetic fibers are commercially available as for example from DuPont under the trademark “Tyvex”. The fibers may be recycled fibers and/or virgin fibers. Recycled fibers differ from virgin fibers in that the fibers have gone through the drying process at least once. The sources of the fibers are from softwood and/or hardwood. Further, the softwood and/or hardwood fibers contained by the paper substrate of the present invention may be modified by physical and/or chemical means. Examples of physical means include, but is not limited to, electromagnetic and mechanical means. Means for electrical modification include, but are not limited to, means involving contacting the fibers with an electromagnetic energy source such as light and/or electrical current. Means for mechanical modification include, but are not limited to, means involving contacting an inanimate object with the fibers. Examples of such inanimate objects include those with sharp and/or dull edges. Such means also involve, for example, cutting, kneading, pounding, impaling, etc means. Examples of chemical means include, but is not limited to, conventional chemical fiber modification means. Examples of such modification of fibers may be, but is not limited to, those found in the following U.S. Pat. Nos. 6,592,717, 6,582,557, 6,579,415, 6,579,414, 6,506,282, 6,471,824, 6,361,651, 6,146,494, H1,704, 5,698,688, 5,698,074, 5,667,637, 5,662,773. 5,531,728, 5,443,899, 5,360,420, 5,266,250, 5,209,953, 5,160,789, 5,049,235, 4,986,882, 4,496,427, 4,431,481, 4,174,417, 4,166,894, 4,075,136, and 4,022,965, which are hereby incorporated in their entirety by reference.
- The substrate of the present invention contains an effective amount of the above-described composition and/or components within the composition. An effective amount of the composition and/or components within the composition may be applied to the web of cellulosic fibers. An effective amount is meant to be the amount necessary to achieve a good balance of waterfastness, surface strength, and runnability as described below.
- Although the effective amount of the composition could be any amount to obtain any one or more of the below-described performance and/or physical characteristics of the substrate, it is preferable that an effective amount of the composition is added such that the paper substrate contains from 50 to 150 lbs of starch per ton of web. The amount of starch may be 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, and 150 lbs/ton of paper, including any and all ranges and subranges therein. In addition, it is preferably that an effective amount of the composition is added such that the paper substrate contains from 0.1 to 15 lbs of dye fixative per ton of web. The amount of dye fixative may be 0.1, 0.2, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 lbs/ton of web, including any and all ranges and subranges therein. In addition, it is preferably that an effective amount of the composition is added such that the paper substrate contains from 0.01 to 15 lbs of crosslinker per ton of web. The amount of crosslinker may be 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 4.0, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 lbs/ton of web, including any and all ranges and subranges therein.
- The substrate may have one or more improved properties that enhance the image waterfastness of recording sheets formed from the substrate. Although there are many ways to measure waterfastness, we describe the waterfastness test referred to within this document hereinbelow. It should be noted that the test described below is very similar to ASTM test F2292-03, which is hereby incorporated in its entirety by reference. Of course, any differences will be noted.
- If a solid color is printed on a sheet or paper and the printed section is immersed into water, some ink will dissolve into the water leaving the remaining image faded or less dark. The density (darkness) of the printed solid can be measured with an optical densitomer both before and after immersion into water. The difference between the density readings can be expressed as the density loss (“DL %”). The method involves printing solid colored stripes on paper, immersing one-half of the stripe into deionized water at 23° C. for 60 seconds, and then air drying the paper. The optical density is read on the immersed (ODW) and non-immersed (ODO) portions of the stripe by a reflectance densitometer (X-Rite, Macbeth. Etc.). The percent density loss (“DL %”) is defined as DL %=[(ODW−ODO/ODO]×100. In this equation, a positive DL % indicates a density increase after water immersion. While we do not wish to be bound by any theory, it is believed that this density increase is done to ink dye redistribution which provides for a more uniform ink coverage. A negative DL % is believed to indicate that the ink dye is washed out after the sample is subjected to water immersion and is undesirable. Preferably, the DL % is from about −10% to about 15%. More preferably, the DL % is from about −5% to about 15%. Most preferably, the DL % is from about 0% to about 15%. The DL % may be −10, −7, −5, −3, 0, 3, 5, 7, 10, 12, and 15%, including any and all ranges and subranges therein.
- The substrate may have enhanced the surface strength. An example of enhanced surface strength is enhanced resistance to abrasion as measured by Taber Abrasion according to standard Tappi Test T 476 om-06, which is hereby incorporated in its entirety by reference. The Taber Abrasion may be any amount, including less than about 75, less than about 60, less than 50, and less than 40 mg/1000 revolutions. The Taber Abrasion may be less than about 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20 15, 10, and 5 mg/1000 revolutions, including any and all ranges and subranges therein.
- The substrate may have enhanced runnability. An example of enhanced runnability is exemplified by testing to see how many standard rolls of substrate (standard rolls are 36 inches wide, 50 inches in diameter, and having a 3 inch core) may be printed with the offset press mentioned below using the chemicals and conditions mentioned below:
- Press—RDP Drent Goebel 4 color press
Press speed—1300 fpm on first roll, then 1400 fpm on all others
Fountain solution—Prisco H8P+
PH of Fountain solution—3.7
Concentration of fountain solution—4 oz. per gallon
Temperature setting (AWS system)—60° F.
Conductivity gauge—1800 mmhos at start - Sequence—1st print unit—off (no impression cylinder)
2nd print unit—off (no impression cylinder)
3rd print unit—Bright Red—pre-mix PMS 186
4th print unit—standard Black
Plates—Fuji Barilla positive
Blankets—Day 9500 3 ply room atmospheric conditions—68° F. and 32% Relative Humidity - The Test is to see how many standard rolls will run through the press before the offset printer plates must be replaced or cleaned due to contamination thereof and/or deposits from substrate attached thereto the plates. Using this test, the substrate of the present invention, when placed in standard rolls, may run for greater than half of a standard roll, preferably greater than one standard roll, more preferably at least two standard rolls, and most preferably at least three standard rolls before offset printer plates must be replaced or cleaned due to contamination thereof arid/or deposits from substrate attached thereto the plates. Conventional substrates, when tested according to the above, are not capable of running for greater than a half of a standard roll, and usually greater than 1 roll before offset printer plates must be replaced or cleaned due to contamination thereof and/or deposits from substrate attached thereto the plates.
- The paper substrate of the present invention may have any black optical print density as measured by TAPPI METHOD T 1213 sp-03. The black optical density may be from 0.8 to 2.0, more preferably from 1.9 to 1.5. The black optical density may be 0.8, 0.9, 1.0, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2, 1.3, 1.4, and 1.5, including any and all ranges and subranges therein.
- The Hercules Sizing Test Value (“HST”) of the substrate may be any HST. The HST is measured using the procedure of TAPPI 530 pm-89. In the preferred embodiments of this invention, the HST is preferably from about 1 second to about 400 seconds, including from 1 to 200 seconds, less than 100 seconds, less than 50 seconds, and less than 10 seconds. The HST may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, and 400 seconds, including any and all ranges and subranges therein.
- The substrate can be of any basis weight, including from 10 to 40 lbs/1300 ft2, 15 to 30 lbs/1300 ft2, 18-28 lbs/1300 ft2, and about 20 and 24 lbs/1300 ft2. The basis weight may be 10, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30. 35, and 40 lbs/1300 ft2, including any and all ranges and subranges therein.
- The substrate can be of any density, including from 0.5 to 1.0, from 0.6 to 0.9, from 0.65 to 0.85, and from 0.7 to 0.8 g/cm3. The densisty may be 0.5, 0.55, 0.6, 0.65, 0.7, 0.72, 0.74, 0.75, 0.76, 0.78, 0.8, 0.85, 0,9, 0.95 and 1.0 g/cm3, including any and all ranges and subranges therein.
- This composition of the present invention may be added internally or to a surface of the web of cellulosic fibers to make the substrate of the present invention. Surface application is preferable. Examples of surface applications a size press and/or coater. The size press may be any size press commonly known in the art. For example, the size press may be a puddle mode size press (e.g. inclined, vertical, horizontal) or metered size press (e.g. blade metered, rod metered), etc. The coater may be any coater commonly known in the art. For example, the coater may be a blade coater or air knife coater, a bar coater, Meyer rod coater, reverse roll coater, extrusion coater, a gravure or reverse-gravure coater, a curtain coater, a dip coater, and a spray coater, etc.
-
FIGS. 1-3 demonstrate different embodiments of thepaper substrate 1 in the paper substrate of the present invention.FIG. 1 demonstrates apaper substrate 1 that has a web ofcellulose fibers 3 and acomposition 2 where thecomposition 2 has minimal interpenetration of the web ofcellulose fibers 3. Such an embodiment may be made, for example, when a composition is coated onto a web of cellulose fibers. -
FIG. 2 demonstrates apaper substrate 1 that has a web ofcellulose fibers 3 and acomposition 2 where thecomposition 2 interpenetrates the web ofcellulose fibers 3. The interpenetration layer 4 of thepaper substrate 1 defines a region in which at least the composition penetrates into and is among the cellulose fibers. The interpenetration layer may be from 1 to 99% of the entire cross section of at least a portion of the paper substrate, including 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 99% of the paper substrate, including any and all ranges and subranges therein. Such an embodiment may be made, for example, when a composition is added to the cellulose fibers prior to a coating method and may be combined with a subsequent coating method if required. Addition points may be at the size press, for example. -
FIG. 3 demonstrates apaper substrate 1 that has a web ofcellulose fibers 3 and asolution 2 where thecomposition 2 is approximately evenly distributed throughout the web ofcellulose fibers 3. Such an embodiment may be made, for example, when a composition is added to the cellulose fibers prior to a coating method and may be combined with a subsequent coating method if required. Exemplified addition points may be at the wet end of the paper making process, the thin stock, and the thick stock. - The paper substrate may be made by contacting any component of the composition with the cellulose fibers consecutively and/or simultaneously. Still further, the contacting may occur at acceptable concentration levels that provide the paper substrate of the present invention to contain any of the above-mentioned amounts of cellulose and components of the sizing solution. The contacting may occur anytime in the papermaking process including, but not limited to the thick stock, thin stock, head box, size press and coater. Further addition points include machine chest, stuff box, and suction of the fan pump. Preferably, the components of the composition are preformulated either together and/or in combination within a single and/or separate coating layer(s) and coated onto the fibrous web via a size press and/or coater.
- When the composition is applied to the web of cellulosic fibers, especially at a size press, the amount of composition applied thereto may be from 1 to 300 dry lbs/ton of web, including from 50 to 150, from 75 to 125, and from 80 to 100 dry lbs/ton of web. The amount of composition that is applied to the web may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 , 95, 100, 110, 120, 125, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, and 300 dry lbs/ton of web, including any and all ranges and subranges therein.
- In one embodiment, the binder may be applied via a size press at typical sizing amounts to create a sized web. Then, a coater may apply a composition containing the dye fixative and/or the crosslinking agent at the same time or sequentially. In this case, the coater may place any amount of dye fixative and/or crosslinking agent to the sized web, including from 0.25 to 25, 0.5 to 10, and 1.5 to 5 dry lbs/ton of web. In this embodiment, the amount of dye fixative and/or crosslinking agent applied to the web may be 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5, 6, 7, 8, 9, 10, 12, 15, 20 and 25 dry lbs/ton of web, including any and all ranges and subranges therein.
- The paper or paperboard of this invention can be prepared using known conventional techniques. Methods and apparatuses for forming and making and applying a coating formulation to a paper substrate are well known in the paper and paperboard art. See for example, G. A. Smook referenced above and references cited therein all of which is hereby incorporated by reference. All such known methods can be used in the practice of this invention and will not be described in detail.
- The essential one or more nitrogen containing organic species and one or more starches and optional components can be dissolved or dispersed in an appropriate liquid medium, preferably water, and can be applied to the substrate by any suitable technique.
- Paper substrates of the present invention can be employed in ink jet printing processes. One embodiment of the present invention is directed to a process which comprises applying an aqueous recording liquid to a recording sheet of the present invention in an image wise pattern. Another embodiment of the present invention is directed to a printing process which comprises (1) incorporating into an ink jet printing apparatus containing an aqueous ink a recording sheet of the present invention, and (2) causing droplets of the ink (dye and/or pigment-based) to be ejected in an image wise pattern onto the recording sheet, thereby generating images on the recording sheet. Ink jet printing processes are well known, and are described in, for example, U.S. Pat. No. 4,601,777, U.S. Pat. No. 4,251,824, U.S. Pat. No. 4,410,899, U.S. Pat. No. 4,412,224, and U.S. Pat. No. 4,532,530, the disclosures of each of which are totally incorporated herein by reference. In a particularly preferred embodiment, the printing apparatus employs a thermal ink jet process wherein the ink in the nozzles is selectively heated in an imagewise pattern, thereby causing droplets of the ink to be ejected in imagewise pattern. The recording sheets of the present invention can also be used in any other printing or imaging process, such as printing with pen plotters, imaging with color laser printers or copiers, handwriting with ink pens, offset printing processes, or the like, provided that the toner or ink employed to form the image is compatible with the ink receiving layer of the recording sheet.
- The present invention will be described with references to the following examples. The examples are intended to be illustrative and the invention is not limited to the materials, conditions, or process parameters set forth in the example. All parts and percentages are by unit weight unless otherwise indicated.
- A series of size press compositions were prepared using the following procedure. The composition is prepared in the lab using a low shear mixer. A certain amount of pre-cooked starch is added to the mixing container, then the Bubond 60 or the Leucophor FTS dye fixatives, then the crosslinker which is diluted in the remaining water.under proper shear actions. The desired solids for this application is in a range of 14 to 16% depending on the tolerance of the system to size press treatment viscosity, and the desired pickup. The compositions and specifications are set for the in the following Table 1.
-
TABLE 1 Size Press Compositions Tested Bubond Starch, Fixative, Crosslinker, Composition Parts Parts Parts 1 60 0 0 2 60 2.5 0 3 60 2.5 0.5 4 60 2.5 1.0 5 60 2.5 1.5 6 60 2.5 2.0 - A base paper that was manufactured at Pensacola mill, paper machine P5, which did not have any size press application and a basis weight of about 75 g/m2 was used in this study. The HST values was about 1 second, The base paper was coated with the coating compositions of Table 1 using a lab scale puddle size press. To apply the coating formulation, a 12″ wide roll of paper substrate is continuously fed between two rollers, and the coating formulation is pumped into the nip reservoir, the paper being fed through the nip reservoir at a prefixed speed. By controlling the formulation solids, nip pressure, and size press running speed, the desired pickup weights mentioned in Table 1 were achieved. The amounts are provided in units of ?
- The waterfastness and abrasion tests were performed on each of the above samples of Table I. The results of each test are found in
FIGS. 4 and 5 , respectively. Print density is measured using a reflectance densitometer (X-Rite, Macbeth. Etc.) in units of optical density (“OD”). The method involves printing a solid block of color on the sheet, and measuring the optical density. There is some variation in OD depending on the particular printer used and the print mode chosen, as well as the densitometer mode and color setting. The printer used in this patent is a Scitex 4.5″ wide printhead, which is connected to a microcomputer to determine the print pattern to print. The paper is attached to a drum which can spin at various speeds to simulate a printing press operating at different paper web speeds. The samples in this patent were printed at an equivalent web speed of 500 ft/min, using #1040 Scitex ink. The densitometer used was an X-Rite model 528 spectrodensitometer with a 6 mm aperature. The density measurement settings were Visual color, status T, and absolute density mode. - The waterfastness testing was performed by dipping the printed sample in room temperature water for one minute, and then removing the sample and allowing the sample to air dry. The print density was measured before and after dipping, and the % change in print density calculated. The Taber Wet Abrasion test was performed using the method described in Tappi standard T476.
- Numerous modifications and variations on the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the accompanying claims, the invention may be practiced otherwise than as specifically described herein.
- As used throughout, ranges are used as a short hand for describing each and every value that is within the range, including all subranges therein.
- All of the references, as well as their cited references, cited herein are hereby incorporated by reference with respect to relative portions related to the subject matter of the present invention and all of its embodiments
Claims (20)
1) A sizing or coating composition, comprising
at least one binder;
at least one dye fixative; and
at least one crosslinking agent.
2) sizing or coating composition according to claim 1 , further comprising at least one pigment.)
3.) The sizing or coating composition according to claim 1 , further comprising at least one inorganic salt.)
4.) The composition according to claim 1 , wherein the at least one binder is present at an amount ranging from 85 to 98 wt % based upon the total weight of the solids in of the composition.)
5.) The composition according to claim 1 , wherein the at least one dye fixative is present at an amount ranging from 0.5 to 10 wt % based upon the total weight of the starch in of the composition.)
6.) The composition according to claim 1 , wherein the at least one crosslinking agent is present at an amount ranging from 0.5 to 5 wt % based upon the total weight of the starch in of the composition.)
7.) The composition according to claim 1 , wherein the at least one binder is at least one member selected from the group consisting of starch, modified starch and polyvinyl alcohol.
8.) The composition according to claim 1 , wherein the at least one dye fixative is at least one member selected from the group consisting of a polyamine, a polyeneimine, and an optical brightening agent:nitrogen-containing compound complex.)
9.) The composition according to claim 1 , wherein the at least one crosslinking agent is at least one member selected from the group consisting of glyoxal and blocked glyoxal.)
10.) The composition according to claim 1 , comprising
the at least one binder at an amount of 85 to 98 wt % based upon the total weight of the solids in of the composition;
at least dye fixative at an amount ranging from 0.5 to 10 wt % based upon the total weight of the starch in of the composition; and
at least one crosslinking agent at an amount ranging from 0.25 to 5 wt % based upon the total weight of the starch in of the composition.
11.) The composition according to claim 10 , wherein
the at least one binder is selected from the group consisting of starch and polyvinyl alcohol;
the at least one dye fixative is selected from the group consisting of a polyamine, a polyeneimine, and an optical brightening agent:nitrogen-containing compound complex; and
the at least one crosslinking agent is selected from the group consisting of glyoxal and blocked glyoxal.)
12. A paper substrate, comprising the composition according to claim 11 .
13. The paper substate according to claim 12 , comprising an effective amount of the composition such that the substrate has a waterfastness as measured by DL % of from −10 to 15.
14.) The paper substate according to claim 12 , comprising an effective amount of the composition such that the substrate has a waterfastness as measured by DL % is from 5 to 55.
15.) The paper substrate according to claim 12 , comprising an effective amount of the composition such that the substrate has a surface strength that is less than 60 mg/1000 revolutions as measured by the Taber Abrasion test.)
16.) The paper substrate according to claim 12 , comprising an effective amount of the composition such that the substrate has a surface strength that is less than 50 mg/1000 revolutions as measured by the Taber Abrasion test.)
17.) The paper substrate according to claim 12 , comprising an effective amount of the composition such that the substrate has a surface strength that is less than 40 mg/1000 revolutions as measured by the Taber Abrasion test.)
18.) The paper substrate according to claim 12 , comprising an effective amount of the composition such that the substrate; when in a roll that is 36 inches wide, 50 inches in diameter, and having a 3 inch core, runs continuously for greater than half of a total length of the roll.)
19.) The paper substrate according to claim 12 , comprising an effective amount of the composition such that the substrate; when in a roll that is 36 inches wide, 50 inches in diameter, and having a 3 inch core, runs continuously for at least two lengths of the roll.)
20.) A method of making the paper substrate according to claim 12 , comprising contacting a web of fibers with the composition at a size press or at a coater.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/282,838 US20120040200A1 (en) | 2007-05-21 | 2011-10-27 | Recording sheet with improved image waterfastness, surface strength, and runnability |
US14/160,068 US20140130995A1 (en) | 2007-05-21 | 2014-01-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93116307P | 2007-05-21 | 2007-05-21 | |
US12/154,342 US8048267B2 (en) | 2007-05-21 | 2008-05-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
US13/282,838 US20120040200A1 (en) | 2007-05-21 | 2011-10-27 | Recording sheet with improved image waterfastness, surface strength, and runnability |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/154,342 Continuation US8048267B2 (en) | 2007-05-21 | 2008-05-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/160,068 Continuation US20140130995A1 (en) | 2007-05-21 | 2014-01-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120040200A1 true US20120040200A1 (en) | 2012-02-16 |
Family
ID=39672646
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/154,342 Expired - Fee Related US8048267B2 (en) | 2007-05-21 | 2008-05-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
US13/282,838 Abandoned US20120040200A1 (en) | 2007-05-21 | 2011-10-27 | Recording sheet with improved image waterfastness, surface strength, and runnability |
US14/160,068 Abandoned US20140130995A1 (en) | 2007-05-21 | 2014-01-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/154,342 Expired - Fee Related US8048267B2 (en) | 2007-05-21 | 2008-05-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/160,068 Abandoned US20140130995A1 (en) | 2007-05-21 | 2014-01-21 | Recording sheet with improved image waterfastness, surface strength, and runnability |
Country Status (9)
Country | Link |
---|---|
US (3) | US8048267B2 (en) |
EP (1) | EP2152522A1 (en) |
JP (2) | JP5149961B2 (en) |
CN (2) | CN102887005A (en) |
AU (2) | AU2008254437B2 (en) |
BR (1) | BRPI0810293A2 (en) |
CA (1) | CA2688067C (en) |
MX (1) | MX2009012551A (en) |
WO (1) | WO2008144074A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8460511B2 (en) | 2008-10-01 | 2013-06-11 | International Paper Company | Paper substrate containing a wetting agent and having improved printability |
US8465622B2 (en) | 2007-12-26 | 2013-06-18 | International Paper Company | Paper substrate containing a wetting agent and having improved print mottle |
US10036123B2 (en) | 2005-11-01 | 2018-07-31 | International Paper Company | Paper substrate having enhanced print density |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0810293A2 (en) * | 2007-05-21 | 2019-02-12 | Int Paper Co | "bonding or coating composition, paper substrate and method for making paper substrate" |
US8613834B2 (en) | 2008-04-03 | 2013-12-24 | Basf Se | Paper coating or binding formulations and methods of making and using same |
CN102300908B (en) * | 2008-12-03 | 2014-12-17 | 生态合成材料有限公司 | Process for producing biopolymer nanoparticle biolatex compositions having enhanced performance and compositions based thereon |
CA2749806A1 (en) * | 2009-02-02 | 2010-08-05 | Akzo Nobel Chemicals International B.V. | Surface additives for whiteness improvements to reverse whiteness loss due to calcium chloride |
US8608908B2 (en) | 2010-04-02 | 2013-12-17 | International Paper Company | Method and system using low fatty acid starches in paper sizing composition to inhibit deposition of multivalent fatty acid salts |
CN102947506A (en) * | 2010-05-17 | 2013-02-27 | 巴斯夫欧洲公司 | Method of making paper |
EP2640894B2 (en) * | 2010-11-17 | 2020-07-01 | Hewlett-Packard Development Company, L.P. | Surface sizing composition for print media in digital printing |
EP2651652B1 (en) * | 2010-12-15 | 2018-10-10 | Newpage Corporation | Recording medium for inkjet printing |
AT511619B1 (en) * | 2011-06-22 | 2016-02-15 | Mondi Ag | METHOD FOR SURFACE TREATMENT OF PAPER AND PAPER |
CN102658744A (en) * | 2012-06-05 | 2012-09-12 | 江苏泰特尔化工有限公司 | Water-based and environmentally-friendly weak solvent type inkjet carrier material |
EP3237221B1 (en) | 2014-12-24 | 2021-09-08 | Hewlett-Packard Development Company, L.P. | Coated print medium |
US10166806B2 (en) | 2014-12-24 | 2019-01-01 | Hewlett-Packard Development Company, L.P. | Coated print medium |
US9981497B2 (en) | 2014-12-24 | 2018-05-29 | Hewlett-Packard Development Company, L.P. | Coated print medium |
TWI730143B (en) * | 2016-07-08 | 2021-06-11 | 日商王子控股股份有限公司 | Sheet |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4386965A (en) * | 1980-07-03 | 1983-06-07 | Ciba-Geigy Corporation | Process for obtaining coating compositions of improved whiteness |
US20030219539A1 (en) * | 2002-05-01 | 2003-11-27 | Asutosh Nigam | Coating compositions, process for making coating compositions, method for providing a water-resistant image on a substrate using an ink-jet printer and printed substrate thereof |
US20040209014A1 (en) * | 2003-02-21 | 2004-10-21 | The Nippon Synthetic Chemical Industry Co., Ltd. | Recording medium |
US20050003112A1 (en) * | 2003-07-02 | 2005-01-06 | Tienteh Chen | Inkjet recording materials containing siloxane copolymer surfactants |
US20050003113A1 (en) * | 2003-07-02 | 2005-01-06 | Tienteh Chen | Inkjet recording materials |
US6919109B2 (en) * | 2002-04-01 | 2005-07-19 | Fuji Photo Film Co., Ltd. | Fine particle dispersion, coating solution for accepting layer for coloring agent for ink-jet recording sheet, ink-jet recording sheet using the dispersion, and method for producing fine particle dispersion |
US20080075869A1 (en) * | 2006-09-26 | 2008-03-27 | Degussa Corporation | Multi-functional paper for enhanced printing performance |
US8048267B2 (en) * | 2007-05-21 | 2011-11-01 | International Paper Company | Recording sheet with improved image waterfastness, surface strength, and runnability |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4166894A (en) * | 1974-01-25 | 1979-09-04 | Calgon Corporation | Functional ionene compositions and their use |
DK659674A (en) * | 1974-01-25 | 1975-09-29 | Calgon Corp | |
US4022965A (en) * | 1975-01-13 | 1977-05-10 | Crown Zellerbach Corporation | Process for producing reactive, homogeneous, self-bondable lignocellulose fibers |
US4174417A (en) * | 1975-10-14 | 1979-11-13 | Kimberly-Clark Corporation | Method of forming highly absorbent fibrous webs and resulting products |
DE2721084C3 (en) * | 1977-05-11 | 1981-02-26 | Hoechst Ag, 6000 Frankfurt | Mixtures of optical brighteners |
DE2945658A1 (en) * | 1978-11-14 | 1980-05-29 | Canon Kk | LIQUID JET RECORDING METHOD |
US4446174A (en) * | 1979-04-27 | 1984-05-01 | Fuiji Photo Film Company, Ltd. | Method of ink-jet recording |
US4496427A (en) * | 1980-01-14 | 1985-01-29 | Hercules Incorporated | Preparation of hydrophilic polyolefin fibers for use in papermaking |
JPS56139970A (en) * | 1980-04-01 | 1981-10-31 | Canon Inc | Formation of droplet |
JPS5738185A (en) * | 1980-08-20 | 1982-03-02 | Matsushita Electric Ind Co Ltd | Ink jet recording paper |
JPS57102366A (en) * | 1980-12-18 | 1982-06-25 | Canon Inc | Ink jet head |
US4517244A (en) * | 1981-08-06 | 1985-05-14 | Canon Kabushiki Kaisha | Recording medium and ink jet recording paper |
US4496629A (en) * | 1982-01-12 | 1985-01-29 | Canon Kabushiki Kaisha | Material used to bear writing or printing |
US4481244A (en) * | 1982-02-03 | 1984-11-06 | Canon Kabushiki Kaisha | Material used to bear writing or printing |
US4431481A (en) * | 1982-03-29 | 1984-02-14 | Scott Paper Co. | Modified cellulosic fibers and method for preparation thereof |
JPS59185690A (en) * | 1983-04-07 | 1984-10-22 | Jujo Paper Co Ltd | Ink jet recording paper |
JPS6011389A (en) * | 1983-07-01 | 1985-01-21 | Mitsubishi Paper Mills Ltd | Ink jet recording paper |
US4636409A (en) * | 1983-09-19 | 1987-01-13 | Canon Kabushiki Kaisha | Recording medium |
JPS6067190A (en) * | 1983-09-22 | 1985-04-17 | Ricoh Co Ltd | Ink jet recording medium |
US4532530A (en) * | 1984-03-09 | 1985-07-30 | Xerox Corporation | Bubble jet printing device |
US4554181A (en) * | 1984-05-07 | 1985-11-19 | The Mead Corporation | Ink jet recording sheet having a bicomponent cationic recording surface |
US4601777A (en) * | 1985-04-03 | 1986-07-22 | Xerox Corporation | Thermal ink jet printhead and process therefor |
JPS62124976A (en) * | 1985-11-26 | 1987-06-06 | Canon Inc | Recording material |
US5013603A (en) * | 1986-06-13 | 1991-05-07 | Mizusawa Industrial Chemicals, Ltd. | Ink jet recording paper with amorphous silica filler |
JP2667162B2 (en) * | 1986-11-04 | 1997-10-27 | 日本製紙株式会社 | Ink jet recording sheet |
US4792487A (en) * | 1987-03-12 | 1988-12-20 | James River Corporation Of Virginia | Ink jet recording medium comprising (a) water expansible colloidal clay (b) silica and (c) water insoluble synthetic binder |
DE3730887A1 (en) * | 1987-09-15 | 1989-03-23 | Basf Ag | METHOD FOR IMPROVING THE PRINTABILITY OF PAPER |
US4986882A (en) * | 1989-07-11 | 1991-01-22 | The Proctor & Gamble Company | Absorbent paper comprising polymer-modified fibrous pulps and wet-laying process for the production thereof |
US5209953A (en) * | 1989-08-03 | 1993-05-11 | Kimberly-Clark Corporation | Overall printing of tissue webs |
US5160789A (en) * | 1989-12-28 | 1992-11-03 | The Procter & Gamble Co. | Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber |
US5049235A (en) * | 1989-12-28 | 1991-09-17 | The Procter & Gamble Company | Poly(methyl vinyl ether-co-maleate) and polyol modified cellulostic fiber |
US5360420A (en) * | 1990-01-23 | 1994-11-01 | The Procter & Gamble Company | Absorbent structures containing stiffened fibers and superabsorbent material |
US5163973A (en) * | 1990-02-14 | 1992-11-17 | Alcan Internatinal Limited | Process for producing low soda alumina |
US5266250A (en) | 1990-05-09 | 1993-11-30 | Kroyer K K K | Method of modifying cellulosic wood fibers and using said fibers for producing fibrous products |
US5270103A (en) * | 1990-11-21 | 1993-12-14 | Xerox Corporation | Coated receiver sheets |
US5190805A (en) * | 1991-09-20 | 1993-03-02 | Arkwright Incorporated | Annotatable ink jet recording media |
US5320902A (en) * | 1992-04-01 | 1994-06-14 | Xerox Corporation | Recording sheets containing monoammonium compounds |
JP2927377B2 (en) * | 1992-08-07 | 1999-07-28 | 日本製紙株式会社 | Ink jet recording paper and method for manufacturing the same |
DE4230655A1 (en) * | 1992-09-14 | 1994-03-17 | Ciba Geigy | Process for improving the whiteness, brightness and color location of fibrous materials |
JPH06202370A (en) * | 1992-11-01 | 1994-07-22 | Fuji Xerox Co Ltd | Electrophotographic trasnfer paper |
US6180238B1 (en) * | 1993-03-19 | 2001-01-30 | Xerox Corporation | Recording sheets containing oxazole, isooxazole, oxazolidinone, oxazoline salt, morpholine, thiazole, thiazolidine, thiadiazole, and phenothiazine compounds |
US6482503B1 (en) * | 1993-03-19 | 2002-11-19 | Xerox Corporation | Recording sheets containing pyrrole, pyrrolidine, pyridine, piperidine, homopiperidine, quinoline, isoquinoline, quinuclidine, indole, and indazole compounds |
US5457486A (en) * | 1993-03-19 | 1995-10-10 | Xerox Corporation | Recording sheets containing tetrazolium indolinium, and imidazolinium compounds |
US5760809A (en) * | 1993-03-19 | 1998-06-02 | Xerox Corporation | Recording sheets containing phosphonium compounds |
US5314747A (en) * | 1993-03-19 | 1994-05-24 | Xerox Corporation | Recording sheets containing cationic sulfur compounds |
US5405678A (en) * | 1993-05-07 | 1995-04-11 | Otis Specialty Papers Inc. | Ink jet recording sheet |
US5474843A (en) * | 1993-12-16 | 1995-12-12 | Labelon Corporation | Acceptor material for inks |
US5429860A (en) * | 1994-02-28 | 1995-07-04 | E. I. Du Pont De Nemours And Company | Reactive media-ink system for ink jet printing |
GB9412590D0 (en) | 1994-06-23 | 1994-08-10 | Sandoz Ltd | Organic compounds |
US5662773A (en) | 1995-01-19 | 1997-09-02 | Eastman Chemical Company | Process for preparation of cellulose acetate filters for use in paper making |
US5667637A (en) | 1995-11-03 | 1997-09-16 | Weyerhaeuser Company | Paper and paper-like products including water insoluble fibrous carboxyalkyl cellulose |
GB9605729D0 (en) * | 1996-03-19 | 1996-05-22 | Applied Holographics | Optical data storage disc |
US5698688A (en) | 1996-03-28 | 1997-12-16 | The Procter & Gamble Company | Aldehyde-modified cellulosic fibers for paper products having high initial wet strength |
WO1997049687A1 (en) * | 1996-06-24 | 1997-12-31 | Cytec Technology Corp. | Polyfunctional crosslinking acylimidazolidinone derivatives |
US5902454A (en) * | 1996-12-13 | 1999-05-11 | Ciba Specialty Chemicals Corporation | Method of whitening lignin-containing paper pulps |
USH1704H (en) * | 1996-12-13 | 1998-01-06 | Kimberly-Clark Worldwide, Inc. | Modified cellulose fiber having improved curl |
US6146494A (en) * | 1997-06-12 | 2000-11-14 | The Procter & Gamble Company | Modified cellulosic fibers and fibrous webs containing these fibers |
GB9813248D0 (en) * | 1998-06-22 | 1998-08-19 | Clariant Int Ltd | Improvements in or relating to organic compounds |
US6471824B1 (en) * | 1998-12-29 | 2002-10-29 | Weyerhaeuser Company | Carboxylated cellulosic fibers |
BR9916641A (en) | 1998-12-30 | 2001-09-25 | Kimberly Clark Co | Steam blast recycling process for fibers and fabrics made from recycled fibers |
US6361651B1 (en) * | 1998-12-30 | 2002-03-26 | Kimberly-Clark Worldwide, Inc. | Chemically modified pulp fiber |
US6764726B1 (en) * | 1999-05-12 | 2004-07-20 | Sen Yang | Ink jet recording sheet with improved image waterfastness |
AU6842600A (en) * | 1999-09-10 | 2001-04-17 | Ciba Specialty Chemicals Holding Inc. | Triazinylaminostilbene derivative as fluorescent whitening agents |
GB9930247D0 (en) * | 1999-12-22 | 2000-02-09 | Clariant Int Ltd | Improvements in or relating to organic compounds |
US6482883B1 (en) * | 2000-05-10 | 2002-11-19 | Kanzaki Specialty Papers, Inc. | Ink jet recording material demonstrating a balance of properties including improved imaging performance and good water resistance |
GB0100610D0 (en) * | 2001-01-10 | 2001-02-21 | Clariant Int Ltd | Improvements in or relating to organic compounds |
JP4000246B2 (en) * | 2001-04-06 | 2007-10-31 | 富士フイルム株式会社 | Inkjet recording sheet manufacturing method |
GB0125177D0 (en) | 2001-10-19 | 2001-12-12 | Clariant Int Ltd | Improvements in or relating to organic compounds |
BR0215221A (en) * | 2001-12-21 | 2004-12-14 | Ciba Sc Holding Ag | Poly (vinyl alcohol) -co-poly (vinylamine) polymers comprising functional portions |
US6893473B2 (en) * | 2002-05-07 | 2005-05-17 | Weyerhaeuser.Company | Whitened fluff pulp |
US6737486B2 (en) * | 2002-07-16 | 2004-05-18 | Eastman Kodak Company | Polymerization process |
US20050083386A1 (en) * | 2003-10-16 | 2005-04-21 | Samaranayake Gamini S. | Cationic swellable dispersion polymers for ink jet coatings |
US7030201B2 (en) * | 2003-11-26 | 2006-04-18 | Az Electronic Materials Usa Corp. | Bottom antireflective coatings |
US7507439B2 (en) | 2004-05-06 | 2009-03-24 | Hewlett-Packard Development Company, L.P. | Use and preparation of crosslinked polymer particles for inkjet recording materials |
JP2006142748A (en) | 2004-11-24 | 2006-06-08 | Oji Paper Co Ltd | Method for producing ink jet recording material |
US7638016B2 (en) * | 2005-02-19 | 2009-12-29 | International Paper Company | Method for treating kraft pulp with optical brighteners after chlorine bleaching to increase brightness |
US8758886B2 (en) | 2005-10-14 | 2014-06-24 | International Paper Company | Recording sheet with improved image dry time |
CN101351596A (en) * | 2005-11-01 | 2009-01-21 | 国际纸业公司 | A paper substrate having enhanced print density |
-
2008
- 2008-05-21 BR BRPI0810293A patent/BRPI0810293A2/en not_active IP Right Cessation
- 2008-05-21 US US12/154,342 patent/US8048267B2/en not_active Expired - Fee Related
- 2008-05-21 CN CN2012104033151A patent/CN102887005A/en active Pending
- 2008-05-21 CA CA 2688067 patent/CA2688067C/en active Active
- 2008-05-21 EP EP20080754669 patent/EP2152522A1/en not_active Withdrawn
- 2008-05-21 JP JP2010509386A patent/JP5149961B2/en not_active Expired - Fee Related
- 2008-05-21 CN CN2008800168594A patent/CN101678694B/en not_active Expired - Fee Related
- 2008-05-21 AU AU2008254437A patent/AU2008254437B2/en not_active Ceased
- 2008-05-21 MX MX2009012551A patent/MX2009012551A/en active IP Right Grant
- 2008-05-21 WO PCT/US2008/006577 patent/WO2008144074A1/en active Application Filing
-
2011
- 2011-02-24 AU AU2011200799A patent/AU2011200799A1/en not_active Abandoned
- 2011-10-27 US US13/282,838 patent/US20120040200A1/en not_active Abandoned
-
2012
- 2012-11-30 JP JP2012262470A patent/JP5632445B2/en not_active Expired - Fee Related
-
2014
- 2014-01-21 US US14/160,068 patent/US20140130995A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4386965A (en) * | 1980-07-03 | 1983-06-07 | Ciba-Geigy Corporation | Process for obtaining coating compositions of improved whiteness |
US6919109B2 (en) * | 2002-04-01 | 2005-07-19 | Fuji Photo Film Co., Ltd. | Fine particle dispersion, coating solution for accepting layer for coloring agent for ink-jet recording sheet, ink-jet recording sheet using the dispersion, and method for producing fine particle dispersion |
US20030219539A1 (en) * | 2002-05-01 | 2003-11-27 | Asutosh Nigam | Coating compositions, process for making coating compositions, method for providing a water-resistant image on a substrate using an ink-jet printer and printed substrate thereof |
US20040209014A1 (en) * | 2003-02-21 | 2004-10-21 | The Nippon Synthetic Chemical Industry Co., Ltd. | Recording medium |
US20050003112A1 (en) * | 2003-07-02 | 2005-01-06 | Tienteh Chen | Inkjet recording materials containing siloxane copolymer surfactants |
US20050003113A1 (en) * | 2003-07-02 | 2005-01-06 | Tienteh Chen | Inkjet recording materials |
US20080075869A1 (en) * | 2006-09-26 | 2008-03-27 | Degussa Corporation | Multi-functional paper for enhanced printing performance |
US8048267B2 (en) * | 2007-05-21 | 2011-11-01 | International Paper Company | Recording sheet with improved image waterfastness, surface strength, and runnability |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10036123B2 (en) | 2005-11-01 | 2018-07-31 | International Paper Company | Paper substrate having enhanced print density |
US8465622B2 (en) | 2007-12-26 | 2013-06-18 | International Paper Company | Paper substrate containing a wetting agent and having improved print mottle |
US8460511B2 (en) | 2008-10-01 | 2013-06-11 | International Paper Company | Paper substrate containing a wetting agent and having improved printability |
Also Published As
Publication number | Publication date |
---|---|
CN101678694B (en) | 2012-12-05 |
WO2008144074A8 (en) | 2009-01-08 |
AU2008254437B2 (en) | 2011-03-17 |
JP2013121720A (en) | 2013-06-20 |
US20080289786A1 (en) | 2008-11-27 |
MX2009012551A (en) | 2009-12-08 |
JP2010528197A (en) | 2010-08-19 |
CN101678694A (en) | 2010-03-24 |
US8048267B2 (en) | 2011-11-01 |
WO2008144074A1 (en) | 2008-11-27 |
US20140130995A1 (en) | 2014-05-15 |
CA2688067A1 (en) | 2008-11-27 |
JP5632445B2 (en) | 2014-11-26 |
AU2008254437A1 (en) | 2008-11-27 |
AU2011200799A1 (en) | 2011-03-17 |
CA2688067C (en) | 2013-07-09 |
JP5149961B2 (en) | 2013-02-20 |
EP2152522A1 (en) | 2010-02-17 |
CN102887005A (en) | 2013-01-23 |
BRPI0810293A2 (en) | 2019-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8048267B2 (en) | Recording sheet with improved image waterfastness, surface strength, and runnability | |
US20190309478A1 (en) | Paper substrate having enhanced print density | |
JP4995831B2 (en) | Paper substrate with high printing density | |
RU2517511C2 (en) | Registration sheet with improved printing quality at low levels of additives | |
US8057637B2 (en) | Paper substrate containing a wetting agent and having improved print mottle | |
MX2010014415A (en) | Recording sheet with improved print density. | |
US20100159164A1 (en) | Inkjet printing paper | |
CN101646823B (en) | Offset-printable coated white paper having a high fluorescence intensity and method for producing same | |
US10464364B1 (en) | Sublimation transfer paper with coating, and method for making same | |
KR101287401B1 (en) | High speed ink-jet printing paper | |
JP2019084726A (en) | Inkjet recording paper for aqueous pigment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL PAPER COMPANY, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOENIG, MICHAEL F.;SINGH, KAPIL M.;SIGNING DATES FROM 20080612 TO 20080626;REEL/FRAME:027133/0033 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |